
i

X. Zhang

A Homogenized Model for the
Nonlinear Behaviour of Masonry
Under In-plane Loading

A Material Model Based on Coupling of Tension, Shear
and Compressive Splitting

A Homogenized Model for the Nonlinear Behaviour
of Masonry Under In-plane Loading

A Material Model Based on Coupling of Tension, Shear and
Compressive Splitting

By

Xinrui Zhang

in partial fulfilment of the requirements for the degree of

Master of Science
in Civil Engineering

at the Delft University of Technology,

to be defended publicly on Thursday 29th July 2021, at 14.00

Student number: 4915879
Kick-off date: 24th September 2020
Final defense: 29th July 2021
Thesis committee: Prof.dr.ir. J.G. Rots, TU Delft

Dr. F. Messali, TU Delft
M. Sousamli, MSc, TU Delft
Dr.ir. G.J.P. Ravenshorst TU Delft

An electronic version of this thesis is available at https://repository.tudelft.nl/

https://repository.tudelft.nl/

i

Preface
I take this opportunity to express my appreciation to all people who have participated in the successful
completion of this thesis.

First of all, I am deeply grateful to all of my committee members for guiding me to move on and finish profound
research. Their academic thinking inspires me to have new ideas on improving the concepts of works, and
their support helps me better understand how to become a good researcher. Prof. Jan Rots, the Chair of my
committee assessment group, always encourages me when I am confused about my works. His enormous
knowledge brings me to see a new “masonry world”, and his enthusiasm will always excite me to go further
on computational modelling in my future career. I also want to express my gratitude to my supervisor Dr.
Francesco Messali and daily supervisor Marianthi Sousamli. They give me excellent guidance throughout the
whole thesis period, and they give me adequate freedom on my thesis. The lockdown during the Covid-19
Pandemic period brought inconvenience to communicate with each other face to face. Francesco and
Marianthi tried their best to support me as much as possible whenever I need help on my thesis in such a
difficult period. It is my first time finishing such a large project in English, so I wrote my thesis in extreme
disorder at the beginning. However, they showed their most patience and faith to me and guided me to
arrange the thesis academically. My language ability and critical thinking cannot be improved such much
without their help. I also want to thank Dr. ir. Geert Ravenshorst, one of my committee members from the
section of Biobased Structures and Materials. His deep thinking on the research results inspires me to focus
on the validations and applications of models, not just on the theory.

Furthermore, this thesis is impossible to be finished without Zucchini and Lourenço’s works on deriving such
excellent constitutive models. The validations cannot be assessed without the experimental results tested by
Dr. Rita Esposito, Dr. Francesco Messali, Prof. Jan Rots, and all other staff at Delft University of Technology.
Very thanks for their fantastic works.

Finally, I want to give my sincere thanks to my parents and all of my friends. My parents gave me great
financial support and accompanied me when I was depressed and fight against my psychological problems.
They encouraged me and gave me much confidence, even if they did not understand what I am doing in the
thesis. My friends, especially those who also studied mechanics, shared their experience and knowledge
without hesitation when I needed help. Thank all the teachers in my life. They taught me how to learn and
built me up the most enthusiasm for studying.

X.Zhang
Delft, July 2021

ii

Abstract
Masonry is one of the most common building materials globally due to its ease of construction, price, durability
and fire resistance. Its heterogeneity and orthotropic nature make its mechanical behaviour rather complex,
highlighting the importance of an appropriate constitutive model to describe such behaviour accurately. In
literature, most of the existing constitutive models for masonry fall in one of the two following categories:
macro-models or micro-models. The micro-models (also called block-based models), which explicitly describe
masonry's geometrical and material heterogeneities, exhibit higher accuracy but require higher numerical
efforts when simulating masonry's mechanical behaviour. The macro-models (also called continuum models),
which model masonry as homogeneous material and smear out the damage over the continua, are less
accurate but offer a good compromise between accuracy and numerical efficiency. They are therefore used
more often to simulate masonry structures. However, most of the macro-models are not capturing well the
damage localization occurring along the mortar joints and the energy dissipation in the bricks and mortars.
To increase the applicability of continuum models, the components' damage localization and energy
dissipation should be improved. This thesis presents a homogenized constitutive model for applications on
masonry structures under in-plane loading.

The developed homogenized material model for masonry includes the description of shearing, tensile
cracking, crushing and splitting. Inspired by the micro-mechanical models of Zucchini and Lourenço, four
models were developed in this thesis to describe the different types of in-plane failure of masonry, naming:
tensile failure of bed joints, horizontal shear sliding of bed joints, tensile cracking of unit, diagonal tensile
cracking failure, masonry crushing failure. The first model is derived for the masonry’s pure shear behaviour,
where the shear sliding failure is introduced. The second one is derived for the horizontal tensile behaviour,
where the vertical tensile cracking of brick units and the vertical joints is proposed. The third one is derived
for the vertical compression behaviour, where masonry crushing failure is adopted. The fourth one is coupling
the failure mechanisms described in the previous three models with a novel algorithm. Additionally, the
diagonal tension cracking failure and the horizontal tensile cracking of horizontal joints are incorporated in
the fourth and final material model.

To derive these models, first, a representative volume element (RVE) was selected for running bond wall,
where the bricks are staggered by half-length of brick from the adjoining courses above and below. Each RVE
consists of two-quarters of bricks connected through a bed joint, and each one is connected to a head joint
on one side. For each of the models, the active internal stresses of each component (brick, bed, head or
cross joint) are calculated through the compatibility and equilibrium equations resulting from the assumed
deformed mechanisms. Different damage state variables are introduced for every component in the damage
model, where exponential softening is assumed for tension and shear. Additionally, a Ducker-Prager yield
criterion with bi-parabolic hardening is used in combination with an explicit Euler-forward algorithm to describe
the elastoplastic behaviour of the material in compression. As a result, the material model’s constitutive law
is obtained with the homogenization procedures after coupling the damage and plastic model together by a
specific algorithm originally introduced by Zucchini and Lourenço.

The constitutive equations for model 1 (shear), model 2 (tension), model 3 (compression) and model 4
(coupled) were coded successfully in MATLAB. The components’ shearing, tensile cracking, crushing and
splitting failures are correctly modelled analytically with an algorithm, which can be applied to simplify the
micro-mechanical model. Besides, constitutive laws of models 1 and 2 were also implemented successfully
in the finite element software DIANA version 10.4 (check). The ability of the model to capture the failure of
the components in shear, tensile cracking or crushing was examined through simple analytical applications.
Moreover, the model was compared against experimental results from tests performed on masonry wallets
under compressive loading; the model was able to predict the strength of the specimens satisfactorily.

Therefore, this alternative constitutive material model can adequately simulate masonry’s behaviours with a
simpler algorithm than the previous model. Meanwhile, the component’s elastic and elastoplastic behaviours
can be simulated in more detail in this model, as the case that the horizontal joint is first damaged in shear
and compressive splitting effects are additionally included.

iii

Contents

Preface ... i

Abstract .. ii

Contents .. iii

List of figures ... v

List of tables .. ix

1. Introduction ... 1

1.1. Background ... 1

1.2. Research gaps .. 3

1.3. Research question ... 4

1.4. Basic assumptions ... 4

1.5. Goals & objectives .. 6

1.6. Methodology .. 6

1.7. Structures of thesis .. 7
2. Literature review ... 9

2.1. Failure mechanisms of masonry .. 9

2.1.1. Pure shear behaviour ... 10

2.1.2. Combined mechanisms .. 10

2.1.3. Masonry cell under vertical compression .. 11

2.2. Numerical methods to simulate masonry structures ... 12

2.2.1. Simplified micro-modelling ... 12

2.2.2. Macro-modelling .. 13

2.3. Homogenization approaches .. 14

2.3.1. Existing models .. 14

2.3.2. Gaps in existing models ... 15

2.4. Micro-mechanical material models .. 16

2.4.1. Damage model ... 16

2.4.2. Elastoplastic theory ... 16

2.5. Diana FEA iterative process ... 23
3. Theory and assumptions .. 25

3.1. Definition of deformed cell .. 25

3.2. Model 1: shear behaviour .. 26

3.3. Model 2: horizontal tensile behaviour .. 26

3.4. Model 3: vertical compression behaviour ... 28

3.4.1. Damage model ... 28

3.4.2. Elastoplastic deformation ... 29

3.5. Model 4: coupled behaviour .. 31

3.5.1. Combination of vertical and horizontal behaviour .. 32

3.5.2. Combination of shear and vertical behaviour ... 33
4. Model 1: shear behaviour .. 35

4.1. Derive “damage” equations .. 35

4.1.1. Kinematic relation .. 36

4.1.2. Equilibrium equations of the system ... 37

4.1.3. Constitutive equations .. 38

4.1.4. Equilibrium “damage” equations ... 39

4.2. Algorithm .. 39

5. Model 2: horizontal tension behaviour ... 41

5.1. Derive “damage” equations .. 41

5.1.1. Kinematic relation .. 41

iv Contents

5.1.2. Equilibrium equations of the system ... 43

5.1.3. Constitutive equations .. 44

5.1.4. Equilibrium “damage” equations ... 45

5.2. Algorithm .. 46
6. Model 3: vertical compression behaviour ... 49

6.1. Damage model .. 49

6.1.1. Kinematic relation .. 49

6.1.2. Equilibrium equations of the system ... 50

6.1.3. Constitutive relation ... 50

6.1.4. Equilibrium “damage” equations ... 51

6.2. Elastoplastic phase .. 51

6.2.1. Flow rule ... 52

6.2.2. Yield surface ... 53

6.3. Algorithm .. 54
7. Model 4: coupled behaviour.. 57

7.1. Transverse strains .. 57

7.2. Algorithm .. 57
8. Implementations and comparisons .. 59

8.1. Validations of the implementations .. 59

8.1.1. Model 1: shear behaviour ... 59

8.1.2. Model 2: horizontal tensile behaviour ... 64

8.1.3. Model 3: vertical compression behaviour .. 67

8.1.4. Model 4: coupled behaviour ... 73

8.2. Comparison against the experimental result .. 77

9. Conclusions and recommendations ... 85

9.1. Differences compared to previous works ... 86

9.2. Limitations .. 87

9.3. Future works .. 88

Bibliography ... 91

Appendix A: MATLAB Code (Model 2) .. 93

Appendix B: Fortran Code (Model 2) .. 97

Appendix C: MATLAB Code (Model 3 Brick Unit) ... 105

Appendix D: MATLAB Code (Model 3) .. 109

Appendix E: MATLAB Code (Model 4) ... 129

Appendix F: dcf. File (Single Element Model) .. 155

List of figures

Figure 1-1 Five failure mechanisms [8] ... 1
Figure 1-2 The representative cell in the XY plane: (a) extended basic cell defined in [21]; (b)

quarter basic cell .. 5
Figure 2-1 Masonry failure mechanisms: (a) joint tensile cracking; (b) joint sliding; (c) unit

direct tensile cracking; (d) unit diagonal tensile cracking; (e) masonry crushing. [8] 9
Figure 2-2 the masonry under shear and definition of II fracture energy: shear stress 𝜏 versus

shear strain 𝛿 [8] .. 10
Figure 2-3 Normal stress loading parallel to 𝑥-axis: (a) equivalent homogenized cell; (b)

assumed deformation behaviour; (c) assumed involved stress components. [30] 11
Figure 2-4 uniaxial behaviour of masonry: schematic plane representation of stresses in

masonry component [35] ... 11
Figure 2-5 Deformation of basic cell from numerical results [35] .. 11
Figure 2-6 stress diagram at increasing load level for different components of cell: a) basic

unit cell and definition of S1, S2 and S3; b) horizontal stress distribution at S1; c) vertical
stress distribution S2; d) vertical stress distribution in S3 [35] ... 11

Figure 2-7 modelling strategies of masonry structures: a) masonry sample; b) detailed micro-
modelling; c) simplified micro-modelling; d) Macro-modelling [8] 12

Figure 2-8 suggested modelling strategy: unit (u) and mortar joint (m) and potential cracks in
units [10] .. 13

Figure 2-9 two-step homogenization procedure for masonry structure: (a) objective of
homogenization; (b) homogenization 𝑥𝑦; (c) homogenization 𝑦𝑥. [8] 13

Figure 2-10 Representative volume regime of the periodic system of parallel layers [8] 14
Figure 2-11 Representation of the Mohr-Coulomb and Drucker-Prager yield contour in 𝜋-plane

[34] ... 17
Figure 2-12 Representation of the Mohr-Coulomb and Drucker-Prager yield contour for plane

stress condition [34] ... 17
Figure 2-13 Mohr’s stress circle for uniaxial compression and envelopes that bound all

possible stress states for the Mohr-Coulomb yield criteria [34] .. 17
Figure 2-14 congeniality of the gradient vector 𝒏 to the yield surface [34] 18
Figure 2-15 Orthogonality of the gradient vector 𝒎 to the non-associated potential function 𝑔

 ... 18
Figure 2-16 Explicit integration scheme: total strain increment should be divided into the

purely elastic part and plastic part integrated with one-point Euler forward rule [34] 22
Figure 2-17 Algorithm of incremental-iterative solution ... 23
Figure 3-1 Assumption of per basic cell .. 25
Figure 3-2 Deformed Cell of Model 1 .. 26
Figure 3-3 Internal stresses Model 1 ... 26
Figure 3-4 Deformed Cell of Model 2 .. 27
Figure 3-5 Internal stresses Model 2 ... 27
Figure 3-6 localized damage in brick .. 28
Figure 3-7 deformed cell from Zucchini et al. in 2002 [30] .. 29
Figure 3-8 simplified deformed cell ... 29
Figure 3-9 deformed cell of model 3 with dilatancy angle ... 29
Figure 3-10 internal stresses of components .. 29
Figure 3-11 𝜅 physically defined by plastic strain tensor 𝜺𝑝 .. 30

Figure 3-12 Bi-parabolic law of brittle material under pure compression: vertical stress 𝜎𝑦𝑦0
versus vertical strain 𝜀𝑦𝑦0 .. 31

vi List of figures

Figure 3-13 horizontal strain 𝜀𝑥𝑥, 𝑦0 caused by vertical strain increment 𝜀𝑦𝑦0 32
Figure 3-14 vertical strain 𝜀𝑦𝑦, 𝑥0 caused by horizontal strain increment 𝜀𝑥𝑥0 32
Figure 4-1 Deformed Cell of Model 1 .. 37
Figure 4-2 Model 1: the internal system of cell .. 37
Figure 5-1 Deformed cell of model 2 ... 42
Figure 5-2 Model 2: the internal system of cell .. 43
Figure 5-3 Horizontal stresses of the brick unit ... 43
Figure 5-4 Shear deformation of model 2.. 44
Figure 5-5 Formulation of coupled material model 2 with an iterative algorithm 46
Figure 6-1 Deforemed cell of model 3 ... 49
Figure 6-2 Model 3: the internal system of basic cell .. 50
Figure 6-3 simplifications of cross joint ... 50
Figure 6-4 yield surface of the brick unit ... 54
Figure 6-5 yield surface of the head joint .. 54
Figure 6-6 representative yield surface of the bed joint .. 54
Figure 6-7 Formulation of model 3 with an iterative algorithm ... 55
Figure 6-8 strain-stress curve of the brick unit: the vertical stress 𝜎𝑦𝑦𝑢 vs, strain 𝜀𝑦𝑦𝑢 of the

brick unit .. 56
Figure 6-9 differences between ideal and real plasticity: the vertical stress 𝜎𝑦𝑦𝑢 vs, strain

𝜀𝑦𝑦𝑢 of the brick unit .. 56
Figure 7-1 formulation of model 4 with an iterative algorithm .. 58
Figure 8-1 Influences of element size: homogenized shear stress 𝜏𝑥𝑦0 versus macro strain

𝛾𝑥𝑦0 ... 60
Figure 8-2 Influences of tolerance: homogenized shear stress 𝜏𝑥𝑦0 versus macro strain 𝛾𝑥𝑦0

 ... 60
Figure 8-3 Analytical result from MATLAB: homogenized shear stress 𝜏𝑥𝑦0 versus macro

strain 𝛾𝑥𝑦0 ... 61
Figure 8-4 Per element model: shear behaviour ... 63
Figure 8-5 Displacement contour of the model 1 .. 63
Figure 8-6 Comparison: shear stress 𝜏𝑥𝑦0 versus strain 𝛾𝑥𝑦0 from the analytical results and

the homogenized material model 1 .. 63
Figure 8-7 Different shear stiffness of the bed joint: shear stress 𝜏𝑥𝑦0 vs shear strain 𝛾𝑥𝑦0 . 64
Figure 8-8 Different shear strength of the bed joint: shear stress 𝜏𝑥𝑦0 vs shear strain 𝛾𝑥𝑦0 . 64
Figure 8-9 Model 2: internal damaged and homogenized stresses -external strain 𝜀𝑦𝑦0 curve

 ... 65
Figure 8-10 Per element model: horizontal tensile behaviour ... 66
Figure 8-11 Displacement contour of the model 2 .. 66
Figure 8-12 Comparison: horizontal stress 𝜎𝑦𝑦0 vs strain 𝜀𝑦𝑦0 from the analytical results and

the homogenized material model 2 .. 66
Figure 8-13 vertical compression behaviour of homogenized cell without considering shear

damage at interface of brick and bed joint: 𝜎𝑦𝑦0 vs the macro strain 𝜀𝑦𝑦0 67
Figure 8-14 the internal stress of brick 𝜎𝑦𝑦𝑢 vs. the macro strain 𝜀𝑦𝑦0 67
Figure 8-15 The value of yield function 𝑓𝑢 with elastic predictors in the brick unit vs. 𝜀𝑦𝑦0 67

Figure 8-16 horizontal tension stress of the brick unit 𝜎𝑥𝑥𝑢 versus load step 68
Figure 8-17 energy of the basic cell versus load step ... 68
Figure 8-18 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step:

case 1 .. 69
Figure 8-19 vertical compression behaviour of homogenized cell with considering shear

damage at interface of brick and bed joint: 𝜎𝑦𝑦0 vs. the macro strain 𝜀𝑦𝑦0 70
Figure 8-20 the shear stress of bed joint 𝜏𝑥𝑦𝑏 vs. the macro strain 𝜀𝑦𝑦0 70
Figure 8-21 The value of yield function 𝑓𝑢 with elastic predictors in the brick unit vs. 𝜀𝑦𝑦0 ... 70

Figure 8-22 energy of the basic cell versus load step ... 71
Figure 8-23 Damaged shear stress of bed joint 𝜏𝑥𝑦𝑏 versus load step: stress computed

without considering plastic shear deformation (long dash line); stress computed with
considering plastic shear deformation.. 71

Figure 8-24 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step:
case 2 .. 71

Figure 8-25 macro stress in the y-direction 𝜎𝑦𝑦0 through load path with different dilatancy
angle 𝜓 .. 72

Figure 8-26 homogenized stress in the horizontal direction 𝜎𝑥𝑥0 vs. 𝜀𝑥𝑥0 73

Figure 8-27 Damage state variables of components 𝑟𝑖𝑥 = 1 − 𝑑𝑖𝑥 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load
step: only tensile cracks generated in the components.. 74

Figure 8-28 Homogenized stress in the vertical direction 𝜎𝑦𝑦0 vs. 𝜀𝑦𝑦0 74
Figure 8-29 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step:

only tensile cracks generated in the components .. 75
Figure 8-30 Damaged stress of the bed joint in the y-direction 𝜎𝑦𝑦𝑏 and macro stress 𝜎𝑦𝑦0

through load path ... 75
Figure 8-31 Damage stresses of the brick unit 𝜎𝑥𝑥𝑢 and the bed joint 𝜏𝑥𝑦𝑏 through load path:

the value obtained by considering only tensile cracks (dash line); the value obtained by
considering micro-cracks (long dash-dot line). ... 76

Figure 8-32 Homogenized stress in shear direction 𝜏𝑥𝑦0 vs. shear strain 𝜀𝑥𝑦0 76
Figure 8-33 damaged stress of the homogenized cell 𝜏𝑥𝑦0, cohesion 𝑐ℎ and friction stress

𝜎𝑦𝑦0 ∙ tan (𝜙𝑢) through load step .. 77
Figure 8-34 damaged stress of the homogenized cell 𝜏𝑥𝑦0 through load step when the vertical

strain is the compression one .. 77
Figure 8-35 Compression test on masonry [41] .. 78
Figure 8-36 Position of LVDTs during the test [41] ... 78
Figure 8-37 the vertical compressive stress 𝜎𝑦𝑦0 versus compressive strain of the single

element 𝜀𝑦𝑦, 𝑠𝑒0 with different dilatancy angles of components 79
Figure 8-38 Comparison: vertical compressive stress 𝜎𝑦𝑦0 versus compressive strain tested

by LVDTs 𝜀𝑦𝑦, 𝐿𝑉𝐷𝑇𝑠0 from experimental results and the homogenized material model 81
Figure 8-39 Crack pattern of specimen TUD_MAT-11b tested under vertical compression test:

(a) first crack; (b) maximum stress; (c)-(d) post-peak phase [41]. 81
Figure 8-40 Comparisons: vertical compressive stress 𝜎𝑦𝑦0 versus compressive strain from

experimental result of specimen TUD_MAT_11b and the homogenized material model:
(a) tested by LVDTs 𝜀𝑦𝑦, 𝐿𝑉𝐷𝑇𝑠0; (b) tested by Jack’s reading 𝜀𝑦𝑦, 𝐽𝑎𝑐𝑘0. 82

Figure 8-41 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step
 ... 83

Figure 8-42 the macro stress 𝜎𝑦𝑦0, damaged horizontal stresses of the brick unit 𝜎𝑦𝑦𝑢 and
head joint 𝜎𝑦𝑦ℎ versus load step ... 83

Figure 8-43 the total energy, bulk energy and surface energy of the unit cell through the load
path .. 83

viii List of figures

List of tables

Table 6-1 Material and geometrical properties of basic cell [32] ... 51
Table 6-2 material properties from Zucchini in 2007 [32] .. 53
Table 8-1 Material and geometrical properties of basic cell .. 59
Table 8-2 Material and geometrical properties from experimental data [41] 79
Table 8-3 The relative load steps in numerical calculations of the cracking phases 82
Table 8-4 The comparisons between the analytical results and experimental results 84

x List of tables

1

1. Introduction
Masonry is one of the most common materials used for structures in the Netherlands and worldwide. Masonry
structures have several advantages. For instance, masonry structures' fire resistance and durability are better
than other types of structures as masonry’s major components -the bricks- are usually made by stable
substances, such as stone or clay, which are fire-resistant materials and are hard to have chemical reactions
with water and air.

Masonry is an inhomogeneous material consisting of units (brick or stone block) and joints (dry or mortar) [1].
Although some variability in the mechanical and geometrical properties of the constituents is possible,
especially for clay bricks and lime mortar, the construction phase introduces the biggest variability in the
construction. The mortar joints are more dependent on manual action [2]. For example, variability in the
thickness of the mortar joints or the bond between mortar and bricks can lead to layers with different
mechanical properties. Therefore, the mechanical behaviour of masonry is rather complex due to its
composite and orthotropic nature. That is why the investigation of constitutive models that can reproduce
such behaviour is of relevance.

1.1. Background

Masonry is a distinctive quasi-brittle material since its elastic behaviours and strengths are different in different
directions [3]. The different properties of its constituents make masonry an anisotropic material with weak
layers, where usually damage concentrates. Based on the experimental results shown in [4, 5], five failure
mechanisms have been identified in (unreinforced) masonry [6, 7, 8].

(a) (b) (c)

(d) (e)

Figure 1-1 Five failure mechanisms [8]

(a) Tensile failure of bed joints, which indicates the potential horizontal cracks generated in joints in tension;
(b) Horizontal shear sliding of bed joints, caused by shear cracks generated in joints;
(c) Tensile cracking of unit, where vertical cracks occur in the unit;
(d) Diagonal tensile cracking failure, caused by shear behaviour at the brick-mortar interface and vertical

cracks passing either through the head joints or the brick units;
(e) Masonry crushing failure, produced by micro-cracks generated in units.

The failure mechanisms from these failure modes could be incorporated in constitutive models mathematically
by using specific modelling strategies. In 2019, D’Altri et al. classified these strategies into four categories [1]:
block-based models, continuum models, macroelement models and geometry-based models.

2 1. Introduction 1.1. Background

(1) Block-based models: the blocks in the masonry modelled by the block-based strategy are assumed to be

rigid or deformable. Page first introduced this approach by considering masonry as a so-called “texture
continuum” [6]. In this assemblage, the elastic brick elements act in conjunction with linkage elements
simulating the mortar joints. Based on Page’s work, many block-based models have been introduced and
developed, such as interface element-based approaches achieved by introducing zero-thickness interface
elements [9, 10, 11, 12], contact-based approaches based on contact mechanics [13, 14], textured
continuum-based approaches by introducing bricks and mortars separately in FEM framework [15, 16].

(2) Continuum models: the masonry is assumed to be a continuum deformable-body in continuum
approaches. Mesh discretization of this type of strategy does not have to describe the geometrical
heterogeneities of masonry [1]. Therefore, the computational cost of continuum models is generally lower
than for block-based models. However, the definition of suitable constitutive laws for masonry is a
challenging task due to its complex and orthotropic mechanical properties. There are two main
approaches to derive these homogeneous constitutive laws categorized in [1]: The direct approach, where
the mechanical properties could be calibrated through experimental data or other data without resorting
to the Representative volume elements 1 -based homogenization procedures [17, 18, 19]; The
homogenization procedures and multi-scale approaches, where the homogeneous constitutive laws of
structural-scale models can be proposed from homogenization techniques (typically based on RVEs) [20,
21, 22, 23].

(3) Macroelement models: the structure is idealized into plane-scale structural components based on
phenomenological or mechanical-based nonlinear response [1]. These models are mainly used to analyze
the global seismic response of masonry buildings, and some examples can be found in [24, 25].

(4) Geometry-based models: The structure is considered to be a rigid body in geometry-based models.
Therefore, the geometry of the structure is the only input of these approaches beyond certain loading
conditions. For this reason, geometry-based modelling strategies are typically used to investigate
structural stability and/or collapse through limit analysis-based solutions, and some examples can be
found in [26, 27].

The block-based models generally have higher accuracy when simulating masonry's mechanical behaviours.
However, their application at structural level is practically inconvenient due to the large size and the
complexity of the masonry buildings, so the simulations would take a long time to run with considerable
numerical efforts. Therefore, the continuum approaches are selected in this thesis to model masonry
structures since they offer a good compromise between accuracy and efficiency.

In 1999, J. Lopez et al. presented a micro-mechanical material model based on a representative cell's
compatibility and equilibrium equations based on the multi-scale approach [28]. The bricks and mortars'
deformations and micro-constitutive laws in this material model were introduced separately. However, the
deformations micro-constitutive laws were introduced as a whole in the macro-models proposed by P.B.
Lourenço and Anthoine et al. based on the composite theory [8, 29]. In the second approach, the micro-
mechanical material model can have higher accuracy, especially when the differences between the stiffness
of the bricks and mortars are large.

In 2002, A. Zucchini and P.B. Lourenço focused on the typically periodic masonry structures with the
staggered brick alignment and developed a novel material model based on Lopez’s multi-scale approach.
They defined the overlaps of horizontal and vertical joints as cross joints and derived correlated elastic
properties of a representative volume element in the normal and shear direction according to their assumed
deformed mechanisms [30]. After that, they introduced potential tensile (or shear) cracks, which should be
vertically (or horizontally) located at components, by a non-linear homogenization procedure [20]. In this
procedure, they first introduced several damage state variables for the bricks and mortars to represent the
damage status of components. Then, the exponential law of the damage state variables and the stresses
proposed in [31] were implemented in the elastic properties of RVE derived in [30]. Finally, the damage status
of the components was incorporated into RVE by compatibility and equilibrium equations. In 2007, Zucchini
and Lourenço incorporated the elastoplastic phase of their model under pure compressive loading in the

1Abbreviation: RVE. In theory of composite material, the representative volume element (also called the representative elementary volume (REV) or the unit cell) is the

smallest volume whose properties could be representative of the whole. (From Wikipedia)

https://en.wikipedia.org/wiki/Representative_elementary_volume

3

vertical direction [32]. They implemented Drucker-Prager yield criteria in every component with an implicit
Euler-backward algorithm proposed in [8]. In 2009, they introduced an extended material model based on
their previous work [30, 20, 32] by extending their quarter basic cell to a larger RVE to propose coupled
behaviour in the normal and shear direction [21]. They considered the shear behaviour of vertical joints and
assumed deformations in RVE to be antisymmetrical. In this extended model, they used Mohr-coulomb yield
surface for bricks and mortars, rather than the Drucker-Prager one, to avoid the apex problem. Furthermore,
Zucchini and Lourenço applied their extended material model on a shear wall with good results.

Zucchini and Lourenço’s micro-mechanical model incorporated many failure modes in a representative cell
and most localized damages in components. It could still have a high accuracy even when the brick’s and
mortar’s stiffness ratio is large. Therefore, this material model will be studied and further refined in the thesis
due to its versatility.

The development of Zucchini and Lourenço’s micro-mechanical model could be concluded as four phases:

(1) Micro-mechanical model in 2002: the model was derived from the actual deformations of a basic cell and
included additional internal deformation modes [30].

(2) Coupled homogenization-damage model in 2004: the formulation and implementation of this model were
proposed by coupling the micro-mechanical model described in (1) and an isotropic damage model for
the bricks and mortars. This model was specific for the normal tension behaviour of masonry parallel to
bed joints [20].

(3) Developed homogenization-damage model in 2007: the model was developed by implementing a plastic
model into the coupled homogenization-damage model described in (2) by a novel homogenization tool.
The plastic model incorporated Drucker-Prager yield criteria for every component, and the plastic
deformations were computed according to the implicit Euler backward method with bi-parabolic hardening
diagram, where the compressive splitting effects were taken into account. This model was derived for the
compressive behaviour of masonry perpendicular to bed joints [32].

(4) Extended micro-mechanical model in 2009: in this model, the extended basic cell's normal and shear
behaviours were simulated up to complete failure with suitably selected deformed mechanisms and
coupled damage and plastic model described in (1)-(3) [21].

1.2. Research gaps

The work of Zucchini and Lourenço is characterized by an acceptable trade-off between accuracy and
computational efforts. However, there are still some points that require attention and potential improvements.
These gaps could be described from three aspects:

(1) Simplifications of deformed mechanisms to reduce the computational efforts.

Firstly, Zucchini and Lourenço considered nearly all possible deformations of bricks and mortars when they
derived the final model for coupled normal and shear behaviours of masonry, such as the vertical shear
deformation of the head joint and antisymmetrical deformations of the bed joint. These assumptions lead to
accurate simulations of components’ deformations but bring outstanding numerical efforts as well. Therefore,
the simplifications could be done by making several reasonable assumptions on deformation mechanisms to
save computational costs. For example, we could neglect head joints’ shear deformations as the head joints
generally are damaged in tension. As a result, the bed joint’s deformations should be symmetrical, and we
could consider fewer interfaces with a smaller unit cell.

(2) An improved assumption for the combination of shear and compressive behaviours.

Secondly, Zucchini and Lourenço used damage variables (damage factors) to define the components’ stress
status. In other words, they assumed that all of the given component’s internal stresses would drop down to
zero as the initial failure in the given component occurred. This initial failure was caused by cracks generated
in each component, and different types of cracks are assumed in each component. For instance, the bed joint
fails due to a single shear crack horizontally located at the middle of thickness direction if the bed joint is

4 1. Introduction 1.3. Research question

assumed to be damaged in “shear sliding failure mode”. In the extended micro-mechanical model proposed
by Zucchini and Lourenço in 2009, the bed joint’s stiffness is assumed to be zero when the compressive
energy in the y-direction2 is consumed due to the micro-cracks. Alternatively, it can be said that the bed joint
would be damaged in “crushing failure mode” in their assumption. However, their consideration ignores the
case when the bed joint fails first due to shear. The horizontal shear crack may appear before the dissipation
of compressive energy in the bed joint, leading to different failure mechanisms of the material model.
Therefore, this consideration should be taken into account and studied.

(3) The hardening/softening and the splitting effects under compression should be included.

Thirdly, Zucchini and Lourenço abandoned the hardening phase and splitting effects in the plastic model
when they introduced the final model. To simplify the formulations and avoid apex problems, they introduced
the Mohr-coulomb yield surface in the 𝜎-𝜏 plane3 with an exponential degraded law of cohesion instead of the
Drucker-Prager yield surface in the 3-dimension plane with a bi-parabolic hardening law of the material
compressive strength. However, the hardening phase and compressive splitting effects may be worth to be
considered, so we should consider the relevant questions.

1.3. Research question

The gaps mentioned above lead to the research question:

Is it possible to define a homogenized constitutive model for masonry structures under in-plane loading that
will consider shearing, tensile cracking, crushing and splitting failures based on a micro-mechanical approach
with as little computational effort as possible?

To be more specific, this research question can be described in three sub-questions:

(1) How to simplify the deformed mechanisms of Zucchini and Lourenço’s model when coupled behaviours
in all directions are considered.

(2) How to consider the phenomena that the horizontal shear crack potentially generated in bed joint may
appear before the dissipation of compressive energy.

(3) How to implement the new plastic model, in which the hardening phase and compressive splitting effects
are considered with less computational costs.

In conclusion, this thesis will propose an alternative constitutive model based on Zucchini and Lourenço’s
research in [30, 20, 32, 21] with several new assumptions on deformed mechanisms, components’ failure
modes and elastoplastic behaviours, which includes the five failure mechanisms introduced in section 1.1
(see figure 1-1). This alternative constitutive model should maintain as high accuracy as Zucchini and
Lourenço’s micro-material model with fewer computational efforts.

1.4. Basic assumptions

In this thesis, masonry's normal and shear behaviours will be only considered in a 2D plane to simplify the
problems. Then, we can study masonry’s behaviours from four aspects to answer the research questions:

(1) The representative homogenized cell is set by considering the symmetry in the geometrical pattern of
masonry and is used to study all behaviours.

The representative plane element is quite significant to derive the homogenized constitutive laws for the
micro-mechanical model since the compatibility and equilibrium equations are formulated based on the

2 The y-direction is specific to the direction perpendicular to the bed joint in xy-plane.
3 𝜎 is referred as the normal stress tensor, while 𝜏 is referred as the shear stress tensor.

5

deformed mechanism of the representative cell. In this thesis, the deformations of the bed joint are assumed
to be the same everywhere, and the head joint’s shear stress is neglected. Therefore, a quarter basic cell is
used to study masonry’s pure normal or shear behaviour and the coupled behaviours rather than the extended
cell applied by Zucchini and Lourenço in 2009, see figure 1-2.

In this way, several compatibility equations are not necessary to be derived at interfaces between bricks and
mortars anymore as there are fewer interfaces in the quarter basic cell than the extended one.

(a)

(b)

Figure 1-2 The representative cell in the XY plane: (a) extended basic cell defined in [21]; (b) quarter basic cell

Based on this assumption, we could first study the masonry’s shear behaviour, normal behaviour in the x-
direction and y-direction separately and then suitably incorporate them into one model by distinguishing
different boundary conditions on the quarter cell. As a result, the deformed mechanisms of the final model
could be simplified.

(2) Deformations of the cross joint are assumed to be different when different behaviours of masonry are
studied.

The shear deformation of the cross joint is assumed to be the same as that of the bed joint when the masonry’s
shear behaviour is studied. Furthermore, the cross joint's horizontal deformation is assumed to be the tension
when the masonry’s normal tension behaviour in the x-direction is studied, while the compressive one when
the normal (tension and compression) behaviour in the y-direction is studied. Meanwhile, the cross joint’s
vertical deformation is assumed to be the same as the bed joint’s vertical deformation when the normal
tension behaviour in the x-direction is studied, while not equal to the bed joint’s vertical deformation when the
normal (tension and compression) behaviour in the y-direction is studied.

(3) The bed joint is assumed to be damaged in shear before its compressive energy is dissipated and will
move together with the brick units as a whole after the shear damage occurred.

According to this assumption, the normal and shear stresses of the bed joint should be equal to zero after a
horizontal shear crack occurs. If there is an external shear loading, the force will then transform to the shear
sliding stress at the interface of this shear crack, producing additional shear deformation. This shear
deformation should be restrained by the head joint (vertical joint). As a result, the sliding stress should switch
from the static friction stress to the dynamic one once the cohesion of the head joint is consumed. Therefore,
the homogenized cell should fail in shear as the Mohr-coulomb yield criterion is met.

(4) The Drucker-Prager yield criteria with bi-parabolic hardening diagram are still implemented in the plastic
model when the final model is proposed. However, the explicit Euler-forward algorithm is applied to save
the computational costs.

The explicit Euler-forward approach has a cheaper computational cost than the implicit Euler-backward one
as a particular equation could compute the plastic multiplier straightforward based on Prager’s consistency
equation in the explicit one. However, the robustness and accuracy of the explicit approach would be reduced
if the load step is large, as Prager’s consistency equation is derived based on small deformation hypothesis.
Therefore, we could use this cheaper method to implement Drucker-Prager yield criteria and a hardening

6 1. Introduction 1.5. Goals & objectives

diagram and set small load steps. In this way, the compressive splitting effects could still be included with
fewer efforts in the final model, which has complex deformations of components.

1.5. Goals & objectives

Particularly, the thesis has the following objectives:

(1) To define the failure modes necessary to be included.
(2) To derive the constitutive equations of the homogenized cell.
(3) To validate the model in MATLAB and Diana FEA.

The components’ deformations and failure modes correlated to the homogenized cell’ failure modes should
be defined first.

The components’ failure modes could be summarized as:

(i) Tensile failure modes: the given component fails once a vertical (or horizontal) tensile crack appears. In
other words, the stresses of the given component will drop to zero once their tension stress exceeds the
material strength.

(ii) Shear failure modes: according to the assumptions described in section 1.4, the shear failure mode will
only occur in the bed joint. The bed joint will fail once the shear stress exceeds the material strength
(computed based on the friction criterion), and the horizontal shear crack is then generated.

(iii) Equivalent splitting failure modes: the given component will fail once its total tension stress reaches the
material tensile strength. This total tension stress should incorporate the splitting tension stress produced
by the component’s compressive stress.

(iv) Crushing failure modes: the given component fails when its compressive energy is consumed. This failure
mode is different from but associated with “equivalent splitting failure mode”. The components’ stiffness
is changed when loaded by axial compressive loading as the micro-cracks are generated, producing
lateral splitting tensile stress. If the given component’s splitting tensile stress reached the material strength,
then the splitting failure will occur. If the given component’s compressive energy is consumed before
tensile stress reached the material strength, then the crushing failure will occur. Moreover, only a single
vertical crack is generated in the given component if the component fails in splitting tension, while there
will be lots of micro-cracks in the component if the component fails in crushing.

The macro constitutive laws should be derived based on the damage and plastic models by homogenization
procedures and a multi-scale approach. The damage model should be proposed according to the chosen
deformed mechanisms and components’ failure modes, and the plastic model should incorporate the Drucker-
Prager yield surface and a bi-parabolic hardening diagram.

Finally, the new constitutive models should be implemented in MATLAB to validate if the assumed failure
modes of components and the homogenized cell are introduced successfully by the analytical solutions.
Furthermore, these models should also be implemented in Diana FEA by user-supplied subroutines to assess
if they could be numerically introduced.

1.6. Methodology

The following steps can be arranged in this thesis to achieve the goals and objectives mentioned in section
1.5:

(1) The representative 2D plane is extracted as the homogenized unit cell based on the symmetrical
properties of 1/2 running bond masonry structures;

7

(2) The deformed cells of the unit cell under shear, horizontal tensile, vertical compressive loading are drawn
based on the assumptions on the unit cells’ deformed mechanisms in models 1 to 3, respectively;

(3) In models 1 to 3, the external strains and stresses are suitably selected and set to be homogenized (macro)
strains and stresses. Meanwhile, the internal stresses are chosen, which compute the brick units and
mortar joints' damage state variables by exponential laws according to the components’ assumed failure
mechanisms.

(4) In models 1 to 3, the relations of the homogenized strains and the internal stresses of the three deformed
cells are derived based on several equations. These equations are: the micro-constitutive laws (the
constitutive laws of bricks and mortars), the kinematic relations of the unit cells and the equilibrium
equations of the systems;

(5) The damage models for three deformed cells in models 1 to 3 are derived by implementing the damage
state variables into the compatibility equations of the systems derived in step (4). The components’
undamaged internal stresses are then obtained;

(6) For the deformed cell under vertical compressive loading in model 3, three plastic models for the brick
unit, head joint and bed joint are proposed by adopting the Drucker-Prager yield criterion and bi-parabolic
hardening laws. In these plastic models, the components’ plastic strain tensors are computed by the
plastic multipliers and the directions of the potential energy at the critical stress points by applying an
explicit return-mapping algorithm, the Euler-forwards method;

(7) The homogenized stresses of models 1 to 3 are computed by the damaged internal stresses based on
the assumed boundary conditions of the unit cells. The damaged internal stresses are obtained based on
the components’ damage state variables and their undamaged internal stresses. The undamaged internal
stresses are computed by combining the damage and plastic models for model 3;

(8) The homogenized stresses for coupled behaviours are proposed by coupling three deformed cells in
models 1 to 3 in model 4;

(9) The constitutive models 1 to 4 are Implemented in MATLAB to find the analytical solutions. The deformed
cells’ macro stress-strain curves, the components’ damaged factors and other relative curves in models
1 to 4 are recorded. Models 1 to 2 are Implemented in DIANA FEA user-supplied subroutines by Fortran
77 to assess if the models can be introduced numerically;

(10) The experimental data for the masonry under compressive loading is adopted in model 4. The
comparison between the experimental and analytical results is used to assess the model’s vertical
compressive behaviour.

1.7. Structures of thesis

The structures of the thesis can be found in table 1-1 according to the methodology introduced in section 1.6.

 Titles Overviews of the concepts

Chapter 1 Introduction

The research background is introduced first, and then the
research gaps are pointed out for further study. After that, the
goals of the thesis are stated. Finally, the methodology used to
achieve the goal is introduced

Chapter 2 Literature review The previous research is introduced and studied.

Chapter 3
Theory and
assumptions

The theory and assumptions used to introduce the damage model
and plastic model are stated in this chapter, such as selecting the
internal stresses, introducing a hardening diagram for the plastic
model.

Chapter 4
Model 1: shear
behaviour

The material model is derived when only the shear behaviour is
taken into account. The works can be summarized as deriving the
kinematic relations, micro constitutive relations and equilibrium
equations of the system and implementing damage variables into
the components

Chapter 5
Model 2: horizontal
tension behaviour

The material model is derived when only the horizontal tension
behaviour is taken into account. The same works are done.

Chapter 6
Model 3: vertical
compression behaviour

The material model is derived when only the vertical compressive
behaviour is taken into account. Apart from the same works done

8 1. Introduction 1.7. Structures of thesis

in chapters 4 and 5, the components’ plastic models with the
Drucker-Prager yield criterion are derived by applying the explicit
Euler-forward algorithm.

Chapter 7
Model 4: coupled
behaviour

The models derived in chapters 4 to 6 are coupled as one model
in this chapter by incorporating the transverse strains into the
axial ones and introducing the Mohr-Coulomb friction criterion for
shear behaviour.

Chapter 8
Implementations and
comparisons

The models derived in chapters 4 to 7 are implemented in
MATLAB to judge if the assumed failure mode and algorithm are
introduced successfully. The models proposed in chapters 4 and
5 are introduced in Diana FEA by a user-supplied subroutine to
assess if the material models can be implemented in a nonlinear
finite element program. At the end of this chapter, a comparison of
the analytical results solved by MATLAB code and experimental
results obtained from the tests is stated to provide the material
model that can be used to simulate the behaviour of masonry with
reasonable accuracy.

Chapter 9
Conclusions and
recommendations

The differences between the works done in this thesis and the
previous research are stated. The limitations of the material model
proposed in this thesis are explained. The future works that may
be worthy of being studied are stated.

9

2. Literature review
According to the reviews of analytical methods of masonry structures from Dimitris Theodossopoulos and
Braj Sinha in 2013 [33], a better understanding of failure patterns to estimate the strengths of a masonry
structure is significant to establish the constitutive model of the composite structure numerically. Therefore,
failure mechanisms of masonry structures are firstly introduced in this chapter.

Based on the given failure patterns, several techniques on numerically introducing the element cell, such as
simplified micro-modelling approach as Paulo B. Lourenço and Jan G. Rots shown in 2004 [10] together with
homogenization techniques introduced by Paulo B. Lourenço in 1996 [8], should be suitably selected to show
those mechanisms. Therefore, numerical approaches on presenting failure modes are then introduced briefly
in this chapter.

After that, Zucchini’s damage model proposed in 2004 [20] is briefly introduced, and the formulations of
introducing elastoplastic behaviours of the bricks and mortars, proposed by Prof. Borst and Prof. Sluys in [34],
is described in this section.

2.1. Failure mechanisms of masonry

An accurate material model should include all basic types of failure mechanisms that characterize masonry,
which are the following: (a) tensile cracking of the joints, (b) sliding along the bed joints, (c) cracking of the
units in tension, (d) diagonal tensile cracking in the brick units and (e) masonry crushing, shown in figure 2-1
[8].

Failure patterns (a) and (b) were firstly identified by Page in 1978 [6], P.B. Lourenço and J. Rots in 1994 [7],
indicating shear and tensile failure of horizontal joints. In 1996, P.B. Lourenço presented a novel compressive
cap as (d) or (e) shown by limiting combinations of shear and compressive stresses [8].

(a) (b) (c)

(d) (e)

Figure 2-1 Masonry failure mechanisms: (a) joint tensile cracking; (b) joint sliding; (c) unit direct tensile cracking; (d) unit

diagonal tensile cracking; (e) masonry crushing. [8]

It can be seen from phenomena presented in figure 2-1 that (a) (b) are joint failure mechanisms, (c) is the unit
one, (d) and (e) are failure patterns that include both brick units and mortar joints’ failure. The question
remains of how to consider all of these phenomena in a homogenized model [8].

10 2. Literature review 2.1. Failure mechanisms of masonry

Shear failure pattern (b) occurs when masonry structures are loaded by pure shear loading, while this failure
pattern would change to failure pattern (d) when structures are loaded both in precompression and shear.
When masonry structures are under horizontal loading, they fail as the unit tensile cracking pattern (c).
Masonry structures fail once horizontal tensile cracks occur in the horizontal joint if they are loaded by pure
vertically tensile stress, see figure 2-1 (a), while they fail as masonry crushing pattern as (e) shown if they are
loaded by compressive loading.

2.1.1. Pure shear behaviour

According to figure 2-2 (b), shear damage occurs at the interface of the brick unit and mortar joint when
masonry is loaded by pure shear loading. That means masonry would be damaged once the shear stress
between the brick unit and the horizontal joint, commonly referred to as the bed joint, reached its material
tensile strength.

The shear behaviour of masonry is relative to model II fracture energy 𝐺𝑓
𝐼𝐼, see figure 2-2.

Figure 2-2 the masonry under shear and definition of II fracture energy: shear stress 𝜏 versus shear strain 𝛿 [8]

Note that from figure 2-1 (d) and 2-2, the representative element for stacked bond masonry loaded by vertical
compressive and laterally shear loading could fail once the diagonal cracking occurs. The cracks in the brick
units are driven by shear sliding stress at the horizontal interface of the brick and the mortar. Therefore, the
vertical loading condition should be concluded when the shear behaviour of the unit cell is studied.

When the masonry is loaded simultaneously by shear and vertical precompression, the relation of the shear
strength of masonry and the vertical precompression could be described as equation (2.1).

𝜏𝑚𝑎𝑥 = 𝑐 + 𝜎 ∙ tan(𝜙) (2.1)

Where 𝜏𝑚𝑎𝑥 is the shear strength of masonry, and cohesion 𝑐 is typically the cohesion of the mortar joints. 𝜎

is the precompression loading in the vertical direction, and 𝜙 is the friction angle of the mortar joints.

2.1.2. Combined mechanisms

According to A. Zucchini’s deformed cell assumption [30], different components have unequal deformations,
leading to different internal stresses and strains of the brick units and mortar joints due to their different
stiffness (see figure 2-3. The shear deformation occurs at the interface of the brick unit and the bed joint, see
figure 2-3 (b). As a result, the masonry is damaged once vertical cracks occur in brick units, see figure 2-1
(c).

11

(a) (b)

(c)

Figure 2-3 Normal stress loading parallel to 𝑥-axis: (a) equivalent homogenized cell; (b) assumed deformation behaviour;

(c) assumed involved stress components. [30]

2.1.3. Masonry cell under vertical compression

Temporarily, the compressive failure in masonry is mainly governed by the interaction between brick and
mortar. The different stiffness of the brick and mortar leads the mortar joints being more deformable than the
brick units under uniaxial compression load with the assumptions of compatible strains between each
component (see figure 2-4 [35].

Figure 2-4 uniaxial behaviour of masonry: schematic

plane representation of stresses in masonry

component [35]

a)

b)

Figure 2-5 Deformation of basic cell from numerical

results [35]

c)

d)

Figure 2-6 stress diagram at increasing load level for different

components of cell: a) basic unit cell and definition of S1, S2 and

S3; b) horizontal stress distribution at S1; c) vertical stress

distribution S2; d) vertical stress distribution in S3 [35]

𝜎𝑦𝑦
0

𝜎𝑦𝑦
0

12 2. Literature review 2.2. Numerical methods to simulate masonry structures

Numerical results from Lourenço’s research in 2006 [35] displayed stress distribution in each section of the
representative plane, shown in figure 2-6 (a), under vertical compressive loading, see figures 2-5 and 2-6
shown.

As shown in diagrams in figures 2-4 to 2-6, horizontal tension stresses of the head joints and bricks are
distributed uniformly in the vertical direction, and horizontal compression stress linearly increases at the
overlap of the bed and head joint.

This result corresponds to the uniaxial behaviour of masonry introduced in figure 1.3-1 and indicates shear
stresses at the interface of brick and vertical mortar. The vertical stresses are distributed almost uniformly in
the brick and the bed joints but linearly in the head joint, indicating shear stress at the brick and head joint
interface.

According to figure 2-1 (d), the basic cell of the masonry would be damaged once the brick units are crushed
caused by the uniformly distributed stress in the vertical direction of the brick units.

2.2. Numerical methods to simulate masonry structures

Masonry is a composite material, which consists of brick units and mortar joints. Modelling for this type of
structure varies by different assumptions of components and brick-mortar interface.

As figure 2-7 shown, modelling strategies can be recognized by the following three when modelling with FEM
three main modelling strategies [8]:

(1) Detailed micro-modelling: Units and mortar in the joints are represented by continuum elements, whereas
discontinuous elements represent the unit-mortar interface.

(2) Simplified micro-modelling: brick units are represented by expanded continuum elements, whereas the
mortar joints' behaviour and unit-mortar interface are lumped in discontinuous elements.

(3) Macro-modelling: Units, mortar and unit-mortar interfaces are smeared out in a homogeneous continuum.

a)
b)

c)
d)

Figure 2-7 modelling strategies of masonry structures: a) masonry sample; b) detailed micro-modelling; c) simplified

micro-modelling; d) Macro-modelling [8]

2.2.1. Simplified micro-modelling

The micro-modelling approach concentrated all damages in weak joints and, if necessary, in potential

13

horizontal cracks in brick units vertically placed in the middle of each unit, as figure 2-8 shows [10]. The brick-
mortar interfaces are included in the detailed micro-models, while these interfaces are neglected when the
micro-models are simplified.

Figure 2-8 suggested modelling strategy: unit (u) and mortar joint (m) and potential cracks in units [10]

Brick units are typically modelled with continuum elements. Mortar joints and potential tensile cracks vertically
placed in the middle of the brick unit are modelled by zero-thickness interface elements [10].

A zero-thickness interface element could allow discontinuities in the displacement field of the mortar joints,
and relations could describe the potential tensile cracks and the behaviour of the interface elements in terms
of traction 𝒕 along joint thickness direction and 𝒖 cross interface.

2.2.2. Macro-modelling

From section 2.2.1, it is noted that the behaviours of masonry structure could be numerically reproduced by
applying the material properties and the actual geometry of the brick and the mortar. However, this approach
became impractical in the case of many masonry structures consisting of many units. Therefore, masonry is
usually homogeneous, although it is a composite material [8].

Figure 2-9 two-step homogenization procedure for masonry structure: (a) objective of homogenization; (b)

homogenization 𝑥𝑦; (c) homogenization 𝑦𝑥. [8]

14 2. Literature review 2.3. Homogenization approaches

There are two approaches for macro-modelling: modelling based on the composite theory; modelling based
on the compatibility and equilibrium equations of the unit cell. By applying homogenization techniques,
composite behaviour is described in macro or average stresses and strains, derived from micro-constitutive
law and geometrical properties.

Firstly, building up the basic cell by using an approximate approach based on two-step homogenization
procedures under the assumptions of layered material, see figure 2-9.

Secondly, implement micro-constitutive laws, such as yield surface, constitutive law, and homogenized ones,
by applying macro-parameters proposed in step 2.

2.3. Homogenization approaches

In the following sections, 2D plane stress elements with homogenization techniques are selected for
numerical analysis. The failure mechanisms of shear, horizontally tensile and vertically compressive
behaviour of masonry should be considered.

2.3.1. Existing models

Masonry is assumed to be a continuum deformable-body in continuum models. The existing procedures to
derive homogenized constitutive laws of this type of model commonly could be proposed based on composite
theory, see Lourenço’s research in [8], or compatibility and equilibrium equations of the deformed cell, see A.
Zucchini et al. [30].

Macro-model based on the composite theory

Lourenço proposed a homogenized approach in 1996 based on the theory of layered materials. [8] He
introduced a novel formulation based on the approach proposed by Salamon in 1968 [36], which originated
in the field of rock mechanics to handle inelastic material behaviour [8].

Figure 2-10 Representative volume regime of the periodic system of parallel layers [8]

Figure 2-10 displayed a layered material built from a periodic system of parallel layers, and each layer is
assumed to be an isotropic elastic material. The system of layers is assumed to still be continuous after
deformation, and it is assumed that there is no relative displacement at the interface between each layer.

This representative volume prism is then assumed to be subjected to homogeneously distributed stresses
and strains. That means the volume of the composite material should be small enough to make the
representative volume regime negligible when considering variants of stresses and strains across the
regime’s thickness direction [8].

15

The objective was to obtain macro constitutive relation between homogenized stresses 𝝈 and strains 𝜺, see
equation (2.2)

𝝈 = 𝑫ℎ𝜺 (2.2)

𝝈 = { 𝜎𝑥 𝜎𝑦 𝜎𝑧 𝜏𝑥𝑦 𝜏𝑦𝑧 𝜏𝑥𝑧 }
𝑇

(2.3)

𝜺 = { 𝜀𝑥 𝜀𝑦 𝜀𝑧 𝛾𝑥𝑦 𝛾𝑦𝑧 𝛾𝑥𝑧 }
𝑇

(2.4)

Where 𝑫ℎ is homogenized stiffness matrix which was obtained from micro-constitutive relations, given by
Lourenço in 1996 [8] as:

𝑫ℎ = [∑𝑝𝑖
𝑖

(𝑷𝑡 −𝑫𝑖𝑷𝑒)
−1]

−1

∑𝑝𝑖
𝑖

(𝑷𝑡 −𝑫𝑖𝑷𝑒)
−1𝑫𝑖 (2.5)

Where 𝑷𝑡 and 𝑷𝑒 are the projection matrices into stress and strain space, respectively, 𝑫𝑖 is stiffness matrix

of 𝑖𝑡ℎ layer. Normalized thickness 𝑝𝑖 could be defined by the thickness (ℎ𝑖) of the (𝑖𝑡ℎ) layer, and the length
𝐿 of representative volume in 𝑧 direction shown in figure 2-9. Once the averaged stresses and strains were

known, stresses and strains in 𝑖𝑡ℎ could be calculated as:

𝝈𝒊 = 𝑻𝑡𝑖 𝝈 𝑤𝑖𝑡ℎ 𝑻𝑡𝑖 = 𝑰 + 𝑷𝑡(𝑷𝑡 −𝑫𝑖𝑷𝑒)
−1 (𝑫𝑖(𝑫

ℎ)
−1
− 𝑰) (2.7)

𝝈𝒊 = 𝑻𝑒𝑖 𝝈 𝑤𝑖𝑡ℎ 𝑻𝑒𝑖 = 𝑰 + 𝑷𝑒(𝑷𝑡 −𝑫𝑖𝑷𝑒)
−1(𝑫𝑖 −𝑫

ℎ) (2.8)

This result could be extended to the inelastic formulation by a certain algorithm, see Lourenço’s research in
1996 [8].

Micro-mechanical model

According to A. Zucchini’s deformed cell assumption, see chapter 2 section 2.1.2, different components have
unequal deformations, leading to different internal stresses and strains of the brick and mortar joints due to
their different stiffness.

As a result, the individual (internal) stresses and strains of the units and the joints were derived from the
average (external) stress and strain of the composite cell [20].

In reverse, we can use relationships between internal strains and stresses of the inner components to derive
a stress-strain curve of the whole homogenized cell with certain equilibrium equations of the system.

Relations of the internal and external stresses could be built up based on boundary conditions from the
assumptions of loading conditions, and the other relative equations for solving strains and stresses of the
bricks and the mortars could be derived from the kinematic relations, the constitutive law of each component
as well as the equilibrium equations at the interface between components.

2.3.2. Gaps in existing models

The homogenized material model proposed by P. B. Lourenço 1996 based on composite theory [8] could
have the strength cap in shear, horizontal and vertical direction, but the accuracy of this model will be reduced
when the stiffness ratio between the mortars and the joints is large. The micro-mechanical model proposed
by A. Zucchini and P. B. Lourenço could solve this problem [20, 21, 30, 32], but the coupled behaviour of the

16 2. Literature review 2.4. Micro-mechanical material models

material model are incorporated into the models with a complex algorithm. Furthermore, the shear sliding
cracking of the bed joint was not considered in their material model.

Therefore, a homogenized material including all failure modes (see figure 2-1) with higher accuracy but fewer
computational efforts is worthy of being introduced and studied in the thesis.

2.4. Micro-mechanical material models

The micro-mechanical material models can be proposed by coupling the damage and plastic models. The
damage models, considering failure mechanisms of brick units and mortar joints separately, proposed in [20]
[2] are referred to in this study. To introduce elastoplastic behaviours of the components, the theories
introduced by R.de Borst and Sluys are used here [34].

2.4.1. Damage model

In 2004, Zucchini et al. proposed a novel damage model by applying his detailed micro-mechanical model
introduced in section 2.1.2 and 2.3.1 under the basic cell's pure external horizontal loading condition.

24 equations were formulated to find 24 unknown variables, including 23 internal stresses and strains of
components and 1 external stress of homogenized cell, which were firstly derived from deformed mechanics.
Those equations consist of the micro-constitutive relations of the components, the kinematic relations of the
components together with the homogenized cell based on deformed cell assumptions, the equilibrium
equations of the system at boundaries and interfaces between components.

And then, 4 damage variables were set as representative coefficients to show the damage status of the
components, including brick, head joint, bed joint and cross joint shown in figure 2-3. Those variables could
be computed according to the exponential laws of each constituent’s internal stresses and the damage
coefficients. And then, the damage factors were implemented into the 24 equations by a particular algorithm
introduced by Zucchini et al. [20].

The final 24 equations were called equilibrium “damage” equations. 24 unknown variables, including the
external stress of the homogenized cell, could be solved by knowing the external strain caused by the external
load and the geometry of the basic cell. As a result, macro constitutive relation between external strain and
stress can be obtained.

2.4.2. Elastoplastic theory

Materials, especially brittle ones, are generally damaged inelastic under compressive loading as fissures
grow at the micro-level due to the dissipative process. Therefore, in-elastic strains resulting from this process
should be considered for masonry under compression load. One of the most developed theories using for
describing material nonlinearity is the mathematical theories of plasticity. In a sense, its development goes
back to Coulomb, who postulated the dependency of sliding resistance on a plane between two bodies to be
a function of cohesion and the frictional properties [34]. Similarly, as a non-smooth Tresca yield surface has
been approximated to Von Mises’ yield contour, Drucker and Prager introduced their yield function, called
Drucker-Prager criteria, as an approximation Mohr-Coulomb yield contour by a circular cone.

Drucker Prager yield criteria

Figure 2-11 shows Mohr-Coulomb yield surface, with dashed lines of angle shape, and Drucker-Prager yield
surface in 𝜋 -plane, replacing Mohr-Coulomb yield surface to a circle. Drucker-Prager’s yield contour
maintains the linear dependency on hydrostatic stress level as the circle passes through the corner, usually

17

the three outermost ones considered safety design, of the dashed line. The Drucker-Prager yield function in
the 3D principal coordinate system could be defined as [34]:

𝑓(𝜎) = √
1

2
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2 +
1

3
𝛼(𝜎1 + 𝜎2 + 𝜎3) − 𝑘 (2.9)

Where 𝜎𝑖, 𝑖 = 1, 2, 3 are principal stresses, 𝛼 and 𝑘 are material constants related to physical parameters. The
material cohesion 𝑐 and friction angle 𝜙 are defined as:

𝛼 =
6 sin𝜙

3 − sin𝜙
, 𝑘 =

6 𝑐 sin𝜙

3 − sin𝜙
(2.10𝑎)

When the yield function meets the condition of 𝑓(𝜎) < 0 in all stress states, elastic deformations occur.
Otherwise, plastic deformations occur. In this research, 2D models with plane stress elements will be
considered. Therefore, eq. (2.9) and (2.10𝑎) should be rewritten, which will be presented in detail in chapter
6 as a similar shape of Drucker-Prager yield contour in 2D principal space shown in figure 2-12.

Figure 2-11 Representation of the Mohr-Coulomb and

Drucker-Prager yield contour in 𝜋-plane [34]

Figure 2-12 Representation of the Mohr-Coulomb and

Drucker-Prager yield contour for plane stress condition

[34]

Figure 2-13 Mohr’s stress circle for uniaxial compression and envelopes that bound all possible stress states for the Mohr-

Coulomb yield criteria [34]

This model was also pretty suitable for describing sand's strength characteristics, drained clays, rocks and
concrete. [34] From equations (2.9) and (2.10𝑎), we could obtain that the yield function of the Drucker-Prager

𝜎1

𝜎2

𝜎3

Mohr-Coulomb

Drucker-Prager 𝜎1

𝜎2

Mohr-Coulomb

Drucker-Prager

𝜎

𝜏

𝜎3
𝜎1 = −

2𝑐 cos𝜙

1 − sin𝜙
 𝑐

𝜙

18 2. Literature review 2.4. Micro-mechanical material models

model could be described by material parameters including friction angle 𝜙 and cohesion 𝑐. That means, we
are able to derive a relationship between the cohesion 𝑐 and the principal stresses 𝜎1, 𝜎2, 𝜎3 once the value
of friction angle is known. As can be seen from figure 2-13, let us assume 𝜎1 = 0 for 2D condition and 𝜎3 = 0

to make 𝜎2 = −𝑓𝑐, where 𝑓𝑐 is compressive strength. Then we can use compressive strength (characteristic
of material) to describe cohesion 𝑐 as:

𝑐 =
1 − sin𝜙

2 cos𝜙
𝑓𝑐 (2.10𝑏)

Value of compressive strength 𝑓𝑐 could be correlated to the hardening/softening parameter if we consider the

hardening/softening behaviour of the materials, cohesion 𝑐 could be relative to the hardening/softening
parameter. As a result, the yield surface described in figure 2-12 eq. (2.9) would shrink or expand as the
softening or hardening process occurs.

Flow rule

Yield function is introduced as the contour that defines a spherical surface in 3-dimensional stress space,
distinguishing permissible from non-permissible stress states. If the stresses are inside the surface (𝑓(𝜎) < 0)
defined by yield function, then the deformations are pure elastic, while the plastic deformations can occur if
and only if the stress points are on the surface [34]. Stress points stated outside the yield surface are not
permitted here.

To obtain plastic deformation, the stress point must be on the yield contour and remain there for a “short
period”. If the stress point touched the yield surface and it immediately pointed inward or outward the contour,
plastic deformation may not happen [34]. In other words, plastic deformations occur when the following two
conditions are met:

𝑓(𝜎) = 0 (2.11)

 𝑓(𝜎)̇ = 0 (2.12)

Equation (2.12) is usually called Prager’s consistency equation and ensures that the yield condition must be
fulfilled for at least a small-time increment so that plastic flow can occur [34].

Figure 2-14 congeniality of the gradient vector 𝒏 to the

yield surface [34]

Figure 2-15 Orthogonality of the gradient vector 𝒎 to the

non-associated potential function 𝑔

While the stress point is inside the yield contour, the elastic deformation is dominating. Where the constitutive
relation should be [34]:

𝜎1

𝜎2

𝑓 = 0

𝒏 =
𝜕𝑓

𝜕𝝈

𝜎1

𝜎2

𝑓 = 0

𝒏 =
𝜕𝑓

𝜕𝝈

𝒎 =
𝜕𝑔

𝜕𝝈

Non associated
potential function

19

𝝈 = 𝑫𝑒𝜺 (2.13)

Where 𝑫𝒆 is the (continuum) elastic stiffness matrix, setting the relationship of stress tensor 𝝈 and strain
tensor 𝜺. This relationship can only be established when the elastic deformation occurred. Therefore, we are
able to rewrite Eq. (2.13) and express the stress tensor 𝝈 by the elastic strain vector 𝜺𝒆 as:

𝝈 = 𝑫𝑒𝜺𝑒 (2.14)

When the plastic strains occur, the remaining part of the strains should be plastic and be obtained from
abstracting the elastic contribution 𝜺𝒆 from the total strain 𝜺: [34]

𝜺𝑝 = 𝜺 − 𝜺𝑒 (2.15)

Combining equations (2.6) and (2.7), the expression of stress tensor could be obtained as:

𝝈 = 𝑫𝑒(𝜺 − 𝜺𝑝) (2.16)

Since the yield function is assumed to be a sole function of stress tensor as 𝑓 = 𝑓(𝝈), the consistency
condition could be elaborated as:

𝜕𝑓

𝜕𝑡
=
𝜕𝑓

𝜕𝝈
∙
𝜕𝝈

𝜕𝑡
= 𝒏𝑇�̇� = 0 (2.17)

Where 𝒏 is the gradient vector of yield function shown in figure 2-14 and �̇� is a short time stress increment.
Substituting eq. (2.16) for (2.17) results in:

𝒏𝑇𝑫𝑒(�̇� − 𝜺�̇�) = 0 (2.18)

Plastic strain increment for (small) time step is able to be relative to the plastic multiplier �̇� and a vector 𝒎 as:

𝜺�̇� = �̇� 𝒎 (2.19)

With �̇� determining the magnitude of plastic flow and vector 𝒎 describing the direction of flow [34].

Combining equations (2.18) and (2.19), the value of the plastic multiplier �̇� could be calculated as:

�̇� =
𝒏𝑇𝑫𝑒�̇�

𝒏𝑇𝑫𝑒𝒎
(2.20)

Finally, the function of the stress vector rate �̇� can be proposed as:

�̇� = 𝑫𝑒 (�̇� −
𝒏𝑇𝑫𝑒�̇�

𝒏𝑇𝑫𝑒𝒎
𝒎) (2.21)

Typically, vector 𝒎 was the gradient of the plastic potential function 𝑔 obtained from experimental data to
indicate plastic volume change. For masonry material, which is sensitive to dilatant behaviour, the non-
associated flow rule generally has a different direction compared with the direction of the yield surface, gives
a better predictor of volume change by a proper value of dilatancy angle 𝜓 rather than friction angle 𝜙. Its
function could be described as:

𝑔 = √
1

2
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2 +
1

3
𝛼𝜓(𝜎1 + 𝜎2 + 𝜎3) − 𝑘𝜓 (2.22)

20 2. Literature review 2.4. Micro-mechanical material models

With 𝛼𝜓 and 𝑘𝜓 are material constants for Drucker-Prager like potential function.

𝛼𝜓 =
6 sin𝜓

3 − sin𝜓
, 𝑘𝜓 =

6 𝑐 sin𝜓

3 − sin𝜓
(2.23)

Let us suppose that the external loading would increase linearly by time increment, then the stress vector
rate �̇� should be stress increment at each load step. Therefore, function (2.21) can be used to find out stress
tensor considering plastic deformation without hardening or softening behaviour.

Hardening and softening behaviour

So far, it was assumed in the ideal plastic model introduced above that it did not take the hardening or
softening behaviour into account, which means the value of the yield function proposed above only depends
on the stress tensor. This assumption, however, is less reliable when we consider the compressive loading
since cohesion 𝑐 of brick and mortar will be computed as a constant along with the loading history in this way.
Fissures at the micro-level generated in components influence the stress distribution of each component of
masonry structure in reverse, especially when the structures are under compressive loading conditions.

For brittle material, the block may not reach its ultimate limit state once the first cracking occurs. Instead, it
can still undertake loading with consistently reduced tangent stiffness until it is damaged. For masonry
material, differences in the stiffness of the bricks and the mortars lead to the energy at interfaces of different
materials being dissipated, influencing components’ ultimate limit state strength, which depends on
components’ strain condition.

Therefore, the dissipative process needs to be considered as introducing the dependence of the plastic strain
tensor into yield function as:

𝑓 = 𝑓(𝜎, 𝜅) (2.24)

Where hardening parameter 𝜅 is scalar-valued, and it depends on strain history through plastic tensor 𝜺𝒑,

defined as equation (2.25) with the strain-hardening hypothesis: [34]

�̇� = √2/3(𝜺�̇�)
𝑇
𝑸𝜺�̇� (2.25)

Shift matrix 𝑸 is a diagonal one, as 𝑸 = 𝑑𝑖𝑎𝑔[1, 1,1,
1

2
,
1

2
,
1

2
], which considers the effect of the shear tensor

incorporated in the vector format 𝜺 of engineering shear strains notion.

Now equation (2.9) can be derived as:

𝑓(𝜎, 𝜅) =
𝜕𝑓

𝜕𝝈
∙
𝜕𝝈

𝜕𝑡
+
𝜕𝑓

𝜕𝜅
∙
𝜕𝑘

𝜕𝑡
= 𝒏𝑇�̇� +

𝜕𝑓

𝜕𝜅
�̇� = 0 (2.26)

The plastic multiplier �̇� should always be positive [34]. Therefore equation (2.12) is able to be rederived as:

𝒏𝑇�̇� − ℎ�̇� = 0 (2.27)

Where ℎ is so-called the hardening modulus with function show as:

ℎ = −
1

�̇�

𝜕𝑓

𝜕𝜅
�̇� (2.28)

21

Combining equation (2.16) and flow rule (2.19) with consistency condition for hardening/ softening plasticity

(2.28), we are able to get: [34]

�̇� = [(𝑫𝑒)
−1 +

1

ℎ
𝒎𝒏𝑇] �̇� (2.29)

With the new explicit function of plastic multiplier �̇� shown as:

�̇� =
𝒏𝑇𝑫𝑒�̇�

ℎ + 𝒏𝑇𝑫𝑒𝒎
(2.30)

Therefore, the function of the stress vector rate �̇� should be redefined as:

�̇� = 𝑫𝑒 (�̇� −
𝒏𝑇𝑫𝑒�̇�

ℎ + 𝒏𝑇𝑫𝑒𝒎
𝒎) (2.31)

As a result, if we have the hardening parameter ℎ, then the hardening/ softening behaviour will be considered

in elastoplastic behaviour. While if ℎ = 0, then we will return to ideal plasticity.

Return mapping algorithm

To obtain the strains and stresses in structure in generic loading stage, equation (2.29) must be integrated
along the loading path. Here we use the one-point Euler forward integration rule, which is the most
straightforward way. Such a scheme is fully explicit that the hardening modulus ℎ and stress increment ∆𝝈
can be evaluated once strain increment ∆𝜺 is known. Therefore, the tangential stiffness matrix at the
beginning of strain increment can be calculated directly [37].

If the initial stress point 𝝈𝟎 is on yield surface, stress increment at the beginning of strain increment can be
evaluated from equation (2.32) as [37]

∆𝝈 = 𝑫𝑒 (∆𝜺 −
𝒏0
𝑇𝑫𝑒∆𝜺

ℎ0 + 𝒏0
𝑇𝑫𝑒𝒎0

𝒎0) (2.32)

Where subscript "0" means flow direction 𝒎, the direction of the yield surface 𝒏𝑇 and the hardening modulus
ℎ are computed at the initial stress point. The new stress state 𝝈𝑛 at the end of the load step should be:

𝝈𝑛 = 𝝈0 + ∆𝝈 (2.33)

If the initial stress point is located inside the yield surface, strain increment should be firstly subdivided into
the purely elastic part, which is needed to reach the yield contour shown as ∆𝜺𝐴 in figure 2-16, and the part

involving elastoplastic straining is shown as ∆𝜺𝐵 in figure 2-16. Now the stress increment is able to be
proposed as [37]

∆𝝈 = 𝑫𝑒 ∆𝜺𝐴 +𝑫𝑒 (∆𝜺𝐵 −
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

𝒎𝑐) (2.34)

With subscript "𝑐" means 𝒎, 𝒏𝑇 and ℎ should be calculated at the critical stress point shown in figure 2-16.
By substituting this new function of stress increment ∆𝝈 for equation (2.33), the stress point at the end of
each step stage can be computed as:

𝝈𝑛 = 𝝈0 +𝑫𝑒 ∆𝜺𝐴 +𝑫𝑒 (∆𝜺𝐵 −
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

𝒎𝑐) (2.35)

22 2. Literature review 2.4. Micro-mechanical material models

This procedure could also be considered in another way as follows. [37] Firstly, the strain increment can be
seen as purely “elastic” strains. Then stress increment is able to be computed as:

∆𝝈𝑒 = 𝑫𝑒 ∆𝜺 (2.36)

In this stage, the calculation is irrelevant whether the initial stress point is located inside or on the current
yield surface. The strain increment is considered a trial increment based on the assumption of elastic straining
during the whole loading increment. Possible plastic straining is not taken into account during this trial stage.
[37]

Then, the total stress is set up as a sum of the initial stress at the beginning of the loading increment 𝝈0 and

the trial strain increment ∆𝝈𝑒 described as:

𝝈𝑒 = 𝝈0 +𝑫𝑒 ∆𝜺 (2.37)

Based on the yield criteria of Drucker-Prager yield surface introduced above, we are able to judge if such
stress point is inside the yield surface by evaluating yield function 𝑓(𝝈𝑒 , 𝑘0) using equation (2.24) with 𝝈𝑒 and
initial hardening parameter 𝑘0. If 𝑓(𝝈𝑒 , 𝑘0) > 0, then the plastic strain tensor, as a corrector, will have a value
computed as:

∆𝜺𝑝 =
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

𝒎𝑐 (2.38)

Figure 2-16 Explicit integration scheme: total strain increment should be divided into the purely elastic part and plastic part

integrated with one-point Euler forward rule [34]

As a result, the stress state at the end of the loading stage should be:

𝝈𝑛 = 𝝈𝑒 − ∆𝜆𝑐𝑫𝑒𝒎𝑐 (2.39)

∆𝜆𝑐 =
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

(2.40)

𝜎1

𝜎2

𝑓 = 0

𝒏𝒄

𝒎𝒄

𝝈𝒄

𝝈0

𝑫𝑒 ∆𝜺𝐴

𝑫𝑒 ∆𝜺𝐵

𝝈𝑒

𝝈𝑛

23

The stress point 𝝈𝑒 is called as “elastic predictor”, while plastic stress point 𝝈𝑝 as “plastic corrector”.

This “elastic predictor- plastic corrector” process is a return mapping algorithm.

2.5. Diana FEA iterative process

Figure 2-17 Algorithm of incremental-iterative solution

The incremental-iterative solution introduced in Diana FEA documentation section 30.1 could be seen from
figure 2-17 [38].

Firstly, initializing strain of per element increment at 𝑖 step Δ𝜀𝑖 being equal to zero. Displacement of model

𝑈𝑖𝑛𝑡.𝑖 could be calculated based on the specific integration scheme, which is categorised by types of elements.

Secondly, increasing external displacement by applying displacement control. The increment of the
displacement 𝑔 could be calculated, and this increment could be used for finding the predicted change in
force 𝛿𝐹𝑖 by introducing stiffness matrix 𝑲 at displacement point 𝑈𝑖𝑛𝑡.𝑖.

Thirdly, the corresponding force 𝐹𝑒𝑥𝑡 is able to be fond according to the external displacement 𝑈𝑒𝑥𝑡 by
introducing strain-stress curve from the constitutive law of the material model and the particular integration
scheme.

Finally, comparing the predicted force ΔF𝑖+1 = ΔF𝑖 + 𝛿𝐹𝑖 and the external force 𝐹𝑒𝑥𝑡 . If the convergency
condition is not satisfied, then the incrementing loop would occur, and the process would go back to step 2.

Predict change in

force 𝛿𝐹𝑖
ΔF𝑖+1 = ΔF𝑖 + 𝛿𝐹𝑖

Displacement loop:

U𝑖𝑛𝑡,𝑖+1 = ΔU𝑖+1

Increase external

displacement 𝑈𝑒𝑥𝑡,
𝑔 = 𝑈𝑒𝑥𝑡 − 𝑈𝑖𝑛𝑡.𝑖

Increase step:

𝑖 = 𝑖 + 1

Diana process

find 𝑈𝑖𝑛𝑡.𝑖

Initialization:

strain Δ𝜀𝑖=0

Force norm conv

convergence?

Constitutive

law code: find

𝑲 matrix with

𝑈𝑖𝑛𝑡.𝑖

Constitutive
law line: find

relative 𝐹𝑒𝑥𝑡
by 𝑈𝑒𝑥𝑡

Begin

increment

End increment

No

Yes

24 2. Literature review 2.5. Diana FEA iterative process

25

3. Theory and assumptions
The relative assumptions are derived based on the theory from chapter 2 in this part. There are two parts:

(1) The homogenised cell's definition is based on the one built by Zucchini and Lourenço’s in 2002 [30].
(2) 4 main deformed cells are studied for behaviours of masonry structures in shear, horizontal tensile and

vertical compressive direction.

These deformed cells are established according to the numerical results from A. Zucchini and P.B. Lourenço’s
research in 2002 for interaction behaviours of micro-mechanical model [30] and the numerical results of
internal stress distribution from P.B. Lourenço and J. Pina-Henriques in 2006 [35]. The stress and strain
tensors, which are assumed to be relative to the micro-constitutive model of components in the basic cell
under different loading cases, are suitably chosen in this part according to Zucchini’s formulation [20], while
all the others are neglected by assuming their value to be zero. The derivations of the homogenized
constitutive laws, including proposing relative kinematic relations, equilibrium equations of the system, plastic
deformations, will be introduced in chapters 4 to 7 in detail.

In this chapter, these deformed cells are firstly drawn based on the assumed failure mechanisms, and then
the internal stresses following the deformed cells are selected for all models. Other assumptions on the
elastoplastic phase in model 3 and the coupled behaviours under mixed loading in model 4, such as combined
shear and vertical compressive loading, are also made based on previous researches introduced in chapter
2.

3.1. Definition of deformed cell

Unreinforced masonry structures normally consist of brick units and mortar joints with different mechanical
properties. In this research, masonry with the staggered alignment of brick units is considered. Three types
of mortar connections are considered, being categorized by their locations relative to the brick units. These
are the vertical head joints, located beside the brick units; the horizontal bed joints, located under or above
the brick units; the cross joints, located at the corner of the brick units, where the head and bed joints
overlap, which can be seen from figure 3-1(a).

(c) Types of mortar joint (d) Basic cell

 brick unit bed joint cross joint head joint

Figure 3-1 Assumption of per basic cell

26 3. Theory and assumptions 3.2. Model 1: shear behaviour

The representative plane could be extracted from the periodic system of each layer consisting of the brick
units and the vertical head joints based on masonry walls’ symmetrical geometry, see figure 3-1 (b). This
plane is called “basic unit cell”, and its geometry should be relative to the geometrical properties of
components.

3.2. Model 1: shear behaviour

In this model, the unit cell deforms under pure external shear loading, which means that only the external
shear strain is considered to be the homogenized strain. Based on this assumption, the deformed cell of
model 1 could be drawn as figure 3-2.

Figure 3-2 Deformed Cell of Model 1

Figure 3-3 Internal stresses Model 1

 brick unit bed joint cross joint head joint

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint
(green), “b” means bed joint (orange)

Furthermore, the failure pattern of model 1 is assumed to be “shear sliding”, the one described in chapter 2
section 2.1 figure 2-1 (b), which means only the in-plane shear stresses of the cell are considered.
Components, including the brick unit and the head, the bed, and the cross joint, fail once their shear stresses
reach their strengths without hardening. As can be seen in figure 3-2, the considered stresses are:

1. External shear stress 𝜏0;
2. Internal shear stresses: between the brick unit and bed joint 𝜏𝑥𝑦

𝑢 , 𝜏𝑥𝑦
𝑏 ; between the brick unit and cross

joint 𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑐𝑢; between head joint and cross joint 𝜏𝑥𝑦
ℎ , 𝜏𝑥𝑦

𝑐ℎ

𝜏0 could be firstly relative to the internal shear stresses 𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑏 , 𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑐𝑢, 𝜏𝑥𝑦
ℎ , 𝜏𝑥𝑦

𝑐ℎ using equilibrium equations

of the system. And then, the damage factors, calculated from the internal shear stresses at each interface
(brick-head joint interface, brick-bed joint interface, head-cross joint interface), should be attached to the value

of 𝜏0, since the values of 𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑏 , 𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑐𝑢, 𝜏𝑥𝑦
ℎ , 𝜏𝑥𝑦

𝑐ℎ are considered to be the undamaged ones. In this case,

the shear cracks may occur in each component at different times, and the basic cell would be fully damaged
after all of the components failed in shear.

3.3. Model 2: horizontal tensile behaviour

In this model, the unit cell is assumed to be the only crack in the horizontal tension direction, which means
each component could deform horizontally caused by the external loading and vertically considering the
positive poison ratio of the unit cell. In other words, the homogenized unit only has lateral tension strain and
stress. However, according to Zucchini’s research in [30], the basic cell under horizontal loading has
displacement caused by the internal shear deformation between the bed joint and the brick unit and the tensile
deformations of the components. The deformation of the unit cell in model 2 can be seen from figure 3-4.

2𝑡

ℎ

ℎ

𝑙 𝑡

𝜏0

𝜏0

𝜏𝑥𝑦
𝑢 𝜏𝑥𝑦

ℎ

𝜏𝑥𝑦
𝑏 𝜏𝑥𝑦

𝑐 𝜏𝑥𝑦
𝑐

27

This deformed cell, in which the shear, the tensile, and compressive behaviours of each component should
be considered, is assumed to be damaged in tensile cracking failure mode, see chapter 2 figure 2-1 (c). The
internal stresses should be selected based on the deformation assumption of model 2 shown in figure 3-4,
especially the internal shear stresses.

According to those assumptions of model 2, the internal stresses are:

External tension stress 𝜎𝑥𝑥
0 ;

1. Internal horizontal stresses: brick unit 𝜎𝑥𝑥
𝑢 , head joint 𝜎𝑥𝑥

ℎ , bed joint 𝜎𝑥𝑥
𝑏 , cross joint 𝜎𝑥𝑥

𝑐 ;

2. Internal vertical stresses: brick unit 𝜎𝑦𝑦
𝑢 , head joint 𝜎𝑦𝑦

𝑏 , bed joint 𝜎𝑦𝑦
𝑏 , cross joint 𝜎𝑦𝑦

𝑐 ;

3. Internal shear stresses: between the brick unit and bed joint 𝜏𝑥𝑦
𝑢 = 𝜏𝑥𝑦

𝑏 .

The stress distribution of the deformed cell could be seen from figure 3-5. Homogenized stress 𝜎𝑥𝑥
0 can be

relative to the internal stresses by deriving equilibrium equations at side boundaries. And then, the internal
stresses could be substituted for the damaged ones by introducing the damage factors. In this case,

homogenously horizontal stresses 𝜎𝑥𝑥
0 could be relative to the internal stresses and the damage factors in

shear, horizontal and vertical directions of the components. The damage factors depend on the value of the
corresponding stresses. For instance, the damage factor of brick in the x-direction 𝑑𝑥𝑥

𝑢 is computed by the
internal horizontal stress 𝜎𝑥𝑥

𝑢 . The scalar value of the damage variable 𝑑𝑥𝑥
𝑢 (damage factor) can represent the

damage level of the brick unit in the x-direction, as “0” means the brick is undamaged in the x-direction, while
“1” means the brick is damaged in the x-direction.

Figure 3-4 Deformed Cell of Model 2

Figure 3-5 Internal stresses Model 2

 brick unit bed joint cross joint head joint

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green),
“b” means bed joint (orange)

As a result, there are 10 internal stresses in model 2. That means the macro stress 𝜎𝑥𝑥
0 is relative to 10

damage factors together with 10 internal stresses. There should be a vast computational cost if we derive 𝜎𝑥𝑥
0

in this way. Therefore, the damage factors should be selected to save the computational time by making the
following assumptions of model 2.

In this project, the damage factors are firstly computed by the value of the internal stresses of components
based on the exponential softening process. And then, these damage factors are implemented in the
expression of macro stress by substituting the damaged internal stresses for the undamaged ones to couple

failure mechanisms of the brick unit and the joints together. Therefore, the derivation of 𝜎𝑥𝑥
0 could be simplified

by selecting the suitable failure mechanisms of components.

According to A. Zucchini and P.B. Lourenço’s research in 2002 [30]:

The failure mode of Model 2 is assumed to be the coupled failure pattern, which means failure mechanisms
of shear sliding at the interface between the brick unit and the bed joint and the unit tensile cracking failure

𝑙 𝑡

2𝑡

ℎ

ℎ

𝜏𝑥𝑦
𝑢

𝜎𝑥𝑥
𝑢1

𝜎𝑥𝑥
0

𝜎𝑥𝑥
𝑢2 𝜎𝑥𝑥

ℎ

𝜎𝑦𝑦
𝑢 𝜎𝑦𝑦

ℎ

𝜎𝑦𝑦
𝑐 𝜎𝑥𝑥

𝑐

𝜎𝑥𝑥
𝑏 𝜎𝑦𝑦

𝑏

𝜏𝑥𝑦
𝑏

𝜎𝑥𝑥
0

28 3. Theory and assumptions 3.4. Model 3: vertical compression behaviour

patterns are considered. The significant damage occurring in the homogenized cell is caused by cracks
generated in the x-direction of the brick unit, the head and the cross joint, and shear failure between the bed
joint and the brick unit. As a result, damage factors in x-direction computed by the internal tension stresses
of the brick unit, the head and the cross joint, and the damage factor computed by the shear stress between
the bed joint and the brick unit are the dominating coefficients selected for calculating homogenized stress.

3.4. Model 3: vertical compression behaviour

Figure 3-6 localized damage in brick

Crushing in brick occurs typically when the masonry walls are under vertical compression loading, shown in
figure 3-6. The experimental results indicated that both local and continuum fracturing processes governing
the compressive behaviour of the masonry introduced by Maurizio Angelillo et al. in [39]. Therefore, model 3
is built up based on two main parts:

(1) The damage model for continuum fracturing process;
(2) The plastic deformation is introduced in bricks and mortar for the local fracturing process.

3.4.1. Damage model

The damage model is firstly proposed as models 1 and 2 did. The deformed mechanisms with the elastic
properties of the bricks and the mortars are proposed for model 3. That means the internal stresses of
components increase linearly as the external loading is gradually imposed. Until the values of the stresses
reach their strength, the components’ internal stresses drop to zero immediately, following the exponential
softening process. The deformations of the basic unit cell loaded by vertical compressive force could be drawn
as figure 3-7 shown based on Zucchini’s works [30] introduced in chapter 2.

Figure 3-7 demonstrates that the head joint is subjected to the mixed shear and normal stresses while other
components are subjected to the normal stresses only when only the vertical compressive load case is taken
into account.

In the micro-mechanical model, the loadings effect on the behaviours of the head joints under mixed shear
and normal stresses are hardly included. In 1997, the results of Lourenço’s research showed that the errors
between the homogenized model that included and excluded mixed shear behaviour of the head joint were
smaller than 2% recorded by Zucchini et al. in 2002. [30] Therefore, this deformed cell could be simplified by
neglecting the shear stresses of the head joints overall the behaviours of the basic cell as figure 3-8 shown.
As the dilatant effects being included, the deformed cell of model 3 is assumed as figure 3-9 shown.

As can be seen from figure 3-10, the internal stress of each component from model 3 is similarly distributed
as from model 2, the differences displayed in the cross and the bed joint that the horizontal stresses of them
shift from in tensile to in compressive direction supported by the research introduced in chapter 2 section

2.1.3. The vertical stress of the basic unit cell considered in this model is 𝜎𝑦𝑦
0 in compression.

29

Figure 3-7 deformed cell from Zucchini et al. in 2002 [30]

Figure 3-8 simplified deformed cell

Figure 3-9 deformed cell of model 3 with dilatancy angle

Figure 3-10 internal stresses of components

 brick unit bed joint cross joint head joint

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green),
“b” means bed joint (orange)

3.4.2. Elastoplastic deformation

The plastic strain tensor and the hardening parameters of the components are introduced in this model to
represent the inelastic behaviour of the brick unit and the joints under compressive loading, which is
considered a localized damage process. As equation (2.38) introduced in chapter 2 section 2.4.2 shown, the
plastic strain increment is relative to the value of the hardening modulus, the direction of yield surface and
the direction of potential energy at critical stress point on yield surface and the strain increment calculated
from load increment at each step together with the geometrical properties of the basic unit cell.

In this model, Drucker-Prager yield criteria and their relevant protentional energy function are introduced
based on the theory listed in chapter 2 section 2.4.2. Hardening modulus ℎ𝑐 used for reflecting the hardening

and softening process, could be calculated from equation (2.28) introduced in chapter 2 section 2.4.2.

It can be assumed that the strain increment at each load step is the same. Therefore, the function of the
hardening modulus can be rewritten as:

ℎ𝑐 = −
1

∆𝜆𝑐

𝜕𝑓

𝜕𝜅
|
𝑐
Δ𝜅 (3.1)

Where ∆𝜆𝑐 is the plastic multiplier, definition of which will be introduced in detail later in chapter 6 and 𝜅 is the
hardening parameter, typically depends on the strain history through plastic tensor 𝜺𝑝 gained from the strain-

hardening hypothesis.

For 4-node plane element, tensor 𝜺𝑝 could be displayed in matrix form:

𝜺𝑝
𝑇 = [𝜀𝑥𝑥

𝑝
𝜀𝑦𝑦
𝑝

2𝜀𝑥𝑦
𝑝
], 𝜺𝑝 = [

𝜀𝑥𝑥
𝑝

𝜀𝑦𝑦
𝑝

2𝜀𝑥𝑦
𝑝

] (3.2)

𝑙 𝑡

2𝑡

ℎ

ℎ

𝜎𝑦𝑦
0

𝜏𝑥𝑦
𝑢 𝜎𝑥𝑥

𝑢2 𝜎𝑥𝑥
𝑢1 𝜎𝑥𝑥

ℎ

𝜎𝑦𝑦
𝑢

𝜎𝑦𝑦
ℎ

𝜎𝑦𝑦
𝑐

𝜎𝑥𝑥
𝑐

𝜎𝑥𝑥
𝑏 𝜎𝑦𝑦

𝑏

𝜏𝑥𝑦
𝑏

𝜎𝑦𝑦
0

30 3. Theory and assumptions 3.4. Model 3: vertical compression behaviour

If shear behaviour was neglected, the function of the hardening parameter 𝜅 at load step 𝑡 = 𝑡 is:

𝜅 = √
2

3
𝜺𝑝
𝑇𝑸𝜺𝑝 = √

2

3
[(𝜀𝑥𝑥

𝑝
)
2
+ (𝜀𝑦𝑦

𝑝
)
2
] =∑Δ𝜅

𝑡=𝑡

𝑡=0

, 𝑸 = [

1 0 0
0 1 0

0 0
1

2

] (3.3)

Dependence of yield function on loading history only through the scalar-valued hardening parameter 𝜅, which
also could be seen as equivalent plastic strain 𝜀𝑦𝑦 as figure 3-11 shown. The yield surface could only expand

or shrink but could not translate or rotate in stress space. [34]

In this model, the cohesion is supposed to vary during softening or hardening phase assessed by the
hardening parameter, while the values of other material parameters, such as friction angle 𝜙, are supposed

to be constants of the components. The function of cohesion 𝑐 has been proposed in chapter 2 section 2.4.2.

Figure 3-11 𝜅 physically defined by plastic strain tensor 𝜺𝑝

The scalar value of cohesion depends on material constant 𝜙 and compression strength 𝑓𝑐 which is a variable
relative to the value of the hardening parameter 𝜅.

In conclusion, the yield surface could expand or shrink following with the hardening or softening phase through
cohesion 𝑐, which varies by compression strength of the material 𝑓𝑐 defined by the hardening parameter 𝜅
through the plastic strain tensor 𝜺𝑝.

The function of cohesion could be rederived in the form of equation (3.4) shown.

𝑐 =
1 − sin𝜙

2 cos𝜙
𝜎𝑦𝑦,𝑒𝑞(𝜅) =

1 − sin𝜙

2 cos𝜙
𝜎𝑦𝑦,𝑒𝑞(𝜀𝑦𝑦,𝑒𝑞) (3.4)

It is noted that this scalar value should be calculated at the critical stress point on the yield surface since the
elastoplastic behaviours of the components could and only could exist when stress points are located on the
yield criteria. Therefore, the value of compression strength 𝑓𝑐 at the end of each load step could be substituted
by an equivalent compression stress 𝜎𝑦𝑦,𝑒𝑞, which depends on an equivalent strain 𝜀𝑦𝑦,𝑒𝑞 through an inelastic

law of quasi-brittle material regime under pure compression.

According to the function of Drucker-Prager yield criteria introduced in chapter 2 section 2.4.2 equation (2.9),
the derivative of yield function 𝑓 by the hardening parameter 𝜅 at the critical stress point could be expressed
by the slope of the inelastic strain-stress curve of the quasi-brittle material regime under pure compression:

𝜕𝑓

𝜕𝜅
|
𝑐
=
𝜕𝑓

𝜕𝑐
∙

𝜕𝑐

𝜕𝜎𝑦𝑦,𝑒𝑞
∙
𝜕𝜎𝑦𝑦,𝑒𝑞

𝜕𝜀𝑦𝑦,𝑒𝑞
(3.5)

ඥ2/3𝜀𝑦𝑦
𝑝

ඥ2/3𝜀𝑥𝑥
𝑝

𝜀𝑦𝑦,𝑒𝑞 = 𝜅

31

Bi-parabolic law introduced by Zucchini et al. in 2007 [32] is applied here as figure 3-12 shown.

Figure 3-12 Bi-parabolic law of brittle material under pure compression: vertical stress 𝜎𝑦𝑦
0 versus vertical strain 𝜀𝑦𝑦

0

Let us substitute 𝜎𝑦𝑦,𝑒𝑞 for 𝐹𝐶𝑈1 and 𝐹𝐶𝑈2, 𝜀𝑦𝑦,𝑒𝑞 for 𝜀𝑦𝑦:

𝜎𝑦𝑦,𝑒𝑞 =

{

𝑓𝑐0
3
(−

2 ∙ 𝜀𝑦𝑦,𝑒𝑞
2

𝜀0
2

+
4 ∙ 𝜀𝑦𝑦,𝑒𝑞

𝜀0
+ 1) , 𝑖𝑓 0 ≤ 𝜀𝑦𝑦,𝑒𝑞 ≤ 𝜀0

𝑓𝑐0(1 − (
2 ∙ 𝑓𝑐
3 ∙ 𝑔𝑐

(𝜀𝑦𝑦,𝑒𝑞 − 𝜀0))

2

) , 𝑖𝑓 𝜀0 < 𝜀𝑦𝑦,𝑒𝑞 ≤ 𝜀𝑚𝑎𝑥

(3.6)

Where 𝑓𝑐0 is peak stress and 𝜀0 = 2𝑓𝑐0/𝐸 is peak equivalent plastic strain with young’s modulus 𝐸. 𝑔𝑐 is post-

specific fracture energy defined by compression fracture energy 𝐺𝑐 and characteristic length 𝐿𝑐, with 𝐿𝑐 = ℎ
for the smeared crack model. ℎ is the element size.

It can be seen from figure 3.12, the compressive equivalent stress should be equal to 𝑓𝑐0/3, at which point

the elastic phase end when 𝜀𝑦𝑦,𝑒𝑞 = 0.

3.5. Model 4: coupled behaviour

Behaviours of the homogenized cell under pure shear, horizontal tension and vertical compression loading
were introduced above in section 3.2, 3.3 and 3.4 separately. However, the failure patterns may be changed
under mixed loading conditions. For instance, the basic cell under mixed shear and vertical compression
loading should fail in the diagonal cracking model, see figure 2-1 (d) in chapter 2 section 2.1, rather than
sliding one under pure shear loading or crushing one under pure vertical loading. Therefore, combinations of
shear, horizontal and vertical behaviours should also be worth to be studied.

Shear behaviour from model 1, horizontal behaviour from model 2 and vertical behaviour from model 3 are
combined. Transverse strain in the vertical direction (or horizontal direction) relative to horizontal (or vertical)

elastic phase

end 𝑔𝑐 =
𝐺𝑐
𝐿𝑐
=
𝐺𝑐
ℎ

𝜀0

𝐹𝐶𝑈1 =
𝑓𝑐0
3
(−

2 ∙ 𝜀𝑦𝑦
2

𝜀0
2

+
4 ∙ 𝜀𝑦𝑦

𝜀0
+ 1)

𝐹𝐶𝑈2 = 𝑓𝑐0(1 − (
2 ∙ 𝑓𝑐0
3 ∙ 𝑔𝑐

(𝜀𝑦𝑦 − 𝜀0))
2)

32 3. Theory and assumptions 3.5. Model 4: coupled behaviour

loading should be considered. Meanwhile, the coupled behaviour of the basic cell under combined shear and
vertical loading is studied in this part.

3.5.1. Combination of vertical and horizontal behaviour

Usually, quasi-brittle materials should have positive poison ratios, which means this type of materials should
shrink in the vertical direction and expand in the horizontal direction when they are loaded by vertical
compressive loading or horizontal tensile loading.

According to this phenomenon, horizontal (or vertical) strain increment at each load step could be assumed

as consisting of two main parts: the one from directly horizontal (vertical) loading 𝜀𝑥𝑥
0 (or 𝜀𝑦𝑦

0) together with

the one from the corresponding deformation caused by vertical (or horizontal) loading 𝜀𝑥𝑥,𝑦
0 (or 𝜀𝑦𝑦,𝑥

0), see

figures 3-13 and 3-14.

It can be noted that the deformed cell assumption should be correlated to the horizontal tension or the vertical
compression behaviours introduced in section 3.3 or 3.4. For example, it can be seen from figure 3-13 that
the deformation of the basic cell should be similar to the one under horizontal tension loading proposed in

section 3.3. the main reason is that the output variable, in this case, is horizontal stress 𝜎𝑥𝑥
0 which means we

focus on the “horizontal tensile cracking” failure pattern, see figure 2-1 (c).

Figure 3-13 horizontal strain 𝜀𝑥𝑥,𝑦
0 caused by

vertical strain increment 𝜀𝑦𝑦
0

Figure 3-14 vertical strain 𝜀𝑦𝑦,𝑥
0 caused by horizontal

strain increment 𝜀𝑥𝑥
0

Note: direction of input loading is indicated by red arrows, while black arrows indicate output stress
direction

As a result, the new input strains 𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 and 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙

0 in both directions could be expressed by 𝜀𝑥𝑥
0 and 𝜀𝑦𝑦

0 :

𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 = 𝜀𝑥𝑥

0 + 𝜀𝑥𝑥,𝑦
0 = 𝜀𝑥𝑥

0 + 𝑓𝑥𝑥0𝑦(𝜀𝑦𝑦
0) (3.7)

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 = 𝜀𝑥𝑥

0 + 𝜀𝑦𝑦,𝑥
0 = 𝜀𝑦𝑦

0 + 𝑓𝑦𝑦0𝑥(𝜀𝑥𝑥
0) (3.8)

Coupled behaviour of the homogenized cell under horizontal tensile together with vertical compressive

loading could be obtained by substituting the new input strains 𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 and 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙

0 for the original ones. As

a result, the relation of macro strain and stress tensor could be derived in the form of:

[
𝜎𝑥𝑥
0

𝜎𝑦𝑦
0] = [

𝐾11 𝐾12
𝐾21 𝐾22

] [
𝜀𝑥𝑥
0

𝜀𝑦𝑦
0] (3.9)

𝜎𝑦𝑦
0

𝜀𝑦𝑦,𝑥
0 ∙ 2(ℎ + 𝑡)

𝜀𝑥𝑥
0 ∙ (𝑙 + 𝑡)

𝜀𝑦𝑦
0 ∙ 2(ℎ + 𝑡)

𝜀𝑥𝑥,𝑦
0 ∙ (𝑙 + 𝑡)

𝜎𝑥𝑥
0

33

𝐾11 =
𝜕𝜎𝑥𝑥

0

𝜕𝜀𝑥𝑥
0 , 𝐾22 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦
0

(3.10)

𝐾12 =
𝜕𝜎𝑥𝑥

0

𝜕𝜀𝑥𝑥,𝑦
0 ∙

𝜕𝜀𝑥𝑥,𝑦
0

𝜕𝜀𝑦𝑦
0 , 𝐾21 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦,𝑥
0 ∙

𝜕𝜀𝑦𝑦,𝑥
0

𝜕𝜀𝑥𝑥
0

(3.11)

3.5.2. Combination of shear and vertical behaviour

Diagonal tensile cracking generally occurs in masonry under shear and vertical compressive loading, see
figure 2-1 (d) in chapter 2 section 2.1. In this project, the brick units are always supposed to be stiffer than
mortar joints, and only the type of masonry structures with a staggered arrangement of brick units and mortar
joints are studied. Therefore, we can assume that diagonal tensile cracking could and only could occur in the
vertical joints, also called head joints, in this study.

The failure mechanisms could be concluded as following steps:

(1) Firstly, the shear stress between the brick unit and bed joint increases in both of elastic and elastoplastic
phase, the micro-fissures are generating in components under vertical compressive loading as model 3
proposed at the same time;

(2) Secondly, the shear stress at the interface of the brick unit and bed joint is larger than the cohesion of the

head joint 𝐶𝐻 plus the dynamical friction 𝜎𝑦𝑦
0 ∙tan (𝜙);

(3) Then, the horizontal interface starts sliding along the length direction since the resistance of it at side
boundary conditions are damaged (residual shear stress is larger than cohesion in head joint);

(4) Finally, the shear sliding maintains at the interface of the brick unit and bed joint under external shear
loading.

Additionally, the homogenized cell should still be damaged in pure shear if the vertical loading is tensile. As
a result, the maximum value of the homogenized shear stress under shear together with vertical loading is:

{
𝜏𝑥𝑦
0 = 𝜎𝑠

𝑏 , 𝑖𝑓 𝜎𝑦𝑦
0 ≥ 0

𝜏𝑥𝑦
0 = 𝐶𝐻 + 𝜎𝑦𝑦

0 ∙tan(𝜙), 𝑖𝑓 𝜎𝑦𝑦
0 < 0

(3.12)

Where 𝜎𝑠
𝑏 and 𝜙 are shear strength and friction angle of bed joint, respectively. 𝐶𝐻 is the cohesion of the head

joint, which varies following the hardening or softening process and depends on the coupled behaviour of the

basic cell under vertical tensile together with vertical compressive loading. 𝜎𝑦𝑦
0 is the homogenized vertical

stress.

As can be seen from figure 2-2 in chapter 2 section 2.1.1, the definition of shear fracture energy in coupled
behaviour is the same as that in pure shear behaviour. Therefore, consumption of cohesion in the head joint
could be considered by a similar approach as model 1 did. Constitutive law of the homogenized cell in this
study could be concluded as the following form considering coupled behaviour of all loading conditions in the
2D plane:

[

𝜎𝑥𝑥
0

𝜎𝑦𝑦
0

𝜏𝑥𝑦
0

] = [
𝐾11 𝐾12 0
𝐾21 𝐾22 0
𝐾31 𝐾32 𝐾33

] [

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝜀𝑥𝑦
0

] (3.13)

𝐾33 =
𝜕𝜏𝑥𝑦

0

𝜕𝜀𝑥𝑦
0

(3.14)

34 3. Theory and assumptions 3.5. Model 4: coupled behaviour

 𝐾31 =
𝜕𝜎𝑦𝑦

0

𝜕𝜀𝑦𝑦,𝑥
0 ∙

𝜕𝜀𝑦𝑦,𝑥
0

𝜕𝜀𝑥𝑥
0 , 𝐾32 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦
0

(3.15)

Where 𝐾11 , 𝐾12 , 𝐾21 and 𝐾22 could be found in equation (3.11) . The homogenized tensile 𝜎𝑥𝑥
0 and

compressive stresses 𝜎𝑦𝑦
0 can be obtained from models 2 and 3, respectively, by substituting the new external

strain 𝜀𝑥𝑥,𝑡𝑜𝑡𝑎𝑙
0 , 𝜀𝑦𝑦,𝑡𝑜𝑡𝑎𝑙

0 for the original 𝜀𝑥𝑥
0 , 𝜀𝑦𝑦

0 , while the shear one could be computed by the value 𝐶𝐻 and

𝜎𝑦𝑦
0 obtained in model 3 in a similar way applied in model 1.

35

4. Model 1: shear behaviour
In this model, the homogenized unit cell is supposed to be damaged by only shear stresses inside the
assumed cell. According to the assumptions made in chapter 3, the unit fails once the shear stress between
the brick unit and the bed joint reaches its strength. Based on this idea, damage model 1 can be derived from
the following concepts.

4.1. Derive “damage” equations

To derive the “damage” equations of model 1, the damage factors, used as the internal state variables, which
could show the situation of micro-cracking generated in the components, should be firstly formulated by the
exponential relation of the internal stresses. In this model, cracks are only allowed to appear at the interface
of the brick unit and the mortar in shear. Based on zucchini’s research in [20], the isotropic damage model
with a single damage variable in shear of each component of the basic cell has been adopted as:

(a) Scalar damage model

The undamaged 𝝉𝑥𝑦
𝑖 and damaged 𝝉𝑑 shear tensor are correlated according to the theories of continuum

damage model stated in Oliver’s research in [31], the equation evolved for shear behaviour can be:

𝝉𝑑 = (1 − 𝑑)𝑫𝜸𝑥𝑦
𝑖 = (1 − 𝑑)𝝉𝑥𝑦

𝑖 , 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (4.1)

Where 𝑑 is damage state variable with a scalar value, ranging from 0 to 1, as “0” means undamaged while

“1” means damaged state at local system. 𝑫 is elastic stiffness matrix and 𝜸𝑥𝑦
𝑖 is local shear strain tensor.

(b) Limit damage surface

Damage criterion should be decided by shear strength. The initial threshold values of the shear stresses of
the components should be equal to their shear strength.

𝜏𝑚𝑎𝑥 = 𝜎𝑠 (4.2)

Where 𝜎𝑠 is the shear strength of the given component and 𝜏𝑚𝑎𝑥 is the maximum value of shear stress of the
given cell component.

(c) Equivalent effective stress

A suitable norm, the so-called equivalent effective strain or stress, compares the different states of the
deformation [31] and then decide each cell component's damaged state. This norm is the damage threshold
at the current time or iterative step shown as [31]:

𝝉𝑥𝑦
𝑖 = 𝐺𝑥𝑦

𝑖 𝜸𝑖, 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (4.3)

𝜏 = max{𝜏𝑥𝑦
𝑖 , 𝜎𝑠} , 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (4.4)

Where 𝝉𝑥𝑦
𝑖 and 𝜸𝑖 are the equivalent effective stress and strain tensor, 𝜏 is the norm of damage threshold at

the current time with a scalar value. Subscripts “𝑏, 𝑢, ℎ, 𝑐” mean the variables of the bed joint, the brick unit,
the head joint and the cross joint, respectively.

(d) Damage evaluation law

36 4. Model 1: shear behaviour 4.1. Derive “damage” equations

Shear behaviours of the components here are considered to be similar to the tensile ones. Therefore, the
scalar function of shear damage factor is adopted as tensile concrete-like material here proposed in [31]:

𝑑 = 1 −
𝜎𝑠
𝜏
𝑒
𝐴𝑠(1−

𝜏
𝜎𝑠
)

(4.5)

Where 𝐴𝑠 is a parameter present based on the shape of the shear stress-strain curve observed from the
experiment, the evaluation of damage coefficient must be monotonic [31], and this irreversible damage
process is taken into account by updating the value of 𝑑.

(e) Correlation with fracture parameter

The fracture energy in shear (sliding crack model) can be similar to that in tension (first fracture energy). The
explicit function of the parameter 𝐴𝑡 is proposed in [31], where 𝐴𝑡 could be replaced by 𝐴𝑠 in shear fracture

mechanics [20] in this model. Parameter 𝐴𝑠 is then able to be relative to the dissipated energy in shear 𝑔𝐼𝐼
by:

𝑔𝐼𝐼 =
𝜎𝑠
2

𝐺
(
1

2
+
1

𝐴𝑠
) (4.6)

Where 𝐺 is the shear modulus.

As the smeared cracking model is considered in this work, the characteristic length of this model can be:

𝑙𝑠 =
𝐺𝐼𝐼

𝑔𝐼𝐼
, 𝑙𝑠 = 𝐻 (4.7)

𝐺𝐼𝐼 is the second fracture energy per unit area (assumed to be a material parameter) and 𝑙𝑠 is a characteristic
length of finite element, 𝐻 is finite element size.

Note that 𝐴𝑠 can be acquired from equations (4.6) (4.7) as:

𝐴𝑠 = (
𝐺𝐼𝐼𝐺

𝑙𝑠𝜎𝑠
2 −

1

2
)

−1

(4.8)

With equations (4.1) (4.2) (4.3) (4.4) (4.5) (4.8), the damage state variables in shear can be related to the
shear strains and stresses of the given cell components. These variables could be relative by only one
external shear strain 𝛾0 by the kinematic relations and the equilibrium equations of the system derived based
on the deformed cell assumed in chapter 3 section 3.2.

4.1.1. Kinematic relation

Based on the deformed cell assumed in chapter 3 section 3.2, the relation between the internal shear strain
of each component and the external shear strain could be derived according to the displacement equations.
Geometrical properties and the deformation of per cell in detail are able to be seen from figure 4-1. Therefore,
the equations could be proposed as equations (4.9) to (4.12) show.

∆𝑢𝑏 = ∆𝑢𝑐 = ∆𝑢 (4.9)

𝛾0 =
2∆𝑢

2(ℎ + 𝑡)
, 𝛾𝑏 = 𝛾𝑢 = 𝛾𝑐 = 𝛾ℎ (4.10)

37

 𝛾𝑏 =
2∆𝑢𝑏
2𝑡

=
2∆𝑢

2𝑡
, 𝛾𝑐 =

2∆𝑢𝑐
2𝑡

=
2∆𝑢

2𝑡
(4.11)

Therefore:

𝛾𝑏 = 𝛾𝑢 = 𝛾𝑐 = 𝛾ℎ =
ℎ + 𝑡

𝑡
𝛾0 (4.12)

Where ∆𝑢 is the total displacement of the basic cell and ∆𝑢𝑏 is the deformations caused by shear stress
between the brick unit and the bed joint, ∆𝑢𝑐 is the shear deformation between the head and cross joint. The

thickness of the mortar is assumed to be a scalar value of 2𝑡, while the heights of the brick unit and the head
joint are assumed to be 2ℎ.

Figure 4-1 Deformed Cell of Model 1

The explicit function proposed in equation (4.9) of the internal shear strain 𝛾𝑏, 𝛾𝑢, 𝛾𝑐 and 𝛾ℎ is related to the
half-height of the brick unit (head joint), the thickness of the joints and the external shear strain 𝛾0. With the
defined geometrical properties (value of ℎ and 𝑡), 𝛾𝑏, 𝛾𝑢, 𝛾𝑐 and 𝛾ℎ then could only be changed by the value

of the variable 𝛾0.

4.1.2. Equilibrium equations of the system

Considering the deformed cell of model 1 and the stresses selected in chapter 3 section 3.2, the system of
the basic cell could be drawn as figure 4-2 shown:

Figure 4-2 Model 1: the internal system of cell

Top boundary condition:

∆𝑢 ∆𝑢

∆𝑢𝑏 ∆𝑢𝑏

𝜏0 𝜏0

𝜏0 𝜏0

𝜏𝑥𝑦
𝑢 𝜏𝑥𝑦

ℎ

𝜏𝑥𝑦
𝑏 𝜏𝑥𝑦

𝑐 𝜏𝑥𝑦
𝑐

𝜏𝑥𝑦
𝑏 𝜏𝑥𝑦

𝑐 𝜏𝑥𝑦
𝑐

𝜏𝑥𝑦
𝑢 𝜏𝑥𝑦

ℎ

38 4. Model 1: shear behaviour 4.1. Derive “damage” equations

𝜏0 ∙ (𝑙 + 𝑡) = 𝜏𝑥𝑦

𝑢 ∙ 𝑙 + 𝜏𝑥𝑦
ℎ ∙ 𝑡 (4.13)

Interface at head & cross joint:

𝜏𝑥𝑦
ℎ ∙ 𝑡 = 𝜏𝑥𝑦

𝑐 ∙ 𝑡 (4.14)

Interface at bed joint:

 𝜏𝑥𝑦
𝑢 ∙ 𝑙 = 𝜏𝑥𝑦

𝑏 ∙ (𝑙 − 𝑡) + 𝜏𝑥𝑦
𝑐 ∙ 𝑡 (4.15)

Interface at brick & cross joint:

 𝜏𝑥𝑦
𝑏 = 𝜏𝑥𝑦

𝑐 (4.16)

Note that the equilibrium equations of the system should be derived at the top boundary and the brick-mortar
interfaces. Therefore, equations (4.13) to (4.16) are able to be proposed directly. The function of the internal
stress should be satisfied by combining these equations:

𝜏𝑥𝑦
𝑢 = 𝜏𝑥𝑦

ℎ = 𝜏𝑥𝑦
𝑐 = 𝜏𝑥𝑦

𝑏 = 𝜏0 (4.17)

Where 𝜏0 is the external shear stress, 𝜏𝑥𝑦
𝑢 and 𝜏𝑥𝑦

𝑏 are the shear stresses between the brick and the bed joint,

𝜏𝑥𝑦
𝑐 and 𝜏𝑥𝑦

ℎ is the shear stresses between the cross and the head joint.

4.1.3. Constitutive equations

From equation (4.17), the shear stress of each component is equal to each other. Therefore, only one shear

stress is needed to be taken into account. 𝜏𝑥𝑦
𝑏 , the shear stress between the brick and the bed joint is selected

here.

Now, we have 4 unknown strain and stress variables, including the internal shear stress 𝜏𝑥𝑦
𝑏 , the external

shear stress 𝜏0, the internal shear strain 𝛾𝑏 and the external shear strain 𝛾0. That means we need 4 equations
in total to solve this system. Now that we have already got equations (4.12) and (4.17), we still need 2 more
equations from the constitutive law of the components.

For the shear behaviour at the interface of the brick unit and the bed joint, it is obvious to adopt the relation
of the shear strain and stress as:

𝜏𝑥𝑦
𝑏 = 𝐺𝑥𝑦

𝑏 𝛾𝑏 (4.18)

Where 𝐺𝑥𝑦
𝑏 is the shear modulus of the bed joint.

In this work, displacement control is selected to be the loading approach. Therefore, the value of the horizontal
strain 𝜀0 could be obtained every step. Therefore, the shear strain 𝛾0 can be computed as:

𝛾0 = 2𝜀0 (4.19)

39

4.1.4. Equilibrium “damage” equations

Considering the damage state evaluated by the shear damage factors calculated following the formulation
described in section 4.1, the damaged internal stress should be:

𝜏𝑥𝑦,𝑑
𝑏 = (1 − 𝑑)𝐺𝑥𝑦

𝑏 𝛾𝑏 (4.20)

Where 𝜏𝑥𝑦,𝑑
𝑏 is the damaged shear stress between the brick unit and the bed joint.

As the undamaged stress is considered to be the equivalent effective one, equations (4.17) (4.18) should be
rederived as:

𝜏0 = 𝜏𝑥𝑦,𝑑
𝑏 = (1 − 𝑑)𝐺𝑥𝑦

𝑏 𝛾𝑏 (4.21)

Considering the equation (4.12) (4.18) (4.19) and (4.21), we can propose the “damage” equations for model

1 and find the relations of the unknown variables 𝜏0, 𝜏𝑥𝑦
𝑏 and the known 𝜀0:

𝜏𝑥𝑦
𝑏 = 2

ℎ + 𝑡

𝑡
𝐺𝑥𝑦
𝑏 𝜀0 =

ℎ + 𝑡

𝑡
𝐺𝑥𝑦
𝑏 𝛾0 (4.22)

𝜏0 = 2
ℎ + 𝑡

𝑡
(1 − 𝑑)𝐺𝑥𝑦

𝑏 𝜀0 =
ℎ + 𝑡

𝑡
(1 − 𝑑)𝐺𝑥𝑦

𝑏 𝛾0 (4.23)

The damage factor 𝑑 should be calculated according to the damage evaluation law in section 4.1 by 𝜏𝑥𝑦
𝑏 . Note

that the tangent stiffness of model 1 should be:

𝐾 =
𝜕 𝜏0

𝜕 𝛾0
=
ℎ + 𝑡

𝑡
(1 − 𝑑)𝐺𝑥𝑦

𝑏 (4.24)

4.2. Algorithm

The very simple algorithm that can be used to evaluate the stress of the proposed model has been introduced
above as [31] shown. That can be concluded as following steps:

Initial date from time 𝒕 + 𝟏: [31]

Material properties: second fracture energy 𝐺𝐼𝐼, shear modulus 𝐺, shear strength 𝜎𝑠, element size 𝐻;
Geometrical properties: half-height of brick unit ℎ, the thickness of mortar 𝑡
Current values: internal shear stress 𝜏𝑡, damage state variable 𝑑𝑡, external shear stress 𝜀0,t
The boundary condition of the cell here is:

𝜀0,t+1 = 𝜀0,t + ∆𝜀0 (4.25)

Where 𝜀0,t+1 is the external shear strain at 𝑡 = 𝑡 + 1, ∆𝜀0 is the shear strain increment.

At 𝑡 = 0: initializing the external shear strain and the shear damage factor as 𝜀0 = 0, 𝑑 = 0.

(1) Determining 𝐴𝑠 from eq. (4.8) by known material properties applied in Zucchini’s work [20], see table 4-1,

(2) At 𝑡 = 𝑡 + 1, evaluating the undamaged shear stress 𝜏𝑥𝑦,𝑡+1
𝑏 between the brick unit and the bed joint from

eq. (4.22) by known 𝜀0,t+1;
(3) Updating the internal variables 𝜏𝑡+1 as eq. (4.4) and 𝑑𝑡+1 as eq. (4.5) shown;

(4) Updating stresses 𝜏𝑡+1
0 from eq. (4.23)

40 4. Model 1: shear behaviour 4.2. Algorithm

41

5. Model 2: horizontal tension behaviour
In this model, the tension behaviour of the basic cell is considered. Based on the deformed cell assumed in
chapter 3 section 3.3, the shear stress between the bed joint and the brick unit and the tension behaviour of
each component should be considered. Therefore, both shear and tension damage state variables should be
included, which are damage factors using for evaluating damage status caused by internal tension and shear
stresses.

5.1. Derive “damage” equations

Formulations for fracture energy in shear has been introduced in chapter 4 section 4.1. The explicit function
in tension could be similarly adopted as [20]:

𝝈𝒙𝒙,𝒅
𝒊 = (1 − 𝑑𝑥

𝑖)𝑫𝒊𝜺𝒙𝒙
𝒊 = (1 − 𝑑𝑡

𝑖)𝝈𝒙𝒙
𝒊 , 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (5.1)

𝜎𝑥𝑥,𝑚𝑎𝑥
𝑖 = 𝜎𝑡

𝑖 (5.2)

𝜎𝑖 = max{𝜎𝑥𝑥
𝑖 , 𝜎𝑡

𝑖} , 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (5.3)

𝑑𝑡
𝑖 = 1 −

𝜎𝑡
𝑖

𝜎𝑖
exp [𝐴𝑡

𝑖 (1 −
𝜎𝑖

𝜎𝑡
𝑖)] , 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (5.4)

Where 𝝈𝒙𝒙
𝒊 is undamaged stress tensor of a given cell component which can be expressed by external strain

𝜀𝑥𝑥,0 with equations listed in section 5.1 below. 𝝈𝒙𝒙,𝒅
𝒊 is damaged stress tensor of each component evaluated

by damage factor 𝑑𝑡
𝑖 . The scalar value of maximum tensile stress is the tension strength of each component

𝜎𝑡
𝑖 while equivalent stress of given component 𝜎𝑖 should be a larger value between undamaged stress at the

current step and its maximum value.

Parameter 𝐴𝑡
𝑖 could also be related to special fracture energy in uniaxial tension 𝑔𝐼 (𝑁/𝑚𝑚2) by integration

of the deformation energy on full strain path [20]:

𝑔𝐼 =
𝜎𝑡
2

𝐸
(
1

2
+
1

𝐴𝑡
) (5.5)

Therefore, parameter 𝐴𝑡 of damage model 2 can be generally proposed as:

𝐴𝑡 = (
𝐺𝐼𝐸

𝑙𝑡𝜎𝑡
2 −

1

2
)

−1

, 𝑙𝑡 = 𝐻 (5.6)

Where 𝐺𝐼 is fracture energy in model I, 𝜎𝑡 is tension strength and characteristic length 𝑙𝑡 of the smeared crack
model should be element size 𝐻. Formulation of parameter 𝐴𝑡 from equation (5.6) is able to be applied in
components in the basic cell.

5.1.1. Kinematic relation

In this model, the stress-strain curve for tension behaviour of the basic cell is discussed. Therefore, externally

horizontal strain and stress are taken into account and strain 𝜀𝑥𝑥
0 is considered as the known variable with

42 5. Model 2: horizontal tension behaviour 5.1. Derive “damage” equations

displacement control method for iterative processing. The behaviour of the unit cell under externally vertical
displacement will not be considered in this model, which will be discussed in chapter 6.

According to the deformed cell of model 2 assumed in chapter 3 section 3.3, kinematic relation can be derived
as following equations based on Zucchini’s work in 2002 [30].

Figure 5-1 Deformed cell of model 2

 brick unit bed joint cross joint head joint

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green),
“b” means bed joint (orange)

Where ∆𝑢𝑥𝑥
𝑖 and ∆𝑢𝑦𝑦

𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) are horizontal and vertical displacement of a given component, ∆𝑢 is the

total displacement of the homogenized cell. Note that the relations between those displacements can be
summarized as:

∆𝑢𝑥𝑥
𝑢 + ∆𝑢𝑥𝑥

ℎ = 2∆𝑢𝑥𝑥
𝑐 + ∆𝑢𝑥𝑥

𝑏 = ∆𝑢 (5.7)

2∆𝑢𝑦𝑦
𝑢 + ∆𝑢𝑦𝑦

𝑏 = ∆𝑢𝑦𝑦
𝑢 + ∆𝑢𝑦𝑦

𝑐 + ∆𝑢𝑦𝑦
ℎ (5.8)

The definition of each strain as following:

[

∆𝑢𝑥𝑥

𝑢

∆𝑢𝑥𝑥
ℎ

∆𝑢𝑥𝑥
𝑐

∆𝑢𝑥𝑥
𝑏]

= [

𝑙
0
0
0

0
𝑡
0
0

0
0
𝑡
0

0
0
0

𝑙 − 𝑡

]

[

𝜀𝑥𝑥
𝑢

𝜀𝑥𝑥
ℎ

𝜀𝑥𝑥
𝑐

𝜀𝑥𝑥
𝑏]

,

[

∆𝑢𝑦𝑦

𝑢

∆𝑢𝑦𝑦
ℎ

∆𝑢𝑦𝑦
𝑐

∆𝑢𝑦𝑦
𝑏
]

= [

ℎ
0
0
0

0
ℎ
0
0

0
0
2𝑡
0

0
0
0
2𝑡

]

[

𝜀𝑦𝑦
𝑢

𝜀𝑦𝑦
ℎ

𝜀𝑦𝑦
𝑐

𝜀𝑦𝑦
𝑏
]

, ∆𝑢 = 𝜀𝑥𝑥
0 ∙ (𝑙 + 𝑡) (5.9)

Where 𝜀𝑥𝑥
𝑖 and 𝜀𝑦𝑦

𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) are the horizontal and vertical strain of each component, 𝜀𝑥𝑥
0 is

homogenized tension strain of the basic cell. The length of the brick unit is 2𝑙, the thickness of mortar is 2𝑡,
and the heights of the brick unit as well as the head joint are 2ℎ.

Therefore, eq. (5.7) and (5.8) could be rewritten as:

𝑙𝜀𝑥𝑥
𝑢 + 𝑡𝜀𝑥𝑥

ℎ = 2𝑡𝜀𝑥𝑥
𝑐 + (𝑙 − 𝑡)𝜀𝑥𝑥

𝑏 (5.10)

(𝑙 + 𝑡)𝜀𝑥𝑥
0 = 2𝑡𝜀𝑥𝑥

𝑐 + (𝑙 − 𝑡) 𝜀𝑥𝑥
𝑏 (5.11)

ℎ𝜀𝑦𝑦
𝑢 + 2𝑡𝜀𝑦𝑦

𝑏 = 2𝑡𝜀𝑦𝑦
𝑐 + ℎ𝜀𝑦𝑦

ℎ (5.12)

∆𝑢𝑥𝑥
𝑢 + ∆𝑢𝑥𝑥

ℎ

2∆𝑢𝑥𝑥
𝑐 + ∆𝑢𝑥𝑥

𝑏
2∆𝑢𝑦𝑦

𝑢 + ∆𝑢𝑦𝑦
𝑏

∆𝑢𝑦𝑦
ℎ + ∆𝑢𝑦𝑦

𝑢 + ∆𝑢𝑦𝑦
𝑐

∆𝑢

43

The 9 variables shown in kinematic relation include: unknown variables 𝜀𝑥𝑥
𝑖 and 𝜀𝑦𝑦

𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐), known

variables 𝜀𝑥𝑥
0 .

5.1.2. Equilibrium equations of the system

Based on assumptions of the deformed cell and selections of stresses in chapter 3 section 3.3, the distribution
of stresses of the inside system of model 2 can be drawn as figure 5-2 shown. According to Zucchini’s work
in 2004 [30], equilibrium equations of the system could be derived at boundary conditions and interfaces of
the brick unit and joint mortar.

Figure 5-2 Model 2: the internal system of cell

Where 𝜎𝑥𝑥
𝑖 and 𝜎𝑦𝑦

𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) are internally horizontal and vertical stresses of each component, 𝜎𝑥𝑥
0 is

tension stress of the basic cell. Horizontal stresses of the brick unit are different at two sides (𝜎𝑥𝑥
𝑢1 at the

interface of brick and head joint and 𝜎𝑥𝑥
𝑢2 at side bounder) as a result of shear behaviour between brick unit

and bed joint, see figure 5-3.

Figure 5-3 Horizontal stresses of the brick unit

Let us introduce the average horizontal stress of the brick unit �̅�𝑥𝑥
𝑢 = (𝜎𝑥𝑥

𝑢1 + 𝜎𝑥𝑥
𝑢2)/2 to simplify the equations.

ℎ𝜎𝑥𝑥
𝑢2 − (𝑙 − 𝑡)𝜏𝑥𝑦

𝑢 = ℎ𝜎𝑥𝑥
𝑢1 (5.13)

Therefore, the functions of 𝜎𝑥𝑥
𝑢1 and 𝜎𝑥𝑥

𝑢2 should be:

𝜎𝑥𝑥
𝑢1 = �̅�𝑥𝑥

𝑢 −
𝑙 − 𝑡

ℎ
 𝜏𝑥𝑦
𝑏 , 𝜎𝑥𝑥

𝑢2 = �̅�𝑥𝑥
𝑢 +

𝑙 − 𝑡

ℎ
 𝜏𝑥𝑦
𝑏 (5.14)

Shear stress between the brick unit and bed joint 𝜏𝑥𝑦
𝑢 = 𝜏𝑥𝑦

𝑏 is assumed as linearly increasing along the length

direction. Therefore, we can use �̅�𝑥𝑥
𝑢 and 𝜏𝑥𝑦

𝑏 to derive the function of 𝜎𝑥𝑥
𝑢1 and 𝜎𝑥𝑥

𝑢2 above shown.

𝜎𝑥𝑥
0

𝜏𝑥𝑦
𝑢

𝜎𝑥𝑥
𝑢1

𝜎𝑥𝑥
0

𝜎𝑦𝑦
𝑢 𝜎𝑦𝑦

ℎ

𝜎𝑦𝑦
𝑐

𝜎𝑥𝑥
𝑐

𝜎𝑥𝑥
𝑏 𝜎𝑦𝑦

𝑏

𝜏𝑥𝑦
𝑏

𝜎𝑥𝑥
𝑢2

𝜏𝑥𝑦
𝑢

𝜎𝑥𝑥
𝑢1 𝜎𝑥𝑥

𝑢2

𝑙 − 𝑡 𝑡

ℎ

44 5. Model 2: horizontal tension behaviour 5.1. Derive “damage” equations

Note that equilibrium equations of the system can be derived at upper and right boundary conditions as:

1. Upper boundary condition: 𝑙𝜎𝑦𝑦
𝑢 + 𝑡𝜎𝑦𝑦

ℎ = 0 (5.15)

2. Right boundary condition: ℎ𝜎𝑥𝑥
ℎ + 2𝑡𝜎𝑥𝑥

𝑐 + ℎ (�̅�𝑥𝑥
𝑢 + 𝜏𝑥𝑦

𝑏 𝑙−𝑡

2ℎ
) = 2(ℎ + 𝑡)𝜎𝑥𝑥

0 (5.16)

At the interface of the brick unit and joint mortar:

3. Interface brick-head joint:𝜎𝑥𝑥
ℎ = �̅�𝑥𝑥

𝑢 − 𝜏𝑥𝑦
𝑏 𝑙−𝑡

2ℎ
 (5.17)

4. Interface brick-bed joint: 𝜎𝑦𝑦
𝑢 = 𝜎𝑦𝑦

𝑏 (5.18)

The 9 unknown variables considered in equilibrium equations can be concluded as: 𝜎𝑥𝑥
𝑖 and 𝜎𝑦𝑦

𝑖 (𝑖 = 𝑢, ℎ, 𝑏),

𝜎𝑥𝑥
𝑐 , 𝜏𝑥𝑦

𝑏 and 𝜎𝑥𝑥
0 .

5.1.3. Constitutive equations

Bed joint, head joint and brick unit are considered to be elastic materials. Damage variables will evaluate their
damage status. Therefore, constitutive equations of those components are:

𝜀𝑥𝑥
𝑖 =

1

𝐸𝑖
[𝜎𝑥𝑥

𝑖 − 𝜈𝑖𝜎𝑦𝑦
𝑖], 𝑖 = 𝑏, ℎ, 𝑢 (5.19)

𝜀𝑦𝑦
𝑖 =

1

𝐸𝑖
[𝜎𝑦𝑦

𝑖 − 𝜈𝑖𝜎𝑥𝑥
𝑖], 𝑖 = 𝑏, ℎ, 𝑢 (5.20)

Relation of internal shear strain and stress can be derived as:

𝜏𝑥𝑦
𝑏 = 2𝐺𝑏𝜀𝑥𝑦

𝑏 (5.21)

Now we have 8 unknown variables in section 5.1.1, 9 unknown variables in section 5.1.2 and 1 unknown

variable 𝜀𝑥𝑦
𝑏 in this section. Therefore, we need 18 equations in total to solve those unknown variables by the

function of the known variable 𝜀𝑥𝑥
0 . We already have eq. (5.10) to (5.12), (5.15) to (5.21), with 14 equations

in total. Then, 4 more equations are still needed to be found.

Note that the shear deformation at the interface of the bed joint and the brick unit could be obtained from
Zucchini’s work in 2002 [30], see figure 5-4. Then, the shear strain of the bed joint could be derived as:

Figure 5-4 Shear deformation of model 2

∆ ≅ 𝑡𝜀𝑥𝑥
ℎ − 𝑡𝜀𝑥𝑥

𝑢 (5.22)

𝜀𝑥𝑥
ℎ ∙ 𝑡

𝜀𝑥𝑥
𝑢 ∙ 𝑡

𝜀𝑥𝑥
𝑢 ∙ 𝑡 ∆

45

∆= 2𝑡 𝛾𝑥𝑦
𝑏 = 4𝑡𝜀𝑥𝑦

𝑏 (5.23)

𝜀𝑥𝑦
𝑏 ≅

𝜀𝑥𝑥
ℎ − 𝜀�̅�𝑥

𝑢

4
(5.24)

According to Zucchini’s work in [30], the stress-strain state in the cross joint does not influence the result
significantly due to its small volume ratio. Therefore, let us just assume cross and bed joint behaving as
horizontal spring to simplify the model when considering strain and stress of cross joint. As a result, eq.
(5.25) and (5.26) could be derived at the interface of bed and cross joint as:

𝜎𝑥𝑥
𝑐 = 𝜎𝑥𝑥

𝑏 (5.25)

𝜀𝑥𝑥
𝑐 =

𝐸𝑏
𝐸𝑐
𝜀𝑥𝑥
𝑏 (5.26)

Note that the vertical strain of the cross and bed joint should be the same from figure 5-4.

𝜀𝑦𝑦
𝑐 = 𝜀𝑦𝑦

𝑏 (5.27)

5.1.4. Equilibrium “damage” equations

In this part, the damage status of each component will be evaluated by damage factor 𝑑 and stresses of each
component will be replaced by damaged ones. Therefore, the young’s modulus and shear modulus of the
given component should be:

𝐸𝑑 = (1 − 𝑑𝑡)𝐸0, 𝐺𝑑 = (1 − 𝑑𝑠)𝐺0 (5.28)

Where 𝐸0 and 𝐺0 are the initial value of elastic and shear modulus, 𝑑𝑡 and 𝑑𝑠 are tension and shear damage

factors. 𝐸𝑑 and 𝐺𝑑 are damaged elastic and shear modulus.

Damaged stresses of components will be changed as:

𝜎𝑡,𝑑 = (1 − 𝑑𝑡)𝜎𝑡, 𝜏𝑑 = (1 − 𝑑𝑠)𝜏 (5.29)

Where 𝜎𝑡 and 𝜏 are undamaged tension and shear stresses of components at the current time, 𝜎𝑡,𝑑 and 𝜏𝑑

are damaged ones. Let us assume that the damage status of the bed joint will be evaluated by shear
behaviour at the brick-mortar interface, while that of the brick unit, head joint and cross joint will be evaluated
by their tension behaviour.

Parameters 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑐, 𝑏) are introduced here to simplify the equations by introducing them into
eq. (5.27) and (5.28) in eq. (5.14) (5.15) (5.16) (5.17) (5.24) (5.25) , those equations are able to be
rederived as:

𝜎𝑥𝑥
ℎ 𝑟ℎ = �̅�𝑥𝑥

𝑢 𝑟𝑢 −
𝑙 − 𝑡

2ℎ
𝜏𝑥𝑦
𝑏 𝑟𝑏 (5.30)

𝜎𝑦𝑦
𝑢 𝑟𝑢 = 𝜎𝑦𝑦

𝑏 𝑟𝑏 (5.31)

ℎ𝜎𝑥𝑥
ℎ 𝑟ℎ + 2𝑡𝜎𝑥𝑥

𝑐 𝑟𝑐 + ℎ (�̅�𝑥𝑥
𝑢 𝑟𝑢 +

𝑙 − 𝑡

2ℎ
𝜏𝑥𝑦
𝑏 𝑟𝑏) = 2(ℎ + 𝑡)𝜎𝑥𝑥

0 (5.32)

𝑙𝜎𝑦𝑦
𝑢 𝑟𝑢 + 𝑡𝜎𝑦𝑦

ℎ 𝑟ℎ = 0 (5.33)

46 5. Model 2: horizontal tension behaviour 5.2. Algorithm

𝜀𝑥𝑥
𝑐 =

𝑟𝑏
𝑟𝑐

𝐸𝑏
𝐸𝑐
𝜀𝑥𝑥
𝑏 (5.34)

𝜎𝑥𝑥
𝑐 𝑟𝑐 = 𝜎𝑥𝑥

𝑏 𝑟𝑏 (5.35)

Once damage factors of components are known, 18 unknown stresses, including 17 internal stresses of
components and 1 external stress of the basic cell, could be obtained with those 18 “damage” equations.

5.2. Algorithm

Using the algorithm shown in figure 5-5 given by Zucchini in 2004, the micro-mechanical model of the internal
system of damaged masonry cell will be coupled with the isotropic scalar damage model of its components
[20].

Figure 5-5 Formulation of coupled material model 2 with an iterative algorithm

Begin

Initialization:

Homogenization cell

strain 𝜀𝑥𝑥
0 = 0

𝑑𝑢 , 𝑑ℎ , 𝑑𝑐 , 𝑑𝑏 = 0

Effective internal stress

𝜀𝑥𝑥
𝑖 and 𝜀𝑦𝑦

𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐)

𝜎𝑥𝑥
𝑖 and 𝜎𝑦𝑦

𝑖 (𝑖 = 𝑢, ℎ, 𝑏)

𝜀𝑥𝑦
𝑏 , 𝜎𝑥𝑥

𝑐 , 𝜏𝑥𝑦
𝑏 and 𝜎𝑥𝑥

0

Damage coefficient

𝑑𝑢𝑐, 𝑑ℎ𝑐, 𝑑𝑐𝑐 , 𝑑𝑏𝑐

Damage equations:

(5.10) (5.11) (5.12)
(5.19) (5.20) (5.21)
(5.24) (5.27)
(5.30) to (5.35)

Damage factor formulation:

Eq. (4.5) for shear one

Eq. (5.4) for tension ones

Selected stresses:

𝜎𝑥𝑥
𝑢 , 𝜎𝑥𝑥

ℎ , 𝜎𝑥𝑥
𝑐 , 𝜏𝑥𝑦

𝑏

Damage internal stresses

𝜎𝑥𝑥
𝑢 𝑟𝑢, 𝜎𝑥𝑥

ℎ 𝑟ℎ, 𝜎𝑥𝑥
𝑐 𝑟𝑐, 𝜏𝑥𝑦

𝑏 𝑟𝑏

Tangent stiffness 𝐾

Homogenized cell stress 𝜎𝑥𝑥
0

With eq. (4.2.31)

load loop:

𝜀𝑥𝑥
0 = 𝜀𝑥𝑥

0 + ∆𝜀𝑥𝑥
0

Stop

Convergence?

𝑎𝑏𝑠(𝑑𝑖𝑐 − 𝑑𝑖) < 𝑇𝑜𝑟

No

Yes

𝑑𝑖 = 𝑑𝑖𝑐

𝑟𝑖 = 1 − 𝑑𝑖

47

The outer loop is related to the so-called strain driven problem, known as incremental loading steps. In which,
boundary conditions of the basic cell are shown:

𝜀𝑥𝑥,𝑡+1
0 = 𝜀𝑥𝑥,𝑡

0 + ∆𝜀𝑥𝑥
0 (5.36)

𝜎𝑦𝑦
0 = 0 (5.37)

Where 𝜀𝑥𝑥,𝑡+1
0 and 𝜀𝑥𝑥,𝑡

0 is normal cell strain at time 𝑡 and 𝑡 + 1, ∆𝜀𝑥𝑥
0 is strain increment. 𝜎𝑦𝑦

0 is vertical cell

stress.

The inner loop is considered an iterative procedure. Values of damage factors are first initialized to be zero

at 𝑡 = 0. Then effective internal stresses can be expressed by normal cell strain 𝜀𝑥𝑥
0 by solving “damage”

equilibrium equations of internal structure with the assumed damage factors. To verify values of damage
coefficients, damage factors are calculated by components’ stresses according to formulation laid out in
chapter 4 section 4.1 and chapter 5 section 5.1 again. Damage variables are updated once the difference
between calculated and assumed values is larger than the assumed tolerance. This cycle is continually
operated every incremental step.

Damaged internal stress 𝜎𝑥𝑥
0 and tangent stiffness 𝐾 are finally decided by the value of normal cell strain and

damage variables within tolerance, where the function of tangent stiffness of model should be:

𝐾 =
𝜕 𝜎𝑥𝑥

0

𝜕 𝜀𝑥𝑥
0 = 𝑓(𝜀𝑥𝑥

0 , 𝑑𝑖), 𝑖 = ℎ, 𝑢, 𝑐, 𝑏 (5.38)

Note that function of normal stress 𝜎𝑥𝑥
0 could be proposed with known material and geometrical properties of

cell components in the format as:

𝜎𝑥𝑥
0 = 𝑓𝑠𝑖𝑔𝑥𝑥0(𝑟𝑢, 𝑟ℎ , 𝑟𝑐 , 𝑟𝑏 , 𝜀𝑥𝑥

0) (5.39)

Here, components are supposed to be damaged by tension behaviour and only one vertical crack in each
component is allowed to occur.

48 5. Model 2: horizontal tension behaviour 5.2. Algorithm

49

6. Model 3: vertical compression behaviour
In this section, the homogenized constitutive relation of vertical compressive behaviour of masonry structures
is studied based on Zucchini’s research in 2007 [32] and Lourenço’s research in 2006 [35]. It is proposed
from two main parts: the damage model and elastoplastic theory.

According to the assumptions introduced in chapter 3 section 3.4.1, the damage model is first derived by a
similar approach as models 1 and 2 did. And then, plastic deformations of components are proposed
according to the theory described in chapter 3 section 3.4.2. The formulation of a combination of the damage
model and the plastic deformations is then derived to obtain the final constitutive model.

6.1. Damage model

Formulations of shear and tension damage coefficients are the same as previous formulations stated, see
equations (4.8) and (5.6), following the exponential softening processes. In this model, the brick and head
joints fail in their equivalent tensile caused by compressive splitting effects. The bed joint is damaged in shear,
while the damage status of the cross joint depends on the status of the head joint and the bed joint.

6.1.1. Kinematic relation

The homogenized constitutive law of the basic cell under pure vertical compression loading is studied in this
section. Therefore, the vertical strain and the corresponding stress in the vertical compression direction are
set in homogeneously distributions. According to the assumptions described in chapter 3 section 3.4.1, the
deformed cell of model 3 could be seen from figure 6-1.

Figure 6-1 Deforemed cell of model 3

 brick unit bed joint cross joint head joint

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green),
“b” means bed joint (orange)

It can be noted that only the external loading condition of model 3 differs from that of model 2 from the macro
(homogenized) level. Therefore only the equations (5.11) in model 2 proposed in chapter 5 section 5.1.1 is
changed, see equation (6.1). Other kinematic relations of model 3 are the same as that of model 2.

2(ℎ + 𝑡)𝜀𝑦𝑦
0 = 2𝑡𝜀𝑦𝑦

𝑐 + ℎ𝜀𝑦𝑦
ℎ + ℎ𝜀𝑦𝑦

𝑢 (6.1)

∆𝑢𝑥𝑥
𝑢 + ∆𝑢𝑥𝑥

ℎ

2∆𝑢𝑥𝑥
𝑐

2∆𝑢𝑦𝑦
𝑢 + ∆𝑢𝑦𝑦

𝑏

∆𝑢𝑦𝑦
𝑢 + ∆𝑢𝑦𝑦

ℎ

∆𝑢

50 6. Model 3: vertical compression behaviour 6.1. Damage model

6.1.2. Equilibrium equations of the system

Distributions of internal stresses of components could be drawn as figure 6-2 shown based on the
assumptions made in chapter 3 section 3.4.1. It is noticed that the horizontal stresses of the bed and cross
joint should be compressive considering the uniaxial behaviour of masonry structures introduced in chapter
2 section 2.3 [10]. This simulation differs from Zucchini’s research in 2007. [32]

Figure 6-2 Model 3: the internal system of basic cell

As boundary strain is changing from horizontal tensile loading to vertical compressive one, the homogenized
stress changes as well and the new definition of it changes from the previous equations (5.32) (5.33) in

chapter 5 to (6.2) (6.3)

ℎ𝜎𝑥𝑥
ℎ 𝑟ℎ − 2𝑡𝜎𝑥𝑥

𝑐 𝑟𝑐 + ℎ (�̅�𝑥𝑥
𝑢 𝑟𝑢 +

𝑙 − 𝑡

2ℎ
𝜏𝑥𝑦
𝑏 𝑟𝑏) = 0 (6.2)

𝑙𝜎𝑦𝑦
𝑢 𝑟𝑢 + 𝑡𝜎𝑦𝑦

ℎ 𝑟ℎ = (𝑙 + 𝑡)𝜎𝑦𝑦
0 (6.3)

6.1.3. Constitutive relation

The brick unit, head and bed joint are still assumed to be elastic materials in the damage model, the
constitutive relations of which are the same as the ones proposed in chapter 5, see equations (5.19) to (5.21).

Figure 6-3 simplifications of cross joint

𝜎𝑦𝑦
𝑐

𝜏𝑥𝑦
𝑢

𝜎𝑥𝑥
𝑢1

𝜎𝑦𝑦
0

𝜎𝑥𝑥
ℎ

𝜎𝑦𝑦
𝑢

𝜎𝑦𝑦
ℎ

𝜎𝑦𝑦
𝑏

𝜎𝑥𝑥
𝑏

𝜏𝑥𝑦
𝑏

𝜎𝑥𝑥
𝑢2

𝜎𝑥𝑥
𝑐

𝜎𝑦𝑦
0

51

According to Zucchini’s research in 2002 [30], the cross joint could be seen as two springs in horizontal and
vertical directions rather than only the horizontal one assumed in model 2, see figure 6-3. Therefore, the
equation (5.27) could be rewritten as:

𝜀𝑦𝑦
𝑐 =

𝐸ℎ
𝐸𝑐
𝜀𝑦𝑦
ℎ (6.4)

6.1.4. Equilibrium “damage” equations

The formulations for the damage variables of the brick unit, head and bed joints are the same as the previous
ones, see equation (4.5) in chapter 4 section 4.1 and (5.4) in chapter 5 section 5.1. Based on zucchini’s work
[20], the value of damage coefficient in the cross joint could be equal to the average value of that in the head
𝑑ℎ and bed joint 𝑑𝑏 when the horizontal stress in the cross joint is in compression direction (assumed
direction), otherwise this value still is calculated following the formulations proposed in model 2 with the cross
joint’s tensile stress 𝜎𝑥𝑥

𝑐 and strength 𝜎𝑡
𝑐, see equations (6.5) and (6.6).

𝑑𝑐 =

{

𝑑𝑏 + 𝑑ℎ

2
, 𝜎𝑥𝑥

𝑐 > 0

1 −
𝜎𝑡
𝑐

𝜎𝑐
exp [𝐴𝑡

𝑐 (1 −
𝜎𝑐

𝜎𝑡
𝑐)] , 𝜎𝑥𝑥

𝑐 ≤ 0
(6.5)

𝜎𝑐 = max{𝜎𝑥𝑥
𝑐 , 𝜎𝑡

𝑐} (6.6)

The internal stresses could be solved by known 𝜀𝑦𝑦
0 by equations (5.10) (5.12)(5.19) (5.20) (5.21) (5.24)

(5.30) (5.31) (5.34) (5.35) from chapter 5 and equations (6.1) to (6.4) from chapter 6. The material and
geometrical properties could be obtained from Zucchini’s work in 2007 [32], see table 6-1.

Table 6-1 Material and geometrical properties of basic cell [32]

Material properties

 𝐸 (N/mm2) 𝜈 𝜎𝑡 (𝑁/𝑚𝑚
2) 𝐺𝐼 (N/mm2mm) 𝜎𝑠 (N/mm

2) 𝐺𝐼𝐼 (N/mm2mm)

Mortar 1178 0.057 0.7 0.35 0.75 0.05

Brick unit 4865 0.094 3.7 1.9 - -

Geometrical properties

 ℎ (mm) 𝑙 (mm) 𝑡 (𝑚𝑚)
Basic cell 2 12 1

As a result, the homogenized strain-stress curve can be obtained by implementing the algorithm introduced
in chapter 5 section 5.1 figure 5-5 with the changed formulation of the cross-joint’s damage variable, see
equations (6.5) and (6.6).

This damage model only considers the elastic properties of components, which means all components could
only be damaged in shear and tension when shear or tensile cracks occur.

6.2. Elastoplastic phase

Based on the elastoplastic theory introduced in chapter 2 section 2.4, the function of the internal stresses,
including the inelastic behaviour, could be calculated by equation (2.35):

𝝈𝑛 = 𝝈0 +𝑫𝑒 ∆𝜺𝐴 +𝑫𝑒 (∆𝜺𝐵 −
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

𝒎𝑐) (2.35)

52 6. Model 3: vertical compression behaviour 6.2. Elastoplastic phase

According to figure 2-16 in chapter 2, this equation could be simplified as:

𝝈𝑖 = 𝑫𝑖,𝑒 (𝜺𝑖 − ∑
𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒∆𝜺𝑖

ℎ𝑖,𝑐 + 𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒𝒎𝑖,𝑐

𝒎𝑖,𝑐

𝑡=𝑡

𝑡=𝑚

) , 𝑖 = 𝑢, 𝑏, ℎ (6.7)

Where subscript “𝑢, 𝑏, ℎ” means the brick unit, bed joint and head joint respectively. The inelastic phase begins
from load step 𝑡 = 𝑚 and ∆𝜺𝑖 is the strain increment of each component at each load step.

𝝈𝑖 is the stress tensor and 𝜺𝑖 is strain tensor of each component at current step 𝑡, see equation (6.8).

𝝈𝑖 = [

𝜎𝑥𝑥
𝑖

𝜎𝑦𝑦
𝑖

𝜏𝑥𝑦
𝑖

] , 𝜺𝑖 = [

𝜀𝑥𝑥
𝑖

𝜀𝑦𝑦
𝑖

2𝜀𝑥𝑦
𝑖

] (6.8)

𝑫𝑖,𝑒 is elastic stiffness matrix and is defined as equation (6.9) shown based on continuum mechanics of plane

stress element:

𝑫𝑖,𝑒 =
𝐸𝑖

(1 + 𝜈𝑖)(1 − 2𝜈𝑖)
[

1 − 𝜈𝑖 𝜈𝑖 0
𝜈𝑖 1 − 𝜈𝑖 0

0 0
1 − 2𝜈𝑖
2

] (6.9)

Equation (6.7) could also be rewritten as:

𝜺𝑖 = 𝑫𝑖,𝑒
−1𝝈𝑖 + 𝜺𝑖,𝑝, 𝑖 = 𝑢, 𝑏, ℎ (6.10)

The elastic and elastoplastic properties of components in this model could be coupled by equation (6.10)
straight forward. The first part in equation (6.10) is contributed by the damage model proposed in chapter 6
section 6.1. The second part is the plastic strain tensor, which could be obtained by the formulations and
algorithm introduced in section 6.2.1.

6.2.1. Flow rule

Plastic strain tensor could be computed by equation (6.11) by:

𝜺𝑖,𝑝 = ∑ ∆𝜆𝑖,𝑐 𝒎𝑖,𝑐

𝑡=𝑡

𝑡=𝑚

= ∑
𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒∆𝜺𝑖

ℎ𝑖,𝑐 + 𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒𝒎𝑖,𝑐

 𝒎𝑖,𝑐

𝑡=𝑡

𝑡=𝑚

(6.11)

Where ∆𝜆𝑖,𝑐 is the plastic multiplier, 𝒏𝑖,𝑐
𝑇 and 𝒎𝑖,𝑐 are the direction of yield function and protentional energy of

each component at critical stress point located on the yield surface:

𝒏𝑖,𝑐 =

[

𝜕𝑓𝑖

𝜕𝜎𝑥𝑥
𝑖
|
𝑐

𝜕𝑓𝑖

𝜕𝜎𝑦𝑦
𝑖
|

𝑐

𝜕𝑓𝑖

𝜕𝜏𝑥𝑦
𝑖
|

𝑐]

,𝒎𝑖,𝑐 =

[

𝜕𝑔𝑖

𝜕𝜎𝑥𝑥
𝑖
|
𝑐

𝜕𝑔𝑖

𝜕𝜎𝑦𝑦
𝑖
|

𝑐

𝜕𝑔𝑖

𝜕𝜏𝑥𝑦
𝑖
|

𝑐]

(6.12)

53

The function of Drucker-Prager yield criteria introduced in chapter 2 section 2.4.2 equation (2.9) and potential

 energy in the form of equation (2.22) in chapter 2 section 2.4.2 could be rewritten as equations (6.13) and
(6.14) shown when they are applied on the 4-node plane element:

𝑓𝑖 = √𝜎𝑥𝑥
𝑖 2

+ 𝜎𝑦𝑦
𝑖 2

+ 3𝜏𝑥𝑦
𝑖 2

− 𝜎𝑥𝑥
𝑖 𝜎𝑦𝑦

𝑖 +
2 sin𝜙𝑖
3 − sin𝜙𝑖

(𝜎𝑥𝑥
𝑖 + 𝜎𝑦𝑦

𝑖) −
6 𝑐𝑖 sin𝜙𝑖
3 − sin𝜙𝑖

(6.13)

𝑔𝑖 = √𝜎𝑥𝑥
𝑖 2

+ 𝜎𝑦𝑦
𝑖 2

+ 3𝜏𝑥𝑦
𝑖 2

− 𝜎𝑥𝑥
𝑖 𝜎𝑦𝑦

𝑖 +
3 sin𝜓𝑖
3 − sin𝜓𝑖

(𝜎𝑥𝑥
𝑖 + 𝜎𝑦𝑦

𝑖) −
6 𝑐𝑖 sin𝜓𝑖
3 − sin𝜓𝑖

(6.14)

Critical stress point of the given component could be obtained from the cross points of the elastic line and the

yield surface 𝑓𝑖 in stress space. It can be assumed that we have an elastic stress point (𝜎𝑥𝑥
𝑖𝑒 , 𝜎𝑦𝑦

𝑖𝑒 , 𝜏𝑥𝑦
𝑖𝑒) from the

damage model proposed in chapter 6 section 6.1 at the current load step, then the value of critical stress

point (𝜎𝑥𝑥
𝑖𝑐 , 𝜎𝑦𝑦

𝑖𝑐 , 𝜏𝑥𝑦
𝑖𝑐) could be found by an equation system:

{

𝜎𝑥𝑥
𝑖𝑒 ∙ 𝜎𝑦𝑦

𝑖 = 𝜎𝑦𝑦
𝑖𝑒 ∙ 𝜎𝑥𝑥

𝑖

𝜏𝑥𝑦
𝑖𝑒 ∙ 𝜎𝑦𝑦

𝑖 = 𝜎𝑦𝑦
𝑖𝑒 ∙ 𝜏𝑥𝑦

𝑖

𝑓𝑖 = 0

(6.17)

Value of hardening modulus ℎ𝑖,𝑐, defined in chapter 3 section 3.4 equation (3.1), depends on:

(1) Plastic multiplier ∆𝜆𝑖,𝑐;

(2) The slope of hardening diagram at critical stress point
𝜕𝑓𝑖

𝜕𝜅𝑖
|
𝑐
, see chapter 3 equations (3.5) (3.6);

(3) Hardening parameter ∆𝜅𝑖:

∆𝜅𝑖 = √
2

3
[(∆𝜀𝑥𝑥

𝑖𝑝
)
2
+ (∆𝜀𝑦𝑦

𝑖𝑝
)
2
+ (∆𝜀𝑥𝑦

𝑖𝑝
)
2
] (6.18)

∆𝜺𝑖,𝑝 = ∆𝜆𝑖,𝑐 𝒎𝑖,𝑐 = [

∆𝜀𝑥𝑥
𝑖𝑝

∆𝜀𝑦𝑦
𝑖𝑝

∆𝜀𝑥𝑦
𝑖𝑝

] (6.19)

6.2.2. Yield surface

The material and geometrical properties could be obtained from Zucchini’s work [32], as table 6-2 shown.

Table 6-2 material properties from Zucchini in 2007 [32]

Material properties Brick unit Mortar Geometry Brick unit Mortar
Young’s Modulus 𝐸 (MPa) 4865 1178

Height ℎ (mm)
(Half value only)

2 2 Poisson ratio 𝜈 0.094 0.057
Tension strength 𝜎𝑡 (𝑀𝑃𝑎) 3.7 0.7
Compression strength 𝜎𝑐 (MPa) 26.9 3.2

Length 𝑙 (mm)
(Half value only)

12 12
I fracture energy 𝐺𝐼 (N/mm) 1.9 0.35
Compressive fracture energy 𝐺𝑐 (N/mm) 29.8 6.43
Shear strength 𝜎𝑠 (MPa) - VAR
II fracture energy 𝐺𝐼𝐼 (𝑁/𝑚𝑚) - VAR

Thickness 𝑡 (mm)
(Half value only)

- 1 Friction angle 𝜙 (°) 10 10
Dilatancy angle 𝜓 (°) 5 5

54 6. Model 3: vertical compression behaviour 6.3. Algorithm

According to the assumption on the selection of internal stresses of components made in chapter 3 section

3.4, shear stresses of the brick unit 𝜏𝑥𝑦
𝑢 and the head joint 𝜏𝑥𝑦

ℎ should be equal to zero.

Figure 6-4 yield surface of the brick

unit

Figure 6-5 yield surface of the head

joint

Figure 6-6 representative yield surface of

the bed joint

Yield surfaces of the brick unit, head and bed joint could be drawn as figure 6-4 to 6-6 shown.

Notice that all of the yield surfaces are drawn at components’ ultimate limit state, and only the bed joint’s
shear stress is taken into account. The yield surface of the bed joint is a representative surface with only
positive values in all directions.

6.3. Algorithm

The formulation of model 3 can be found in figure 6-7. This algorithm could be implemented from a pure brick
unit material model to a composited unit cell consisting of the brick units and mortar joints.

Firstly, the homogenized cell can be assumed to consist of only the brick unit, and the elastoplastic behaviour
of this cell can be implemented the same as quasi-brittle-like material. In this case, the vertical strain of the

brick unit is equal to the homogenously distributed strain 𝜀𝑦𝑦
0 . The damaged stress of the brick unit 𝜎𝑦𝑦

𝑢 in

vertical direction should be equal to homogenized stress 𝜎𝑦𝑦
0 , while the horizontal stress of the brick unit 𝜎𝑥𝑥

𝑢

should be equal the macro stress as 𝜎𝑥𝑥
𝑢 = 𝜎𝑥𝑥

0 = 0.

Secondly, the material model considering only under ideal plasticity is implemented by assuming the value of
the hardening/softening modulus 𝑠𝑢 always to be equal to zero. The cohesion of the brick unit is a constant
in this case, and it could be computed by compressive strength 𝑓𝑐 and friction angle 𝜙, see equation (2.2𝑏)
in chapter 2 section 2.4.2. The value of the brick unit’s yield function can be computed by the damaged
internal stresses (elastic predictors) of the brick unit obtained from the “damage” equilibrium equations once
cohesion is obtained. Note that the “damage” equilibrium equations are derived by substituting the damaged
internal stresses for the undamaged stresses proposed based on the bricks’ elastic properties in the
compatibility equations. The damaged stresses are computed according to equation (5.1) shown.

Thirdly, the predicted stress point is indicated by the damaged internal stresses (elastic predictors). It is
considered to be located inside or on the yield surface if the yield surface’s value is negative or zero, which
means the bricks is elastically deforming. Then, the strain increment loop occurs, where the external strain
and stress increase linearly.

Fourthly, if the value is positive, the plastic deformation of the basic cell should be considered by introducing
a plastic strain tensor of the brick unit 𝜺𝑖,𝑝, with 𝑖 = 𝑢 here. To obtain the plastic correctors 𝜺𝑖,𝑝, the critical

stress point should be found following equation (6.17) in chapter 6 section 6.2.1 by the stress tensor 𝝈𝑖

55

computed from the damage model, see chapter 6 section 6.1. The directions of the yield surface 𝒎𝑖,𝑐 together

with potential energy 𝒏𝑖,𝑐
𝑇 at this critical stress point should then be calculated following equation (6.12).

Fifthly, the corrected stress 𝝈𝑖,𝑝 could be calculated by the value of elastic predictors 𝜺𝑖 from the damage

model, the plastic correctors 𝜺𝑖,𝑝 and the stiffness matrix 𝑫𝑢𝑒 of brick unit based on continuum mechanics

theory. The damage variable of the brick unit could be defined following the algorithm introduced in chapter
5 section 5.2, see figure 5-5, by the value of 𝝈𝑖,𝑝. That is the end of the “elastic or elastoplastic phase” loop

at the left hand of the algorithm displayed in figure 6-7.

Figure 6-7 Formulation of model 3 with an iterative algorithm

However, the hardening/softening modulus 𝑠𝑢 should vary following the hardening or softening processes,
and its value could also be relative to the value of cohesion. As 𝑠𝑢 could be seen as an input as well as an
output in this case. We could use a similar approach as the one introduced in model 2 to find the damage
variables, could also be adopted here to find 𝑠𝑢:

(1) Setting the variable as known one with the assumed value to calculate the output coefficient, indicated as
the plastic multiplier ∆𝜆𝑢𝑐 here;

(2) Then, re-calculating the variable with the value of output parameter computed in step 1;
(3) If the difference between the assumed and the recalculated values of the variable is smaller than the

assumed tolerance, then the assumed value is used in the next step. Otherwise, setting the recalculated
one as a new assumed value and repeating steps 1 to 3.

Begin

Initialization:

Strain 𝜀𝑦𝑦
0 = 0, 𝜺𝑖,𝑝 = 𝟎

Damage factor: 𝑑𝑖 = 0

Softening modulus: 𝑠𝑖,𝑐 = 0

Effective internal stress

𝜎𝑥𝑥
𝑖 and 𝜎𝑦𝑦

𝑖 and 𝜏𝑥𝑦
𝑖

Internal strains

𝜀𝑥𝑥
𝑖 and 𝜀𝑦𝑦

𝑖 and 𝜀𝑥𝑦
𝑖

Elastic predictor stress:

𝜎𝑥𝑥
𝑖𝑒 = 𝜎𝑥𝑥

𝑖 , 𝜎𝑦𝑦
𝑖𝑒 = 𝜎𝑦𝑦

𝑖

𝜏𝑥𝑦
𝑖𝑒 = 𝜏𝑥𝑦

𝑖

Elastic line:

With point (𝜎𝑥𝑥
𝑖𝑒 , 𝜎𝑦𝑦

𝑖𝑒 , 𝜏𝑥𝑦
𝑖𝑒)

𝑓𝐸(𝜎𝑥𝑥
𝑖 , 𝜎𝑦𝑦

𝑖 , 𝜏𝑥𝑦
𝑖) = 0

Critical stress point: (𝜎𝑥𝑥
𝑖𝑐 , 𝜎𝑦𝑦

𝑖𝑐 ,𝜎𝑦𝑦𝑖𝑐)

{
𝑓(𝜎𝑥𝑥𝑖 , 𝜎𝑦𝑦𝑖 , 𝜏𝑥𝑦𝑖) = 0

𝑓𝐸(𝜎𝑥𝑥𝑖 , 𝜎𝑦𝑦𝑖 , 𝜏𝑥𝑦𝑖) = 0

Reach yield surface?

𝑓(𝜎𝑥𝑥
𝑖𝑒 , 𝜎𝑦𝑦

𝑖𝑒 , 𝜏𝑥𝑦
𝑖𝑒) < 0

Yes

No

𝜀𝑦𝑦
0 = 𝜀𝑦𝑦

0 + ∆𝜀𝑦𝑦
0

Flow and yield direction:

𝒎𝑖,𝑐 =
𝜕𝑔𝑖
𝜕𝝈𝑖

|𝑐, 𝒏𝑖,𝑐 =
𝜕𝑓𝑖
𝜕𝝈𝑖

|𝑐

Plastic multiplier:

∆𝜆𝑖,𝑐 =
𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒∆𝜺𝑖

ℎ𝑖,𝑐 +𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒𝒎𝑖,𝑐

Recal. softening parameter

at critical surface

𝑠𝑖,𝑐 = −
1

∆𝜆𝑖,𝑐

𝜕𝑓𝑖
𝜕𝜅𝑖

Δ𝜅𝑖

Δ𝜅𝑖 = √2/3(Δ𝜺𝑖,𝑝)
𝑇Δ𝜺𝑖,𝑝

∆𝜺𝑖,𝑝 = ∆𝜆𝑖,𝑐 𝒎𝑖,𝑐 𝜅𝑖 = 𝑓𝑐(𝑐𝑖)

Convergency?

𝑎𝑏𝑠(𝑠𝑖,𝑐 − 𝑠𝑖) < 𝑇𝑂𝑅2
No

𝑠𝑖 = 𝑠𝑖,𝑐

Yes

Stress after corrected:

𝝈𝑖,𝑝 = 𝑫𝑖,𝑒(𝜺𝑖 − 𝜺𝑖,𝑝)

𝜺𝑖 is elastic strain tensor

𝜺𝑖,𝑝 = 𝜺𝑖,𝑝 + Δ𝜺𝑖,𝑝

Damage factor

verification process

56 6. Model 3: vertical compression behaviour 6.3. Algorithm

The recalculated value of 𝑠𝑢 is defined in equation (3.1) in chapter 3, computed by the plastic multiplier ∆𝜆𝑢𝑐,
hardening parameter 𝑘 (defined in chapter 3) and the slope of the hardening diagram 𝛼𝑓/𝛼𝑘. According to
the theories introduced in chapter 3 and chapter 6, the hardening/softening modulus 𝑠𝑢 could be implemented
in the algorithm, see the loop located on the right-hand side in figure 6-7. The MATLAB code could be found
in Appendix C, leading to results shown in figure 6-8 and 6-9.

Figure 6-8 strain-stress curve of the brick unit: the vertical

stress 𝜎𝑦𝑦
𝑢 vs, strain 𝜀𝑦𝑦

𝑢 of the brick unit

Figure 6-9 differences between ideal and real plasticity: the

vertical stress 𝜎𝑦𝑦
𝑢 vs, strain 𝜀𝑦𝑦

𝑢 of the brick unit

Finally, applying all of the upper steps in the damage model described in chapter 6 section 6.1. And then,
implementing the yield surface of the head and bed joints, see figure 6-5 and 6-6, in each component
respectively, with their different compressive strengths, friction and dilatancy angles.

4.87

0.031, 26.18

0

5

10

15

20

25

30

0 0.02 0.04 0.06 0.08

ve
rt

ic
al

 s
tr

es
s

σ
_y

y_
u

(u
n

it
: N

/m
m

2
)

vertical strain Ɛ_yy_u (mm/mm)

brick unit vertical strain-stress curve

0.03, 26.18

0.004, 19.46

0

5

10

15

20

25

30

0 0.02 0.04 0.06 0.08
ve

rt
ic

al
 s

tr
es

s
σ

_y
y_

u
(u

n
it

: N
/m

m
2

)
vertical strain Ɛ_yy_u (mm/mm)

brick unit vertical stress-strain curve

with bi-parabolic
hardening law

without hardening

57

7. Model 4: coupled behaviour
This final model includes all the failure modes of masonry described in section 2.1, namely tension, shear
and compression. The mechanical behaviour of masonry is described by means of a newly developed
algorithm. Concepts of this chapter are:

(1) Definition of the equations of compatibility of the deformed cell;
(2) Description of the algorithm defined to compute the stresses acting on the cell;
(3) Graphical representation of the stress-strain uniaxial relationships in tension, compression and shear.

7.1. Transverse strains

The transverse strains 𝜀𝑥𝑥,𝑦
0 and 𝜀𝑦𝑦,𝑥

0 are introduced in chapter 3 section 3.5 in the x- and y-direction,

respectively. They are relative to internal strains obtained from models 2 and 3 by equations (7.1) and (7.3):

𝜀𝑥𝑥,2
𝑢 ∙ 𝑙 + 𝜀𝑥𝑥,2

ℎ ∙ 𝑡 = 𝜀𝑥𝑥,𝑦
0 ∙ (𝑙 + 𝑡) (7.1)

𝜀𝑦𝑦,2
𝑐 ∙ 2𝑡 + 𝜀𝑦𝑦,2

ℎ ∙ ℎ + 𝜀𝑦𝑦,2
𝑢 ∙ ℎ = 𝜀𝑦𝑦

0 ∙ 2(ℎ + 𝑡) (7.2)

Where 𝜀𝑥𝑥,2
𝑖 , 𝑖 = 𝑢, ℎ are the horizontal strains of the brick unit and the head joint obtained from chapter 5 by

adding a new equation (7.2) and 𝜀𝑦𝑦,2
𝑖 , 𝑖 = 𝑢, ℎ, 𝑐 are the vertical strains of the brick unit, the head and the

cross joint obtained from chapter 5. The homogenized strain 𝜀𝑦𝑦
0 is caused by vertical loading.

𝜀𝑦𝑦,3
𝑐 ∙ 2𝑡 + 𝜀𝑦𝑦,3

ℎ ∙ ℎ + 𝜀𝑦𝑦,3
𝑢 ∙ ℎ = 𝜀𝑦𝑦,𝑥

0 ∙ 2(ℎ + 𝑡) (7.3)

𝜀𝑥𝑥,3
𝑢 ∙ 𝑙 + 𝜀𝑥𝑥,3

ℎ ∙ 𝑡 = 𝜀𝑥𝑥
0 ∙ (𝑙 + 𝑡) (7.4)

Similarly, 𝜀𝑦𝑦,3
𝑖 , 𝑖 = 𝑢, ℎ, 𝑐 are the vertical strains of the brick units, the head and the cross joint obtained from

chapter 6 and 𝜀𝑥𝑥,3
𝑖 , 𝑖 = 𝑢, ℎ are the horizontal strains of the brick unit and the head joint. The macro strain 𝜀𝑥𝑥

0

is caused by horizontal loading.

7.2. Algorithm

We can distinguish if “diagonal tensile cracking” failure mode, caused by combined shear and vertical

compressive loading, occurs or not by determining the magnitude of vertical strain 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 . If the value of

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 was the positive number or zero, then “shear sliding” failure mode occurs, see figure 2-1 (b) in chapter

2. While “diagonal tensile cracking” failure mode assumed in chapter 3 occurs if the value of 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 was a

negative number, see figure 2-1 (d). Based on these ideas, the formulation of model 4 could be derived as

figure 7-1 shown. First, the initial homogenized strains 𝜀𝑥𝑥
0 , 𝜀𝑦𝑦

0 and 𝜀𝑥𝑦
0 together with the damage variables of

components for macro constitutive law in shear 𝑑𝑖
𝑥𝑦

, horizontal 𝑑𝑖
𝑥 and vertical direction 𝑑𝑖

𝑦
(𝑖 = 𝑢, 𝑏, 𝑐, ℎ) are

supposed to be zero. After that, total strains 𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 and 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙

0 could be computed by equations proposed

in chapter 3 and chapter 7. The values of these strains could be positive or negative numbers. Therefore, the
strains’ magnitudes should be determined by a so-called “in tension?” judgement described in the left loop in

figure 7-1. If 𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0, the horizontal loading is set to be the tensile one. Then, the “horizontal tensile

cracking” failure mode proposed in model 2 occurs (see figure 2-1 (c)), and the homogenized constitutive
model in horizontal direction could be obtained by implementing the algorithm derived in figure 5-5. Otherwise,

the horizontal stress 𝜎𝑥𝑥
0 is assumed to be zero as the horizontal loading is set to be the compressive one.

If 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0, the vertical loading is set to be tensile one. Then, the “joint tensile cracking” failure mode

occurs, as figure 2-1 (a) shown in chapter 2. As the vertical tension stresses of the bed joint and other
components could be obtained by implementing the algorithm derived in model 3, the damage variables of
components could be computed by the exponential relation of damage coefficients and internal stresses (see

58 7. Model 4: coupled behaviour 7.2. Algorithm

equation (5.6)). As a result, the constitutive model in the vertical direction could be obtained. Meanwhile, the

“shear sliding” failure mode occurs if there is shear loading when 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0, see figure 2-1 (b). In this case,

the macro shear stress 𝜏𝑥𝑦
0 could be computed by implementing the simple algorithm described in chapter 4.

If 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 < 0 , the vertical loading is set to be a compressive one. Then, the “crushing” failure mode

introduced in model 3 occurs if there is no shear loading (see figure 2-1 (e)). In this case, the constitutive
model in the vertical direction could be built up by implementing the algorithm derived in figure 6-8 chapter 6.

Note that the homogenized stress 𝜎𝑦𝑦
0 should be negative in this case.

Figure 7-1 formulation of model 4 with an iterative algorithm

If there is shear loading, a “diagonal tensile cracking” failure pattern, see figure 2-1 (d), introduced in chapter

3 would occur. In this case, the internal shear stress caused by the external shear strain 𝜀𝑥𝑦
0 could be obtained

by equation (4.22) in chapter 4. The damage variable relative to this internal stress could be computed by
setting the shear strength of the bed joint to be the cohesion of the head joint 𝐶𝐻, see equation (4.5) in chapter

4. The homogenized stress in shear direction 𝜏𝑥𝑦
0 could be computed once the damage variable, as well as

the internal stress 𝜏𝑥𝑦
𝑏 , is obtained by:

𝜏𝑥𝑦
0 = (1 − 𝑑)𝜏𝑥𝑦

𝑏 − 𝜎𝑦𝑦
0 tan(𝜙) (7.5)

The cohesion of the head joint 𝐶𝐻 and macro stress 𝜎𝑦𝑦
0 could be computed from the previous step.

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0

Homogenized stress

Vertical 𝜎𝑦𝑦
0 = −𝜎𝑦𝑦,3

0

Cohesion in head joint 𝐶𝐻

In tension?

𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0

Begin

Initialization:

Homogenized strains:

𝜀𝑥𝑥
0 = 0, 𝜀𝑦𝑦

0 = 0, 𝜀𝑥𝑦
0 = 0

Damage factors: 𝑖 = 𝑢, 𝑏, ℎ, 𝑐

𝑑𝑖
𝑦
= 0 (for vertical behaviour)

𝑑𝑖
𝑥 = 0 (for horizontal behaviour)

𝑑𝑖
𝑥𝑦
= 0 (for shear behaviour)

Total homogenized strains

𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 = 𝜀𝑥𝑥

0 + 𝜀𝑥𝑥,𝑦
0

Corresponding strain

Equation

𝜀𝑥𝑥,𝑦
0 = 𝑓𝑥𝑥0𝑦(𝜀𝑦𝑦

0)

Equation

𝜀𝑦𝑦,𝑥
0 = 𝑓𝑦𝑦0𝑥(𝜀𝑥𝑥

0)

Total homogenized strains

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 = 𝜀𝑦𝑦

0 + 𝜀𝑦𝑦,𝑥
0

In tension?

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0

Model 3 algorithm: 𝜎𝑦𝑦,3
0

figure 6-8 (chapter 6)

Yes

No

−𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0

Damage factor

verification process

Internal shear stress:

Equation (4.22)
Damage factor:

Equation (4.5) 𝜎𝑠 = 𝐶𝐻

Homogenized stress:

𝜏𝑥𝑦
0 = (1 − 𝑑)𝜏𝑥𝑦

𝑏 − 𝜎𝑦𝑦
0 tan (𝜙)

Yes

Model 2 algorithm: 𝜎𝑥𝑥,2
0

figure 5-5 (chapter 5)

Homogenized stress

Horizontal 𝜎𝑥𝑥
0 = 𝜎𝑥𝑥,2

0

Components are damaged

in vertical tension

(Failure pattern (a) in

figure 2-1 chapter 2)

Homogenized stress

Shear 𝜏𝑥𝑦
0 = (1 − 𝑑)𝜏𝑥𝑦

𝑏

Chapter 4 Model I

Simple algorithm

No Homogenized stress

Horizontal 𝜎𝑥𝑥
0 = 0

load loop:

𝜀𝑥𝑥
0 = 𝜀𝑥𝑥

0 + Δ𝜀𝑥𝑥
0

𝜀𝑦𝑦
0 = 𝜀𝑦𝑦

0 + Δ𝜀𝑦𝑦
0

𝜀𝑥𝑦
0 = 𝜀𝑥𝑦

0 + Δ𝜀𝑥𝑦
0

59

8. Implementations and comparisons
In this chapter, the material models proposed in chapters 4 to 7 are implemented in MATLAB to find the
analytical solutions of the macro constitutive laws. Furthermore, results computed by MATLAB could be used
to discover if the algorithms introduced in chapters 4 to 7 and assumptions made in chapter 3 are implemented
successfully in the material models.

The validities of the material models stated in chapter 4 for shear behaviour and 5 for horizontal tensile
behaviour are then assessed by modelling the single element models in DIANA FEA using user-supplied
subroutines. Furthermore, the sensitivity of the material model described in chapter 4 is assessed by changing
its material properties.

Finally, the homogenized material model for coupled behaviour introduced in chapter 7 is assessed by
comparing the experimental results and the analytical results. The analytical results are obtained by applying
material and geometrical properties and the loading condition from the experimental data in model 4.

8.1. Validations of the implementations

In this section, models 1 to 4 are implemented in MATLAB. Furthermore, the validations of the algorithms and
the analytical solutions of the macro constitutive laws are discussed.

Furthermore, the single element model is firstly built up in DIANA FEA 10.3. The 4-noded plane stress element
with one integration point is selected, and the size is set to be 50 × 50 −mm. Additionally, the homogenized
stress-strain curve in shear or horizontal tension is obtained by setting different boundary conditions in this
per element model with dcf. File (analysis file, see Appendix F) and dll. File showing the constitutive laws of
the material models.

8.1.1. Model 1: shear behaviour

Analytical solution

The parameter 𝐴𝑠 introduced in eq. (4.8) in chapter 4 and described in [31] should always be positive.
Therefore, the maximum size of the element used in finite element mesh could be obtained by making the
function of 𝐴𝑠 being equal to zero. The basic unit cell's assumed material and geometrical properties are
introduced, as table 8-1 shows.

Table 8-1 Material and geometrical properties of basic cell

Material properties

 𝐸 (N/mm2) 𝜈 𝜎𝑡 (N/mm
2) 𝐺𝐼 (N/mm2mm) 𝜎𝑠 (N/mm

2) 𝐺𝐼𝐼 (N/mm2mm)

Mortar 1000 0.2 0.5 0.01 0.75 0.05

Brick unit 5000 0.2 1.3 0.01 - -

Geometrical properties

 ℎ (mm) 𝑙 (mm) 𝑡 (𝑚𝑚)
Basic cell 2 12 1

Shear modulus 𝐺 of the bed joint can be calculated as:

𝐺 =
𝐸

2(1 + 𝜈)
= 416.67 N/mm2

Parameter 𝐴𝑠 should always be positive with 𝑙𝑠 = 𝐻:

60 8. Implementations and comparisons 8.1. Validations of the implementations

(
𝐺𝐼𝐼𝐺

𝐻𝜎𝑠
2 −

1

2
) > 0

Therefore, 𝐻 should be:

𝐻 <
2𝐺𝐼𝐼𝐺

𝜎𝑠
2 = 74 mm

The maximum element size should be 74 mm.

The analytical solution could be found from the codes implied in MATLAB and the major codes are:

% outer loop: strain increment
for i = 1:300
 gama = gama + 0.00001;
 % inner loop: verification of damage factor
 while d < 1
 % shear stress in bed joint:
 tau_b = G*gama*3;
 tau = max(tau_b,sig_s);
 % smeared cracking model
 % characteristic length of element: element size
 l_s = H;
 % A_s must be positive, check maximum mesh size: H < 74
 A_s = (((G_II*G)/(l_s*sig_s^2))-(1/2))^(-1);
 % calculate damage factor from stress
 d_b = 1-sig_s*exp(A_s*(1-(tau/sig_s)))/tau;
 if d_b <= 0
 break;
 end
 if abs(d_b-d) < T
 break
 end
 d = d_b;
 end
 % total damaged stress of cell
 tau_b_d = (1-d)*gama*G*3;

Where “𝑔𝑎𝑚𝑎” represents 𝛾0 in eq. (4.22)
and “𝑑_𝑏” is the damage factor from eq.
(4.5). while “𝑡𝑎𝑢_𝑏_𝑑” is the damaged shear

stress, being representative as 𝜏0 in eq.
(4.23), see chapter 4.

The value of tolerance 𝑇 between 𝑑𝑡 and

𝑑𝑡+1 is introduced here. Let’s assume that
if the absolute value of the difference
between 𝑑𝑡 and 𝑑𝑡+1 is smaller than the
scalar value of tolerance 𝑇 , the value of
damage factor would not change from time
𝑡 to 𝑡 + 1.

The effects on the stress-strain curve
caused by the values of element size 𝐻 and

tolerance 𝑇 could be easily seen from
figures 8-1 and 8-2.

Figure 8-1 indicates that the element size of the numerical model has effects on the softening process of the
material model.

Figure 8-1 Influences of element size: homogenized shear

stress 𝜏𝑥𝑦
0 versus macro strain 𝛾𝑥𝑦

0

Figure 8-2 Influences of tolerance: homogenized shear

stress 𝜏𝑥𝑦
0 versus macro strain 𝛾𝑥𝑦

0

0.0006, 0.75

0

0.2

0.4

0.6

0.8

0 0.002 0.004 0.006 0.008 0.01

Sh
ea

r
st

re
ss

 τ
(u

n
it

: N
/m

m
2

)

shear strain γ (unit: mm/mm)

Element size influence (T=0.00001)

H=10

H=70

H=50

0.75

0.0009,
0.093986404

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.001 0.002 0.003

Sh
ea

r
st

re
ss

 τ
(u

n
it

: N
/m

m
2

)

shear strain γ (unit: mm/mm)

Tolerance effects (H=50)

T<0.1

T<0.05

T<0.01

T<0.001

T<0.00001

61

The area of the strain-stress curve should be the correlated special II fracture energy 𝑔𝐼𝐼 = 𝐺𝐼𝐼/𝑙𝑠 in this model.
The 𝑙𝑠 is the characteristic length, equal to the element size ℎ as the smeared crack model is applied.

As shown in figure 8-2, the damaged shear stress of the homogenized cell grows up until it reaches the
material strength. However, the value of the stress does not drop down to zero if the tolerance is large, which
leads to errors occurring. For instance, if the tolerance is assumed to be 0.1 and the value damage state
variable 𝑑𝑏 tend to be greater than 0.9 at the current load step, the Interpolation of the value at the current

step and the next step would never be greater than 0.1 as the damage factor has a range value of 0 ≤ 𝑑𝑏 ≤
1. As a result, the damage factor remains the number around 0.9, which leads to residual stiffness.

Therefore, the suitable values of the tolerance and the element size become essential to reduce the errors.
Based on the results shown in figure 8-1 and 8-2, the element size 𝐻 = 50 mm and the tolerance 𝑇 = 0.00001
are adopted in this work. With the suitable strain increment of ∆𝜀0 = 0.0001, the analytical result of model 1
can be got as figure 8-3 shown.

Figure 8-3 Analytical result from MATLAB: homogenized shear stress 𝜏𝑥𝑦

0 versus macro strain 𝛾𝑥𝑦
0

Verification of shear modulus:

(1) Shear modulus of basic cell in figure 8-3:

𝐺0,𝑚𝑜𝑑𝑒𝑙1 =
0.75

0.0006
= 1250 N/mm2

(2) Initial value of shear modulus of basic cell:

𝐺0 =
𝜕 𝜏0

𝜕 𝛾0
=
ℎ + 𝑡

𝑡
(1 − 𝑑)𝐺𝑥𝑦

𝑏

At elastic state, 𝑑 should always be equal to zero.

𝐺0 =
ℎ + 𝑡

𝑡
𝐺𝑥𝑦
𝑏 = 3𝐺𝑥𝑦

𝑏 = 1250 𝑁/𝑚𝑚2

Then we can quickly get: 𝐺0,𝑚𝑜𝑑𝑒𝑙1 = 𝐺0

Verification of fracture energy:

(1) Second fracture energy of basic cell in figure 8-3:

0.0006, 0.75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.0005 0.001 0.0015 0.002

sh
ea

r
st

re
ss

 τ
(u

n
it

: N
/m

m
2

)

shear strain γ (unit: mm/mm)

Damage model 1: pure shear loading

∑0.0001𝜏𝑑, 𝑖

300

6

𝐺0

𝐺𝑓
𝐼𝐼/𝐻

62 8. Implementations and comparisons 8.1. Validations of the implementations

𝐺0, 𝑚𝑜𝑑𝑒𝑙1
𝐼𝐼 = (

1

2
× 0.75 × 0.0006 +∑0.0001𝜏𝑑, 𝑖

300

6

) × 50 = 0.015 N/mm2mm

(2) Initial value of second fracture energy of the basic cell:

𝐺𝐼𝐼 =
1

2
𝜎𝑠𝛾𝑏𝐻 =

1

2

ℎ + 𝑡

𝑡
𝜎𝑠𝛾0𝐻 =

3

2
𝜎𝑠𝛾0𝐻

𝐺0
𝐼𝐼 =

1

2
𝜎𝑠𝛾0𝐻 =

1

3
𝐺𝐼𝐼 = 0.017 N/mm2mm

Then we can get the ratio of 𝐺0, 𝑚𝑜𝑑𝑒𝑙1
𝐼𝐼 and 𝐺0

𝐼𝐼 and the error of the analytical result as:

𝑅𝑎𝑡𝑖𝑜 =
𝐺0, 𝑚𝑜𝑑𝑒𝑙1
𝐼𝐼

𝐺0
𝐼𝐼 = 0.88, 𝐸𝑟𝑟𝑜𝑟 =

𝐺0,𝑚𝑜𝑑𝑒𝑙1
𝐼𝐼 − 𝐺0

𝐼𝐼

𝐺0
𝐼𝐼 = 11.8%

Therefore, this analytical solution of model 1 can be acceptable.

Implement in Fortran code

The algorithm introduced in section 4.2 is implemented by Fortran 77 in this part as User-supplied material
(USRMAT) subroutine in Diana 10.3 FEA and then would be modelled by 2D plane stress element as a “single
element model”. The stresses of the components could be calculated at every step by this file. Therefore, this
procedure would be essential to determine the reliability of the material model applied in finite element
analysis introduced in model 1.

! CALCULATE OF DAMAGED PARAMETERS
 H = RATIO*T
 LS = HH
 AS = (((GII*G)/(LS*SIGS**2.0D0))-(1.0D0/2.0D0))**(-1.0D0)
C
! DEFINATION OF SHEAR STRAIN
 GAMA = EPS0(3)+DEPS(3)
C
! INNER LOOP: CHECK DAMAGE FACTOR
 DO 30, WHILE(D .LT. 1.0D0)
 TAUBC = TAUB(GAMA,G,H,T,GAMAB)
 TAU = MAX(TAUBC,SIGS)
 DBC = DB(TAU,SIGS,AS)
C
! DAMAGE FACTOR FROM STRESS CAL.
 IF (DBC .LE. 0.0D0) THEN
 EXIT
 END IF
 TC = ABS(DBC-D)
 IF (TC .LT. TOR) THEN
 EXIT
 END IF
C
! FINAL DAMAGE FACTOR
 D = DBC
30 CONTINUE
C
! DAMAGED STRESS AND DAMGED STIFFNESS
 TAUBD = (1.0D0-D)*TAUBC

 TAUD = TAUBD
 SIG(3) = TAUD
 STIFF(3,3) = (1.0D0-D)*G
C
! STORE OUTPU BY USRSTA MATRIX
 USRSTA(1) = D
 END SUBROUTINE USRMAT
C
C SUBPROGRAM: EQUILIBRIUM EQUATIONS OF SYSTEM
 REAL FUNCTION TAUB(GAMA,G,H,T,GAMAB)
 IMPLICIT NONE
 REAL, INTENT(IN)::GAMA
 REAL ::H, T, GAMAB, G
! H IS HALF OF UNIT HEIGHT
! T IS HALF HEIGHT OF JOINT THICKNESS
 GAMAB = (H+T)*GAMA/T
 TAUB = GAMAB*G
 RETURN
 END FUNCTION TAUB
C
C SUBPROGRAM: DAMAGE FACTOR CAL.
 REAL FUNCTION DB(TAU,SIGS,AS)
 IMPLICIT NONE
 REAL, INTENT(IN)::TAU
 REAL ::SIGS,AS
 DB = 1.0D0-SIGS*EXP(AS*(1.0D0-(TAU/SIGS)))/TAU
 RETURN
 END FUNCTION DB

The parameters used to describe the material and geometrical properties of the material model should be
categorised as “USRSTA” or “USRVAL”. The damage factor 𝑑 is set to be the user state variable “USRSTA”,
the value of which could be stored every step and could be seen as an input as well as an output coefficient.
“USRVAL” is used to set up user parameters, which acts as the unchangeable input parameter. The user
parameters could be concluded as:

63

(1) Shear fracture energy – GII
(2) The ratio of brick height and joint thickness – RATIO
(3) Tolerance of damage factor – TOR
(4) Element size – HH
(5) Shear strength – SIGS
(6) Shear stiffness – G

The principal Fortran codes can be found above.

According to the “2D plane stress element” described in Diana FEA documentation [40], the external shear
stress should be SIG(3), and the strain should be EPS(3), and DEPS(3) should be strain increment.

Using the main program to calculate the external stress of basic cell 𝜏0, the subprogram to find the stress of
the proposed component and the damage factors computed by eq. (4.5), see chapter 4.

The shear behaviour of the homogenized material model could be obtained by adding uniformly distributed
stress in the shear direction in the single element model, see figure 8-1. The horizontal displacement contour
could be viewed as figure 8-2 shown.

Figure 8-4 Per element model: shear

behaviour
Figure 8-5 Displacement contour of the model 1

The material and geometrical properties described in table 8-1 are used. The comparison of the analytical
results computed by MATLAB and the numerical results computed in DIANA FEA is shown in figure 8-6.

Figure 8-6 Comparison: shear stress 𝜏𝑥𝑦
0 versus strain 𝛾𝑥𝑦

0 from the analytical results and the homogenized material model 1

0.0006, 0.7500006

0

0.2

0.4

0.6

0.8

0 0.0005 0.001 0.0015

sh
ea

r
st

re
ss

 τ
(u

n
it

: N
/m

m
2

)

shear strain γ (unit: mm/mm)

Comparison: Analytical & Numerical Result

AnalyticalResult

NumericaResult

Node 1

Node 2

Node 4

Node 3

64 8. Implementations and comparisons 8.1. Validations of the implementations

As shown in figure 8-3, the numerical results are the same as the analytical ones, indicating the validity of
material model 1 in the single element model.

, the material parameters are set to be the new values to assess the sensitivity of the material model 1:

(1) The shear stiffness of the bed joint changes from 𝐺 = 416.67 N/mm to 𝐺 = 1300 N/mm, see figure 8-7.

(2) The shear strength of the bed joint changes from 𝜎𝑠
𝑏 = 0.75 N/mm2 to 𝜎𝑠

𝑏 = 0.15 N/mm2, see figure 8-8.

Figure 8-7 Different shear stiffness of the bed joint: shear

stress 𝜏𝑥𝑦
0 vs shear strain 𝛾𝑥𝑦

0

Figure 8-8 Different shear strength of the bed joint: shear

stress 𝜏𝑥𝑦
0 vs shear strain 𝛾𝑥𝑦

0

The ultimate limit state strain should become larger if only shear stiffness is reduced, and the area of the
strain-stress curve should not be changed. As figure 8-7 shown, model 1 implemented in Diana FEA 10.3
could still be used if the shear stiffness of the bed joint is changed.

Similarly, the ultimate limit state strain should be smaller if only the material's shear strength is reduced, and
the area of the strain-stress curve should not be changed. As figure 8-8 shown, model 1 implemented in
Diana FEA 10.3 could still be used if the shear strength of the bed joint is changed.

8.1.2. Model 2: horizontal tensile behaviour

Analytical solution

According to the algorithm introduced in figure 5-5, damage variables 𝑟𝑖 (𝑖 = ℎ, 𝑢, 𝑐, 𝑏) are related to internal

stresses 𝜎𝑥𝑥
ℎ , �̅�𝑥𝑥

𝑢 , 𝜎𝑥𝑥
𝑐 and 𝜏𝑥𝑦

𝑏 solved by “damage” equilibrium equations of system in the format as:

𝜎𝑥𝑥
𝑖 = 𝑓𝑠𝑖𝑔𝑥𝑥𝑖(𝑟𝑢, 𝑟ℎ, 𝑟𝑐 , 𝑟𝑏 , 𝜀𝑥𝑥

0), 𝑖 = ℎ, 𝑢, 𝑐 (8.1)

𝜏𝑥𝑦
𝑏 = 𝑓𝑡𝑎𝑢𝑥𝑦𝑏(𝑟𝑢, 𝑟ℎ , 𝑟𝑐 , 𝑟𝑏 , 𝜀𝑥𝑥

0) (8.2)

Expressions of internal and external stress can be first be solved by Maple as a result in the format as eq.
(8.1) and (8.2) shown, and we can derive them into MATLAB code to determine the analytical solution of
damage model 2.

To simplify the expressions, coefficients 𝐶1, 𝐶2 and 𝐶3 are introduced here:

0.00019, 0.741

0.0006, 0.7500006

0

0.2

0.4

0.6

0.8

0 0.0005 0.001 0.0015 0.002

sh
ea

r
st

re
ss

τ
(u

n
it

: N
/m

m
2

)

shear strain γ (unit: mm/mm)

Different Shear Stiffness G

G=1300N/mm
G=416.67N/mm

0.00012, 0.15

0.0006, 0.75

0.00153, 0.00

0.00

0.20

0.40

0.60

0.80

0 0.001 0.002 0.003

sh
ea

r
st

re
ss

 τ
(u

n
it

: N
/m

m
2

)

shear strain γ (unit: mm/mm)

Different Shear Strength SIGS

SIGS=0.15N/mm2

SIGS=0.75N/mm2

65

𝐸ℎ = 𝐸𝑏 = 𝐸𝑐 = 𝐸, 𝐸𝑢 = 𝐶1 ∙ 𝐸 (8.3)

𝑙 = 𝐶2 ∙ 𝑡, ℎ = 𝐶3 ∙ 𝑡 (8.4)

Where 𝐸ℎ , 𝐸𝑏 and 𝐸𝑐 are young’s modulus of the mortar joint, 𝐸𝑢 is young’s modulus of the brick unit.

Geometrical and material properties of components can be found in chapter 5, table 2.1-1. Parameter 𝐴𝑠, 𝐴𝑡
introduced in eq. (4.5) and (5.4) should always be positive. Therefore, the maximum size of the element used
in finite element mesh should be satisfied as:

(1) Calculated from 𝐴𝑡𝑚 (Parameter of the mortar joint in tension): 𝐻 < 80 mm
(2) Calculated from 𝐴𝑡𝑢 (Parameter of the brick unit in tension): 𝐻 < 59 mm

(3) Calculated from 𝐴𝑠𝑚 (Parameter of the bed joint in shear): 𝐻 < 74 mm

Therefore, the maximum element size of model 2 should be 59 𝑚𝑚. Let’s set 𝐻 = 50 mm here. The MATLAB
code in model 2 can be found in Appendix A. Results could be found in figure 8-9.

Figure 8-9 Model 2: internal damaged and homogenized stresses -external strain 𝜀𝑦𝑦
0 curve

 brick unit bed joint cross joint head joint

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green),
“b” means bed joint (orange)

It can be seen that the head joint (shown in blue dashed line) will fail in tension at point 1 as its damaged

tension stress “𝑠𝑖𝑔𝑥𝑥ℎ” reach its strength of 0.5 𝑁/mm2. However, this localized damage does not have many
effects on the macro stiffness of the homogenized cell. The brick unit and cross joint can still expand
horizontally, while the bed joint is still moving in shear and horizontal tension direction.

The macro-stress has been increasing until reaching point 2. Vertical crack caused by tension behaviour in

brick unit occurs with the value of the brick unit’s tension strength being equal to 1.3 N/mm2, see the red long-
dash-dotted line.

1.00

0.4805

1.2864

0.5000

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00000 0.00010 0.00020 0.00030 0.00040 0.00050 0.00060

H
o

ri
zo

n
ta

l s
tr

es
s

(u
n

it
: N

/m
m

2
)

Externally horizantal strain Ɛ_xx_0 (unit: mm/mm)

Coupled homogenized model: fail by tension

basic: strain-stress curve

Damaged stress σ_xx_h
Damaged stress σ_xx_u
Damaged stress σ_xx_c
Damaged stress τ_xy_b

1

2

3

66 8. Implementations and comparisons 8.1. Validations of the implementations

At this stage, shear stress in the bed joint drops down to zero suddenly as the brick unit is damaged as the
grey line shown, while the cross joint maintains moving and expanding laterally until point 3, see the green
dotted line. As a result, the homogenized cell is damaged after point 3.

Implement in Fortran code

The Fortran codes could be found in Appendix A.

Figure 8-10 Per element model: horizontal

tensile behaviour

Figure 8-11 Displacement contour of the model 2

The horizontal tensile behaviour of the homogenized model introduced in chapter 5 can be obtained once
the uniformly distributed stress in horizontal tension is loaded at the side boundaries of the single element
model, see figure 8-6. Meanwhile, the horizontal displacement contour could be seen from figure 8-12.

Figure 8-12 Comparison: horizontal stress 𝜎𝑦𝑦

0 vs strain 𝜀𝑦𝑦
0 from the analytical results and the homogenized material model 2

The material and geometrical properties of model 2 are set to be the same as that of model 1, see table 8-1.
The comparison of the analytical results computed by MATLAB and the numerical results given by the
analysis solution from DIANA FEA could be seen in figure 8-13.

0.000166

0.000168

0.000434,
1.01024711

0.000436

0.0005

0

0.4

0.8

1.2

0.00E+00 1.00E-04 2.00E-04 3.00E-04 4.00E-04 5.00E-04 6.00E-04

H
o

ri
zo

n
ta

l s
tr

es
s
σ

_x
x_

0
 (

u
n

it
:

N
/m

m
2

)

horizontal strain Ɛ_xx_0 (unit: mm/mm)

Comparation: analytical & numerical result

numerical results

analytical results

Node 1

Node 2

Node 4

Node 3

67

As shown in figure 8-13, the numerical results are similar to the analytical ones, indicating the validity of
material model 2 in the single element model. The slight differences between the analytical results and
numerical results may be caused by different strain increment set in MATLAB and DIANA FEA.

8.1.3. Model 3: vertical compression behaviour

Analytical results

MATLAB Code could be found in Appendix D.

The material and geometrical properties of the unit cell are set as table 6-2 shown, see chapter 6 section 6.2.
The length of the element is set to be 10 mm. The tolerances assumed as the convergency conditions for
finding the relevant damage variables and the hardening/softening parameters are set to be 0.00001.

The shear stiffness of the bed joint is assumed to be a variable:

(1) Case 1: a large value to limit shear damage occurring in the basic cell, see figure 8-13 to 8-15;
(2) Case 2: a small one to make shear damage in the bed joint occurring before compressive crushing in

other components, see figure 8-18 to 8-20.

Case 1: a large shear stiffness of the bed joint

Figure 8-13 vertical compression behaviour of homogenized cell

without considering shear damage at interface of brick and bed

joint: 𝜎𝑦𝑦
0 vs the macro strain 𝜀𝑦𝑦

0

Figure 8-14 the internal stress of brick 𝜎𝑦𝑦
𝑢 vs. the

macro strain 𝜀𝑦𝑦
0

Figure 8-15 The value of yield function 𝑓𝑢 with

elastic predictors in the brick unit vs. 𝜀𝑦𝑦
0

As shown in Figures 8-13 and 8-15, the value of the brick unit’s yield function, assessed by the elastic
predictors of the brick unit from the damage model, changes from a negative to a positive number at point 1.

0.0028, 6.31

0.0153, 14.09

11.54

0.0102, 19.70

0.00

4.00

8.00

12.00

16.00

20.00

0 0.01 0.02 0.03 0.04 0.05

ve
rt

ic
al

 e
xt

er
n

al
 s

tr
es

s
σ

_y
y_

0
(N

/m
m

2
)

vertical external strain Ɛ_yy_0 (mm/mm)

homogenized cell: vertical compr. strain-stress
curve- large shear strength

with plastic model
without plastic model
Zucchini's Model

0.0029, 6.99

0.0152, 15.25

0.00

6.00

12.00

18.00

0 0.02 0.04

st
re

ss
: b

ri
ck

 σ
_y

y_
u

(N
/m

m
2
)

vertical strain Ɛ_yy_0 (mm/mm)

vertical stress of brick

0.0029, -0.16

-8.00

-4.00

0.00

4.00

8.00

0 0.005 0.01

yi
el

d
 f

u
n

ct
io

n
 o

f
b

ri
ck

 f
u

vertical strain Ɛ_yy_0 (mm/mm)

value of yield function

Properties:
GII = 20N/mm
SIGS = 20.75 MPa
element size:
HH = 10mm

Crushing in brick

2

1

2

Brick unit start
hardening

1

68 8. Implementations and comparisons 8.1. Validations of the implementations

That means plastic deformations occur in the brick unit from step 29.

After that, the brick unit deforms plastically until the vertical compression stress of the brick unit reaches its
maximum value at point 2, see figure 8-14. At the same time, vertical stress of the homogenized cell is

achieving its ultimate limit state, with the value of 14.09 N/mm2 and then drop to 11.54 N/mm2 as the
softening occurs in the basic unit cell. The brick unit is crushing during the post-peak phase, leading to fewer
contact areas between the brick unit and the bed joint. Therefore, the external strain should be transformed
to the bed joint directly as the brick unit cannot support load anymore. However, the bed joint is hard to be
damaged in shear at that time since its shear deformation depends on the brick unit’s and the head joint’s

horizontal deformations. As a result, the homogenized vertical stress maintains the value of 11.54 N/mm2.

The internal stress of the brick unit in the x-direction 𝜎𝑥𝑥
𝑢 is recorded at every load step to investigate that if

the split tensile stress was introduced successfully. As shown in figure 8-16, the horizontal stress of the brick
unit consists of two parts: the elastic part (long dash-dot line) and the inelastic part, generated from step 30.
The elastic part is produced by the elastic deformations of the brick unit in the x and y directions based on
the deformed mechanisms of the basic unit cell. After load step 30, the brick unit’s vertical compression stress
produced plastic deformations in the x and y directions, which is associated with the generation of the micro-
cracks. These plastic deformations lead to the inelastic stress of the brick unit in the horizontal direction.

Figure 8-16 horizontal tension stress of the brick unit 𝜎𝑥𝑥

𝑢

versus load step

Figure 8-17 energy of the basic cell versus load step

This inelastic tension stress could also be called split tensile stress, which is generated due to the
compressive splitting effects.

Furthermore, macro-energy of the basic cell per area could be computed to investigate if the splitting effects
are introduced successfully in the whole homogenized cell. Note that the energy of macro horizontal strain

𝜀𝑥𝑥𝑦
0 and vertical compressive stress 𝜎𝑦𝑦

0 should be recorded since the splitting effects on the lateral plastic

deformation is focused on in this model.

The total energy of the basic unit cell should be the triangle area of the strain-stress curve, which can be
computed by equation (8.5).

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
∙ 𝜀𝑥𝑥𝑦
0 ∙ 𝜎𝑦𝑦

0 (8.5)

𝜀𝑥𝑥𝑦
0 =

𝑙 ∙ 𝜀𝑥𝑥
𝑢 + 𝑡 ∙ 𝜀𝑥𝑥

ℎ

𝑙 + 𝑡
(8.6)

30, 0.32

91, 3.76

0

1

2

3

4

0 50 100 150 200

d
am

ag
ed

 s
tr

es
s

σ
_x

x_
u

(N
/m

m
2

)

load step

Internal stress of the brick unit

elastic stress

total stress

-0.20

0.00

0.20

0.40

0 200 400 600 800 1000

En
er

gy
 o

f
ce

ll
N

/m
m

2
)

load step

Macro energy through loading history

total energy

bulk energy

surface energy

1

69

𝜀𝑥𝑥𝑦
0 is the homogenized strain in the horizontal direction of the basic unit cell under vertical compressive

loading. It could be computed by the horizontal strains of the brick unit 𝜀𝑥𝑥
𝑢 and head joint 𝜀𝑥𝑥

ℎ . The horizontal

strains consist of the elastic ones 𝜀𝑥𝑥
𝑖𝑒 and the plastic ones 𝜀𝑥𝑥

𝑖𝑝
, see equation (8.7).

𝜀𝑥𝑥
𝑖 = 𝜀𝑥𝑥

𝑖𝑒 + 𝜀𝑥𝑥
𝑖𝑝
, 𝑖 = 𝑢, ℎ (8.7)

Let’s combine equations (8.7) and (8.6) as:

𝜀𝑥𝑥𝑦
0 = 𝜀𝑥𝑥𝑦

0𝑒 + 𝜀𝑥𝑥𝑦
0𝑝 (8.8)

𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
1

2
∙ 𝜀𝑥𝑥𝑦
0𝑒 ∙ 𝜎𝑦𝑦

0 , 𝜀𝑥𝑥𝑦
0𝑒 =

𝑙 ∙ 𝜀𝑥𝑥
𝑢𝑒 + 𝑡 ∙ 𝜀𝑥𝑥

ℎ𝑒

𝑙 + 𝑡
(8.9)

𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 (8.10)

Equation (8.8) to (8.10) indicate that the total energy should be composed of two components:

(1) The elastic potential energy (bulk energy) stored in the materials has elastic deformations under external
forces. This energy would disappear as the deformations tend to recover when the external forces are

removed. Therefore, we could use elastic strain 𝜀𝑥𝑥𝑦
0𝑒 to compute the bulk energy of the homogenized cell,

see equation (8.9);
(2) Surface energy is defined as the excess energy at the surface of the materials. The excess energy is the

residual part of the total and bulk energy, see equation (8.10). Furthermore, the surface energy should
be associated with the formation of micro-cracks by introducing elastoplastic behaviours in the materials.

As a result, figure 8-17 could be obtained. The surface energy of the homogenized cell has value, which
indicates the compressive splitting effects are introduced successfully in the whole cell.

Figure 8-18 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step: case 1

Damage state variables 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) of the component could be recorded at each load step, see
figure 8-18. The components are undamaged when 𝑟𝑖 = 1, while they are partially damaged when 0 < 𝑟𝑖 < 1
and damaged when 𝑟𝑖 = 0. Therefore, we can investigate each component's damage status with the value of
damages state variables at every load step.

As shown in figure 8-18, the head joint and the cross joint start being damaged from step 19 and then the
brick unit is damaged from step 91 due to the equivalent tension behaviour. However, the bed joint is not
damaged in shear through the whole load path as the shear stiffness of the bed joint is set to be extremely
large in this case. Note that the equivalent tension behaviour should include the one caused by deformed
mechanisms of the basic cell and the compressive splitting effects.

19 91

0

0.4

0.8

1.2

0 50 100 150 200 250 300 350 400

d
am

ag
e

st
at

e
va

ri
ab

le
s

load step

damage state variables of components through loading history

brick unit
head joint
bed joint
cross joint

70 8. Implementations and comparisons 8.1. Validations of the implementations

Case 2: a small shear stiffness of the bed joint

If the shear stiffness of the bed joint is small, which is closer to the reality of physical properties, the basic unit
cell would be damaged once the bed joint is damaged in shear at point 2, see figures 8-19 to 8-21. Before
point 2, the brick unit and other components still tend to deform elastically before point 1 and plastically after
point 1. Note that the deformation of the brick unit changes from plastic one to elastic one again at point 3
due to strain softening in the damaged cell, see figure 8-20.

Figure 8-19 vertical compression behaviour of homogenized cell

with considering shear damage at interface of brick and bed joint:

𝜎𝑦𝑦
0 vs. the macro strain 𝜀𝑦𝑦

0

Figure 8-20 the shear stress of bed joint 𝜏𝑥𝑦
𝑏 vs. the

macro strain 𝜀𝑦𝑦
0

Figure 8-21 The value of yield function 𝑓𝑢 with

elastic predictors in the brick unit vs. 𝜀𝑦𝑦
0

The energy of the basic cell could be quite complicated as the shear failure occurring in the bed joint is taken
into account. Let’s record the total energy and bulk energy of the basic cell by using the equations (8.5) and
(8.9) again, see figure 8-22.

Figure 8-22 indicates that the bulk energy of the homogenized material model is not consumed as the value
of total energy is always equal to or smaller than that of the bulk energy through the whole loading path. At
load step 29 (point 1 in figure 8-19), micro-cracks start generating in the brick unit and then the stiffness of
the homogenized cell is reduced due to this formation of micro-cracks, see figure 8-19. As a result, the total
energy of the basic cell becomes smaller than the bulk energy, see figure 8-22.

The vertical compression stress of the homogenized cell reaches its ultimate limit state strength once the bed
joint is damaged in shear, which is provided by figure 8-20. That means the plastic shear deformation at the
brick unit and bed joint interface is the dominating one compared with other plastic deformations. Therefore,
the plastic shear behaviour of the bed joint could be investigated to figure out how the plastic deformations of
components make effects on ultimate limit state strain of the homogenized cell.

0.0029, 6.53
0.0045, 7.70

0.0085, 3.10

0.00

2.00

4.00

6.00

8.00

10.00

0 0.01 0.02 0.03

ve
rt

ic
al

 e
xt

er
n

al
 s

tr
es

s
σ

_y
y_

0
(N

/m
m

2
)

vertical external strain Ɛ_yy_0 (mm/mm)

homogenized cell: vertical compr. strain stress
curve- small shear strength

with plastic strain

without plastic strain
0.0045, -0.77

-0.90

-0.60

-0.30

0.00

0.30

-0.01 0.01 0.03 0.05

st
re

ss
 τ

_x
y_

b
 (

N
/m

m
2

)

External vertical strain Ɛ_yy_0 (mm/mm)

shear stress of bed joint

0.0029, -0.16

0.0085, -0.17

-9.00

-6.00

-3.00

0.00

3.00

6.00

0 0.01 0.02

yi
el

d
 f

u
n

ct
io

n
 o

f
b

ri
ck

 f
u

vertical strain Ɛ_yy_0 (mm/mm)

value of yield function

Properties:
GII = 0.05N/mm
SIGS = 0.75 MPa
element size:
HH = 10mm

1

2
Bed joint fails
in shear

2

1

3

3
Hardening in brick unit

71

The damaged shear stress of the bed joint with and without considering the plastic shear deformation through
the loading history could be recorded as figure 8-23 shown. The bed joint would be damaged in shear at step
45 (point 2 in figure 8-19) when the plastic shear deformation is taken into account, while it would be damaged
at step 65 if the plastic shear deformation was not included. Note that the value of the bed joint’s shear stress
changes from positive to negative as the plastic deformations develop in the components. From the physical
aspect, this phenomenon appears as the developed brick unit’s horizontal plastic strain is larger than the
head joint’s. According to the equations derived in chapters 5 and 6, the sign of in-plane shear stress should
depend on the brick unit’s and head joint’s horizontal strains. The shear strain is assumed to be positive of
the head joint’s horizontal strain is larger than the brick unit’s.

Figure 8-22 energy of the basic cell versus load step

Figure 8-23 Damaged shear stress of bed joint 𝜏𝑥𝑦

𝑏 versus

load step: stress computed without considering plastic

shear deformation (long dash line); stress computed with

considering plastic shear deformation

Therefore, it can be said that the plastic shear strain of the bed joint causes larger shear stress compared to
the one computed based on the deformed mechanisms of the basic cell at every load step. This phenomenon
leads to the vertical stress of the basic unit cell achieves its ULS before the elastic potential energy of the
material is consumed.

Note that the bulk energy discussed here is indicated as one of the macro material properties of the masonry
structure rather than the material properties of the components, such as the bricks or mortars. As shown in
figure 8-21, the brick's elastic potential energy should be partially consumed from load step 29 as the value
of yield surface, computed by elastic predictors of the brick unit, is changed to a positive number. That
indicates that the elastic stress points are located outside the yield surface, and then the elastoplastic phase
should start.

The damage state variables of components through load history could be obtained as figure 8-24 shown.

Figure 8-24 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step: case 2

45

3

29

57

0

0.0002

0.0004

0.0006

0.0008

0 50 100 150 200

En
er

gy
 o

f
ce

ll
N

/m
m

2
)

load step

Macro energy through load history

total energy

bulk energy

65, 0.76

3

45, -0.77
-0.9

-0.6

-0.3

0

0.3

0.6

0.9

0 50 100 150 200

d
am

ag
ed

 s
tr

es
s

τ_
xy

_b
(N

/m
m

2
)

load step

shear stress of the bed joint

without plastic shear deformation
with plastic shear deformation

18 44

0

0.4

0.8

1.2

0 50 100 150 200 250 300 350 400

d
am

ag
e

st
at

e
va

ri
ab

le
s

load step

damage state variables of components through loading history

brick unit

head joint

bed joint

cross joint

1

2

2

72 8. Implementations and comparisons 8.1. Validations of the implementations

The head and cross joints are damaged firstly from step 18, and the bed joint is damaged from step 44,
leading to the homogenized cell being damaged.

Furthermore, the dilatant effects could be studied by changing the value of the dilatancy angle 𝜓, see figure
8-25. Let’s set up the same values of the dilatancy angle of the bricks and mortars here. As shown in figure
8-25, the ultimate limit state strength and strain of the homogenized cell become larger with a larger dilatancy
angle. The dilatancy angle is defined as equation (8.11) shown.

tan(𝜓) =
𝛿𝑛
𝛿𝑠

(8.11)

Where 𝛿𝑛 is the vertical deformation and 𝛿𝑠 is the shear deformation of the basic unit cell. That means the
shear deformation of the homogenized cell would be smaller with the larger dilatancy angle as the vertical
deformation is not changed at every load step. Based on the assumptions made in chapter 3, only shear
stress exists at the interface of the brick unit and the bed joint. Therefore, this shear deformation could and
only be produced by the shear behaviour of the bed joint.

Figure 8-254 macro stress in the y-direction 𝜎𝑦𝑦

0 through load path with different dilatancy angle 𝜓

If a larger dilatancy angle is adopted, the increment of shear deformation would be smaller if the increment
of normal deformation is not changed, see equation (8.11). Meanwhile, the bed joint’s shear stiffness is not
changed following the variation of the dilatancy. Therefore, the increment of shear stress of the bed joint
would be smaller if the increment of the bed joint’s shear strain is smaller at each load step. As a result, the
bed joint would be damaged in shear for a longer duration. The shear damage in the bed joint is assumed to
occur before all other failures. As the bed joint’s shear fracture energy is consumed more slowly, more
external loading would be absorbed by the brick unit’s elastic potential energy if a larger dilatancy angle is
applied. Therefore, the ultimate limit state strength and strain of the homogenized material model would be
larger if the dilatancy angle is large.

Now, let us compare the results of cases 1 and 2. It can be said that the compressive splitting effects would
not make many significant effects on the vertical compressive strength of the basic unit cell in case 2. The
bed joint shear failure typically appears before the brick unit crushing failure if the shear stiffness of the bed
joint is quite small compared with the stiffness of the brick unit. As a result, the homogenized material model
tends to be damaged once the bed joint fails in shear. At the same time, the brick unit still has stiffness in the
horizontal direction as its equivalent tensile stress, which consists of the elastic and split tensile stress, does
not reach its maximum value.

4 The bed joint’s shear stiffness: shear facture energy 0.05 N/mm, shear strength 0.75 MPa; the element size is set to be 10 mm

44, 7.69

43, 7.66

48, 7.84

6.00

7.00

8.00

20 30 40 50 60 70

σ
_y

y_
0

(N
/m

m
2

)

load step

influences of the variantion of dilatancy angle

PSI = 5 degrees

PSI = 0 degrees

PSI = 20 degrees

73

8.1.4. Model 4: coupled behaviour

Analytical results

Let us recall back to chapter 3 section 3.5, the homogenized stress tensor 𝝈0 could be relative to the macro
strain tensor 𝜺0 in 2D plane stress element by stiffness matrix 𝑲:

𝝈0 = 𝑲𝜺0 (8.12)

𝝈0 = [

𝜎𝑥𝑥
0

𝜎𝑦𝑦
0

𝜏𝑥𝑦
0

] , 𝜺0 = [

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝜀𝑥𝑦
0

] , 𝑲 = [
𝐾11 𝐾12 0
𝐾21 𝐾22 0
𝐾31 𝐾32 𝐾33

] (8.13)

𝐾11 =
𝜕𝜎𝑥𝑥

0

𝜕𝜀𝑥𝑥
0 , 𝐾22 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦
0 , 𝐾33 =

𝜕𝜏𝑥𝑦
0

𝜕𝜀𝑥𝑦
0

(8.14)

𝐾12 =
𝜕𝜎𝑥𝑥

0

𝜕𝜀𝑥𝑥,𝑦
0 ∙

𝜕𝜀𝑥𝑥,𝑦
0

𝜕𝜀𝑦𝑦
0 , 𝐾21 = 𝐾31 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦,𝑥
0 ∙

𝜕𝜀𝑦𝑦,𝑥
0

𝜕𝜀𝑥𝑥
0 , 𝐾32 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦
0

(8.15)

Equation (8.12) could be computed by implementing the expressions of the corresponding strains 𝜀𝑥𝑥,𝑦
0 and

𝜀𝑦𝑦,𝑥
0 defined in section 7.1 and the algorithm introduced in section 7.2.

The strain increments in the x, y and xy direction are set to be the same, with the value of 0.0001 at each load
step. In other words, the values of the horizontal, vertical and shear strains of the basic cell are assumed to
be increased 0.0001 at every load step.

As a result, the homogenized strain-stress curve in horizontal direction could be obtained as figure 8-26
shown by applying the material and geometrical properties described in table 6-2 in chapter 6 section 6.2.

(a) large shear stiffness of the bed joint

(b) small shear stiffness of the bed joint

Figure 8-26 homogenized stress in the horizontal direction 𝜎𝑥𝑥
0 vs. 𝜀𝑥𝑥

0

The damage state variables of components 𝑟𝑖
𝑥 = 1 − 𝑑𝑖

𝑥 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) could be recorded through the whole

load path, as figure 8-27 shown. These variables are only used to compute the macro stress in the horizontal
direction, in which case only tensile cracks are assumed to be generated in the components.

3.05

0

0.5

1

1.5

2

2.5

3

3.5

0 0.02 0.04 0.06

m
ac

ro
 s

tr
es

s
σ

_x
x_

0
(

N
/m

m
2

)

strains of basic cell Ɛ_xx_0 (mm/mm)

Strain-Stress Curve – properties 1

TENSION 2.54

0

0.5

1

1.5

2

2.5

3

0 0.005 0.01

m
ac

ro
 s

tr
es

s
σ

_x
x_

0
(

N
/m

m
2

)

strains of basic cell Ɛ_xx_0 (mm/mm)

Strain-Stress Curve - properties 2

TENSION

Properties:
GII = 0.05 N/mm
SIGS = 0.75 MPa
element size:
HH = 5 mm Properties:

GII = 20 N/mm
SIGS = 20.75 MPa
element size:
HH = 10 mm

74 8. Implementations and comparisons 8.1. Validations of the implementations

(a) large shear stiffness of the bed joint

(b) small shear stiffness of the bed joint

Figure 8-27 Damage state variables of components 𝑟𝑖
𝑥 = 1 − 𝑑𝑖

𝑥 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step: only tensile cracks

generated in the components

As figure 8-27 shown, the tensile cracks are firstly generated in the head joint at load step 3 and then in the
brick unit at load step 11 if the shear stiffness of the bed joint is considerable. On the contrary, the shear
cracks occur in the bed joint at step 8 after the head joint fails in tension if the shear stiffness is small.

The macro stress-strain curve in the vertical direction could be obtained, as figure 8-28 shown.

(a) large shear stiffness of the bed joint

(b) small shear stiffness of the bed joint

Figure 8-28 Homogenized stress in the vertical direction 𝜎𝑦𝑦
0 vs. 𝜀𝑦𝑦

0

Note that the results of the macro stress in the vertical direction 𝜎𝑦𝑦
0 are correlated to the results shown in

figures 8-13 and 8-19, which indicates that the brick crushing failure mode is introduced successfully.

The damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) could be recorded as figure 8-29 shown.
In this case, the micro cracks are taken into account.

113 6

0

0.4

0.8

1.2

0 10 20 30 40

d
am

ag
e

st
at

e
va

ri
ab

le
s

R
ix

load step

Rix: tensile cracking

head joint

brick unit

bed joint

cross joint

3 8

0

0.4

0.8

1.2

0 10 20 30 40

d
am

ag
e

st
at

e
va

ri
ab

le
s

R
ix

load step

Rix: tensile cracking

head joint
brick unit
bed joint

-14.14

0.92

-15

-12

-9

-6

-3

0

3

-0.05 -0.03 -0.01 0.01 0.03 0.05

m
ac

ro
 s

tr
es

s
 σ

_y
y_

0
(

N
/m

m
2

)

strains of basic cell Ɛ_yy_0 (mm/mm)

Strain-Stress Curve – properties 1

COMPRESSION

TENSION

-7.74

0.92

-8

-6

-4

-2

0

2

-0.02 -0.01 0 0.01 0.02

m
ac

ro
 s

tr
es

s
σ

_y
y_

0
(

N
/m

m
2

)

strains of basic cell Ɛ_yy_0 (mm/mm)

Strain-Stress Curve - properties 2

COMPRESSION

TENSION

Properties:
GII = 20 N/mm
SIGS = 20.75 MPa
element size:
HH = 10 mm

Properties:
GII = 0.05 N/mm
SIGS = 0.75 MPa
element size:
HH = 5 mm

75

(a) large shear stiffness of the bed joint

(b) small shear stiffness of the bed joint

Figure 8-29 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step: only tensile cracks

generated in the components

Again, the micro cracks are firstly generated in the head joint at load step 18 and then in the brick unit at load
step 90 if the shear stiffness of the bed joint is substantial. On the contrary, if the shear stiffness is small, the

 shear cracks occur in the bed joint at step 42 after the head joint fails due to the compressive splitting effects.

If the vertical load is assumed to be tension, the homogenized cell should be damaged in joint tension
failure mode. Therefore, the damaged stress of the bed joint in the y-direction could be recorded as figure
8-30 shown to judge if the joint tension failure mode is introduced successfully.

(a) large shear stiffness of the bed joint

(b) small shear stiffness of the bed joint

Figure 8-30 Damaged stress of the bed joint in the y-direction 𝜎𝑦𝑦
𝑏 and macro stress 𝜎𝑦𝑦

0 through load path

Figure 8-30 indicates that the homogenized cell is damaged once the bed joint fails in vertical tension.
However, horizontal tension loading is set as one of the external forces, and this loading would cause an
additional compressive loading in the vertical direction. As a result, the homogenized cell is loaded by vertical
tension strain rather than the compressive one from step 4 when the imposed strain is greater than the
additional one caused by horizontal loading condition in the y-direction.

The damaged tension stresses of the brick unit 𝜎𝑥𝑥
𝑢 (large shear stiffness case) and damage shear stresses

of bed joint 𝜏𝑥𝑦
𝑏 (small shear stiffness case) could be obtained as figure 8-31 shown.

9018

0

0.4

0.8

1.2

0 50 100 150 200

d
am

ag
e

st
at

e
va

ri
ab

le
s

R
i

load step

Ri: crushing

head joint
brick unit
bed joint
cross joint

4218

0

0.4

0.8

1.2

0 50 100 150 200

d
am

ag
e

st
at

e
va

ri
ab

le
s

R
i

load step

Ri: crushing

head joint
brick unit
bed joint
cross joint

6

5

0

0.4

0.8

1.2

0 5 10 15 20

d
am

ag
ed

 s
tr

es
s

 (
N

/m
m

2
)

load step

damaged stress: vertical tension loading

damage stress of the bed joint

macro stress

6

4
5

0

0.4

0.8

1.2

0 5 10 15 20

d
am

ag
ed

 s
tr

es
s

(N
/m

m
2

)

load step

damaged stress: vertical tension loading

damage stress of the bed joint
macro stress

76 8. Implementations and comparisons 8.1. Validations of the implementations

(a) large shear stiffness of the bed joint

(b) small shear stiffness of the bed joint

Figure 8-31 Damage stresses of the brick unit 𝜎𝑥𝑥
𝑢 and the bed joint 𝜏𝑥𝑦

𝑏 through load path: the value obtained by

considering only tensile cracks (dash line); the value obtained by considering micro-cracks (long dash-dot line).

Figures 8-27, 8-29 and 8-31 indicate that the tensile cracks and micro-cracks could be generated in the brick
unit (or bed joint), which means the coupled behaviour of the homogenized material model is introduced
successfully under the assumed loading conditions.

The homogenized shear strain-stress curves could be obtained when the vertical load is compressive, as
shown in figure 8-32.

The cohesion of the head joint 𝑐ℎ, the friction stress at the interface of the brick unit and bed joint 𝜎𝑦𝑦
0 ∙ tan (𝜙𝑢)

and the macro shear stress 𝜏𝑥𝑦
0 could be investigated through load history, as figure 8-33 shows.

As shown in figure 8-33, the shear stiffness does not have many effects on the cohesion of the head joint.
However, the cohesion of the head joint would be consumed if the shear stiffness of the bed joint is set to be
small. When the special II fracture energy 𝑔𝐼𝐼 = 𝐺𝐼𝐼/ℎ (ℎ is the element size) of the bed joint is set to be
smaller. The cohesion of the head joint would be consumed faster in this case.

(a) small shear stiffness of the bed joint

(b) large shear stiffness of the bed joint

Figure 8-32 Homogenized stress in shear direction 𝜏𝑥𝑦
0 vs. shear strain 𝜀𝑥𝑦

0

12, 2.12

87, 3.45

0

2.5

5

0 50 100 150 200

d
am

ag
ed

 s
tr

es
s

σ
_x

x_
u

(N
/m

m
2

)

load step

horizontal stress of the brick unit

under pure compr. in y

average value

under pure tension in x

9, 0.41

43, -0.33

-0.8

-0.4

0

0.4

0.8

1.2

0 20 40 60 80 100

d
am

ag
ed

 s
tr

es
s

τ_
xy

_b
(N

/m
m

2
)

load step

shear stress of the bed joint

under pure compr. in y

average value

under pure tension in x

3.77

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06

m
ac

ro
 s

tr
es

s
 τ

_x
y_

0
(N

/m
m

2
)

strains of basic cell Ɛ_xy_0 (mm/mm)

Strain-Stress Curve – properties 1

SHEAR 1.40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.01 0.02 0.03

m
ac

ro
 s

tr
es

s
τ_

xy
_0

(N
/m

m
2

)

strains of basic cell Ɛ_xy_0 (mm/mm)

Strain-Stress Curve - properties 2

SHEAR

Properties:
GII = 20 N/mm
SIGS = 20.75 MPa
element size:
HH = 10 mm

Properties:
GII = 0.05 N/mm
SIGS = 0.75 MPa
element size:
HH = 5 mm

77

(a) small shear stiffness of the bed joint

(b) large shear stiffness of the bed joint

Figure 8-33 damaged stress of the homogenized cell 𝜏𝑥𝑦
0 , cohesion 𝑐ℎ and friction stress 𝜎𝑦𝑦

0 ∙ tan (𝜙𝑢) through load step

If the vertical load is set to be tension one, the shear stress of the homogenized cell 𝜏𝑥𝑦
0 could be obtained

through the load step, as figure 8-34 shown.

(a) small shear stiffness of the bed joint

(b) large shear stiffness of the bed joint

Figure 8-34 damaged stress of the homogenized cell 𝜏𝑥𝑦
0 through load step when the vertical strain is the compression one

Figure 8-34 indicates that the shear sliding failure mode is introduced successfully as the homogenized cell
is damaged once the shear stress of the bed joint reaches its strength.

8.2. Comparison against the experimental result

The experimental data of a set calcium silicate masonry specimens (vertical configuration) cast during the
first period (September 2015) under vertical monotonic loading TUD_MAT-11b to TUD_MAT-11g, tested by
R. Esposito, F. Messali and J. Rots in [41], are selected here. Note that the experimental results indicated
only the vertical compression behaviour of the masonry specimens.

Model 4 constructed in MATLAB is used here to assess the accuracy of the algorithms introduced in chapters
6 and 7 and the analytical solutions of the material model. However, only the macro constitutive law in the
vertical direction is assessed here as the experimental data is investigated when the masonry structure is
loaded by pure vertical compression loading.

1.34

3.78

2.50

0

1

2

3

4

0 50 100 150 200

st
re

ss
/c

o
h

es
io

n
 (

N
/m

m
2

)

load step

shear stress of the basic cell

cohesion of head joint
macro shear stress tauxy0
-SIGYY0 * tan(PHIU)

0

0.5

1

1.5

0 50 100 150 200

st
re

ss
/c

o
h

es
io

n
 (

N
/m

m
2

)

load step

shear stress of the basic cell

cohesion of head joint

macro shear stress tauxy0

-SIGYY0 * tan(PHIU)

63, 21.06

0

5

10

15

20

25

0 200 400 600

τ_
xy

_0
(N

/m
m

2
)

load step

shear stress of the basic cell

macro stress 3.00 , 1.00

0

0.4

0.8

1.2

0 5 10 15 20

τ_
xy

_0
(N

/m
m

2
)

load step

shear stress of the basic cell

macro stress

Properties:
GII = 20 N/mm
SIGS = 20.75 MPa
element size:
HH = 10 mm

Properties:
GII = 0.05 N/mm
SIGS = 0.75 MPa
element size:
HH = 5 mm

78 8. Implementations and comparisons 8.2. Comparison against the experimental result

After that, the experimental tests are simulated in this project by implementing model 3 proposed in chapter
6 into the Diana FEA user-supplied subroutine. The comparison of the numerical and analytical results can
judge if the model is introduced successfully in the finite element program. The comparison of the numerical
and experimental data can assess the accuracy of material model 3 and judge if material model 3 can
correctly simulate the specimens' compressive capacity, cracks pattern, failure mechanisms.

Test procedure

Figure 8-35 Compression test on masonry [41]

Figure 8-36 Position of LVDTs during the test [41]

Dimensions of this set calcium silicate masonry specimens selected from one of the wallets tested in the
experiment are 434 × 476 × 102 −mm (2 × 6 × 1-brick). There is a 10𝑚𝑚-thickness layer of gypsum applied
to the face of the loading plates, which ensures that the loaded faces of this specimen are levelled and parallel
to one another. [41] The configuration of the testing apparatus could be seen in figure 8-35. A 3500𝑘𝑁
hydraulic jack is put on the position at the bottom, which is provided by the testing apparatus and operated in
displacement control. There is a steel plate lifted above this hydraulic jack, which is the active side. Meanwhile,
there is a passive load plate lifted at the top side. A load cell using to measure the applied force is attached
to the top steel plate. The possible eccentricities could be reduced during the loading by putting a hinge
between the load cell and the top steel plate.

Vertical relative displacement over the height of the specimen is registered by four LVDTs5 (linear variable
differential transformers) attached to the specimen, see figure 8-36. The measuring range of these LVDTs is
2𝑚𝑚 with an accuracy of 0.5%. The specimen was tested under monotonic loading, applied with a rate of
0.002𝑚𝑚/𝑠 to reach the peak stress in 15 − 30 𝑚𝑖𝑛.

Material properties

The strengths of the calcium silicate blocks could be obtained from the experimental data, and the dimension
of the bricks and the thickness of mortar joints could be obtained from the configuration of the specimen in
[41] straight forward (see table 8-2).

The elastic modulus of the brick unit 𝐸𝑢 is equal to 8990 MPa, while the young's modulus of mortars is set to
be the secant elastic modulus 𝐸2 = 5091MPa of masonry subject to a compressive loading perpendicular to

the bed joints, evaluated at 1/10 of the maximum stress. The Poisson ratio of the bricks 𝜈𝑢 is set to be the
same as the masonry’s, while the sum value of the mortars’ Poisson ratio 𝜈𝑚,𝑠 is assumed to be the difference

value between the masonry’s Poisson ratio during the first and second periods. The cross joint’s Poisson ratio
is zero as we assumed the cross joint deforms the springs in the vertical and horizontal directions. Therefore,
the sum value of the mortars’ Poisson ratio 𝜈𝑚,𝑠 = 0.4 incorporates the head and bed joint’s 𝜈𝑚. As a result,

the mortar’s Poisson ratio 𝜈𝑚 should be 0.2 as we assumed the head and bed joints have the same
mechanical properties.

5 LVDT: Linear variable differential transformer

79

Table 8-2 Material and geometrical properties from experimental data [41]

Material properties Brick unit Mortar Geometry Brick unit Mortar

Young’s Modulus 𝐸 (MPa) 8990 5091
Height ℎ (𝑚𝑚)

(Half value only)
35.5 35.5 Poisson ratio 𝜈 (−) 0.14 0.02

Tension strength 𝜎𝑡 (MPa) 2.74 2.79

Compression strength 𝜎𝑐 (MPa) 16 6.59

Length 𝑙 (𝑚𝑚)

(Half value only)
106 106

I fracture energy 𝐺𝐼 (N/mm) 0.081 0.082

Compressive fracture energy 𝐺𝑐 (N/mm) 20.96 17.68

Shear strength 𝜎𝑠 (MPa) - 0.14

II fracture energy 𝐺𝐼𝐼 (N/mm) - 0.012
Thickness 𝑡 (𝑚𝑚)

(Half value only)
- 5 Friction angle 𝜙 (°) 23.37 23.37

Dilatancy angle 𝜓 (°) 10 10

According to the formulations introduced by Maurizio Angelillo et al. in [39], the tensile (first), shear (second)
and compressive fracture energy 𝐺𝐼 , 𝐺𝐼𝐼 and 𝐺𝑐 of the bricks and mortar joints could be computed by

equations (8.16) to (8.18).

𝐺𝐼 = 0.04 ∙ 𝜎𝑡
0.7 (8.16)

𝐺𝐼𝐼 = 0.025 ∙ (
𝜎𝑐
10
)
0.7

(8.17)

𝐺𝑐 = 15 + 0.43 ∙ 𝜎𝑐 ∙ 0.0036 ∙ 𝜎𝑐
2 (8.18)

Where 𝜎𝑡 and 𝜎𝑐 are the tension and compression strength of the given component, respectively.

As the results discussed in section 8.1.3, the values of the components’ dilatancy angles affect the
compressive capacity and softening process. Therefore, the dilatancy angles should be suitably selected.
The sensitivity of the dilatancy angle is studied to avoid overestimating the shear deformation with a large
dilatancy angle. The macro strain-stress curves of the material model in the vertical direction with different
material dilatancy angles could be investigated, as figure 8-37 shown.

Figure 8-37 the vertical compressive stress 𝜎𝑦𝑦
0 versus compressive strain of the single element 𝜀𝑦𝑦,𝑠𝑒

0 with different

dilatancy angles of components

0

1.5

3

4.5

6

0 0.001 0.002 0.003 0.004 0.005

co
m

p
re

ss
iv

e
st

re
ss

 σ
_y

y_
0

(N
/m

m
2

)

compressive strain Ɛ_yy_0 (mm/mm)

Variations of the dilatancy angle

10 degrees
0 degrees
23.27 degrees
50 degrees

Insufficient shear
estimation

over shear
estimation

80 8. Implementations and comparisons 8.2. Comparison against the experimental result

As shown in figure 8-37, the capacity of the material is underestimated if the dilatancy angle is very large or
small. In this case, the dilatancy angles 𝜓 of the bricks and mortars are assumed to be 10° as the most
suitable values.

Many researchers suggest a dilatancy angle of 0 degrees to avoid over shear estimation as they did not
consider the shear deformation and shear damage at the brick-mortar interface. In this model, the shear
deformation and damage are considered, so components’ dilatancy angles have to be suitably chosen.

Comparison: analytical solution versus experimental data

Note that the results computed in MATLAB are the analytical solutions for a single element, while the
experimental data is obtained from a specimen modelled by a set of elements.

The vertical strain of the single element 𝜀𝑦𝑦,𝑠𝑒
0 should be:

𝜀𝑦𝑦,𝑠𝑒
0 =

∆𝑢

𝐻
(8.19)

Where ∆𝑢 is the loaded displacement in the vertical direction at each load step and 𝐻 is element size, with a
value of 50 mm.

The vertical strain of the specimen 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 evaluated by the LVDTs should be:

𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 =

∆𝑢

𝐿𝐿𝑉𝐷𝑇𝑠
(8.20)

Where 𝐿𝐿𝑉𝐷𝑇𝑠 is the vertical distance between the two LVDTs in the same row. As can be seen from figure 8-
36, we can get 𝐿𝐿𝑉𝐷𝑇𝑠 = 243 mm.

We can then get the relationship of 𝜀𝑦𝑦,𝑠𝑒
0 and 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠

0 by combining equation (8.19) and (8.20):

𝜀𝑦𝑦,𝑠𝑒
0 =

𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 ∙ 𝐿𝐿𝑉𝐷𝑇𝑠

𝐻
= 4.86 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠

0 (8.21)

With this transformation function, we could compare the experimental result and the analytical solution
proposed in section 8.1.4, as figure 8-37 shows, by applying geometrical and material properties shown in
table 8-2. Note that there is only vertically compressive loading.

As shown in figure 8-38, the analytical results can predict the compressive capacity compared to the
experimental results with a small error. The compressive capacity obtained from the test on average is
5.93 MPa [41], while the one obtained from the analytical solution is 5.23 MPa. Therefore, the error between
these two values should be:

𝑒𝑟𝑟𝑜𝑟 =
5.93 − 5.23

5.93
= 0.12

The error is acceptable and may be caused by the variability of mortars as the mortars’ mechanical properties
are dependent on manual actions.

To investigate if the material model could correctly predict the crack patterns, we should first focus on the
cracking process of the specimen and then make the relative comparisons. The cracking process of specimen
“TUD_MAT_11b” was recorded and stated in [41], see figure 8-39.

81

Figure 8-38 Comparison: vertical compressive stress 𝜎𝑦𝑦

0 versus compressive strain tested by LVDTs 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 from

experimental results and the homogenized material model

According to the descriptions of the cracking process of the specimen “TUD_MAT_11b” stated in [41], the
shear cracks should first develop at the interface of the brick unit and the bed joint, as figure 8-39 (a) shows.
After that, the vertical cracks were generated at the central part of the specimen when the maximum stress
was reached, see figure 8-39 (b). In the post-peak phase shown in figures 8-39 (c) and (d), the vertical cracks
mainly occurred in the bricks and developed uniformly through the length of the specimen by splitting it into
two parts.

(a) 𝜎𝑛 = 5.3 MPa

𝜀𝑛 = 7.4 ‰

(b) 𝜎𝑛 = 6.2 MPa

𝜀𝑛 = 11 ‰

(c) 𝜎𝑛 = 2.0 MPa

(d) 𝜎𝑛 = 0.7 MPa

Figure 8-39 Crack pattern of specimen TUD_MAT-11b tested under vertical compression test: (a) first crack; (b) maximum

stress; (c)-(d) post-peak phase [41].

Note that the cracking phases shown in figures 8-39 (c) and (d) were not recorded by LVDTs reading as the
LVDTs can not be attached to the specimen’s surface when the splitting developed throughout the thickness.
However, phases (c) and (d) were tested by Jack’s reading. The vertical compressive strain-stress curves of

1.7010E-03, 2.7950E+00

0

1.5

3

4.5

6

7.5

0 0.005 0.01 0.015 0.02 0.025

ve
rt

ic
al

 c
o

m
p

re
ss

iv
e

st
re

ss
 σ

_y
y_

0
 (

N
/m

m
2

)

compressive strain tested by LVDTs (mm/mm)

analytical result Vs Experimental data

analytical result

TUD_MAT_11f

TUD_MAT_11e

TUD_MAT_11g

TUD_MAT_11b

TUD_MAT_11c

Dilatancy Angle 10 degrees
LVDTs readings
Calcium silicate brick
first period (MAT/COM)

a)
b)

c)

82 8. Implementations and comparisons 8.2. Comparison against the experimental result

the specimen “TUD_MAT_11d” tested by LVDTs and Jack’s reading were investigated as figure 8-40 shown
[41].

(a)

(b)

Figure 8-40 Comparisons: vertical compressive stress 𝜎𝑦𝑦
0 versus compressive strain from experimental result of specimen

TUD_MAT_11b and the homogenized material model: (a) tested by LVDTs 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 ; (b) tested by Jack’s reading 𝜀𝑦𝑦,𝐽𝑎𝑐𝑘

0 .

The cracking phases described in figures 8-39 (a) to (d) could be specified in figure 8-40 to discover the
cracks predicted by the material model at which load step can reflect these phases. The load step 𝑛 can be
obtained as equation (8.22) shown (the load step size for the analytical solution is 0.00001).

𝑛 =
𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 ∙ 𝐿𝐿𝑉𝐷𝑇𝑠

𝜀𝑦𝑦,𝑠𝑒
0 ∙ 𝐻

= 2.06 × 104 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 , 𝜀𝑦𝑦,𝐽𝑎𝑐𝑘

0 ≈ 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 (8.22)

As a result, the relative load steps in numerical calculations of the cracking phases described in figures 8-40
(a) to (c) can be obtained as table 8-3 shown.

Table 8-3 The relative load steps in numerical calculations of the cracking phases

Cracking phase Vertical strain tested by 𝐿𝑉𝐷𝑇𝑠 Load step Cracks

(a) 0.0074 153 Shear cracks at the brick-mortar interface

(b) 0.011 227 Vertical cracks in bricks

(c) 0.017 351 Splitting cracks in bricks

(d) 0.019 392 collapse

Components’ damage state variables 𝑟𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) can be investigated through the loading history to

study if the cracks generate in each component, see figure 8-41. The cracks are developed when the 𝑟𝑖 is
reduced from 1 to 0.

As figure 8-41 shows, the shear crack develops in the bed joint at step 139, corresponding to the experimental
result. After that, the head joint is cracked at step 203 as its equivalent splitting tensile stress reaches the
material tensile strength. At load step 228, the brick unit is damaged in splitting tension, producing a vertical
tensile crack, which could also be investigated from the tests. Therefore, it can be said that the material model
could simulate all potential cracks of the unit cell in this typical case.

0.0073
0.0107

0

1.5

3

4.5

6

7.5

0 0.005 0.01 0.015

ve
rt

ic
al

 c
o

m
p

re
ss

iv
e

st
re

ss
 σ

_y
y_

0
(N

/m
m

2
)

compressive strain tested by LVDTs (mm/mm)

analytical result Vs Experimental data

analytical result

TUD_MAT_11b

0.017 , 1.885

0.019 , 0.727

0

1.5

3

4.5

6

7.5

0 0.01 0.02 0.03

ve
rt

ic
al

 c
o

m
p

re
ss

iv
e

st
re

ss
 σ

_y
y_

0
(N

/m
m

2
)

strain tested by Jack's reading (mm/mm)

analytical result Vs Experimental data

analytical result

TUD_MAT_11b

Dilatancy Angle 10 degrees
TUD_MAT_11b
LVDTs readings
Calcium silicate brick
first period (MAT/COM)

Figure

8-39 (a)

Figure

8-39 (b)
Figure

8-39 (d)

Figure

8-39 (c)

Dilatancy Angle 10 degrees
TUD_MAT_11b
Jack’s reading
Calcium silicate brick
first period (MAT/COM)

83

Figure 8-41 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step

The damaged internal stresses of the brick unit and head joint could be recorded through the load path, as
figure 8-42 shown. These curves can be used to study if the failure mechanisms simulated by the material
model is reasonable.

The results in figure 8-42 indicate the failure mechanisms simulated by the material model. The hardening
phase starts from step 37 (point 1 in figure 8-42) as the homogenized stiffness of the material model becomes
smaller. Description for this phase in the report is: “the nonlinearity occurred at a stress level approximatively
of 1/10 of the maximum stress”.

However, the stress at point 1, where the nonlinearity occurred, is 2.71 MPa, about half of the maximum stress
rather than 1/10. Note that the analytical solution solved by MATLAB is only a mathematic result, where the
numerical integrations are not considered in the integration points. In comparison, the recorded stress from
the tests is the average value of the specimen. As a result, differences in the simulations of the hardening
process appear.

Figure 8-42 the macro stress 𝜎𝑦𝑦
0 , damaged horizontal stresses

of the brick unit 𝜎𝑦𝑦
𝑢 and head joint 𝜎𝑦𝑦

ℎ versus load step

Figure 8-43 the total energy, bulk energy and surface

energy of the unit cell through the load path

At point 2, the maximum stress is reached once the brick unit is damaged in splitting tension, which is
correlated with the simulations of the crack pattern. After that, an exponential softening branch is investigated

203 228139

0

0.4

0.8

1.2

0 100 200 300 400 500 600 700 800

d
am

ag
e

st
at

e
va

ri
ab

le
s

R
i

load step

Ri: the components' undamage factors

head joint
brick unit
bed joint
cross joint

34, 2.71

227, 5.29

37, 0.10

230, 2.74

0

2

4

6

0 200 400 600

m
ac

ro
 a

n
d

 d
am

ag
ed

 s
tr

es
s

(N
/m

m
2

)

load step

stresses recorded through the loading history

macro stress sigyy0

damaged stress sigxxu

damaged stress sigxxh

347

0.00E+00

7.00E-04

1.40E-03

2.10E-03

0 100 200 300 400

En
er

gy
 o

f
u

n
it

 c
el

l (
N

/m
m

2
)

load step

energy through the loading history

total energy

bulk energy

surface energy

1

2

1 3

84 8. Implementations and comparisons 8.2. Comparison against the experimental result

from the analytical calculations rather than the linear one reported in [41]. The main reason is that we assume
an exponential softening process for the components rather than the linear one in this work.

The total energy and bulk energy can be computed by the same method introduced in section 8.1.3. As a
result, the energy status of the unit cell through the loading history could be recorded as figure 8-43 shown.
The surface energy has a value once the nonlinearity occurs, indicated in figure 8-42, as the surface energy
has a value at point 1. At step 347 (point 3 in figure 8-43), the surface energy drops to zero, indicating that
the compressive splitting effects disappear once the vertical splitting cracks split the specimens.

In conclusion, the comparisons between the analytical and experimental results are stated in Table 8-4.

Table 8-4 The comparisons between the analytical results and experimental results

 The experimental results The analytical results Agreement

Compressive
capacity

5.93 MPa 5.23 MPa Acceptable

Crack pattern

Cracks started at the mortar-brick
interface for the joints orthogonal to
the loading direction [41].

The vertical cracks mainly occurred
in the central part of the specimens
when the maximum stress was
reached.

In the post-peak phase, the vertical
cracks mainly occurred in the bricks
and developed uniformly through
the length of the specimen by
splitting it into two parts.

The micro-cracks were vertically
generated in the bricks and mortars
after load step 37 due to the splitting
effects.

Shear cracks appeared in the
horizontal joints orthogonal to the
loading direction at load step 139.

The vertical tensile crack occurred in
the head joint at step 203.

When the maximum stress was
reached at step 227, the vertical
tensile crack occurred in the bricks.

Acceptable

Failure
mechanisms

The pre-peak stage was
characterized by linear-elastic
followed by a hardening behaviour
until the peak. In this stage, the
nonlinearity occurred at a stress
level approximatively of 1/10 of the
maximum stress [41].

After the maximum stress was
reached, a softening behaviour was
observed. The softening branch
was approximatively linear.

The hardening phase starts from
step 37, where the vertical stress is
2.71 MPa.

This hardening phase ends at step
227 as the equivalent splitting failure
occurs in the brick unit. After that, an
exponential softening process is
investigated.

Partially
acceptable

Energy
dissipation

-

Surface energy starts have value at
load step 37.

Surface energy drops to zero at step
347.

Acceptable

85

9. Conclusions and recommendations
Although the macro models used to simulate masonry represent a good compromise between accuracy and
efficiency, most cannot precisely identify the localized damages. Therefore, an alternative homogenized
model developed based on Zucchini and Lourenço’s micro-mechanical models is proposed in this thesis.
Zucchini and Lourenco’s work is characterized by an acceptable trade-off between accuracy and
computational efforts. However, their material model is based on a complex algorithm that requires a
significant computational time to run. Moreover, their work did not consider the following cases: shear damage
in the bed joint occurring before other damages, the components’ compressive splitting effects and the
hardening phase.

Therefore, a research question can be stated as:

Is that possible to define a homogenized constitutive model for masonry structures under in-plane loading
that will consider shearing, tensile cracking, crushing and splitting failures based on a micro-mechanical
approach with as few as possible computational efforts?

To be more specific, this research question can be described by three sub-questions:

(1) How to simplify the deformed mechanisms of Zucchini and Lourenço’s model when coupled behaviours
in all directions are considered.

(2) How to consider the phenomena that the horizontal shear crack potentially generated in bed joint may
appear before the dissipation of compressive energy.

(3) How to implement the new plastic model, in which the hardening phase and compressive splitting effects
are considered with less computational costs.

To reply to the research question, the basic unit cell is first defined. Each cell consists of two-quarters of
bricks connected through a bed joint, and each one is connected to a head joint on one side. Cracking,
crushing and shearing failure are included through four material models. Model 1 (presented in chapter 4)
describes shear sliding, and model 2 (presented in chapter 5) describes cracking under horizontal tension.
Model 3 (presented in chapter 6) describes compressive crushing and splitting, whereas model 4 (presented
in chapter 7) couples the aforementioned failure mechanisms in one final model. The models’ analytical and
numerical results shown in chapter 8 for models 1 and 2 indicate that the material model proposed in this
work can analytically and numerically simulate the behaviours of bricks and mortars. The comparison of
analytical solution and experimental results for model 3 is investigated, indicating that the Drucker-Prager
yield criteria and the bi-parabolic hardening law can still be accurately implemented by applying the explicit
method instead of the implicit one the load step is small enough. The results in chapter 8 for model 4 indicate
that the material model proposed can still analytically predict as many localized damages as Zucchini and
Lourenço’s model could if the head joint’s shear behaviour is neglected.

Several new assumptions on deformed mechanisms, components’ failure modes, and elastoplastic
behaviours are made in this thesis. An alternative constitutive model for masonry structures under in-plane
loading is successfully proposed based on Zucchini and Lourenço’s research [20, 21, 30, 32], where the
shearing, tensile cracking, crushing and splitting effects are coupling. This alternative constitutive model
maintains the accuracy of the model suggested by Zucchini and Lourenço but reduce the computational
efforts. Therefore, the answer to the main research question should indeed be “yes, it is possible”.

In conclusion, the works presented in this thesis can be summarized by the answer to the sub-questions:

(1) The material model for masonry’s coupled behaviour in normal directions is simulated by combining the
quarter unit cell’s horizontal tensile and vertical compressive behaviours in a simple manner. This
simulation is achieved by neglecting the head joint’s shear deformation so that the number of equations
needed to be derived at brick-mortar interfaces could be reduced. As a result, also the numerical efforts
are reduced.

86 9. Conclusions and recommendations 9.1. Differences compared to previous works

(2) In the coupled material model, the bed joint is always damaged before any other damage occurs. When

the bed joint is damaged in shear, it moves with the brick unit as a whole. In other words, the shear stress
at the horizontal brick-mortar interface drops to zero once the horizontal shear crack is generated at the
middle of the bed joint’s thickness. As a result, the constitutive model’s shear strength is dependent on
the values of the head joint’s cohesion, vertical compressive loading and the friction angle of the mortars.

(3) The compressive splitting effects are implemented into the final model by introducing the Drucker-Prager
yield criterion in a 2D plane. This implementation requires more numerical efforts if we use the implicit
method, as several quadratic algebraic equations are needed to be solved to compute the plastic
multipliers for every component. Therefore, an explicit algorithm with a bi-parabolic hardening diagram is
introduced to incorporate the splitting effects with less computational cost.

9.1. Differences compared to previous works

The work presented in this thesis is very close to the research carried out by Zucchini and Lourenço. Both
aims are to derive a final homogenized material model for masonry with a completed stiffness matrix based
on the compatibility and equilibrium equations of a representative unit cell. Therefore, the four differences
between the final material models proposed in this thesis and Zucchini and Lourenço’s works [21] are
highlighted in the following.

(i) Two damage parameters define the damage status of bricks and head joints.

The brick unit’s and head joint’s damage status is controlled by two damage state variables in this final
material model. One is obtained based on the deformed mechanisms of the unit cell under pure horizontal
tension behaviour, and the other is obtained according to the deformed mechanisms of the unit cell under
pure vertical compressive behaviour. These two damage variables are coupled together by incorporating the
transverse strain produced by Poisson's effects into the axial one.

From the physical aspect, the brick unit (or the head joint) may first have a vertical tensile crack at the middle
of its length, and then the micro-cracks can still be generated in these half bodies if the brick’s (or the head
joint’s) splitting tensile stress does not reach the material tensile strength of its compressive energy is not
dissipated.

Vice versa, the brick unit’s and head joint’s damage status is dependent on only one damage state variable
in Zucchini and Lourenço’s work [21].

(ii) Shear damage of the bed joints occurs before any other failure mechanisms.

As can be seen from the compatibility and equilibrium equations of the representative plane, the head joint’s
horizontal stress is influenced by the bed joint’s shear stress. Meanwhile, the horizontal behaviour of the bed
joint should be correlated with the cross joint as the bed joint is connected with the cross joint.

In Zucchini and Lourenço’s works in [21], the bed joint’s compressive energy is assumed to be consumed
before the horizontal shear crack can occur. Therefore, the shear stress at the horizontal brick-mortar
interface kept increasing the head joint’s horizontal stress. This shear stress dropped to zero until the bed
joint’s cohesion and compressive energy were consumed.

In this thesis, a different failure mechanism of the bed joint is assumed. The shear crack is assumed to appear
in the bed joint before all other cracks if the masonry is not loaded by vertical tension. This assumption is
made based on two facts: first, the bed joint’s shear strength is generally smaller than the material
compressive strength. Second, the bed joint’s tension behaviour is not such essential compared to its shear
behaviour. As mentioned above, the bed joint’s horizontal behaviour is influenced by the cross joint’s. The
cross joint’s horizontal behaviour is not such important as the volume of the cross joint is very small compared
to other components. As a result, the head joint’s horizontal stress can be assumed to be no longer influenced
by shear behaviour at the brick-mortar interface once the bed joint is fractured in shear.

(iii) The compressive splitting effects are incorporated into the final material model.

87

Masonry is a composite quasi-brittle material as its components are brittle. Therefore, the tensile crack should
develop rapidly in the bricks and mortars when imposed on axial tension forces. However, the micro-cracks
are gradually generated when the masonry is loaded by axial compression. These micro-cracks change the
components’ capacity, making the material yield surface expanding or shrinking. As a result, the plastic
deformations in the lateral directions develop once the yield surface expands due to the axial compressive
loading, leading to splitting effects. The Drucker-Prager yield surface can be used to find plastic strains in all
directions. Therefore, the Drucker-Prager yield criterion is adopted in the components to describe the splitting
effects. Such yield criterion is smooth at every corner, making it possible to describe the direction of potential
energy or yield surface by a single direction vector for the whole yield surface.

If the implicit return-mapping back algorithm is still used to derive the plastic model with the Drucker-Prager
yield criterion, it will take a long time to compute each component’s plastic strain tensor as three quadratic
algebraic equations need to be solved to compute the three plastic multipliers for the brick unit, head joint
and bed joint. In Zucchini and Lourenço’s extended unit cell, more quadratic algebraic equations are needed
to be solved as more components are incorporated into the extended unit cell. Therefore, Zucchini and
Lourenço neglected the splitting effects and assumed that the shear flow only depends on axial or lateral
plastic behaviour to save computational time by implementing the Mohr-coulomb yield criterion in the 𝜎-𝜏
plane instead of the Drucker-Prager yield criterion [21].

On the opposite, the splitting effects are considered in this work, and two things were done to save
computational time. The first thing is that the explicit Euler-forward method, where the plastic correctors for
each component can be computed from an explicit equation based on Prager’s consistency equation, is
applied. The second one is that the assumptions on deformed mechanisms make it is possible to derive the
final material model based on the quarter unit cell.

(iv) The plastic model is introduced by applying an explicit Euler-forward algorithm.

The implicit Euler-backward method guarantees a return to the yield surface every step. Therefore, it has
higher robustness and accuracy, especially when the load step size is large. However, it takes time to run if
the implicit algorithm is applied to interpret the plastic model for such a complex model. Therefore, an explicit
method is adopted in this work. The accuracy of the plastic model is guaranteed by applying a small loading
step. However, this simplification leads to the limitation when the model is implemented in nonlinear finite
element programs, which is discussed in sections 9.2 and 9.3.

9.2. Limitations

The material model has some limitations, which are described below.

First of all, the micro-mechanical material can only be used to model the masonry structures with staggered
alignment bricks. The compatibility and equilibrium equations of the model have to be rederived if it is used
to model the masonry structures with other types of brick arrangements, such as the stack bond pattern, as
all of the equations are derived based on the deformed mechanisms of the representative unit cell.

Furthermore, the use of the explicit return-mapping algorithm requires a check of the accuracy of the results.
Although the forward Euler method provides possibilities for the plastic strain tensor being computed with
fewer computation efforts, the algorithm's error may be significant if the relatively large load step is applied.
Apparently, the Euler-forward algorithm does not guarantee a rigorous return to the yield surface, which
causes an error with a magnitude depending on the curvature of the yield surface. As a strongly curved corner
is met, the directions of the yield surface and potential energy will change rapidly from the previous load step,
leading to a large error as the Euler forward method solves the quadratic problem by a first-order method. If
the relative load step is set to be large, the error accumulations may become significant, leading to numerical
instability of the algorithm or scarce accuracy of the predictions. As a result, the material model may become
unstable and collapse if the step size is not suitably chosen. That introduces some limitations regarding the
step size of the numerical analyses.

Additionally, the coupled material model did not incorporate the horizontal compressive behaviour. The
homogenized stress in the horizontal direction is assumed to be zero if the external strain in the horizontal

88 9. Conclusions and recommendations 9.3. Future works

direction is set to be negative. However, the micro-cracks should be generated in the components if the
masonry is loaded by horizontal compression. The components may fail once the horizontal splitting cracks
occur. Therefore, there should be compressive capacity in the horizontal direction as well.

9.3. Future works

As the instability of the explicit algorithm is mentioned above, it is hard to say that a stable material model is
obtained. Although the analytical results of this material model look acceptable from its physical meaning and
are correlated with some experimental results in the material scale, the model has not been validated against
experimental results on the structural level. Therefore, future studies could focus on the validations of the
material model’s robustness and accuracy. For instance, the final model could be implemented in a finite
element program to assess the model’s robustness and accuracy, especially at the structural level.

Furthermore, the sub-stepping techniques could be adopted and connected with the Euler-forward method to
improve the stability of the analyses. In the sub-stepping technique, the strain increment tensor ∆𝜺 is divided

into numbers of strain sub-increment tensor 𝑑𝜺 at every load step. As the explicit algorithm is applied to
interpret the model’s plastic behaviours in this material model, it will be convenient to introduce this strain
sub-increment tensor 𝑑𝜺 into the explicit functions of the plastic multipliers. As a result, the error could be
reduced, especially when the strongly curved yield surface is met.

As the sub-stepping techniques could reduce the error produced due to the strong curvature of the yield
surface, the extended Drucker-Prager yield surface with the sub-stepping techniques can be introduced to
solve the apex problem of the Drucker-Prager yield criterion.

Additionally, some other points could be studied in the future as follows:

 The variations of the friction and dilatancy angles could be studied and implemented into the model. In
this material model, only the cohesion of the components could vary during the hardening or softening
process. However, other parameters could also vary following the hardening or softening process.

 The horizontal compressive behaviour of the masonry was not taken into account in the material model.
It could be studied in future research and incorporated into the material model.

 As shown in [41], the masonry structures with stiff brick units are cracking throughout the thickness during
the post-peak under compressive loading. Therefore, the material model could be derived in a 3-
dimension space to introduce splitting effects in the thickness direction.

91

Bibliography

[1] D’Altri A M, Sarhosis V, Milani G, et al., “Modeling strategies for the computational analysis of unreinforced

masonry structures: review and classification,” Archives of computational methods in engineering, pp. 1-33,

2019.

[2] A.T. Vermeltffort, D.R.W.Martens, and G.P.A.G.van Zijl, “Brick-mortar interface effects on masonry under

compression,” Canadian Journal of Civil Engineering, pp. 1475-1485, 2007.

[3] P. A. W, “The biaxial compressive strength of brick masonry,” Proceedings of the Institution of Civil Engineers,

vol. 71, no. 3, pp. 893-906, 1981.

[4] Leuchars J M, Scrivener J C, “Masonry infill panels subjected to cyclic in-plane loading,” Bulletin of the New

Zealand Society for Earthquake Engineering, vol. 9, no. 2, pp. 122-131, 1976.

[5] H. H. K, “Investigation into the failure mechanisms of brick masonry loaded in axial compression,” FH Johnson

(ed): Designing, engineering and constructing with masonry products, pp. 34-41, 1969.

[6] A. W. Page, “Finite element model for masonry,” Journal of the Structural Division, vol. 104, no. 8, pp. 1267-

1285, 1978.

[7] Lourenço P B, Rots J, “Analysis of masonry structures with interface elements,” Rep. No. 03-21-22-0, 1994.

[8] P. B. Lourenço, “Computational strategies for masonry structures,” Delft University Press, Delft, 1996.

[9] R. J. G, “Numerical simulation of cracking in structural masonry,” Heron, vol. 36, no. 2, pp. 49-63, 1991.

[10] Paulo B. Lourenço, Jan G. Rots, “Multisurface Interface Model for analysis of Masonry Structure,” J. Eng.

Mech., pp. 660-668, 1997.

[11] Oliveira D V, Lourenço P B, “Implementation and validation of a constitutive model for the cyclic behaviour of

interface elements,” Computers & structures, vol. 82, no. 17-19, pp. 1451-1461, 2004.

[12] Malomo D, Pinho R, Penna A, “Using the applied element method for modelling calcium silicate brick masonry

subjected to in‐plane cyclic loading,” Earthquake Engineering & Structural Dynamics, vol. 47, no. 7, pp. 1610-

1630, 2018.

[13] Kuang J S, Yuen Y P, “Simulations of masonry-infilled reinforced concrete frame failure,” Proceedings of the

Institution of Civil Engineers-Engineering and Computational Mechanics, vol. 166, no. 4, pp. 179-193, 2013.

[14] Miglietta P C, Bentz E C, Grasselli G, “ Finite/discrete element modelling of reversed cyclic tests on

unreinforced masonry structures,” Engineering Structures, vol. 138, pp. 159-169, 2017.

[15] Ali S S, Page A W, “Finite element model for masonry subjected to concentrated loads,” Journal of structural

engineering, vol. 114, no. 8, pp. 1761-1784, 1988.

[16] Petracca M, Pelà L, Rossi R, et al., “Micro-scale continuous and discrete numerical models for nonlinear

analysis of masonry shear walls,” Construction and Building Materials, vol. 149, pp. 296-314, 2017.

[17] D. P. G, “Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials,”

Meccanica, vol. 24, no. 3, pp. 150-162, 1989.

[18] Maier G, Nappi A, “ A theory of no-tension discretized structural systems,” Engineering structures, vol. 12, no.

4, pp. 227-234, 1990.

[19] A. M, “A finite element approach to the study of no-tension structures,” Finite elements in analysis and design,

vol. 17, no. 1, pp. 57-73, 1994.

[20] A. Zucchini, P.B. Lourenço, “A coupled homogenisation–damage model,” Computers and Structures, p. 917–

929, 2004.

[21] A. Zucchini, P.B. Lourenço, “A micro-mechanical homogenisation model for masonry: Application to shear

walls,” International Journal of Solids and Structures, vol. 46, no. 3-4, pp. 871-886, 2009.

[22] Leonetti L, Greco F, Trovalusci P, et al., “A multiscale damage analysis of periodic composites using a couple-

stress/Cauchy multidomain model: Application to masonry structures,” Composites Part B: Engineering, vol.

141, pp. 50-59, 2018.

[23] Luís C. Silva, Paulo B. Lourenço, Gabriele Milani, “Numerical homogenization‐based seismic assessment of an

English‐bond masonry prototype: Structural level application,” Earthquake Engineering & Structural Dynamics,

vol. 49, no. 9, pp. 841-862, 2020.

92 Bibliography

[24] Quagliarini E, Maracchini G, Clementi F, “Uses and limits of the Equivalent Frame Model on existing

unreinforced masonry buildings for assessing their seismic risk: A review,” Journal of Building Engineering,

vol. 10, pp. 166-182, 2017.

[25] D. M, “Schematizzazione e modellazione degli edifici in muratura soggetti ad azioni sismiche,” Industria delle

costruzioni, vol. 25, no. 242, pp. 44-57, 1991.

[26] Block P, Lachauer L, “Three-dimensional (3D) equilibrium analysis of gothic masonry vaults,” International

Journal of Architectural Heritage, vol. 8, no. 3, pp. 312-335, 2014.

[27] Chiozzi A, Milani G, Grillanda N, et al., “ A fast and general upper-bound limit analysis approach for out-of-

plane loaded masonry walls,” Meccanica, vol. 53, no. 7, pp. 1875-1898, 2018.

[28] Lopez J, Oller S, Oñate E, et al., “A homogeneous constitutive model for masonry,” International journal for

numerical methods in engineering, vol. 46, no. 10, pp. 1651-1671, 1999.

[29] A. A, “Derivation of the in-plane elastic characteristics of masonry through homogenization theory,”

International journal of solids and structures, vol. 32, no. 2, pp. 137-163, 1995.

[30] A. Zucchini, P.B. Lourenço, “A micro-mechanical model for the homogenisation of masonry,” International

Journal of Solids and Structures 39, p. 3233–3255, 2002.

[31] J. Oliver, M. Cervera, S. Oller and J. Lubliner, “Isotropic Damage Models And Smeared Crack Analysis of

Concrete,” Proc 2nd ICCAADS, vol. 2, pp. 945-958, 1990.

[32] A. Zucchini, P.B. Lourenço, “Mechanics of masonry in compression: results from a homogenisation approach,”

Computers and Structures, vol. 85, pp. 193-204, 2007.

[33] Dimitris Theodossopoulos, Braj Sinha, “A review of analytical methods in the current design processes and

assessment,” Construction and Building Materials, pp. 990-1001, 2013.

[34] Prof. dr. ir. R.de Borst and Prof. dr. ir. L. J. Sluys, “Basic Notions in Elasto-Plasticity,” in Computational

Methods in Non-linear Solid Mechanics, Delft, Delft University of Technology, 2015, pp. 77-96.

[35] Paulo B. Lourenc o̧, J. Pina-Henriques, “Validation of analytical and continuum numerical methods,” Computers

and Structures 84, p. 1977–1989, 2006.

[36] M. Salamon, “Elastic moduli of a stratified rock mass,” International Journal of Rock Mechanics and Mining

Sciences & Geomechanics Abstracts, vol. 5, no. 6, pp. 519-527, 1968.

[37] Prof. dr. ir. R.de Borst and Prof. dr. ir. L. J. Sluys, “Computational Elasto-plasticity,” in Computational Methods

in Non-linear Solid Mechanics, Delft, Delft University of Technology, 2015, pp. 103-110.

[38] D. F. bv, “DIANA Documentation release 10.3,” 1 March 2019. [Online]. Available:

https://dianafea.com/manuals/d93/Analys/node375.html.

[39] Maurizio Angelillo, Paulo B. Lourenço and Gabriele Milani, “Masonry Behaviour and Modelling,” Mechanics of

masonry structures, pp. 1-26, 2014.

[40] Jonna Manie and Wijtze Pieter Kikstra, “Element Library,” in Diana Finite Element Analysis User's Manual,

TNO DIANA BV, Release 9.5.

[41] Rita Esposito, Francesco Messali, Jan Rots, “TESTS FOR THE CHARACTERIZATION OF REPLICATED

MASONRY AND WALL TIES: Physical Testing and Modelling – Masonry Structures,” Delft University of

Technology, Delft, 2016.

93

Appendix A: MATLAB Code (Model 2)
clear all;
% properties setting:
% internal stress selection: SIGXXU(DU),SIGXXH(DH),TAUXYB(DB),SIGXXC(DC)
E = 1000; C1 = 5;
EU = C1*E; EB = E; EH = E; EC = E;
V = 0.2;
% shear modulus of mortar
GB = E/(2*(1+V));
% I and II fracture energy
GI = 0.01; GII = 0.05;
% properties of masonry: L=C2*T, H=C3*T
C2 = 12; C3 = 2;
% initial value of external strain and damage factor:
EPSXX0 = 0;
DH = 0; DU = 0; DB = 0; DC = 0;
% Shear and tension strength:
% Tension strength of brick unit
SIGTU = 1.3;
% Tension strength of mortar
SIGTM = 0.5;
% Shear strength of mortar
SIGS = 0.75;
% element size
% ATM must be positive, check maximum mesh size: HH < 80
% ATU must be positive, check maximum mesh size: HH < 59
% AS must be positive, check maximum mesh size: HH <74
HH = 50;
a = [];
b = [];
c = [];
d = [];
e = [];
% Tolerance of calculted and assumed damge factor
TOR = 0.00001;
% outer loop: strain interation
for i = 1:500
 EPSXX0 = EPSXX0 + 0.00001;
 % inner loop: verification of damage factor
 while DH <= 1 & DU <= 1 & DC <= 1 & DB <= 1
 % undamage factor of each component
 RH = 1-DH;
 RB = 1-DB;
 RC = 1-DC;
 RU = 1-DU;
 % tension stress in head joint
 SIGXXH = -0.4e1 * (C2 + 1) * E * EPSXX0 * (-(GB * RB * (V - 1) * (V + 1) * C2) / 0.4e1 + GB * RB * ((V
^ 2) / 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RU) * (C1 * C2 * RU + RH) / (C1 * GB * RB * RU * (V - 1) * (V +
1) * (C2 ^ 3) - 0.4e1 * (GB * RB * (-(V ^ 2) / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RU) * RH * (C2 ^ 2) + (-C1
* GB * RB * RU * (V - 1) * (V + 1) + 0.4e1 * E * C3 * (RU ^ 2 * (V ^ 2 - 1) * C1 ^ 2 - 0.2e1 * C1 * RH * RU * (V
^ 2) + RH ^ 2 * (V ^ 2 - 1))) * C2 - 0.4e1 * (GB * RB * ((V ^ 2) / 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RU) *
RH);
 % tension stress in brick unit
 SIGXXU = -0.4e1 * (C2 + 1) * C1 * E * (-(GB * RB * (V - 1) * (V + 1) * C2) / 0.4e1 + GB * RB * ((V ^ 2) /
0.4e1 - 0.1e1 / 0.4e1) + C3 * E * RH) * EPSXX0 * ((C1 * C2 * RU) + RH) / ((C1 * GB * RB * RU * (V - 1) * (V

94 Appendix A: MATLAB Code (Model 2)

+ 1) * C2 ^ 3) - 0.4e1 * (GB * RB * (-(V ^ 2) / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RU) * RH * (C2 ^ 2) + (-
(C1 * GB * RB * RU * (V - 1) * (V + 1)) + 0.4e1 * E * C3 * ((RU ^ 2 * (V ^ 2 - 1) * C1 ^ 2) - 0.2e1 * C1 * RH *
RU * (V ^ 2) + RH ^ 2 * (V ^ 2 - 1))) * C2 - 0.4e1 * (GB * RB * ((V ^ 2) / 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E *
RU) * RH);
 % tension stress in cross joint
 SIGXXC = E * EPSXX0 * ((RU * C1 * GB * RB ^ 2 * RC * (V - 1) * (V + 1) * C2 ^ 3) / 0.4e1 - RH * RB *
((-(V ^ 2 * GB) / 0.4e1 + GB / 0.4e1) * RB + (C1 * C3 * E * RU)) * RC * (C2 ^ 2) + (-(RU * C1 * GB * (V - 1) *
(V + 1) * RB ^ 2) / 0.4e1 + E * C3 * ((RU ^ 2 * (V ^ 2 - 1) * C1 ^ 2) - 0.2e1 * C1 * RH * RU * (V ^ 2) + RH ^ 2 *
(V ^ 2 - 1)) * RB + E * RU * (V ^ 2) * C1 * C3 * RH * ((RU * C1) - RH)) * RC * C2 + 0.2e1 * (-(GB * RC * (V -
1) * (V + 1) * RB ^ 2) / 0.8e1 + E * RU * C1 * C3 * (-RC / 0.2e1 + (C1 * RU * V ^ 2) - RH * (V ^ 2)) * RB - E *
RU * (V ^ 2) * C1 * C3 * RC * ((RU * C1) - RH) / 0.2e1) * RH) * (C2 + 1) / RC / ((C1 * GB * RB * RU * (V - 1)
* (V + 1) * C2 ^ 3) / 0.4e1 - RH * ((-(V ^ 2 * GB) / 0.4e1 + GB / 0.4e1) * RB + (C1 * C3 * E * RU)) * (C2 ^ 2) +
(-(C1 * GB * RB * RU * (V - 1) * (V + 1)) / 0.4e1 + E * C3 * ((RU ^ 2 * (V ^ 2 - 1) * C1 ^ 2) - 0.2e1 * C1 * RH *
RU * (V ^ 2) + RH ^ 2 * (V ^ 2 - 1))) * C2 - RH * (((V ^ 2 * GB) / 0.4e1 - GB / 0.4e1) * RB + (C1 * C3 * E * RU)))
/ (RC * C2 + 2 * RB - RC);
 % shear stress between bed joint and brick unit
 TAUXYB = 0.2e1 * (V - 1) * (V + 1) * ((C1 * C2 * RU) + RH) * C3 * E * EPSXX0 * (C2 + 1) * ((RU * C1) -
RH) * GB / ((C1 * GB * RB * RU * (V - 1) * (V + 1) * C2 ^ 3) - 0.4e1 * ((C1 * C3 * E * RU) - (GB * RB * (V - 1)
* (V + 1)) / 0.4e1) * RH * (C2 ^ 2) + ((4 * E * C3 * RU ^ 2 * (V - 1) * (V + 1) * C1 ^ 2) - 0.8e1 * RU * ((V ^ 2) *
C3 * E * RH + (GB * RB * (V - 1) * (V + 1)) / 0.8e1) * C1 + 0.4e1 * E * C3 * RH ^ 2 * (V - 1) * (V + 1)) * C2 -
0.4e1 * ((C1 * C3 * E * RU) + (GB * RB * (V - 1) * (V + 1)) / 0.4e1) * RH);
 % effective stresses of each component based on damage factor
 SXH = max(abs(SIGXXH),SIGTM);
 SXU = max(abs(SIGXXU),SIGTU);
 TXYB = max(abs(TAUXYB),SIGS);
 SXC = max(abs(SIGXXC),SIGTM);
 % with smeared crack model
 % characteristic length of element is element size
 LT = HH;
 LS = HH;
 ATM = (((GI*EH)/(LT*SIGTM^2))-(1/2))^(-1);
 ATU = (((GI*EU)/(LT*SIGTU^2))-(1/2))^(-1);
 ATC = (((GI*EC)/(LT*SIGTM^2))-(1/2))^(-1);
 ASB = (((GII*GB)/(LS*SIGS^2))-(1/2))^(-1);
 % Calculate damage factor from internal stresses
 if RH < TOR
 DHC = 1;
 else
 DHC = 1-(SIGTM*exp(ATM*(1-(SXH/SIGTM)))/SXH);
 end
 DUC = 1-(SIGTU*exp(ATU*(1-(SXU/SIGTU)))/SXU);
 DCC = 1-(SIGTM*exp(ATC*(1-(SXC/SIGTM)))/SXC);
 DBC = 1-(SIGS*exp(ASB*(1-(TXYB/SIGS)))/TXYB);
 % Verification of damage factor
 % Since damage factor will influence stress itself
 % damage factor should be verificated together
 if DHC >= 0 & DUC >=0 & DCC >=0 & DBC >= 0
 if abs(DHC-DH) < TOR
 if abs(DUC-DU) < TOR
 if abs(DCC-DC) < TOR
 if abs(DBC-DB) < TOR
 break;
 else
 DB = DBC;
 end
 else

95

 DC = DCC;
 end
 else
 DU = DUC;
 end
 else
 DH = DHC;
 end
 else
 break;
 end
 end
 % total undamaged stress of cell
 sigxxh = RH*SIGXXH;
 sigxxu = RU*SIGXXU;
 sigxxc = RC*SIGXXC;
 tauxyb = RB*TAUXYB;
 SIGXX0 = RH*SIGXXH*C3 + 2*RC*SIGXXC + C3*(RU*SIGXXU + RB*TAUXYB*(C2 - 1)/(2*C3))/2*(C3 +
1);
 STIFF = (C2 + 1) * (((GB * RB * RC * (V - 1) * (V + 1) * C2 ^ 3) / 0.4e1 + (GB * ((V ^ 2) / 0.2e1 - 0.1e1 /
0.2e1) * (RB ^ 2) - (GB * RB * RC * (V - 1) * (V + 1)) / 0.2e1 - (E * C3 * RC * RH)) * (C2 ^ 2) + (GB * (-(V ^ 2)
/ 0.2e1 + 0.1e1 / 0.2e1) * (RB ^ 2) + (-(2 * C3 * E * RH) + (E + GB / 0.4e1) * (V + 1) * (V - 1) * RC) * RB + (E
* RC * RH * (V ^ 2 + C3))) * C2 + 0.2e1 * RH * E * (RB - RC / 0.2e1) * (V ^ 2)) * C3 * RU ^ 2 * C1 ^ 2 - 0.2e1
* (-(GB * RC * (V - 1) * (V + 1) * RB ^ 2 * C2 ^ 3) / 0.8e1 + RH * RB * C3 * (-(V ^ 2 * GB) / 0.4e1 + E + GB /
0.4e1) * RC * (C2 ^ 2) / 0.2e1 + (-GB * (V + 1) * (V - 1) * ((C3 * RH) - RC / 0.2e1) * (RB ^ 2) / 0.4e1 + C3 *
RC * RH * ((E * V ^ 2) + (V ^ 2 * GB) / 0.4e1 - GB / 0.4e1) * RB + (E * C3 * RC * RH ^ 2 * (V ^ 2 + C3)) / 0.2e1)
* C2 + (((V ^ 2) / 0.4e1 - 0.1e1 / 0.4e1) * GB * (RB ^ 2) + ((C3 * E * RH) + (E * V ^ 2 * RH) + (-(V ^ 2 * GB) /
0.4e1 + E + GB / 0.4e1) * RC / 0.2e1) * RB - (E * RC * RH * (V ^ 2 + C3)) / 0.2e1) * RH * C3) * RU * C1 + (V
+ 1) * RH * RB * ((E * C2 * C3 * RH) + (C2 ^ 2 * GB * RB) / 0.4e1 - (GB * RB) / 0.4e1) * (V - 1) * RC) * E / (E
* RU ^ 2 * C2 * C3 * (V - 1) * (V + 1) * C1 ^ 2 - 0.2e1 * (-(GB * RB * (V - 1) * (V + 1) * C2 ^ 3) / 0.8e1 + (E *
C2 ^ 2 * C3 * RH) / 0.2e1 + (GB * RB * ((V ^ 2) / 0.8e1 - 0.1e1 / 0.8e1) + (V ^ 2 * C3 * E * RH)) * C2 + (C3 *
E * RH) / 0.2e1) * RU * C1 + (V + 1) * RH * ((E * C2 * C3 * RH) + (C2 ^ 2 * GB * RB) / 0.4e1 - (GB * RB) /
0.4e1) * (V - 1)) / (C3 + 1) / (C2 * RC + 2 * RB - RC);
 a = [a,SIGXX0];
 b = [b,sigxxh];
 c = [c,sigxxu];
 d = [d,sigxxc];
 e = [e,tauxyb];
end

96 Appendix A: MATLAB Code (Model 2)

97

Appendix B: Fortran Code (Model 2)
!DEC$ ATTRIBUTES DLLEXPORT::USRMAT
 SUBROUTINE USRMAT(EPS0, DEPS, NS, AGE0, DTIME, TEMP0,
 $ DTEMP, ELEMEN, INTPT, COORD, SE, ITER,
 $ USRMOD, USRVAL, NUV, USRSTA, NUS,
 $ USRIND, NUI, SIG, STIFF)
 IMPLICIT NONE
C
! IN DBL EPS0(NS) STRAIN VECTOR AT START OF STEP
! IN DBL DEPS(NS) TOTAL STRAIN INCREMENT
! IN INT NS NUMBER OF STRESS COMPONENTS
! IN DBL AGE0 AGE OF ELEMENT
! IN DBL DTIME TOTAL TIME INCREMENT
! IN DBL TEMP0 TEMPERATURE
! IN DBL DTEMP TOTAL TEMPERATURE INCREMENT
! IN INT ELEMEN CURRENT ELEMENT NUMBER
! IN INT INTPT CURRENT INTEGRATION POINT NUMBER
! IN DBL COORD(3) COORDINATES OF INTERGRATION POINT
! IN DBL SE(NS,NS) ELASTICITY MATRIX
! IN INT ITER CURRENT ITERATION NUMBER
! IN CHA USRMOD*6 USER MODEL NAME
! IN DBL USRVAL(NUV) USER PARAMETER
! IN INT NUV NUMBER OF USER PARAMETERS
! IN DBL USRSTA(NUS) USER STATE VARIABLES AT START OF STEP
! OUT DBL USRSTA(NUS) UPDATED USER STATE VARIABLES
! IN INT NUS NUMBER OF USER STATE VARIABLES
! IN INT USRIND(NUI) USER INDICATORS AT START OF STEP
! OUT INT USRIND(NUI) UPDATED USER INDICATORS
! IN INT NUI NUMBER OF USER INDICATORS
! IN DBL SIG(NS) TOTAL STRESS AT START OF STEP
! OUT DBL SIG(NS) CURRENT TOTAL STRESS
! IN DBL STIFF(NS,NS) PREVIOUS TANGENT STIFFNESS
! OUT DBL STIFF(NS,NS) CURRENT TANGENT STIFFNESS
C
! MATHMATIC IDENTIFY OF VARIABLES
 CHARACTER*6 USRMOD
C
! VARIABLES DEFINED BY USRMAT
 INTEGER NS, NUV, NUS, NUI, ELEMEN, INTPT, ITER
 DOUBLE PRECISION EPS0(NS), DEPS(NS), AGE0, DTIME, TEMP0,
 $ DTEMP, COORD(3), SE(NS,NS), USRVAL(NUV),
 $ USRSTA(NUS), SIG(NS), STIFF(NS,NS)
 INTEGER USRIND(NUI)
C
! VAIABLES DEFINED BY SELF
 DOUBLE PRECISION DH, DU, DC, DB, GI, GII, SIGTM, SIGTU,
 $ SIGS, E, V, TOR, HH, GB, C1, C2, C3
 DOUBLE PRECISION EPSXX0, SIGXX0
 DOUBLE PRECISION EU, EH, EC, EB, LT, LS, ATM, ATU, ASM,
 $ RH, RU, RC, RB, SIGXXHC, SIGXXUC,
 $ SIGXXCC, TAUXYBC, SXH, SXU, SXC, TXYB,
 $ DHC, DUC, DCC, DBC
 DOUBLE PRECISION SIGXXH, SIGXXU, SIGXXC, TAUXYB, DMT,
 $ DUT, DMS, THC, TUC, TCC, TBC, SIGXX0C,
 $ STIFFNESS

98 Appendix B: Fortran Code (Model 2)

C
C MAIN PROGRAM: MODELII
! MODEL II: COUPLED SHEAR AND TENSION BEHAVIOURS
! MATERIAL PROPERTIES
 DH = USRSTA(1)
 DU = USRSTA(2)
 DC = USRSTA(3)
 DB = USRSTA(4)
 GI = USRVAL(1)
 GII = USRVAL(2)
 SIGTM = USRVAL(3)
 SIGTU = USRVAL(4)
 SIGS = USRVAL(5)
 E = USRVAL(6)
 V = USRVAL(7)
 TOR = USRVAL(8)
 HH = USRVAL(9)
 GB = USRVAL(10)
! INDENTIFY RELATIVE PARAMETERS
 C1 = USRVAL(11)
! GEOMETRICAL PROPERTIES: L=C2*T, H=C3*T
! L IS HALF LENGTH OF BRICK UNIT
! T IS HALF THICKNESS OF JOINT
! H IS HALF HEIGHT OF BRICK UNIT AND HEAD JOINT
 C2 = USRVAL(12)
 C3 = USRVAL(13)
C
! MATERIAL PROPERTIES OF EACH COMPONENT
 EU = C1*E
 EH = E
 EC = E
 EB = E
 LT = HH
 LS = HH
! CALCULATE OF DAMAGED PARAMETERS
 ATM = (((GI*EH)/(LT*SIGTM**2.0D0))-(1.0D0/2.0D0))**(-1.0D0)
 ATU = (((GI*EU)/(LT*SIGTU**2.0D0))-(1.0D0/2.0D0))**(-1.0D0)
 ASM = (((GII*GB)/(LS*SIGS**2.0D0))-(1.0D0/2.0D0))**(-1.0D0)
! DEFINATION OF EXTERNALLY HORIZONTAL STRAIN
 EPSXX0 = EPS0(1)+DEPS(1)
C
! INNER LOOP: CHECK DAMAGE FACTOR
 DO 30, WHILE(DH .LE. 1.0D0) .AND. (DU .LE. 1.0D0) .AND.
 $ (DC .LE. 1.0D0) .AND. (DB .LE. 1.0D0)
! UNDAMAGE FACTOR OF EACH COMPONENT
 RH = 1-DH
 RU = 1-DU
 RC = 1-DC
 RB = 1-DB
! TENSION STRESS IN HEAD JOINT
 SIGXXHC = SIGXXH(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
! TENSION STRESS IN BRICK UNIT
 SIGXXUC = SIGXXU(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
! TENSION STRESS IN CROSS JOINT

99

 SIGXXCC = SIGXXC(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
! SHEAR STRESS BETWEEN BED JOINT AND BRICK UNIT
 TAUXYBC = TAUXYB(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
C
! EFFECTIVE STRESSES OF EACH COMPONENT
 SXH = MAX(ABS(SIGXXHC),SIGTM)
 SXU = MAX(ABS(SIGXXUC),SIGTU)
 SXC = MAX(ABS(SIGXXCC),SIGTM)
 TXYB = MAX(ABS(TAUXYBC),SIGS)
! CALCULATE DAMAGE FACTOR FROM INTERNAL STRESSES
 DHC = DMT(SIGTM, ATM, SXH)
 DUC = DUT(SIGTU, ATU, SXU)
 DCC = DMT(SIGTM, ATM, SXC)
 DBC = DMS(SIGS, ASM, TXYB)
C
! DAMAGE FACTOR FROM STRESS CAL.
 IF (DHC .LT. 0.0D0) THEN
 EXIT
 END IF
 IF (DUC .LT. 0.0D0) THEN
 EXIT
 END IF
 IF (DCC .LT. 0.0D0) THEN
 EXIT
 END IF
 IF (DBC .LT. 0.0D0) THEN
 EXIT
 END IF
! FINAL DAMAGE FACTOR
 THC = ABS(DHC - DH)
 TUC = ABS(DUC - DU)
 TCC = ABS(DCC - DC)
 TBC = ABS(DBC - DB)
 IF (THC .LT. TOR) THEN
 IF (TUC .LT. TOR) THEN
 IF (TCC .LT. TOR) THEN
 IF (TBC .LT. TOR) THEN
 EXIT
 ELSE
 DB = DBC
 END IF
 ELSE
 DC = DCC
 END IF
 ELSE
 DU = DUC
 END IF
 ELSE
 DH = DHC
 END IF
30 CONTINUE
C
! DAMAGED STRESS AND DAMGED STIFFNESS
 SIGXX0C = SIGXX0(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)

100 Appendix B: Fortran Code (Model 2)

 SIG(1) = SIGXX0C
 STIFFC = STIFFNESS(RH, RU, RC, RB, E, GB, V, C1,
 $ C2, C3)
 STIFF(1,1) = STIFFC
C
! STORE OUTPU BY USRSTA MATRIX
 USRSTA(1) = DH
 USRSTA(2) = DU
 USRSTA(3) = DC
 USRSTA(4) = DB
 END SUBROUTINE USRMAT
C
C SUBPROGRAM: INTERNAL STRESS TENSION STRESS IN HEAD JOINT
 REAL FUNCTION SIGXXH(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
 IMPLICIT NONE
 REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB
 REAL ::E, GB, V, C1, C2, C3
 SIGXXH = -0.4D1 * DBLE(C2 + 1) * E * EPSXX0 * (-DBLE(GB
 $ * RB * (V - 1) * (V + 1) * C2) / 0.4D1 + DBLE(GB) *
 $ DBLE(RB) * (DBLE(V ** 2) / 0.4D1 - 0.1D1 / 0.4D1) +
 $ C1 * C3 * E * RU) * (C1 * DBLE(C2) * RU + RH) /
 $ (C1 * DBLE(GB) * DBLE(RB) * RU * DBLE(V - 1) *
 $ DBLE(V + 1) * DBLE(C2 ** 3) - 0.4D1 * (DBLE(GB) *
 $ DBLE(RB) * (-DBLE(V ** 2) / 0.4D1 + 0.1D1 / 0.4D1) +
 $ C1 * C3 * E * RU) * RH * DBLE(C2 ** 2) + (-C1 *
 $ DBLE(GB) * DBLE(RB) * RU * DBLE(V - 1) * DBLE(V + 1)
 $ + 0.4D1 * E * C3 * (RU ** 2 * DBLE(V ** 2 - 1) * C1
 $ ** 2 - 0.2D1 * C1 * RH * RU * DBLE(V ** 2) + RH ** 2
 $ * DBLE(V ** 2 - 1))) * DBLE(C2) - 0.4D1 * (DBLE(GB)
 $ * DBLE(RB) * (DBLE(V ** 2) / 0.4D1 - 0.1D1 / 0.4D1)
 $ + C1 * C3 * E * RU) * RH)
 RETURN
 END FUNCTION SIGXXH
C
C SUBPROGRAM: INTERNAL STRESS TENSION STRESS IN HEAD JOINT
 REAL FUNCTION SIGXXU(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
 IMPLICIT NONE
 REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB
 REAL ::E, GB, V, C1, C2, C3
 SIGXXU = -0.4D1 * DBLE(C2 + 1) * DBLE(C1) * E *
 $ (-DBLE(GB * RB * (V - 1) * (V + 1) * C2) / 0.4D1 +
 $ DBLE(GB) * DBLE(RB) * (DBLE(V ** 2) / 0.4D1 - 0.1D1 /
 $ 0.4D1) + C3 * E * RH) * EPSXX0 * (DBLE(C1 * C2 * RU)
 $ + RH) / (DBLE(C1 * GB * RB * RU * (V - 1) * (V + 1) *
 $ C2 ** 3) - 0.4D1 * (DBLE(GB) * DBLE(RB) * (-DBLE(V **
 $ 2) / 0.4D1 + 0.1D1 / 0.4D1) + DBLE(C1) * C3 * E *
 $ DBLE(RU)) * RH * DBLE(C2 ** 2) + (-DBLE(C1 * GB * RB *
 $ RU * (V - 1) * (V + 1)) + 0.4D1 * E * C3 * (DBLE(RU **
 $ 2 * (V ** 2 - 1) * C1 ** 2) - 0.2D1 * DBLE(C1) * RH *
 $ DBLE(RU) * DBLE(V ** 2) + RH ** 2 * DBLE(V ** 2 - 1)))
 $ * DBLE(C2) - 0.4D1 * (DBLE(GB) * DBLE(RB) * (DBLE(V **
 $ 2) / 0.4D1 - 0.1D1 / 0.4D1) + DBLE(C1) * C3 * E *
 $ DBLE(RU)) * RH)
 RETURN

101

 END FUNCTION SIGXXU
C
C SUBPROGRAM: INTERNAL STRESS TENSION STRESS IN HEAD JOINT
 REAL FUNCTION SIGXXC(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
 IMPLICIT NONE
 REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB
 REAL ::E, GB, V, C1, C2, C3
 SIGXXC = DBLE(C2 + 1) * DBLE(E) * EPSXX0 * (DBLE(RU *
 $ C1 * GB * RB ** 2 * RC * (V - 1) * (V + 1) * C2 ** 3)
 $ / 0.4D1 - RH * DBLE(RB) * ((-DBLE(V ** 2 * GB) / 0.4D1
 $ + DBLE(GB) / 0.4D1) * DBLE(RB) + DBLE(C1 * C3 * E *
 $ RU)) * DBLE(RC) * DBLE(C2 ** 2) + (-DBLE(RU * C1 * GB
 $ * (V - 1) * (V + 1) * RB ** 2) / 0.4D1 + DBLE(E) *
 $ DBLE(C3) * (DBLE(RU ** 2 * (V ** 2 - 1) * C1 ** 2) -
 $ 0.2D1 * DBLE(C1) * RH * DBLE(RU) * DBLE(V ** 2) + RH
 $ ** 2 * DBLE(V ** 2 - 1)) * DBLE(RB) + DBLE(E) *
 $ DBLE(RU) * DBLE(V ** 2) * DBLE(C1) * DBLE(C3) * RH
 $ * (DBLE(RU * C1) - RH)) * DBLE(RC) * DBLE(C2) + 0.2D1
 $ * (-DBLE(GB * RC * (V - 1) * (V + 1) * RB ** 2) /
 $ 0.8D1 + DBLE(E) * DBLE(RU) * DBLE(C1) * DBLE(C3) *
 $ (-DBLE(RC) / 0.2D1 + DBLE(C1 * RU * V ** 2) - RH *
 $ DBLE(V ** 2)) * DBLE(RB) - DBLE(E) * DBLE(RU) *
 $ DBLE(V ** 2) * DBLE(C1) * DBLE(C3) * DBLE(RC) *
 $ (DBLE(RU * C1) - RH) / 0.2D1) * RH) / (DBLE(C1 *
 $ GB * RB * RU * (V - 1) * (V + 1) * C2 ** 3) / 0.4D1
 $ - RH * ((-DBLE(V ** 2 * GB) / 0.4D1 + DBLE(GB) / 0.4D1)
 $ * DBLE(RB) + DBLE(C1 * C3 * E * RU)) * DBLE(C2 ** 2) +
 $ (-DBLE(C1 * GB * RB * RU * (V - 1) * (V + 1)) / 0.4D1 +
 $ DBLE(E) * DBLE(C3) * (DBLE(RU ** 2 * (V ** 2 - 1) * C1
 $ ** 2) - 0.2D1 * DBLE(C1) * RH * DBLE(RU) * DBLE(V ** 2)
 $ + RH ** 2 * DBLE(V ** 2 - 1))) * DBLE(C2) - RH *
 $ ((DBLE(V ** 2 * GB) / 0.4D1 - DBLE(GB) / 0.4D1) *
 $ DBLE(RB) + DBLE(C1 * C3 * E * RU))) / DBLE(RC) /
 $ DBLE(RC * C2 + 2 * RB - RC)
 RETURN
 END FUNCTION SIGXXC
C
C SUBPROGRAM: INTERNAL STRESS SHEAR STRESS IN BED JOINT
 REAL FUNCTION TAUXYB(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
 IMPLICIT NONE
 REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB
 REAL ::E, GB, V, C1, C2, C3
 TAUXYB = 0.2D1 * DBLE(V - 1) * DBLE(V + 1) *
 $ (DBLE(C1 * C2 * RU) + RH) * DBLE(C3) * DBLE(E) *
 $ EPSXX0 * DBLE(C2 + 1) * (DBLE(RU * C1) - RH) *
 $ DBLE(GB) / (DBLE(C1 * GB * RB * RU * (V - 1) *
 $ (V + 1) * C2 ** 3) - 0.4D1 * (DBLE(C1 * C3 * E
 $ * RU) - DBLE(GB * RB * (V - 1) * (V + 1)) / 0.4D1)
 $ * RH * DBLE(C2 ** 2) + (DBLE(4 * E * C3 * RU ** 2
 $ * (V - 1) * (V + 1) * C1 ** 2) - 0.8D1 * DBLE(RU)
 $ * (DBLE(V ** 2) * DBLE(C3) * DBLE(E) * RH +
 $ DBLE(GB * RB * (V - 1) * (V + 1)) / 0.8D1) *
 $ DBLE(C1) + 0.4D1 * DBLE(E) * DBLE(C3) * RH ** 2
 $ * DBLE(V - 1) * DBLE(V + 1)) * DBLE(C2) - 0.4D1
 $ * (DBLE(C1 * C3 * E * RU) + DBLE(GB * RB * (V - 1)

102 Appendix B: Fortran Code (Model 2)

 $ * (V + 1)) / 0.4D1) * RH)
 RETURN
 END FUNCTION TAUXYB
C
C SUBPROGRAM: INTERNAL STRESS SHEAR STRESS IN BED JOINT
 REAL FUNCTION SIGXX0(EPSXX0, RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
 IMPLICIT NONE
 REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB
 REAL ::E, GB, V, C1, C2, C3
 SIGXX0 = DBLE(C2 + 1) * ((DBLE(GB * RB * RC * (V - 1)
 $ * (V + 1) * C2 ** 3) / 0.4D1 + (DBLE(GB) * (DBLE(V ** 2)
 $ / 0.2D1 - 0.1D1 / 0.2D1) * DBLE(RB ** 2) - DBLE(GB *
 $ RB * RC * (V - 1) * (V + 1)) / 0.2D1 - DBLE(E * C3 *
 $ RC * RH)) * DBLE(C2 ** 2) + (DBLE(GB) * (-DBLE(V **
 $ 2) / 0.2D1 + 0.1D1 / 0.2D1) * DBLE(RB ** 2) +
 $ (-DBLE(2 * C3 * E * RH) + (DBLE(E) + DBLE(GB) / 0.4D1)
 $ * DBLE(V + 1) * DBLE(V - 1) * DBLE(RC)) * DBLE(RB) +
 $ DBLE(E * RC * RH * (V ** 2 + C3))) * DBLE(C2) + 0.2D1
 $ * DBLE(RH) * DBLE(E) * (DBLE(RB) - DBLE(RC) / 0.2D1)
 $ * DBLE(V ** 2)) * DBLE(C3) * RU ** 2 * C1 ** 2 - 0.2D1
 $ * (-DBLE(GB * RC * (V - 1) * (V + 1) * RB ** 2 * C2
 $ ** 3) / 0.8D1 + DBLE(RH) * DBLE(RB) * DBLE(C3) *
 $ (-DBLE(V ** 2 * GB) / 0.4D1 + DBLE(E) + DBLE(GB) /
 $ 0.4D1) * DBLE(RC) * DBLE(C2 ** 2) / 0.2D1 + (-DBLE(GB)
 $ * DBLE(V + 1) * DBLE(V - 1) * (DBLE(C3 * RH) - DBLE(RC)
 $ / 0.2D1) * DBLE(RB ** 2) / 0.4D1 + DBLE(C3) * DBLE(RC)
 $ * DBLE(RH) * (DBLE(E * V ** 2) + DBLE(V ** 2 * GB) /
 $ 0.4D1 - DBLE(GB) / 0.4D1) * DBLE(RB) + DBLE(E * C3 *
 $ RC * RH ** 2 * (V ** 2 + C3)) / 0.2D1) * DBLE(C2) +
 $ ((DBLE(V ** 2) / 0.4D1 - 0.1D1 / 0.4D1) * DBLE(GB) *
 $ DBLE(RB ** 2) + (DBLE(C3 * E * RH) + DBLE(E * V ** 2
 $ * RH) + (-DBLE(V ** 2 * GB) / 0.4D1 + DBLE(E) + DBLE(GB)
 $ / 0.4D1) * DBLE(RC) / 0.2D1) * DBLE(RB) - DBLE(E * RC
 $ * RH * (V ** 2 + C3)) / 0.2D1) * DBLE(RH) * DBLE(C3))
 $ * RU * C1 + DBLE(V + 1) * DBLE(RH) * DBLE(RB) * (DBLE(E
 $ * C2 * C3 * RH) + DBLE(C2 ** 2 * GB * RB) / 0.4D1 -
 $ DBLE(GB * RB) / 0.4D1) * DBLE(V - 1) * DBLE(RC)) *
 $ DBLE(E) * EPSXX0 / (DBLE(E) * RU ** 2 * DBLE(C2) *
 $ DBLE(C3) * DBLE(V - 1) * DBLE(V + 1) * C1 ** 2 -
 $ 0.2D1 * (-DBLE(GB * RB * (V - 1) * (V + 1) * C2 ** 3)
 $ / 0.8D1 + DBLE(E * C2 ** 2 * C3 * RH) / 0.2D1 +
 $ (DBLE(GB) * DBLE(RB) * (DBLE(V ** 2) / 0.8D1 - 0.1D1
 $ / 0.8D1) + DBLE(V ** 2 * C3 * E * RH)) * DBLE(C2) +
 $ DBLE(C3 * E * RH) / 0.2D1) * RU * C1 + DBLE(V + 1) *
 $ DBLE(RH) * (DBLE(E * C2 * C3 * RH) + DBLE(C2 ** 2 *
 $ GB * RB) / 0.4D1 - DBLE(GB * RB) / 0.4D1) * DBLE(V
 $ - 1)) / DBLE(C3 + 1) / DBLE(RC * C2 + 2 * RB - RC)
 RETURN
 END FUNCTION SIGXX0
C
C SUBPROGRAM: STIFFNESS OF HOMOGENIZED CELL
 REAL FUNCTION STIFFNESS(RH, RU, RC, RB, E, GB, V,
 $ C1, C2, C3)
 IMPLICIT NONE
 REAL, INTENT(IN)::RH, RU, RC, RB

103

 REAL ::E, GB, V, C1, C2, C3
 STIFF = DBLE(C2 + 1) * ((DBLE(GB * RB * RC * (V - 1) *
 $ (V + 1) * C2 ** 3) / 0.4D1 + (DBLE(GB) * (DBLE(V **
 $ 2) / 0.2D1 - 0.1D1 / 0.2D1) * DBLE(RB ** 2) -
 $ DBLE(GB * RB * RC * (V - 1) * (V + 1)) / 0.2D1 -
 $ DBLE(E * C3 * RC * RH)) * DBLE(C2 ** 2) + (DBLE(GB)
 $ * (-DBLE(V ** 2) / 0.2D1 + 0.1D1 / 0.2D1) *
 $ DBLE(RB ** 2) + (-DBLE(2 * C3 * E * RH) + (DBLE(E)
 $ + DBLE(GB) / 0.4D1) * DBLE(V + 1) * DBLE(V - 1) *
 $ DBLE(RC)) * DBLE(RB) + DBLE(E * RC * RH * (V ** 2
 $ + C3))) * DBLE(C2) + 0.2D1 * DBLE(RH) * DBLE(E) *
 $ (DBLE(RB) - DBLE(RC) / 0.2D1) * DBLE(V ** 2)) *
 $ DBLE(C3) * RU ** 2 * C1 ** 2 - 0.2D1 * (-DBLE(GB
 $ * RC * (V - 1) * (V + 1) * RB ** 2 * C2 ** 3) /
 $ 0.8D1 + DBLE(RH) * DBLE(RB) * DBLE(C3) * (-DBLE(V
 $ ** 2 * GB) / 0.4D1 + DBLE(E) + DBLE(GB) / 0.4D1) *
 $ DBLE(RC) * DBLE(C2 ** 2) / 0.2D1 + (-DBLE(GB) *
 $ DBLE(V + 1) * DBLE(V - 1) * (DBLE(C3 * RH) -
 $ DBLE(RC) / 0.2D1) * DBLE(RB ** 2) / 0.4D1 + DBLE(C3)
 $ * DBLE(RC) * DBLE(RH) * (DBLE(E * V ** 2) + DBLE(V
 $ ** 2 * GB) / 0.4D1 - DBLE(GB) / 0.4D1) * DBLE(RB) +
 $ DBLE(E * C3 * RC * RH ** 2 * (V ** 2 + C3)) / 0.2D1)
 $ * DBLE(C2) + ((DBLE(V ** 2) / 0.4D1 - 0.1D1 / 0.4D1)
 $ * DBLE(GB) * DBLE(RB ** 2) + (DBLE(C3 * E * RH) +
 $ DBLE(E * V ** 2 * RH) + (-DBLE(V ** 2 * GB) / 0.4D1
 $ + DBLE(E) + DBLE(GB) / 0.4D1) * DBLE(RC) / 0.2D1) *
 $ DBLE(RB) - DBLE(E * RC * RH * (V ** 2 + C3)) / 0.2D1)
 $ * DBLE(RH) * DBLE(C3)) * RU * C1 + DBLE(V + 1) *
 $ DBLE(RH) * DBLE(RB) * (DBLE(E * C2 * C3 * RH) +
 $ DBLE(C2 ** 2 * GB * RB) / 0.4D1 - DBLE(GB * RB) /
 $ 0.4D1) * DBLE(V - 1) * DBLE(RC)) * DBLE(E) / (DBLE(E)
 $ * RU ** 2 * DBLE(C2) * DBLE(C3) * DBLE(V - 1) *
 $ DBLE(V + 1) * C1 ** 2 - 0.2D1 * (-DBLE(GB * RB *
 $ (V - 1) * (V + 1) * C2 ** 3) / 0.8D1 + DBLE(E * C2
 $ ** 2 * C3 * RH) / 0.2D1 + (DBLE(GB) * DBLE(RB) *
 $ (DBLE(V ** 2) / 0.8D1 - 0.1D1 / 0.8D1) + DBLE(V **
 $ 2 * C3 * E * RH)) * DBLE(C2) + DBLE(C3 * E * RH) /
 $ 0.2D1) * RU * C1 + DBLE(V + 1) * DBLE(RH) * (DBLE(E
 $ * C2 * C3 * RH) + DBLE(C2 ** 2 * GB * RB) / 0.4D1
 $ - DBLE(GB * RB) / 0.4D1) * DBLE(V - 1)) /
 $ DBLE(C3 + 1) / DBLE(C2 * RC + 2 * RB - RC)
 RETURN
 END FUNCTION STIFFNESS
C
C SUBPROGRAM: DAMAGE FACTOR CAL. FOR MORTAR IN TENSION
 REAL FUNCTION DMT(SIGTM, ATM, SXM)
 IMPLICIT NONE
 REAL, INTENT(IN)::SXM
 REAL ::SIGTM, ATM
 DMT = 1.0D0-SIGTM*EXP(ATM*(1.0D0-(SXM/SIGTM)))/SXM
 RETURN
 END FUNCTION DMT
C
C SUBPROGRAM: DAMAGE FACTOR CAL. FOR MORTAR IN SHEAR
 REAL FUNCTION DMS(SIGS, ASM, TXY)
 IMPLICIT NONE
 REAL, INTENT(IN)::TXY

104 Appendix B: Fortran Code (Model 2)

 REAL ::SIGS, ASM
 DMS = 1.0D0-SIGS*EXP(ASM*(1.0D0-(TXY/SIGS)))/TXY
 RETURN
 END FUNCTION DMS
C
C SUBPROGRAM: DAMAGE FACTOR CAL. FOR BRICK IN TENSION
 REAL FUNCTION DUT(SIGTU, ATU, SXU)
 IMPLICIT NONE
 REAL, INTENT(IN)::SXU
 REAL ::SIGTU, ATU
 DUT = 1.0D0-SIGTU*EXP(ATU*(1.0D0-(SXU/SIGTU)))/SXU
 RETURN
 END FUNCTION DUT

105

Appendix C: MATLAB Code (Model 3 Brick Unit)
clear all;
% properties setting:
% internal stress selection: SIGXXU(DU),SIGXXH(DH),TAUXYB(DB),SIGXXC(DC)
E = 1178; C1 = 4.13;
EU = C1*E;
V = 0.094;
VU = V;
phi = (10*pi)/180;
psi = (5*pi)/180;
GC = 29.8;
% I fracture energy
GI = 1.9;
% initial value of external strain and damage factor:
EPSYY0 = 0;
DEPSYY0 = 0.0005;
EPSPXXU = 0;
EPSPYYU = 0;
K = 0;
% initialize value of variables:
DU = 0; SU = 0;
DEPSPXXU = 0;
DEPSPYYU = 0;
% Tension and compression strength of brick unit
SIGTU = 3.7; fc = 26.9;
eps0 = 2*fc/EU; % ultimate strain
% element size
% ATU must be positive, check maximum mesh size: HH < 59
HH = 50;
LC = HH;
a = [];
b = [];
d = [];
% Tolerance of calculted and assumed damge factor
TOR = 0.00001;
TOR2 = 0.00001;
% outer loop: strain interation
for i = 1:300
 EPSYY0 = EPSYY0 + DEPSYY0;
 DK = sqrt((6 * DEPSPXXU ^ 2 + 6 * DEPSPYYU ^ 2)) / 0.3e1;
 K = K + DK;
 % find compressive strength by hardening parameter K:
 KMAX = ((2 * LC * eps0 * fc + 3 * GC) / LC / fc) / 0.2e1;
 if K <= eps0
 SIGC = (fc * (-2 * K ^ 2 / eps0 ^ 2 + 4 * K / eps0 + 1)) / 0.3e1;
 KC = (fc * (-4 * K / eps0 ^ 2 + 4 / eps0)) / 0.3e1;
 else
 if K < KMAX
 SIGC = fc * (0.1e1 - 0.4e1 / 0.9e1 * fc ^ 2 * LC ^ 2 / GC ^ 2 * (K - eps0) ^ 2);
 KC = -0.8e1 / 0.9e1 * fc ^ 3 * LC ^ 2 / GC ^ 2 * (K - eps0);
 else
 SIGC = 0;
 KC = -0.8e1 / 0.9e1 * fc ^ 3 * LC ^ 2 / GC ^ 2 * (KMAX - eps0);
 end
 end

106 Appendix C: MATLAB Code (Model 3 Brick Unit)

 % find critical stress:
 c = (0.1e1 - sin(phi)) / cos(phi) * SIGC / 0.2e1;
 SIGYYUC = (0.6e1 * (phi)) * SIGC / (sin(phi) + 0.3e1);
 SIGXXUC = 0;
 % judge if yielding:
 FU = sqrt(EPSYY0 ^ 2 * EU ^ 2) + 0.2e1 * sin(phi) / (0.3e1 - sin(phi)) * EPSYY0 * EU - 0.6e1 * c * cos(phi)
/ (0.3e1 - sin(phi));
 if FU <= 0
 DEPSPXXU = 0;
 DEPSPYYU = 0;
 else
 while c > 0
 % calculate plastic strain increment:
 DEPSPXXU = 0.6e1 * DEPSYY0 * (((((VU ^ 2 - 0.7e1 / 0.3e1 * VU + 0.7e1 / 0.3e1) * SIGXXUC ^ 2 -
0.3e1 / 0.2e1 * (VU ^ 2 - 0.11e2 / 0.9e1 * VU + 0.11e2 / 0.9e1) * SIGYYUC * SIGXXUC + (VU ^ 2 - 0.14e2 /
0.3e1 * VU + 0.14e2 / 0.3e1) * SIGYYUC ^ 2 / 0.2e1) * sin(phi) - 0.3e1 * ((VU ^ 2 + VU / 0.3e1 - 0.1e1 / 0.3e1)
* SIGXXUC - (VU ^ 2 + 0.2e1 / 0.3e1 * VU - 0.2e1 / 0.3e1) * SIGYYUC) * (-SIGYYUC / 0.2e1 + SIGXXUC)) *
sin(psi) - 0.3e1 * (-0.3e1 + sin(phi)) * ((VU ^ 2 + VU / 0.3e1 - 0.1e1 / 0.3e1) * SIGXXUC - (VU ^ 2 + 0.2e1 /
0.3e1 * VU - 0.2e1 / 0.3e1) * SIGYYUC) * (-SIGYYUC / 0.2e1 + SIGXXUC)) * sqrt(SIGXXUC ^ 2 - SIGXXUC
* SIGYYUC + SIGYYUC ^ 2) - 0.2e1 * ((((VU ^ 2 - VU / 0.3e1 + 0.1e1 / 0.3e1) * SIGXXUC - (VU ^ 2 + VU /
0.3e1 - 0.1e1 / 0.3e1) * SIGYYUC) * sin(phi) + (-0.3e1 * VU ^ 2 - VU + 0.1e1) * SIGXXUC + SIGYYUC *
(0.3e1 * VU ^ 2 + 0.2e1 * VU - 0.2e1)) * sin(psi) + 0.2e1 * (VU - 0.1e1) * (-SIGYYUC / 0.2e1 + SIGXXUC) *
sin(phi)) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2)) * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU)
+ 0.4e1 * SU) * VU - (37 * EU) - 0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU
^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC + 0.9e1 *
SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 /
0.9e1 * SU)) * sin(phi) + (-0.24e2 * SU * VU ^ 2 + (-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU)
* SIGXXUC ^ 2 + 0.54e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1
/ 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC - 0.27e2 * SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU
+ 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) * sin(psi) - 0.27e2 * (-0.3e1 + sin(phi))
* ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) *
SIGXXUC ^ 2 - 0.2e1 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 /
0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC + SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 /
0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC +
SIGYYUC ̂ 2) + 0.8e1 * ((sin(phi) - 0.3e1 / 0.2e1) * sin(psi) - 0.3e1 / 0.2e1 * sin(phi)) * (SIGXXUC + SIGYYUC)
* (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * EU);

 DEPSPYYU = 0.3e1 * (((((VU ^ 2 + 0.17e2 / 0.3e1 * VU - 0.17e2 / 0.3e1) * SIGXXUC ^ 2 - 0.3e1 *
(VU ^ 2 + 0.20e2 / 0.9e1 * VU - 0.20e2 / 0.9e1) * SIGYYUC * SIGXXUC + 0.2e1 * (VU ^ 2 + 0.10e2 / 0.3e1 *
VU - 0.10e2 / 0.3e1) * SIGYYUC ^ 2) * sin(phi) - 0.3e1 * ((VU ^ 2 + VU / 0.3e1 - 0.1e1 / 0.3e1) * SIGXXUC -
(VU ^ 2 + 0.2e1 / 0.3e1 * VU - 0.2e1 / 0.3e1) * SIGYYUC) * (SIGXXUC - 0.2e1 * SIGYYUC)) * sin(psi) - 0.3e1
* (-0.3e1 + sin(phi)) * ((VU ^ 2 + VU / 0.3e1 - 0.1e1 / 0.3e1) * SIGXXUC - (VU ^ 2 + 0.2e1 / 0.3e1 * VU - 0.2e1
/ 0.3e1) * SIGYYUC) * (SIGXXUC - 0.2e1 * SIGYYUC)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC +
SIGYYUC ^ 2) + 0.4e1 * ((((VU ^ 2 + 0.2e1 / 0.3e1 * VU - 0.2e1 / 0.3e1) * SIGXXUC - (VU + 0.2e1) * (VU -
0.2e1 / 0.3e1) * SIGYYUC) * sin(phi) + (-0.3e1 * VU ^ 2 - VU + 0.1e1) * SIGXXUC + SIGYYUC * (0.3e1 * VU
^ 2 + 0.2e1 * VU - 0.2e1)) * sin(psi) - sin(phi) * (SIGXXUC - 0.2e1 * SIGYYUC) * (VU - 0.1e1)) * (SIGXXUC ^
2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2)) * DEPSYY0 * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU) + 0.4e1 *
SU) * VU - (37 * EU) - 0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU
+ 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC + 0.9e1 * SIGYYUC ^ 2 *
(0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) *
sin(phi) + (-0.24e2 * SU * VU ^ 2 + (-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^
2 + 0.54e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU
- 0.2e1 / 0.9e1 * SU) * SIGXXUC - 0.27e2 * SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 /
0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) * sin(psi) - 0.27e2 * (-0.3e1 + sin(phi)) * ((0.8e1
/ 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC
^ 2 - 0.2e1 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU

107

- 0.2e1 / 0.9e1 * SU) * SIGXXUC + SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU)
* VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^
2) + 0.8e1 * ((sin(phi) - 0.3e1 / 0.2e1) * sin(psi) - 0.3e1 / 0.2e1 * sin(phi)) * (SIGXXUC + SIGYYUC) *
(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * EU);

 % recalculate softening modulus SUC:
 DL = 0.6e1 * ((-0.3e1 + sin(phi)) * (((-DEPSYY0 * VU - DEPSYY0) * VU + 0.2e1 / 0.3e1 * DEPSYY0
* VU + DEPSYY0 / 0.3e1) * SIGXXUC - SIGYYUC * ((-DEPSYY0 * VU - DEPSYY0) * VU + DEPSYY0 * VU
/ 0.3e1 + 0.2e1 / 0.3e1 * DEPSYY0)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.4e1 /
0.3e1 * sin(phi) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (-DEPSYY0 * VU + DEPSYY0))
* EU * (-0.3e1 + sin(psi)) / (0.8e1 * (SIGXXUC + SIGYYUC) * ((sin(psi) - 0.3e1 / 0.2e1) * sin(phi) - 0.3e1 /
0.2e1 * sin(psi)) * EU * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + (((0.8e1 * SU * VU ^ 2
+ (0.9e1 * EU + 0.4e1 * SU) * VU - 0.37e2 * EU - 0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * SIGYYUC * (0.4e1 /
0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC
+ 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1
* SU) * SIGYYUC ^ 2) * sin(psi) + (-0.24e2 * SU * VU ^ 2 + (-0.27e2 * EU - 0.12e2 * SU) * VU + 0.15e2 * EU
+ 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 *
SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC - 0.27e2 * SIGYYUC ^ 2 * (0.8e1 / 0.9e1 *
SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) * sin(phi) - 0.27e2 *
((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) *
SIGXXUC ^ 2 - 0.2e1 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 /
0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC + SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 /
0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) * (-0.3e1 + sin(psi)));

 fk = 0.3e1 / (0.3e1 - sin(phi)) * (0.1e1 - sin(phi)) * KC;

 SUC = 0.1e1 / (0.3e1 - sin(phi)) * (0.1e1 - sin(phi)) * KC * sqrt((6 * DEPSPXXU ^ 2 + 6 * DEPSPYYU
^ 2)) / DL;

 if abs(SUC-SU) < TOR2
 break;
 else
 SU = SUC;
 end
 d = [d,DL];
 end
 end
 EPSPXXU = EPSPXXU + DEPSPXXU;
 EPSPYYU = EPSPYYU + DEPSPYYU;
 if EPSYY0-EPSPYYU < 0
 EPSPYYU = EPSYY0;
 else
 end
 % inner loop: verification of damage factor
 % damage factor:
 while DU < 1
 % undamage factor of each component
 RU = 1-DU;
 SIGXXUP = 0;
 % stress in brick unit
 SXU = max(SIGXXUP,SIGTU);
 % characteristic length of element is element size
 LT = HH;
 ATU = (((GI*C1*E)/(LT*SIGTU^2))-(1/2))^(-1);
 % Calculate damage factor from internal stresses
 DUC = 1-(SIGTU*exp(ATU*(1-(SXU/SIGTU)))/SXU);
 % Verification of damage factor

108 Appendix C: MATLAB Code (Model 3 Brick Unit)

 % Since damage factor and aplhai will influence stress itself
 % damage factor and coefficent alpha should be verificated
 if DUC >= 0
 if abs(DUC-DU) < TOR
 break;
 else
 DUC = DU;
 end
 else
 break;
 end
 end
% total undamaged stress of cell
 SIGYY0 = RU * EU * (-EPSPYYU + EPSYY0);
 a = [a,SIGYY0];
 b = [b,SIGYYUC];
end

109

Appendix D: MATLAB Code (Model 3)
clear all;
% properties setting:
E = 1178; C1 = 4.13;
EU = C1*E; EH = E; EB = E; EC = E;
V = 0.057; % Poisson's ratio of mortar
VU = 0.094; % Poisson's ratio of brick
GB = E/(2*(1+V)); % shear modulus of mortar
% friction and dilatancy angel:
PHIU = (10*pi)/180;
PSIU = (5*pi)/180;
PHIM = (10*pi)/180;
PSIM = (5*pi)/180;
% I and II fracture energy
GIU = 1.9; GIM = 0.35;
GII = 0.05;
% compressive fracture energy
GCU = 29.8; GCM = 6.43;
% Shear, tension and compressive strength:
SIGTU = 3.7; % Tension strength of brick unit
SIGTM = 0.7; % Tension strength of mortar
FCU = 26.9; %compressive strength of brick
FCM = 3.2; % compressive strength of mortar
% Shear strength of mortar:
SIGS = 0.75; % should always be smaller than "2c*cos(phi)^2/(1-sin(phi))" with cmax = fc
% maximum strain of strain-stress curve under compression
EPS0U = 2*FCU/EU;
EPS0M = 2*FCM/E;

% geometrical properties:
C2 = 12; C3 = 2; % properties of masonry: L=C2*T, H=C3*T

% initial value of external strain and damage factor:
EPSYY0 = 0; % external strain
DEPSYY0 = 0.0001; % external strain increment
EPSPXXU = 0;EPSPYYU = 0; % initial value of plastic strain
EPSPXXH = 0;EPSPYYH = 0;
EPSPXXB = 0;EPSPYYB = 0;EPSPXYB = 0;
KU = 0; KH = 0; KB = 0; % initial value of hardening(softening) parameter
% initialize value of variables:
DH = 0; DU = 0; DB = 0; DC = 0; % damage varaiables
SU = 0; SH = 0; SB = 0; %softening modulus
DEPSPXXU = 0;DEPSPYYU = 0; % initialized value of plastic strain increment
DEPSPXXH = 0;DEPSPYYH = 0;
DEPSPXXB = 0;DEPSPYYB = 0;DEPSPXYB = 0;

% ATM must be positive, check maximum mesh size: HH < 80
% ATU must be positive, check maximum mesh size: HH < 59
% AS must be positive, check maximum mesh size: HH <74
HH = 10; % element size
LT = HH; LS = HH; LC = HH; % characteristic length of element is element size

% Tolerance of calculted and assumed damge factor
TOR = 0.00001; % verify damage factor
TOR2 = 0.00001; % verify hardening modulus

110 Appendix D: MATLAB Code (Model 3)

SWC = 0;

a = []; b = []; d = []; e = []; f = []; g = []; h = [];

% outer loop: strain integration
for i = 1:500
 EPSYY0 = EPSYY0 + DEPSYY0;

 % inner loop: verification of damage factor
 % undamage factor of each component
 RH = 1-DH;
 RB = 1-DB;
 RC = 1-DC;
 RU = 1-DU;

 % drucker pragar plasiticy model of brick unit
 % elastic predictor of brick unit

SIGXXUE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) *
(RC * C3 + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) *
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V -
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 - 0.2e1)
* RH) * RH) * E * C1 * RB * V * EPSYY0 / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 - (V - 1) * (V
+ 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (RC * C3 + (2 * RH)) * (C2 - 0.1e1) * RB ^ 3 - 0.4e1 *
(0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 + E * C2 * RH)
* (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * C1 * (-(V ^ 2) *
RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 0.1e1) * (C2 + 0.1e1)
* (V - 1) * (V + 1) / 0.4e1) * (RC * C3 + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E * RC ^ 2 * RH * (C2 -
0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * (C3 ^ 2) + ((-RU * (V -
1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * RH * ((V ^ 2) - C2) / 0.2e1)
* RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * (V + 1)) * C3 - RC * RH * (RU
* (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - E * C2 * RH)) * RB + 0.4e1 * E
* RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (RC * C3 + (2 * RH)) * (C2 - 0.1e1));

SIGYYUE = -0.4e1 * (C3 + 1) * E * ((RC * E * RU * C1 * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) + (-(RU

* C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * GB) /
0.4e1 + E) * C1 - (E * RH * (V ^ 2 + C2))) * (RC ^ 2) + (4 * RU * C1 * E * RH ^ 2)) * RB - (2 * RC * E * RU * (V
^ 2 * RC - RH * (C2 - 1)) * C1 * RH)) * (C3 ^ 2) + 0.2e1 * (-GB * (V - 1) * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * (RC ^
2) + (RU * C1 * RH)) * (V + 1) * (C2 - 1) * RB / 0.2e1 + RC * ((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * GB) /
0.4e1 + E) * C1 - (E * C2 * RH)) * RH) * RB * C3 + (GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V
+ 1)) / 0.2e1) * C1 * RB * EPSYY0 / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 4) +
((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-0.4e1 * (V - 1) * (RU * (-((C2 - 1) ^ 2 * GB) /
0.4e1 + E) * C1 + (E * C2 * RH)) * (V + 1) * (RC ^ 2) + (8 * E * RU * V ^ 2 * C1 * RC * RH) - (16 * RU * C1 * E
* RH ^ 2)) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB) + (4 * E * RU
^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V + 1) * (-((V - 1)
* (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1 + (C1 * RC * RU * V ^ 2) - (2 * RU * C1 * RH)) * (C2 - 1) * (RB ^ 3) + ((2
* RU * C1 * V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) - 0.8e1 * (V - 1) * (V + 1) * ((RU ^ 2 * GB * (V - 1)
* (V + 1) * (C2 - 1) * C1 ^ 2) / 0.4e1 + RU * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH * C1 + (E * C2 * RH ^ 2)) *
RC + (16 * E * RU * V ^ 2 * C1 * RH ^ 2)) * (RB ^ 2) - 0.4e1 * ((RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) *
(V + 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V ^ 2 - C2))) * (RC ^ 2) + (2 * E * V ^ 2 * RC * RH ^ 2) - (4 * RU *
C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1)
* (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC) /
0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 * ((C2 / 0.4e1 + 0.1e1 / 0.4e1)
* (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * RB / 0.2e1 + RC * RU * C1 *
RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH))) * RB *

111

C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)));

 % increment of elastic strain exceed yiled surface
DEPSXXU0 = 0.4e1 * DEPSYY0 * ((VU * RH * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 3) +

(-(RU * VU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (RU * ((V + 1) * VU * (V - 1) * (-((C2
- 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (2 * V * RH * RC * E) + (4 * E * VU * RH ^ 2)) * C1 - (E * V * RC ^ 2 *
RH * (VU - 1) * (VU + 1))) * RB - 0.2e1 * (V * ((V * VU) + C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC - (VU * RH * (C2 -
1))) * RC * RU * E * C1 * RH) * (C3 ^ 2) + 0.2e1 * (-GB * (V + 1) * (V - 1) * (C2 - 1) * ((VU * RH) - (V * RC) /
0.2e1) * (RB ^ 2) / 0.2e1 + ((V * GB * (C2 - 1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2) / 0.8e1 + (V + 1) * VU * (V - 1) *
RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC - (2 * E * V * RH ^ 2)) * RB - (V * RH * (-RC + RH * (C2 - 1)) * RC
* E)) * RU * C1 * C3 + (V * GB * (V + 1) * (V - 1) * RH * RB * (C2 - 1) * (2 * RB + RC * (C2 - 1)) * RU * C1) /
0.2e1) * RB * (C3 + 1) / (-(4 * RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + ((2 * RU * C1
* GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (0.8e1 * RU * (-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1
+ E) * (RC ^ 2) / 0.2e1 + (E * VU * V * RC * RH) - (2 * E * RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (VU - 1)
* (VU + 1))) * (RB ^ 2) + 0.8e1 * RC * RU * E * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2
- 1))) * C1 * RH * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1
* GB * (V - 1) * (C2 - 1) * (V + 1) * ((RU * (V * RC * VU - 2 * RH) * C1) - (RC ^ 2 * (VU - 1) * (VU + 1) * (C2 +
1)) / 0.2e1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) + 0.16e2 * RU *
((V * VU * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) / 0.8e1 - (V + 1) * (V - 1) * RH * (-((C2 - 1) ^ 2 * GB) /
0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH ^ 2)) * C1 - (8 * E * C2 * RC * RH ^ 2 * (VU - 1) * (VU + 1))) * (RB
^ 2) - 0.4e1 * RU * C1 * ((V - 1) * RU * ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E *
RH ^ 2)) * (V + 1) * C1 + (((V * VU - C2) * RC + 2 * V * VU * RH) * RH * RC * E)) * RB + (8 * E * RU ^ 2 * C1
^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * ((RU * VU * V * C1) - (RC * (VU - 1)
* (VU + 1) * (C2 + 1)) / 0.2e1) * (V - 1) * (C2 - 1) * (V + 1) * RH * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * C1 *
(C2 - 1) * ((RU * RH * (V - 1) * (V + 1) * C1) - RC * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * RC + (V * VU * RH))) * (V
+ 1) * RB / 0.2e1 + RC * RU * C1 * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E)
* C1 - (E * C2 * RH)) * RH) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) *
(V + 1)));

 DEPSYYU0 = 0.4e1 * RB * DEPSYY0 * (-GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC
* (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * RB ^ 2 / 0.2e1 + 0.2e1 * (C3 * RC +
2 * RH) * (-(RU * C1 * E * C3 ^ 2 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 /
0.2e1 - (E * C2 * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC + (RU * C1 * E * VU * V * RH)) * C3 - RU * VU * V *
C1 * GB * RC * ((C2 - 1) ^ 2) * (V - 1) * (V + 1) / 0.8e1) * RB + (RH * (-RC * (C2 - 1) * C3 ^ 2 + (V * (2 * V +
VU * (C2 - 1)) * RC - 2 * RH * (C2 - 1)) * C3 + 2 * V * VU * (-RC + RH * (C2 - 1))) * C3 * RU * C1 * RC * E)) *
(C3 + 1) / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU + 1) *
(C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * RB ^ 3 + 0.8e1 * (C3 * RC + 2 * RH) * (-(RU * C1 * E
* C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 / 0.2e1 - (E * C2 * RH * (VU
- 1) * (VU + 1)) / 0.2e1) * RC + (RU * C1 * E * VU * V * RH)) * (C3 ^ 2) - GB * (V + 1) * (V - 1) * (C2 - 1) * (-V
* RC * VU + RU * (V - 1) * (V + 1) * C1) * RU * C1 * C3 / 0.4e1 - RU * C1 * RC * GB * (C2 - 1) * (C2 + 1) * (V
- 1) * (V + 1) / 0.8e1) * RB ^ 2 + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 0.2e1 + RH * ((RU
* (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + ((-RU * (V - 1) * (V + 1)
* (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - (E * RH * (V * VU - C2)) / 0.2e1) * (RC ^ 2)
- (E * RC * RH ^ 2 * V * VU) + (2 * RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * C3 - RH * (RU * (V - 1) * (V + 1)
* (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * C1 * RB + (4 * E * RU ^ 2 *
C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1)));

 % caculated cohesion of brick unit by value of hardening(softening) parameter K
 DKU = sqrt((6 * DEPSPXXU ^ 2 + 6 * DEPSPYYU ^ 2)) / 0.3e1;
 KU = KU + DKU;
 KUMAX = ((2 * LC * EPS0U * FCU + 3 * GCU) / LC / FCU) / 0.2e1;
 % find compressive strength by hardening parameter K:
 if KU <= EPS0U
 SIGCU = (FCU * (-2 * KU ^ 2 / EPS0U ^ 2 + 4 * KU / EPS0U + 1)) / 0.3e1;
 KCU = (FCU * (-4 * KU / EPS0U ^ 2 + 4 / EPS0U)) / 0.3e1;
 else
 if KU < KUMAX

112 Appendix D: MATLAB Code (Model 3)

 SIGCU = FCU * (0.1e1 - 0.4e1 / 0.9e1 * FCU ^ 2 * LC ^ 2 / GCU ^ 2 * (KU - EPS0U) ^ 2);
 KCU = -0.8e1 / 0.9e1 * FCU ^ 3 * LC ^ 2 / GCU ^ 2 * (KU - EPS0U);
 else
 SIGCU = 0;
 KCU = -0.8e1 / 0.9e1 * FCU ^ 3 * LC ^ 2 / GCU ^ 2 * (KUMAX - EPS0U);
 end
 end
 % find critical stress:

CU = (0.1e1 - sin(PHIU)) / cos(PHIU) * SIGCU / 0.2e1;

SIGXXUC1 = -0.18e2 * (-0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) - 0.6e1 * SIGYYUE *

sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) *
SIGXXUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ̂ 2 * sin(PHIU) ̂ 2 / (0.3e1 - sin(PHIU))
^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * SIGYYUE ^ 2 *
sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * SIGYYUE - 0.9e1 *
SIGYYUE ^ 2);

SIGYYUC1 = 0.18e2 * (0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.6e1 * SIGYYUE *

sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) *
SIGYYUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ̂ 2 * sin(PHIU) ̂ 2 / (0.3e1 - sin(PHIU))
^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * SIGYYUE ^ 2 *
sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * SIGYYUE - 0.9e1 *
SIGYYUE ^ 2);

SIGXXUC2 = 0.18e2 * (0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.6e1 * SIGYYUE *

sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) *
SIGXXUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ̂ 2 * sin(PHIU) ̂ 2 / (0.3e1 - sin(PHIU))
^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * SIGYYUE ^ 2 *
sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * SIGYYUE - 0.9e1 *
SIGYYUE ^ 2);

SIGYYUC2 = -0.18e2 * (-0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) - 0.6e1 * SIGYYUE *

sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) *
SIGYYUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ̂ 2 * sin(PHIU) ̂ 2 / (0.3e1 - sin(PHIU))
^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * SIGYYUE ^ 2 *
sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * SIGYYUE - 0.9e1 *
SIGYYUE ^ 2);

 if SIGXXUE/SIGXXUC1 > 0
 SIGXXUC = SIGXXUC1;
 else
 SIGXXUC = SIGXXUC2;
 end
 if SIGYYUE/SIGYYUC1 > 0
 SIGYYUC = SIGYYUC1;
 else
 SIGYYUC = SIGYYUC2;
 end

 % drucker pragar plasiticy model of head joint
 % elastic predictor of head joint:

SIGXXHE = -0.4e1 * (C3 + 1) * E * RB * ((((2 * RU * C1 - RC * (C2 + 1)) * RB + RU * C1 * RC * (C2 - 1))
* RC * E * RU * C1 * C3 ^ 2) + (-GB * ((RU * (V ^ 2 * RC - RC + 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) *
RC ^ 2) / 0.2e1) * (C2 - 1) * (RB ^ 2) / 0.2e1 + 0.4e1 * RU * C1 * (RU * (-GB * (V - 1) * (V + 1) * (C2 - 1) * RC
/ 0.4e1 + (E * RH)) * C1 - (-GB * ((C2 + 3) * V ^ 2 + C2 - 1) * (C2 - 1) * RC / 0.8e1 + (((C2 - 1) ^ 2) * GB /
0.4e1 + (E * C2)) * RH) * RC / 0.2e1) * RB + 0.2e1 * RC * (RU ^ 2) * (C1 ^ 2) * ((-((C2 - 1) ^ 2) * (V - 1) * (V +

113

1) * GB / 0.4e1 - E) * RC + (E * RH * (C2 - 1)))) * C3 - GB * RU * C1 * RB * (-2 * RB * RH + RC * (RC * (C2 +
1) - RH * (C2 - 1))) * (C2 - 1) / 0.2e1) * V * EPSYY0 / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2
- 1)) * C3 ^ 4) + (0.2e1 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * (RB ^ 3) + (-0.4e1 * RU * ((V - 1) *
(V + 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * (RC ^ 2) - (2 * E * V ^ 2 * RC * RH) + (4 * E * RH ^ 2)) * C1 - (4 *
E * C2 * RC ^ 2 * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH
* (C2 - 1)) * RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 *
GB * (V - 1) * (V + 1) * ((RU * (V ^ 2 * RC - 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1) * (C2
- 1) * (RB ^ 3) + (-0.2e1 * (RU ^ 2) * GB * RC * ((V - 1) ^ 2) * ((V + 1) ^ 2) * (C2 - 1) * (C1 ^ 2) - 0.8e1 * (-(V ^
2) * GB * (V - 1) * (V + 1) * (C2 - 1) * (RC ^ 2) / 0.4e1 + (V - 1) * (V + 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) *
RH * RC - (2 * E * V ^ 2 * RH ^ 2)) * RU * C1 - (8 * RC * RH ^ 2 * E * C2 * (V - 1) * (V + 1))) * (RB ^ 2) - 0.4e1
* ((V - 1) * RU * (V + 1) * ((((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * C1
+ (RC * E * ((V ^ 2 - C2) * RC + 2 * V ^ 2 * RH) * RH)) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^
2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V - 1) * (V + 1) *
(C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 * ((C2 / 0.4e1
+ 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * RB / 0.2e1 +
RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2
* RH))) * RB * C3 - 0.2e1 * RU * C1 * GB * (RB ^ 2) * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1));

SIGYYHE = -0.4e1 * (C3 + 1) * E * ((RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) +

RC * (-(RU * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) / 0.2e1 + ((2 * C1 ^ 2 * E * RU ^ 2 * V ^ 2) - RU *
((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + (E * (C2 * V ^ 2 + 1))) * RC + (2 * E * RH * V ^ 2)) * C1 + (E *
C2 * RC * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (E * RU * C1 * ((V ^ 2 * (C2 - 1) * RC - 4 * V ^ 2 * RH + 4 * RH)
* RU * C1 + V ^ 2 * RC * RH * (C2 + 1)) * RB) - (2 * E * RU ^ 2 * C1 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C2 -
1))) * (C3 ^ 2) + 0.2e1 * (-GB * (-((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.4e1 + (C1 * RH * RU * V ^ 2)) * (C2
- 1) * (RB ^ 2) / 0.2e1 + 0.2e1 * (RU * (-(GB * (V - 1) * (V + 1) * (C2 - 1) * RC) / 0.4e1 + (E * RH * V ^ 2)) * C1
- RC * (GB * (0.1e1 / 0.4e1 - (C2 ^ 2) / 0.4e1) * RC + (((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * RH) * (V ^ 2) /
0.2e1) * RU * C1 * RB + RC * RU * C1 * (((-((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 - E) * RC + (E * V ^ 2
* RH * (C2 - 1))) * RU * C1 - (E * C2 * RC * RH))) * RB * C3 + (GB * RU * C1 * RB ^ 2 * (2 * V ^ 2 * RB * RH
+ RC * ((-C2 - 1) * RC + V ^ 2 * RH * (C2 - 1))) * (C2 - 1)) / 0.2e1) * EPSYY0 / (-(4 * RC * E * RU * C1 * RB *
RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-
0.4e1 * RU * ((V - 1) * (V + 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (2 * E * V ^ 2 * RC * RH) + (4 * E
* RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU *
(V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) *
(C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V + 1) * ((RU * (V ^ 2 * RC - 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) *
RC ^ 2) / 0.2e1) * (C2 - 1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) -
0.8e1 * (-(V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) / 0.4e1 + (V - 1) * (V + 1) * (-((C2 - 1) ^ 2 * GB) /
0.4e1 + E) * RH * RC - (2 * E * V ^ 2 * RH ^ 2)) * RU * C1 - (8 * RC * RH ^ 2 * E * C2 * (V - 1) * (V + 1))) * (RB
^ 2) - 0.4e1 * ((V - 1) * RU * (V + 1) * ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E *
RH ^ 2)) * C1 + (RC * E * ((V ^ 2 - C2) * RC + 2 * V ^ 2 * RH) * RH)) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^
2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V
- 1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1
* ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) *
RB / 0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) *
C1 - (E * C2 * RH))) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)));

 % increment of elastic strain exceed yiled surface

DEPSXXH0 = 0.4e1 * (-(RU * C1 * GB * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1) * (C3 * VU - V)
* RB ^ 3) / 0.2e1 + ((2 * C1 * C3 ^ 3 * E * RC * RH * RU * V) + 0.2e1 * ((E * RU ^ 2 * V * (V - 1) * (V + 1) * C1
^ 2) - ((((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * (V + 1) * (V - 1) * RC + (2 * E * V ^ 2 * RH)) * VU * RU * C1 /
0.2e1 + (E * V * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC * (C3 ^ 2) + 0.4e1 * (V + 1) * (V - 1) * ((C1
* E * RH * RU * V) - (-(V * GB * (C2 - 1) ^ 2 * RC) / 0.8e1 + (((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * VU * RH)
* RC / 0.2e1) * RU * C1 * C3 + (RU * V * C1 * GB * RC * RH * (C2 - 1) ^ 2 * (V - 1) * (V + 1)) / 0.2e1) * (RB ^
2) + ((RH * RC * (C2 - 1) * C3 ^ 2 + ((V + 1) * (V - 1) * (RC * (C2 - 1) - 4 * RH) * RU * C1 + VU * V * RC * RH
* (C2 + 1)) * C3 + 2 * RH * (RU * (V - 1) * (V + 1) * (C2 - 1) * C1 - RC * C2)) * V * C3 * RU * C1 * RC * E * RB)
- (2 * E * RU ^ 2 * V * C1 ^ 2 * C3 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * DEPSYY0 * (C3 + 1) / (-
0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) /
0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * (RB ^ 3) + 0.8e1 * (C3 * RC + 2 * RH) * (-(E * RU * C1 * C3 ^ 3

114 Appendix D: MATLAB Code (Model 3)

* RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH)) * RU * C1 - (E
* C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * (C3 ^ 2) - (GB * (V + 1) * (V - 1) * (C2 - 1) * (RU * (V ^ 2 - 1) *
C1 - VU * V * RC) * RU * C1 * C3) / 0.4e1 - (RU * C1 * RC * GB * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.8e1)
* (RB ^ 2) + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 0.2e1 + RH * ((RU * (V ^ 2 - 1) * C1) -
(V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + (-(V + 1) * (V - 1) * ((((C2 - 1) ^ 2 * GB * V ^
2) / 0.4e1 - ((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 / 0.2e1 - (((V * VU - C2) *
RC + 2 * VU * V * RH) * RH * RC * E) / 0.2e1) * C3 - RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * GB * V ^ 2)
/ 0.4e1 - ((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * C1 * RB + (4 * E * RU ^ 2 * C1 ^ 2 * C3
^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1)));

 DEPSYYH0 = 0.8e1 * (-(RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * E * C3 ^ 3) / 0.2e1 + ((RU * C1 *
GB * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) / 0.4e1 + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC
/ 0.2e1 + (E * VU * V * RH)) * RU * C1 - (E * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * (RB ^ 2) + 0.2e1 *
RH * ((RU * (V ^ 2 - 1) * C1) - (VU * V * (C2 + 1) * RC) / 0.4e1) * RU * C1 * E * RB + (RH * RU ^ 2 * C1 ^ 2 *
RC * E * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - RB * (GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RC * (VU
- 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C2 - 1) * (RB ^ 2) / 0.4e1 + GB * ((RU * (V ^ 2 - 1) * C1) - (VU * V * RC *
(C2 + 3)) / 0.4e1) * (V + 1) * (V - 1) * (C2 - 1) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2 *
(V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RU * C1 * RC) * C3 - (RU * C1 * GB * RB ^ 2 * RC
* (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.4e1) * DEPSYY0 * RC * (C3 + 1) / (-(4 * RH * RB * (2 * RB + RC *
(C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (0.8e1
* RU * (-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) / 0.2e1 + (E * VU * V * RC * RH) - (2 *
E * RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (VU - 1) * (VU + 1))) * (RB ^ 2) + 0.8e1 * RH * ((RU * (V ^ 2 -
1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RU * C1 * RC * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 *
RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V + 1) * (V - 1) * (C2 - 1) * ((RU * (VU *
V * RC - 2 * RH) * C1) - (RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC
* (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) + 0.16e2 * ((VU * V * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) /
0.8e1 - (V + 1) * (V - 1) * RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH ^ 2)) * RU *
C1 - (8 * E * C2 * RC * RH ^ 2 * (VU - 1) * (VU + 1))) * (RB ^ 2) - 0.4e1 * ((V + 1) * (V - 1) * ((((C2 - 1) ^ 2 * (V
- 1) * (V + 1) * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 + (((V * VU - C2) * RC + 2 * VU * V *
RH) * RH * RC * E)) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) *
(C3 ^ 2) - 0.8e1 * RB * (GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) /
0.2e1) * RH * (C2 - 1) * (RB ^ 2) / 0.2e1 + RU * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * ((RU * RH * (V - 1) * (V
+ 1) * C1) - ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * RC + (VU * V * RH)) * RC) * RB / 0.2e1 + ((V + 1) * (V - 1) * RU *
(((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC) * C3 - (2 * RU *
C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)));

 % caculated cohesion of brick unit by value of hardening(softening) parameter K
 DKH = sqrt((6 * DEPSPXXH ^ 2 + 6 * DEPSPYYH ^ 2)) / 0.3e1;
 KH = KH + DKH;
 KHMAX = ((2 * LC * EPS0M * FCM + 3 * GCM) / LC / FCM) / 0.2e1;
 % find compressive strength by hardening parameter K:
 if KH <= EPS0M
 SIGCH = (FCM * (-2 * KH ^ 2 / EPS0M ^ 2 + 4 * KH / EPS0M + 1)) / 0.3e1;
 KCH = (FCM * (-4 * KH / EPS0M ^ 2 + 4 / EPS0M)) / 0.3e1;
 else
 if KH < KHMAX
 SIGCH = FCM * (0.1e1 - 0.4e1 / 0.9e1 * FCM ^ 2 * LC ^ 2 / GCM ^ 2 * (KH - EPS0M) ^ 2);
 KCH = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KH - EPS0M);
 else
 SIGCH = 0;
 KCH = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KHMAX - EPS0M);
 end
 end
 % find critical stress:

CH = (0.1e1 - sin(PHIM)) / cos(PHIM) * SIGCH / 0.2e1;

115

SIGXXHC1 = -0.18e2 * (-0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYHE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) *
SIGXXHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM))
^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * SIGYYHE ^ 2 *
sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * SIGYYHE - 0.9e1 *
SIGYYHE ^ 2);

SIGYYHC1 = 0.18e2 * (0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYHE *

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) *
SIGYYHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM))
^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * SIGYYHE ^ 2 *
sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * SIGYYHE - 0.9e1 *
SIGYYHE ^ 2);

SIGXXHC2 = 0.18e2 * (0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYHE *

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) *
SIGXXHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM))
^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * SIGYYHE ^ 2 *
sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * SIGYYHE - 0.9e1 *
SIGYYHE ^ 2);

SIGYYHC2 = -0.18e2 * (-0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYHE *

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) *
SIGYYHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM))
^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * SIGYYHE ^ 2 *
sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * SIGYYHE - 0.9e1 *
SIGYYHE ^ 2);

 if SIGXXHE/SIGXXHC1 > 0
 SIGXXHC = SIGXXHC1;
 else
 SIGXXHC = SIGXXHC2;
 end
 if SIGYYHE/SIGYYHC1 > 0
 SIGYYHC = SIGYYHC1;
 else
 SIGYYHC = SIGYYHC2;
 end

 % drucker pragar plasiticy model of bed joint
 % elastic predictor of bed joint:

SIGXXBE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) *
(C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) *
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V -
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 - 0.2e1)
* RH) * RH) * E * RU * C1 * C3 * V * EPSYY0 / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 - (V - 1)
* (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 3 - 0.4e1
* (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 + E * C2 *
RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * C1 * (-(V ^
2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 0.1e1) * (C2 +
0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (C3 * RC + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E * RC ^ 2 * RH *
(C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * (C3 ^ 2) + ((-RU *
(V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * RH * ((V ^ 2) - C2) /
0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * (V + 1)) * C3 - RC *
RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - E * C2 * RH)) * RB +
0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1));

116 Appendix D: MATLAB Code (Model 3)

SIGYYBE = -0.4e1 * (C3 + 1) * E * RU * ((RC * E * RU * C1 * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) +

(-(RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 *
GB) / 0.4e1 + E) * C1 - (E * RH * (V ^ 2 + C2))) * (RC ^ 2) + (4 * RU * C1 * E * RH ^ 2)) * RB - (2 * RC * E *
RU * (V ^ 2 * RC - RH * (C2 - 1)) * C1 * RH)) * (C3 ^ 2) + 0.2e1 * (-GB * (V - 1) * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1)
* (RC ^ 2) + (RU * C1 * RH)) * (V + 1) * (C2 - 1) * RB / 0.2e1 + RC * ((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 *
GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH) * RB * C3 + (GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V -
1) * (V + 1)) / 0.2e1) * C1 * EPSYY0 / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 4)
+ ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-0.4e1 * (V - 1) * (RU * (-((C2 - 1) ^ 2 * GB)
/ 0.4e1 + E) * C1 + (E * C2 * RH)) * (V + 1) * (RC ^ 2) + (8 * E * RU * V ^ 2 * C1 * RC * RH) - (16 * RU * C1 *
E * RH ^ 2)) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB) + (4 * E *
RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V + 1) * (-((V
- 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1 + (C1 * RC * RU * V ^ 2) - (2 * RU * C1 * RH)) * (C2 - 1) * (RB ^ 3) +
((2 * RU * C1 * V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) - 0.8e1 * (V - 1) * (V + 1) * ((RU ^ 2 * GB * (V
- 1) * (V + 1) * (C2 - 1) * C1 ^ 2) / 0.4e1 + RU * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH * C1 + (E * C2 * RH ^
2)) * RC + (16 * E * RU * V ^ 2 * C1 * RH ^ 2)) * (RB ^ 2) - 0.4e1 * ((RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V
- 1) * (V + 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V ^ 2 - C2))) * (RC ^ 2) + (2 * E * V ^ 2 * RC * RH ^ 2) - (4 *
RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V
+ 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC)
/ 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 * ((C2 / 0.4e1 + 0.1e1 / 0.4e1)
* (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * RB / 0.2e1 + RC * RU * C1 *
RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH))) * RB *
C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)));

TAUXYBE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1)

* (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) *
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V -
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 - 0.2e1)
* RH) * RH) * E * RU * C1 * C3 * V * EPSYY0 / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 - (V - 1)
* (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 3 - 0.4e1
* (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 + E * C2 *
RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * C1 * (-(V ^
2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 0.1e1) * (C2 +
0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (C3 * RC + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E * RC ^ 2 * RH *
(C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * (C3 ^ 2) + ((-RU *
(V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * RH * ((V ^ 2) - C2) /
0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * (V + 1)) * C3 - RC *
RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - E * C2 * RH)) * RB +
0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1));

 % increment of elastic strain exceed yiled surface

DEPSXXB0 = 0.4e1 * (E * RB * RC * RH * (C2 * VU + V) * C3 ^ 3 + (-(VU * GB * RC * (C2 - 1) * (C2 +
1) * (V - 1) * (V + 1) * RB ^ 2) / 0.4e1 + (((RU * (V ^ 2 - 1) * C1 - RH * (V * VU + C2)) * V * RC + 2 * VU * C2 *
RH ^ 2) * E * RB) - (2 * E * RU * V * C1 * RC * RH * (V - 1) * (V + 1))) * C3 ^ 2 + 0.2e1 * (-GB * (V + 1) * (V -
1) * (C2 - 1) * (C2 + 1) * ((VU * RH) - (V * RC) / 0.2e1) * RB / 0.4e1 + (V * (RU * (V ^ 2 - 1) * C1 - RH * C2) *
RH * E)) * RB * C3 + (V * GB * RB ^ 2 * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.2e1) * DEPSYY0 * RU
* C1 * RC * (C3 + 0.1e1) / (-0.4e1 * RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4 + ((2 * RU
* C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + ((-0.4e1 * (V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1
+ E) * RU * C1 - (4 * E * C2 * RH * (VU - 1) * (VU + 1))) * (RC ^ 2) + (8 * RU * C1 * E * VU * V * RC * RH) -
(16 * RU * C1 * E * RH ^ 2)) * (RB ^ 2) + 0.8e1 * RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 -
(RH * (C2 - 1))) * RU * C1 * RC * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1)))
* C3 ^ 3 + (-0.2e1 * GB * (V + 1) * (V - 1) * (C2 - 1) * (-(RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1 + (C1
* RC * RU * V * VU) - (2 * C1 * RH * RU)) * (RB ^ 3) + ((2 * RU * VU * V * C1 * GB * (V - 1) * (V + 1) * (C2 - 1)
* RC ^ 2) + (-(2 * RU ^ 2 * GB * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) - 0.8e1 * (V + 1) * (V - 1) * RH * (-
((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RU * C1 - (8 * E * C2 * RH ^ 2 * (VU - 1) * (VU + 1))) * RC + (16 * RU * C1 *

117

E * VU * V * RH ^ 2)) * (RB ^ 2) - 0.4e1 * (((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1
+ E) * C1 + (E * RH * (V * VU - C2))) * (RC ^ 2) + (2 * E * RC * RH ^ 2 * V * VU) - (4 * E * RU * C1 * RH ^ 2 *
(V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * C3 ^
2 - 0.8e1 * (GB * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (V + 1) * (V - 1) * RH *
(C2 - 1) * (RB ^ 2) / 0.2e1 + GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (VU *
V * RC * RH) + (RU * RH * (V - 1) * (V + 1) * C1)) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * (((C2 - 1)
^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC) * RB * C3 - (2 * RU * C1 *
GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)));

DEPSYYB0 = 0.4e1 * DEPSYY0 * ((RH * (((-C2 * V * VU - V ^ 2) * RC + (2 * V ^ 2 - 2) * RU * C1) * RB

+ RU * C1 * RC * (V - 1) * (V + 1) * (C2 - 1)) * RC * E * C3 ^ 3) + (-GB * (V + 1) * (V - 1) * (-(V * VU * (C2 + 1)
* RC) / 0.2e1 + ((V + 1) * (V - 1) * RU * C1)) * (C2 - 1) * RC * (RB ^ 2) / 0.2e1 + ((-(V + 1) * (V - 1) * RU * (((C2
- 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 + (E * RH * (V * VU + C2))) * (RC ^ 2) - (2 * E * VU * V * C2
* RC * RH ^ 2) + (4 * E * RU * C1 * RH ^ 2 * (V - 1) * (V + 1))) * RB + (2 * E * RU * C1 * RC * RH ^ 2 * (V - 1)
* (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.2e1 * (GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC
^ 2) - (VU * V * RC * RH * (C2 + 1)) / 0.2e1 + (RU * RH * (V - 1) * (V + 1) * C1)) * RB / 0.2e1 + RH * ((V + 1)
* (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * RB * C3 - GB
* RH * (RB ^ 2) * RC * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1) / 0.2e1) * RU * C1 * (C3 + 1) / (-(4 * RH * RB * (2
* RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + (0.2e1 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1)
* (RB ^ 3) + ((-0.4e1 * (V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 - (4 * E * C2 * RH * (VU -
1) * (VU + 1))) * (RC ^ 2) + (8 * RU * C1 * E * VU * V * RC * RH) - (16 * RU * C1 * E * RH ^ 2)) * (RB ^ 2) +
0.8e1 * RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RU * C1 * RC * E * RB +
(4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V + 1) * (V -
1) * (C2 - 1) * (-(RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1 + (C1 * RC * RU * V * VU) - (2 * C1 * RH *
RU)) * (RB ^ 3) + (0.2e1 * RU * VU * V * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * (RC ^ 2) + (-0.2e1 * (RU ^ 2) *
GB * ((V - 1) ^ 2) * ((V + 1) ^ 2) * (C2 - 1) * (C1 ^ 2) - 0.8e1 * (V + 1) * (V - 1) * RH * (-((C2 - 1) ^ 2) * GB /
0.4e1 + E) * RU * C1 - (8 * E * C2 * RH ^ 2 * (VU - 1) * (VU + 1))) * RC + (16 * RU * C1 * E * VU * V * RH ^
2)) * (RB ^ 2) - 0.4e1 * (((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 + (E *
RH * (V * VU - C2))) * (RC ^ 2) + (2 * E * RC * RH ^ 2 * V * VU) - (4 * E * RU * C1 * RH ^ 2 * (V - 1) * (V + 1)))
* RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB
* ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (V + 1) * (V - 1) * RH * (C2 - 1) * (RB ^
2) / 0.2e1 + GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (VU * V * RC * RH) +
(RU * RH * (V - 1) * (V + 1) * C1)) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) *
(V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC) * RB * C3 - 0.2e1 * RU * C1 * GB * (RB
^ 2) * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1));

 DEPSXYB0 = DEPSYY0 * C3 * ((-(2 * RH * RU * C1 * RC * (VU - V) * C3 ^ 2) + ((-(RU * VU * (V - 1) * (V
+ 1) * C1 + (-VU ^ 2 + 1) * V * RH) * (C2 + 1) * RC ^ 2 + 2 * V * RU * C1 * (RU * (V ^ 2 - 1) * C1 + (-V * VU +
1) * RH) * RC - 4 * RU * VU * C1 * RH ^ 2) * C3) + 0.4e1 * (-(VU * (V - 1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 +
(V * (RU * (V ^ 2 - 1) * C1 + RH))) * RH * RU * C1) * RB ^ 2 + (-(RH * RC * (C2 - 1) * (VU - V) * C3 ^ 2) + ((V
* (RU * (V - 1) * (V + 1) * (C2 - 1) * C1 + (VU * (C2 + 3) * V + C2 - 1) * RH) * RC) - 0.4e1 * (((V ^ 3 - V) * RU *
C1) + (VU * RH * (C2 - 1)) / 0.2e1) * RH) * C3 + (2 * V * RH * ((-C2 - 1) * RC + (C2 - 1) * (RU * (V ^ 2 - 1) *
C1 + RH)))) * RU * C1 * RC * RB - (2 * RU ^ 2 * V * C1 ^ 2 * C3 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) *
(C3 + 1) * E / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU +
1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * RB ^ 3 + 0.8e1 * (C3 * RC + 2 * RH) * (-(E * RU
* C1 * C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 / 0.2e1 - (E * C2 * RH *
(VU - 1) * (VU + 1)) / 0.2e1) * RC + (E * RU * C1 * VU * V * RH)) * (C3 ^ 2) - GB * (V + 1) * (V - 1) * (C2 - 1) *
(-V * RC * VU + (V + 1) * (V - 1) * RU * C1) * RU * C1 * C3 / 0.4e1 - RU * C1 * RC * GB * (C2 - 1) * (C2 + 1)
* (V - 1) * (V + 1) / 0.8e1) * RB ^ 2 + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 0.2e1 + RH *
((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + ((-(V + 1) * (V - 1)
* RU * (((C2 - 1) ^ 2) * GB * (V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2) * GB / 0.4e1 + E) * C1 / 0.2e1 - (E * RH * (V * VU -
C2)) / 0.2e1) * (RC ^ 2) - (E * RC * RH ^ 2 * V * VU) + (2 * E * RU * C1 * RH ^ 2 * (V - 1) * (V + 1))) * C3 - RH
* ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * GB * (V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2) * GB / 0.4e1 + E) * C1 - (E * C2
* RH)) * RC) * C1 * RB + (4 * E * RU ^ 2 * C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) *
(C2 - 1)));

 % caculated cohesion of brick unit by value of hardening(softening) parameter K

118 Appendix D: MATLAB Code (Model 3)

 DKB = sqrt((6 * DEPSPXXB ^ 2 + 6 * DEPSPXYB ^ 2 + 6 * DEPSPYYB ^ 2)) / 0.3e1;
 KB = KB + DKB;
 KBMAX = ((2 * LC * EPS0M * FCM + 3 * GCM) / LC / FCM) / 0.2e1;
 % find compressive strength by hardening parameter K:
 if KB <= EPS0M
 SIGCB = (FCM * (-2 * KB ^ 2 / EPS0M ^ 2 + 4 * KB / EPS0M + 1)) / 0.3e1;
 KCB = (FCM * (-4 * KB / EPS0M ^ 2 + 4 / EPS0M)) / 0.3e1;
 else
 if KB < KBMAX
 SIGCB = FCM * (0.1e1 - 0.4e1 / 0.9e1 * FCM ^ 2 * LC ^ 2 / GCM ^ 2 * (KB - EPS0M) ^ 2);
 KCB = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KB - EPS0M);
 else
 SIGCB = 0;
 KCB = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KBMAX - EPS0M);
 end
 end
 % find critical stress:

CB = (0.1e1 - sin(PHIM)) / cos(PHIM) * SIGCB / 0.2e1;

SIGXXBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE *

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * SIGXXBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2
* SIGYYBE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM)) ̂ 2 - 0.9e1 * SIGXXBE ̂ 2 + 0.9e1 * SIGXXBE * SIGYYBE
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

SIGYYBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE *

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * SIGYYBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2
* SIGYYBE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM)) ̂ 2 - 0.9e1 * SIGXXBE ̂ 2 + 0.9e1 * SIGXXBE * SIGYYBE
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

TAUXYBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE *

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) * TAUXYBE / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2
* SIGYYBE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM)) ̂ 2 - 0.9e1 * SIGXXBE ̂ 2 + 0.9e1 * SIGXXBE * SIGYYBE
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

SIGXXBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE *

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * SIGXXBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2
* SIGYYBE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM)) ̂ 2 - 0.9e1 * SIGXXBE ̂ 2 + 0.9e1 * SIGXXBE * SIGYYBE
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

SIGYYBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE *

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * SIGYYBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2
* SIGYYBE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM)) ̂ 2 - 0.9e1 * SIGXXBE ̂ 2 + 0.9e1 * SIGXXBE * SIGYYBE
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

TAUXYBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE *

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *

119

TAUXYBE ^ 2))) * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) * TAUXYBE / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2
* SIGYYBE ̂ 2 * sin(PHIM) ̂ 2 / (0.3e1 - sin(PHIM)) ̂ 2 - 0.9e1 * SIGXXBE ̂ 2 + 0.9e1 * SIGXXBE * SIGYYBE
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

 if SIGXXBE/SIGXXBC1 > 0
 SIGXXBC = SIGXXBC1;
 else
 SIGXXBC = SIGXXBC2;
 end
 if SIGYYBE/SIGYYBC1 > 0
 SIGYYBC = SIGYYBC1;
 else
 SIGYYBC = SIGYYBC2;
 end
 if TAUXYBE/TAUXYBC1 > 0
 TAUXYBC = TAUXYBC1;
 else
 TAUXYBC = TAUXYBC2;
 end

 while CU >= 0
 % yield function of brick unit:
 FU = (sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2) * (-0.3e1 + sin(PHIU)) + (-0.2e1 *
SIGXXUE - 0.2e1 * SIGYYUE) * sin(PHIU) + 0.6e1 * CU * cos(PHIU)) / (-0.3e1 + sin(PHIU));
 if FU <= 0 % before yielding, plastic strain = 0
 DEPSPXXU = 0;
 DEPSPYYU = 0;
 break;
 else
 % calculate plastic strain increment:
 DEPSPXXU = 0.6e1 * ((((((DEPSXXU0 - DEPSYYU0) * VU - 0.10e2 / 0.3e1 * DEPSXXU0 - 0.7e1 /
0.3e1 * DEPSYYU0) * SIGXXUC ^ 2 - 0.3e1 / 0.2e1 * ((DEPSXXU0 - DEPSYYU0) * VU - 0.20e2 / 0.9e1 *
DEPSXXU0 - 0.11e2 / 0.9e1 * DEPSYYU0) * SIGYYUC * SIGXXUC + ((DEPSXXU0 - DEPSYYU0) * VU -
0.17e2 / 0.3e1 * DEPSXXU0 - 0.14e2 / 0.3e1 * DEPSYYU0) * SIGYYUC ^ 2 / 0.2e1) * sin(PHIU) - 0.3e1 *
(((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC -
((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-
SIGYYUC / 0.2e1 + SIGXXUC)) * sin(PSIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 *
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 +
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-SIGYYUC / 0.2e1 + SIGXXUC) * (-0.3e1 + sin(PHIU))) *
sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) - 0.2e1 * (((((DEPSXXU0 - DEPSYYU0) * VU -
0.4e1 / 0.3e1 * DEPSXXU0 - DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 /
0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGYYUC) * sin(PHIU) + ((-0.3e1 * DEPSXXU0 + 0.3e1 *
DEPSYYU0) * VU + 0.2e1 * DEPSXXU0 - DEPSYYU0) * SIGXXUC + 0.3e1 * ((DEPSXXU0 - DEPSYYU0) *
VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sin(PSIU) + 0.2e1 * sin(PHIU) *
(DEPSXXU0 + DEPSYYU0) * (-SIGYYUC / 0.2e1 + SIGXXUC)) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC +
SIGYYUC ^ 2)) * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU) + 0.4e1 * SU) * VU - (37 * EU) - 0.4e1 * SU) *
SIGXXUC ^ 2 - 0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU
- 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 *
SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PHIU) + (-0.24e2 * SU * VU ^ 2 +
(-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 / 0.9e1 * SU *
VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC -
0.27e2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 *
SU) * SIGYYUC ^ 2) * sin(PSIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU -
0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1
/ 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + (0.8e1 / 0.9e1 * SU *
VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * (-0.3e1

120 Appendix D: MATLAB Code (Model 3)

+ sin(PHIU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.8e1 * EU * (SIGXXUC ^ 2 -
SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (SIGXXUC + SIGYYUC) * ((sin(PHIU) - 0.3e1 / 0.2e1) * sin(PSIU)
- 0.3e1 / 0.2e1 * sin(PHIU)));

 DEPSPYYU = -0.3e1 * ((((((DEPSXXU0 - DEPSYYU0) * VU + 0.14e2 / 0.3e1 * DEPSXXU0 + 0.17e2
/ 0.3e1 * DEPSYYU0) * SIGXXUC ^ 2 - 0.3e1 * ((DEPSXXU0 - DEPSYYU0) * VU + 0.11e2 / 0.9e1 *
DEPSXXU0 + 0.20e2 / 0.9e1 * DEPSYYU0) * SIGYYUC * SIGXXUC + 0.2e1 * SIGYYUC ^ 2 * ((DEPSXXU0
- DEPSYYU0) * VU + 0.7e1 / 0.3e1 * DEPSXXU0 + 0.10e2 / 0.3e1 * DEPSYYU0)) * sin(PHIU) - 0.3e1 *
(((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC -
((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) *
(SIGXXUC - 0.2e1 * SIGYYUC)) * sin(PSIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 *
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 +
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-0.3e1 + sin(PHIU)) * (SIGXXUC - 0.2e1 * SIGYYUC)) *
sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.4e1 * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC
+ SIGYYUC ^ 2) * (((((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) *
SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU + DEPSXXU0 / 0.3e1 + 0.4e1 / 0.3e1 * DEPSYYU0) *
SIGYYUC) * sin(PHIU) + ((-0.3e1 * DEPSXXU0 + 0.3e1 * DEPSYYU0) * VU + 0.2e1 * DEPSXXU0 -
DEPSYYU0) * SIGXXUC + 0.3e1 * ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 *
DEPSYYU0) * SIGYYUC) * sin(PSIU) - sin(PHIU) * (DEPSXXU0 + DEPSYYU0) * (SIGXXUC - 0.2e1 *
SIGYYUC))) * EU / (((((0.8e1 * SU * VU ̂ 2 + ((9 * EU) + 0.4e1 * SU) * VU - (37 * EU) - 0.4e1 * SU) * SIGXXUC
^ 2 - 0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 /
0.9e1 * SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU
- 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PHIU) + (-0.24e2 * SU * VU ^ 2 + (-(27 * EU)
- 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU
+ 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC - 0.27e2 * (0.8e1
/ 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC
^ 2) * sin(PSIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 *
EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) *
VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU
+ 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * (-0.3e1 + sin(PHIU)))
* sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.8e1 * EU * (SIGXXUC ^ 2 - SIGXXUC *
SIGYYUC + SIGYYUC ^ 2) * (SIGXXUC + SIGYYUC) * ((sin(PHIU) - 0.3e1 / 0.2e1) * sin(PSIU) - 0.3e1 /
0.2e1 * sin(PHIU)));

 % recalculate softening modulus SUC:
 DLU = 0.6e1 * EU * ((-0.3e1 + sin(PHIU)) * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 *
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 +
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) +
0.4e1 / 0.3e1 * sin(PHIU) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (DEPSXXU0 +
DEPSYYU0)) * (-0.3e1 + sin(PSIU)) / (0.8e1 * EU * (SIGXXUC + SIGYYUC) * ((sin(PSIU) - 0.3e1 / 0.2e1) *
sin(PHIU) - 0.3e1 / 0.2e1 * sin(PSIU)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + (((0.8e1
* SU * VU ^ 2 + (0.9e1 * EU + 0.4e1 * SU) * VU - 0.37e2 * EU - 0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * (0.4e1
/ 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC
* SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU -
0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PSIU) + (-0.24e2 * SU * VU ^ 2 + (-0.27e2 * EU - 0.12e2 * SU) *
VU + 0.15e2 * EU + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 /
0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC - 0.27e2 * (0.8e1 / 0.9e1
* SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) *
sin(PHIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU -
0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU -
0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1
/ 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * (-0.3e1 + sin(PSIU)));

 FKU = -0.3e1 / (0.3e1 - sin(PHIU)) * (0.1e1 - sin(PHIU)) * KCU;
 SUC = -FKU*DKU/DLU;
 if abs(SUC-SU) < TOR2

121

 break;
 else
 SU = SUC;
 end
 end
 end

 while CH >= 0
 % yield function of brick unit:
 FH = (sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2) * (-0.3e1 + sin(PHIM)) + (-0.2e1 *
SIGXXHE - 0.2e1 * SIGYYHE) * sin(PHIM) + 0.6e1 * CH * cos(PHIM)) / (-0.3e1 + sin(PHIM));
 if FH <= 0 % before yielding, plastic strain = 0
 DEPSPXXH = 0;
 DEPSPYYH = 0;
 break;
 else
 % calculate plastic strain increment:
 DEPSPXXH = ((((((((20 * DEPSYYH0 - 6 * DEPSXXH0) * E - 14 * EU * DEPSYYH0) * V + 20 * E *
DEPSXXH0 + 14 * EU * DEPSYYH0) * SIGXXHC ̂ 2) - 0.20e2 * (((DEPSYYH0 - 0.9e1 / 0.20e2 * DEPSXXH0)
* E - 0.11e2 / 0.20e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.11e2 / 0.20e2 * EU * DEPSYYH0) *
SIGYYHC * SIGXXHC + 0.17e2 * (((DEPSYYH0 - 0.3e1 / 0.17e2 * DEPSXXH0) * E - 0.14e2 / 0.17e2 * EU *
DEPSYYH0) * V + (E * DEPSXXH0) + 0.14e2 / 0.17e2 * EU * DEPSYYH0) * SIGYYHC ^ 2) * sin(PHIM) -
0.12e2 * (SIGXXHC - SIGYYHC / 0.2e1) * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU *
DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC *
(((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) /
0.2e1)) * sin(PSIM) - 0.12e2 * (SIGXXHC - SIGYYHC / 0.2e1) * (sin(PHIM) - 0.3e1) * ((((DEPSYYH0 - 0.3e1
/ 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1)
* SIGXXHC - SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0
- 2 * EU * DEPSYYH0) / 0.2e1)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) - 0.16e2 *
((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((((DEPSYYH0 - 0.3e1 / 0.4e1 * DEPSXXH0) *
E - (EU * DEPSYYH0) / 0.4e1) * V + (E * DEPSXXH0) + (EU * DEPSYYH0) / 0.4e1) * SIGXXHC -
(((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU
* DEPSYYH0) / 0.2e1) * SIGYYHC / 0.2e1) * sin(PHIM) + (((-0.3e1 / 0.2e1 * DEPSYYH0 + 0.9e1 / 0.4e1 *
DEPSXXH0) * E - 0.3e1 / 0.4e1 * EU * DEPSYYH0) * V - 0.3e1 / 0.2e1 * E * DEPSXXH0 + 0.3e1 / 0.4e1 *
EU * DEPSYYH0) * SIGXXHC + 0.3e1 / 0.4e1 * SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU *
DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0)) * sin(PSIM) - 0.3e1 / 0.2e1 * (DEPSYYH0 * (E -
EU) * V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC - SIGYYHC / 0.2e1) * sin(PHIM))) / ((((((-8 * V ^
2 * SH + (8 * E - 17 * EU - 4 * SH) * V + 20 * E + 17 * EU + 4 * SH) * SIGXXHC ^ 2) - 0.2e1 * SIGYYHC * (-4
* V ^ 2 * SH + (E - 10 * EU - 2 * SH) * V + 10 * E + 10 * EU + 2 * SH) * SIGXXHC + 0.11e2 * SIGYYHC ^ 2 *
(-0.8e1 / 0.11e2 * (V ^ 2) * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E +
0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PHIM) + ((24 * V ^ 2 * SH + (24 * E + 3 * EU + 12 * SH) *
V - 12 * E - 3 * EU - 12 * SH) * SIGXXHC ^ 2) - 0.42e2 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 *
EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC *
SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E /
0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) * sin(PSIM) + 0.24e2 * (sin(PHIM) - 0.3e1)
* (((V ^ 2 * SH) + (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1) * (SIGXXHC ^ 2) -
0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1
* E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1 * (V ^
2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 *
SH) * SIGYYHC ^ 2)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + 0.8e1 * ((SIGXXHC
^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((E - EU) * V - 2 * E + EU) * SIGXXHC) - 0.2e1 * (((E - EU)
* V) - E / 0.2e1 + EU) * SIGYYHC) * ((sin(PHIM) - 0.3e1 / 0.2e1) * sin(PSIM) - 0.3e1 / 0.2e1 * sin(PHIM)));

 DEPSPYYH = ((((((((14 * DEPSYYH0 + 3 * DEPSXXH0) * E - 17 * EU * DEPSYYH0) * V + 14 * E *
DEPSXXH0 + 17 * EU * DEPSYYH0) * SIGXXHC ̂ 2) - 0.11e2 * (((DEPSYYH0 + 0.9e1 / 0.11e2 * DEPSXXH0)
* E - 0.20e2 / 0.11e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.20e2 / 0.11e2 * EU * DEPSYYH0) *
SIGYYHC * SIGXXHC + 0.14e2 * (((DEPSYYH0 + 0.3e1 / 0.7e1 * DEPSXXH0) * E - 0.10e2 / 0.7e1 * EU *

122 Appendix D: MATLAB Code (Model 3)

DEPSYYH0) * V + (E * DEPSXXH0) + 0.10e2 / 0.7e1 * EU * DEPSYYH0) * SIGYYHC ^ 2) * sin(PHIM) +
0.6e1 * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0)
- (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU *
DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) / 0.2e1) * (SIGXXHC - 0.2e1 * SIGYYHC)) *
sin(PSIM) + 0.6e1 * (sin(PHIM) - 0.3e1) * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU *
DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC *
(((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) /
0.2e1) * (SIGXXHC - 0.2e1 * SIGYYHC)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) -
0.4e1 * ((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * (((((((DEPSYYH0 - 3 * DEPSXXH0) * E
+ 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) * SIGXXHC) + (((DEPSYYH0 + 3 *
DEPSXXH0) * E - 4 * EU * DEPSYYH0) * V + E * DEPSXXH0 + 4 * EU * DEPSYYH0) * SIGYYHC) * sin(PHIM)
+ ((((-6 * DEPSYYH0 + 9 * DEPSXXH0) * E - 3 * EU * DEPSYYH0) * V - 6 * E * DEPSXXH0 + 3 * EU *
DEPSYYH0) * SIGXXHC) + 0.3e1 * SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0)
* V + E * DEPSXXH0 - 2 * EU * DEPSYYH0)) * sin(PSIM) + 0.3e1 * (DEPSYYH0 * (E - EU) * V + E *
DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC - 0.2e1 * SIGYYHC) * sin(PHIM))) / ((((((-8 * V ^ 2 * SH + (8 *
E - 17 * EU - 4 * SH) * V + 20 * E + 17 * EU + 4 * SH) * SIGXXHC ^ 2) - 0.2e1 * SIGYYHC * (-4 * V ^ 2 * SH
+ (E - 10 * EU - 2 * SH) * V + 10 * E + 10 * EU + 2 * SH) * SIGXXHC + 0.11e2 * SIGYYHC ^ 2 * (-0.8e1 /
0.11e2 * (V ^ 2) * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E + 0.20e2 /
0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PHIM) + ((24 * V ^ 2 * SH + (24 * E + 3 * EU + 12 * SH) * V - 12 *
E - 3 * EU - 12 * SH) * SIGXXHC ^ 2) - 0.42e2 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU +
0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC
+ 0.15e2 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1
/ 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) * sin(PSIM) + 0.24e2 * (sin(PHIM) - 0.3e1) * (((V ^ 2 * SH)
+ (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1) * (SIGXXHC ^ 2) - 0.7e1 / 0.4e1 *
(0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 /
0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E
+ 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC
^ 2)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + 0.8e1 * ((SIGXXHC ^ 2) - SIGXXHC *
SIGYYHC + SIGYYHC ^ 2) * ((((E - EU) * V - 2 * E + EU) * SIGXXHC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 +
EU) * SIGYYHC) * ((sin(PHIM) - 0.3e1 / 0.2e1) * sin(PSIM) - 0.3e1 / 0.2e1 * sin(PHIM)));

 % recalculate softening modulus SUC:
 DLH = 0.4e1 * (((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + EU * DEPSYYH0 / 0.2e1) * V + E
* DEPSXXH0 - EU * DEPSYYH0 / 0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 0.3e1 * DEPSXXH0) * E
+ 0.2e1 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 0.2e1 * EU * DEPSYYH0) / 0.2e1) * (sin(PHIM) - 0.3e1)
* sqrt(SIGXXHC ^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) - 0.2e1 * sin(PHIM) * (DEPSYYH0 * (E - EU) *
V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC ^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2)) * (-0.3e1
+ sin(PSIM)) / (0.8e1 * ((sin(PSIM) - 0.3e1 / 0.2e1) * sin(PHIM) - 0.3e1 / 0.2e1 * sin(PSIM)) * (((E - EU) * V -
0.2e1 * E + EU) * SIGXXHC - 0.2e1 * ((E - EU) * V - E / 0.2e1 + EU) * SIGYYHC) * sqrt(SIGXXHC ^ 2 -
SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + (((-0.8e1 * V ^ 2 * SH + (0.8e1 * E - 0.17e2 * EU - 0.4e1 * SH) * V
+ 0.20e2 * E + 0.17e2 * EU + 0.4e1 * SH) * SIGXXHC ^ 2 - 0.2e1 * SIGYYHC * (-0.4e1 * V ^ 2 * SH + (E -
0.10e2 * EU - 0.2e1 * SH) * V + 0.10e2 * E + 0.10e2 * EU + 0.2e1 * SH) * SIGXXHC + 0.11e2 * SIGYYHC ^
2 * (-0.8e1 / 0.11e2 * V ^ 2 * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E
+ 0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PSIM) + (0.24e2 * V ^ 2 * SH + (0.24e2 * E + 0.3e1 * EU
+ 0.12e2 * SH) * V - 0.12e2 * E - 0.3e1 * EU - 0.12e2 * SH) * SIGXXHC ^ 2 - 0.42e2 * (0.4e1 / 0.7e1 * V ^ 2
* SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 /
0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * V ^ 2 * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1
/ 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) * sin(PHIM) + 0.24e2
* (-0.3e1 + sin(PSIM)) * ((V ^ 2 * SH + (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1)
* SIGXXHC ^ 2 - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * V ^ 2 * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) *
V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 *
(0.8e1 / 0.5e1 * V ^ 2 * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 *
EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2));

 FKH = -0.3e1 / (0.3e1 - sin(PHIM)) * (0.1e1 - sin(PHIM)) * KCH;
 SHC = -FKH* DKH / DLH ;

123

 if abs(SHC-SH) < TOR2
 break;
 else
 SH = SHC;
 end
 end
 end

 while CB >= 0
 % yield function of brick unit:
 FB = (sqrt((SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + 3 * TAUXYBE^2)) * (-0.3e1 +
sin(PHIM)) + (-2 * SIGXXBE - 2 * SIGYYBE) * sin(PHIM) + 0.6e1 * CB * cos(PHIM)) / (-0.3e1 + sin(PHIM));
 if FB <= 0
 DEPSPXXB = 0;
 DEPSPYYB = 0;
 DEPSPXYB = 0;
 break;
 else
 % calculate plastic strain increment:
 DEPSPXXB = ((((((((18 * DEPSXXB0 - 28 * DEPSYYB0) * E + 10 * EU * DEPSYYB0) * V - 28 * E *
DEPSXXB0 - 10 * EU * DEPSYYB0) * SIGXXBC ^ 2) + (((((-27 * DEPSXXB0 + 28 * DEPSYYB0) * E - EU *
DEPSYYB0) * V + 28 * E * DEPSXXB0 + EU * DEPSYYB0) * SIGYYBC) + 0.72e2 * DEPSXYB0 * TAUXYBC
* (V - 0.1e1 / 0.2e1) * E) * SIGXXBC + ((((9 * DEPSXXB0 - 19 * DEPSYYB0) * E + 10 * EU * DEPSYYB0) *
V - 19 * E * DEPSXXB0 - 10 * EU * DEPSYYB0) * SIGYYBC ^ 2) - 0.36e2 * DEPSXYB0 * TAUXYBC * (V -
0.1e1 / 0.2e1) * E * SIGYYBC - 0.48e2 * TAUXYBC ^ 2 * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU
* DEPSYYB0)) * sin(PHIM) - 0.54e2 * (SIGXXBC - SIGYYBC / 0.2e1) * ((((DEPSXXB0 - 0.2e1 / 0.3e1 *
DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) /
0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * V + (E
* DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V
- 0.1e1 / 0.2e1) * E)) * sin(PSIM) - 0.54e2 * (SIGXXBC - SIGYYBC / 0.2e1) * (sin(PHIM) - 0.3e1) *
((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E *
DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 /
0.3e1 * EU * DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC +
0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) +
(SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.12e2 * ((((((DEPSXXB0 - 0.8e1 / 0.3e1 * DEPSYYB0) * E + 0.5e1
/ 0.3e1 * EU * DEPSYYB0) * V - 0.5e1 / 0.3e1 * EU * DEPSYYB0 - 0.8e1 / 0.3e1 * E * DEPSXXB0) * SIGXXBC
+ (((-DEPSXXB0 + 0.4e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V + 0.4e1 / 0.3e1 * E *
DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1)
* E) * sin(PHIM) + ((((-3 * DEPSXXB0 + 2 * DEPSYYB0) * E + EU * DEPSYYB0) * V + 2 * E * DEPSXXB0 -
EU * DEPSYYB0) * SIGXXBC) + ((((3 * DEPSXXB0 - DEPSYYB0) * E - 2 * EU * DEPSYYB0) * V - E *
DEPSXXB0 + 2 * EU * DEPSYYB0) * SIGYYBC) - 0.12e2 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) *
E) * sin(PSIM) + 0.6e1 * (SIGXXBC - SIGYYBC / 0.2e1) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU
* DEPSYYB0) * sin(PHIM)) * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC
^ 2)) / ((((((24 * V ^ 2 * SB + (8 * E + 19 * EU + 12 * SB) * V - 28 * E - 19 * EU - 12 * SB) * SIGXXBC ^ 2) -
0.26e2 * (0.12e2 / 0.13e2 * (V ^ 2) * SB + (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * V - 0.14e2 /
0.13e2 * E - 0.14e2 / 0.13e2 * EU - 0.6e1 / 0.13e2 * SB) * SIGYYBC * SIGXXBC + ((24 * V ^ 2 * SB + (-E +
28 * EU + 12 * SB) * V - 19 * E - 28 * EU - 12 * SB) * SIGYYBC ^ 2) + 0.168e3 * (0.3e1 / 0.7e1 * (V ^ 2) * SB
+ (E + 0.2e1 / 0.7e1 * EU + 0.3e1 / 0.14e2 * SB) * V - 0.13e2 / 0.14e2 * E - 0.2e1 / 0.7e1 * EU - 0.3e1 / 0.14e2
* SB) * TAUXYBC ^ 2) * sin(PHIM) + ((-72 * V ^ 2 * SB + (-72 * E - 9 * EU - 36 * SB) * V + 36 * E + 9 * EU +
36 * SB) * SIGXXBC ^ 2) + 0.126e3 * (0.4e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1
* SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((-72 * V ^ 2
* SB + (-45 * E - 36 * EU - 36 * SB) * V + 9 * E + 36 * EU + 36 * SB) * SIGYYBC ^ 2) - 0.648e3 * TAUXYBC
^ 2 * (V - 0.1e1 / 0.2e1) * ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * sin(PSIM) - 0.72e2 * (((V ^ 2 * SB) + (E + EU
/ 0.8e1 + SB / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * (SIGXXBC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 /
0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 *
EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((V ^ 2 * SB) + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB /
0.2e1) * V - E / 0.8e1 - EU / 0.2e1 - SB / 0.2e1) * (SIGYYBC ^ 2) + 0.9e1 * TAUXYBC ^ 2 * (V - 0.1e1 / 0.2e1)

124 Appendix D: MATLAB Code (Model 3)

* ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * (sin(PHIM) - 0.3e1)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) +
(SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.16e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^
2) + 0.3e1 * TAUXYBC ^ 2) * ((sin(PHIM) - 0.3e1 / 0.4e1) * sin(PSIM) - 0.9e1 / 0.4e1 * sin(PHIM)) * ((((E -
EU) * V - 2 * E + EU) * SIGXXBC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYBC));

 DEPSPYYB = ((((((((-9 * DEPSXXB0 - 10 * DEPSYYB0) * E + 19 * EU * DEPSYYB0) * V - 10 * E *
DEPSXXB0 - 19 * EU * DEPSYYB0) * SIGXXBC ^ 2) + (((((27 * DEPSXXB0 + DEPSYYB0) * E - 28 * EU *
DEPSYYB0) * V + E * DEPSXXB0 + 28 * EU * DEPSYYB0) * SIGYYBC) - 0.36e2 * DEPSXYB0 * TAUXYBC
* (V - 0.1e1 / 0.2e1) * E) * SIGXXBC + ((((-18 * DEPSXXB0 - 10 * DEPSYYB0) * E + 28 * EU * DEPSYYB0)
* V - 10 * E * DEPSXXB0 - 28 * EU * DEPSYYB0) * SIGYYBC ^ 2) + 0.72e2 * DEPSXYB0 * TAUXYBC * (V
- 0.1e1 / 0.2e1) * E * SIGYYBC - 0.48e2 * TAUXYBC ^ 2 * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU
* DEPSYYB0)) * sin(PHIM) + 0.27e2 * (SIGXXBC - 2 * SIGYYBC) * ((((DEPSXXB0 - 0.2e1 / 0.3e1 *
DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) /
0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * V + (E
* DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V
- 0.1e1 / 0.2e1) * E)) * sin(PSIM) + 0.27e2 * (SIGXXBC - 2 * SIGYYBC) * (sin(PHIM) - 0.3e1) * ((((DEPSXXB0
- 0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU *
DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU *
DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 *
DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) +
(SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.12e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^
2) + 0.3e1 * TAUXYBC ^ 2) * ((((((DEPSXXB0 + DEPSYYB0 / 0.3e1) * E - 0.4e1 / 0.3e1 * EU * DEPSYYB0)
* V + (E * DEPSXXB0) / 0.3e1 + 0.4e1 / 0.3e1 * EU * DEPSYYB0) * SIGXXBC + (((-DEPSXXB0 - 0.5e1 /
0.3e1 * DEPSYYB0) * E + 0.8e1 / 0.3e1 * EU * DEPSYYB0) * V - 0.5e1 / 0.3e1 * E * DEPSXXB0 - 0.8e1 /
0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PHIM)
+ ((((-3 * DEPSXXB0 + 2 * DEPSYYB0) * E + EU * DEPSYYB0) * V + 2 * E * DEPSXXB0 - EU * DEPSYYB0)
* SIGXXBC) + ((((3 * DEPSXXB0 - DEPSYYB0) * E - 2 * EU * DEPSYYB0) * V - E * DEPSXXB0 + 2 * EU *
DEPSYYB0) * SIGYYBC) - 0.12e2 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PSIM) - 0.3e1 *
(SIGXXBC - 2 * SIGYYBC) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0) * sin(PHIM)))
/ ((((((24 * V ^ 2 * SB + (8 * E + 19 * EU + 12 * SB) * V - 28 * E - 19 * EU - 12 * SB) * SIGXXBC ^ 2) - 0.26e2
* (0.12e2 / 0.13e2 * (V ^ 2) * SB + (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * V - 0.14e2 / 0.13e2 * E
- 0.14e2 / 0.13e2 * EU - 0.6e1 / 0.13e2 * SB) * SIGYYBC * SIGXXBC + ((24 * V ^ 2 * SB + (-E + 28 * EU +
12 * SB) * V - 19 * E - 28 * EU - 12 * SB) * SIGYYBC ^ 2) + 0.168e3 * (0.3e1 / 0.7e1 * (V ^ 2) * SB + (E +
0.2e1 / 0.7e1 * EU + 0.3e1 / 0.14e2 * SB) * V - 0.13e2 / 0.14e2 * E - 0.2e1 / 0.7e1 * EU - 0.3e1 / 0.14e2 * SB)
* TAUXYBC ^ 2) * sin(PHIM) + ((-72 * V ^ 2 * SB + (-72 * E - 9 * EU - 36 * SB) * V + 36 * E + 9 * EU + 36 *
SB) * SIGXXBC ^ 2) + 0.126e3 * (0.4e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB)
* V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((-72 * V ^ 2 * SB
+ (-45 * E - 36 * EU - 36 * SB) * V + 9 * E + 36 * EU + 36 * SB) * SIGYYBC ^ 2) - 0.648e3 * TAUXYBC ^ 2 *
(V - 0.1e1 / 0.2e1) * ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * sin(PSIM) - 0.72e2 * (((V ^ 2 * SB) + (E + EU / 0.8e1
+ SB / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * (SIGXXBC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V
^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1
/ 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((V ^ 2 * SB) + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * V - E /
0.8e1 - EU / 0.2e1 - SB / 0.2e1) * (SIGYYBC ^ 2) + 0.9e1 * TAUXYBC ^ 2 * (V - 0.1e1 / 0.2e1) * ((V * SB) /
0.3e1 + E + SB / 0.3e1)) * (sin(PHIM) - 0.3e1)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC
^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.16e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1
* TAUXYBC ^ 2) * ((sin(PHIM) - 0.3e1 / 0.4e1) * sin(PSIM) - 0.9e1 / 0.4e1 * sin(PHIM)) * ((((E - EU) * V - 2 *
E + EU) * SIGXXBC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYBC));

 DEPSPXYB = -0.54e2 * (((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - EU * DEPSYYB0 / 0.3e1)
* SIGXXBC + ((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC +
0.4e1 * TAUXYBC * E * DEPSXYB0) * V + (-0.2e1 / 0.3e1 * E * DEPSXXB0 + EU * DEPSYYB0 / 0.3e1) *
SIGXXBC + (E * DEPSXXB0 / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC - 0.2e1 * TAUXYBC * E
* DEPSXYB0) * (sin(PHIM) - 0.3e1) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 *
TAUXYBC ^ 2) + 0.4e1 / 0.3e1 * sin(PHIM) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1
* TAUXYBC ^ 2) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0)) * (-0.3e1 + sin(PSIM))
* TAUXYBC / (0.16e2 * ((SIGXXBC - 0.2e1 * SIGYYBC) * (E - EU) * V + (-0.2e1 * E + EU) * SIGXXBC +

125

SIGYYBC * (E - 0.2e1 * EU)) * ((sin(PSIM) - 0.9e1 / 0.4e1) * sin(PHIM) - 0.3e1 / 0.4e1 * sin(PSIM)) *
sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) + ((-0.24e2 * SB *
(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((-0.8e1 * E -
0.19e2 * EU - 0.12e2 * SB) * SIGXXBC ^ 2 + 0.26e2 * SIGYYBC * (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2
* SB) * SIGXXBC + (E - 0.28e2 * EU - 0.12e2 * SB) * SIGYYBC ^ 2 - 0.168e3 * TAUXYBC ^ 2 * (E + 0.2e1 /
0.7e1 * EU + 0.3e1 / 0.14e2 * SB)) * V + (0.28e2 * E + 0.19e2 * EU + 0.12e2 * SB) * SIGXXBC ^ 2 - 0.28e2
* (E + EU + 0.3e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + (0.19e2 * E + 0.28e2 * EU + 0.12e2 * SB) *
SIGYYBC ^ 2 + 0.156e3 * (E + 0.4e1 / 0.13e2 * EU + 0.3e1 / 0.13e2 * SB) * TAUXYBC ^ 2) * sin(PSIM) +
0.72e2 * SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 +
((0.72e2 * E + 0.9e1 * EU + 0.36e2 * SB) * SIGXXBC ^ 2 - 0.126e3 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU +
0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.45e2 * E + 0.36e2 * EU + 0.36e2 * SB) * SIGYYBC ^ 2 + 0.648e3 *
TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-0.36e2 * E - 0.9e1 * EU - 0.36e2 * SB) * SIGXXBC ^ 2 + 0.36e2 *
SIGYYBC * (E + EU + SB) * SIGXXBC + (-0.9e1 * E - 0.36e2 * EU - 0.36e2 * SB) * SIGYYBC ^ 2 - 0.324e3
* TAUXYBC ^ 2 * (E + SB / 0.3e1)) * sin(PHIM) + 0.72e2 * (-0.3e1 + sin(PSIM)) * (SB * (SIGXXBC ^ 2 -
SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((E + EU / 0.8e1 + SB / 0.2e1) *
SIGXXBC ^ 2 - 0.7e1 / 0.4e1 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.5e1
/ 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * SIGYYBC ^ 2 + 0.9e1 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-E /
0.2e1 - EU / 0.8e1 - SB / 0.2e1) * SIGXXBC ^ 2 + SIGYYBC * (E + EU + SB) * SIGXXBC / 0.2e1 + (-E / 0.8e1
- EU / 0.2e1 - SB / 0.2e1) * SIGYYBC ^ 2 - 0.9e1 / 0.2e1 * TAUXYBC ^ 2 * (E + SB / 0.3e1))) * (SIGXXBC ^
2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) ^ (-0.1e1 / 0.2e1);

 % recalculate softening modulus SUC:
 DLB = -0.18e2 * (((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - EU * DEPSYYB0 / 0.3e1) *
SIGXXBC + ((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1
* TAUXYBC * E * DEPSXYB0) * V + (-0.2e1 / 0.3e1 * E * DEPSXXB0 + EU * DEPSYYB0 / 0.3e1) * SIGXXBC
+ (E * DEPSXXB0 / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC - 0.2e1 * TAUXYBC * E *
DEPSXYB0) * (sin(PHIM) - 0.3e1) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 *
TAUXYBC ^ 2) + 0.4e1 / 0.3e1 * sin(PHIM) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1
* TAUXYBC ^ 2) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0)) * (-0.3e1 + sin(PSIM))
/ (0.16e2 * ((SIGXXBC - 0.2e1 * SIGYYBC) * (E - EU) * V + (-0.2e1 * E + EU) * SIGXXBC + SIGYYBC * (E -
0.2e1 * EU)) * ((sin(PSIM) - 0.9e1 / 0.4e1) * sin(PHIM) - 0.3e1 / 0.4e1 * sin(PSIM)) * sqrt(SIGXXBC ^ 2 -
SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) + ((-0.24e2 * SB * (SIGXXBC ^ 2 - SIGXXBC
* SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((-0.8e1 * E - 0.19e2 * EU - 0.12e2 * SB) *
SIGXXBC ^ 2 + 0.26e2 * SIGYYBC * (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * SIGXXBC + (E -
0.28e2 * EU - 0.12e2 * SB) * SIGYYBC ^ 2 - 0.168e3 * TAUXYBC ^ 2 * (E + 0.2e1 / 0.7e1 * EU + 0.3e1 /
0.14e2 * SB)) * V + (0.28e2 * E + 0.19e2 * EU + 0.12e2 * SB) * SIGXXBC ^ 2 - 0.28e2 * (E + EU + 0.3e1 /
0.7e1 * SB) * SIGYYBC * SIGXXBC + (0.19e2 * E + 0.28e2 * EU + 0.12e2 * SB) * SIGYYBC ^ 2 + 0.156e3 *
(E + 0.4e1 / 0.13e2 * EU + 0.3e1 / 0.13e2 * SB) * TAUXYBC ^ 2) * sin(PSIM) + 0.72e2 * SB * (SIGXXBC ^ 2
- SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((0.72e2 * E + 0.9e1 * EU + 0.36e2
* SB) * SIGXXBC ^ 2 - 0.126e3 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC +
(0.45e2 * E + 0.36e2 * EU + 0.36e2 * SB) * SIGYYBC ^ 2 + 0.648e3 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V
+ (-0.36e2 * E - 0.9e1 * EU - 0.36e2 * SB) * SIGXXBC ^ 2 + 0.36e2 * SIGYYBC * (E + EU + SB) * SIGXXBC
+ (-0.9e1 * E - 0.36e2 * EU - 0.36e2 * SB) * SIGYYBC ^ 2 - 0.324e3 * TAUXYBC ^ 2 * (E + SB / 0.3e1)) *
sin(PHIM) + 0.72e2 * (-0.3e1 + sin(PSIM)) * (SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 +
0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((E + EU / 0.8e1 + SB / 0.2e1) * SIGXXBC ^ 2 - 0.7e1 / 0.4e1 * SIGYYBC *
(E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) *
SIGYYBC ^ 2 + 0.9e1 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) *
SIGXXBC ^ 2 + SIGYYBC * (E + EU + SB) * SIGXXBC / 0.2e1 + (-E / 0.8e1 - EU / 0.2e1 - SB / 0.2e1) *
SIGYYBC ^ 2 - 0.9e1 / 0.2e1 * TAUXYBC ^ 2 * (E + SB / 0.3e1)));

 FKB = -0.3e1 / (0.3e1 - sin(PHIM)) * (0.1e1 - sin(PHIM)) * KCB;
 SBC = -FKB* DKB / DLB ;
 if abs(SBC-SB) < TOR2
 break;
 else
 SB = SBC;
 end

126 Appendix D: MATLAB Code (Model 3)

 end
 end

 EPSPXXU = EPSPXXU + DEPSPXXU;
 EPSPYYU = EPSPYYU + DEPSPYYU;
 % vertical elastic stress should always be positive:
 EPSXXUE = (SIGXXUE-VU*SIGYYUE)/EU;
 EPSYYUE = (SIGYYUE-VU*SIGXXUE)/EU;
 if EPSPYYU > EPSYYUE
 if EPSPXXU > EPSXXUE
 EPSPXXU = EPSXXUE;
 else
 end
 EPSPYYU = EPSYYUE;
 else
 end

 EPSPXXH = EPSPXXH + DEPSPXXH;
 EPSPYYH = EPSPYYH + DEPSPYYH;
 % elastic stress should always be positive:
 EPSXXHE = (SIGXXHE-V*SIGYYHE)/E;
 EPSYYHE = (SIGYYHE-V*SIGXXHE)/E;
 if EPSPYYH > EPSYYHE
 if EPSPXXH > EPSXXHE
 EPSPXXH = EPSXXHE;
 else
 end
 EPSPYYH = EPSYYHE;
 else
 end

 EPSPXXB = EPSPXXB + DEPSPXXB;
 EPSPYYB = EPSPYYB + DEPSPYYB;
 EPSPXYB = EPSPXYB + DEPSPXYB;
 % vertical elastic predicted stress should always be positive:
 EPSXXBE = (SIGXXBE-V*SIGYYBE)/E;
 EPSYYBE = (SIGYYBE-V*SIGXXBE)/E;
 EPSXYBE = TAUXYBE/(2*GB);
 if EPSPYYB > EPSYYBE
 if EPSPXXB > EPSXXBE
 if EPSPXYB > EPSXYBE
 EPSPXYB = EPSXYBE;
 else
 end
 EPSPXXB = EPSXXBE;
 else
 end
 EPSPYYB = EPSYYBE;
 else
 end

% EPSPXXU = 0;
% EPSPYYU = 0;
% EPSPXXH = 0;
% EPSPYYH = 0;
% EPSPXXB = 0;

127

% EPSPYYB = 0;
% EPSPXYB = 0;

 % damage factor:
 while DH < 1 & DU < 1 & DC < 1 & DB < 1
 % damage model
 % Stresses with plastic corrector of each component in x direction:
 SIGXXUP = (EU*(1-VU)*(EPSXXUE-EPSPXXU))/((1+VU)*(1-2*VU))+(EU*(VU)*(EPSYYUE-
EPSPYYU))/((1+VU)*(1-2*VU));

 SIGXXHP = (EH*(1-V)*(EPSXXHE-EPSPXXH))/((1+V)*(1-2*V))+(EH*(V)*(EPSYYHE-
EPSPYYH))/((1+V)*(1-2*V));

 SIGXXCP = RB*(EB*(1-V)*(EPSXXBE-EPSPXXB))/((1+V)*(1-2*V))+(EB*(V)*(EPSYYBE-
EPSPYYB))/((1+V)*(1-2*V))/RC;
 % shear stresses with plastic corrector of each component in shear direction:
 TAUXYBP = 2*GB*(EPSXYBE-EPSPXYB);

 %find maximum stress between stress at n step and intial maximum value
 SXH = max(SIGXXHP,SIGTM); % head joint
 SXU = max(SIGXXUP,SIGTU); % brick unit
 SXC = max(SIGXXCP,SIGTM); % cross joint
 TXYB = max(abs(TAUXYBP),SIGS); % bed joint
 % with smeared crack model
 ATM = (((GIM*EH)/(LT*SIGTM^2))-(1/2))^(-1); % paramter AT/AS of each component
 ATU = (((GIU*EU)/(LT*SIGTU^2))-(1/2))^(-1);
 ASB = (((GII*GB)/(LS*SIGS^2))-(1/2))^(-1);

 % Calculate damage factor from internal stresses
 DHC = 1-(SIGTM*exp(ATM*(1-(SXH/SIGTM)))/SXH); % DH should not increasing
 DUC = 1-(SIGTU*exp(ATU*(1-(SXU/SIGTU)))/SXU); % once DH tend to increased, brick is damaged
 DBC = 1-(SIGS*exp(ASB*(1-(TXYB/SIGS)))/TXYB);
 if abs(DHC/DH) < 1
 if abs(DUC/DU) < 1
 if abs(DBC/DB) < 1
 DBC = DB;
 else
 end
 DUC = DU;
 else
 end
 DHC = DH;
 SWC = 1;
 else
 end
 if SIGXXCP < 0 % cross joint failure in tension only happened once sigxxc < 0 (tension stress)
 DCC = 1-(SIGTM*exp(ATM*(1-(SXC/SIGTM)))/SXC);
 else
 DCC = (DB+DH)/2;
 end

 % Verification of damage factor
 % Since damage factor will influence stress itself
 % damage factor should be verificated together
 if DHC >= 0 & DUC >=0 & DCC >=0 & DBC >= 0
 if abs(DHC-DH) < TOR
 if abs(DUC-DU) < TOR

128 Appendix D: MATLAB Code (Model 3)

 if abs(DCC-DC) < TOR
 if abs(DBC-DB) < TOR
 break;
 else
 DB = DBC;
 end
 else
 DC = DCC;
 end
 else
 DU = DUC;
 end
 else
 DH = DHC;
 end
 else
 break;
 end
 end

EPSXX0YT = - ((EPSXXUE)* C2 + (EPSXXHE))/(C2+1);
EPSXX0YP = - ((EPSPXXU)* C2 + (EPSPXXH))/(C2+1);

SIGYYUP = (EU*(1-VU)*(EPSYYUE-EPSPYYU))/((1+VU)*(1-2*VU))+(EU*(VU)*(EPSXXUE-

EPSPXXU))/((1+VU)*(1-2*VU));

 SIGYYHP = (EH*(1-V)*(EPSYYHE-EPSPYYH))/((1+V)*(1-2*V))+(EH*(V)*(EPSXXHE-
EPSPXXH))/((1+V)*(1-2*V));

 % total undamaged stress of cell
 SIGYY0C = (RH*SIGYYHP + C2*RU*SIGYYUP)/(C2+1);
 if SWC == 1
 SIGYY0 = SIGYY0;
 else
 SIGYY0 = SIGYY0C;
 end

 % record value:
 a = [a,SIGYY0];
 b = [b,RH*SIGYYHP];
 d = [d,FU];

e = [e,RB*TAUXYBP];
f = [f,RU*SIGYYUP];
g = [g,EPSXX0YT];
h = [h,EPSXX0YP];

end

129

Appendix E: MATLAB Code (Model 4)
clear all;
% properties setting:
E = 5091; C1 = 1.77;
EU = C1*E; EH = E; EB = E; EC = E;
V = 0.02; % Poisson's ratio of mortar
VU = 0.14; % Poisson's ratio of brick
GB = E/(2*(1+V)); % shear modulus of mortar

% friction and dilatancy angle:
PHIU = (23.27*pi)/180;
PSIU = (10*pi)/180;
PHIM = (23.27*pi)/180;
PSIM = (10*pi)/180;

% I and II fracture energy
GIU = 0.081; GIM = 0.082;
GII = 0.012;
% compressive fracture energy
GCU = 20.96; GCM = 17.68;

% Shear, tension and compressive strength:
SIGTU = 2.74; % Tension strength of brick unit
SIGTM = 2.79; % Tension strength of mortar
FCU = 16; %compressive strength of brick
FCM = 6.59; % compressive strength of mortar
% Shear strength of mortar:
SIGS = 0.14; % should always be smaller than "2c*cos(phi)^2/(1-sin(phi))" with cmax = fc

% maximum strain of strain-stress curve under compression
EPS0U = 2*FCU/EU;
EPS0M = 2*FCM/E;

% geometrical properties:
C2 = 21.2; C3 = 7.1; % properties of masonry: L=C2*T, H=C3*T

% initial value of external strain and damage factor:
EPSYY0 = 0; EPSXX0 = 0; EPSXY0 = 0; % external strain
DEPSYY0 = - 0.00001; % external vertical strain increment
DEPSXX0 = 0.00001; % external horizantal strain increment
DEPSXY0 = 0.00001; % external shear strain increment

% initial value of plastic strain of each component:
EPSPXXU = 0;EPSPYYU = 0; % initial value of plastic strain
EPSPXXH = 0;EPSPYYH = 0;
EPSPXXB = 0;EPSPYYB = 0;EPSPXYB = 0;
KU = 0; KH = 0; KB = 0; % initial value of hardening(softening) parameter

% initialize value of variables:
DH = 0; DU = 0; DB = 0; DC = 0; % damage varaiables of compression splitting
SU = 0; SH = 0; SB = 0; %softening modulus
DEPSPXXU = 0;DEPSPYYU = 0; % initialized value of plastic strain increment
DEPSPXXH = 0;DEPSPYYH = 0;
DEPSPXXB = 0;DEPSPYYB = 0;DEPSPXYB = 0;
% damage variables of tension behaviour

130 Appendix E: MATLAB Code (Model 4)

DHX = 0; DUX = 0; DBX = 0; DCX = 0;
% damage variable of shear behaviour
DBXY = 0;

% ATM must be positive, check maximum mesh size: HH < 80
% ATU must be positive, check maximum mesh size: HH < 59
% AS must be positive, check maximum mesh size: HH <74
HH = 50; % element size
LT = HH; LS = HH; LC = HH; % characteristic length of element is element size

% Tolerance of calculted and assumed damge factor
TOR = 0.00001; % verify damage factor
TOR2 = 0.00001; % verify hardening modulus

% switch code: SWC
SWC = 0; % when damage factor decresed, error happened then SWC = 1
SIGYY0 = 0;
a = []; b = []; d = []; e = []; f = [];g = []; h = [];

% outer loop: strain integration
for i = 1:1000
 EPSYY0 = EPSYY0 + DEPSYY0;
 EPSXX0 = EPSXX0 + DEPSXX0;
 EPSXY0 = EPSXY0 + DEPSXY0;

 % inner loop: verification of damage factor
 % undamage factor of each component for compression splitting
 RH = 1-DH;
 RB = 1-DB;
 RC = 1-DC;
 RU = 1-DU;

 % undamage factor of each component for horizontal tension behaviour
 RHX = 1-DHX;
 RBX = 1-DBX;
 RCX = 1-DCX;
 RUX = 1-DUX;

 EPSXX0Y = -(-(2 * RBX + (C2 - 1) * RCX) * C1 * RBX * ((E * RHX * (C2 * VU + V) * C3 ^ 2) + (-(VU * GB
* (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1) * RBX) / 0.4e1 + (((-V ^ 2 + 1) * C1 * RUX + RHX * (V * VU + C2)) * E
* V)) * C3 - (V * GB * RBX * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.4e1) * (C3 + 1) * EPSYY0 * RUX / (-
(RBX * RHX * C1 * (2 * RBX + (C2 - 1) * RCX) * RUX * E * C3 ^ 3) + ((RUX * C1 * GB * (V - 1) * (V + 1) *
(C2 - 1) * RBX ^ 3) / 0.2e1 + (-0.2e1 * RUX * (-(RCX * (C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.8e1 + E * ((-(V
^ 2) / 0.2e1 + 0.1e1 / 0.2e1) * RCX + (RHX * V * VU))) * C1 + (E * C2 * RCX * RHX * (VU - 1) * (VU + 1))) *
(RBX ^ 2) + 0.2e1 * C1 * ((RUX * (V ^ 2 - 1) * C1) - (V * RCX * (2 * C2 * VU + V - VU)) / 0.2e1) * RHX * E *
RUX * RBX + (E * RUX ^ 2 * C1 ^ 2 * RCX * RHX * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - (-(C2 - 1) * (V +
1) * ((V * VU * RUX * C1) - (RCX * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * GB * (V - 1) * (RBX ^ 2) / 0.2e1
+ ((C2 - 1) * (V + 1) * C1 * RUX * GB * (RUX * (V ^ 2 - 1) * C1 - C2 * RCX * V * VU) * (V - 1) * RBX) / 0.2e1
+ C1 * (-(V + 1) * RUX * (-((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * (V - 1) * C1 + (E * RHX * (V *
VU + C2))) * RUX * RCX) * RBX * C3 + (RUX * C1 * GB * RBX ^ 2 * RCX * (C2 - 1) * (C2 + 1) * (V - 1) * (V
+ 1)) / 0.4e1) / (C2 + 1));

 EPSYY0X = -(EPSXX0 * ((C3 * GB * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1) * (C1 * C2 * RU +
RH) * RB ^ 3) / 0.2e1 + (-(2 * E * RU * C1 * RC * RH * (C2 + 1) * C3 ^ 3) + ((GB * (C2 - 1) ^ 2 * (V - 1) * (V +
1) * (C1 * C2 * RU + RH) * RC ^ 2) / 0.4e1 - (4 * E * RU * C1 * RH ^ 2 * (C2 + 1))) * (C3 ^ 2) + (GB * (V - 1) *
(C2 - 1) * RC * (V + 1) * ((C2 + 1) * (C1 * C2 * RU - RH) * RC + 2 * RH * ((C2 - 1) * RH + C1 * RU * (C2 ^ 2 -

131

C2 + 2))) * C3) / 0.4e1 + (RH * C1 * GB * (V - 1) * (C2 - 1) * RU * ((C2 ^ 2 + C2) * RC + 2 * RH) * (V + 1)) /
0.2e1) * (RB ^ 2) + (-(E * RU * C1 * RC ^ 2 * RH * (C2 - 1) * (C2 + 1) * C3 ^ 3) + ((((-V ^ 2 + 1) * C2 * RH ^ 2
+ (-C2 ^ 2 + 1) * RU * C1 * RH + RU ^ 2 * C1 ^ 2 * C2 * (V - 1) * (V + 1)) * RC + 2 * RH * C1 * ((-C2 ^ 2 + V ^
2) * RH + RU * (V - 1) * (V + 1) * C1) * RU) * RC * E * C3 ^ 2) + 0.2e1 * RH * C1 * ((GB * (C2 - 1) ^ 2 * (V -
1) * (V + 1) * RC ^ 2) / 0.4e1 + (((-V ^ 2 - C2) * RH + RU * (V - 1) * (V + 1) * C1) * E * C2 * RC) + (2 * E * RU
* C1 * RH * (V - 1) * (V + 1))) * RU * C3 + (C1 * RU * GB * RC * RH ^ 2 * (C2 - 1) ^ 2 * (V - 1) * (V + 1)) /
0.2e1) * RB + (RH * C1 * (C3 * (C1 * RU + RH) * RC + 2 * RH * C1 * RU) * (V - 1) * (C2 - 1) * RC * E * RU *
C3 * (V + 1))) * (C2 + 1) * V / ((C2 - 1) * RC + 2 * RB) / (C3 + 1) / ((GB * (V - 1) * (C2 - 1) * (C2 + 1) * (V + 1)
* (C3 * (C1 * C2 * RU + RH) * RC + 2 * C1 * C2 * RU * RH) * RB ^ 2) / 0.4e1 + (RC * E * ((C2 * (V ^ 2 - 1) *
RH ^ 2) - 0.2e1 * C1 * RU * ((C2 * V ^ 2) + (C2 ^ 2) / 0.2e1 + 0.1e1 / 0.2e1) * RH + (RU ^ 2 * C1 ^ 2 * C2 *
(V - 1) * (V + 1))) * (C3 ^ 2) + (2 * RH * C1 * ((-V ^ 2 - C2) * RH + RU * (V - 1) * (V + 1) * C1) * E * RU * C3 *
C2) + (C1 * RU * GB * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.2e1) * RB + (2 * E * RU * C1 * C3
* RC * RH * (V - 1) * (V + 1) * (C1 * RU + C2 * RH))));

 DEPSXX0Y = -(-RUX * (E * RHX * (C2 * VU + V) * C3 ^ 2 + (((-0.25e0 * C2 ^ 2 * VU + 0.25e0 * VU) * V ^
2 + 0.25e0 * C2 ^ 2 * VU - 0.25e0 * VU) * GB * RBX + (-0.1e1 * E * V ^ 3 + E * V) * C1 * RUX + E * RHX * V
* (V * VU + C2)) * C3 + (-0.25e0 * C2 ^ 2 * V ^ 3 + 0.25e0 * C2 ^ 2 * V + 0.25e0 * V ^ 3 - 0.25e0 * V) * GB *
RBX) * (0.2e1 * RBX + (C2 - 0.1e1) * RCX) * DEPSYY0 * C1 * RBX * (C3 + 0.1000000000e1) / (C2 +
0.1000000000e1) / ((-0.2e1 * C1 * E * RBX ^ 2 * RHX * RUX + (E * RHX - 0.1e1 * C2 * E * RHX) * RCX *
C1 * RUX * RBX) * C3 ^ 3 + (((0.5e0 * C2 - 0.5e0) * V ^ 2 + 0.5e0 - 0.5e0 * C2) * GB * C1 * RUX * RBX ^ 3
+ (((0.25e0 * (C2 - 0.1e1) ^ 2 * V ^ 2 - 0.25e0 * (C2 - 0.1e1) ^ 2) * RCX * GB + (E * V ^ 2 - 0.1e1 * E) * RCX
- 0.2e1 * E * RHX * V * VU) * C1 * RUX + (RHX * VU ^ 2 - 0.1e1 * RHX) * E * C2 * RCX) * RBX ^ 2 +
((0.2e1 * RHX * E * V ^ 2 - 0.2e1 * E * RHX) * C1 ^ 2 * RUX ^ 2 + (-0.1e1 * RHX * E * V ^ 2 + (E * RHX * VU
- 0.2e1 * C2 * E * RHX * VU) * V) * RCX * C1 * RUX) * RBX + ((-0.1e1 * E * RHX + C2 * E * RHX) * V ^ 2 +
E * RHX - 0.1e1 * C2 * E * RHX) * RCX * C1 ^ 2 * RUX ^ 2) * C3 ^ 2 + ((((0.5e0 * C2 * VU - 0.5e0 * VU) * V
^ 3 + (-0.5e0 * C2 * VU + 0.5e0 * VU) * V) * GB * C1 * RUX + (((0.25e0 - 0.25e0 * VU ^ 2) * C2 ^ 2 + 0.25e0
* VU ^ 2 - 0.25e0) * V ^ 2 + (0.25e0 * VU ^ 2 - 0.25e0) * C2 ^ 2 + 0.25e0 - 0.25e0 * VU ^ 2) * RCX * GB) *
RBX ^ 3 + (((0.5e0 - 0.5e0 * C2) * V ^ 4 + (C2 - 0.1e1) * V ^ 2 + 0.5e0 - 0.5e0 * C2) * GB * C1 ^ 2 * RUX ^ 2
+ ((0.5e0 * C2 ^ 2 * VU - 0.5e0 * C2 * VU) * V ^ 3 + (-0.5e0 * C2 ^ 2 * VU + 0.5e0 * C2 * VU) * V) * RCX *
GB * C1 * RUX) * RBX ^ 2 + (((-0.25e0 * (C2 - 0.1e1) ^ 2 * V ^ 4 + 0.5e0 * (C2 - 0.1e1) ^ 2 * V ^ 2 - 0.25e0 *
(C2 - 0.1e1) ^ 2) * RCX * GB + (E * V ^ 2 - 0.1e1 * E) * RCX) * C1 ^ 2 * RUX ^ 2 + (-0.1e1 * E * RHX * V *
VU - 0.1e1 * C2 * E * RHX) * RCX * C1 * RUX) * RBX) * C3 + ((0.25e0 * C2 ^ 2 - 0.25e0) * V ^ 2 - 0.25e0 *
C2 ^ 2 + 0.25e0) * RCX * GB * C1 * RUX * RBX ^ 2));

 DEPSYY0X = -(DEPSXX0 * ((C3 * GB * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1) * (C1 * C2 * RU +
RH) * RB ^ 3) / 0.2e1 + (-(2 * E * RU * C1 * RC * RH * (C2 + 1) * C3 ^ 3) + (((C2 - 1) ^ 2 * (V - 1) * (V + 1) *
GB * (C1 * C2 * RU + RH) * RC ^ 2) / 0.4e1 - (4 * E * RU * C1 * RH ^ 2 * (C2 + 1))) * (C3 ^ 2) + (GB * (V - 1)
* (C2 - 1) * RC * (V + 1) * ((C2 + 1) * (C1 * C2 * RU - RH) * RC + 2 * RH * ((C2 - 1) * RH + RU * C1 * (C2 ^ 2
- C2 + 2))) * C3) / 0.4e1 + (RH * C1 * GB * (V - 1) * (C2 - 1) * RU * ((C2 ^ 2 + C2) * RC + 2 * RH) * (V + 1)) /
0.2e1) * (RB ^ 2) + (-(E * RU * C1 * RC ^ 2 * RH * (C2 - 1) * (C2 + 1) * C3 ^ 3) + ((((-V ^ 2 + 1) * C2 * RH ^ 2
+ (-C2 ^ 2 + 1) * RU * C1 * RH + RU ^ 2 * C1 ^ 2 * C2 * (V - 1) * (V + 1)) * RC + 2 * RH * C1 * ((-C2 ^ 2 + V ^
2) * RH + RU * (V - 1) * (V + 1) * C1) * RU) * RC * E * C3 ^ 2) + 0.2e1 * RH * C1 * (((C2 - 1) ^ 2 * (V - 1) * (V
+ 1) * GB * RC ^ 2) / 0.4e1 + (((-V ^ 2 - C2) * RH + RU * (V - 1) * (V + 1) * C1) * E * C2 * RC) + (2 * E * RU *
C1 * RH * (V - 1) * (V + 1))) * RU * C3 + (RU * C1 * GB * RC * RH ^ 2 * (C2 - 1) ^ 2 * (V - 1) * (V + 1)) /
0.2e1) * RB + (RH * C1 * (C3 * (RU * C1 + RH) * RC + 2 * RH * C1 * RU) * (V - 1) * (C2 - 1) * RC * E * RU *
C3 * (V + 1))) * (C2 + 1) * V / ((C2 - 1) * RC + 2 * RB) / (C3 + 1) / ((GB * (V - 1) * (C2 - 1) * (C2 + 1) * (V + 1)
* (C3 * (C1 * C2 * RU + RH) * RC + 2 * C1 * C2 * RU * RH) * RB ^ 2) / 0.4e1 + (RC * E * ((C2 * (V ^ 2 - 1) *
RH ^ 2) - 0.2e1 * RU * C1 * ((C2 * V ^ 2) + (C2 ^ 2) / 0.2e1 + 0.1e1 / 0.2e1) * RH + (RU ^ 2 * C1 ^ 2 * C2 *
(V - 1) * (V + 1))) * (C3 ^ 2) + (2 * RH * C1 * ((-V ^ 2 - C2) * RH + RU * (V - 1) * (V + 1) * C1) * E * RU * C3 *
C2) + (RU * C1 * GB * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.2e1) * RB + (2 * E * RU * C1 * C3
* RC * RH * (V - 1) * (V + 1) * (RU * C1 + RH * C2))));

 % vertical stress:
 EPSYY0TC = EPSYY0 + EPSYY0X;
 DEPSYY0TC = DEPSYY0 + DEPSYY0X;

 % horizantal stress:

132 Appendix E: MATLAB Code (Model 4)

 EPSXX0TC = EPSXX0 + EPSXX0Y;
 DEPSXX0TC = DEPSXX0 + DEPSXX0Y;

 % material properties: with smeared crack model
 ATM = (((GIM*EH)/(LT*SIGTM^2))-(1/2))^(-1); % paramter AT/AS of each component
 ATU = (((GIU*EU)/(LT*SIGTU^2))-(1/2))^(-1);
 ASB = (((GII*GB)/(LS*SIGS^2))-(1/2))^(-1);

 % compression behaviour (without shear loading): brick crushing
 EPSYY0T = abs(EPSYY0TC);
 DEPSYY0T = abs(DEPSYY0TC);

 % drucker pragar plasiticy model of brick unit
 % elastic predictor of brick unit
 SIGXXUE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) *
(RC * C3 + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) *
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V -
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 -
0.2e1) * RH) * RH) * E * C1 * RB * V * EPSYY0T / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 - (V
- 1) * (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (RC * C3 + (2 * RH)) * (C2 - 0.1e1) * RB ^ 3 -
0.4e1 * (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 + E *
C2 * RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * C1 * (-
(V ^ 2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 0.1e1) *
(C2 + 0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (RC * C3 + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E * RC ^ 2
* RH * (C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * (C3 ^ 2) +
((-RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * RH * ((V ^ 2)
- C2) / 0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * (V + 1)) * C3 -
RC * RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - E * C2 * RH))
* RB + 0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (RC * C3 + (2 * RH)) * (C2 -
0.1e1));

 SIGYYUE = -0.4e1 * (C3 + 1) * E * ((RC * E * RU * C1 * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) + (-(RU *
C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * GB) /
0.4e1 + E) * C1 - (E * RH * (V ^ 2 + C2))) * (RC ^ 2) + (4 * RU * C1 * E * RH ^ 2)) * RB - (2 * RC * E * RU *
(V ^ 2 * RC - RH * (C2 - 1)) * C1 * RH)) * (C3 ^ 2) + 0.2e1 * (-GB * (V - 1) * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) *
(RC ^ 2) + (RU * C1 * RH)) * (V + 1) * (C2 - 1) * RB / 0.2e1 + RC * ((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 *
GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH) * RB * C3 + (GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V -
1) * (V + 1)) / 0.2e1) * C1 * RB * EPSYY0T / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) *
C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-0.4e1 * (V - 1) * (RU * (-((C2 - 1)
^ 2 * GB) / 0.4e1 + E) * C1 + (E * C2 * RH)) * (V + 1) * (RC ^ 2) + (8 * E * RU * V ^ 2 * C1 * RC * RH) - (16 *
RU * C1 * E * RH ^ 2)) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB)
+ (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V
+ 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1 + (C1 * RC * RU * V ^ 2) - (2 * RU * C1 * RH)) * (C2 - 1)
* (RB ^ 3) + ((2 * RU * C1 * V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) - 0.8e1 * (V - 1) * (V + 1) * ((RU
^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * C1 ^ 2) / 0.4e1 + RU * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH * C1 + (E
* C2 * RH ^ 2)) * RC + (16 * E * RU * V ^ 2 * C1 * RH ^ 2)) * (RB ^ 2) - 0.4e1 * ((RU * (V - 1) * (V + 1) * (((C2
- 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V ^ 2 - C2))) * (RC ^ 2) + (2 * E * V ^ 2 * RC *
RH ^ 2) - (4 * RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^
2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V - 1) * (V + 1) *
(C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 * ((C2 /
0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * RB /
0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1
- (E * C2 * RH))) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)));

 % increment of elastic strain exceed yiled surface

133

 DEPSXXU0 = 0.4e1 * RB * (C3 + 1) * DEPSYY0T * ((VU * RH * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC *
E * C3 ^ 3) + (-(RU * VU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V + 1) * VU * (V -
1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (2 * V * RH * RC * E) + (4 * E * VU * RH ^ 2)) * RU * C1 -
(E * V * RC ^ 2 * RH * (VU - 1) * (VU + 1))) * RB - 0.2e1 * (V * ((V * VU) + C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC -
(VU * RH * (C2 - 1))) * RH * C1 * RC * RU * E) * (C3 ^ 2) + 0.2e1 * (-GB * (V + 1) * (V - 1) * (C2 - 1) * ((VU *
RH) - (V * RC) / 0.2e1) * (RB ^ 2) / 0.2e1 + ((V * GB * (C2 - 1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2) / 0.8e1 + (V +
1) * VU * (V - 1) * RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC - (2 * E * V * RH ^ 2)) * RB - (V * RH * (-RC +
RH * (C2 - 1)) * RC * E)) * RU * C1 * C3 + (V * GB * (V + 1) * (V - 1) * RH * RB * (C2 - 1) * (2 * RB + RC *
(C2 - 1)) * RU * C1) / 0.2e1) / (-(4 * RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + ((2 *
RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (0.8e1 * (-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) /
0.4e1 + E) * (RC ^ 2) / 0.2e1 + (E * VU * V * RC * RH) - (2 * E * RH ^ 2)) * RU * C1 - (4 * E * C2 * RC ^ 2 *
RH * (VU - 1) * (VU + 1))) * (RB ^ 2) + 0.8e1 * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH *
(C2 - 1))) * RH * C1 * RC * RU * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 -
1))) * (C3 ^ 3) + (-0.2e1 * (V - 1) * GB * (C2 - 1) * (V + 1) * ((RU * (V * RC * VU - 2 * RH) * C1) - (RC ^ 2 *
(VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 -
1) * C1 ^ 2) + 0.16e2 * ((V * VU * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) / 0.8e1 - (V + 1) * (V - 1) * RH * (-
((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH ^ 2)) * RU * C1 - (8 * E * C2 * RC * RH ^ 2 *
(VU - 1) * (VU + 1))) * (RB ^ 2) - 0.4e1 * ((V - 1) * (V + 1) * ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E)
* (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 + (((V * VU - C2) * RC + 2 * V * VU * RH) * RH * RC * E)) * C1 * RU
* RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * ((V - 1) * GB *
RH * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C2 - 1) * (V + 1) * (RB ^ 2) / 0.2e1
+ (V - 1) * GB * ((RU * RH * (V - 1) * (V + 1) * C1) - RC * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * RC + (V * VU *
RH))) * (C2 - 1) * C1 * (V + 1) * RU * RB / 0.2e1 + (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) *
GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * C1 * RC * RU) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC *
RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)));
 DEPSYYU0 = 0.4e1 * RB * DEPSYY0T * (-GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) -
(RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * RB ^ 2 / 0.2e1 + 0.2e1 * (C3 *
RC + 2 * RH) * (-(RU * C1 * E * C3 ^ 2 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU *
C1 / 0.2e1 - (E * C2 * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC + (RU * C1 * E * VU * V * RH)) * C3 - RU * VU
* V * C1 * GB * RC * ((C2 - 1) ^ 2) * (V - 1) * (V + 1) / 0.8e1) * RB + (RH * (-RC * (C2 - 1) * C3 ^ 2 + (V * (2 *
V + VU * (C2 - 1)) * RC - 2 * RH * (C2 - 1)) * C3 + 2 * V * VU * (-RC + RH * (C2 - 1))) * C3 * RU * C1 * RC *
E)) * (C3 + 1) / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU +
1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * RB ^ 3 + 0.8e1 * (C3 * RC + 2 * RH) * (-(RU *
C1 * E * C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 / 0.2e1 - (E * C2 *
RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC + (RU * C1 * E * VU * V * RH)) * (C3 ^ 2) - GB * (V + 1) * (V - 1) *
(C2 - 1) * (-V * RC * VU + RU * (V - 1) * (V + 1) * C1) * RU * C1 * C3 / 0.4e1 - RU * C1 * RC * GB * (C2 - 1)
* (C2 + 1) * (V - 1) * (V + 1) / 0.8e1) * RB ^ 2 + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) /
0.2e1 + RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + ((-
RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - (E * RH * (V * VU -
C2)) / 0.2e1) * (RC ^ 2) - (E * RC * RH ^ 2 * V * VU) + (2 * RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * C3 -
RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) *
C1 * RB + (4 * E * RU ^ 2 * C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1)));

 % caculated cohesion of brick unit by value of hardening(softening) parameter K
 DKU = sqrt((6 * DEPSPXXU ^ 2 + 6 * DEPSPYYU ^ 2)) / 0.3e1;
 KU = KU + DKU;
 KUMAX = ((2 * LC * EPS0U * FCU + 3 * GCU) / LC / FCU) / 0.2e1;
 % find compressive strength by hardening parameter K:
 if KU <= EPS0U
 SIGCU = (FCU * (-2 * KU ^ 2 / EPS0U ^ 2 + 4 * KU / EPS0U + 1)) / 0.3e1;
 KCU = (FCU * (-4 * KU / EPS0U ^ 2 + 4 / EPS0U)) / 0.3e1;
 else
 if KU < KUMAX
 SIGCU = FCU * (0.1e1 - 0.4e1 / 0.9e1 * FCU ^ 2 * LC ^ 2 / GCU ^ 2 * (KU - EPS0U) ^ 2);
 KCU = -0.8e1 / 0.9e1 * FCU ^ 3 * LC ^ 2 / GCU ^ 2 * (KU - EPS0U);
 else
 SIGCU = 0;

134 Appendix E: MATLAB Code (Model 4)

 KCU = -0.8e1 / 0.9e1 * FCU ^ 3 * LC ^ 2 / GCU ^ 2 * (KUMAX - EPS0U);
 end
 end
 % find critical stress:
 CU = (0.1e1 - sin(PHIU)) / cos(PHIU) * SIGCU / 0.2e1;

 SIGXXUC1 = -0.18e2 * (-0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) - 0.6e1 * SIGYYUE *
sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) *
SIGXXUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 -
sin(PHIU)) ^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 *
SIGYYUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE *
SIGYYUE - 0.9e1 * SIGYYUE ^ 2);

 SIGYYUC1 = 0.18e2 * (0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.6e1 * SIGYYUE *
sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) *
SIGYYUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 -
sin(PHIU)) ^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 *
SIGYYUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE *
SIGYYUE - 0.9e1 * SIGYYUE ^ 2);

 SIGXXUC2 = 0.18e2 * (0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.6e1 * SIGYYUE *
sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) *
SIGXXUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 -
sin(PHIU)) ^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 *
SIGYYUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE *
SIGYYUE - 0.9e1 * SIGYYUE ^ 2);

 SIGYYUC2 = -0.18e2 * (-0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) - 0.6e1 * SIGYYUE *
sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) *
SIGYYUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 -
sin(PHIU)) ^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 *
SIGYYUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE *
SIGYYUE - 0.9e1 * SIGYYUE ^ 2);

 if SIGXXUE/SIGXXUC1 > 0
 SIGXXUC = SIGXXUC1;
 else
 SIGXXUC = SIGXXUC2;
 end
 if SIGYYUE/SIGYYUC1 > 0
 SIGYYUC = SIGYYUC1;
 else
 SIGYYUC = SIGYYUC2;
 end

 % drucker pragar plasiticy model of head joint
 % elastic predictor of head joint:
 SIGXXHE = -0.4e1 * (C3 + 1) * E * RB * ((((2 * RU * C1 - RC * (C2 + 1)) * RB + RU * C1 * RC * (C2 - 1)) *
RC * E * RU * C1 * C3 ^ 2) + (-GB * ((RU * (V ^ 2 * RC - RC + 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) *
RC ^ 2) / 0.2e1) * (C2 - 1) * (RB ^ 2) / 0.2e1 + 0.4e1 * RU * C1 * (RU * (-GB * (V - 1) * (V + 1) * (C2 - 1) *
RC / 0.4e1 + (E * RH)) * C1 - (-GB * ((C2 + 3) * V ^ 2 + C2 - 1) * (C2 - 1) * RC / 0.8e1 + (((C2 - 1) ^ 2) * GB /
0.4e1 + (E * C2)) * RH) * RC / 0.2e1) * RB + 0.2e1 * RC * (RU ^ 2) * (C1 ^ 2) * ((-((C2 - 1) ^ 2) * (V - 1) * (V
+ 1) * GB / 0.4e1 - E) * RC + (E * RH * (C2 - 1)))) * C3 - GB * RU * C1 * RB * (-2 * RB * RH + RC * (RC *
(C2 + 1) - RH * (C2 - 1))) * (C2 - 1) / 0.2e1) * V * EPSYY0T / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB +
RC * (C2 - 1)) * C3 ^ 4) + (0.2e1 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * (RB ^ 3) + (-0.4e1 * RU *
((V - 1) * (V + 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * (RC ^ 2) - (2 * E * V ^ 2 * RC * RH) + (4 * E * RH ^ 2)) *

135

C1 - (4 * E * C2 * RC ^ 2 * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1)
* C1 - RH * (C2 - 1)) * RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) +
(-0.2e1 * GB * (V - 1) * (V + 1) * ((RU * (V ^ 2 * RC - 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) /
0.2e1) * (C2 - 1) * (RB ^ 3) + (-0.2e1 * (RU ^ 2) * GB * RC * ((V - 1) ^ 2) * ((V + 1) ^ 2) * (C2 - 1) * (C1 ^ 2) -
0.8e1 * (-(V ^ 2) * GB * (V - 1) * (V + 1) * (C2 - 1) * (RC ^ 2) / 0.4e1 + (V - 1) * (V + 1) * (-((C2 - 1) ^ 2) * GB /
0.4e1 + E) * RH * RC - (2 * E * V ^ 2 * RH ^ 2)) * RU * C1 - (8 * RC * RH ^ 2 * E * C2 * (V - 1) * (V + 1))) *
(RB ^ 2) - 0.4e1 * ((V - 1) * RU * (V + 1) * ((((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * (RC ^ 2) - (4 *
E * RH ^ 2)) * C1 + (RC * E * ((V ^ 2 - C2) * RC + 2 * V ^ 2 * RH) * RH)) * RU * C1 * RB + (8 * E * RU ^ 2 *
C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) *
(-((V - 1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V +
1) * C1 * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) *
(C2 - 1) * RB / 0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB /
0.4e1 + E) * C1 - (E * C2 * RH))) * RB * C3 - 0.2e1 * RU * C1 * GB * (RB ^ 2) * RC * RH * (C2 - 1) * (C2 + 1)
* (V - 1) * (V + 1));

 SIGYYHE = -0.4e1 * (C3 + 1) * E * ((RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) +
RC * (-(RU * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) / 0.2e1 + ((2 * C1 ^ 2 * E * RU ^ 2 * V ^ 2) - RU *
((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + (E * (C2 * V ^ 2 + 1))) * RC + (2 * E * RH * V ^ 2)) * C1 + (E *
C2 * RC * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (E * RU * C1 * ((V ^ 2 * (C2 - 1) * RC - 4 * V ^ 2 * RH + 4 *
RH) * RU * C1 + V ^ 2 * RC * RH * (C2 + 1)) * RB) - (2 * E * RU ^ 2 * C1 ^ 2 * RC * RH * (V - 1) * (V + 1) *
(C2 - 1))) * (C3 ^ 2) + 0.2e1 * (-GB * (-((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.4e1 + (C1 * RH * RU * V ^ 2))
* (C2 - 1) * (RB ^ 2) / 0.2e1 + 0.2e1 * (RU * (-(GB * (V - 1) * (V + 1) * (C2 - 1) * RC) / 0.4e1 + (E * RH * V ^
2)) * C1 - RC * (GB * (0.1e1 / 0.4e1 - (C2 ^ 2) / 0.4e1) * RC + (((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * RH) *
(V ^ 2) / 0.2e1) * RU * C1 * RB + RC * RU * C1 * (((-((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 - E) * RC +
(E * V ^ 2 * RH * (C2 - 1))) * RU * C1 - (E * C2 * RC * RH))) * RB * C3 + (GB * RU * C1 * RB ^ 2 * (2 * V ^ 2
* RB * RH + RC * ((-C2 - 1) * RC + V ^ 2 * RH * (C2 - 1))) * (C2 - 1)) / 0.2e1) * EPSYY0T / (-(4 * RC * E *
RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 -
1) * RB ^ 3) + (-0.4e1 * RU * ((V - 1) * (V + 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (2 * E * V ^ 2 *
RC * RH) + (4 * E * RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (8 * RC * E *
RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1)
* (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V + 1) * ((RU * (V ^ 2 * RC - 2 * RH) * C1) - ((V - 1)
* (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1) * (C2 - 1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2
* (C2 - 1) * C1 ^ 2) - 0.8e1 * (-(V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) / 0.4e1 + (V - 1) * (V + 1) * (-
((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH * RC - (2 * E * V ^ 2 * RH ^ 2)) * RU * C1 - (8 * RC * RH ^ 2 * E * C2 *
(V - 1) * (V + 1))) * (RB ^ 2) - 0.4e1 * ((V - 1) * RU * (V + 1) * ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 +
E) * (RC ^ 2) - (4 * E * RH ^ 2)) * C1 + (RC * E * ((V ^ 2 - C2) * RC + 2 * V ^ 2 * RH) * RH)) * RU * C1 * RB +
(8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1)
* RH * (C2 - 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V
- 1) * RU * (V + 1) * C1 * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V -
1) * (V + 1))) * (C2 - 1) * RB / 0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) *
(V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH))) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1)
* (C2 + 1) * (V - 1) * (V + 1)));

 % increment of elastic strain exceed yiled surface
 DEPSXXH0 = 0.4e1 * (-(RU * C1 * GB * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1) * (C3 * VU - V) *
RB ^ 3) / 0.2e1 + ((2 * C1 * C3 ^ 3 * E * RC * RH * RU * V) + 0.2e1 * ((E * RU ^ 2 * V * (V - 1) * (V + 1) * C1
^ 2) - ((((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * (V + 1) * (V - 1) * RC + (2 * E * V ^ 2 * RH)) * VU * RU * C1 /
0.2e1 + (E * V * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC * (C3 ^ 2) + 0.4e1 * (V + 1) * (V - 1) * ((C1
* E * RH * RU * V) - (-(V * GB * (C2 - 1) ^ 2 * RC) / 0.8e1 + (((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * VU *
RH) * RC / 0.2e1) * RU * C1 * C3 + (RU * V * C1 * GB * RC * RH * (C2 - 1) ^ 2 * (V - 1) * (V + 1)) / 0.2e1) *
(RB ^ 2) + ((RH * RC * (C2 - 1) * C3 ^ 2 + ((V + 1) * (V - 1) * (RC * (C2 - 1) - 4 * RH) * RU * C1 + VU * V *
RC * RH * (C2 + 1)) * C3 + 2 * RH * (RU * (V - 1) * (V + 1) * (C2 - 1) * C1 - RC * C2)) * V * C3 * RU * C1 *
RC * E * RB) - (2 * E * RU ^ 2 * V * C1 ^ 2 * C3 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * DEPSYY0T
* (C3 + 1) / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU + 1)
* (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * (RB ^ 3) + 0.8e1 * (C3 * RC + 2 * RH) * (-(E * RU *
C1 * C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH)) *
RU * C1 - (E * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * (C3 ^ 2) - (GB * (V + 1) * (V - 1) * (C2 - 1) * (RU

136 Appendix E: MATLAB Code (Model 4)

* (V ^ 2 - 1) * C1 - VU * V * RC) * RU * C1 * C3) / 0.4e1 - (RU * C1 * RC * GB * (C2 - 1) * (C2 + 1) * (V - 1) *
(V + 1)) / 0.8e1) * (RB ^ 2) + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 0.2e1 + RH * ((RU *
(V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + (-(V + 1) * (V - 1) * ((((C2
- 1) ^ 2 * GB * V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 / 0.2e1
- (((V * VU - C2) * RC + 2 * VU * V * RH) * RH * RC * E) / 0.2e1) * C3 - RH * (RU * (V - 1) * (V + 1) * (((C2 -
1) ^ 2 * GB * V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * C1 * RB + (4 * E *
RU ^ 2 * C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1)));

 DEPSYYH0 = 0.8e1 * (-(RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * E * C3 ^ 3) / 0.2e1 + ((RU * C1 *
GB * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) / 0.4e1 + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC
/ 0.2e1 + (E * VU * V * RH)) * RU * C1 - (E * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * (RB ^ 2) + 0.2e1
* RH * ((RU * (V ^ 2 - 1) * C1) - (VU * V * (C2 + 1) * RC) / 0.4e1) * RU * C1 * E * RB + (RH * RU ^ 2 * C1 ^ 2
* RC * E * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - RB * (GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RC *
(VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C2 - 1) * (RB ^ 2) / 0.4e1 + GB * ((RU * (V ^ 2 - 1) * C1) - (VU * V *
RC * (C2 + 3)) / 0.4e1) * (V + 1) * (V - 1) * (C2 - 1) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * (((C2 -
1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RU * C1 * RC) * C3 - (RU * C1 * GB * RB ^
2 * RC * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.4e1) * DEPSYY0T * RC * (C3 + 1) / (-(4 * RH * RB * (2 *
RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB
^ 3) + (0.8e1 * RU * (-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) / 0.2e1 + (E * VU * V *
RC * RH) - (2 * E * RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (VU - 1) * (VU + 1))) * (RB ^ 2) + 0.8e1 * RH *
((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RU * C1 * RC * E * RB + (4 * E * RU
^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V + 1) * (V - 1) * (C2 - 1)
* ((RU * (VU * V * RC - 2 * RH) * C1) - (RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (RB ^ 3) + (-(2 *
RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) + 0.16e2 * ((VU * V * GB * (V - 1) * (V + 1) *
(C2 - 1) * RC ^ 2) / 0.8e1 - (V + 1) * (V - 1) * RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU *
V * RH ^ 2)) * RU * C1 - (8 * E * C2 * RC * RH ^ 2 * (VU - 1) * (VU + 1))) * (RB ^ 2) - 0.4e1 * ((V + 1) * (V - 1)
* ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 + (((V * VU - C2)
* RC + 2 * VU * V * RH) * RH * RC * E)) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) *
(V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * RB * (GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RC * (VU - 1) *
(VU + 1) * (C2 + 1)) / 0.2e1) * RH * (C2 - 1) * (RB ^ 2) / 0.2e1 + RU * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) *
((RU * RH * (V - 1) * (V + 1) * C1) - ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * RC + (VU * V * RH)) * RC) * RB / 0.2e1 +
((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU *
C1 * RC) * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)));

 % caculated cohesion of brick unit by value of hardening(softening) parameter K
 DKH = sqrt((6 * DEPSPXXH ^ 2 + 6 * DEPSPYYH ^ 2)) / 0.3e1;
 KH = KH + DKH;
 KHMAX = ((2 * LC * EPS0M * FCM + 3 * GCM) / LC / FCM) / 0.2e1;
 % find compressive strength by hardening parameter K:
 if KH <= EPS0M
 SIGCH = (FCM * (-2 * KH ^ 2 / EPS0M ^ 2 + 4 * KH / EPS0M + 1)) / 0.3e1;
 KCH = (FCM * (-4 * KH / EPS0M ^ 2 + 4 / EPS0M)) / 0.3e1;
 else
 if KH < KHMAX
 SIGCH = FCM * (0.1e1 - 0.4e1 / 0.9e1 * FCM ^ 2 * LC ^ 2 / GCM ^ 2 * (KH - EPS0M) ^ 2);
 KCH = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KH - EPS0M);
 else
 SIGCH = 0;
 KCH = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KHMAX - EPS0M);
 end
 end
 % find critical stress:
 CH = (0.1e1 - sin(PHIM)) / cos(PHIM) * SIGCH / 0.2e1;
 SIGXXHC1 = -0.18e2 * (-0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYHE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) *
SIGXXHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 -

137

sin(PHIM)) ^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 *
SIGYYHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE *
SIGYYHE - 0.9e1 * SIGYYHE ^ 2);

 SIGYYHC1 = 0.18e2 * (0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYHE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) *
SIGYYHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 -
sin(PHIM)) ^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 *
SIGYYHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE *
SIGYYHE - 0.9e1 * SIGYYHE ^ 2);

 SIGXXHC2 = 0.18e2 * (0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYHE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) *
SIGXXHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 -
sin(PHIM)) ^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 *
SIGYYHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE *
SIGYYHE - 0.9e1 * SIGYYHE ^ 2);

 SIGYYHC2 = -0.18e2 * (-0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYHE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) *
SIGYYHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 -
sin(PHIM)) ^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 *
SIGYYHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE *
SIGYYHE - 0.9e1 * SIGYYHE ^ 2);

 if SIGXXHE/SIGXXHC1 > 0
 SIGXXHC = SIGXXHC1;
 else
 SIGXXHC = SIGXXHC2;
 end
 if SIGYYHE/SIGYYHC1 > 0
 SIGYYHC = SIGYYHC1;
 else
 SIGYYHC = SIGYYHC2;
 end

 % drucker pragar plasiticy model of bed joint
 % elastic predictor of bed joint:
 SIGXXBE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) *
(C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) *
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V -
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 -
0.2e1) * RH) * RH) * E * RU * C1 * C3 * V * EPSYY0T / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3
- (V - 1) * (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB
^ 3 - 0.4e1 * (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1
+ E * C2 * RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) *
C1 * (-(V ^ 2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 -
0.1e1) * (C2 + 0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (C3 * RC + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E
* RC ^ 2 * RH * (C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) *
(C3 ^ 2) + ((-RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E *
RH * ((V ^ 2) - C2) / 0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) *
(V + 1)) * C3 - RC * RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 -
E * C2 * RH)) * RB + 0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (C3 * RC + (2 *
RH)) * (C2 - 0.1e1));

 SIGYYBE = -0.4e1 * (C3 + 1) * E * RU * ((RC * E * RU * C1 * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) + (-

138 Appendix E: MATLAB Code (Model 4)

(RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 *
GB) / 0.4e1 + E) * C1 - (E * RH * (V ^ 2 + C2))) * (RC ^ 2) + (4 * RU * C1 * E * RH ^ 2)) * RB - (2 * RC * E *
RU * (V ^ 2 * RC - RH * (C2 - 1)) * C1 * RH)) * (C3 ^ 2) + 0.2e1 * (-GB * (V - 1) * ((-C2 / 0.4e1 - 0.1e1 /
0.4e1) * (RC ^ 2) + (RU * C1 * RH)) * (V + 1) * (C2 - 1) * RB / 0.2e1 + RC * ((V - 1) * RU * (V + 1) * (-((C2 -
1) ^ 2 * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH) * RB * C3 + (GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 +
1) * (V - 1) * (V + 1)) / 0.2e1) * C1 * EPSYY0T / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1))
* C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-0.4e1 * (V - 1) * (RU * (-((C2 -
1) ^ 2 * GB) / 0.4e1 + E) * C1 + (E * C2 * RH)) * (V + 1) * (RC ^ 2) + (8 * E * RU * V ^ 2 * C1 * RC * RH) -
(16 * RU * C1 * E * RH ^ 2)) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1))
* RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V -
1) * (V + 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1 + (C1 * RC * RU * V ^ 2) - (2 * RU * C1 * RH)) *
(C2 - 1) * (RB ^ 3) + ((2 * RU * C1 * V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) - 0.8e1 * (V - 1) * (V +
1) * ((RU ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * C1 ^ 2) / 0.4e1 + RU * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH
* C1 + (E * C2 * RH ^ 2)) * RC + (16 * E * RU * V ^ 2 * C1 * RH ^ 2)) * (RB ^ 2) - 0.4e1 * ((RU * (V - 1) * (V +
1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V ^ 2 - C2))) * (RC ^ 2) + (2 * E * V ^
2 * RC * RH ^ 2) - (4 * RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 *
RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V -
1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1
* ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) *
RB / 0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E)
* C1 - (E * C2 * RH))) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V +
1)));

 TAUXYBE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) *
(C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) *
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V -
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 -
0.2e1) * RH) * RH) * E * RU * C1 * C3 * V * EPSYY0T / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3
- (V - 1) * (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB
^ 3 - 0.4e1 * (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1
+ E * C2 * RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) *
C1 * (-(V ^ 2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 -
0.1e1) * (C2 + 0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (C3 * RC + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E
* RC ^ 2 * RH * (C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) *
(C3 ^ 2) + ((-RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E *
RH * ((V ^ 2) - C2) / 0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) *
(V + 1)) * C3 - RC * RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 -
E * C2 * RH)) * RB + 0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (C3 * RC + (2 *
RH)) * (C2 - 0.1e1));

 % increment of elastic strain exceeds yieLd surface
 DEPSXXB0 = 0.4e1 * (E * RB * RC * RH * (C2 * VU + V) * C3 ^ 3 + (-(VU * GB * RC * (C2 - 1) * (C2 + 1)
* (V - 1) * (V + 1) * RB ^ 2) / 0.4e1 + (((RU * (V ^ 2 - 1) * C1 - RH * (V * VU + C2)) * V * RC + 2 * VU * C2 *
RH ^ 2) * E * RB) - (2 * E * RU * V * C1 * RC * RH * (V - 1) * (V + 1))) * C3 ^ 2 + 0.2e1 * (-GB * (V + 1) * (V -
1) * (C2 - 1) * (C2 + 1) * ((VU * RH) - (V * RC) / 0.2e1) * RB / 0.4e1 + (V * (RU * (V ^ 2 - 1) * C1 - RH * C2) *
RH * E)) * RB * C3 + (V * GB * RB ^ 2 * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.2e1) * DEPSYY0T *
RU * C1 * RC * (C3 + 0.1e1) / (-0.4e1 * RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4 + ((2
* RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + ((-0.4e1 * (V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB)
/ 0.4e1 + E) * RU * C1 - (4 * E * C2 * RH * (VU - 1) * (VU + 1))) * (RC ^ 2) + (8 * RU * C1 * E * VU * V * RC *
RH) - (16 * RU * C1 * E * RH ^ 2)) * (RB ^ 2) + 0.8e1 * RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) /
0.2e1 - (RH * (C2 - 1))) * RU * C1 * RC * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) *
(C2 - 1))) * C3 ^ 3 + (-0.2e1 * GB * (V + 1) * (V - 1) * (C2 - 1) * (-(RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) /
0.2e1 + (C1 * RC * RU * V * VU) - (2 * C1 * RH * RU)) * (RB ^ 3) + ((2 * RU * VU * V * C1 * GB * (V - 1) * (V
+ 1) * (C2 - 1) * RC ^ 2) + (-(2 * RU ^ 2 * GB * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) - 0.8e1 * (V + 1) *
(V - 1) * RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RU * C1 - (8 * E * C2 * RH ^ 2 * (VU - 1) * (VU + 1))) * RC +

139

(16 * RU * C1 * E * VU * V * RH ^ 2)) * (RB ^ 2) - 0.4e1 * (((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2 * (V - 1) * (V
+ 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V * VU - C2))) * (RC ^ 2) + (2 * E * RC * RH ^ 2 * V * VU) - (4 * E *
RU * C1 * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V +
1) * (C2 - 1))) * C3 ^ 2 - 0.8e1 * (GB * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (V
+ 1) * (V - 1) * RH * (C2 - 1) * (RB ^ 2) / 0.2e1 + GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 /
0.4e1) * (RC ^ 2) - (VU * V * RC * RH) + (RU * RH * (V - 1) * (V + 1) * C1)) * RU * C1 * RB / 0.2e1 + ((V + 1)
* (V - 1) * RU * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC)
* RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)));

 DEPSYYB0 = 0.4e1 * DEPSYY0T * ((RH * (((-C2 * V * VU - V ^ 2) * RC + (2 * V ^ 2 - 2) * RU * C1) * RB
+ RU * C1 * RC * (V - 1) * (V + 1) * (C2 - 1)) * RC * E * C3 ^ 3) + (-GB * (V + 1) * (V - 1) * (-(VU * V * (C2 +
1) * RC) / 0.2e1 + ((V + 1) * (V - 1) * RU * C1)) * (C2 - 1) * RC * (RB ^ 2) / 0.2e1 + ((-(V + 1) * (V - 1) * RU *
(((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 + (E * RH * (V * VU + C2))) * (RC ^ 2) - (2 * E * VU *
V * C2 * RC * RH ^ 2) + (4 * E * RU * C1 * RH ^ 2 * (V - 1) * (V + 1))) * RB + (2 * E * RU * C1 * RC * RH ^ 2
* (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.2e1 * (GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 /
0.4e1) * (RC ^ 2) - (VU * V * RC * RH * (C2 + 1)) / 0.2e1 + (RU * RH * (V - 1) * (V + 1) * C1)) * RB / 0.2e1 +
RH * ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) *
RB * C3 - GB * RH * (RB ^ 2) * RC * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1) / 0.2e1) * RU * C1 * (C3 + 1) / (-(4
* RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + (0.2e1 * RU * C1 * GB * RC * (V - 1) * (V
+ 1) * (C2 - 1) * (RB ^ 3) + ((-0.4e1 * (V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 - (4 * E *
C2 * RH * (VU - 1) * (VU + 1))) * (RC ^ 2) + (8 * RU * C1 * E * VU * V * RC * RH) - (16 * RU * C1 * E * RH ^
2)) * (RB ^ 2) + 0.8e1 * RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RU * C1
* RC * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB
* (V + 1) * (V - 1) * (C2 - 1) * (-(RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1 + (C1 * RC * RU * V * VU) - (2
* C1 * RH * RU)) * (RB ^ 3) + (0.2e1 * RU * VU * V * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * (RC ^ 2) + (-
0.2e1 * (RU ^ 2) * GB * ((V - 1) ^ 2) * ((V + 1) ^ 2) * (C2 - 1) * (C1 ^ 2) - 0.8e1 * (V + 1) * (V - 1) * RH * (-((C2
- 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 - (8 * E * C2 * RH ^ 2 * (VU - 1) * (VU + 1))) * RC + (16 * RU * C1 * E *
VU * V * RH ^ 2)) * (RB ^ 2) - 0.4e1 * (((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 +
E) * C1 + (E * RH * (V * VU - C2))) * (RC ^ 2) + (2 * E * RC * RH ^ 2 * V * VU) - (4 * E * RU * C1 * RH ^ 2 *
(V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3
^ 2) - 0.8e1 * (GB * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (V + 1) * (V - 1) *
RH * (C2 - 1) * (RB ^ 2) / 0.2e1 + GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) -
(VU * V * RC * RH) + (RU * RH * (V - 1) * (V + 1) * C1)) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU *
(((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC) * RB * C3 -
0.2e1 * RU * C1 * GB * (RB ^ 2) * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1));

 DEPSXYB0 = DEPSYY0T * C3 * ((-(2 * RH * RU * C1 * RC * (VU - V) * C3 ^ 2) + ((-(RU * VU * (V - 1) *
(V + 1) * C1 + (-VU ^ 2 + 1) * V * RH) * (C2 + 1) * RC ^ 2 + 2 * V * RU * C1 * (RU * (V ^ 2 - 1) * C1 + (-V *
VU + 1) * RH) * RC - 4 * RU * VU * C1 * RH ^ 2) * C3) + 0.4e1 * (-(VU * (V - 1) * (V + 1) * (C2 + 1) * RC) /
0.2e1 + (V * (RU * (V ^ 2 - 1) * C1 + RH))) * RH * RU * C1) * RB ^ 2 + (-(RH * RC * (C2 - 1) * (VU - V) * C3 ^
2) + ((V * (RU * (V - 1) * (V + 1) * (C2 - 1) * C1 + (VU * (C2 + 3) * V + C2 - 1) * RH) * RC) - 0.4e1 * (((V ^ 3 -
V) * RU * C1) + (VU * RH * (C2 - 1)) / 0.2e1) * RH) * C3 + (2 * V * RH * ((-C2 - 1) * RC + (C2 - 1) * (RU * (V
^ 2 - 1) * C1 + RH)))) * RU * C1 * RC * RB - (2 * RU ^ 2 * V * C1 ^ 2 * C3 * RC ^ 2 * RH * (V - 1) * (V + 1) *
(C2 - 1))) * (C3 + 1) * E / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU -
1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * RB ^ 3 + 0.8e1 * (C3 * RC + 2 * RH) *
(-(E * RU * C1 * C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 / 0.2e1 - (E *
C2 * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC + (E * RU * C1 * VU * V * RH)) * (C3 ^ 2) - GB * (V + 1) * (V - 1)
* (C2 - 1) * (-V * RC * VU + (V + 1) * (V - 1) * RU * C1) * RU * C1 * C3 / 0.4e1 - RU * C1 * RC * GB * (C2 -
1) * (C2 + 1) * (V - 1) * (V + 1) / 0.8e1) * RB ^ 2 + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) /
0.2e1 + RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + ((-
(V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * GB * (V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2) * GB / 0.4e1 + E) * C1 / 0.2e1 - (E
* RH * (V * VU - C2)) / 0.2e1) * (RC ^ 2) - (E * RC * RH ^ 2 * V * VU) + (2 * E * RU * C1 * RH ^ 2 * (V - 1) *
(V + 1))) * C3 - RH * ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * GB * (V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2) * GB / 0.4e1
+ E) * C1 - (E * C2 * RH)) * RC) * C1 * RB + (4 * E * RU ^ 2 * C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) *
(C3 * RC + 2 * RH) * (C2 - 1)));

 % caculated cohesion of brick unit by value of hardening(softening) parameter K

140 Appendix E: MATLAB Code (Model 4)

 DKB = sqrt((6 * DEPSPXXB ^ 2 + 6 * DEPSPXYB ^ 2 + 6 * DEPSPYYB ^ 2)) / 0.3e1;
 KB = KB + DKB;
 KBMAX = ((2 * LC * EPS0M * FCM + 3 * GCM) / LC / FCM) / 0.2e1;
 % find compressive strength by hardening parameter K:
 if KB <= EPS0M
 SIGCB = (FCM * (-2 * KB ^ 2 / EPS0M ^ 2 + 4 * KB / EPS0M + 1)) / 0.3e1;
 KCB = (FCM * (-4 * KB / EPS0M ^ 2 + 4 / EPS0M)) / 0.3e1;
 else
 if KB < KBMAX
 SIGCB = FCM * (0.1e1 - 0.4e1 / 0.9e1 * FCM ^ 2 * LC ^ 2 / GCM ^ 2 * (KB - EPS0M) ^ 2);
 KCB = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KB - EPS0M);
 else
 SIGCB = 0;
 KCB = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KBMAX - EPS0M);
 end
 end
 % find critical stress:
 CB = (0.1e1 - sin(PHIM)) / cos(PHIM) * SIGCB / 0.2e1;
 SIGXXBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * SIGXXBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 +
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

 SIGYYBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * SIGYYBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 +
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

 TAUXYBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) * TAUXYBE / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 +
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

 SIGXXBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * SIGXXBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 +
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

 SIGYYBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * SIGYYBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 +
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

 TAUXYBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE *
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 *
TAUXYBE ^ 2))) * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) * TAUXYBE / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^

141

2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 +
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2));

 if SIGXXBE/SIGXXBC1 > 0
 SIGXXBC = SIGXXBC1;
 else
 SIGXXBC = SIGXXBC2;
 end
 if SIGYYBE/SIGYYBC1 > 0
 SIGYYBC = SIGYYBC1;
 else
 SIGYYBC = SIGYYBC2;
 end
 if TAUXYBE/TAUXYBC1 > 0
 TAUXYBC = TAUXYBC1;
 else
 TAUXYBC = TAUXYBC2;
 end

 while CU >= 0
 % yield function of brick unit:
 FU = (sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2) * (-0.3e1 + sin(PHIU)) + (-0.2e1 *
SIGXXUE - 0.2e1 * SIGYYUE) * sin(PHIU) + 0.6e1 * CU * cos(PHIU)) / (-0.3e1 + sin(PHIU));
 if FU <= 0 % before yielding, plastic strain = 0
 DEPSPXXU = 0;
 DEPSPYYU = 0;
 break;
 else

 % calculate plastic strain increment:
 DEPSPXXU = 0.6e1 * ((((((DEPSXXU0 - DEPSYYU0) * VU - 0.10e2 / 0.3e1 * DEPSXXU0 - 0.7e1 /
0.3e1 * DEPSYYU0) * SIGXXUC ^ 2 - 0.3e1 / 0.2e1 * ((DEPSXXU0 - DEPSYYU0) * VU - 0.20e2 / 0.9e1 *
DEPSXXU0 - 0.11e2 / 0.9e1 * DEPSYYU0) * SIGYYUC * SIGXXUC + ((DEPSXXU0 - DEPSYYU0) * VU -
0.17e2 / 0.3e1 * DEPSXXU0 - 0.14e2 / 0.3e1 * DEPSYYU0) * SIGYYUC ^ 2 / 0.2e1) * sin(PHIU) - 0.3e1 *
(((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC -
((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-
SIGYYUC / 0.2e1 + SIGXXUC)) * sin(PSIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 *
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 +
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-SIGYYUC / 0.2e1 + SIGXXUC) * (-0.3e1 + sin(PHIU))) *
sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) - 0.2e1 * (((((DEPSXXU0 - DEPSYYU0) * VU -
0.4e1 / 0.3e1 * DEPSXXU0 - DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 /
0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGYYUC) * sin(PHIU) + ((-0.3e1 * DEPSXXU0 + 0.3e1 *
DEPSYYU0) * VU + 0.2e1 * DEPSXXU0 - DEPSYYU0) * SIGXXUC + 0.3e1 * ((DEPSXXU0 - DEPSYYU0)
* VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sin(PSIU) + 0.2e1 * sin(PHIU) *
(DEPSXXU0 + DEPSYYU0) * (-SIGYYUC / 0.2e1 + SIGXXUC)) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC +
SIGYYUC ^ 2)) * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU) + 0.4e1 * SU) * VU - (37 * EU) - 0.4e1 * SU) *
SIGXXUC ^ 2 - 0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 *
EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 /
0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PHIU) + (-0.24e2 * SU *
VU ^ 2 + (-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 /
0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC
* SIGXXUC - 0.27e2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU -
0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PSIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 /
0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU *
VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC
+ (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) *

142 Appendix E: MATLAB Code (Model 4)

SIGYYUC ^ 2) * (-0.3e1 + sin(PHIU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) +
0.8e1 * EU * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (SIGXXUC + SIGYYUC) *
((sin(PHIU) - 0.3e1 / 0.2e1) * sin(PSIU) - 0.3e1 / 0.2e1 * sin(PHIU)));

 DEPSPYYU = -0.3e1 * ((((((DEPSXXU0 - DEPSYYU0) * VU + 0.14e2 / 0.3e1 * DEPSXXU0 +
0.17e2 / 0.3e1 * DEPSYYU0) * SIGXXUC ^ 2 - 0.3e1 * ((DEPSXXU0 - DEPSYYU0) * VU + 0.11e2 / 0.9e1 *
DEPSXXU0 + 0.20e2 / 0.9e1 * DEPSYYU0) * SIGYYUC * SIGXXUC + 0.2e1 * SIGYYUC ^ 2 *
((DEPSXXU0 - DEPSYYU0) * VU + 0.7e1 / 0.3e1 * DEPSXXU0 + 0.10e2 / 0.3e1 * DEPSYYU0)) *
sin(PHIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) *
SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) *
SIGYYUC) * (SIGXXUC - 0.2e1 * SIGYYUC)) * sin(PSIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU -
0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU -
DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-0.3e1 + sin(PHIU)) * (SIGXXUC - 0.2e1
* SIGYYUC)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.4e1 * (SIGXXUC ^ 2 -
SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (((((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1
/ 0.3e1 * DEPSYYU0) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU + DEPSXXU0 / 0.3e1 + 0.4e1 / 0.3e1
* DEPSYYU0) * SIGYYUC) * sin(PHIU) + ((-0.3e1 * DEPSXXU0 + 0.3e1 * DEPSYYU0) * VU + 0.2e1 *
DEPSXXU0 - DEPSYYU0) * SIGXXUC + 0.3e1 * ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 +
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sin(PSIU) - sin(PHIU) * (DEPSXXU0 + DEPSYYU0) *
(SIGXXUC - 0.2e1 * SIGYYUC))) * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU) + 0.4e1 * SU) * VU - (37 * EU) -
0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU -
0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 +
(EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PHIU) + (-
0.24e2 * SU * VU ^ 2 + (-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2
* (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) *
SIGYYUC * SIGXXUC - 0.27e2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 /
0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PSIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU
+ 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1
* SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC *
SIGXXUC + (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 /
0.9e1 * SU) * SIGYYUC ^ 2) * (-0.3e1 + sin(PHIU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC +
SIGYYUC ^ 2) + 0.8e1 * EU * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (SIGXXUC +
SIGYYUC) * ((sin(PHIU) - 0.3e1 / 0.2e1) * sin(PSIU) - 0.3e1 / 0.2e1 * sin(PHIU)));

 % recalculate softening modulus SUC:
 DLU = 0.6e1 * EU * ((-0.3e1 + sin(PHIU)) * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 *
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 +
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) +
0.4e1 / 0.3e1 * sin(PHIU) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (DEPSXXU0 +
DEPSYYU0)) * (-0.3e1 + sin(PSIU)) / (0.8e1 * EU * (SIGXXUC + SIGYYUC) * ((sin(PSIU) - 0.3e1 / 0.2e1) *
sin(PHIU) - 0.3e1 / 0.2e1 * sin(PSIU)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) +
(((0.8e1 * SU * VU ^ 2 + (0.9e1 * EU + 0.4e1 * SU) * VU - 0.37e2 * EU - 0.4e1 * SU) * SIGXXUC ^ 2 -
0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1
* SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU -
0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PSIU) + (-0.24e2 * SU * VU ^ 2 + (-0.27e2 *
EU - 0.12e2 * SU) * VU + 0.15e2 * EU + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 / 0.9e1 * SU * VU ^
2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC -
0.27e2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1
* SU) * SIGYYUC ^ 2) * sin(PHIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU
- 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU +
0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + (0.8e1 / 0.9e1
* SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) *
(-0.3e1 + sin(PSIU)));

 FKU = -0.3e1 / (0.3e1 - sin(PHIU)) * (0.1e1 - sin(PHIU)) * KCU;
 SUC = -FKU*DKU/DLU;

143

 if abs(SUC-SU) < TOR2
 break;
 else
 SU = SUC;
 end
 end
 end

 while CH >= 0
 % yield function of brick unit:
 FH = (sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2) * (-0.3e1 + sin(PHIM)) + (-0.2e1 *
SIGXXHE - 0.2e1 * SIGYYHE) * sin(PHIM) + 0.6e1 * CH * cos(PHIM)) / (-0.3e1 + sin(PHIM));
 if FH <= 0 % before yielding, plastic strain = 0
 DEPSPXXH = 0;
 DEPSPYYH = 0;
 break;
 else

 % calculate plastic strain increment:
 DEPSPXXH = ((((((((20 * DEPSYYH0 - 6 * DEPSXXH0) * E - 14 * EU * DEPSYYH0) * V + 20 * E *
DEPSXXH0 + 14 * EU * DEPSYYH0) * SIGXXHC ^ 2) - 0.20e2 * (((DEPSYYH0 - 0.9e1 / 0.20e2 *
DEPSXXH0) * E - 0.11e2 / 0.20e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.11e2 / 0.20e2 * EU *
DEPSYYH0) * SIGYYHC * SIGXXHC + 0.17e2 * (((DEPSYYH0 - 0.3e1 / 0.17e2 * DEPSXXH0) * E - 0.14e2
/ 0.17e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.14e2 / 0.17e2 * EU * DEPSYYH0) * SIGYYHC ^ 2)
* sin(PHIM) - 0.12e2 * (SIGXXHC - SIGYYHC / 0.2e1) * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E +
(EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC *
(((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) /
0.2e1)) * sin(PSIM) - 0.12e2 * (SIGXXHC - SIGYYHC / 0.2e1) * (sin(PHIM) - 0.3e1) * ((((DEPSYYH0 -
0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) /
0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E *
DEPSXXH0 - 2 * EU * DEPSYYH0) / 0.2e1)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^
2) - 0.16e2 * ((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((((DEPSYYH0 - 0.3e1 / 0.4e1 *
DEPSXXH0) * E - (EU * DEPSYYH0) / 0.4e1) * V + (E * DEPSXXH0) + (EU * DEPSYYH0) / 0.4e1) *
SIGXXHC - (((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E *
DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGYYHC / 0.2e1) * sin(PHIM) + (((-0.3e1 / 0.2e1 * DEPSYYH0
+ 0.9e1 / 0.4e1 * DEPSXXH0) * E - 0.3e1 / 0.4e1 * EU * DEPSYYH0) * V - 0.3e1 / 0.2e1 * E * DEPSXXH0 +
0.3e1 / 0.4e1 * EU * DEPSYYH0) * SIGXXHC + 0.3e1 / 0.4e1 * SIGYYHC * (((DEPSYYH0 - 3 *
DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0)) * sin(PSIM) - 0.3e1 /
0.2e1 * (DEPSYYH0 * (E - EU) * V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC - SIGYYHC / 0.2e1)
* sin(PHIM))) / ((((((-8 * V ^ 2 * SH + (8 * E - 17 * EU - 4 * SH) * V + 20 * E + 17 * EU + 4 * SH) * SIGXXHC
^ 2) - 0.2e1 * SIGYYHC * (-4 * V ^ 2 * SH + (E - 10 * EU - 2 * SH) * V + 10 * E + 10 * EU + 2 * SH) *
SIGXXHC + 0.11e2 * SIGYYHC ^ 2 * (-0.8e1 / 0.11e2 * (V ^ 2) * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 /
0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E + 0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PHIM) + ((24 *
V ^ 2 * SH + (24 * E + 3 * EU + 12 * SH) * V - 12 * E - 3 * EU - 12 * SH) * SIGXXHC ^ 2) - 0.42e2 * (0.4e1 /
0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 *
EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 /
0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) *
sin(PSIM) + 0.24e2 * (sin(PHIM) - 0.3e1) * (((V ^ 2 * SH) + (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 -
EU / 0.8e1 - SH / 0.2e1) * (SIGXXHC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1
* EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC *
SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V
- E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2)) * sqrt((SIGXXHC ^ 2) - SIGXXHC *
SIGYYHC + SIGYYHC ^ 2) + 0.8e1 * ((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((E - EU)
* V - 2 * E + EU) * SIGXXHC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYHC) * ((sin(PHIM) - 0.3e1 /
0.2e1) * sin(PSIM) - 0.3e1 / 0.2e1 * sin(PHIM)));

 DEPSPYYH = ((((((((14 * DEPSYYH0 + 3 * DEPSXXH0) * E - 17 * EU * DEPSYYH0) * V + 14 * E *

144 Appendix E: MATLAB Code (Model 4)

DEPSXXH0 + 17 * EU * DEPSYYH0) * SIGXXHC ^ 2) - 0.11e2 * (((DEPSYYH0 + 0.9e1 / 0.11e2 *
DEPSXXH0) * E - 0.20e2 / 0.11e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.20e2 / 0.11e2 * EU *
DEPSYYH0) * SIGYYHC * SIGXXHC + 0.14e2 * (((DEPSYYH0 + 0.3e1 / 0.7e1 * DEPSXXH0) * E - 0.10e2
/ 0.7e1 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.10e2 / 0.7e1 * EU * DEPSYYH0) * SIGYYHC ^ 2) *
sin(PHIM) + 0.6e1 * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E
* DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E
+ 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) / 0.2e1) * (SIGXXHC - 0.2e1 *
SIGYYHC)) * sin(PSIM) + 0.6e1 * (sin(PHIM) - 0.3e1) * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E +
(EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC *
(((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) /
0.2e1) * (SIGXXHC - 0.2e1 * SIGYYHC)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) -
0.4e1 * ((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * (((((((DEPSYYH0 - 3 * DEPSXXH0) * E
+ 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) * SIGXXHC) + (((DEPSYYH0 + 3 *
DEPSXXH0) * E - 4 * EU * DEPSYYH0) * V + E * DEPSXXH0 + 4 * EU * DEPSYYH0) * SIGYYHC) *
sin(PHIM) + ((((-6 * DEPSYYH0 + 9 * DEPSXXH0) * E - 3 * EU * DEPSYYH0) * V - 6 * E * DEPSXXH0 + 3 *
EU * DEPSYYH0) * SIGXXHC) + 0.3e1 * SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU *
DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0)) * sin(PSIM) + 0.3e1 * (DEPSYYH0 * (E - EU) *
V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC - 0.2e1 * SIGYYHC) * sin(PHIM))) / ((((((-8 * V ^ 2 *
SH + (8 * E - 17 * EU - 4 * SH) * V + 20 * E + 17 * EU + 4 * SH) * SIGXXHC ^ 2) - 0.2e1 * SIGYYHC * (-4 *
V ^ 2 * SH + (E - 10 * EU - 2 * SH) * V + 10 * E + 10 * EU + 2 * SH) * SIGXXHC + 0.11e2 * SIGYYHC ^ 2 *
(-0.8e1 / 0.11e2 * (V ^ 2) * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E +
0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PHIM) + ((24 * V ^ 2 * SH + (24 * E + 3 * EU + 12 * SH) *
V - 12 * E - 3 * EU - 12 * SH) * SIGXXHC ^ 2) - 0.42e2 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 *
EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC *
SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E /
0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) * sin(PSIM) + 0.24e2 * (sin(PHIM) - 0.3e1)
* (((V ^ 2 * SH) + (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1) * (SIGXXHC ^ 2) -
0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 /
0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1
* (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 /
0.5e1 * SH) * SIGYYHC ^ 2)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + 0.8e1 *
((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((E - EU) * V - 2 * E + EU) * SIGXXHC) -
0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYHC) * ((sin(PHIM) - 0.3e1 / 0.2e1) * sin(PSIM) - 0.3e1 /
0.2e1 * sin(PHIM)));

 % recalculate softening modulus SUC:
 DLH = 0.4e1 * (((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + EU * DEPSYYH0 / 0.2e1) * V +
E * DEPSXXH0 - EU * DEPSYYH0 / 0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 0.3e1 * DEPSXXH0)
* E + 0.2e1 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 0.2e1 * EU * DEPSYYH0) / 0.2e1) * (sin(PHIM) -
0.3e1) * sqrt(SIGXXHC ^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) - 0.2e1 * sin(PHIM) * (DEPSYYH0 * (E
- EU) * V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC ^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2))
* (-0.3e1 + sin(PSIM)) / (0.8e1 * ((sin(PSIM) - 0.3e1 / 0.2e1) * sin(PHIM) - 0.3e1 / 0.2e1 * sin(PSIM)) * (((E -
EU) * V - 0.2e1 * E + EU) * SIGXXHC - 0.2e1 * ((E - EU) * V - E / 0.2e1 + EU) * SIGYYHC) * sqrt(SIGXXHC
^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + (((-0.8e1 * V ^ 2 * SH + (0.8e1 * E - 0.17e2 * EU - 0.4e1 *
SH) * V + 0.20e2 * E + 0.17e2 * EU + 0.4e1 * SH) * SIGXXHC ^ 2 - 0.2e1 * SIGYYHC * (-0.4e1 * V ^ 2 * SH
+ (E - 0.10e2 * EU - 0.2e1 * SH) * V + 0.10e2 * E + 0.10e2 * EU + 0.2e1 * SH) * SIGXXHC + 0.11e2 *
SIGYYHC ^ 2 * (-0.8e1 / 0.11e2 * V ^ 2 * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2
/ 0.11e2 * E + 0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PSIM) + (0.24e2 * V ^ 2 * SH + (0.24e2 *
E + 0.3e1 * EU + 0.12e2 * SH) * V - 0.12e2 * E - 0.3e1 * EU - 0.12e2 * SH) * SIGXXHC ^ 2 - 0.42e2 *
(0.4e1 / 0.7e1 * V ^ 2 * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 /
0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * V ^ 2 * SH + (E +
0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) *
SIGYYHC ^ 2) * sin(PHIM) + 0.24e2 * (-0.3e1 + sin(PSIM)) * ((V ^ 2 * SH + (E + EU / 0.8e1 + SH / 0.2e1) *
V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1) * SIGXXHC ^ 2 - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * V ^ 2 * SH + (E +
0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) *
SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1 * V ^ 2 * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 /

145

0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2));

 FKH = -0.3e1 / (0.3e1 - sin(PHIM)) * (0.1e1 - sin(PHIM)) * KCH;
 SHC = -FKH* DKH / DLH ;
 if abs(SHC-SH) < TOR2
 break;
 else
 SH = SHC;
 end
 end
 end

 while CB >= 0
 % yield function of brick unit:
 FB = (sqrt((SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + 3 * TAUXYBE^2)) * (-0.3e1 +
sin(PHIM)) + (-2 * SIGXXBE - 2 * SIGYYBE) * sin(PHIM) + 0.6e1 * CB * cos(PHIM)) / (-0.3e1 + sin(PHIM));
 if FB <= 0
 DEPSPXXB = 0;
 DEPSPYYB = 0;
 DEPSPXYB = 0;
 break;
 else

 % calculate plastic strain increment:
 DEPSPXXB = ((((((((18 * DEPSXXB0 - 28 * DEPSYYB0) * E + 10 * EU * DEPSYYB0) * V - 28 * E *
DEPSXXB0 - 10 * EU * DEPSYYB0) * SIGXXBC ^ 2) + (((((-27 * DEPSXXB0 + 28 * DEPSYYB0) * E - EU *
DEPSYYB0) * V + 28 * E * DEPSXXB0 + EU * DEPSYYB0) * SIGYYBC) + 0.72e2 * DEPSXYB0 *
TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * SIGXXBC + ((((9 * DEPSXXB0 - 19 * DEPSYYB0) * E + 10 * EU *
DEPSYYB0) * V - 19 * E * DEPSXXB0 - 10 * EU * DEPSYYB0) * SIGYYBC ^ 2) - 0.36e2 * DEPSXYB0 *
TAUXYBC * (V - 0.1e1 / 0.2e1) * E * SIGYYBC - 0.48e2 * TAUXYBC ^ 2 * (DEPSYYB0 * (E - EU) * V + E *
DEPSXXB0 + EU * DEPSYYB0)) * sin(PHIM) - 0.54e2 * (SIGXXBC - SIGYYBC / 0.2e1) * ((((DEPSXXB0 -
0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU *
DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU *
DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 *
DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sin(PSIM) - 0.54e2 * (SIGXXBC - SIGYYBC / 0.2e1) *
(sin(PHIM) - 0.3e1) * ((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V -
0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 /
0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU *
DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sqrt((SIGXXBC ^ 2)
- (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.12e2 * ((((((DEPSXXB0 - 0.8e1 /
0.3e1 * DEPSYYB0) * E + 0.5e1 / 0.3e1 * EU * DEPSYYB0) * V - 0.5e1 / 0.3e1 * EU * DEPSYYB0 - 0.8e1 /
0.3e1 * E * DEPSXXB0) * SIGXXBC + (((-DEPSXXB0 + 0.4e1 / 0.3e1 * DEPSYYB0) * E - (EU *
DEPSYYB0) / 0.3e1) * V + 0.4e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGYYBC +
0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PHIM) + ((((-3 * DEPSXXB0 + 2 *
DEPSYYB0) * E + EU * DEPSYYB0) * V + 2 * E * DEPSXXB0 - EU * DEPSYYB0) * SIGXXBC) + ((((3 *
DEPSXXB0 - DEPSYYB0) * E - 2 * EU * DEPSYYB0) * V - E * DEPSXXB0 + 2 * EU * DEPSYYB0) *
SIGYYBC) - 0.12e2 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PSIM) + 0.6e1 * (SIGXXBC -
SIGYYBC / 0.2e1) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0) * sin(PHIM)) *
((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2)) / ((((((24 * V ^ 2 * SB
+ (8 * E + 19 * EU + 12 * SB) * V - 28 * E - 19 * EU - 12 * SB) * SIGXXBC ^ 2) - 0.26e2 * (0.12e2 / 0.13e2 *
(V ^ 2) * SB + (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * V - 0.14e2 / 0.13e2 * E - 0.14e2 / 0.13e2 *
EU - 0.6e1 / 0.13e2 * SB) * SIGYYBC * SIGXXBC + ((24 * V ^ 2 * SB + (-E + 28 * EU + 12 * SB) * V - 19 * E
- 28 * EU - 12 * SB) * SIGYYBC ^ 2) + 0.168e3 * (0.3e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU +
0.3e1 / 0.14e2 * SB) * V - 0.13e2 / 0.14e2 * E - 0.2e1 / 0.7e1 * EU - 0.3e1 / 0.14e2 * SB) * TAUXYBC ^ 2) *
sin(PHIM) + ((-72 * V ^ 2 * SB + (-72 * E - 9 * EU - 36 * SB) * V + 36 * E + 9 * EU + 36 * SB) * SIGXXBC ^
2) + 0.126e3 * (0.4e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 /
0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((-72 * V ^ 2 * SB + (-45 * E -

146 Appendix E: MATLAB Code (Model 4)

36 * EU - 36 * SB) * V + 9 * E + 36 * EU + 36 * SB) * SIGYYBC ^ 2) - 0.648e3 * TAUXYBC ^ 2 * (V - 0.1e1 /
0.2e1) * ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * sin(PSIM) - 0.72e2 * (((V ^ 2 * SB) + (E + EU / 0.8e1 + SB /
0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * (SIGXXBC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) *
SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 /
0.7e1 * SB) * SIGYYBC * SIGXXBC + ((V ^ 2 * SB) + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * V - E /
0.8e1 - EU / 0.2e1 - SB / 0.2e1) * (SIGYYBC ^ 2) + 0.9e1 * TAUXYBC ^ 2 * (V - 0.1e1 / 0.2e1) * ((V * SB) /
0.3e1 + E + SB / 0.3e1)) * (sin(PHIM) - 0.3e1)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC
^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.16e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1
* TAUXYBC ^ 2) * ((sin(PHIM) - 0.3e1 / 0.4e1) * sin(PSIM) - 0.9e1 / 0.4e1 * sin(PHIM)) * ((((E - EU) * V - 2 *
E + EU) * SIGXXBC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYBC));

 DEPSPYYB = ((((((((-9 * DEPSXXB0 - 10 * DEPSYYB0) * E + 19 * EU * DEPSYYB0) * V - 10 * E *
DEPSXXB0 - 19 * EU * DEPSYYB0) * SIGXXBC ^ 2) + (((((27 * DEPSXXB0 + DEPSYYB0) * E - 28 * EU *
DEPSYYB0) * V + E * DEPSXXB0 + 28 * EU * DEPSYYB0) * SIGYYBC) - 0.36e2 * DEPSXYB0 *
TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * SIGXXBC + ((((-18 * DEPSXXB0 - 10 * DEPSYYB0) * E + 28 * EU *
DEPSYYB0) * V - 10 * E * DEPSXXB0 - 28 * EU * DEPSYYB0) * SIGYYBC ^ 2) + 0.72e2 * DEPSXYB0 *
TAUXYBC * (V - 0.1e1 / 0.2e1) * E * SIGYYBC - 0.48e2 * TAUXYBC ^ 2 * (DEPSYYB0 * (E - EU) * V + E *
DEPSXXB0 + EU * DEPSYYB0)) * sin(PHIM) + 0.27e2 * (SIGXXBC - 2 * SIGYYBC) * ((((DEPSXXB0 -
0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU *
DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU *
DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 *
DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sin(PSIM) + 0.27e2 * (SIGXXBC - 2 * SIGYYBC) *
(sin(PHIM) - 0.3e1) * ((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V -
0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 /
0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU *
DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sqrt((SIGXXBC ^ 2)
- (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.12e2 * ((SIGXXBC ^ 2) -
(SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) * ((((((DEPSXXB0 + DEPSYYB0 /
0.3e1) * E - 0.4e1 / 0.3e1 * EU * DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 + 0.4e1 / 0.3e1 * EU *
DEPSYYB0) * SIGXXBC + (((-DEPSXXB0 - 0.5e1 / 0.3e1 * DEPSYYB0) * E + 0.8e1 / 0.3e1 * EU *
DEPSYYB0) * V - 0.5e1 / 0.3e1 * E * DEPSXXB0 - 0.8e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 *
DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PHIM) + ((((-3 * DEPSXXB0 + 2 * DEPSYYB0) * E +
EU * DEPSYYB0) * V + 2 * E * DEPSXXB0 - EU * DEPSYYB0) * SIGXXBC) + ((((3 * DEPSXXB0 -
DEPSYYB0) * E - 2 * EU * DEPSYYB0) * V - E * DEPSXXB0 + 2 * EU * DEPSYYB0) * SIGYYBC) - 0.12e2
* DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PSIM) - 0.3e1 * (SIGXXBC - 2 * SIGYYBC) *
(DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0) * sin(PHIM))) / ((((((24 * V ^ 2 * SB + (8 *
E + 19 * EU + 12 * SB) * V - 28 * E - 19 * EU - 12 * SB) * SIGXXBC ^ 2) - 0.26e2 * (0.12e2 / 0.13e2 * (V ^ 2)
* SB + (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * V - 0.14e2 / 0.13e2 * E - 0.14e2 / 0.13e2 * EU -
0.6e1 / 0.13e2 * SB) * SIGYYBC * SIGXXBC + ((24 * V ^ 2 * SB + (-E + 28 * EU + 12 * SB) * V - 19 * E - 28
* EU - 12 * SB) * SIGYYBC ^ 2) + 0.168e3 * (0.3e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.3e1 /
0.14e2 * SB) * V - 0.13e2 / 0.14e2 * E - 0.2e1 / 0.7e1 * EU - 0.3e1 / 0.14e2 * SB) * TAUXYBC ^ 2) *
sin(PHIM) + ((-72 * V ^ 2 * SB + (-72 * E - 9 * EU - 36 * SB) * V + 36 * E + 9 * EU + 36 * SB) * SIGXXBC ^
2) + 0.126e3 * (0.4e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 /
0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((-72 * V ^ 2 * SB + (-45 * E -
36 * EU - 36 * SB) * V + 9 * E + 36 * EU + 36 * SB) * SIGYYBC ^ 2) - 0.648e3 * TAUXYBC ^ 2 * (V - 0.1e1 /
0.2e1) * ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * sin(PSIM) - 0.72e2 * (((V ^ 2 * SB) + (E + EU / 0.8e1 + SB /
0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * (SIGXXBC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) *
SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 /
0.7e1 * SB) * SIGYYBC * SIGXXBC + ((V ^ 2 * SB) + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * V - E /
0.8e1 - EU / 0.2e1 - SB / 0.2e1) * (SIGYYBC ^ 2) + 0.9e1 * TAUXYBC ^ 2 * (V - 0.1e1 / 0.2e1) * ((V * SB) /
0.3e1 + E + SB / 0.3e1)) * (sin(PHIM) - 0.3e1)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC
^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.16e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1
* TAUXYBC ^ 2) * ((sin(PHIM) - 0.3e1 / 0.4e1) * sin(PSIM) - 0.9e1 / 0.4e1 * sin(PHIM)) * ((((E - EU) * V - 2 *
E + EU) * SIGXXBC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYBC));

 DEPSPXYB = -0.54e2 * (((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - EU * DEPSYYB0 /

147

0.3e1) * SIGXXBC + ((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) *
SIGYYBC + 0.4e1 * TAUXYBC * E * DEPSXYB0) * V + (-0.2e1 / 0.3e1 * E * DEPSXXB0 + EU *
DEPSYYB0 / 0.3e1) * SIGXXBC + (E * DEPSXXB0 / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC -
0.2e1 * TAUXYBC * E * DEPSXYB0) * (sin(PHIM) - 0.3e1) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC +
SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) + 0.4e1 / 0.3e1 * sin(PHIM) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC
+ SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU *
DEPSYYB0)) * (-0.3e1 + sin(PSIM)) * TAUXYBC / (0.16e2 * ((SIGXXBC - 0.2e1 * SIGYYBC) * (E - EU) * V
+ (-0.2e1 * E + EU) * SIGXXBC + SIGYYBC * (E - 0.2e1 * EU)) * ((sin(PSIM) - 0.9e1 / 0.4e1) * sin(PHIM) -
0.3e1 / 0.4e1 * sin(PSIM)) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC
^ 2) + ((-0.24e2 * SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V
^ 2 + ((-0.8e1 * E - 0.19e2 * EU - 0.12e2 * SB) * SIGXXBC ^ 2 + 0.26e2 * SIGYYBC * (E + 0.14e2 / 0.13e2 *
EU + 0.6e1 / 0.13e2 * SB) * SIGXXBC + (E - 0.28e2 * EU - 0.12e2 * SB) * SIGYYBC ^ 2 - 0.168e3 *
TAUXYBC ^ 2 * (E + 0.2e1 / 0.7e1 * EU + 0.3e1 / 0.14e2 * SB)) * V + (0.28e2 * E + 0.19e2 * EU + 0.12e2 *
SB) * SIGXXBC ^ 2 - 0.28e2 * (E + EU + 0.3e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + (0.19e2 * E +
0.28e2 * EU + 0.12e2 * SB) * SIGYYBC ^ 2 + 0.156e3 * (E + 0.4e1 / 0.13e2 * EU + 0.3e1 / 0.13e2 * SB) *
TAUXYBC ^ 2) * sin(PSIM) + 0.72e2 * SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1
* TAUXYBC ^ 2) * V ^ 2 + ((0.72e2 * E + 0.9e1 * EU + 0.36e2 * SB) * SIGXXBC ^ 2 - 0.126e3 * SIGYYBC *
(E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.45e2 * E + 0.36e2 * EU + 0.36e2 * SB) *
SIGYYBC ^ 2 + 0.648e3 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-0.36e2 * E - 0.9e1 * EU - 0.36e2 * SB) *
SIGXXBC ^ 2 + 0.36e2 * SIGYYBC * (E + EU + SB) * SIGXXBC + (-0.9e1 * E - 0.36e2 * EU - 0.36e2 * SB) *
SIGYYBC ^ 2 - 0.324e3 * TAUXYBC ^ 2 * (E + SB / 0.3e1)) * sin(PHIM) + 0.72e2 * (-0.3e1 + sin(PSIM)) *
(SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((E + EU /
0.8e1 + SB / 0.2e1) * SIGXXBC ^ 2 - 0.7e1 / 0.4e1 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 *
SB) * SIGXXBC + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * SIGYYBC ^ 2 + 0.9e1 * TAUXYBC ^ 2 *
(E + SB / 0.6e1)) * V + (-E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * SIGXXBC ^ 2 + SIGYYBC * (E + EU + SB) *
SIGXXBC / 0.2e1 + (-E / 0.8e1 - EU / 0.2e1 - SB / 0.2e1) * SIGYYBC ^ 2 - 0.9e1 / 0.2e1 * TAUXYBC ^ 2 *
(E + SB / 0.3e1))) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) ^ (-
0.1e1 / 0.2e1);

 % recalculate softening modulus SUC:
 DLB = -0.18e2 * (((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - EU * DEPSYYB0 / 0.3e1) *
SIGXXBC + ((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC +
0.4e1 * TAUXYBC * E * DEPSXYB0) * V + (-0.2e1 / 0.3e1 * E * DEPSXXB0 + EU * DEPSYYB0 / 0.3e1) *
SIGXXBC + (E * DEPSXXB0 / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC - 0.2e1 * TAUXYBC *
E * DEPSXYB0) * (sin(PHIM) - 0.3e1) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1
* TAUXYBC ^ 2) + 0.4e1 / 0.3e1 * sin(PHIM) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 +
0.3e1 * TAUXYBC ^ 2) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0)) * (-0.3e1 +
sin(PSIM)) / (0.16e2 * ((SIGXXBC - 0.2e1 * SIGYYBC) * (E - EU) * V + (-0.2e1 * E + EU) * SIGXXBC +
SIGYYBC * (E - 0.2e1 * EU)) * ((sin(PSIM) - 0.9e1 / 0.4e1) * sin(PHIM) - 0.3e1 / 0.4e1 * sin(PSIM)) *
sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) + ((-0.24e2 * SB *
(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((-0.8e1 * E -
0.19e2 * EU - 0.12e2 * SB) * SIGXXBC ^ 2 + 0.26e2 * SIGYYBC * (E + 0.14e2 / 0.13e2 * EU + 0.6e1 /
0.13e2 * SB) * SIGXXBC + (E - 0.28e2 * EU - 0.12e2 * SB) * SIGYYBC ^ 2 - 0.168e3 * TAUXYBC ^ 2 * (E +
0.2e1 / 0.7e1 * EU + 0.3e1 / 0.14e2 * SB)) * V + (0.28e2 * E + 0.19e2 * EU + 0.12e2 * SB) * SIGXXBC ^ 2 -
0.28e2 * (E + EU + 0.3e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + (0.19e2 * E + 0.28e2 * EU + 0.12e2 * SB)
* SIGYYBC ^ 2 + 0.156e3 * (E + 0.4e1 / 0.13e2 * EU + 0.3e1 / 0.13e2 * SB) * TAUXYBC ^ 2) * sin(PSIM) +
0.72e2 * SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 +
((0.72e2 * E + 0.9e1 * EU + 0.36e2 * SB) * SIGXXBC ^ 2 - 0.126e3 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU +
0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.45e2 * E + 0.36e2 * EU + 0.36e2 * SB) * SIGYYBC ^ 2 + 0.648e3 *
TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-0.36e2 * E - 0.9e1 * EU - 0.36e2 * SB) * SIGXXBC ^ 2 + 0.36e2 *
SIGYYBC * (E + EU + SB) * SIGXXBC + (-0.9e1 * E - 0.36e2 * EU - 0.36e2 * SB) * SIGYYBC ^ 2 - 0.324e3
* TAUXYBC ^ 2 * (E + SB / 0.3e1)) * sin(PHIM) + 0.72e2 * (-0.3e1 + sin(PSIM)) * (SB * (SIGXXBC ^ 2 -
SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((E + EU / 0.8e1 + SB / 0.2e1) *
SIGXXBC ^ 2 - 0.7e1 / 0.4e1 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC +
(0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * SIGYYBC ^ 2 + 0.9e1 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V
+ (-E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * SIGXXBC ^ 2 + SIGYYBC * (E + EU + SB) * SIGXXBC / 0.2e1 + (-
E / 0.8e1 - EU / 0.2e1 - SB / 0.2e1) * SIGYYBC ^ 2 - 0.9e1 / 0.2e1 * TAUXYBC ^ 2 * (E + SB / 0.3e1)));

148 Appendix E: MATLAB Code (Model 4)

 FKB = -0.3e1 / (0.3e1 - sin(PHIM)) * (0.1e1 - sin(PHIM)) * KCB;
 SBC = -FKB* DKB / DLB ;
 if abs(SBC-SB) < TOR2
 break;
 else
 SB = SBC;
 end
 end
 end

 EPSPXXU = EPSPXXU + DEPSPXXU;
 EPSPYYU = EPSPYYU + DEPSPYYU;
 % vertical elastic stress should always be positive:
 EPSXXUE = (SIGXXUE-VU*SIGYYUE)/EU;
 EPSYYUE = (SIGYYUE-VU*SIGXXUE)/EU;
 if EPSPYYU > EPSYYUE
 if EPSPXXU > EPSXXUE
 EPSPXXU = EPSXXUE;
 else
 end
 EPSPYYU = EPSYYUE;
 else
 end

 EPSPXXH = EPSPXXH + DEPSPXXH;
 EPSPYYH = EPSPYYH + DEPSPYYH;
 % elastic stress should always be positive:
 EPSXXHE = (SIGXXHE-V*SIGYYHE)/E;
 EPSYYHE = (SIGYYHE-V*SIGXXHE)/E;
 if EPSPYYH > EPSYYHE
 if EPSPXXH > EPSXXHE
 EPSPXXH = EPSXXHE;
 else
 end
 EPSPYYH = EPSYYHE;
 else
 end

 EPSPXXB = EPSPXXB + DEPSPXXB;
 EPSPYYB = EPSPYYB + DEPSPYYB;
 EPSPXYB = EPSPXYB + DEPSPXYB;
 % vertical elastic predicted stress should always be positive:
 EPSXXBE = (SIGXXBE-V*SIGYYBE)/E;
 EPSYYBE = (SIGYYBE-V*SIGXXBE)/E;
 EPSXYBE = TAUXYBE/(2*GB);
 if EPSPYYB > EPSYYBE
 if EPSPXXB > EPSXXBE
 if EPSPXYB > EPSXYBE
 EPSPXYB = EPSXYBE;
 else
 end
 EPSPXXB = EPSXXBE;
 else
 end
 EPSPYYB = EPSYYBE;

149

 else
 end

 % Stresses with plastic corrector of each component in x direction:
 SIGXXUP = (EU*(1-VU)*(EPSXXUE-EPSPXXU))/((1+VU)*(1-2*VU))+(EU*(VU)*(EPSYYUE-
EPSPYYU))/((1+VU)*(1-2*VU));

 SIGXXHP = (EH*(1-V)*(EPSXXHE-EPSPXXH))/((1+V)*(1-2*V))+(EH*(V)*(EPSYYHE-
EPSPYYH))/((1+V)*(1-2*V));

 SIGXXCP = RB*(EC*(1-V))*(EPSXXBE-EPSPXXB)/((1+V)*(1-2*V))+(EH*(V)*(EPSYYBE-
EPSPYYB))/((1+V)*(1-2*V))/RC;

 % Stresses with plastic corrector in y direction:
 SIGYYUP = (EU*(1-VU)*(EPSYYUE-EPSPYYU))/((1+VU)*(1-2*VU))+(EU*(VU)*(EPSXXUE-
EPSPXXU))/((1+VU)*(1-2*VU));

 SIGYYHP = (EH*(1-V)*(EPSYYHE-EPSPYYH))/((1+V)*(1-2*V))+(EH*(V)*(EPSXXHE-
EPSPXXH))/((1+V)*(1-2*V));

 SIGYYCE = EC * (RH * EPSYYHE / RC);

 % shear stresses with plastic corrector of each component in shear direction:
 TAUXYBP = 2*GB*(EPSXYBE-EPSPXYB);

 if EPSYY0TC < 0
 % damage factor:
 while DH < 1 & DU < 1 & DC < 1 & DB < 1
 % damage model
 %find maximum stress between stress at n step and intial maximum value
 SXH = max(SIGXXHP,SIGTM); % head joint
 SXU = max(SIGXXUP,SIGTU); % brick unit
 SXC = max(-SIGXXCP,SIGTM); % cross joint
 TXYB = max(abs(TAUXYBP),SIGS); % bed joint

 % Calculate damage factor from internal stresses
 DHC = 1-(SIGTM*exp(ATM*(1-(SXH/SIGTM)))/SXH); % DH should not increasing
 DUC = 1-(SIGTU*exp(ATU*(1-(SXU/SIGTU)))/SXU); % once DH tend to increased, brick is
damaged
 DBC = 1-(SIGS*exp(ASB*(1-(TXYB/SIGS)))/TXYB);
 if abs(DHC/DH) < 1
 DHC = DH;
 SWC = 1;
 else
 end
 if abs(DUC/DU) < 1
 DUC = DU;
 else
 end
 if abs(DBC/DB) < 1
 DBC = DB;
 else
 end

 if SIGXXCP < 0
 DCC = 1-(SIGTM*exp(ATM*(1-(SXC/SIGTM)))/SXC);
 else

150 Appendix E: MATLAB Code (Model 4)

 DCC = (DBC+DHC)/2;% For compressive deformed cell, sigxxc is in compression direction
 end

 % Verification of damage factor
 % Since damage factor will influence stress itself
 % damage factor should be verificated together
 if DHC >= 0 & DUC >=0 & DCC >=0 & DBC >= 0
 if abs(DHC-DH) < TOR
 if abs(DUC-DU) < TOR
 if abs(DCC-DC) < TOR
 if abs(DBC-DB) < TOR
 break;
 else
 DB = DBC;
 end
 else
 DC = DCC;
 end
 else
 DU = DUC;
 end
 else
 DH = DHC;
 end
 else
 break;
 end
 end
 SIGYY0C = -(RH*SIGYYHP + C2*RU*SIGYYUP)/(C2+1);

 % shear behaviour
 RBXY = 1 - DBXY; % with vertical compression load
 while DBXY < 1
 TAUXYBXY = 2 * GB * EPSXY0 * (C3+1);
 CC = CH;
 TXYBXY = max(abs(TAUXYBXY),CC);
 ASBXY = (((GII*GB)/(LS*CC^2))-(1/2))^(-1);
 DBCXY = 1-(CC*exp(ASBXY*(1-(TXYBXY/CC)))/TXYBXY);
 if DBCXY >= 0
 if abs(DBCXY-DBXY) < TOR
 break;
 else
 DBXY = DBCXY;
 end
 else
 break;
 end
 end
 TAUXY0 = - SIGYY0 * tan(PHIM)+ RBXY * TAUXYBXY;
 else
 while DH < 1 & DU < 1 & DC < 1 & DB < 1
 % damage model for vertical tension cracking
 %find maximum stress between stress at n step and intial maximum value
 SYH = max(SIGYYHE,SIGTM); % head joint
 SYU = max(SIGYYUE,SIGTU); % brick unit
 SYC = max(-SIGYYCE,SIGTM); % cross joint

151

 SYB = max(abs(SIGYYBE),SIGTM); % bed joint

 % Calculate damage factor from internal stresses
 DHC = 1-(SIGTM*exp(ATM*(1-(SYH/SIGTM)))/SYH); % DH should not increasing
 DUC = 1-(SIGTU*exp(ATU*(1-(SYU/SIGTU)))/SYU); % once DH tend to increased, brick is
damaged
 DBC = 1-(SIGTM*exp(ATM*(1-(SYB/SIGTM)))/SYB);
 if abs(DHC/DH) < 1
 DHC = DH;
 SWC = 1;
 else
 end
 if abs(DUC/DU) < 1
 DUC = DU;
 else
 end
 if abs(DBC/DB) < 1
 DBC = DB;
 else
 end

 if SIGYYCE < 0
 DCC = 1-(SIGTM*exp(ATM*(1-(SYC/SIGTM)))/SYC);
 else
 DCC = (DBC+DHC)/2;% For compressive deformed cell, sigxxc is in compression direction
 end

 % Verification of damage factor in y direction
 % Since damage factor will influence stress itself
 % damage factor should be verificated together
 if DHC >= 0 & DUC >=0 & DCC >=0 & DBC >= 0
 if abs(DHC-DH) < TOR
 if abs(DUC-DU) < TOR
 if abs(DCC-DC) < TOR
 if abs(DBC-DB) < TOR
 break;
 else
 DB = DBC;
 end
 else
 DC = DCC;
 end
 else
 DU = DUC;
 end
 else
 DH = DHC;
 end
 else
 break;
 end
 end
 SIGYY0C = (RH*SIGYYHE + C2*RU*SIGYYUE)/(C2+1);

 % shear behaviour
 RBXY = 1 - DBXY; % shear slidding failure pattern
 while DBXY < 1

152 Appendix E: MATLAB Code (Model 4)

 TAUXYBXY = 2 * GB * EPSXY0 * (C3+1);
 CC = SIGS;
 TXYBXY = max(abs(TAUXYBXY),CC);
 ASBXY = (((GII*GB)/(LS*CC^2))-(1/2))^(-1);
 DBCXY = 1-(CC*exp(ASBXY*(1-(TXYBXY/CC)))/TXYBXY);
 if DBCXY >= 0
 if abs(DBCXY-DBXY) < TOR
 break;
 else
 DBXY = DBCXY;
 end
 else
 break;
 end
 end
 TAUXY0 = RBXY * TAUXYBXY;
 end

 % undamaged stresses of basic cell in y direction:
 if SWC == 1
 SIGYY0 = SIGYY0;
 else
 SIGYY0 = SIGYY0C;
 end

 % tension behaviour (without shear loading): brick tension cracking
 EPSXX0T = abs(EPSXX0TC);
 DEPSXX0T = abs(DEPSXX0TC);

 % horizontal stress in components
 SIGXXHX = -0.4e1 * E * (C2 + 1) * (-(C1 * GB * RBX * RUX * (V * VU - 1) * C2 ^ 2) / 0.4e1 + (((C1 * (V *
VU - 1) * RUX + (-VU ^ 2 + 1) * RHX) * GB * RBX) / 0.4e1 + (C1 ^ 2 * C3 * E * RUX ^ 2)) * C2 + (GB * RBX
* ((VU ^ 2) / 0.4e1 - 0.1e1 / 0.4e1) + (C1 * C3 * E * RUX)) * RHX) * EPSXX0T / ((C1 * GB * RBX * RUX * (V
- 1) * (V + 1) * C2 ^ 3) - 0.4e1 * RHX * (GB * RBX * (-(VU ^ 2) / 0.4e1 + 0.1e1 / 0.4e1) + (C1 * C3 * E *
RUX)) * (C2 ^ 2) + ((-C1 * GB * RBX * RUX * (V - 1) * (V + 1) + 4 * C3 * E * (RUX ^ 2 * (V ^ 2 - 1) * C1 ^ 2 -
2 * C1 * RHX * RUX * V * VU + RHX ^ 2 * (VU ^ 2 - 1))) * C2) - 0.4e1 * (GB * RBX * ((VU ^ 2) / 0.4e1 - 0.1e1
/ 0.4e1) + (C1 * C3 * E * RUX)) * RHX);

 SIGXXUX = -0.4e1 * E * C1 * (C2 + 1) * EPSXX0T * (-(C1 * GB * RBX * RUX * (V - 1) * (V + 1) * C2 ^ 2) /
0.4e1 + ((GB * (C1 * RUX * V ^ 2 - RHX * V * VU - RUX * C1 + RHX) * RBX) / 0.4e1 + (C1 * RHX * C3 * E *
RUX)) * C2 + ((C3 * E * RHX) + (GB * RBX * (V * VU - 1)) / 0.4e1) * RHX) / ((C1 * GB * RBX * RUX * (V - 1)
* (V + 1) * C2 ^ 3) - 0.4e1 * RHX * (GB * RBX * (-(VU ^ 2) / 0.4e1 + 0.1e1 / 0.4e1) + (C1 * C3 * E * RUX)) *
(C2 ^ 2) + ((-C1 * GB * RBX * RUX * (V - 1) * (V + 1) + 4 * E * (RHX ^ 2 * (VU ^ 2 - 1) - 2 * C1 * RHX * RUX
* V * VU + RUX ^ 2 * C1 ^ 2 * (V - 1) * (V + 1)) * C3) * C2) - 0.4e1 * (GB * RBX * ((VU ^ 2) / 0.4e1 - 0.1e1 /
0.4e1) + (C1 * C3 * E * RUX)) * RHX);

 SIGXXCX = -E * (C2 + 1) * EPSXX0T * (-(((V * C1 * (V - VU) * RUX) + (RCX * (VU - 1) * (VU + 1) * (C2 +
1)) / 0.2e1) * RHX + (RUX * C1 * C2 * RCX * (V - 1) * (V + 1) * (C2 + 1)) / 0.2e1) * (C2 - 1) * GB * RBX ^ 2 /
0.2e1 + (0.2e1 * E * ((RUX * V * C1 * VU) - (C2 * RCX * (VU - 1) * (VU + 1)) / 0.2e1) * C3 * RHX ^ 2 - 0.2e1
* (E * RUX * (V ^ 2) * C1 * C3 - ((-V * (V - VU) * GB / 0.8e1 + C3 * E / 0.2e1) * (C2 ^ 2) + V * ((-VU / 0.4e1 +
V / 0.4e1) * GB + E * VU * C3) * C2 - V * (V - VU) * GB / 0.8e1 + C3 * E / 0.2e1) * RCX) * C1 * RUX * RHX -
E * (RUX ^ 2) * (C1 ^ 2) * C2 * C3 * RCX * (V - 1) * (V + 1)) * RBX + E * RHX * RUX * V * C1 * C3 * RCX *
(C2 - 1) * (-(C1 * RUX * V) + RHX * VU)) / (((C2 - 1) * RCX) + 0.2e1 * RBX) / ((C2 + 1) * (C2 - 1) * GB *
((RUX * (V - 1) * (V + 1) * C1 * C2) + RHX * (VU ^ 2 - 1)) * RBX / 0.4e1 + (C2 * (VU ^ 2 - 1) * RHX ^ 2 -
0.2e1 * RHX * ((VU * V * C2) + (C2 ^ 2) / 0.2e1 + 0.1e1 / 0.2e1) * RUX * C1 + (RUX ^ 2 * C2 * (V - 1) * (V +
1) * C1 ^ 2)) * E * C3) / RCX;

153

 SIGXXBX = RC * SIGXXCX / RB;

 % vertical stresses in components
 SIGYYUX = 0.4e1 * EPSXX0T * (GB * RBX * (V - VU) * C2 / 0.4e1 - GB * RBX * (V - VU) / 0.4e1 + E *
C3 * (C1 * RUX * V - RHX * VU)) * RHX * C1 * E * (C2 + 0.1e1) / (C1 * GB * RBX * RUX * (V - 0.1e1) * (V +
0.1e1) * C2 ^ 3 - 0.4e1 * RHX * (GB * RBX * (-VU ^ 2 / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * C2 ^ 2
+ (-C1 * GB * RBX * RUX * (V - 0.1e1) * (V + 0.1e1) + 0.4e1 * (RHX ^ 2 * (VU ^ 2 - 0.1e1) - 0.2e1 * C1 *
RHX * RUX * V * VU + RUX ^ 2 * C1 ^ 2 * (V - 0.1e1) * (V + 0.1e1)) * C3 * E) * C2 - 0.4e1 * (GB * RBX *
(VU ^ 2 / 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * RHX);

 SIGYYHX = -0.4e1 * C2 * EPSXX0T * C1 * RUX * E * (GB * RBX * (V - VU) * C2 / 0.4e1 - GB * RBX * (V
- VU) / 0.4e1 + E * C3 * (C1 * RUX * V - RHX * VU)) * (C2 + 0.1e1) / (C1 * GB * RBX * RUX * (V - 0.1e1) *
(V + 0.1e1) * C2 ^ 3 - 0.4e1 * RHX * (GB * RBX * (-VU ^ 2 / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) *
C2 ^ 2 + (-C1 * GB * RBX * RUX * (V - 0.1e1) * (V + 0.1e1) + 0.4e1 * E * C3 * (RUX ^ 2 * (V ^ 2 - 0.1e1) *
C1 ^ 2 - 0.2e1 * C1 * RHX * RUX * V * VU + RHX ^ 2 * (VU ^ 2 - 0.1e1))) * C2 - 0.4e1 * (GB * RBX * (VU ^ 2
/ 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * RHX);

 SIGYYBX = EPSXX0T * RHX * C1 * RUX * E * (GB * RBX * (V - VU) * C2 / 0.4e1 - GB * RBX * (V - VU) /
0.4e1 + E * C3 * (C1 * RUX * V - RHX * VU)) * (C2 + 0.1e1) / (C1 * GB * RBX * RUX * (V - 0.1e1) * (V +
0.1e1) * C2 ^ 3 / 0.4e1 - RHX * (GB * RBX * (-VU ^ 2 / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * C2 ^ 2
+ (-C1 * GB * RBX * RUX * (V - 0.1e1) * (V + 0.1e1) / 0.4e1 + (RHX ^ 2 * (VU ^ 2 - 0.1e1) - 0.2e1 * C1 *
RHX * RUX * V * VU + RUX ^ 2 * C1 ^ 2 * (V - 0.1e1) * (V + 0.1e1)) * C3 * E) * C2 - (GB * RBX * (VU ^ 2 /
0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * RHX) / RBX;

 EPSYYBX = (SIGYYBX - V * SIGXXBX) / EB;

 SIGYYCX = EC * (RB * EPSYYBX / RC);

 % shear stress between bed joint and brick unit
 TAUXYBX = 0.2e1 * (RUX * C1 * ((-V * VU + 1) * RHX + RUX * C1 * (V - 1) * (V + 1)) * C2 + RHX * (C1 *
(V * VU - 1) * RUX + (-VU ^ 2 + 1) * RHX)) * E * (C2 + 1) * C3 * EPSXX0T * GB / ((C1 * GB * RBX * RUX *
(V - 1) * (V + 1) * C2 ^ 3) - 0.4e1 * RHX * ((C1 * C3 * E * RUX) - (GB * RBX * (VU - 1) * (VU + 1)) / 0.4e1) *
(C2 ^ 2) + (((4 * VU ^ 2 - 4) * E * C3 * RHX ^ 2) - (8 * E * RUX * V * C1 * C3 * VU * RHX) + 0.4e1 * RUX *
C1 * (V - 1) * ((C1 * C3 * E * RUX) - (GB * RBX) / 0.4e1) * (V + 1)) * C2 - 0.4e1 * ((C1 * C3 * E * RUX) +
(GB * RBX * (VU - 1) * (VU + 1)) / 0.4e1) * RHX);

 if EPSXX0TC >= 0
 % inner loop: find damage factor
 while DHX < 1 & DUX < 1 & DCX < 1 & DBX < 1
 % effective stresses of each component based on damage factor
 SXHX = max(SIGXXHX,SIGTM);
 SXUX = max(SIGXXUX,SIGTU);
 SXCX = max(SIGXXCX,SIGTM);
 TXYBX = max(abs(TAUXYBX),SIGS);

 % Calculate damage factor from internal stresses
 DUCX = 1-(SIGTU*exp(ATU*(1-(SXUX/SIGTU)))/SXUX);
 DHCX = 1-(SIGTM*exp(ATM*(1-(SXHX/SIGTM)))/SXHX);
 DCCX = 1-(SIGTM*exp(ATM*(1-(SXCX/SIGTM)))/SXCX);
 DBCX = 1-(SIGS*exp(ASB*(1-(TXYBX/SIGS)))/TXYBX);
 if abs(DHCX/DHX) < 1
 if abs(DUCX/DUX) < 1
 if abs(DBCX/DBX) < 1
 if abs(DCCX/DCX) < 1
 DCCX = DCX;
 else

154 Appendix E: MATLAB Code (Model 4)

 end
 DBCX = DBX;
 else
 end
 DUCX = DUX;
 else
 end
 DHCX = DHX;
 else
 end

 % Verification of damage factor
 % Since damage factor will influence stress itself
 % damage factor should be verificated together
 if DHCX >= 0 & DUCX >=0 & DCCX >=0 & DBCX >= 0
 if abs(DHCX-DHX) < TOR
 if abs(DUCX-DUX) < TOR
 if abs(DCCX-DCX) < TOR
 if abs(DBCX-DBX) < TOR
 break;
 else
 DBX = DBCX;
 end
 else
 DCX = DCCX;
 end
 else
 DUX = DUCX;
 end
 else
 DHX = DHCX;
 end
 else
 break;
 end
 end
 % total horizontal undamaged stress of cell
 SIGXX0 = (RHX*SIGXXHX*C3 + 2*RCX*SIGXXCX + C3*(RUX*SIGXXUX + RBX*TAUXYBX*(C2 -
1)/(2*C3)))/(2*(C3 + 1));
 else
 SIGXX0 = 0;
 end

 % Stiffness of basic cell:
 % K11, K12, K13=0, K21, K22, K23=0, 0, K32, K33

 % record value:
 a = [a,SIGYY0];
 b = [b,SIGXX0];
 d = [d,TAUXY0];
 e = [e,RH*SIGXXHP+RHX*SIGXXHX];
 f = [f,RU*SIGXXUP+RUX*SIGXXUX];
 g = [g,RB*TAUXYBP+RBX*TAUXYBX+RBXY*TAUXYBXY];
 h = [h,RC*SIGXXCP+RCX*SIGXXCX];
end

155

Appendix F: dcf. File (Single Element Model)
*FILOS
INITIA
*INPUT
*FORTRAN
USE "model1.dll"
*NONLIN LABEL="Structural nonlinear"
 TYPE PHYSIC PLASTI MITERA 100
 BEGIN EXECUT
 LOAD STEPS EXPLIC SIZES 1e-5(300)
 BEGIN ITERAT
 MAXITE 500
 METHOD NEWTON
 BEGIN CONVER
 FORCE OFF
 DISPLA OFF
 ENERGY
 END CONVER
 END ITERAT
 END EXECUT
 SOLVE PARDIS
 BEGIN OUTPUT
 TEXT "Output"
 BINARY
 SELECT STEPS ALL /
 DISPLA TOTAL TRANSL GLOBAL
 BEGIN STRAIN
 BEGIN TOTAL
 BEGIN GREEN
 BEGIN GLOBAL
 INTPNT
 ERROR OFF
 END GLOBAL
 END GREEN
 END TOTAL
 END STRAIN
 STRESS TOTAL CAUCHY GLOBAL INTPNT
 FORCE REACTI TRANSL GLOBAL
 END OUTPUT
*END

