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Abstract 
Masonry is one of the most common building materials globally due to its ease of construction, price, durability 
and fire resistance. Its heterogeneity and orthotropic nature make its mechanical behaviour rather complex, 
highlighting the importance of an appropriate constitutive model to describe such behaviour accurately. In 
literature, most of the existing constitutive models for masonry fall in one of the two following categories: 
macro-models or micro-models. The micro-models (also called block-based models), which explicitly describe 
masonry's geometrical and material heterogeneities, exhibit higher accuracy but require higher numerical 
efforts when simulating masonry's mechanical behaviour. The macro-models (also called continuum models), 
which model masonry as homogeneous material and smear out the damage over the continua, are less 
accurate but offer a good compromise between accuracy and numerical efficiency. They are therefore used 
more often to simulate masonry structures. However, most of the macro-models are not capturing well the 
damage localization occurring along the mortar joints and the energy dissipation in the bricks and mortars. 
To increase the applicability of continuum models, the components' damage localization and energy 
dissipation should be improved. This thesis presents a homogenized constitutive model for applications on 
masonry structures under in-plane loading. 

The developed homogenized material model for masonry includes the description of shearing, tensile 
cracking, crushing and splitting. Inspired by the micro-mechanical models of Zucchini and Lourenço, four 
models were developed in this thesis to describe the different types of in-plane failure of masonry, naming: 
tensile failure of bed joints, horizontal shear sliding of bed joints, tensile cracking of unit, diagonal tensile 
cracking failure, masonry crushing failure. The first model is derived for the masonry’s pure shear behaviour, 
where the shear sliding failure is introduced. The second one is derived for the horizontal tensile behaviour, 
where the vertical tensile cracking of brick units and the vertical joints is proposed. The third one is derived 
for the vertical compression behaviour, where masonry crushing failure is adopted. The fourth one is coupling 
the failure mechanisms described in the previous three models with a novel algorithm. Additionally, the 
diagonal tension cracking failure and the horizontal tensile cracking of horizontal joints are incorporated in 
the fourth and final material model. 

To derive these models, first, a representative volume element (RVE) was selected for running bond wall, 
where the bricks are staggered by half-length of brick from the adjoining courses above and below. Each RVE 
consists of two-quarters of bricks connected through a bed joint, and each one is connected to a head joint 
on one side. For each of the models, the active internal stresses of each component (brick, bed, head or 
cross joint) are calculated through the compatibility and equilibrium equations resulting from the assumed 
deformed mechanisms. Different damage state variables are introduced for every component in the damage 
model, where exponential softening is assumed for tension and shear. Additionally, a Ducker-Prager yield 
criterion with bi-parabolic hardening is used in combination with an explicit Euler-forward algorithm to describe 
the elastoplastic behaviour of the material in compression. As a result, the material model’s constitutive law 
is obtained with the homogenization procedures after coupling the damage and plastic model together by a 
specific algorithm originally introduced by Zucchini and Lourenço.  

The constitutive equations for model 1 (shear), model 2 (tension), model 3 (compression) and model 4 
(coupled) were coded successfully in MATLAB. The components’ shearing, tensile cracking, crushing and 
splitting failures are correctly modelled analytically with an algorithm, which can be applied to simplify the 
micro-mechanical model. Besides, constitutive laws of models 1 and 2 were also implemented successfully 
in the finite element software DIANA version 10.4 (check). The ability of the model to capture the failure of 
the components in shear, tensile cracking or crushing was examined through simple analytical applications. 
Moreover, the model was compared against experimental results from tests performed on masonry wallets 
under compressive loading; the model was able to predict the strength of the specimens satisfactorily. 

Therefore, this alternative constitutive material model can adequately simulate masonry’s behaviours with a 
simpler algorithm than the previous model. Meanwhile, the component’s elastic and elastoplastic behaviours 
can be simulated in more detail in this model, as the case that the horizontal joint is first damaged in shear 
and compressive splitting effects are additionally included.  
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1. Introduction 
Masonry is one of the most common materials used for structures in the Netherlands and worldwide. Masonry 
structures have several advantages. For instance, masonry structures' fire resistance and durability are better 
than other types of structures as masonry’s major components -the bricks- are usually made by stable 
substances, such as stone or clay, which are fire-resistant materials and are hard to have chemical reactions 
with water and air. 

Masonry is an inhomogeneous material consisting of units (brick or stone block) and joints (dry or mortar) [1]. 
Although some variability in the mechanical and geometrical properties of the constituents is possible, 
especially for clay bricks and lime mortar, the construction phase introduces the biggest variability in the 
construction. The mortar joints are more dependent on manual action [2]. For example, variability in the 
thickness of the mortar joints or the bond between mortar and bricks can lead to layers with different 
mechanical properties. Therefore, the mechanical behaviour of masonry is rather complex due to its 
composite and orthotropic nature. That is why the investigation of constitutive models that can reproduce 
such behaviour is of relevance. 

1.1. Background 

Masonry is a distinctive quasi-brittle material since its elastic behaviours and strengths are different in different 
directions [3]. The different properties of its constituents make masonry an anisotropic material with weak 
layers, where usually damage concentrates. Based on the experimental results shown in [4, 5], five failure 
mechanisms have been identified in (unreinforced) masonry [6, 7, 8]. 

(a)  (b)  (c)  

(d)  (e)  

Figure 1-1 Five failure mechanisms [8] 

(a) Tensile failure of bed joints, which indicates the potential horizontal cracks generated in joints in tension; 
(b) Horizontal shear sliding of bed joints, caused by shear cracks generated in joints; 
(c) Tensile cracking of unit, where vertical cracks occur in the unit; 
(d) Diagonal tensile cracking failure, caused by shear behaviour at the brick-mortar interface and vertical 

cracks passing either through the head joints or the brick units; 
(e) Masonry crushing failure, produced by micro-cracks generated in units. 

The failure mechanisms from these failure modes could be incorporated in constitutive models mathematically 
by using specific modelling strategies. In 2019, D’Altri et al. classified these strategies into four categories [1]: 
block-based models, continuum models, macroelement models and geometry-based models.  
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(1) Block-based models: the blocks in the masonry modelled by the block-based strategy are assumed to be 

rigid or deformable. Page first introduced this approach by considering masonry as a so-called “texture 
continuum” [6]. In this assemblage, the elastic brick elements act in conjunction with linkage elements 
simulating the mortar joints. Based on Page’s work, many block-based models have been introduced and 
developed, such as interface element-based approaches achieved by introducing zero-thickness interface 
elements [9, 10, 11, 12], contact-based approaches based on contact mechanics [13, 14], textured 
continuum-based approaches by introducing bricks and mortars separately in FEM framework [15, 16].  

(2) Continuum models: the masonry is assumed to be a continuum deformable-body in continuum 
approaches. Mesh discretization of this type of strategy does not have to describe the geometrical 
heterogeneities of masonry [1]. Therefore, the computational cost of continuum models is generally lower 
than for block-based models. However, the definition of suitable constitutive laws for masonry is a 
challenging task due to its complex and orthotropic mechanical properties. There are two main 
approaches to derive these homogeneous constitutive laws categorized in [1]: The direct approach, where 
the mechanical properties could be calibrated through experimental data or other data without resorting 
to the Representative volume elements 1 -based homogenization procedures [17, 18, 19]; The 
homogenization procedures and multi-scale approaches, where the homogeneous constitutive laws of 
structural-scale models can be proposed from homogenization techniques (typically based on RVEs) [20, 
21, 22, 23]. 

(3) Macroelement models: the structure is idealized into plane-scale structural components based on 
phenomenological or mechanical-based nonlinear response [1]. These models are mainly used to analyze 
the global seismic response of masonry buildings, and some examples can be found in [24, 25]. 

(4) Geometry-based models: The structure is considered to be a rigid body in geometry-based models. 
Therefore, the geometry of the structure is the only input of these approaches beyond certain loading 
conditions. For this reason, geometry-based modelling strategies are typically used to investigate 
structural stability and/or collapse through limit analysis-based solutions, and some examples can be 
found in [26, 27]. 

The block-based models generally have higher accuracy when simulating masonry's mechanical behaviours. 
However, their application at structural level is practically inconvenient due to the large size and the 
complexity of the masonry buildings, so the simulations would take a long time to run with considerable 
numerical efforts. Therefore, the continuum approaches are selected in this thesis to model masonry 
structures since they offer a good compromise between accuracy and efficiency. 

In 1999, J. Lopez et al. presented a micro-mechanical material model based on a representative cell's 
compatibility and equilibrium equations based on the multi-scale approach [28]. The bricks and mortars' 
deformations and micro-constitutive laws in this material model were introduced separately. However, the 
deformations micro-constitutive laws were introduced as a whole in the macro-models proposed by P.B. 
Lourenço and Anthoine et al. based on the composite theory [8, 29]. In the second approach, the micro-
mechanical material model can have higher accuracy, especially when the differences between the stiffness 
of the bricks and mortars are large. 

In 2002, A. Zucchini and P.B. Lourenço focused on the typically periodic masonry structures with the 
staggered brick alignment and developed a novel material model based on Lopez’s multi-scale approach. 
They defined the overlaps of horizontal and vertical joints as cross joints and derived correlated elastic 
properties of a representative volume element in the normal and shear direction according to their assumed 
deformed mechanisms [30]. After that, they introduced potential tensile (or shear) cracks, which should be 
vertically (or horizontally) located at components, by a non-linear homogenization procedure [20]. In this 
procedure, they first introduced several damage state variables for the bricks and mortars to represent the 
damage status of components. Then, the exponential law of the damage state variables and the stresses 
proposed in [31] were implemented in the elastic properties of RVE derived in [30]. Finally, the damage status 
of the components was incorporated into RVE by compatibility and equilibrium equations. In 2007, Zucchini 
and Lourenço incorporated the elastoplastic phase of their model under pure compressive loading in the 

 
1Abbreviation: RVE. In theory of composite material, the representative volume element (also called the representative elementary volume (REV) or the unit cell) is the 

smallest volume whose properties could be representative of the whole. (From Wikipedia) 

https://en.wikipedia.org/wiki/Representative_elementary_volume 
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vertical direction [32]. They implemented Drucker-Prager yield criteria in every component with an implicit 
Euler-backward algorithm proposed in [8]. In 2009, they introduced an extended material model based on 
their previous work [30, 20, 32] by extending their quarter basic cell to a larger RVE to propose coupled 
behaviour in the normal and shear direction [21]. They considered the shear behaviour of vertical joints and 
assumed deformations in RVE to be antisymmetrical. In this extended model, they used Mohr-coulomb yield 
surface for bricks and mortars, rather than the Drucker-Prager one, to avoid the apex problem. Furthermore, 
Zucchini and Lourenço applied their extended material model on a shear wall with good results. 

Zucchini and Lourenço’s micro-mechanical model incorporated many failure modes in a representative cell 
and most localized damages in components. It could still have a high accuracy even when the brick’s and 
mortar’s stiffness ratio is large. Therefore, this material model will be studied and further refined in the thesis 
due to its versatility.  

The development of Zucchini and Lourenço’s micro-mechanical model could be concluded as four phases: 

(1) Micro-mechanical model in 2002: the model was derived from the actual deformations of a basic cell and 
included additional internal deformation modes [30]. 

(2) Coupled homogenization-damage model in 2004: the formulation and implementation of this model were 
proposed by coupling the micro-mechanical model described in (1) and an isotropic damage model for 
the bricks and mortars. This model was specific for the normal tension behaviour of masonry parallel to 
bed joints [20]. 

(3) Developed homogenization-damage model in 2007: the model was developed by implementing a plastic 
model into the coupled homogenization-damage model described in (2) by a novel homogenization tool. 
The plastic model incorporated Drucker-Prager yield criteria for every component, and the plastic 
deformations were computed according to the implicit Euler backward method with bi-parabolic hardening 
diagram, where the compressive splitting effects were taken into account. This model was derived for the 
compressive behaviour of masonry perpendicular to bed joints [32]. 

(4) Extended micro-mechanical model in 2009: in this model, the extended basic cell's normal and shear 
behaviours were simulated up to complete failure with suitably selected deformed mechanisms and 
coupled damage and plastic model described in (1)-(3) [21]. 

1.2. Research gaps 

The work of Zucchini and Lourenço is characterized by an acceptable trade-off between accuracy and 
computational efforts. However, there are still some points that require attention and potential improvements. 
These gaps could be described from three aspects:  

(1) Simplifications of deformed mechanisms to reduce the computational efforts. 

Firstly, Zucchini and Lourenço considered nearly all possible deformations of bricks and mortars when they 
derived the final model for coupled normal and shear behaviours of masonry, such as the vertical shear 
deformation of the head joint and antisymmetrical deformations of the bed joint. These assumptions lead to 
accurate simulations of components’ deformations but bring outstanding numerical efforts as well. Therefore, 
the simplifications could be done by making several reasonable assumptions on deformation mechanisms to 
save computational costs. For example, we could neglect head joints’ shear deformations as the head joints 
generally are damaged in tension. As a result, the bed joint’s deformations should be symmetrical, and we 
could consider fewer interfaces with a smaller unit cell. 

(2) An improved assumption for the combination of shear and compressive behaviours. 

Secondly, Zucchini and Lourenço used damage variables (damage factors) to define the components’ stress 
status. In other words, they assumed that all of the given component’s internal stresses would drop down to 
zero as the initial failure in the given component occurred. This initial failure was caused by cracks generated 
in each component, and different types of cracks are assumed in each component. For instance, the bed joint 
fails due to a single shear crack horizontally located at the middle of thickness direction if the bed joint is 
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assumed to be damaged in “shear sliding failure mode”. In the extended micro-mechanical model proposed 
by Zucchini and Lourenço in 2009, the bed joint’s stiffness is assumed to be zero when the compressive 
energy in the y-direction2 is consumed due to the micro-cracks. Alternatively, it can be said that the bed joint 
would be damaged in “crushing failure mode” in their assumption. However, their consideration ignores the 
case when the bed joint fails first due to shear. The horizontal shear crack may appear before the dissipation 
of compressive energy in the bed joint, leading to different failure mechanisms of the material model. 
Therefore, this consideration should be taken into account and studied. 

(3) The hardening/softening and the splitting effects under compression should be included. 

Thirdly, Zucchini and Lourenço abandoned the hardening phase and splitting effects in the plastic model 
when they introduced the final model. To simplify the formulations and avoid apex problems, they introduced 
the Mohr-coulomb yield surface in the 𝜎-𝜏 plane3 with an exponential degraded law of cohesion instead of the 
Drucker-Prager yield surface in the 3-dimension plane with a bi-parabolic hardening law of the material 
compressive strength. However, the hardening phase and compressive splitting effects may be worth to be 
considered, so we should consider the relevant questions. 

1.3. Research question 

The gaps mentioned above lead to the research question: 

Is it possible to define a homogenized constitutive model for masonry structures under in-plane loading that 
will consider shearing, tensile cracking, crushing and splitting failures based on a micro-mechanical approach 
with as little computational effort as possible? 

To be more specific, this research question can be described in three sub-questions: 

(1) How to simplify the deformed mechanisms of Zucchini and Lourenço’s model when coupled behaviours 
in all directions are considered. 

(2) How to consider the phenomena that the horizontal shear crack potentially generated in bed joint may 
appear before the dissipation of compressive energy. 

(3) How to implement the new plastic model, in which the hardening phase and compressive splitting effects 
are considered with less computational costs. 

In conclusion, this thesis will propose an alternative constitutive model based on Zucchini and Lourenço’s 
research in [30, 20, 32, 21] with several new assumptions on deformed mechanisms, components’ failure 
modes and elastoplastic behaviours, which includes the five failure mechanisms introduced in section 1.1 
(see figure 1-1). This alternative constitutive model should maintain as high accuracy as Zucchini and 
Lourenço’s micro-material model with fewer computational efforts. 

1.4. Basic assumptions 

In this thesis, masonry's normal and shear behaviours will be only considered in a 2D plane to simplify the 
problems. Then, we can study masonry’s behaviours from four aspects to answer the research questions: 

(1) The representative homogenized cell is set by considering the symmetry in the geometrical pattern of 
masonry and is used to study all behaviours. 

The representative plane element is quite significant to derive the homogenized constitutive laws for the 
micro-mechanical model since the compatibility and equilibrium equations are formulated based on the 

 
2 The y-direction is specific to the direction perpendicular to the bed joint in xy-plane. 
3 𝜎 is referred as the normal stress tensor, while 𝜏 is referred as the shear stress tensor. 
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deformed mechanism of the representative cell. In this thesis, the deformations of the bed joint are assumed 
to be the same everywhere, and the head joint’s shear stress is neglected. Therefore, a quarter basic cell is 
used to study masonry’s pure normal or shear behaviour and the coupled behaviours rather than the extended 
cell applied by Zucchini and Lourenço in 2009, see figure 1-2.  

In this way, several compatibility equations are not necessary to be derived at interfaces between bricks and 
mortars anymore as there are fewer interfaces in the quarter basic cell than the extended one. 

(a)  

(b)  

Figure 1-2 The representative cell in the XY plane: (a) extended basic cell defined in [21]; (b) quarter basic cell 

Based on this assumption, we could first study the masonry’s shear behaviour, normal behaviour in the x-
direction and y-direction separately and then suitably incorporate them into one model by distinguishing 
different boundary conditions on the quarter cell. As a result, the deformed mechanisms of the final model 
could be simplified. 

(2) Deformations of the cross joint are assumed to be different when different behaviours of masonry are 
studied. 

The shear deformation of the cross joint is assumed to be the same as that of the bed joint when the masonry’s 
shear behaviour is studied. Furthermore, the cross joint's horizontal deformation is assumed to be the tension 
when the masonry’s normal tension behaviour in the x-direction is studied, while the compressive one when 
the normal (tension and compression) behaviour in the y-direction is studied. Meanwhile, the cross joint’s 
vertical deformation is assumed to be the same as the bed joint’s vertical deformation when the normal 
tension behaviour in the x-direction is studied, while not equal to the bed joint’s vertical deformation when the 
normal (tension and compression) behaviour in the y-direction is studied. 

(3) The bed joint is assumed to be damaged in shear before its compressive energy is dissipated and will 
move together with the brick units as a whole after the shear damage occurred.  

According to this assumption, the normal and shear stresses of the bed joint should be equal to zero after a 
horizontal shear crack occurs. If there is an external shear loading, the force will then transform to the shear 
sliding stress at the interface of this shear crack, producing additional shear deformation. This shear 
deformation should be restrained by the head joint (vertical joint). As a result, the sliding stress should switch 
from the static friction stress to the dynamic one once the cohesion of the head joint is consumed. Therefore, 
the homogenized cell should fail in shear as the Mohr-coulomb yield criterion is met.  

(4) The Drucker-Prager yield criteria with bi-parabolic hardening diagram are still implemented in the plastic 
model when the final model is proposed. However, the explicit Euler-forward algorithm is applied to save 
the computational costs. 

The explicit Euler-forward approach has a cheaper computational cost than the implicit Euler-backward one 
as a particular equation could compute the plastic multiplier straightforward based on Prager’s consistency 
equation in the explicit one. However, the robustness and accuracy of the explicit approach would be reduced 
if the load step is large, as Prager’s consistency equation is derived based on small deformation hypothesis. 
Therefore, we could use this cheaper method to implement Drucker-Prager yield criteria and a hardening 
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diagram and set small load steps. In this way, the compressive splitting effects could still be included with 
fewer efforts in the final model, which has complex deformations of components. 

1.5. Goals & objectives 

Particularly, the thesis has the following objectives: 

(1) To define the failure modes necessary to be included. 
(2) To derive the constitutive equations of the homogenized cell. 
(3) To validate the model in MATLAB and Diana FEA. 

The components’ deformations and failure modes correlated to the homogenized cell’ failure modes should 
be defined first. 

The components’ failure modes could be summarized as: 

(i) Tensile failure modes: the given component fails once a vertical (or horizontal) tensile crack appears. In 
other words, the stresses of the given component will drop to zero once their tension stress exceeds the 
material strength. 

(ii) Shear failure modes: according to the assumptions described in section 1.4, the shear failure mode will 
only occur in the bed joint. The bed joint will fail once the shear stress exceeds the material strength 
(computed based on the friction criterion), and the horizontal shear crack is then generated.  

(iii) Equivalent splitting failure modes: the given component will fail once its total tension stress reaches the 
material tensile strength. This total tension stress should incorporate the splitting tension stress produced 
by the component’s compressive stress. 

(iv) Crushing failure modes: the given component fails when its compressive energy is consumed. This failure 
mode is different from but associated with “equivalent splitting failure mode”. The components’ stiffness 
is changed when loaded by axial compressive loading as the micro-cracks are generated, producing 
lateral splitting tensile stress. If the given component’s splitting tensile stress reached the material strength, 
then the splitting failure will occur. If the given component’s compressive energy is consumed before 
tensile stress reached the material strength, then the crushing failure will occur. Moreover, only a single 
vertical crack is generated in the given component if the component fails in splitting tension, while there 
will be lots of micro-cracks in the component if the component fails in crushing. 

The macro constitutive laws should be derived based on the damage and plastic models by homogenization 
procedures and a multi-scale approach. The damage model should be proposed according to the chosen 
deformed mechanisms and components’ failure modes, and the plastic model should incorporate the Drucker-
Prager yield surface and a bi-parabolic hardening diagram. 

Finally, the new constitutive models should be implemented in MATLAB to validate if the assumed failure 
modes of components and the homogenized cell are introduced successfully by the analytical solutions. 
Furthermore, these models should also be implemented in Diana FEA by user-supplied subroutines to assess 
if they could be numerically introduced. 

1.6. Methodology 

The following steps can be arranged in this thesis to achieve the goals and objectives mentioned in section 
1.5: 

(1) The representative 2D plane is extracted as the homogenized unit cell based on the symmetrical 
properties of 1/2 running bond masonry structures;  
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(2) The deformed cells of the unit cell under shear, horizontal tensile, vertical compressive loading are drawn 
based on the assumptions on the unit cells’ deformed mechanisms in models 1 to 3, respectively;  

(3) In models 1 to 3, the external strains and stresses are suitably selected and set to be homogenized (macro) 
strains and stresses. Meanwhile, the internal stresses are chosen, which compute the brick units and 
mortar joints' damage state variables by exponential laws according to the components’ assumed failure 
mechanisms. 

(4) In models 1 to 3, the relations of the homogenized strains and the internal stresses of the three deformed 
cells are derived based on several equations. These equations are: the micro-constitutive laws (the 
constitutive laws of bricks and mortars), the kinematic relations of the unit cells and the equilibrium 
equations of the systems; 

(5) The damage models for three deformed cells in models 1 to 3 are derived by implementing the damage 
state variables into the compatibility equations of the systems derived in step (4). The components’ 
undamaged internal stresses are then obtained; 

(6) For the deformed cell under vertical compressive loading in model 3, three plastic models for the brick 
unit, head joint and bed joint are proposed by adopting the Drucker-Prager yield criterion and bi-parabolic 
hardening laws. In these plastic models, the components’ plastic strain tensors are computed by the 
plastic multipliers and the directions of the potential energy at the critical stress points by applying an 
explicit return-mapping algorithm, the Euler-forwards method;  

(7) The homogenized stresses of models 1 to 3 are computed by the damaged internal stresses based on 
the assumed boundary conditions of the unit cells. The damaged internal stresses are obtained based on 
the components’ damage state variables and their undamaged internal stresses. The undamaged internal 
stresses are computed by combining the damage and plastic models for model 3; 

(8) The homogenized stresses for coupled behaviours are proposed by coupling three deformed cells in 
models 1 to 3 in model 4; 

(9) The constitutive models 1 to 4 are Implemented in MATLAB to find the analytical solutions. The deformed 
cells’ macro stress-strain curves, the components’ damaged factors and other relative curves in models 
1 to 4 are recorded. Models 1 to 2 are Implemented in DIANA FEA user-supplied subroutines by Fortran 
77 to assess if the models can be introduced numerically; 

(10) The experimental data for the masonry under compressive loading is adopted in model 4. The 
comparison between the experimental and analytical results is used to assess the model’s vertical 
compressive behaviour. 

1.7. Structures of thesis 

The structures of the thesis can be found in table 1-1 according to the methodology introduced in section 1.6. 

 Titles Overviews of the concepts 

Chapter 1 Introduction 

The research background is introduced first, and then the 
research gaps are pointed out for further study. After that, the 
goals of the thesis are stated. Finally, the methodology used to 
achieve the goal is introduced  

Chapter 2 Literature review The previous research is introduced and studied. 

Chapter 3 
Theory and 
assumptions 

The theory and assumptions used to introduce the damage model 
and plastic model are stated in this chapter, such as selecting the 
internal stresses, introducing a hardening diagram for the plastic 
model. 

Chapter 4 
Model 1: shear 
behaviour 

The material model is derived when only the shear behaviour is 
taken into account. The works can be summarized as deriving the 
kinematic relations, micro constitutive relations and equilibrium 
equations of the system and implementing damage variables into 
the components 

Chapter 5 
Model 2: horizontal 
tension behaviour 

The material model is derived when only the horizontal tension 
behaviour is taken into account. The same works are done. 

Chapter 6 
Model 3: vertical 
compression behaviour 

The material model is derived when only the vertical compressive 
behaviour is taken into account. Apart from the same works done 
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in chapters 4 and 5, the components’ plastic models with the 
Drucker-Prager yield criterion are derived by applying the explicit 
Euler-forward algorithm. 

Chapter 7 
Model 4: coupled 
behaviour 

The models derived in chapters 4 to 6 are coupled as one model 
in this chapter by incorporating the transverse strains into the 
axial ones and introducing the Mohr-Coulomb friction criterion for 
shear behaviour. 

Chapter 8 
Implementations and 
comparisons 

The models derived in chapters 4 to 7 are implemented in 
MATLAB to judge if the assumed failure mode and algorithm are 
introduced successfully. The models proposed in chapters 4 and 
5 are introduced in Diana FEA by a user-supplied subroutine to 
assess if the material models can be implemented in a nonlinear 
finite element program. At the end of this chapter, a comparison of 
the analytical results solved by MATLAB code and experimental 
results obtained from the tests is stated to provide the material 
model that can be used to simulate the behaviour of masonry with 
reasonable accuracy. 

Chapter 9 
Conclusions and 
recommendations  

The differences between the works done in this thesis and the 
previous research are stated. The limitations of the material model 
proposed in this thesis are explained. The future works that may 
be worthy of being studied are stated. 
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2. Literature review 
According to the reviews of analytical methods of masonry structures from Dimitris Theodossopoulos and 
Braj Sinha in 2013 [33], a better understanding of failure patterns to estimate the strengths of a masonry 
structure is significant to establish the constitutive model of the composite structure numerically. Therefore, 
failure mechanisms of masonry structures are firstly introduced in this chapter. 

Based on the given failure patterns, several techniques on numerically introducing the element cell, such as 
simplified micro-modelling approach as Paulo B. Lourenço and Jan G. Rots shown in 2004 [10] together with 
homogenization techniques introduced by Paulo B. Lourenço in 1996 [8], should be suitably selected to show 
those mechanisms. Therefore, numerical approaches on presenting failure modes are then introduced briefly 
in this chapter.  

After that, Zucchini’s damage model proposed in 2004 [20] is briefly introduced, and the formulations of 
introducing elastoplastic behaviours of the bricks and mortars, proposed by Prof. Borst and Prof. Sluys in [34], 
is described in this section. 

2.1. Failure mechanisms of masonry 

An accurate material model should include all basic types of failure mechanisms that characterize masonry, 
which are the following: (a) tensile cracking of the joints, (b) sliding along the bed joints, (c) cracking of the 
units in tension, (d) diagonal tensile cracking in the brick units and (e) masonry crushing, shown in figure 2-1 
[8]. 

Failure patterns (a) and (b) were firstly identified by Page in 1978 [6], P.B. Lourenço and J. Rots in 1994 [7], 
indicating shear and tensile failure of horizontal joints. In 1996, P.B. Lourenço presented a novel compressive 
cap as (d) or (e) shown by limiting combinations of shear and compressive stresses [8]. 

(a)  (b)  (c)  

(d)  (e)  

Figure 2-1 Masonry failure mechanisms: (a) joint tensile cracking; (b) joint sliding; (c) unit direct tensile cracking; (d) unit 

diagonal tensile cracking; (e) masonry crushing. [8] 

It can be seen from phenomena presented in figure 2-1 that (a) (b) are joint failure mechanisms, (c) is the unit 
one, (d) and (e) are failure patterns that include both brick units and mortar joints’ failure. The question 
remains of how to consider all of these phenomena in a homogenized model [8].  
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Shear failure pattern (b) occurs when masonry structures are loaded by pure shear loading, while this failure 
pattern would change to failure pattern (d) when structures are loaded both in precompression and shear. 
When masonry structures are under horizontal loading, they fail as the unit tensile cracking pattern (c). 
Masonry structures fail once horizontal tensile cracks occur in the horizontal joint if they are loaded by pure 
vertically tensile stress, see figure 2-1 (a), while they fail as masonry crushing pattern as (e) shown if they are 
loaded by compressive loading.  

2.1.1. Pure shear behaviour 

According to figure 2-2 (b), shear damage occurs at the interface of the brick unit and mortar joint when 
masonry is loaded by pure shear loading. That means masonry would be damaged once the shear stress 
between the brick unit and the horizontal joint, commonly referred to as the bed joint, reached its material 
tensile strength.  

The shear behaviour of masonry is relative to model II fracture energy 𝐺𝑓
𝐼𝐼, see figure 2-2. 

 

Figure 2-2 the masonry under shear and definition of II fracture energy: shear stress 𝜏 versus shear strain 𝛿 [8] 

Note that from figure 2-1 (d) and 2-2, the representative element for stacked bond masonry loaded by vertical 
compressive and laterally shear loading could fail once the diagonal cracking occurs. The cracks in the brick 
units are driven by shear sliding stress at the horizontal interface of the brick and the mortar. Therefore, the 
vertical loading condition should be concluded when the shear behaviour of the unit cell is studied.  

When the masonry is loaded simultaneously by shear and vertical precompression, the relation of the shear 
strength of masonry and the vertical precompression could be described as equation (2.1). 

𝜏𝑚𝑎𝑥 = 𝑐 + 𝜎 ∙ tan(𝜙) (2.1) 

Where 𝜏𝑚𝑎𝑥 is the shear strength of masonry, and cohesion 𝑐 is typically the cohesion of the mortar joints. 𝜎 

is the precompression loading in the vertical direction, and 𝜙 is the friction angle of the mortar joints. 

2.1.2. Combined mechanisms 

According to A. Zucchini’s deformed cell assumption [30], different components have unequal deformations, 
leading to different internal stresses and strains of the brick units and mortar joints due to their different 
stiffness (see figure 2-3. The shear deformation occurs at the interface of the brick unit and the bed joint, see 
figure 2-3 (b). As a result, the masonry is damaged once vertical cracks occur in brick units, see figure 2-1 
(c). 
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(a)  (b)  

(c)  
 

Figure 2-3 Normal stress loading parallel to 𝑥-axis: (a) equivalent homogenized cell; (b) assumed deformation behaviour; 

(c) assumed involved stress components. [30] 

2.1.3. Masonry cell under vertical compression 

Temporarily, the compressive failure in masonry is mainly governed by the interaction between brick and 
mortar. The different stiffness of the brick and mortar leads the mortar joints being more deformable than the 
brick units under uniaxial compression load with the assumptions of compatible strains between each 
component (see figure 2-4 [35]. 

 
Figure 2-4 uniaxial behaviour of masonry: schematic 

plane representation of stresses in masonry 

component [35] 

a)  

 

b)  

 

 
Figure 2-5 Deformation of basic cell from numerical 

results [35] 

c)  

 

d)  

 

Figure 2-6 stress diagram at increasing load level for different 

components of cell: a) basic unit cell and definition of S1, S2 and 

S3; b) horizontal stress distribution at S1; c) vertical stress 

distribution S2; d) vertical stress distribution in S3 [35] 

𝜎𝑦𝑦
0  

𝜎𝑦𝑦
0  
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Numerical results from Lourenço’s research in 2006 [35] displayed stress distribution in each section of the 
representative plane, shown in figure 2-6 (a), under vertical compressive loading, see figures 2-5 and 2-6 
shown. 

As shown in diagrams in figures 2-4 to 2-6, horizontal tension stresses of the head joints and bricks are 
distributed uniformly in the vertical direction, and horizontal compression stress linearly increases at the 
overlap of the bed and head joint. 

This result corresponds to the uniaxial behaviour of masonry introduced in figure 1.3-1 and indicates shear 
stresses at the interface of brick and vertical mortar. The vertical stresses are distributed almost uniformly in 
the brick and the bed joints but linearly in the head joint, indicating shear stress at the brick and head joint 
interface. 

According to figure 2-1 (d), the basic cell of the masonry would be damaged once the brick units are crushed 
caused by the uniformly distributed stress in the vertical direction of the brick units. 

2.2. Numerical methods to simulate masonry structures 

Masonry is a composite material, which consists of brick units and mortar joints. Modelling for this type of 
structure varies by different assumptions of components and brick-mortar interface.  

As figure 2-7 shown, modelling strategies can be recognized by the following three when modelling with FEM 
three main modelling strategies [8]: 

(1) Detailed micro-modelling: Units and mortar in the joints are represented by continuum elements, whereas 
discontinuous elements represent the unit-mortar interface. 

(2) Simplified micro-modelling: brick units are represented by expanded continuum elements, whereas the 
mortar joints' behaviour and unit-mortar interface are lumped in discontinuous elements. 

(3) Macro-modelling: Units, mortar and unit-mortar interfaces are smeared out in a homogeneous continuum. 

a)  
b)  

c)  
d)  

Figure 2-7 modelling strategies of masonry structures: a) masonry sample; b) detailed micro-modelling; c) simplified 

micro-modelling; d) Macro-modelling [8] 

2.2.1. Simplified micro-modelling 

The micro-modelling approach concentrated all damages in weak joints and, if necessary, in potential  
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horizontal cracks in brick units vertically placed in the middle of each unit, as figure 2-8 shows [10]. The brick-
mortar interfaces are included in the detailed micro-models, while these interfaces are neglected when the 
micro-models are simplified. 

 
 

Figure 2-8 suggested modelling strategy: unit (u) and mortar joint (m) and potential cracks in units [10] 

Brick units are typically modelled with continuum elements. Mortar joints and potential tensile cracks vertically 
placed in the middle of the brick unit are modelled by zero-thickness interface elements [10]. 

A zero-thickness interface element could allow discontinuities in the displacement field of the mortar joints, 
and relations could describe the potential tensile cracks and the behaviour of the interface elements in terms 
of traction 𝒕 along joint thickness direction and 𝒖 cross interface. 

2.2.2. Macro-modelling 

From section 2.2.1, it is noted that the behaviours of masonry structure could be numerically reproduced by 
applying the material properties and the actual geometry of the brick and the mortar. However, this approach 
became impractical in the case of many masonry structures consisting of many units. Therefore, masonry is 
usually homogeneous, although it is a composite material [8]. 

 

Figure 2-9 two-step homogenization procedure for masonry structure: (a) objective of homogenization; (b) 

homogenization 𝑥𝑦; (c) homogenization 𝑦𝑥. [8] 



14 2. Literature review 2.3. Homogenization approaches  

 
There are two approaches for macro-modelling: modelling based on the composite theory; modelling based 
on the compatibility and equilibrium equations of the unit cell. By applying homogenization techniques, 
composite behaviour is described in macro or average stresses and strains, derived from micro-constitutive 
law and geometrical properties. 

Firstly, building up the basic cell by using an approximate approach based on two-step homogenization 
procedures under the assumptions of layered material, see figure 2-9. 

Secondly, implement micro-constitutive laws, such as yield surface, constitutive law, and homogenized ones, 
by applying macro-parameters proposed in step 2. 

2.3. Homogenization approaches 

In the following sections, 2D plane stress elements with homogenization techniques are selected for 
numerical analysis. The failure mechanisms of shear, horizontally tensile and vertically compressive 
behaviour of masonry should be considered. 

2.3.1. Existing models 

Masonry is assumed to be a continuum deformable-body in continuum models. The existing procedures to 
derive homogenized constitutive laws of this type of model commonly could be proposed based on composite 
theory, see Lourenço’s research in [8], or compatibility and equilibrium equations of the deformed cell, see A. 
Zucchini et al. [30]. 

Macro-model based on the composite theory 

Lourenço proposed a homogenized approach in 1996 based on the theory of layered materials. [8] He 
introduced a novel formulation based on the approach proposed by Salamon in 1968 [36], which originated 
in the field of rock mechanics to handle inelastic material behaviour [8]. 

 

Figure 2-10 Representative volume regime of the periodic system of parallel layers [8] 

Figure 2-10 displayed a layered material built from a periodic system of parallel layers, and each layer is 
assumed to be an isotropic elastic material. The system of layers is assumed to still be continuous after 
deformation, and it is assumed that there is no relative displacement at the interface between each layer.  

This representative volume prism is then assumed to be subjected to homogeneously distributed stresses 
and strains. That means the volume of the composite material should be small enough to make the 
representative volume regime negligible when considering variants of stresses and strains across the 
regime’s thickness direction [8]. 
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The objective was to obtain macro constitutive relation between homogenized stresses 𝝈 and strains 𝜺, see 
equation (2.2) 

𝝈 = 𝑫ℎ𝜺 (2.2) 

𝝈 = {  𝜎𝑥  𝜎𝑦  𝜎𝑧  𝜏𝑥𝑦  𝜏𝑦𝑧  𝜏𝑥𝑧  }
𝑇

(2.3) 

𝜺 = {  𝜀𝑥   𝜀𝑦  𝜀𝑧  𝛾𝑥𝑦  𝛾𝑦𝑧  𝛾𝑥𝑧  }
𝑇

(2.4) 

Where 𝑫ℎ is homogenized stiffness matrix which was obtained from micro-constitutive relations, given by 
Lourenço in 1996 [8] as: 

𝑫ℎ = [∑𝑝𝑖
𝑖

(𝑷𝑡 −𝑫𝑖𝑷𝑒)
−1]

−1

∑𝑝𝑖
𝑖

(𝑷𝑡 −𝑫𝑖𝑷𝑒)
−1𝑫𝑖 (2.5) 

Where 𝑷𝑡 and 𝑷𝑒 are the projection matrices into stress and strain space, respectively, 𝑫𝑖 is stiffness matrix 

of 𝑖𝑡ℎ layer. Normalized thickness 𝑝𝑖 could be defined by the thickness (ℎ𝑖) of the (𝑖𝑡ℎ) layer, and the length 
𝐿 of representative volume in 𝑧 direction shown in figure 2-9. Once the averaged stresses and strains were 

known, stresses and strains in 𝑖𝑡ℎ could be calculated as: 

𝝈𝒊 = 𝑻𝑡𝑖 𝝈    𝑤𝑖𝑡ℎ 𝑻𝑡𝑖 = 𝑰 + 𝑷𝑡(𝑷𝑡 −𝑫𝑖𝑷𝑒)
−1 (𝑫𝑖(𝑫

ℎ)
−1
− 𝑰) (2.7) 

𝝈𝒊 = 𝑻𝑒𝑖  𝝈    𝑤𝑖𝑡ℎ 𝑻𝑒𝑖 = 𝑰 + 𝑷𝑒(𝑷𝑡 −𝑫𝑖𝑷𝑒)
−1(𝑫𝑖 −𝑫

ℎ) (2.8) 

This result could be extended to the inelastic formulation by a certain algorithm, see Lourenço’s research in 
1996 [8]. 

Micro-mechanical model 

According to A. Zucchini’s deformed cell assumption, see chapter 2 section 2.1.2, different components have 
unequal deformations, leading to different internal stresses and strains of the brick and mortar joints due to 
their different stiffness.  

As a result, the individual (internal) stresses and strains of the units and the joints were derived from the 
average (external) stress and strain of the composite cell [20]. 

In reverse, we can use relationships between internal strains and stresses of the inner components to derive 
a stress-strain curve of the whole homogenized cell with certain equilibrium equations of the system. 

Relations of the internal and external stresses could be built up based on boundary conditions from the 
assumptions of loading conditions, and the other relative equations for solving strains and stresses of the 
bricks and the mortars could be derived from the kinematic relations, the constitutive law of each component 
as well as the equilibrium equations at the interface between components. 

2.3.2. Gaps in existing models 

The homogenized material model proposed by P. B. Lourenço 1996 based on composite theory [8] could 
have the strength cap in shear, horizontal and vertical direction, but the accuracy of this model will be reduced 
when the stiffness ratio between the mortars and the joints is large. The micro-mechanical model proposed 
by A. Zucchini and P. B. Lourenço could solve this problem [20, 21, 30, 32], but the coupled behaviour of the 



16 2. Literature review 2.4. Micro-mechanical material models  

 
material model are incorporated into the models with a complex algorithm. Furthermore, the shear sliding 
cracking of the bed joint was not considered in their material model. 

Therefore, a homogenized material including all failure modes (see figure 2-1) with higher accuracy but fewer 
computational efforts is worthy of being introduced and studied in the thesis. 

2.4. Micro-mechanical material models 

The micro-mechanical material models can be proposed by coupling the damage and plastic models. The 
damage models, considering failure mechanisms of brick units and mortar joints separately, proposed in [20] 
[2] are referred to in this study. To introduce elastoplastic behaviours of the components, the theories 
introduced by R.de Borst and Sluys are used here [34]. 

2.4.1. Damage model 

In 2004, Zucchini et al. proposed a novel damage model by applying his detailed micro-mechanical model 
introduced in section 2.1.2 and 2.3.1 under the basic cell's pure external horizontal loading condition. 

24 equations were formulated to find 24 unknown variables, including 23 internal stresses and strains of 
components and 1 external stress of homogenized cell, which were firstly derived from deformed mechanics. 
Those equations consist of the micro-constitutive relations of the components, the kinematic relations of the 
components together with the homogenized cell based on deformed cell assumptions, the equilibrium 
equations of the system at boundaries and interfaces between components. 

And then, 4 damage variables were set as representative coefficients to show the damage status of the 
components, including brick, head joint, bed joint and cross joint shown in figure 2-3. Those variables could 
be computed according to the exponential laws of each constituent’s internal stresses and the damage 
coefficients. And then, the damage factors were implemented into the 24 equations by a particular algorithm 
introduced by Zucchini et al. [20]. 

The final 24 equations were called equilibrium “damage” equations. 24 unknown variables, including the 
external stress of the homogenized cell, could be solved by knowing the external strain caused by the external 
load and the geometry of the basic cell. As a result, macro constitutive relation between external strain and 
stress can be obtained. 

2.4.2. Elastoplastic theory 

Materials, especially brittle ones, are generally damaged inelastic under compressive loading as fissures 
grow at the micro-level due to the dissipative process. Therefore, in-elastic strains resulting from this process 
should be considered for masonry under compression load. One of the most developed theories using for 
describing material nonlinearity is the mathematical theories of plasticity. In a sense, its development goes 
back to Coulomb, who postulated the dependency of sliding resistance on a plane between two bodies to be 
a function of cohesion and the frictional properties [34]. Similarly, as a non-smooth Tresca yield surface has 
been approximated to Von Mises’ yield contour, Drucker and Prager introduced their yield function, called 
Drucker-Prager criteria, as an approximation Mohr-Coulomb yield contour by a circular cone. 

Drucker Prager yield criteria 

Figure 2-11 shows Mohr-Coulomb yield surface, with dashed lines of angle shape, and Drucker-Prager yield 
surface in 𝜋 -plane, replacing Mohr-Coulomb yield surface to a circle. Drucker-Prager’s yield contour 
maintains the linear dependency on hydrostatic stress level as the circle passes through the corner, usually 
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the three outermost ones considered safety design, of the dashed line. The Drucker-Prager yield function in 
the 3D principal coordinate system could be defined as [34]: 

𝑓(𝜎) = √
1

2
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2 +
1

3
𝛼(𝜎1 + 𝜎2 + 𝜎3) − 𝑘 (2.9) 

Where 𝜎𝑖, 𝑖 = 1, 2, 3 are principal stresses, 𝛼 and 𝑘 are material constants related to physical parameters. The 
material cohesion 𝑐 and friction angle 𝜙 are defined as: 

𝛼 =
6 sin𝜙

3 − sin𝜙
,   𝑘 =

6 𝑐 sin𝜙

3 − sin𝜙
(2.10𝑎) 

When the yield function meets the condition of 𝑓(𝜎) < 0 in all stress states, elastic deformations occur. 
Otherwise, plastic deformations occur. In this research, 2D models with plane stress elements will be 
considered. Therefore, eq. (2.9) and  (2.10𝑎) should be rewritten, which will be presented in detail in chapter 
6 as a similar shape of Drucker-Prager yield contour in 2D principal space shown in figure 2-12. 

 
Figure 2-11 Representation of the Mohr-Coulomb and 

Drucker-Prager yield contour in 𝜋-plane [34] 

 
Figure 2-12 Representation of the Mohr-Coulomb and 

Drucker-Prager yield contour for plane stress condition 

[34] 

 
Figure 2-13 Mohr’s stress circle for uniaxial compression and envelopes that bound all possible stress states for the Mohr-

Coulomb yield criteria [34] 

This model was also pretty suitable for describing sand's strength characteristics, drained clays, rocks and 
concrete. [34] From equations (2.9) and (2.10𝑎), we could obtain that the yield function of the Drucker-Prager 

𝜎1 

𝜎2 

𝜎3 

Mohr-Coulomb 

Drucker-Prager 𝜎1 

𝜎2 
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Drucker-Prager 

𝜎 

𝜏 

𝜎3 
𝜎1 = −

2𝑐 cos𝜙
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model could be described by material parameters including friction angle 𝜙 and cohesion 𝑐. That means, we 
are able to derive a relationship between the cohesion 𝑐 and the principal stresses 𝜎1, 𝜎2, 𝜎3 once the value 
of friction angle is known. As can be seen from figure 2-13, let us assume 𝜎1 = 0 for 2D condition and 𝜎3 = 0 

to make 𝜎2 = −𝑓𝑐, where 𝑓𝑐 is compressive strength. Then we can use compressive strength (characteristic 
of material) to describe cohesion 𝑐 as: 

𝑐 =
1 − sin𝜙

2 cos𝜙
𝑓𝑐 (2.10𝑏) 

Value of compressive strength 𝑓𝑐 could be correlated to the hardening/softening parameter if we consider the 

hardening/softening behaviour of the materials, cohesion 𝑐  could be relative to the hardening/softening 
parameter. As a result, the yield surface described in figure 2-12 eq. (2.9) would shrink or expand as the 
softening or hardening process occurs. 

Flow rule 

Yield function is introduced as the contour that defines a spherical surface in 3-dimensional stress space, 
distinguishing permissible from non-permissible stress states. If the stresses are inside the surface (𝑓(𝜎) < 0) 
defined by yield function, then the deformations are pure elastic, while the plastic deformations can occur if 
and only if the stress points are on the surface [34]. Stress points stated outside the yield surface are not 
permitted here. 

To obtain plastic deformation, the stress point must be on the yield contour and remain there for a “short 
period”. If the stress point touched the yield surface and it immediately pointed inward or outward the contour, 
plastic deformation may not happen [34]. In other words, plastic deformations occur when the following two 
conditions are met: 

𝑓(𝜎) = 0 (2.11) 

 𝑓(𝜎)̇ = 0 (2.12) 

Equation (2.12) is usually called Prager’s consistency equation and ensures that the yield condition must be 
fulfilled for at least a small-time increment so that plastic flow can occur [34]. 

 
Figure 2-14 congeniality of the gradient vector 𝒏 to the 

yield surface [34] 

 
Figure 2-15 Orthogonality of the gradient vector 𝒎 to the 

non-associated potential function 𝑔 

While the stress point is inside the yield contour, the elastic deformation is dominating. Where the constitutive 
relation should be [34]: 

𝜎1 

𝜎2 

𝑓 = 0 

𝒏 =
𝜕𝑓

𝜕𝝈
 

𝜎1 
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𝜕𝑓
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𝝈 = 𝑫𝑒𝜺 (2.13) 

Where 𝑫𝒆 is the (continuum) elastic stiffness matrix, setting the relationship of stress tensor 𝝈 and strain 
tensor 𝜺. This relationship can only be established when the elastic deformation occurred. Therefore, we are 
able to rewrite Eq. (2.13)  and express the stress tensor 𝝈 by the elastic strain vector 𝜺𝒆 as: 

𝝈 = 𝑫𝑒𝜺𝑒 (2.14) 

When the plastic strains occur, the remaining part of the strains should be plastic and be obtained from 
abstracting the elastic contribution 𝜺𝒆 from the total strain 𝜺: [34] 

𝜺𝑝 = 𝜺 − 𝜺𝑒 (2.15) 

Combining equations (2.6) and (2.7), the expression of stress tensor could be obtained as: 

𝝈 = 𝑫𝑒(𝜺 − 𝜺𝑝) (2.16) 

Since the yield function is assumed to be a sole function of stress tensor as 𝑓 = 𝑓(𝝈), the consistency 
condition could be elaborated as: 

𝜕𝑓

𝜕𝑡
=
𝜕𝑓

𝜕𝝈
∙
𝜕𝝈

𝜕𝑡
= 𝒏𝑇�̇� = 0 (2.17) 

Where 𝒏 is the gradient vector of yield function shown in figure 2-14 and �̇� is a short time stress increment. 
Substituting eq. (2.16) for (2.17) results in: 

𝒏𝑇𝑫𝑒(�̇� − 𝜺�̇�) = 0 (2.18) 

Plastic strain increment for (small) time step is able to be relative to the plastic multiplier �̇� and a vector 𝒎 as: 

𝜺�̇� = �̇� 𝒎 (2.19) 

With �̇� determining the magnitude of plastic flow and vector 𝒎 describing the direction of flow [34]. 

Combining equations (2.18) and (2.19), the value of the plastic multiplier �̇� could be calculated as: 

�̇� =
𝒏𝑇𝑫𝑒�̇�

𝒏𝑇𝑫𝑒𝒎
(2.20) 

Finally, the function of the stress vector rate �̇� can be proposed as: 

�̇� = 𝑫𝑒 (�̇� −
𝒏𝑇𝑫𝑒�̇�

𝒏𝑇𝑫𝑒𝒎
𝒎) (2.21) 

Typically, vector 𝒎 was the gradient of the plastic potential function 𝑔 obtained from experimental data to 
indicate plastic volume change. For masonry material, which is sensitive to dilatant behaviour, the non-
associated flow rule generally has a different direction compared with the direction of the yield surface, gives 
a better predictor of volume change by a proper value of dilatancy angle 𝜓 rather than friction angle 𝜙. Its 
function could be described as: 

𝑔 = √
1

2
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2 +
1

3
𝛼𝜓(𝜎1 + 𝜎2 + 𝜎3) − 𝑘𝜓 (2.22) 
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With 𝛼𝜓 and 𝑘𝜓 are material constants for Drucker-Prager like potential function. 

𝛼𝜓 =
6 sin𝜓

3 − sin𝜓
,   𝑘𝜓 =

6 𝑐 sin𝜓

3 − sin𝜓
(2.23) 

Let us suppose that the external loading would increase linearly by time increment, then the stress vector 
rate �̇� should be stress increment at each load step. Therefore, function (2.21) can be used to find out stress 
tensor considering plastic deformation without hardening or softening behaviour. 

Hardening and softening behaviour 

So far, it was assumed in the ideal plastic model introduced above that it did not take the hardening or 
softening behaviour into account, which means the value of the yield function proposed above only depends 
on the stress tensor. This assumption, however, is less reliable when we consider the compressive loading 
since cohesion 𝑐 of brick and mortar will be computed as a constant along with the loading history in this way. 
Fissures at the micro-level generated in components influence the stress distribution of each component of 
masonry structure in reverse, especially when the structures are under compressive loading conditions. 

For brittle material, the block may not reach its ultimate limit state once the first cracking occurs. Instead, it 
can still undertake loading with consistently reduced tangent stiffness until it is damaged. For masonry 
material, differences in the stiffness of the bricks and the mortars lead to the energy at interfaces of different 
materials being dissipated, influencing components’ ultimate limit state strength, which depends on 
components’ strain condition.  

Therefore, the dissipative process needs to be considered as introducing the dependence of the plastic strain 
tensor into yield function as: 

𝑓 = 𝑓(𝜎, 𝜅) (2.24) 

Where hardening parameter 𝜅 is scalar-valued, and it depends on strain history through plastic tensor 𝜺𝒑, 

defined as equation  (2.25) with the strain-hardening hypothesis: [34] 

�̇� = √2/3(𝜺�̇�)
𝑇
𝑸𝜺�̇� (2.25) 

Shift matrix 𝑸 is a diagonal one, as 𝑸 = 𝑑𝑖𝑎𝑔[1, 1,1,
1

2
,
1

2
,
1

2
], which considers the effect of the shear tensor 

incorporated in the vector format 𝜺 of engineering shear strains notion. 

Now equation  (2.9) can be derived as: 

𝑓(𝜎, 𝜅) =
𝜕𝑓

𝜕𝝈
∙
𝜕𝝈

𝜕𝑡
+
𝜕𝑓

𝜕𝜅
∙
𝜕𝑘

𝜕𝑡
= 𝒏𝑇�̇� +

𝜕𝑓

𝜕𝜅
�̇� = 0 (2.26) 

The plastic multiplier �̇� should always be positive [34]. Therefore equation (2.12) is able to be rederived as: 

𝒏𝑇�̇� − ℎ�̇� = 0 (2.27) 

Where ℎ is so-called the hardening modulus with function show as: 

ℎ = −
1

�̇�

𝜕𝑓

𝜕𝜅
�̇� (2.28) 
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Combining equation (2.16) and flow rule  (2.19) with consistency condition for hardening/ softening plasticity 

(2.28), we are able to get: [34] 

�̇� = [(𝑫𝑒)
−1 +

1

ℎ
𝒎𝒏𝑇] �̇� (2.29) 

With the new explicit function of plastic multiplier �̇� shown as: 

�̇� =
𝒏𝑇𝑫𝑒�̇�

ℎ + 𝒏𝑇𝑫𝑒𝒎
(2.30) 

Therefore, the function of the stress vector rate �̇� should be redefined as: 

�̇� = 𝑫𝑒 (�̇� −
𝒏𝑇𝑫𝑒�̇�

ℎ + 𝒏𝑇𝑫𝑒𝒎
𝒎) (2.31) 

As a result, if we have the hardening parameter ℎ, then the hardening/ softening behaviour will be considered 

in elastoplastic behaviour. While if ℎ = 0, then we will return to ideal plasticity. 

Return mapping algorithm 

To obtain the strains and stresses in structure in generic loading stage, equation (2.29) must be integrated 
along the loading path. Here we use the one-point Euler forward integration rule, which is the most 
straightforward way. Such a scheme is fully explicit that the hardening modulus ℎ and stress increment ∆𝝈 
can be evaluated once strain increment ∆𝜺  is known. Therefore, the tangential stiffness matrix at the 
beginning of strain increment can be calculated directly [37]. 

If the initial stress point 𝝈𝟎 is on yield surface, stress increment at the beginning of strain increment can be 
evaluated from equation (2.32) as [37] 

∆𝝈 = 𝑫𝑒 (∆𝜺 −
𝒏0
𝑇𝑫𝑒∆𝜺

ℎ0 + 𝒏0
𝑇𝑫𝑒𝒎0

𝒎0) (2.32) 

Where subscript "0" means flow direction 𝒎, the direction of the yield surface 𝒏𝑇 and the hardening modulus 
ℎ are computed at the initial stress point. The new stress state 𝝈𝑛 at the end of the load step should be: 

𝝈𝑛 = 𝝈0 + ∆𝝈 (2.33) 

If the initial stress point is located inside the yield surface, strain increment should be firstly subdivided into 
the purely elastic part, which is needed to reach the yield contour shown as ∆𝜺𝐴 in figure 2-16, and the part 

involving elastoplastic straining is shown as ∆𝜺𝐵  in figure 2-16. Now the stress increment is able to be 
proposed as [37] 

∆𝝈 = 𝑫𝑒 ∆𝜺𝐴 +𝑫𝑒 (∆𝜺𝐵 −
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

𝒎𝑐) (2.34) 

With subscript "𝑐" means 𝒎, 𝒏𝑇 and ℎ should be calculated at the critical stress point shown in figure 2-16. 
By substituting this new function of stress increment ∆𝝈 for equation (2.33), the stress point at the end of 
each step stage can be computed as: 

𝝈𝑛 = 𝝈0 +𝑫𝑒 ∆𝜺𝐴 +𝑫𝑒 (∆𝜺𝐵 −
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

𝒎𝑐) (2.35) 
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This procedure could also be considered in another way as follows. [37] Firstly, the strain increment can be 
seen as purely “elastic” strains. Then stress increment is able to be computed as: 

∆𝝈𝑒 = 𝑫𝑒 ∆𝜺 (2.36) 

In this stage, the calculation is irrelevant whether the initial stress point is located inside or on the current 
yield surface. The strain increment is considered a trial increment based on the assumption of elastic straining 
during the whole loading increment. Possible plastic straining is not taken into account during this trial stage. 
[37] 

Then, the total stress is set up as a sum of the initial stress at the beginning of the loading increment 𝝈0 and 

the trial strain increment ∆𝝈𝑒 described as: 

𝝈𝑒 = 𝝈0 +𝑫𝑒 ∆𝜺 (2.37) 

Based on the yield criteria of Drucker-Prager yield surface introduced above, we are able to judge if such 
stress point is inside the yield surface by evaluating yield function 𝑓(𝝈𝑒 , 𝑘0) using equation (2.24) with 𝝈𝑒 and 
initial hardening parameter 𝑘0. If 𝑓(𝝈𝑒 , 𝑘0) > 0, then the plastic strain tensor, as a corrector, will have a value 
computed as: 

∆𝜺𝑝 =
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

𝒎𝑐 (2.38) 

 

Figure 2-16 Explicit integration scheme: total strain increment should be divided into the purely elastic part and plastic part 

integrated with one-point Euler forward rule [34] 

As a result, the stress state at the end of the loading stage should be: 

𝝈𝑛 = 𝝈𝑒 − ∆𝜆𝑐𝑫𝑒𝒎𝑐 (2.39) 

∆𝜆𝑐 =
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

(2.40) 
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The stress point 𝝈𝑒 is called as “elastic predictor”, while plastic stress point 𝝈𝑝 as “plastic corrector”.  

This “elastic predictor- plastic corrector” process is a return mapping algorithm. 

2.5. Diana FEA iterative process 

 
Figure 2-17 Algorithm of incremental-iterative solution 

The incremental-iterative solution introduced in Diana FEA documentation section 30.1 could be seen from 
figure 2-17 [38]. 

Firstly, initializing strain of per element increment at 𝑖 step Δ𝜀𝑖 being equal to zero. Displacement of model 

𝑈𝑖𝑛𝑡.𝑖 could be calculated based on the specific integration scheme, which is categorised by types of elements. 

Secondly, increasing external displacement by applying displacement control. The increment of the 
displacement 𝑔 could be calculated, and this increment could be used for finding the predicted change in 
force  𝛿𝐹𝑖 by introducing stiffness matrix 𝑲 at displacement point 𝑈𝑖𝑛𝑡.𝑖.  

Thirdly, the corresponding force  𝐹𝑒𝑥𝑡  is able to be fond according to the external displacement 𝑈𝑒𝑥𝑡  by 
introducing strain-stress curve from the constitutive law of the material model and the particular integration 
scheme. 

Finally, comparing the predicted force ΔF𝑖+1 = ΔF𝑖 + 𝛿𝐹𝑖  and the external force 𝐹𝑒𝑥𝑡 . If the convergency 
condition is not satisfied, then the incrementing loop would occur, and the process would go back to step 2. 
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3. Theory and assumptions 
The relative assumptions are derived based on the theory from chapter 2 in this part. There are two parts:  

(1) The homogenised cell's definition is based on the one built by Zucchini and Lourenço’s in 2002 [30].  
(2) 4 main deformed cells are studied for behaviours of masonry structures in shear, horizontal tensile and 

vertical compressive direction.  

These deformed cells are established according to the numerical results from A. Zucchini and P.B. Lourenço’s 
research in 2002 for interaction behaviours of micro-mechanical model [30] and the numerical results of 
internal stress distribution from P.B. Lourenço and J. Pina-Henriques in 2006 [35]. The stress and strain 
tensors, which are assumed to be relative to the micro-constitutive model of components in the basic cell 
under different loading cases, are suitably chosen in this part according to Zucchini’s formulation [20], while 
all the others are neglected by assuming their value to be zero. The derivations of the homogenized 
constitutive laws, including proposing relative kinematic relations, equilibrium equations of the system, plastic 
deformations, will be introduced in chapters 4 to 7 in detail. 

In this chapter, these deformed cells are firstly drawn based on the assumed failure mechanisms, and then 
the internal stresses following the deformed cells are selected for all models. Other assumptions on the 
elastoplastic phase in model 3 and the coupled behaviours under mixed loading in model 4, such as combined 
shear and vertical compressive loading, are also made based on previous researches introduced in chapter 
2.  

3.1. Definition of deformed cell 

Unreinforced masonry structures normally consist of brick units and mortar joints with different mechanical 
properties. In this research, masonry with the staggered alignment of brick units is considered. Three types 
of mortar connections are considered, being categorized by their locations relative to the brick units. These 
are the vertical head joints, located beside the brick units; the horizontal bed joints, located under or above 
the brick units; the cross joints, located at the corner of the brick units, where the head and bed joints 
overlap, which can be seen from figure 3-1(a). 

 

 

 

 

    

(c) Types of mortar joint (d) Basic cell 

 brick unit           bed joint           cross joint           head joint 

Figure 3-1 Assumption of per basic cell 
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The representative plane could be extracted from the periodic system of each layer consisting of the brick 
units and the vertical head joints based on masonry walls’ symmetrical geometry, see figure 3-1 (b). This 
plane is called “basic unit cell”, and its geometry should be relative to the geometrical properties of 
components. 

3.2. Model 1: shear behaviour 

In this model, the unit cell deforms under pure external shear loading, which means that only the external 
shear strain is considered to be the homogenized strain. Based on this assumption, the deformed cell of 
model 1 could be drawn as figure 3-2. 

 
Figure 3-2 Deformed Cell of Model 1 

 
Figure 3-3 Internal stresses Model 1 

 brick unit           bed joint           cross joint           head joint 

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint 
(green), “b” means bed joint (orange)  

Furthermore, the failure pattern of model 1 is assumed to be “shear sliding”, the one described in chapter 2 
section 2.1 figure 2-1 (b), which means only the in-plane shear stresses of the cell are considered. 
Components, including the brick unit and the head, the bed, and the cross joint, fail once their shear stresses 
reach their strengths without hardening. As can be seen in figure 3-2, the considered stresses are:  

1. External shear stress 𝜏0; 
2. Internal shear stresses: between the brick unit and bed joint 𝜏𝑥𝑦

𝑢 , 𝜏𝑥𝑦
𝑏 ; between the brick unit and cross 

joint 𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑐𝑢; between head joint and cross joint 𝜏𝑥𝑦
ℎ , 𝜏𝑥𝑦

𝑐ℎ 

𝜏0 could be firstly relative to the internal shear stresses 𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑏 , 𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑐𝑢, 𝜏𝑥𝑦
ℎ , 𝜏𝑥𝑦

𝑐ℎ using equilibrium equations 

of the system. And then, the damage factors, calculated from the internal shear stresses at each interface 
(brick-head joint interface, brick-bed joint interface, head-cross joint interface), should be attached to the value 

of 𝜏0, since the values of  𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑏 , 𝜏𝑥𝑦
𝑢 , 𝜏𝑥𝑦

𝑐𝑢, 𝜏𝑥𝑦
ℎ , 𝜏𝑥𝑦

𝑐ℎ are considered to be the undamaged ones. In this case, 

the shear cracks may occur in each component at different times, and the basic cell would be fully damaged 
after all of the components failed in shear. 

3.3. Model 2: horizontal tensile behaviour 

In this model, the unit cell is assumed to be the only crack in the horizontal tension direction, which means 
each component could deform horizontally caused by the external loading and vertically considering the 
positive poison ratio of the unit cell. In other words, the homogenized unit only has lateral tension strain and 
stress. However, according to Zucchini’s research in [30], the basic cell under horizontal loading has 
displacement caused by the internal shear deformation between the bed joint and the brick unit and the tensile 
deformations of the components. The deformation of the unit cell in model 2 can be seen from figure 3-4. 

2𝑡 

ℎ 

ℎ 

𝑙 𝑡 

𝜏0 

𝜏0 

𝜏𝑥𝑦
𝑢  𝜏𝑥𝑦

ℎ  

𝜏𝑥𝑦
𝑏  𝜏𝑥𝑦

𝑐  𝜏𝑥𝑦
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This deformed cell, in which the shear, the tensile, and compressive behaviours of each component should 
be considered, is assumed to be damaged in tensile cracking failure mode, see chapter 2 figure 2-1 (c). The 
internal stresses should be selected based on the deformation assumption of model 2 shown in figure 3-4, 
especially the internal shear stresses.  

According to those assumptions of model 2, the internal stresses are: 

External tension stress 𝜎𝑥𝑥
0 ; 

1. Internal horizontal stresses: brick unit 𝜎𝑥𝑥
𝑢 , head joint 𝜎𝑥𝑥

ℎ , bed joint 𝜎𝑥𝑥
𝑏 , cross joint 𝜎𝑥𝑥

𝑐 ; 

2. Internal vertical stresses: brick unit 𝜎𝑦𝑦
𝑢 , head joint 𝜎𝑦𝑦

𝑏 , bed joint 𝜎𝑦𝑦
𝑏 , cross joint 𝜎𝑦𝑦

𝑐 ; 

3. Internal shear stresses: between the brick unit and bed joint 𝜏𝑥𝑦
𝑢 = 𝜏𝑥𝑦

𝑏 . 

The stress distribution of the deformed cell could be seen from figure 3-5. Homogenized stress 𝜎𝑥𝑥
0  can be 

relative to the internal stresses by deriving equilibrium equations at side boundaries. And then, the internal 
stresses could be substituted for the damaged ones by introducing the damage factors. In this case, 

homogenously horizontal stresses 𝜎𝑥𝑥
0  could be relative to the internal stresses and the damage factors in 

shear, horizontal and vertical directions of the components. The damage factors depend on the value of the 
corresponding stresses. For instance, the damage factor of brick in the x-direction  𝑑𝑥𝑥

𝑢  is computed by the 
internal horizontal stress 𝜎𝑥𝑥

𝑢 . The scalar value of the damage variable 𝑑𝑥𝑥
𝑢  (damage factor) can represent the 

damage level of the brick unit in the x-direction, as “0” means the brick is undamaged in the x-direction, while 
“1” means the brick is damaged in the x-direction.  

 
Figure 3-4 Deformed Cell of Model 2 

 
Figure 3-5 Internal stresses Model 2 

 brick unit           bed joint           cross joint           head joint 

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green), 
“b” means bed joint (orange)  

As a result, there are 10 internal stresses in model 2. That means the macro stress 𝜎𝑥𝑥
0  is relative to 10 

damage factors together with 10 internal stresses. There should be a vast computational cost if we derive 𝜎𝑥𝑥
0  

in this way. Therefore, the damage factors should be selected to save the computational time by making the 
following assumptions of model 2. 

In this project, the damage factors are firstly computed by the value of the internal stresses of components 
based on the exponential softening process. And then, these damage factors are implemented in the 
expression of macro stress by substituting the damaged internal stresses for the undamaged ones to couple 

failure mechanisms of the brick unit and the joints together. Therefore, the derivation of 𝜎𝑥𝑥
0  could be simplified 

by selecting the suitable failure mechanisms of components. 

According to A. Zucchini and P.B. Lourenço’s research in 2002 [30]: 

The failure mode of Model 2 is assumed to be the coupled failure pattern, which means failure mechanisms 
of shear sliding at the interface between the brick unit and the bed joint and the unit tensile cracking failure 
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patterns are considered. The significant damage occurring in the homogenized cell is caused by cracks 
generated in the x-direction of the brick unit, the head and the cross joint, and shear failure between the bed 
joint and the brick unit. As a result, damage factors in x-direction computed by the internal tension stresses 
of the brick unit, the head and the cross joint, and the damage factor computed by the shear stress between 
the bed joint and the brick unit are the dominating coefficients selected for calculating homogenized stress. 

3.4. Model 3: vertical compression behaviour 

 

Figure 3-6 localized damage in brick 

Crushing in brick occurs typically when the masonry walls are under vertical compression loading, shown in 
figure 3-6. The experimental results indicated that both local and continuum fracturing processes governing 
the compressive behaviour of the masonry introduced by Maurizio Angelillo et al. in [39]. Therefore, model 3 
is built up based on two main parts:  

(1)  The damage model for continuum fracturing process; 
(2)  The plastic deformation is introduced in bricks and mortar for the local fracturing process. 

3.4.1. Damage model 

The damage model is firstly proposed as models 1 and 2 did. The deformed mechanisms with the elastic 
properties of the bricks and the mortars are proposed for model 3. That means the internal stresses of 
components increase linearly as the external loading is gradually imposed. Until the values of the stresses 
reach their strength, the components’ internal stresses drop to zero immediately, following the exponential 
softening process. The deformations of the basic unit cell loaded by vertical compressive force could be drawn 
as figure 3-7 shown based on Zucchini’s works [30] introduced in chapter 2.  

Figure 3-7 demonstrates that the head joint is subjected to the mixed shear and normal stresses while other 
components are subjected to the normal stresses only when only the vertical compressive load case is taken 
into account.  

In the micro-mechanical model, the loadings effect on the behaviours of the head joints under mixed shear 
and normal stresses are hardly included. In 1997, the results of Lourenço’s research showed that the errors 
between the homogenized model that included and excluded mixed shear behaviour of the head joint were 
smaller than 2% recorded by Zucchini et al. in 2002. [30] Therefore, this deformed cell could be simplified by 
neglecting the shear stresses of the head joints overall the behaviours of the basic cell as figure 3-8 shown. 
As the dilatant effects being included, the deformed cell of model 3 is assumed as figure 3-9 shown. 

As can be seen from figure 3-10, the internal stress of each component from model 3 is similarly distributed 
as from model 2, the differences displayed in the cross and the bed joint that the horizontal stresses of them 
shift from in tensile to in compressive direction supported by the research introduced in chapter 2 section 

2.1.3. The vertical stress of the basic unit cell considered in this model is 𝜎𝑦𝑦
0  in compression. 
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Figure 3-7 deformed cell from Zucchini et al. in 2002 [30] 

 
Figure 3-8 simplified deformed cell 

 
Figure 3-9 deformed cell of model 3 with dilatancy angle 

 
 

Figure 3-10 internal stresses of components 

 brick unit           bed joint           cross joint           head joint 

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green), 
“b” means bed joint (orange)  

3.4.2. Elastoplastic deformation 

The plastic strain tensor and the hardening parameters of the components are introduced in this model to 
represent the inelastic behaviour of the brick unit and the joints under compressive loading, which is 
considered a localized damage process. As equation (2.38) introduced in chapter 2 section 2.4.2 shown, the 
plastic strain increment is relative to the value of the hardening modulus, the direction of yield surface and 
the direction of potential energy at critical stress point on yield surface and the strain increment calculated 
from load increment at each step together with the geometrical properties of the basic unit cell. 

In this model, Drucker-Prager yield criteria and their relevant protentional energy function are introduced 
based on the theory listed in chapter 2 section 2.4.2. Hardening modulus ℎ𝑐 used for reflecting the hardening 

and softening process, could be calculated from equation (2.28) introduced in chapter 2 section 2.4.2. 

It can be assumed that the strain increment at each load step is the same. Therefore, the function of the 
hardening modulus can be rewritten as: 

ℎ𝑐 = −
1

∆𝜆𝑐

𝜕𝑓

𝜕𝜅
|
𝑐
Δ𝜅 (3.1) 

Where ∆𝜆𝑐 is the plastic multiplier, definition of which will be introduced in detail later in chapter 6 and 𝜅 is the 
hardening parameter, typically depends on the strain history through plastic tensor 𝜺𝑝 gained from the strain-

hardening hypothesis. 

For 4-node plane element, tensor 𝜺𝑝 could be displayed in matrix form: 

𝜺𝑝
𝑇 =  [𝜀𝑥𝑥

𝑝
𝜀𝑦𝑦
𝑝

2𝜀𝑥𝑦
𝑝
], 𝜺𝑝 = [

𝜀𝑥𝑥
𝑝

𝜀𝑦𝑦
𝑝

2𝜀𝑥𝑦
𝑝

] (3.2) 
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If shear behaviour was neglected, the function of the hardening parameter 𝜅 at load step 𝑡 = 𝑡 is: 

𝜅 = √
2

3
𝜺𝑝
𝑇𝑸𝜺𝑝 = √

2

3
[(𝜀𝑥𝑥

𝑝
)
2
+ (𝜀𝑦𝑦

𝑝
)
2
] =∑Δ𝜅

𝑡=𝑡

𝑡=0

, 𝑸 = [

1 0 0
0 1 0

0 0
1

2

] (3.3) 

Dependence of yield function on loading history only through the scalar-valued hardening parameter 𝜅, which 
also could be seen as equivalent plastic strain 𝜀𝑦𝑦 as figure 3-11 shown. The yield surface could only expand 

or shrink but could not translate or rotate in stress space. [34] 

In this model, the cohesion is supposed to vary during softening or hardening phase assessed by the 
hardening parameter, while the values of other material parameters, such as friction angle 𝜙, are supposed 

to be constants of the components. The function of cohesion 𝑐 has been proposed in chapter 2 section 2.4.2. 

 
 

Figure 3-11 𝜅 physically defined by plastic strain tensor 𝜺𝑝 

The scalar value of cohesion depends on material constant 𝜙 and compression strength 𝑓𝑐 which is a variable 
relative to the value of the hardening parameter 𝜅. 

In conclusion, the yield surface could expand or shrink following with the hardening or softening phase through 
cohesion 𝑐, which varies by compression strength of the material 𝑓𝑐 defined by the hardening parameter 𝜅 
through the plastic strain tensor 𝜺𝑝.  

The function of cohesion could be rederived in the form of equation (3.4) shown. 

𝑐 =
1 − sin𝜙

2 cos𝜙
𝜎𝑦𝑦,𝑒𝑞(𝜅) =

1 − sin𝜙

2 cos𝜙
𝜎𝑦𝑦,𝑒𝑞(𝜀𝑦𝑦,𝑒𝑞) (3.4) 

It is noted that this scalar value should be calculated at the critical stress point on the yield surface since the 
elastoplastic behaviours of the components could and only could exist when stress points are located on the 
yield criteria. Therefore, the value of compression strength 𝑓𝑐 at the end of each load step could be substituted 
by an equivalent compression stress 𝜎𝑦𝑦,𝑒𝑞, which depends on an equivalent strain 𝜀𝑦𝑦,𝑒𝑞 through an inelastic 

law of quasi-brittle material regime under pure compression. 

According to the function of Drucker-Prager yield criteria introduced in chapter 2 section 2.4.2 equation (2.9), 
the derivative of yield function 𝑓 by the hardening parameter 𝜅 at the critical stress point could be expressed 
by the slope of the inelastic strain-stress curve of the quasi-brittle material regime under pure compression:  
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(3.5) 

ඥ2/3𝜀𝑦𝑦
𝑝  

ඥ2/3𝜀𝑥𝑥
𝑝  

𝜀𝑦𝑦,𝑒𝑞 = 𝜅 



       

31 

 

Bi-parabolic law introduced by Zucchini et al. in 2007 [32] is applied here as figure 3-12 shown.  

 

 

Figure 3-12 Bi-parabolic law of brittle material under pure compression: vertical stress 𝜎𝑦𝑦
0  versus vertical strain 𝜀𝑦𝑦

0  

Let us substitute 𝜎𝑦𝑦,𝑒𝑞 for 𝐹𝐶𝑈1 and 𝐹𝐶𝑈2, 𝜀𝑦𝑦,𝑒𝑞 for 𝜀𝑦𝑦: 

𝜎𝑦𝑦,𝑒𝑞 =

{
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2 ∙ 𝜀𝑦𝑦,𝑒𝑞
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2

+
4 ∙ 𝜀𝑦𝑦,𝑒𝑞

𝜀0
+ 1) , 𝑖𝑓 0 ≤ 𝜀𝑦𝑦,𝑒𝑞 ≤ 𝜀0

𝑓𝑐0(1 − (
2 ∙ 𝑓𝑐
3 ∙ 𝑔𝑐

(𝜀𝑦𝑦,𝑒𝑞 − 𝜀0))

2

) , 𝑖𝑓 𝜀0 < 𝜀𝑦𝑦,𝑒𝑞 ≤ 𝜀𝑚𝑎𝑥 

(3.6) 

Where 𝑓𝑐0 is peak stress and 𝜀0 = 2𝑓𝑐0/𝐸 is peak equivalent plastic strain with young’s modulus 𝐸. 𝑔𝑐 is post-

specific fracture energy defined by compression fracture energy 𝐺𝑐 and characteristic length 𝐿𝑐, with 𝐿𝑐 = ℎ 
for the smeared crack model. ℎ is the element size. 

It can be seen from figure 3.12, the compressive equivalent stress should be equal to 𝑓𝑐0/3,  at which point 

the elastic phase end when 𝜀𝑦𝑦,𝑒𝑞 = 0. 

3.5. Model 4: coupled behaviour 

Behaviours of the homogenized cell under pure shear, horizontal tension and vertical compression loading 
were introduced above in section 3.2, 3.3 and 3.4 separately. However, the failure patterns may be changed 
under mixed loading conditions. For instance, the basic cell under mixed shear and vertical compression 
loading should fail in the diagonal cracking model, see figure 2-1 (d) in chapter 2 section 2.1, rather than 
sliding one under pure shear loading or crushing one under pure vertical loading. Therefore, combinations of 
shear, horizontal and vertical behaviours should also be worth to be studied. 

Shear behaviour from model 1, horizontal behaviour from model 2 and vertical behaviour from model 3 are 
combined. Transverse strain in the vertical direction (or horizontal direction) relative to horizontal (or vertical) 

elastic phase 

end 𝑔𝑐 =
𝐺𝑐
𝐿𝑐
=
𝐺𝑐
ℎ

 

𝜀0 

𝐹𝐶𝑈1 =
𝑓𝑐0
3
(−

2 ∙ 𝜀𝑦𝑦
2

𝜀0
2

+
4 ∙ 𝜀𝑦𝑦

𝜀0
+ 1) 

𝐹𝐶𝑈2 = 𝑓𝑐0(1 − (
2 ∙ 𝑓𝑐0
3 ∙ 𝑔𝑐

(𝜀𝑦𝑦 − 𝜀0))
2) 
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loading should be considered. Meanwhile, the coupled behaviour of the basic cell under combined shear and 
vertical loading is studied in this part. 

3.5.1. Combination of vertical and horizontal behaviour 

Usually, quasi-brittle materials should have positive poison ratios, which means this type of materials should 
shrink in the vertical direction and expand in the horizontal direction when they are loaded by vertical 
compressive loading or horizontal tensile loading.  

According to this phenomenon, horizontal (or vertical) strain increment at each load step could be assumed 

as consisting of two main parts: the one from directly horizontal (vertical) loading 𝜀𝑥𝑥
0  (or 𝜀𝑦𝑦

0 ) together with 

the one from the corresponding deformation caused by vertical (or horizontal) loading 𝜀𝑥𝑥,𝑦
0  (or 𝜀𝑦𝑦,𝑥

0 ), see 

figures 3-13 and 3-14. 

It can be noted that the deformed cell assumption should be correlated to the horizontal tension or the vertical 
compression behaviours introduced in section 3.3 or 3.4. For example, it can be seen from figure 3-13 that 
the deformation of the basic cell should be similar to the one under horizontal tension loading proposed in 

section 3.3. the main reason is that the output variable, in this case, is horizontal stress 𝜎𝑥𝑥
0  which means we 

focus on the “horizontal tensile cracking” failure pattern, see figure 2-1 (c).  

 

 

Figure 3-13 horizontal strain 𝜀𝑥𝑥,𝑦
0  caused by 

vertical strain increment 𝜀𝑦𝑦
0  

 

Figure 3-14 vertical strain 𝜀𝑦𝑦,𝑥
0  caused by horizontal 

strain increment 𝜀𝑥𝑥
0  

Note: direction of input loading is indicated by red arrows, while black arrows indicate output stress 
direction 

As a result, the new input strains 𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0  and 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙

0  in both directions could be expressed by 𝜀𝑥𝑥
0  and 𝜀𝑦𝑦

0 : 

𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 = 𝜀𝑥𝑥

0 + 𝜀𝑥𝑥,𝑦
0 = 𝜀𝑥𝑥

0 + 𝑓𝑥𝑥0𝑦(𝜀𝑦𝑦
0 ) (3.7) 

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 = 𝜀𝑥𝑥

0 + 𝜀𝑦𝑦,𝑥
0 = 𝜀𝑦𝑦

0 + 𝑓𝑦𝑦0𝑥(𝜀𝑥𝑥
0 ) (3.8) 

Coupled behaviour of the homogenized cell under horizontal tensile together with vertical compressive 

loading could be obtained by substituting the new input strains 𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0  and 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙

0  for the original ones. As 

a result, the relation of macro strain and stress tensor could be derived in the form of: 

[
𝜎𝑥𝑥
0

𝜎𝑦𝑦
0 ] = [

𝐾11 𝐾12
𝐾21 𝐾22

] [
𝜀𝑥𝑥
0

𝜀𝑦𝑦
0 ] (3.9) 

𝜎𝑦𝑦
0  

𝜀𝑦𝑦,𝑥
0 ∙ 2(ℎ + 𝑡) 

𝜀𝑥𝑥
0 ∙ (𝑙 + 𝑡) 

𝜀𝑦𝑦
0 ∙ 2(ℎ + 𝑡) 

𝜀𝑥𝑥,𝑦
0 ∙ (𝑙 + 𝑡) 

𝜎𝑥𝑥
0  
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𝐾11 =
𝜕𝜎𝑥𝑥

0

𝜕𝜀𝑥𝑥
0 , 𝐾22 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦
0

(3.10) 

𝐾12 =
𝜕𝜎𝑥𝑥

0

𝜕𝜀𝑥𝑥,𝑦
0 ∙

𝜕𝜀𝑥𝑥,𝑦
0

𝜕𝜀𝑦𝑦
0 , 𝐾21 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦,𝑥
0 ∙

𝜕𝜀𝑦𝑦,𝑥
0

𝜕𝜀𝑥𝑥
0

(3.11) 

3.5.2. Combination of shear and vertical behaviour 

Diagonal tensile cracking generally occurs in masonry under shear and vertical compressive loading, see 
figure 2-1 (d) in chapter 2 section 2.1. In this project, the brick units are always supposed to be stiffer than 
mortar joints, and only the type of masonry structures with a staggered arrangement of brick units and mortar 
joints are studied. Therefore, we can assume that diagonal tensile cracking could and only could occur in the 
vertical joints, also called head joints, in this study.  

The failure mechanisms could be concluded as following steps: 

(1) Firstly, the shear stress between the brick unit and bed joint increases in both of elastic and elastoplastic 
phase, the micro-fissures are generating in components under vertical compressive loading as model 3 
proposed at the same time; 

(2) Secondly, the shear stress at the interface of the brick unit and bed joint is larger than the cohesion of the 

head joint 𝐶𝐻 plus the dynamical friction 𝜎𝑦𝑦
0 ∙tan (𝜙); 

(3) Then, the horizontal interface starts sliding along the length direction since the resistance of it at side 
boundary conditions are damaged (residual shear stress is larger than cohesion in head joint); 

(4) Finally, the shear sliding maintains at the interface of the brick unit and bed joint under external shear 
loading. 

Additionally, the homogenized cell should still be damaged in pure shear if the vertical loading is tensile. As 
a result, the maximum value of the homogenized shear stress under shear together with vertical loading is: 

{
𝜏𝑥𝑦
0 = 𝜎𝑠

𝑏 , 𝑖𝑓 𝜎𝑦𝑦
0 ≥ 0 

𝜏𝑥𝑦
0 = 𝐶𝐻 + 𝜎𝑦𝑦

0 ∙tan(𝜙), 𝑖𝑓 𝜎𝑦𝑦
0 < 0

(3.12) 

Where 𝜎𝑠
𝑏 and 𝜙 are shear strength and friction angle of bed joint, respectively. 𝐶𝐻 is the cohesion of the head 

joint, which varies following the hardening or softening process and depends on the coupled behaviour of the 

basic cell under vertical tensile together with vertical compressive loading. 𝜎𝑦𝑦
0  is the homogenized vertical 

stress. 

As can be seen from figure 2-2 in chapter 2 section 2.1.1, the definition of shear fracture energy in coupled 
behaviour is the same as that in pure shear behaviour. Therefore, consumption of cohesion in the head joint 
could be considered by a similar approach as model 1 did. Constitutive law of the homogenized cell in this 
study could be concluded as the following form considering coupled behaviour of all loading conditions in the 
2D plane: 

[

𝜎𝑥𝑥
0

𝜎𝑦𝑦
0

𝜏𝑥𝑦
0

] = [
𝐾11 𝐾12 0
𝐾21 𝐾22 0
𝐾31 𝐾32 𝐾33

] [

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝜀𝑥𝑦
0

] (3.13) 

𝐾33 =
𝜕𝜏𝑥𝑦

0

𝜕𝜀𝑥𝑦
0

(3.14) 
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 𝐾31 =
𝜕𝜎𝑦𝑦

0

𝜕𝜀𝑦𝑦,𝑥
0 ∙

𝜕𝜀𝑦𝑦,𝑥
0

𝜕𝜀𝑥𝑥
0 ,  𝐾32 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦
0

(3.15) 

Where 𝐾11 , 𝐾12 , 𝐾21  and 𝐾22  could be found in equation (3.11) . The homogenized tensile 𝜎𝑥𝑥
0  and 

compressive stresses 𝜎𝑦𝑦
0  can be obtained from models 2 and 3, respectively, by substituting the new external 

strain 𝜀𝑥𝑥,𝑡𝑜𝑡𝑎𝑙
0 , 𝜀𝑦𝑦,𝑡𝑜𝑡𝑎𝑙

0  for the original 𝜀𝑥𝑥
0 , 𝜀𝑦𝑦

0 , while the shear one could be computed by the value 𝐶𝐻 and 

𝜎𝑦𝑦
0  obtained in model 3 in a similar way applied in model 1.  
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4. Model 1: shear behaviour 
In this model, the homogenized unit cell is supposed to be damaged by only shear stresses inside the 
assumed cell. According to the assumptions made in chapter 3, the unit fails once the shear stress between 
the brick unit and the bed joint reaches its strength. Based on this idea, damage model 1 can be derived from 
the following concepts. 

4.1. Derive “damage” equations 

To derive the “damage” equations of model 1, the damage factors, used as the internal state variables, which 
could show the situation of micro-cracking generated in the components, should be firstly formulated by the 
exponential relation of the internal stresses. In this model, cracks are only allowed to appear at the interface 
of the brick unit and the mortar in shear. Based on zucchini’s research in [20], the isotropic damage model 
with a single damage variable in shear of each component of the basic cell has been adopted as: 

(a) Scalar damage model 

The undamaged 𝝉𝑥𝑦
𝑖  and damaged 𝝉𝑑 shear tensor are correlated according to the theories of continuum 

damage model stated in Oliver’s research in [31], the equation evolved for shear behaviour can be: 

𝝉𝑑 = (1 − 𝑑)𝑫𝜸𝑥𝑦
𝑖 = (1 − 𝑑)𝝉𝑥𝑦

𝑖 , 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (4.1) 

Where 𝑑 is damage state variable with a scalar value, ranging from 0 to 1, as “0” means undamaged while 

“1” means damaged state at local system. 𝑫 is elastic stiffness matrix and  𝜸𝑥𝑦
𝑖  is local shear strain tensor. 

(b) Limit damage surface 

Damage criterion should be decided by shear strength. The initial threshold values of the shear stresses of 
the components should be equal to their shear strength. 

𝜏𝑚𝑎𝑥 = 𝜎𝑠 (4.2) 

Where 𝜎𝑠 is the shear strength of the given component and 𝜏𝑚𝑎𝑥 is the maximum value of shear stress of the 
given cell component. 

(c) Equivalent effective stress 

A suitable norm, the so-called equivalent effective strain or stress, compares the different states of the 
deformation [31] and then decide each cell component's damaged state. This norm is the damage threshold 
at the current time or iterative step shown as [31]: 

𝝉𝑥𝑦
𝑖 = 𝐺𝑥𝑦

𝑖 𝜸𝑖, 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (4.3) 

𝜏 = max{𝜏𝑥𝑦
𝑖 , 𝜎𝑠} , 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (4.4) 

Where 𝝉𝑥𝑦
𝑖  and 𝜸𝑖 are the equivalent effective stress and strain tensor, 𝜏 is the norm of damage threshold at 

the current time with a scalar value. Subscripts “𝑏, 𝑢, ℎ, 𝑐” mean the variables of the bed joint, the brick unit, 
the head joint and the cross joint, respectively. 

(d) Damage evaluation law 



36 4. Model 1: shear behaviour 4.1. Derive “damage” equations  

 
Shear behaviours of the components here are considered to be similar to the tensile ones. Therefore, the 
scalar function of shear damage factor is adopted as tensile concrete-like material here proposed in [31]: 

𝑑 = 1 −
𝜎𝑠
𝜏
𝑒
𝐴𝑠(1−

𝜏
𝜎𝑠
)

(4.5) 

Where 𝐴𝑠 is a parameter present based on the shape of the shear stress-strain curve observed from the 
experiment, the evaluation of damage coefficient must be monotonic [31], and this irreversible damage 
process is taken into account by updating the value of 𝑑. 

(e) Correlation with fracture parameter 

The fracture energy in shear (sliding crack model) can be similar to that in tension (first fracture energy). The 
explicit function of the parameter 𝐴𝑡 is proposed in [31], where 𝐴𝑡 could be replaced by 𝐴𝑠 in shear fracture 

mechanics [20] in this model. Parameter 𝐴𝑠 is then able to be relative to the dissipated energy in shear 𝑔𝐼𝐼 
by: 

𝑔𝐼𝐼 =
𝜎𝑠
2

𝐺
(
1

2
+
1

𝐴𝑠
) (4.6) 

Where 𝐺 is the shear modulus.  

As the smeared cracking model is considered in this work, the characteristic length of this model can be: 

𝑙𝑠 =
𝐺𝐼𝐼

𝑔𝐼𝐼
, 𝑙𝑠 = 𝐻 (4.7) 

𝐺𝐼𝐼 is the second fracture energy per unit area (assumed to be a material parameter) and 𝑙𝑠 is a characteristic 
length of finite element, 𝐻 is finite element size.  

Note that 𝐴𝑠 can be acquired from equations (4.6) (4.7) as: 

𝐴𝑠 = (
𝐺𝐼𝐼𝐺

𝑙𝑠𝜎𝑠
2 −

1

2
)

−1

(4.8) 

With equations  (4.1) (4.2) (4.3) (4.4) (4.5) (4.8), the damage state variables in shear can be related to the 
shear strains and stresses of the given cell components. These variables could be relative by only one 
external shear strain 𝛾0 by the kinematic relations and the equilibrium equations of the system derived based 
on the deformed cell assumed in chapter 3 section 3.2. 

4.1.1. Kinematic relation 

Based on the deformed cell assumed in chapter 3 section 3.2, the relation between the internal shear strain 
of each component and the external shear strain could be derived according to the displacement equations. 
Geometrical properties and the deformation of per cell in detail are able to be seen from figure 4-1. Therefore, 
the equations could be proposed as equations (4.9) to (4.12) show.  

∆𝑢𝑏 = ∆𝑢𝑐 = ∆𝑢 (4.9) 

𝛾0 =
2∆𝑢

2(ℎ + 𝑡)
, 𝛾𝑏 = 𝛾𝑢 = 𝛾𝑐 = 𝛾ℎ (4.10) 
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 𝛾𝑏 =
2∆𝑢𝑏
2𝑡

=
2∆𝑢

2𝑡
, 𝛾𝑐 =

2∆𝑢𝑐
2𝑡

=
2∆𝑢

2𝑡
(4.11) 

Therefore: 

𝛾𝑏 = 𝛾𝑢 = 𝛾𝑐 = 𝛾ℎ =
ℎ + 𝑡

𝑡
𝛾0 (4.12) 

Where ∆𝑢 is the total displacement of the basic cell and ∆𝑢𝑏 is the deformations caused by shear stress 
between the brick unit and the bed joint, ∆𝑢𝑐 is the shear deformation between the head and cross joint. The 

thickness of the mortar is assumed to be a scalar value of 2𝑡, while the heights of the brick unit and the head 
joint are assumed to be 2ℎ. 

 

Figure 4-1 Deformed Cell of Model 1 

The explicit function proposed in equation  (4.9) of the internal shear strain 𝛾𝑏, 𝛾𝑢, 𝛾𝑐 and 𝛾ℎ is related to the 
half-height of the brick unit (head joint), the thickness of the joints and the external shear strain 𝛾0. With the 
defined geometrical properties (value of ℎ and 𝑡), 𝛾𝑏, 𝛾𝑢, 𝛾𝑐 and 𝛾ℎ then could only be changed by the value 

of the variable 𝛾0. 

4.1.2. Equilibrium equations of the system 

Considering the deformed cell of model 1 and the stresses selected in chapter 3 section 3.2, the system of 
the basic cell could be drawn as figure 4-2 shown: 

 

Figure 4-2 Model 1: the internal system of cell 

Top boundary condition: 

∆𝑢 ∆𝑢 

∆𝑢𝑏 ∆𝑢𝑏 

𝜏0 𝜏0 

𝜏0 𝜏0 

𝜏𝑥𝑦
𝑢  𝜏𝑥𝑦

ℎ  

𝜏𝑥𝑦
𝑏  𝜏𝑥𝑦

𝑐  𝜏𝑥𝑦
𝑐  

𝜏𝑥𝑦
𝑏  𝜏𝑥𝑦

𝑐  𝜏𝑥𝑦
𝑐  

𝜏𝑥𝑦
𝑢  𝜏𝑥𝑦

ℎ  
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𝜏0 ∙ (𝑙 + 𝑡) = 𝜏𝑥𝑦

𝑢 ∙ 𝑙 + 𝜏𝑥𝑦
ℎ ∙ 𝑡 (4.13) 

Interface at head & cross joint: 

 
𝜏𝑥𝑦
ℎ ∙ 𝑡 = 𝜏𝑥𝑦

𝑐 ∙ 𝑡 (4.14) 

Interface at bed joint: 

 𝜏𝑥𝑦
𝑢 ∙ 𝑙 = 𝜏𝑥𝑦

𝑏 ∙ (𝑙 − 𝑡) +  𝜏𝑥𝑦
𝑐 ∙ 𝑡 (4.15) 

Interface at brick & cross joint: 

 𝜏𝑥𝑦
𝑏 = 𝜏𝑥𝑦

𝑐 (4.16) 

Note that the equilibrium equations of the system should be derived at the top boundary and the brick-mortar 
interfaces. Therefore, equations (4.13) to (4.16) are able to be proposed directly. The function of the internal 
stress should be satisfied by combining these equations: 

𝜏𝑥𝑦
𝑢 = 𝜏𝑥𝑦

ℎ = 𝜏𝑥𝑦
𝑐 = 𝜏𝑥𝑦

𝑏 = 𝜏0 (4.17) 

Where 𝜏0 is the external shear stress, 𝜏𝑥𝑦
𝑢  and 𝜏𝑥𝑦

𝑏  are the shear stresses between the brick and the bed joint, 

𝜏𝑥𝑦
𝑐  and  𝜏𝑥𝑦

ℎ  is the shear stresses between the cross and the head joint. 

4.1.3. Constitutive equations 

From equation (4.17), the shear stress of each component is equal to each other. Therefore, only one shear 

stress is needed to be taken into account. 𝜏𝑥𝑦
𝑏 , the shear stress between the brick and the bed joint is selected 

here. 

Now, we have 4 unknown strain and stress variables, including the internal shear stress 𝜏𝑥𝑦
𝑏 , the external 

shear stress 𝜏0, the internal shear strain  𝛾𝑏 and the external shear strain 𝛾0. That means we need 4 equations 
in total to solve this system. Now that we have already got equations (4.12) and  (4.17), we still need 2 more 
equations from the constitutive law of the components. 

For the shear behaviour at the interface of the brick unit and the bed joint, it is obvious to adopt the relation 
of the shear strain and stress as: 

𝜏𝑥𝑦
𝑏 = 𝐺𝑥𝑦

𝑏 𝛾𝑏 (4.18) 

Where 𝐺𝑥𝑦
𝑏  is the shear modulus of the bed joint. 

In this work, displacement control is selected to be the loading approach. Therefore, the value of the horizontal 
strain 𝜀0 could be obtained every step. Therefore, the shear strain 𝛾0 can be computed as: 

𝛾0 = 2𝜀0 (4.19) 
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4.1.4. Equilibrium “damage” equations 

Considering the damage state evaluated by the shear damage factors calculated following the formulation 
described in section 4.1, the damaged internal stress should be: 

𝜏𝑥𝑦,𝑑
𝑏 = (1 − 𝑑)𝐺𝑥𝑦

𝑏 𝛾𝑏 (4.20) 

Where 𝜏𝑥𝑦,𝑑
𝑏  is the damaged shear stress between the brick unit and the bed joint. 

As the undamaged stress is considered to be the equivalent effective one, equations (4.17) (4.18) should be 
rederived as: 

𝜏0 = 𝜏𝑥𝑦,𝑑
𝑏 = (1 − 𝑑)𝐺𝑥𝑦

𝑏 𝛾𝑏 (4.21) 

Considering the equation  (4.12) (4.18) (4.19) and  (4.21), we can propose the “damage” equations for model 

1 and find the relations of the unknown variables 𝜏0, 𝜏𝑥𝑦
𝑏  and the known 𝜀0: 

𝜏𝑥𝑦
𝑏 = 2

ℎ + 𝑡

𝑡
𝐺𝑥𝑦
𝑏 𝜀0 =

ℎ + 𝑡

𝑡
𝐺𝑥𝑦
𝑏 𝛾0 (4.22) 

𝜏0 = 2
ℎ + 𝑡

𝑡
(1 − 𝑑)𝐺𝑥𝑦

𝑏 𝜀0 =
ℎ + 𝑡

𝑡
(1 − 𝑑)𝐺𝑥𝑦

𝑏 𝛾0 (4.23) 

The damage factor 𝑑 should be calculated according to the damage evaluation law in section 4.1 by 𝜏𝑥𝑦
𝑏 . Note 

that the tangent stiffness of model 1 should be: 

𝐾 =
𝜕 𝜏0

𝜕 𝛾0
=
ℎ + 𝑡

𝑡
(1 − 𝑑)𝐺𝑥𝑦

𝑏 (4.24) 

4.2. Algorithm 

The very simple algorithm that can be used to evaluate the stress of the proposed model has been introduced 
above as [31] shown. That can be concluded as following steps: 

Initial date from time 𝒕 + 𝟏: [31] 

Material properties: second fracture energy 𝐺𝐼𝐼, shear modulus 𝐺, shear strength 𝜎𝑠, element size 𝐻; 
Geometrical properties: half-height of brick unit ℎ, the thickness of mortar 𝑡 
Current values: internal shear stress 𝜏𝑡, damage state variable 𝑑𝑡, external shear stress 𝜀0,t 
The boundary condition of the cell here is: 

𝜀0,t+1 = 𝜀0,t + ∆𝜀0 (4.25) 

Where 𝜀0,t+1 is the external shear strain at 𝑡 = 𝑡 + 1, ∆𝜀0 is the shear strain increment. 

At 𝑡 = 0: initializing the external shear strain and the shear damage factor as 𝜀0 = 0, 𝑑 = 0. 

(1) Determining 𝐴𝑠 from eq. (4.8) by known material properties applied in Zucchini’s work [20], see table 4-1, 

(2) At 𝑡 = 𝑡 + 1, evaluating the undamaged shear stress 𝜏𝑥𝑦,𝑡+1
𝑏  between the brick unit and the bed joint from 

eq. (4.22) by known 𝜀0,t+1; 
(3) Updating the internal variables 𝜏𝑡+1 as eq. (4.4) and 𝑑𝑡+1 as eq. (4.5) shown; 

(4) Updating stresses 𝜏𝑡+1
0  from eq. (4.23) 
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5. Model 2: horizontal tension behaviour 
In this model, the tension behaviour of the basic cell is considered. Based on the deformed cell assumed in 
chapter 3 section 3.3, the shear stress between the bed joint and the brick unit and the tension behaviour of 
each component should be considered. Therefore, both shear and tension damage state variables should be 
included, which are damage factors using for evaluating damage status caused by internal tension and shear 
stresses. 

5.1. Derive “damage” equations 

Formulations for fracture energy in shear has been introduced in chapter 4 section 4.1. The explicit function 
in tension could be similarly adopted as [20]: 

𝝈𝒙𝒙,𝒅
𝒊 = (1 − 𝑑𝑥

𝑖 )𝑫𝒊𝜺𝒙𝒙
𝒊 = (1 − 𝑑𝑡

𝑖)𝝈𝒙𝒙
𝒊 , 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (5.1) 

𝜎𝑥𝑥,𝑚𝑎𝑥
𝑖 = 𝜎𝑡

𝑖 (5.2) 

 

𝜎𝑖 = max{𝜎𝑥𝑥
𝑖 , 𝜎𝑡

𝑖} ,   𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (5.3) 

 

𝑑𝑡
𝑖 = 1 −

𝜎𝑡
𝑖

𝜎𝑖
exp [𝐴𝑡

𝑖 (1 −
𝜎𝑖

𝜎𝑡
𝑖)] , 𝑖 = 𝑏, 𝑢, ℎ, 𝑐 (5.4) 

Where 𝝈𝒙𝒙
𝒊  is undamaged stress tensor of a given cell component which can be expressed by external strain 

𝜀𝑥𝑥,0 with equations listed in section 5.1 below. 𝝈𝒙𝒙,𝒅
𝒊  is damaged stress tensor of each component evaluated 

by damage factor 𝑑𝑡
𝑖 . The scalar value of maximum tensile stress is the tension strength of each component 

𝜎𝑡
𝑖  while equivalent stress of given component 𝜎𝑖 should be a larger value between undamaged stress at the 

current step and its maximum value.  

Parameter 𝐴𝑡
𝑖  could also be related to special fracture energy in uniaxial tension 𝑔𝐼 (𝑁/𝑚𝑚2) by integration 

of the deformation energy on full strain path [20]: 

𝑔𝐼 =
𝜎𝑡
2

𝐸
(
1

2
+
1

𝐴𝑡
) (5.5) 

Therefore, parameter 𝐴𝑡 of damage model 2 can be generally proposed as: 

𝐴𝑡 = (
𝐺𝐼𝐸

𝑙𝑡𝜎𝑡
2 −

1

2
)

−1

, 𝑙𝑡 = 𝐻 (5.6) 

Where 𝐺𝐼 is fracture energy in model I, 𝜎𝑡 is tension strength and characteristic length 𝑙𝑡 of the smeared crack 
model should be element size 𝐻. Formulation of parameter 𝐴𝑡 from equation (5.6) is able to be applied in 
components in the basic cell. 

5.1.1. Kinematic relation 

In this model, the stress-strain curve for tension behaviour of the basic cell is discussed. Therefore, externally 

horizontal strain and stress are taken into account and strain 𝜀𝑥𝑥
0  is considered as the known variable with 
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displacement control method for iterative processing. The behaviour of the unit cell under externally vertical 
displacement will not be considered in this model, which will be discussed in chapter 6. 

According to the deformed cell of model 2 assumed in chapter 3 section 3.3, kinematic relation can be derived 
as following equations based on Zucchini’s work in 2002 [30]. 

 
Figure 5-1 Deformed cell of model 2 

 brick unit           bed joint           cross joint           head joint 

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green), 
“b” means bed joint (orange)  

Where ∆𝑢𝑥𝑥
𝑖  and ∆𝑢𝑦𝑦

𝑖  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) are horizontal and vertical displacement of a given component, ∆𝑢 is the 

total displacement of the homogenized cell. Note that the relations between those displacements can be 
summarized as: 

∆𝑢𝑥𝑥
𝑢 + ∆𝑢𝑥𝑥

ℎ = 2∆𝑢𝑥𝑥
𝑐 + ∆𝑢𝑥𝑥

𝑏 = ∆𝑢 (5.7) 

2∆𝑢𝑦𝑦
𝑢 + ∆𝑢𝑦𝑦

𝑏 = ∆𝑢𝑦𝑦
𝑢 + ∆𝑢𝑦𝑦

𝑐 + ∆𝑢𝑦𝑦
ℎ (5.8) 

The definition of each strain as following: 

[
 
 
 
∆𝑢𝑥𝑥

𝑢

∆𝑢𝑥𝑥
ℎ

∆𝑢𝑥𝑥
𝑐

∆𝑢𝑥𝑥
𝑏 ]
 
 
 

= [

𝑙
0
0
0

       

0
𝑡
0
0

       

0
0
𝑡
0

    

0
0
0

𝑙 − 𝑡

]

[
 
 
 
𝜀𝑥𝑥
𝑢

𝜀𝑥𝑥
ℎ

𝜀𝑥𝑥
𝑐

𝜀𝑥𝑥
𝑏 ]
 
 
 

,               

[
 
 
 
 
∆𝑢𝑦𝑦

𝑢

∆𝑢𝑦𝑦
ℎ

∆𝑢𝑦𝑦
𝑐

∆𝑢𝑦𝑦
𝑏
]
 
 
 
 

= [

ℎ
0
0
0

       

0
ℎ
0
0

       

0
0
2𝑡
0

     

0
0
0
2𝑡

]

[
 
 
 
 
𝜀𝑦𝑦
𝑢

𝜀𝑦𝑦
ℎ

𝜀𝑦𝑦
𝑐

𝜀𝑦𝑦
𝑏
]
 
 
 
 

,        ∆𝑢 = 𝜀𝑥𝑥
0 ∙ (𝑙 + 𝑡) (5.9) 

Where 𝜀𝑥𝑥
𝑖  and 𝜀𝑦𝑦

𝑖  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐)  are the horizontal and vertical strain of each component, 𝜀𝑥𝑥
0  is 

homogenized tension strain of the basic cell. The length of the brick unit is 2𝑙, the thickness of mortar is 2𝑡, 
and the heights of the brick unit as well as the head joint are 2ℎ. 

Therefore, eq. (5.7) and  (5.8) could be rewritten as: 

𝑙𝜀𝑥𝑥
𝑢 + 𝑡𝜀𝑥𝑥

ℎ = 2𝑡𝜀𝑥𝑥
𝑐 + (𝑙 − 𝑡)𝜀𝑥𝑥

𝑏 (5.10) 

(𝑙 + 𝑡)𝜀𝑥𝑥
0 = 2𝑡𝜀𝑥𝑥

𝑐 + (𝑙 − 𝑡) 𝜀𝑥𝑥
𝑏 (5.11) 

ℎ𝜀𝑦𝑦
𝑢 + 2𝑡𝜀𝑦𝑦

𝑏 = 2𝑡𝜀𝑦𝑦
𝑐 + ℎ𝜀𝑦𝑦

ℎ (5.12) 

∆𝑢𝑥𝑥
𝑢 + ∆𝑢𝑥𝑥

ℎ  

2∆𝑢𝑥𝑥
𝑐 + ∆𝑢𝑥𝑥

𝑏  
2∆𝑢𝑦𝑦

𝑢 + ∆𝑢𝑦𝑦
𝑏  

∆𝑢𝑦𝑦
ℎ + ∆𝑢𝑦𝑦

𝑢 + ∆𝑢𝑦𝑦
𝑐  

∆𝑢 
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The 9 variables shown in kinematic relation include: unknown variables 𝜀𝑥𝑥
𝑖  and 𝜀𝑦𝑦

𝑖  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐), known 

variables 𝜀𝑥𝑥
0 . 

5.1.2. Equilibrium equations of the system 

Based on assumptions of the deformed cell and selections of stresses in chapter 3 section 3.3, the distribution 
of stresses of the inside system of model 2 can be drawn as figure 5-2 shown. According to Zucchini’s work 
in 2004 [30], equilibrium equations of the system could be derived at boundary conditions and interfaces of 
the brick unit and joint mortar. 

 

Figure 5-2 Model 2: the internal system of cell 

Where 𝜎𝑥𝑥
𝑖  and 𝜎𝑦𝑦

𝑖  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) are internally horizontal and vertical stresses of each component, 𝜎𝑥𝑥
0  is 

tension stress of the basic cell. Horizontal stresses of the brick unit are different at two sides (𝜎𝑥𝑥
𝑢1 at the 

interface of brick and head joint and 𝜎𝑥𝑥
𝑢2 at side bounder) as a result of shear behaviour between brick unit 

and bed joint, see figure 5-3. 

 
Figure 5-3 Horizontal stresses of the brick unit 

Let us introduce the average horizontal stress of the brick unit �̅�𝑥𝑥
𝑢 = (𝜎𝑥𝑥

𝑢1 + 𝜎𝑥𝑥
𝑢2)/2 to simplify the equations.  

ℎ𝜎𝑥𝑥
𝑢2 − (𝑙 − 𝑡)𝜏𝑥𝑦

𝑢 = ℎ𝜎𝑥𝑥
𝑢1 (5.13) 

Therefore, the functions of 𝜎𝑥𝑥
𝑢1 and 𝜎𝑥𝑥

𝑢2 should be:  

𝜎𝑥𝑥
𝑢1 = �̅�𝑥𝑥

𝑢 −
𝑙 − 𝑡

ℎ
 𝜏𝑥𝑦
𝑏 , 𝜎𝑥𝑥

𝑢2 = �̅�𝑥𝑥
𝑢 +

𝑙 − 𝑡

ℎ
 𝜏𝑥𝑦
𝑏  (5.14) 

Shear stress between the brick unit and bed joint 𝜏𝑥𝑦
𝑢 = 𝜏𝑥𝑦

𝑏  is assumed as linearly increasing along the length 

direction. Therefore, we can use �̅�𝑥𝑥
𝑢  and 𝜏𝑥𝑦

𝑏  to derive the function of 𝜎𝑥𝑥
𝑢1 and 𝜎𝑥𝑥

𝑢2 above shown. 

𝜎𝑥𝑥
0  

𝜏𝑥𝑦
𝑢  

𝜎𝑥𝑥
𝑢1 

𝜎𝑥𝑥
0  

𝜎𝑦𝑦
𝑢  𝜎𝑦𝑦

ℎ  

𝜎𝑦𝑦
𝑐  

𝜎𝑥𝑥
𝑐  

𝜎𝑥𝑥
𝑏  𝜎𝑦𝑦

𝑏  

𝜏𝑥𝑦
𝑏  

𝜎𝑥𝑥
𝑢2 

𝜏𝑥𝑦
𝑢  

𝜎𝑥𝑥
𝑢1 𝜎𝑥𝑥

𝑢2 

𝑙 − 𝑡 𝑡 

ℎ 
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Note that equilibrium equations of the system can be derived at upper and right boundary conditions as: 

1. Upper boundary condition: 𝑙𝜎𝑦𝑦
𝑢 + 𝑡𝜎𝑦𝑦

ℎ = 0                                                                                                          (5.15) 

2. Right boundary condition: ℎ𝜎𝑥𝑥
ℎ + 2𝑡𝜎𝑥𝑥

𝑐 + ℎ (�̅�𝑥𝑥
𝑢 + 𝜏𝑥𝑦

𝑏 𝑙−𝑡

2ℎ
) = 2(ℎ + 𝑡)𝜎𝑥𝑥

0                                                (5.16) 

At the interface of the brick unit and joint mortar: 

3. Interface brick-head joint:𝜎𝑥𝑥
ℎ = �̅�𝑥𝑥

𝑢 − 𝜏𝑥𝑦
𝑏 𝑙−𝑡

2ℎ
                                                                                                       (5.17) 

4. Interface brick-bed joint: 𝜎𝑦𝑦
𝑢 = 𝜎𝑦𝑦

𝑏                                                                                                                           (5.18) 

The 9 unknown variables considered in equilibrium equations can be concluded as: 𝜎𝑥𝑥
𝑖  and 𝜎𝑦𝑦

𝑖  (𝑖 = 𝑢, ℎ, 𝑏), 

𝜎𝑥𝑥
𝑐 , 𝜏𝑥𝑦

𝑏  and 𝜎𝑥𝑥
0 . 

5.1.3. Constitutive equations 

Bed joint, head joint and brick unit are considered to be elastic materials. Damage variables will evaluate their 
damage status. Therefore, constitutive equations of those components are: 

𝜀𝑥𝑥
𝑖 =

1

𝐸𝑖
[𝜎𝑥𝑥

𝑖 − 𝜈𝑖𝜎𝑦𝑦
𝑖 ], 𝑖 = 𝑏, ℎ, 𝑢                                                                    (5.19) 

𝜀𝑦𝑦
𝑖 =

1

𝐸𝑖
[𝜎𝑦𝑦

𝑖 − 𝜈𝑖𝜎𝑥𝑥
𝑖 ], 𝑖 = 𝑏, ℎ, 𝑢                                                                    (5.20) 

Relation of internal shear strain and stress can be derived as: 

𝜏𝑥𝑦
𝑏 = 2𝐺𝑏𝜀𝑥𝑦

𝑏                                                                                    (5.21) 

Now we have 8 unknown variables in section 5.1.1, 9 unknown variables in section 5.1.2 and 1 unknown 

variable 𝜀𝑥𝑦
𝑏  in this section. Therefore, we need 18 equations in total to solve those unknown variables by the 

function of the known variable 𝜀𝑥𝑥
0 . We already have eq. (5.10) to  (5.12), (5.15) to (5.21), with 14 equations 

in total. Then, 4 more equations are still needed to be found.  

Note that the shear deformation at the interface of the bed joint and the brick unit could be obtained from 
Zucchini’s work in 2002 [30], see figure 5-4. Then, the shear strain of the bed joint could be derived as: 

 
Figure 5-4 Shear deformation of model 2 

∆ ≅ 𝑡𝜀𝑥𝑥
ℎ − 𝑡𝜀𝑥𝑥

𝑢 (5.22) 

𝜀𝑥𝑥
ℎ ∙ 𝑡 

𝜀𝑥𝑥
𝑢 ∙ 𝑡 

𝜀𝑥𝑥
𝑢 ∙ 𝑡 ∆ 
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∆= 2𝑡 𝛾𝑥𝑦
𝑏 = 4𝑡𝜀𝑥𝑦

𝑏 (5.23) 

𝜀𝑥𝑦
𝑏 ≅

𝜀𝑥𝑥
ℎ − 𝜀�̅�𝑥

𝑢

4
(5.24) 

According to Zucchini’s work in [30], the stress-strain state in the cross joint does not influence the result 
significantly due to its small volume ratio. Therefore, let us just assume cross and bed joint behaving as 
horizontal spring to simplify the model when considering strain and stress of cross joint. As a result, eq. 
(5.25) and  (5.26) could be derived at the interface of bed and cross joint as: 

𝜎𝑥𝑥
𝑐 = 𝜎𝑥𝑥

𝑏 (5.25) 

𝜀𝑥𝑥
𝑐 =

𝐸𝑏
𝐸𝑐
𝜀𝑥𝑥
𝑏 (5.26) 

Note that the vertical strain of the cross and bed joint should be the same from figure 5-4.  

𝜀𝑦𝑦
𝑐 = 𝜀𝑦𝑦

𝑏 (5.27) 

5.1.4. Equilibrium “damage” equations 

In this part, the damage status of each component will be evaluated by damage factor 𝑑 and stresses of each 
component will be replaced by damaged ones. Therefore, the young’s modulus and shear modulus of the 
given component should be: 

𝐸𝑑 =  (1 − 𝑑𝑡)𝐸0, 𝐺𝑑 =  (1 − 𝑑𝑠)𝐺0 (5.28) 

Where 𝐸0 and 𝐺0 are the initial value of elastic and shear modulus, 𝑑𝑡 and 𝑑𝑠 are tension and shear damage 

factors. 𝐸𝑑 and 𝐺𝑑 are damaged elastic and shear modulus. 

Damaged stresses of components will be changed as: 

𝜎𝑡,𝑑 =  (1 − 𝑑𝑡)𝜎𝑡, 𝜏𝑑 =  (1 − 𝑑𝑠)𝜏 (5.29) 

Where 𝜎𝑡 and 𝜏 are undamaged tension and shear stresses of components at the current time, 𝜎𝑡,𝑑 and 𝜏𝑑 

are damaged ones. Let us assume that the damage status of the bed joint will be evaluated by shear 
behaviour at the brick-mortar interface, while that of the brick unit, head joint and cross joint will be evaluated 
by their tension behaviour. 

Parameters 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑐, 𝑏) are introduced here to simplify the equations by introducing them into 
eq. (5.27)  and (5.28)  in eq. (5.14)  (5.15)  (5.16)  (5.17)  (5.24) (5.25) , those equations are able to be 
rederived as: 

𝜎𝑥𝑥
ℎ 𝑟ℎ = �̅�𝑥𝑥

𝑢 𝑟𝑢 −
𝑙 − 𝑡

2ℎ
𝜏𝑥𝑦
𝑏 𝑟𝑏 (5.30) 

𝜎𝑦𝑦
𝑢 𝑟𝑢 = 𝜎𝑦𝑦

𝑏 𝑟𝑏 (5.31) 

ℎ𝜎𝑥𝑥
ℎ 𝑟ℎ + 2𝑡𝜎𝑥𝑥

𝑐 𝑟𝑐 + ℎ (�̅�𝑥𝑥
𝑢 𝑟𝑢 +

𝑙 − 𝑡

2ℎ
𝜏𝑥𝑦
𝑏 𝑟𝑏) = 2(ℎ + 𝑡)𝜎𝑥𝑥

0 (5.32) 

𝑙𝜎𝑦𝑦
𝑢 𝑟𝑢 + 𝑡𝜎𝑦𝑦

ℎ 𝑟ℎ = 0 (5.33) 



46 5. Model 2: horizontal tension behaviour 5.2. Algorithm  

 

𝜀𝑥𝑥
𝑐 =

𝑟𝑏
𝑟𝑐

𝐸𝑏
𝐸𝑐
𝜀𝑥𝑥
𝑏 (5.34) 

𝜎𝑥𝑥
𝑐 𝑟𝑐 = 𝜎𝑥𝑥

𝑏 𝑟𝑏 (5.35) 

Once damage factors of components are known, 18 unknown stresses, including 17 internal stresses of 
components and 1 external stress of the basic cell, could be obtained with those 18 “damage” equations. 

5.2. Algorithm 

Using the algorithm shown in figure 5-5 given by Zucchini in 2004, the micro-mechanical model of the internal 
system of damaged masonry cell will be coupled with the isotropic scalar damage model of its components 
[20]. 

 

Figure 5-5 Formulation of coupled material model 2 with an iterative algorithm 

Begin 

Initialization: 

Homogenization cell 

strain 𝜀𝑥𝑥
0 = 0 

𝑑𝑢 , 𝑑ℎ , 𝑑𝑐 , 𝑑𝑏 = 0 

Effective internal stress 

𝜀𝑥𝑥
𝑖  and 𝜀𝑦𝑦

𝑖  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) 

𝜎𝑥𝑥
𝑖  and 𝜎𝑦𝑦

𝑖  (𝑖 = 𝑢, ℎ, 𝑏) 

𝜀𝑥𝑦
𝑏 , 𝜎𝑥𝑥

𝑐 , 𝜏𝑥𝑦
𝑏  and 𝜎𝑥𝑥

0  

Damage coefficient 

𝑑𝑢𝑐, 𝑑ℎ𝑐, 𝑑𝑐𝑐 , 𝑑𝑏𝑐 

Damage equations: 

(5.10) (5.11) (5.12) 
(5.19) (5.20) (5.21) 
(5.24) (5.27)  
(5.30) to (5.35) 

Damage factor formulation: 

Eq. (4.5) for shear one 

Eq. (5.4) for tension ones 

Selected stresses: 

𝜎𝑥𝑥
𝑢 , 𝜎𝑥𝑥

ℎ , 𝜎𝑥𝑥
𝑐 , 𝜏𝑥𝑦

𝑏  

Damage internal stresses 

𝜎𝑥𝑥
𝑢 𝑟𝑢, 𝜎𝑥𝑥

ℎ 𝑟ℎ, 𝜎𝑥𝑥
𝑐 𝑟𝑐, 𝜏𝑥𝑦

𝑏 𝑟𝑏 

Tangent stiffness 𝐾 

Homogenized cell stress 𝜎𝑥𝑥
0  

With eq. (4.2.31) 

load loop: 

𝜀𝑥𝑥
0 = 𝜀𝑥𝑥

0 + ∆𝜀𝑥𝑥
0  

Stop 

Convergence? 

𝑎𝑏𝑠(𝑑𝑖𝑐 − 𝑑𝑖) < 𝑇𝑜𝑟 

No 

Yes 

𝑑𝑖 = 𝑑𝑖𝑐  

𝑟𝑖 = 1 − 𝑑𝑖  
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The outer loop is related to the so-called strain driven problem, known as incremental loading steps. In which, 
boundary conditions of the basic cell are shown: 

𝜀𝑥𝑥,𝑡+1
0 = 𝜀𝑥𝑥,𝑡

0 + ∆𝜀𝑥𝑥
0 (5.36) 

𝜎𝑦𝑦
0 = 0 (5.37) 

Where 𝜀𝑥𝑥,𝑡+1
0  and 𝜀𝑥𝑥,𝑡

0  is normal cell strain at time 𝑡 and 𝑡 + 1, ∆𝜀𝑥𝑥
0  is strain increment. 𝜎𝑦𝑦

0  is vertical cell 

stress. 

The inner loop is considered an iterative procedure. Values of damage factors are first initialized to be zero 

at 𝑡 = 0. Then effective internal stresses can be expressed by normal cell strain 𝜀𝑥𝑥
0  by solving “damage” 

equilibrium equations of internal structure with the assumed damage factors. To verify values of damage 
coefficients, damage factors are calculated by components’ stresses according to formulation laid out in 
chapter 4 section 4.1 and chapter 5 section 5.1 again. Damage variables are updated once the difference 
between calculated and assumed values is larger than the assumed tolerance. This cycle is continually 
operated every incremental step. 

Damaged internal stress 𝜎𝑥𝑥
0  and tangent stiffness 𝐾 are finally decided by the value of normal cell strain and 

damage variables within tolerance, where the function of tangent stiffness of model should be: 

𝐾 =
𝜕 𝜎𝑥𝑥

0

𝜕 𝜀𝑥𝑥
0 = 𝑓(𝜀𝑥𝑥

0 , 𝑑𝑖), 𝑖 = ℎ, 𝑢, 𝑐, 𝑏 (5.38) 

Note that function of normal stress 𝜎𝑥𝑥
0  could be proposed with known material and geometrical properties of 

cell components in the format as:  

𝜎𝑥𝑥
0 = 𝑓𝑠𝑖𝑔𝑥𝑥0(𝑟𝑢, 𝑟ℎ , 𝑟𝑐 , 𝑟𝑏 , 𝜀𝑥𝑥

0 ) (5.39) 

Here, components are supposed to be damaged by tension behaviour and only one vertical crack in each 
component is allowed to occur. 
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6. Model 3: vertical compression behaviour 
In this section, the homogenized constitutive relation of vertical compressive behaviour of masonry structures 
is studied based on Zucchini’s research in 2007 [32] and Lourenço’s research in 2006 [35]. It is proposed 
from two main parts: the damage model and elastoplastic theory.  

According to the assumptions introduced in chapter 3 section 3.4.1, the damage model is first derived by a 
similar approach as models 1 and 2 did. And then, plastic deformations of components are proposed 
according to the theory described in chapter 3 section 3.4.2. The formulation of a combination of the damage 
model and the plastic deformations is then derived to obtain the final constitutive model. 

6.1. Damage model 

Formulations of shear and tension damage coefficients are the same as previous formulations stated, see 
equations (4.8) and (5.6), following the exponential softening processes. In this model, the brick and head 
joints fail in their equivalent tensile caused by compressive splitting effects. The bed joint is damaged in shear, 
while the damage status of the cross joint depends on the status of the head joint and the bed joint. 

6.1.1. Kinematic relation 

The homogenized constitutive law of the basic cell under pure vertical compression loading is studied in this 
section. Therefore, the vertical strain and the corresponding stress in the vertical compression direction are 
set in homogeneously distributions. According to the assumptions described in chapter 3 section 3.4.1, the 
deformed cell of model 3 could be seen from figure 6-1. 

 
Figure 6-1 Deforemed cell of model 3 

 brick unit           bed joint           cross joint           head joint 

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green), 
“b” means bed joint (orange)  

It can be noted that only the external loading condition of model 3 differs from that of model 2 from the macro 
(homogenized) level. Therefore only the equations (5.11) in model 2 proposed in chapter 5 section 5.1.1 is 
changed, see equation (6.1). Other kinematic relations of model 3 are the same as that of model 2.  

2(ℎ + 𝑡)𝜀𝑦𝑦
0 = 2𝑡𝜀𝑦𝑦

𝑐 + ℎ𝜀𝑦𝑦
ℎ + ℎ𝜀𝑦𝑦

𝑢 (6.1) 

∆𝑢𝑥𝑥
𝑢 + ∆𝑢𝑥𝑥

ℎ  

2∆𝑢𝑥𝑥
𝑐  

2∆𝑢𝑦𝑦
𝑢 + ∆𝑢𝑦𝑦

𝑏  

∆𝑢𝑦𝑦
𝑢 + ∆𝑢𝑦𝑦

ℎ  

∆𝑢 
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6.1.2. Equilibrium equations of the system 

Distributions of internal stresses of components could be drawn as figure 6-2 shown based on the 
assumptions made in chapter 3 section 3.4.1. It is noticed that the horizontal stresses of the bed and cross 
joint should be compressive considering the uniaxial behaviour of masonry structures introduced in chapter 
2 section 2.3 [10]. This simulation differs from Zucchini’s research in 2007. [32] 

 
 

Figure 6-2 Model 3: the internal system of basic cell 

As boundary strain is changing from horizontal tensile loading to vertical compressive one, the homogenized 
stress changes as well and the new definition of it changes from the previous equations (5.32) (5.33) in 

chapter 5 to (6.2) (6.3) 

ℎ𝜎𝑥𝑥
ℎ 𝑟ℎ − 2𝑡𝜎𝑥𝑥

𝑐 𝑟𝑐 + ℎ (�̅�𝑥𝑥
𝑢 𝑟𝑢 +

𝑙 − 𝑡

2ℎ
𝜏𝑥𝑦
𝑏 𝑟𝑏) = 0 (6.2) 

𝑙𝜎𝑦𝑦
𝑢 𝑟𝑢 + 𝑡𝜎𝑦𝑦

ℎ 𝑟ℎ = (𝑙 + 𝑡)𝜎𝑦𝑦
0 (6.3) 

6.1.3. Constitutive relation 

The brick unit, head and bed joint are still assumed to be elastic materials in the damage model, the 
constitutive relations of which are the same as the ones proposed in chapter 5, see equations (5.19) to (5.21). 

 

Figure 6-3 simplifications of cross joint 

𝜎𝑦𝑦
𝑐  

𝜏𝑥𝑦
𝑢  

𝜎𝑥𝑥
𝑢1 

𝜎𝑦𝑦
0  

𝜎𝑥𝑥
ℎ  

𝜎𝑦𝑦
𝑢  

𝜎𝑦𝑦
ℎ  

𝜎𝑦𝑦
𝑏  

𝜎𝑥𝑥
𝑏  

𝜏𝑥𝑦
𝑏  

𝜎𝑥𝑥
𝑢2 

𝜎𝑥𝑥
𝑐  

𝜎𝑦𝑦
0  
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According to Zucchini’s research in 2002 [30], the cross joint could be seen as two springs in horizontal and 
vertical directions rather than only the horizontal one assumed in model 2, see figure 6-3. Therefore, the 
equation (5.27) could be rewritten as: 

𝜀𝑦𝑦
𝑐 =

𝐸ℎ
𝐸𝑐
𝜀𝑦𝑦
ℎ (6.4) 

6.1.4. Equilibrium “damage” equations 

The formulations for the damage variables of the brick unit, head and bed joints are the same as the previous 
ones, see equation (4.5) in chapter 4 section 4.1 and (5.4) in chapter 5 section 5.1. Based on zucchini’s work 
[20], the value of damage coefficient in the cross joint could be equal to the average value of that in the head 
𝑑ℎ  and bed joint 𝑑𝑏  when the horizontal stress in the cross joint is in compression direction (assumed 
direction), otherwise this value still is calculated following the formulations proposed in model 2 with the cross 
joint’s tensile stress 𝜎𝑥𝑥

𝑐  and strength 𝜎𝑡
𝑐, see equations (6.5) and (6.6). 

𝑑𝑐 =

{
 

 
𝑑𝑏 + 𝑑ℎ

2
, 𝜎𝑥𝑥

𝑐 > 0

1 −
𝜎𝑡
𝑐

𝜎𝑐
exp [𝐴𝑡

𝑐 (1 −
𝜎𝑐

𝜎𝑡
𝑐)] , 𝜎𝑥𝑥

𝑐 ≤ 0 
(6.5) 

𝜎𝑐 = max{𝜎𝑥𝑥
𝑐 , 𝜎𝑡

𝑐} (6.6) 

The internal stresses could be solved by known 𝜀𝑦𝑦
0  by equations (5.10) (5.12)(5.19) (5.20) (5.21) (5.24) 

(5.30) (5.31) (5.34) (5.35) from chapter 5 and equations (6.1) to (6.4) from chapter 6. The material and 
geometrical properties could be obtained from Zucchini’s work in 2007 [32], see table 6-1.  

Table 6-1 Material and geometrical properties of basic cell [32] 

Material properties 

 𝐸 (N/mm2) 𝜈 𝜎𝑡 (𝑁/𝑚𝑚
2) 𝐺𝐼 (N/mm2mm) 𝜎𝑠 (N/mm

2) 𝐺𝐼𝐼 (N/mm2mm) 

Mortar 1178 0.057 0.7 0.35 0.75 0.05 

Brick unit 4865 0.094 3.7 1.9 - - 

Geometrical properties 

 ℎ (mm) 𝑙 (mm) 𝑡 (𝑚𝑚) 
Basic cell 2 12 1 

 

As a result, the homogenized strain-stress curve can be obtained by implementing the algorithm introduced 
in chapter 5 section 5.1 figure 5-5 with the changed formulation of the cross-joint’s damage variable, see 
equations (6.5) and (6.6). 

This damage model only considers the elastic properties of components, which means all components could 
only be damaged in shear and tension when shear or tensile cracks occur. 

6.2. Elastoplastic phase 

Based on the elastoplastic theory introduced in chapter 2 section 2.4, the function of the internal stresses, 
including the inelastic behaviour, could be calculated by equation (2.35): 

𝝈𝑛 = 𝝈0 +𝑫𝑒 ∆𝜺𝐴 +𝑫𝑒 (∆𝜺𝐵 −
𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐 + 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

𝒎𝑐)                                              (2.35) 
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According to figure 2-16 in chapter 2, this equation could be simplified as: 

𝝈𝑖 = 𝑫𝑖,𝑒  (𝜺𝑖 − ∑
𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒∆𝜺𝑖

ℎ𝑖,𝑐 + 𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒𝒎𝑖,𝑐

𝒎𝑖,𝑐

𝑡=𝑡

𝑡=𝑚

) , 𝑖 = 𝑢, 𝑏, ℎ (6.7) 

Where subscript “𝑢, 𝑏, ℎ” means the brick unit, bed joint and head joint respectively. The inelastic phase begins 
from load step 𝑡 = 𝑚 and ∆𝜺𝑖 is the strain increment of each component at each load step. 

𝝈𝑖 is the stress tensor and 𝜺𝑖 is strain tensor of each component at current step 𝑡, see equation (6.8). 

𝝈𝑖 = [

𝜎𝑥𝑥
𝑖

𝜎𝑦𝑦
𝑖

𝜏𝑥𝑦
𝑖

] , 𝜺𝑖 = [

𝜀𝑥𝑥
𝑖

𝜀𝑦𝑦
𝑖

2𝜀𝑥𝑦
𝑖

] (6.8) 

𝑫𝑖,𝑒 is elastic stiffness matrix and is defined as equation (6.9) shown based on continuum mechanics of plane 

stress element: 

𝑫𝑖,𝑒 =
𝐸𝑖

(1 + 𝜈𝑖)(1 − 2𝜈𝑖)
[

1 − 𝜈𝑖 𝜈𝑖 0
𝜈𝑖 1 − 𝜈𝑖 0

0 0
1 − 2𝜈𝑖
2

] (6.9) 

Equation (6.7) could also be rewritten as: 

𝜺𝑖 = 𝑫𝑖,𝑒
−1𝝈𝑖 + 𝜺𝑖,𝑝, 𝑖 = 𝑢, 𝑏, ℎ (6.10) 

The elastic and elastoplastic properties of components in this model could be coupled by equation (6.10) 
straight forward. The first part in equation (6.10) is contributed by the damage model proposed in chapter 6 
section 6.1. The second part is the plastic strain tensor, which could be obtained by the formulations and 
algorithm introduced in section 6.2.1. 

6.2.1. Flow rule 

Plastic strain tensor could be computed by equation (6.11) by: 

𝜺𝑖,𝑝 = ∑ ∆𝜆𝑖,𝑐  𝒎𝑖,𝑐

𝑡=𝑡

𝑡=𝑚

= ∑
𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒∆𝜺𝑖

ℎ𝑖,𝑐 + 𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒𝒎𝑖,𝑐

 𝒎𝑖,𝑐

𝑡=𝑡

𝑡=𝑚

(6.11) 

Where ∆𝜆𝑖,𝑐 is the plastic multiplier, 𝒏𝑖,𝑐
𝑇  and 𝒎𝑖,𝑐 are the direction of yield function and protentional energy of 

each component at critical stress point located on the yield surface: 

𝒏𝑖,𝑐 =

[
 
 
 
 
 
 
 
𝜕𝑓𝑖

𝜕𝜎𝑥𝑥
𝑖
|
𝑐

𝜕𝑓𝑖

𝜕𝜎𝑦𝑦
𝑖
|

𝑐

𝜕𝑓𝑖

𝜕𝜏𝑥𝑦
𝑖
|

𝑐 ]
 
 
 
 
 
 
 

,𝒎𝑖,𝑐 =

[
 
 
 
 
 
 
 
𝜕𝑔𝑖

𝜕𝜎𝑥𝑥
𝑖
|
𝑐

𝜕𝑔𝑖

𝜕𝜎𝑦𝑦
𝑖
|

𝑐

𝜕𝑔𝑖

𝜕𝜏𝑥𝑦
𝑖
|

𝑐 ]
 
 
 
 
 
 
 

(6.12) 
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The function of Drucker-Prager yield criteria introduced in chapter 2 section 2.4.2 equation (2.9) and potential 

 energy in the form of equation (2.22) in chapter 2 section 2.4.2 could be rewritten as equations (6.13) and 
(6.14) shown when they are applied on the 4-node plane element: 

𝑓𝑖 = √𝜎𝑥𝑥
𝑖 2

+ 𝜎𝑦𝑦
𝑖 2

+ 3𝜏𝑥𝑦
𝑖 2

− 𝜎𝑥𝑥
𝑖 𝜎𝑦𝑦

𝑖 +
2 sin𝜙𝑖
3 − sin𝜙𝑖

(𝜎𝑥𝑥
𝑖 + 𝜎𝑦𝑦

𝑖 ) −
6 𝑐𝑖  sin𝜙𝑖
3 − sin𝜙𝑖

(6.13) 

𝑔𝑖 = √𝜎𝑥𝑥
𝑖 2

+ 𝜎𝑦𝑦
𝑖 2

+ 3𝜏𝑥𝑦
𝑖 2

− 𝜎𝑥𝑥
𝑖 𝜎𝑦𝑦

𝑖 +
3 sin𝜓𝑖
3 − sin𝜓𝑖

(𝜎𝑥𝑥
𝑖 + 𝜎𝑦𝑦

𝑖 ) −
6 𝑐𝑖 sin𝜓𝑖
3 − sin𝜓𝑖

(6.14) 

Critical stress point of the given component could be obtained from the cross points of the elastic line and the 

yield surface 𝑓𝑖 in stress space. It can be assumed that we have an elastic stress point (𝜎𝑥𝑥
𝑖𝑒 , 𝜎𝑦𝑦

𝑖𝑒 , 𝜏𝑥𝑦
𝑖𝑒 ) from the 

damage model proposed in chapter 6 section 6.1 at the current load step, then the value of critical stress 

point (𝜎𝑥𝑥
𝑖𝑐 , 𝜎𝑦𝑦

𝑖𝑐 , 𝜏𝑥𝑦
𝑖𝑐 ) could be found by an equation system: 

{

𝜎𝑥𝑥
𝑖𝑒 ∙ 𝜎𝑦𝑦

𝑖 = 𝜎𝑦𝑦
𝑖𝑒 ∙ 𝜎𝑥𝑥

𝑖

𝜏𝑥𝑦
𝑖𝑒 ∙ 𝜎𝑦𝑦

𝑖 = 𝜎𝑦𝑦
𝑖𝑒 ∙ 𝜏𝑥𝑦

𝑖

𝑓𝑖 = 0

(6.17) 

Value of hardening modulus ℎ𝑖,𝑐, defined in chapter 3 section 3.4 equation (3.1), depends on:  

(1) Plastic multiplier ∆𝜆𝑖,𝑐; 

(2) The slope of hardening diagram at critical stress point 
𝜕𝑓𝑖

𝜕𝜅𝑖
|
𝑐
, see chapter 3 equations (3.5) (3.6); 

(3) Hardening parameter ∆𝜅𝑖: 

∆𝜅𝑖 = √
2

3
[(∆𝜀𝑥𝑥

𝑖𝑝
)
2
+ (∆𝜀𝑦𝑦

𝑖𝑝
)
2
+ (∆𝜀𝑥𝑦

𝑖𝑝
)
2
] (6.18) 

∆𝜺𝑖,𝑝 = ∆𝜆𝑖,𝑐  𝒎𝑖,𝑐 = [

∆𝜀𝑥𝑥
𝑖𝑝

∆𝜀𝑦𝑦
𝑖𝑝

∆𝜀𝑥𝑦
𝑖𝑝

] (6.19) 

6.2.2. Yield surface 

The material and geometrical properties could be obtained from Zucchini’s work [32], as table 6-2 shown. 

Table 6-2 material properties from Zucchini in 2007 [32] 

Material properties Brick unit Mortar Geometry Brick unit Mortar 
Young’s Modulus 𝐸 (MPa) 4865 1178 

Height ℎ (mm) 
(Half value only) 

2 2 Poisson ratio 𝜈 0.094 0.057 
Tension strength 𝜎𝑡 (𝑀𝑃𝑎) 3.7 0.7 
Compression strength 𝜎𝑐 (MPa) 26.9 3.2 

Length 𝑙 (mm) 
(Half value only) 

12 12 
I fracture energy 𝐺𝐼 (N/mm) 1.9 0.35 
Compressive fracture energy 𝐺𝑐 (N/mm) 29.8 6.43 
Shear strength 𝜎𝑠 (MPa) - VAR 
II fracture energy 𝐺𝐼𝐼 (𝑁/𝑚𝑚) - VAR 

Thickness 𝑡 (mm) 
(Half value only) 

- 1 Friction angle 𝜙 (°) 10 10 
Dilatancy angle 𝜓 (°) 5 5 
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According to the assumption on the selection of internal stresses of components made in chapter 3 section 

3.4, shear stresses of the brick unit 𝜏𝑥𝑦
𝑢  and the head joint 𝜏𝑥𝑦

ℎ  should be equal to zero. 

 

Figure 6-4 yield surface of the brick 

unit 

 

Figure 6-5 yield surface of the head 

joint 

 

Figure 6-6 representative yield surface of 

the bed joint 

Yield surfaces of the brick unit, head and bed joint could be drawn as figure 6-4 to 6-6 shown. 

Notice that all of the yield surfaces are drawn at components’ ultimate limit state, and only the bed joint’s 
shear stress is taken into account. The yield surface of the bed joint is a representative surface with only 
positive values in all directions. 

6.3. Algorithm 

The formulation of model 3 can be found in figure 6-7. This algorithm could be implemented from a pure brick 
unit material model to a composited unit cell consisting of the brick units and mortar joints.  

Firstly, the homogenized cell can be assumed to consist of only the brick unit, and the elastoplastic behaviour 
of this cell can be implemented the same as quasi-brittle-like material. In this case, the vertical strain of the 

brick unit is equal to the homogenously distributed strain 𝜀𝑦𝑦
0 . The damaged stress of the brick unit  𝜎𝑦𝑦

𝑢  in 

vertical direction should be equal to homogenized stress 𝜎𝑦𝑦
0 , while the horizontal stress of the brick unit  𝜎𝑥𝑥

𝑢  

should be equal the macro stress as 𝜎𝑥𝑥
𝑢 = 𝜎𝑥𝑥

0 = 0. 

Secondly, the material model considering only under ideal plasticity is implemented by assuming the value of 
the hardening/softening modulus 𝑠𝑢 always to be equal to zero. The cohesion of the brick unit is a constant 
in this case, and it could be computed by compressive strength 𝑓𝑐 and friction angle 𝜙, see equation (2.2𝑏) 
in chapter 2 section 2.4.2. The value of the brick unit’s yield function can be computed by the damaged 
internal stresses (elastic predictors) of the brick unit obtained from the “damage” equilibrium equations once 
cohesion is obtained. Note that the “damage” equilibrium equations are derived by substituting the damaged 
internal stresses for the undamaged stresses proposed based on the bricks’ elastic properties in the 
compatibility equations. The damaged stresses are computed according to equation (5.1) shown.  

Thirdly, the predicted stress point is indicated by the damaged internal stresses (elastic predictors). It is 
considered to be located inside or on the yield surface if the yield surface’s value is negative or zero, which 
means the bricks is elastically deforming. Then, the strain increment loop occurs, where the external strain 
and stress increase linearly.  

Fourthly, if the value is positive, the plastic deformation of the basic cell should be considered by introducing 
a plastic strain tensor of the brick unit 𝜺𝑖,𝑝, with 𝑖 = 𝑢 here. To obtain the plastic correctors 𝜺𝑖,𝑝, the critical 

stress point should be found following equation (6.17) in chapter 6 section 6.2.1 by the stress tensor 𝝈𝑖 
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computed from the damage model, see chapter 6 section 6.1. The directions of the yield surface 𝒎𝑖,𝑐 together 

with potential energy 𝒏𝑖,𝑐
𝑇  at this critical stress point should then be calculated following equation (6.12).   

Fifthly, the corrected stress 𝝈𝑖,𝑝 could be calculated by the value of elastic predictors 𝜺𝑖 from the damage 

model, the plastic correctors 𝜺𝑖,𝑝 and the stiffness matrix 𝑫𝑢𝑒 of brick unit based on continuum mechanics 

theory. The damage variable of the brick unit could be defined following the algorithm introduced in chapter 
5 section 5.2, see figure 5-5, by the value of 𝝈𝑖,𝑝. That is the end of the “elastic or elastoplastic phase” loop 

at the left hand of the algorithm displayed in figure 6-7. 

 

Figure 6-7 Formulation of model 3 with an iterative algorithm 

However, the hardening/softening modulus 𝑠𝑢 should vary following the hardening or softening processes, 
and its value could also be relative to the value of cohesion. As 𝑠𝑢 could be seen as an input as well as an 
output in this case. We could use a similar approach as the one introduced in model 2 to find the damage 
variables, could also be adopted here to find 𝑠𝑢:  

(1) Setting the variable as known one with the assumed value to calculate the output coefficient, indicated as 
the plastic multiplier ∆𝜆𝑢𝑐 here; 

(2) Then, re-calculating the variable with the value of output parameter computed in step 1; 
(3) If the difference between the assumed and the recalculated values of the variable is smaller than the 

assumed tolerance, then the assumed value is used in the next step. Otherwise, setting the recalculated 
one as a new assumed value and repeating steps 1 to 3. 

Begin 

Initialization:  

Strain 𝜀𝑦𝑦
0 = 0, 𝜺𝑖,𝑝 = 𝟎 

Damage factor: 𝑑𝑖 = 0 

Softening modulus: 𝑠𝑖,𝑐 = 0 

Effective internal stress  

𝜎𝑥𝑥
𝑖  and 𝜎𝑦𝑦

𝑖  and 𝜏𝑥𝑦
𝑖  

Internal strains  

𝜀𝑥𝑥
𝑖  and 𝜀𝑦𝑦

𝑖  and 𝜀𝑥𝑦
𝑖  

Elastic predictor stress: 

𝜎𝑥𝑥
𝑖𝑒 = 𝜎𝑥𝑥

𝑖 , 𝜎𝑦𝑦
𝑖𝑒 = 𝜎𝑦𝑦

𝑖  

𝜏𝑥𝑦
𝑖𝑒 = 𝜏𝑥𝑦

𝑖  

Elastic line: 

With point (𝜎𝑥𝑥
𝑖𝑒 , 𝜎𝑦𝑦

𝑖𝑒 , 𝜏𝑥𝑦
𝑖𝑒 ) 

𝑓𝐸(𝜎𝑥𝑥
𝑖 , 𝜎𝑦𝑦

𝑖 , 𝜏𝑥𝑦
𝑖 ) = 0 

Critical stress point: (𝜎𝑥𝑥
𝑖𝑐 , 𝜎𝑦𝑦

𝑖𝑐 ,𝜎𝑦𝑦𝑖𝑐 ) 

{
𝑓(𝜎𝑥𝑥𝑖 , 𝜎𝑦𝑦𝑖 , 𝜏𝑥𝑦𝑖 ) = 0

𝑓𝐸(𝜎𝑥𝑥𝑖 , 𝜎𝑦𝑦𝑖 , 𝜏𝑥𝑦𝑖 ) = 0
 

Reach yield surface? 

𝑓(𝜎𝑥𝑥
𝑖𝑒 , 𝜎𝑦𝑦

𝑖𝑒 , 𝜏𝑥𝑦
𝑖𝑒 ) < 0 

Yes 

No 

𝜀𝑦𝑦
0 = 𝜀𝑦𝑦

0 + ∆𝜀𝑦𝑦
0  

Flow and yield direction: 

𝒎𝑖,𝑐 =
𝜕𝑔𝑖
𝜕𝝈𝑖

|𝑐, 𝒏𝑖,𝑐 =
𝜕𝑓𝑖
𝜕𝝈𝑖

|𝑐 

Plastic multiplier: 

∆𝜆𝑖,𝑐 =
𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒∆𝜺𝑖

ℎ𝑖,𝑐 +𝒏𝑖,𝑐
𝑇 𝑫𝑖,𝑒𝒎𝑖,𝑐

 

Recal. softening parameter  

at critical surface 

𝑠𝑖,𝑐 = −
1

∆𝜆𝑖,𝑐

𝜕𝑓𝑖
𝜕𝜅𝑖

Δ𝜅𝑖 

Δ𝜅𝑖 = √2/3(Δ𝜺𝑖,𝑝)
𝑇Δ𝜺𝑖,𝑝 

∆𝜺𝑖,𝑝 = ∆𝜆𝑖,𝑐 𝒎𝑖,𝑐 𝜅𝑖 = 𝑓𝑐(𝑐𝑖) 

Convergency? 

𝑎𝑏𝑠(𝑠𝑖,𝑐 − 𝑠𝑖) < 𝑇𝑂𝑅2 
No 

𝑠𝑖 = 𝑠𝑖,𝑐 

Yes 

Stress after corrected: 

𝝈𝑖,𝑝 = 𝑫𝑖,𝑒(𝜺𝑖 − 𝜺𝑖,𝑝) 

𝜺𝑖 is elastic strain tensor  

𝜺𝑖,𝑝 = 𝜺𝑖,𝑝 + Δ𝜺𝑖,𝑝 

Damage factor 

verification process 
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The recalculated value of  𝑠𝑢 is defined in equation (3.1) in chapter 3, computed by the plastic multiplier ∆𝜆𝑢𝑐, 
hardening parameter   𝑘 (defined in chapter 3) and the slope of the hardening diagram 𝛼𝑓/𝛼𝑘. According to 
the theories introduced in chapter 3 and chapter 6, the hardening/softening modulus 𝑠𝑢 could be implemented 
in the algorithm, see the loop located on the right-hand side in figure 6-7. The MATLAB code could be found 
in Appendix C, leading to results shown in figure 6-8 and 6-9. 

 
Figure 6-8 strain-stress curve of the brick unit: the vertical 

stress 𝜎𝑦𝑦
𝑢  vs, strain 𝜀𝑦𝑦

𝑢  of the brick unit 

 
Figure 6-9 differences between ideal and real plasticity: the 

vertical stress 𝜎𝑦𝑦
𝑢  vs, strain 𝜀𝑦𝑦

𝑢  of the brick unit 

Finally, applying all of the upper steps in the damage model described in chapter 6 section 6.1. And then, 
implementing the yield surface of the head and bed joints, see figure 6-5 and 6-6, in each component 
respectively, with their different compressive strengths, friction and dilatancy angles. 
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7. Model 4: coupled behaviour 
This final model includes all the failure modes of masonry described in section 2.1, namely tension, shear 
and compression. The mechanical behaviour of masonry is described by means of a newly developed 
algorithm. Concepts of this chapter are:  

(1) Definition of the equations of compatibility of the deformed cell; 
(2) Description of the algorithm defined to compute the stresses acting on the cell; 
(3) Graphical representation of the stress-strain uniaxial relationships in tension, compression and shear. 

7.1. Transverse strains 

The transverse strains 𝜀𝑥𝑥,𝑦
0  and 𝜀𝑦𝑦,𝑥

0   are introduced in chapter 3 section 3.5 in the x- and y-direction, 

respectively. They are relative to internal strains obtained from models 2 and 3 by equations (7.1) and (7.3): 

𝜀𝑥𝑥,2
𝑢 ∙ 𝑙 + 𝜀𝑥𝑥,2

ℎ ∙ 𝑡 = 𝜀𝑥𝑥,𝑦
0 ∙ (𝑙 + 𝑡) (7.1) 

𝜀𝑦𝑦,2
𝑐 ∙ 2𝑡 + 𝜀𝑦𝑦,2

ℎ ∙ ℎ + 𝜀𝑦𝑦,2
𝑢 ∙ ℎ = 𝜀𝑦𝑦

0 ∙ 2(ℎ + 𝑡) (7.2) 

Where 𝜀𝑥𝑥,2
𝑖 , 𝑖 = 𝑢, ℎ are the horizontal strains of the brick unit and the head joint obtained from chapter 5 by 

adding a new equation (7.2) and 𝜀𝑦𝑦,2
𝑖 , 𝑖 = 𝑢, ℎ, 𝑐 are the vertical strains of the brick unit, the head and the 

cross joint obtained from chapter 5. The homogenized strain 𝜀𝑦𝑦
0  is caused by vertical loading. 

𝜀𝑦𝑦,3
𝑐 ∙ 2𝑡 + 𝜀𝑦𝑦,3

ℎ ∙ ℎ + 𝜀𝑦𝑦,3
𝑢 ∙ ℎ = 𝜀𝑦𝑦,𝑥

0 ∙ 2(ℎ + 𝑡) (7.3) 

𝜀𝑥𝑥,3
𝑢 ∙ 𝑙 + 𝜀𝑥𝑥,3

ℎ ∙ 𝑡 = 𝜀𝑥𝑥
0 ∙ (𝑙 + 𝑡) (7.4) 

Similarly, 𝜀𝑦𝑦,3
𝑖 , 𝑖 = 𝑢, ℎ, 𝑐 are the vertical strains of the brick units, the head and the cross joint obtained from 

chapter 6 and 𝜀𝑥𝑥,3
𝑖 , 𝑖 = 𝑢, ℎ are the horizontal strains of the brick unit and the head joint. The macro strain 𝜀𝑥𝑥

0  

is caused by horizontal loading.  

7.2. Algorithm 

We can distinguish if “diagonal tensile cracking” failure mode, caused by combined shear and vertical 

compressive loading, occurs or not by determining the magnitude of vertical strain 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 . If the value of  

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0  was the positive number or zero, then “shear sliding” failure mode occurs, see figure 2-1 (b) in chapter 

2. While “diagonal tensile cracking” failure mode assumed in chapter 3 occurs if the value of  𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0  was a 

negative number, see figure 2-1 (d). Based on these ideas, the formulation of model 4 could be derived as 

figure 7-1 shown. First, the initial homogenized strains 𝜀𝑥𝑥
0 , 𝜀𝑦𝑦

0  and 𝜀𝑥𝑦
0  together with the damage variables of 

components for macro constitutive law in shear  𝑑𝑖
𝑥𝑦

, horizontal  𝑑𝑖
𝑥 and vertical direction 𝑑𝑖

𝑦
(𝑖 = 𝑢, 𝑏, 𝑐, ℎ) are 

supposed to be zero. After that, total strains 𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0  and 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙

0  could be computed by equations proposed 

in chapter 3 and chapter 7. The values of these strains could be positive or negative numbers. Therefore, the 
strains’ magnitudes should be determined by a so-called “in tension?” judgement described in the left loop in 

figure 7-1. If 𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0, the horizontal loading is set to be the tensile one. Then, the “horizontal tensile 

cracking” failure mode proposed in model 2 occurs (see figure 2-1 (c)), and the homogenized constitutive 
model in horizontal direction could be obtained by implementing the algorithm derived in figure 5-5. Otherwise, 

the horizontal stress 𝜎𝑥𝑥
0  is assumed to be zero as the horizontal loading is set to be the compressive one. 

If 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0, the vertical loading is set to be tensile one. Then, the “joint tensile cracking” failure mode 

occurs, as figure 2-1 (a) shown in chapter 2. As the vertical tension stresses of the bed joint and other 
components could be obtained by implementing the algorithm derived in model 3, the damage variables of 
components could be computed by the exponential relation of damage coefficients and internal stresses (see 



58 7. Model 4: coupled behaviour 7.2. Algorithm  

 
equation (5.6)). As a result, the constitutive model in the vertical direction could be obtained. Meanwhile, the 

“shear sliding” failure mode occurs if there is shear loading when 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0, see figure 2-1 (b). In this case, 

the macro shear stress 𝜏𝑥𝑦
0  could be computed by implementing the simple algorithm described in chapter 4. 

If 𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 < 0 , the vertical loading is set to be a compressive one. Then, the “crushing” failure mode 

introduced in model 3 occurs if there is no shear loading (see figure 2-1 (e)). In this case, the constitutive 
model in the vertical direction could be built up by implementing the algorithm derived in figure 6-8 chapter 6. 

Note that the homogenized stress 𝜎𝑦𝑦
0  should be negative in this case. 

 
Figure 7-1 formulation of model 4 with an iterative algorithm 

If there is shear loading, a “diagonal tensile cracking” failure pattern, see figure 2-1 (d), introduced in chapter 

3 would occur. In this case, the internal shear stress caused by the external shear strain 𝜀𝑥𝑦
0  could be obtained 

by equation (4.22) in chapter 4. The damage variable relative to this internal stress could be computed by 
setting the shear strength of the bed joint to be the cohesion of the head joint 𝐶𝐻, see equation (4.5) in chapter 

4. The homogenized stress in shear direction 𝜏𝑥𝑦
0  could be computed once the damage variable, as well as 

the internal stress 𝜏𝑥𝑦
𝑏 , is obtained by: 

𝜏𝑥𝑦
0 = (1 − 𝑑)𝜏𝑥𝑦

𝑏 − 𝜎𝑦𝑦
0 tan(𝜙) (7.5) 

The cohesion of the head joint 𝐶𝐻 and macro stress 𝜎𝑦𝑦
0  could be computed from the previous step. 

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0  

Homogenized stress 

Vertical 𝜎𝑦𝑦
0 = −𝜎𝑦𝑦,3

0  

Cohesion in head joint 𝐶𝐻 

In tension? 

𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0 

Begin 

Initialization: 

Homogenized strains: 

𝜀𝑥𝑥
0 = 0, 𝜀𝑦𝑦

0 = 0, 𝜀𝑥𝑦
0 = 0 

Damage factors: 𝑖 = 𝑢, 𝑏, ℎ, 𝑐 

𝑑𝑖
𝑦
= 0 (for vertical behaviour) 

𝑑𝑖
𝑥 = 0 (for horizontal behaviour)  

𝑑𝑖
𝑥𝑦
= 0 (for shear behaviour) 

Total homogenized strains 

𝜀𝑥𝑥, 𝑡𝑜𝑡𝑎𝑙
0 = 𝜀𝑥𝑥

0 + 𝜀𝑥𝑥,𝑦
0  

Corresponding strain  

Equation 

𝜀𝑥𝑥,𝑦
0 = 𝑓𝑥𝑥0𝑦(𝜀𝑦𝑦

0 ) 

Equation  

𝜀𝑦𝑦,𝑥
0 = 𝑓𝑦𝑦0𝑥(𝜀𝑥𝑥

0 ) 

Total homogenized strains 

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 = 𝜀𝑦𝑦

0 + 𝜀𝑦𝑦,𝑥
0  

In tension? 

𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0 ≥ 0 

Model 3 algorithm: 𝜎𝑦𝑦,3
0  

figure 6-8 (chapter 6) 

Yes 

No 

−𝜀𝑦𝑦, 𝑡𝑜𝑡𝑎𝑙
0  

Damage factor 

verification process 

Internal shear stress: 

Equation (4.22) 
Damage factor: 

Equation (4.5) 𝜎𝑠 = 𝐶𝐻 

Homogenized stress: 

𝜏𝑥𝑦
0 = (1 − 𝑑)𝜏𝑥𝑦

𝑏 − 𝜎𝑦𝑦
0 tan (𝜙) 

Yes 

Model 2 algorithm: 𝜎𝑥𝑥,2
0  

figure 5-5 (chapter 5) 

Homogenized stress 

Horizontal 𝜎𝑥𝑥
0 = 𝜎𝑥𝑥,2

0  

Components are damaged  

in vertical tension 

(Failure pattern (a) in 

figure 2-1 chapter 2)  

Homogenized stress 

Shear 𝜏𝑥𝑦
0 = (1 − 𝑑)𝜏𝑥𝑦

𝑏  

Chapter 4 Model I 

Simple algorithm 

No Homogenized stress 

Horizontal 𝜎𝑥𝑥
0 = 0 

load loop: 

𝜀𝑥𝑥
0 = 𝜀𝑥𝑥

0 + Δ𝜀𝑥𝑥
0  

𝜀𝑦𝑦
0 = 𝜀𝑦𝑦

0 + Δ𝜀𝑦𝑦
0  

𝜀𝑥𝑦
0 = 𝜀𝑥𝑦

0 + Δ𝜀𝑥𝑦
0  
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8. Implementations and comparisons 
In this chapter, the material models proposed in chapters 4 to 7 are implemented in MATLAB to find the 
analytical solutions of the macro constitutive laws. Furthermore, results computed by MATLAB could be used 
to discover if the algorithms introduced in chapters 4 to 7 and assumptions made in chapter 3 are implemented 
successfully in the material models. 

The validities of the material models stated in chapter 4 for shear behaviour and 5 for horizontal tensile 
behaviour are then assessed by modelling the single element models in DIANA FEA using user-supplied 
subroutines. Furthermore, the sensitivity of the material model described in chapter 4 is assessed by changing 
its material properties.  

Finally, the homogenized material model for coupled behaviour introduced in chapter 7 is assessed by 
comparing the experimental results and the analytical results. The analytical results are obtained by applying 
material and geometrical properties and the loading condition from the experimental data in model 4. 

8.1. Validations of the implementations 

In this section, models 1 to 4 are implemented in MATLAB. Furthermore, the validations of the algorithms and 
the analytical solutions of the macro constitutive laws are discussed.  

Furthermore, the single element model is firstly built up in DIANA FEA 10.3. The 4-noded plane stress element 
with one integration point is selected, and the size is set to be 50 × 50 −mm. Additionally, the homogenized 
stress-strain curve in shear or horizontal tension is obtained by setting different boundary conditions in this 
per element model with dcf. File (analysis file, see Appendix F) and dll. File showing the constitutive laws of 
the material models. 

8.1.1. Model 1: shear behaviour 

Analytical solution 

The parameter 𝐴𝑠 introduced in eq. (4.8) in chapter 4 and described in [31] should always be positive. 
Therefore, the maximum size of the element used in finite element mesh could be obtained by making the 
function of 𝐴𝑠 being equal to zero. The basic unit cell's assumed material and geometrical properties are 
introduced, as table 8-1 shows. 

Table 8-1 Material and geometrical properties of basic cell 

Material properties 

 𝐸 (N/mm2) 𝜈 𝜎𝑡 (N/mm
2) 𝐺𝐼 (N/mm2mm) 𝜎𝑠 (N/mm

2) 𝐺𝐼𝐼 (N/mm2mm) 

Mortar 1000 0.2 0.5 0.01 0.75 0.05 

Brick unit 5000 0.2 1.3 0.01 - - 

Geometrical properties 

 ℎ (mm) 𝑙 (mm) 𝑡 (𝑚𝑚) 
Basic cell 2 12 1 

Shear modulus 𝐺 of the bed joint can be calculated as: 

𝐺 =
𝐸

2(1 + 𝜈)
= 416.67 N/mm2 

Parameter 𝐴𝑠 should always be positive with 𝑙𝑠 = 𝐻: 
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(
𝐺𝐼𝐼𝐺

𝐻𝜎𝑠
2 −

1

2
) > 0 

Therefore, 𝐻 should be: 

𝐻 <
2𝐺𝐼𝐼𝐺

𝜎𝑠
2 = 74 mm 

The maximum element size should be 74 mm. 

The analytical solution could be found from the codes implied in MATLAB and the major codes are: 

% outer loop: strain increment 
for i = 1:300 
    gama = gama + 0.00001; 
  % inner loop: verification of damage factor  
  while d < 1 
  % shear stress in bed joint: 
    tau_b = G*gama*3; 
    tau = max(tau_b,sig_s); 
  % smeared cracking model  
  % characteristic length of element: element size 
    l_s = H; 
  % A_s must be positive, check maximum mesh size: H < 74 
    A_s = (((G_II*G)/(l_s*sig_s^2))-(1/2))^(-1); 
  % calculate damage factor from stress  
    d_b = 1-sig_s*exp(A_s*(1-(tau/sig_s)))/tau; 
    if d_b <= 0 
       break; 
    end 
    if abs(d_b-d) < T 
        break 
    end 
    d = d_b; 
  end 
  % total damaged stress of cell 
    tau_b_d = (1-d)*gama*G*3; 

Where “𝑔𝑎𝑚𝑎” represents 𝛾0 in eq. (4.22) 
and “𝑑_𝑏” is the damage factor from eq. 
(4.5). while “𝑡𝑎𝑢_𝑏_𝑑” is the damaged shear 

stress, being representative as 𝜏0  in eq. 
(4.23), see chapter 4. 

The value of tolerance 𝑇  between 𝑑𝑡  and 

𝑑𝑡+1 is introduced here. Let’s assume that 
if the absolute value of the difference 
between 𝑑𝑡  and  𝑑𝑡+1  is smaller than the 
scalar value of tolerance 𝑇 , the value of 
damage factor would not change from time 
𝑡 to 𝑡 + 1.  

The effects on the stress-strain curve 
caused by the values of element size 𝐻 and 

tolerance 𝑇  could be easily seen from 
figures 8-1 and 8-2. 

Figure 8-1 indicates that the element size of the numerical model has effects on the softening process of the 
material model.  

 
Figure 8-1 Influences of element size: homogenized shear 

stress 𝜏𝑥𝑦
0  versus macro strain 𝛾𝑥𝑦

0  

 
Figure 8-2 Influences of tolerance: homogenized shear 

stress 𝜏𝑥𝑦
0  versus macro strain 𝛾𝑥𝑦

0  
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The area of the strain-stress curve should be the correlated special II fracture energy 𝑔𝐼𝐼 = 𝐺𝐼𝐼/𝑙𝑠 in this model. 
The 𝑙𝑠 is the characteristic length, equal to the element size ℎ as the smeared crack model is applied.  

As shown in figure 8-2, the damaged shear stress of the homogenized cell grows up until it reaches the 
material strength. However, the value of the stress does not drop down to zero if the tolerance is large, which 
leads to errors occurring. For instance, if the tolerance is assumed to be 0.1 and the value damage state 
variable 𝑑𝑏 tend to be greater than 0.9 at the current load step, the Interpolation of the value at the current 

step and the next step would never be greater than 0.1 as the damage factor has a range value of 0 ≤ 𝑑𝑏 ≤
1. As a result, the damage factor remains the number around 0.9, which leads to residual stiffness. 

Therefore, the suitable values of the tolerance and the element size become essential to reduce the errors. 
Based on the results shown in figure 8-1 and 8-2, the element size 𝐻 = 50 mm and the tolerance 𝑇 = 0.00001 
are adopted in this work. With the suitable strain increment of ∆𝜀0 = 0.0001, the analytical result of model 1 
can be got as figure 8-3 shown. 

 
Figure 8-3 Analytical result from MATLAB: homogenized shear stress 𝜏𝑥𝑦

0  versus macro strain 𝛾𝑥𝑦
0  

Verification of shear modulus:  

(1) Shear modulus of basic cell in figure 8-3: 

𝐺0,𝑚𝑜𝑑𝑒𝑙1 =
0.75

0.0006
= 1250 N/mm2 

(2) Initial value of shear modulus of basic cell: 

𝐺0 =
𝜕 𝜏0

𝜕 𝛾0
=
ℎ + 𝑡

𝑡
(1 − 𝑑)𝐺𝑥𝑦

𝑏  

At elastic state, 𝑑 should always be equal to zero. 

𝐺0 =
ℎ + 𝑡

𝑡
𝐺𝑥𝑦
𝑏 = 3𝐺𝑥𝑦

𝑏 = 1250 𝑁/𝑚𝑚2 

Then we can quickly get: 𝐺0,𝑚𝑜𝑑𝑒𝑙1 = 𝐺0 

Verification of fracture energy:  

(1) Second fracture energy of basic cell in figure 8-3: 
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𝐺0, 𝑚𝑜𝑑𝑒𝑙1
𝐼𝐼 = (

1

2
× 0.75 × 0.0006 +∑0.0001𝜏𝑑,  𝑖

300

6

) × 50 = 0.015 N/mm2mm 

(2) Initial value of second fracture energy of the basic cell: 

𝐺𝐼𝐼 =
1

2
𝜎𝑠𝛾𝑏𝐻 =

1

2

ℎ + 𝑡

𝑡
𝜎𝑠𝛾0𝐻 =

3

2
𝜎𝑠𝛾0𝐻 

𝐺0
𝐼𝐼 =

1

2
𝜎𝑠𝛾0𝐻 =

1

3
𝐺𝐼𝐼 = 0.017 N/mm2mm 

Then we can get the ratio of 𝐺0, 𝑚𝑜𝑑𝑒𝑙1
𝐼𝐼  and 𝐺0

𝐼𝐼 and the error of the analytical result as: 

𝑅𝑎𝑡𝑖𝑜 =
𝐺0, 𝑚𝑜𝑑𝑒𝑙1
𝐼𝐼

𝐺0
𝐼𝐼 = 0.88, 𝐸𝑟𝑟𝑜𝑟 =  

𝐺0,𝑚𝑜𝑑𝑒𝑙1
𝐼𝐼 − 𝐺0 

𝐼𝐼

𝐺0 
𝐼𝐼 = 11.8% 

Therefore, this analytical solution of model 1 can be acceptable. 

Implement in Fortran code 

The algorithm introduced in section 4.2 is implemented by Fortran 77 in this part as User-supplied material 
(USRMAT) subroutine in Diana 10.3 FEA and then would be modelled by 2D plane stress element as a “single 
element model”. The stresses of the components could be calculated at every step by this file. Therefore, this 
procedure would be essential to determine the reliability of the material model applied in finite element 
analysis introduced in model 1. 

! CALCULATE OF DAMAGED PARAMETERS 
      H     = RATIO*T 
      LS    = HH 
      AS    = (((GII*G)/(LS*SIGS**2.0D0))-(1.0D0/2.0D0))**(-1.0D0) 
C 
! DEFINATION OF SHEAR STRAIN 
      GAMA  = EPS0(3)+DEPS(3) 
C 
! INNER LOOP: CHECK DAMAGE FACTOR 
      DO 30, WHILE(D .LT. 1.0D0) 
         TAUBC = TAUB(GAMA,G,H,T,GAMAB) 
         TAU   = MAX(TAUBC,SIGS) 
         DBC   = DB(TAU,SIGS,AS) 
C 
! DAMAGE FACTOR FROM STRESS CAL. 
         IF (DBC .LE. 0.0D0) THEN 
             EXIT 
         END IF 
         TC    = ABS(DBC-D) 
         IF (TC .LT. TOR) THEN 
             EXIT 
         END IF 
C 
! FINAL DAMAGE FACTOR 
         D     = DBC 
30    CONTINUE 
C 
! DAMAGED STRESS AND DAMGED STIFFNESS 
      TAUBD      = (1.0D0-D)*TAUBC 

      TAUD       = TAUBD 
      SIG(3)     = TAUD 
      STIFF(3,3) = (1.0D0-D)*G 
C 
! STORE OUTPU BY USRSTA MATRIX 
      USRSTA(1)  = D 
      END SUBROUTINE USRMAT 
C       
C SUBPROGRAM: EQUILIBRIUM EQUATIONS OF SYSTEM 
      REAL FUNCTION TAUB(GAMA,G,H,T,GAMAB) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::GAMA 
      REAL            ::H, T, GAMAB, G 
! H IS HALF OF UNIT HEIGHT 
! T IS HALF HEIGHT OF JOINT THICKNESS      
      GAMAB = (H+T)*GAMA/T 
      TAUB  = GAMAB*G 
      RETURN  
      END FUNCTION TAUB 
C 
C SUBPROGRAM: DAMAGE FACTOR CAL. 
      REAL FUNCTION DB(TAU,SIGS,AS) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::TAU 
      REAL            ::SIGS,AS 
      DB    = 1.0D0-SIGS*EXP(AS*(1.0D0-(TAU/SIGS)))/TAU 
      RETURN  
      END FUNCTION DB 
 

The parameters used to describe the material and geometrical properties of the material model should be 
categorised as “USRSTA” or “USRVAL”. The damage factor 𝑑 is set to be the user state variable “USRSTA”, 
the value of which could be stored every step and could be seen as an input as well as an output coefficient. 
“USRVAL” is used to set up user parameters, which acts as the unchangeable input parameter. The user 
parameters could be concluded as: 
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(1) Shear fracture energy – GII 
(2) The ratio of brick height and joint thickness – RATIO 
(3) Tolerance of damage factor – TOR 
(4) Element size – HH 
(5) Shear strength – SIGS 
(6) Shear stiffness – G 

The principal Fortran codes can be found above. 

According to the “2D plane stress element” described in Diana FEA documentation [40], the external shear 
stress should be SIG(3), and the strain should be EPS(3), and DEPS(3) should be strain increment. 

Using the main program to calculate the external stress of basic cell 𝜏0, the subprogram to find the stress of 
the proposed component and the damage factors computed by eq. (4.5), see chapter 4.  

The shear behaviour of the homogenized material model could be obtained by adding uniformly distributed 
stress in the shear direction in the single element model, see figure 8-1. The horizontal displacement contour 
could be viewed as figure 8-2 shown. 

 

Figure 8-4 Per element model: shear 

behaviour  
Figure 8-5 Displacement contour of the model 1 

The material and geometrical properties described in table 8-1 are used. The comparison of the analytical 
results computed by MATLAB and the numerical results computed in DIANA FEA is shown in figure 8-6. 

 

Figure 8-6 Comparison: shear stress 𝜏𝑥𝑦
0  versus strain 𝛾𝑥𝑦

0  from the analytical results and the homogenized material model 1 
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As shown in figure 8-3, the numerical results are the same as the analytical ones, indicating the validity of 
material model 1 in the single element model. 

, the material parameters are set to be the new values to assess the sensitivity of the material model 1:  

(1) The shear stiffness of the bed joint changes from 𝐺 = 416.67 N/mm to 𝐺 = 1300 N/mm, see figure 8-7. 

(2) The shear strength of the bed joint changes from 𝜎𝑠
𝑏 = 0.75 N/mm2 to 𝜎𝑠

𝑏 = 0.15 N/mm2, see figure 8-8. 

 

Figure 8-7 Different shear stiffness of the bed joint: shear 

stress 𝜏𝑥𝑦
0  vs shear strain  𝛾𝑥𝑦

0  

 

Figure 8-8 Different shear strength of the bed joint: shear 

stress 𝜏𝑥𝑦
0  vs shear strain  𝛾𝑥𝑦

0  

The ultimate limit state strain should become larger if only shear stiffness is reduced, and the area of the 
strain-stress curve should not be changed. As figure 8-7 shown, model 1 implemented in Diana FEA 10.3 
could still be used if the shear stiffness of the bed joint is changed. 

Similarly, the ultimate limit state strain should be smaller if only the material's shear strength is reduced, and 
the area of the strain-stress curve should not be changed. As figure 8-8 shown, model 1 implemented in 
Diana FEA 10.3 could still be used if the shear strength of the bed joint is changed. 

8.1.2. Model 2: horizontal tensile behaviour 

Analytical solution 

According to the algorithm introduced in figure 5-5, damage variables 𝑟𝑖 (𝑖 = ℎ, 𝑢, 𝑐, 𝑏) are related to internal 

stresses 𝜎𝑥𝑥
ℎ , �̅�𝑥𝑥

𝑢 , 𝜎𝑥𝑥
𝑐  and 𝜏𝑥𝑦

𝑏  solved by “damage” equilibrium equations of system in the format as: 

𝜎𝑥𝑥
𝑖 = 𝑓𝑠𝑖𝑔𝑥𝑥𝑖(𝑟𝑢, 𝑟ℎ, 𝑟𝑐 , 𝑟𝑏 , 𝜀𝑥𝑥

0 ), 𝑖 = ℎ, 𝑢, 𝑐 (8.1) 

𝜏𝑥𝑦
𝑏 = 𝑓𝑡𝑎𝑢𝑥𝑦𝑏(𝑟𝑢, 𝑟ℎ , 𝑟𝑐 , 𝑟𝑏 , 𝜀𝑥𝑥

0 ) (8.2) 

Expressions of internal and external stress can be first be solved by Maple as a result in the format as eq. 
(8.1) and (8.2) shown, and we can derive them into MATLAB code to determine the analytical solution of 
damage model 2. 

To simplify the expressions, coefficients 𝐶1, 𝐶2 and 𝐶3 are introduced here: 

0.00019, 0.741

0.0006, 0.7500006

0

0.2

0.4

0.6

0.8

0 0.0005 0.001 0.0015 0.002

sh
ea

r 
st

re
ss

τ
(u

n
it

: N
/m

m
2

)

shear strain γ (unit: mm/mm)

Different Shear Stiffness G

G=1300N/mm
G=416.67N/mm

0.00012, 0.15

0.0006, 0.75

0.00153, 0.00

0.00

0.20

0.40

0.60

0.80

0 0.001 0.002 0.003

sh
ea

r 
st

re
ss

 τ
(u

n
it

: N
/m

m
2

)

shear strain γ (unit: mm/mm)

Different Shear Strength SIGS

SIGS=0.15N/mm2

SIGS=0.75N/mm2



       

65 

 

𝐸ℎ = 𝐸𝑏 = 𝐸𝑐 = 𝐸, 𝐸𝑢 = 𝐶1 ∙ 𝐸 (8.3) 

𝑙 = 𝐶2 ∙ 𝑡,  ℎ = 𝐶3 ∙ 𝑡 (8.4) 

Where 𝐸ℎ , 𝐸𝑏 and 𝐸𝑐 are young’s modulus of the mortar joint, 𝐸𝑢 is young’s modulus of the brick unit.  

Geometrical and material properties of components can be found in chapter 5, table 2.1-1. Parameter 𝐴𝑠, 𝐴𝑡 
introduced in eq. (4.5) and (5.4) should always be positive. Therefore, the maximum size of the element used 
in finite element mesh should be satisfied as: 

(1) Calculated from 𝐴𝑡𝑚 (Parameter of the mortar joint in tension): 𝐻 < 80 mm 
(2) Calculated from 𝐴𝑡𝑢 (Parameter of the brick unit in tension): 𝐻 < 59 mm 

(3) Calculated from 𝐴𝑠𝑚 (Parameter of the bed joint in shear): 𝐻 < 74 mm 

Therefore, the maximum element size of model 2 should be 59 𝑚𝑚. Let’s set 𝐻 = 50 mm here. The MATLAB 
code in model 2 can be found in Appendix A. Results could be found in figure 8-9. 

 

Figure 8-9 Model 2: internal damaged and homogenized stresses -external strain 𝜀𝑦𝑦
0  curve 

 brick unit           bed joint           cross joint           head joint 

Note: “0” means external force, “u” means brick unit (red), “h” means head joint (blue), “c” means cross joint (green), 
“b” means bed joint (orange) 

It can be seen that the head joint (shown in blue dashed line) will fail in tension at point 1 as its damaged 

tension stress “𝑠𝑖𝑔𝑥𝑥ℎ” reach its strength of 0.5 𝑁/mm2. However, this localized damage does not have many 
effects on the macro stiffness of the homogenized cell. The brick unit and cross joint can still expand 
horizontally, while the bed joint is still moving in shear and horizontal tension direction.  

The macro-stress has been increasing until reaching point 2. Vertical crack caused by tension behaviour in 

brick unit occurs with the value of the brick unit’s tension strength being equal to 1.3 N/mm2, see the red long-
dash-dotted line.  
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At this stage, shear stress in the bed joint drops down to zero suddenly as the brick unit is damaged as the 
grey line shown, while the cross joint maintains moving and expanding laterally until point 3, see the green 
dotted line. As a result, the homogenized cell is damaged after point 3. 

Implement in Fortran code 

The Fortran codes could be found in Appendix A. 

 

Figure 8-10 Per element model: horizontal 

tensile behaviour 
 

Figure 8-11 Displacement contour of the model 2 

The horizontal tensile behaviour of the homogenized model introduced in chapter 5 can be obtained once 
the uniformly distributed stress in horizontal tension is loaded at the side boundaries of the single element 
model, see figure 8-6. Meanwhile, the horizontal displacement contour could be seen from figure 8-12. 

 
Figure 8-12 Comparison: horizontal stress 𝜎𝑦𝑦

0  vs strain 𝜀𝑦𝑦
0  from the analytical results and the homogenized material model 2 

The material and geometrical properties of model 2 are set to be the same as that of model 1, see table 8-1. 
The comparison of the analytical results computed by MATLAB and the numerical results given by the 
analysis solution from DIANA FEA could be seen in figure 8-13. 
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As shown in figure 8-13, the numerical results are similar to the analytical ones, indicating the validity of 
material model 2 in the single element model. The slight differences between the analytical results and 
numerical results may be caused by different strain increment set in MATLAB and DIANA FEA. 

8.1.3. Model 3: vertical compression behaviour 

Analytical results 

MATLAB Code could be found in Appendix D. 

The material and geometrical properties of the unit cell are set as table 6-2 shown, see chapter 6 section 6.2. 
The length of the element is set to be 10 mm. The tolerances assumed as the convergency conditions for 
finding the relevant damage variables and the hardening/softening parameters are set to be 0.00001. 

The shear stiffness of the bed joint is assumed to be a variable: 

(1) Case 1: a large value to limit shear damage occurring in the basic cell, see figure 8-13 to 8-15; 
(2) Case 2: a small one to make shear damage in the bed joint occurring before compressive crushing in 

other components, see figure 8-18 to 8-20. 

Case 1: a large shear stiffness of the bed joint 

 

Figure 8-13 vertical compression behaviour of homogenized cell 

without considering shear damage at interface of brick and bed 

joint: 𝜎𝑦𝑦
0  vs the macro strain  𝜀𝑦𝑦

0  

 

Figure 8-14 the internal stress of brick 𝜎𝑦𝑦
𝑢  vs. the 

macro strain  𝜀𝑦𝑦
0  

 

Figure 8-15 The value of yield function 𝑓𝑢 with 

elastic predictors in the brick unit vs. 𝜀𝑦𝑦
0  

As shown in Figures 8-13 and 8-15, the value of the brick unit’s yield function, assessed by the elastic 
predictors of the brick unit from the damage model, changes from a negative to a positive number at point 1.  
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That means plastic deformations occur in the brick unit from step 29. 

After that, the brick unit deforms plastically until the vertical compression stress of the brick unit reaches its 
maximum value at point 2, see figure 8-14. At the same time, vertical stress of the homogenized cell is 

achieving its ultimate limit state, with the value of 14.09 N/mm2  and then drop to 11.54 N/mm2  as the 
softening occurs in the basic unit cell. The brick unit is crushing during the post-peak phase, leading to fewer 
contact areas between the brick unit and the bed joint.  Therefore, the external strain should be transformed 
to the bed joint directly as the brick unit cannot support load anymore. However, the bed joint is hard to be 
damaged in shear at that time since its shear deformation depends on the brick unit’s and the head joint’s 

horizontal deformations.  As a result, the homogenized vertical stress maintains the value of 11.54 N/mm2.  

The internal stress of the brick unit in the x-direction 𝜎𝑥𝑥
𝑢  is recorded at every load step to investigate that if 

the split tensile stress was introduced successfully. As shown in figure 8-16, the horizontal stress of the brick 
unit consists of two parts: the elastic part (long dash-dot line) and the inelastic part, generated from step 30. 
The elastic part is produced by the elastic deformations of the brick unit in the x and y directions based on 
the deformed mechanisms of the basic unit cell. After load step 30, the brick unit’s vertical compression stress 
produced plastic deformations in the x and y directions, which is associated with the generation of the micro-
cracks. These plastic deformations lead to the inelastic stress of the brick unit in the horizontal direction. 

 
Figure 8-16 horizontal tension stress of the brick unit 𝜎𝑥𝑥

𝑢  

versus load step 

 
Figure 8-17 energy of the basic cell versus load step 

  

This inelastic tension stress could also be called split tensile stress, which is generated due to the 
compressive splitting effects. 

Furthermore, macro-energy of the basic cell per area could be computed to investigate if the splitting effects 
are introduced successfully in the whole homogenized cell. Note that the energy of macro horizontal strain 

𝜀𝑥𝑥𝑦
0  and vertical compressive stress 𝜎𝑦𝑦

0  should be recorded since the splitting effects on the lateral plastic 

deformation is focused on in this model. 

The total energy of the basic unit cell should be the triangle area of the strain-stress curve, which can be 
computed by equation (8.5). 

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
∙ 𝜀𝑥𝑥𝑦
0 ∙ 𝜎𝑦𝑦

0 (8.5) 

𝜀𝑥𝑥𝑦
0 =

𝑙 ∙ 𝜀𝑥𝑥
𝑢 + 𝑡 ∙ 𝜀𝑥𝑥

ℎ

𝑙 + 𝑡
(8.6) 
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𝜀𝑥𝑥𝑦
0  is the homogenized strain in the horizontal direction of the basic unit cell under vertical compressive 

loading. It could be computed by the horizontal strains of the brick unit 𝜀𝑥𝑥
𝑢  and head joint 𝜀𝑥𝑥

ℎ . The horizontal 

strains consist of the elastic ones 𝜀𝑥𝑥
𝑖𝑒  and the plastic ones 𝜀𝑥𝑥

𝑖𝑝
, see equation (8.7).  

𝜀𝑥𝑥
𝑖 = 𝜀𝑥𝑥

𝑖𝑒 + 𝜀𝑥𝑥
𝑖𝑝
, 𝑖 = 𝑢, ℎ (8.7) 

Let’s combine equations (8.7) and (8.6) as: 

𝜀𝑥𝑥𝑦
0 = 𝜀𝑥𝑥𝑦

0𝑒 + 𝜀𝑥𝑥𝑦
0𝑝 (8.8) 

𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
1

2
∙ 𝜀𝑥𝑥𝑦
0𝑒 ∙ 𝜎𝑦𝑦

0 , 𝜀𝑥𝑥𝑦
0𝑒 =

𝑙 ∙ 𝜀𝑥𝑥
𝑢𝑒 + 𝑡 ∙ 𝜀𝑥𝑥

ℎ𝑒

𝑙 + 𝑡
(8.9) 

𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 (8.10) 

Equation (8.8) to (8.10) indicate that the total energy should be composed of two components:  

(1) The elastic potential energy (bulk energy) stored in the materials has elastic deformations under external 
forces. This energy would disappear as the deformations tend to recover when the external forces are 

removed. Therefore, we could use elastic strain 𝜀𝑥𝑥𝑦
0𝑒  to compute the bulk energy of the homogenized cell, 

see equation (8.9); 
(2) Surface energy is defined as the excess energy at the surface of the materials. The excess energy is the 

residual part of the total and bulk energy, see equation (8.10). Furthermore, the surface energy should 
be associated with the formation of micro-cracks by introducing elastoplastic behaviours in the materials. 

As a result, figure 8-17 could be obtained. The surface energy of the homogenized cell has value, which 
indicates the compressive splitting effects are introduced successfully in the whole cell.  

 
Figure 8-18 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step: case 1 

Damage state variables 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) of the component could be recorded at each load step, see 
figure 8-18. The components are undamaged when 𝑟𝑖 = 1, while they are partially damaged when 0 < 𝑟𝑖 < 1 
and damaged when 𝑟𝑖 = 0. Therefore, we can investigate each component's damage status with the value of 
damages state variables at every load step.  

As shown in figure 8-18, the head joint and the cross joint start being damaged from step 19 and then the 
brick unit is damaged from step 91 due to the equivalent tension behaviour. However, the bed joint is not 
damaged in shear through the whole load path as the shear stiffness of the bed joint is set to be extremely 
large in this case. Note that the equivalent tension behaviour should include the one caused by deformed 
mechanisms of the basic cell and the compressive splitting effects. 
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Case 2: a small shear stiffness of the bed joint 

If the shear stiffness of the bed joint is small, which is closer to the reality of physical properties, the basic unit 
cell would be damaged once the bed joint is damaged in shear at point 2, see figures 8-19 to 8-21. Before 
point 2, the brick unit and other components still tend to deform elastically before point 1 and plastically after 
point 1. Note that the deformation of the brick unit changes from plastic one to elastic one again at point 3 
due to strain softening in the damaged cell, see figure 8-20. 

 

Figure 8-19 vertical compression behaviour of homogenized cell 

with considering shear damage at interface of brick and bed joint: 

𝜎𝑦𝑦
0  vs. the macro strain  𝜀𝑦𝑦

0  

 

Figure 8-20 the shear stress of bed joint 𝜏𝑥𝑦
𝑏  vs. the 

macro strain  𝜀𝑦𝑦
0  

 

Figure 8-21 The value of yield function  𝑓𝑢 with 

elastic predictors in the brick unit vs. 𝜀𝑦𝑦
0  

The energy of the basic cell could be quite complicated as the shear failure occurring in the bed joint is taken 
into account. Let’s record the total energy and bulk energy of the basic cell by using the equations (8.5) and 
(8.9) again, see figure 8-22. 

Figure 8-22 indicates that the bulk energy of the homogenized material model is not consumed as the value 
of total energy is always equal to or smaller than that of the bulk energy through the whole loading path. At 
load step 29 (point 1 in figure 8-19), micro-cracks start generating in the brick unit and then the stiffness of 
the homogenized cell is reduced due to this formation of micro-cracks, see figure 8-19. As a result, the total 
energy of the basic cell becomes smaller than the bulk energy, see figure 8-22. 

The vertical compression stress of the homogenized cell reaches its ultimate limit state strength once the bed 
joint is damaged in shear, which is provided by figure 8-20. That means the plastic shear deformation at the 
brick unit and bed joint interface is the dominating one compared with other plastic deformations. Therefore, 
the plastic shear behaviour of the bed joint could be investigated to figure out how the plastic deformations of 
components make effects on ultimate limit state strain of the homogenized cell. 
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The damaged shear stress of the bed joint with and without considering the plastic shear deformation through 
the loading history could be recorded as figure 8-23 shown. The bed joint would be damaged in shear at step 
45 (point 2 in figure 8-19) when the plastic shear deformation is taken into account, while it would be damaged 
at step 65 if the plastic shear deformation was not included. Note that the value of the bed joint’s shear stress 
changes from positive to negative as the plastic deformations develop in the components. From the physical 
aspect, this phenomenon appears as the developed brick unit’s horizontal plastic strain is larger than the 
head joint’s. According to the equations derived in chapters 5 and 6, the sign of in-plane shear stress should 
depend on the brick unit’s and head joint’s horizontal strains. The shear strain is assumed to be positive of 
the head joint’s horizontal strain is larger than the brick unit’s.  

 
Figure 8-22 energy of the basic cell versus load step 

 
Figure 8-23 Damaged shear stress of bed joint 𝜏𝑥𝑦

𝑏  versus 

load step: stress computed without considering plastic 

shear deformation (long dash line); stress computed with 

considering plastic shear deformation 

Therefore, it can be said that the plastic shear strain of the bed joint causes larger shear stress compared to 
the one computed based on the deformed mechanisms of the basic cell at every load step. This phenomenon 
leads to the vertical stress of the basic unit cell achieves its ULS before the elastic potential energy of the 
material is consumed. 

Note that the bulk energy discussed here is indicated as one of the macro material properties of the masonry 
structure rather than the material properties of the components, such as the bricks or mortars. As shown in 
figure 8-21, the brick's elastic potential energy should be partially consumed from load step 29 as the value 
of yield surface, computed by elastic predictors of the brick unit, is changed to a positive number. That 
indicates that the elastic stress points are located outside the yield surface, and then the elastoplastic phase 
should start. 

The damage state variables of components through load history could be obtained as figure 8-24 shown. 

 
Figure 8-24 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step: case 2 
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The head and cross joints are damaged firstly from step 18, and the bed joint is damaged from step 44, 
leading to the homogenized cell being damaged.  

Furthermore, the dilatant effects could be studied by changing the value of the dilatancy angle 𝜓, see figure 
8-25. Let’s set up the same values of the dilatancy angle of the bricks and mortars here. As shown in figure 
8-25, the ultimate limit state strength and strain of the homogenized cell become larger with a larger dilatancy 
angle. The dilatancy angle is defined as equation (8.11) shown. 

tan(𝜓) =
𝛿𝑛
𝛿𝑠

(8.11) 

Where 𝛿𝑛 is the vertical deformation and 𝛿𝑠 is the shear deformation of the basic unit cell. That means the 
shear deformation of the homogenized cell would be smaller with the larger dilatancy angle as the vertical 
deformation is not changed at every load step. Based on the assumptions made in chapter 3, only shear 
stress exists at the interface of the brick unit and the bed joint. Therefore, this shear deformation could and 
only be produced by the shear behaviour of the bed joint.  

 
Figure 8-254 macro stress in the y-direction 𝜎𝑦𝑦

0  through load path with different dilatancy angle 𝜓 

If a larger dilatancy angle is adopted, the increment of shear deformation would be smaller if the increment 
of normal deformation is not changed, see equation (8.11). Meanwhile, the bed joint’s shear stiffness is not 
changed following the variation of the dilatancy. Therefore, the increment of shear stress of the bed joint 
would be smaller if the increment of the bed joint’s shear strain is smaller at each load step. As a result, the 
bed joint would be damaged in shear for a longer duration. The shear damage in the bed joint is assumed to 
occur before all other failures. As the bed joint’s shear fracture energy is consumed more slowly,  more 
external loading would be absorbed by the brick unit’s elastic potential energy if a larger dilatancy angle is 
applied. Therefore, the ultimate limit state strength and strain of the homogenized material model would be 
larger if the dilatancy angle is large. 

Now, let us compare the results of cases 1 and 2. It can be said that the compressive splitting effects would 
not make many significant effects on the vertical compressive strength of the basic unit cell in case 2. The 
bed joint shear failure typically appears before the brick unit crushing failure if the shear stiffness of the bed 
joint is quite small compared with the stiffness of the brick unit. As a result, the homogenized material model 
tends to be damaged once the bed joint fails in shear. At the same time, the brick unit still has stiffness in the 
horizontal direction as its equivalent tensile stress, which consists of the elastic and split tensile stress, does 
not reach its maximum value.  

 
4 The bed joint’s shear stiffness: shear facture energy 0.05 N/mm, shear strength 0.75 MPa; the element size is set to be 10 mm 
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8.1.4. Model 4: coupled behaviour 

Analytical results 

Let us recall back to chapter 3 section 3.5, the homogenized stress tensor 𝝈0 could be relative to the macro 
strain tensor 𝜺0 in 2D plane stress element by stiffness matrix 𝑲: 

𝝈0 =  𝑲𝜺0 (8.12) 

𝝈0 = [

𝜎𝑥𝑥
0

𝜎𝑦𝑦
0

𝜏𝑥𝑦
0

] , 𝜺0 = [

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝜀𝑥𝑦
0

] , 𝑲 = [
𝐾11 𝐾12 0
𝐾21 𝐾22 0
𝐾31 𝐾32 𝐾33

] (8.13) 

𝐾11 =
𝜕𝜎𝑥𝑥

0

𝜕𝜀𝑥𝑥
0 , 𝐾22 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦
0 , 𝐾33 =

𝜕𝜏𝑥𝑦
0

𝜕𝜀𝑥𝑦
0

(8.14) 

𝐾12 =
𝜕𝜎𝑥𝑥

0

𝜕𝜀𝑥𝑥,𝑦
0 ∙

𝜕𝜀𝑥𝑥,𝑦
0

𝜕𝜀𝑦𝑦
0 , 𝐾21 = 𝐾31 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦,𝑥
0 ∙

𝜕𝜀𝑦𝑦,𝑥
0

𝜕𝜀𝑥𝑥
0 ,  𝐾32 =

𝜕𝜎𝑦𝑦
0

𝜕𝜀𝑦𝑦
0

(8.15) 

Equation (8.12) could be computed by implementing the expressions of the corresponding strains 𝜀𝑥𝑥,𝑦
0  and 

𝜀𝑦𝑦,𝑥
0  defined in section 7.1 and the algorithm introduced in section 7.2.  

The strain increments in the x, y and xy direction are set to be the same, with the value of 0.0001 at each load 
step. In other words, the values of the horizontal, vertical and shear strains of the basic cell are assumed to 
be increased 0.0001 at every load step. 

As a result, the homogenized strain-stress curve in horizontal direction could be obtained as figure 8-26 
shown by applying the material and geometrical properties described in table 6-2 in chapter 6 section 6.2.  

 

(a) large shear stiffness of the bed joint 
 

(b) small shear stiffness of the bed joint 

Figure 8-26 homogenized stress in the horizontal direction 𝜎𝑥𝑥
0  vs. 𝜀𝑥𝑥

0  

The damage state variables of components 𝑟𝑖
𝑥 = 1 − 𝑑𝑖

𝑥  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) could be recorded through the whole 

load path, as figure 8-27 shown. These variables are only used to compute the macro stress in the horizontal 
direction, in which case only tensile cracks are assumed to be generated in the components. 
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(a) large shear stiffness of the bed joint 

 
(b) small shear stiffness of the bed joint 

Figure 8-27 Damage state variables of components 𝑟𝑖
𝑥 = 1 − 𝑑𝑖

𝑥 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step: only tensile cracks 

generated in the components 

As figure 8-27 shown, the tensile cracks are firstly generated in the head joint at load step 3 and then in the 
brick unit at load step 11 if the shear stiffness of the bed joint is considerable. On the contrary, the shear 
cracks occur in the bed joint at step 8 after the head joint fails in tension if the shear stiffness is small. 

The macro stress-strain curve in the vertical direction could be obtained, as figure 8-28 shown. 

 

(a) large shear stiffness of the bed joint 
 

(b) small shear stiffness of the bed joint 

Figure 8-28 Homogenized stress in the vertical direction 𝜎𝑦𝑦
0  vs. 𝜀𝑦𝑦

0  

Note that the results of the macro stress in the vertical direction 𝜎𝑦𝑦
0  are correlated to the results shown in 

figures 8-13 and 8-19, which indicates that the brick crushing failure mode is introduced successfully.  

The damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) could be recorded as figure 8-29 shown. 
In this case, the micro cracks are taken into account. 

113 6

0

0.4

0.8

1.2

0 10 20 30 40

d
am

ag
e 

st
at

e 
va

ri
ab

le
s 

R
ix

load step

Rix: tensile cracking

head joint

brick unit

bed joint

cross joint

3 8

0

0.4

0.8

1.2

0 10 20 30 40

d
am

ag
e 

st
at

e 
va

ri
ab

le
s 

R
ix

load step

Rix: tensile cracking

head joint
brick unit
bed joint

-14.14 

0.92 

-15

-12

-9

-6

-3

0

3

-0.05 -0.03 -0.01 0.01 0.03 0.05

m
ac

ro
 s

tr
es

s 
 σ

_y
y_

0
( 

N
/m

m
2

)

strains of basic cell Ɛ_yy_0 (mm/mm)

Strain-Stress Curve – properties 1

COMPRESSION

TENSION

-7.74 

0.92

-8

-6

-4

-2

0

2

-0.02 -0.01 0 0.01 0.02

m
ac

ro
 s

tr
es

s 
σ

_y
y_

0
( 

N
/m

m
2

)

strains of basic cell Ɛ_yy_0 (mm/mm)

Strain-Stress Curve - properties 2

COMPRESSION

TENSION

Properties: 
GII = 20 N/mm 
SIGS = 20.75 MPa 
element size: 
HH = 10 mm 

Properties: 
GII = 0.05 N/mm 
SIGS = 0.75 MPa 
element size: 
HH = 5 mm 



       

75 

 

 
(a) large shear stiffness of the bed joint 

 
(b) small shear stiffness of the bed joint 

Figure 8-29 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step: only tensile cracks 

generated in the components 

Again, the micro cracks are firstly generated in the head joint at load step 18 and then in the brick unit at load 
step 90 if the shear stiffness of the bed joint is substantial. On the contrary, if the shear stiffness is small, the 

 shear cracks occur in the bed joint at step 42 after the head joint fails due to the compressive splitting effects. 

If the vertical load is assumed to be tension, the homogenized cell should be damaged in joint tension 
failure mode. Therefore, the damaged stress of the bed joint in the y-direction could be recorded as figure 
8-30 shown to judge if the joint tension failure mode is introduced successfully. 

 
(a) large shear stiffness of the bed joint 

 
(b) small shear stiffness of the bed joint 

Figure 8-30 Damaged stress of the bed joint in the y-direction 𝜎𝑦𝑦
𝑏  and macro stress 𝜎𝑦𝑦

0  through load path 

Figure 8-30 indicates that the homogenized cell is damaged once the bed joint fails in vertical tension. 
However, horizontal tension loading is set as one of the external forces, and this loading would cause an 
additional compressive loading in the vertical direction. As a result, the homogenized cell is loaded by vertical 
tension strain rather than the compressive one from step 4 when the imposed strain is greater than the 
additional one caused by horizontal loading condition in the y-direction. 

The damaged tension stresses of the brick unit 𝜎𝑥𝑥
𝑢  (large shear stiffness case) and damage shear stresses 

of bed joint 𝜏𝑥𝑦
𝑏  (small shear stiffness case) could be obtained as figure 8-31 shown. 
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(a) large shear stiffness of the bed joint 

 
(b) small shear stiffness of the bed joint 

Figure 8-31 Damage stresses of the brick unit 𝜎𝑥𝑥
𝑢  and the bed joint 𝜏𝑥𝑦

𝑏  through load path: the value obtained by 

considering only tensile cracks (dash line); the value obtained by considering micro-cracks (long dash-dot line). 

Figures 8-27, 8-29 and 8-31 indicate that the tensile cracks and micro-cracks could be generated in the brick 
unit (or bed joint), which means the coupled behaviour of the homogenized material model is introduced 
successfully under the assumed loading conditions. 

The homogenized shear strain-stress curves could be obtained when the vertical load is compressive, as 
shown in figure 8-32. 

The cohesion of the head joint 𝑐ℎ, the friction stress at the interface of the brick unit and bed joint 𝜎𝑦𝑦
0 ∙ tan (𝜙𝑢) 

and the macro shear stress 𝜏𝑥𝑦
0  could be investigated through load history, as figure 8-33 shows. 

As shown in figure 8-33, the shear stiffness does not have many effects on the cohesion of the head joint. 
However, the cohesion of the head joint would be consumed if the shear stiffness of the bed joint is set to be 
small. When the special II fracture energy 𝑔𝐼𝐼 = 𝐺𝐼𝐼/ℎ (ℎ is the element size) of the bed joint is set to be 
smaller. The cohesion of the head joint would be consumed faster in this case. 

 

(a) small shear stiffness of the bed joint 
 

(b) large shear stiffness of the bed joint 

Figure 8-32 Homogenized stress in shear direction 𝜏𝑥𝑦
0  vs. shear strain 𝜀𝑥𝑦
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(a) small shear stiffness of the bed joint 

 
(b) large shear stiffness of the bed joint 

Figure 8-33 damaged stress of the homogenized cell 𝜏𝑥𝑦
0 , cohesion 𝑐ℎ and friction stress 𝜎𝑦𝑦

0 ∙ tan (𝜙𝑢) through load step 

 

If the vertical load is set to be tension one, the shear stress of the homogenized cell 𝜏𝑥𝑦
0  could be obtained 

through the load step, as figure 8-34 shown. 

 

(a) small shear stiffness of the bed joint 

 

(b) large shear stiffness of the bed joint 

Figure 8-34 damaged stress of the homogenized cell 𝜏𝑥𝑦
0  through load step when the vertical strain is the compression one 

Figure 8-34 indicates that the shear sliding failure mode is introduced successfully as the homogenized cell 
is damaged once the shear stress of the bed joint reaches its strength. 

8.2.  Comparison against the experimental result 

The experimental data of a set calcium silicate masonry specimens (vertical configuration) cast during the 
first period (September 2015) under vertical monotonic loading TUD_MAT-11b to TUD_MAT-11g, tested by 
R. Esposito, F. Messali and J. Rots in [41], are selected here. Note that the experimental results indicated 
only the vertical compression behaviour of the masonry specimens. 

Model 4 constructed in MATLAB is used here to assess the accuracy of the algorithms introduced in chapters 
6 and 7 and the analytical solutions of the material model. However, only the macro constitutive law in the 
vertical direction is assessed here as the experimental data is investigated when the masonry structure is 
loaded by pure vertical compression loading.  
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After that, the experimental tests are simulated in this project by implementing model 3 proposed in chapter 
6 into the Diana FEA user-supplied subroutine. The comparison of the numerical and analytical results can 
judge if the model is introduced successfully in the finite element program. The comparison of the numerical 
and experimental data can assess the accuracy of material model 3 and judge if material model 3 can 
correctly simulate the specimens' compressive capacity, cracks pattern, failure mechanisms. 

Test procedure 

 
Figure 8-35 Compression test on masonry [41] 

 
Figure 8-36 Position of LVDTs during the test [41] 

Dimensions of this set calcium silicate masonry specimens selected from one of the wallets tested in the 
experiment are 434 × 476 × 102 −mm (2 × 6 × 1-brick). There is a 10𝑚𝑚-thickness layer of gypsum applied 
to the face of the loading plates, which ensures that the loaded faces of this specimen are levelled and parallel 
to one another. [41] The configuration of the testing apparatus could be seen in figure 8-35. A 3500𝑘𝑁 
hydraulic jack is put on the position at the bottom, which is provided by the testing apparatus and operated in 
displacement control. There is a steel plate lifted above this hydraulic jack, which is the active side. Meanwhile, 
there is a passive load plate lifted at the top side. A load cell using to measure the applied force is attached 
to the top steel plate. The possible eccentricities could be reduced during the loading by putting a hinge 
between the load cell and the top steel plate. 

Vertical relative displacement over the height of the specimen is registered by four LVDTs5 (linear variable 
differential transformers) attached to the specimen, see figure 8-36. The measuring range of these LVDTs is 
2𝑚𝑚 with an accuracy of 0.5%. The specimen was tested under monotonic loading, applied with a rate of 
0.002𝑚𝑚/𝑠 to reach the peak stress in 15 − 30 𝑚𝑖𝑛. 

Material properties 

The strengths of the calcium silicate blocks could be obtained from the experimental data, and the dimension 
of the bricks and the thickness of mortar joints could be obtained from the configuration of the specimen in 
[41] straight forward (see table 8-2).  

The elastic modulus of the brick unit 𝐸𝑢 is equal to 8990 MPa, while the young's modulus of mortars is set to 
be the secant elastic modulus 𝐸2 = 5091MPa of masonry subject to a compressive loading perpendicular to 

the bed joints, evaluated at 1/10 of the maximum stress. The Poisson ratio of the bricks 𝜈𝑢 is set to be the 
same as the masonry’s, while the sum value of the mortars’ Poisson ratio 𝜈𝑚,𝑠 is assumed to be the difference 

value between the masonry’s Poisson ratio during the first and second periods. The cross joint’s Poisson ratio 
is zero as we assumed the cross joint deforms the springs in the vertical and horizontal directions. Therefore, 
the sum value of the mortars’ Poisson ratio 𝜈𝑚,𝑠 = 0.4 incorporates the head and bed joint’s 𝜈𝑚. As a result, 

the mortar’s Poisson ratio 𝜈𝑚  should be 0.2  as we assumed the head and bed joints have the same 
mechanical properties.  

 
5 LVDT: Linear variable differential transformer 
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Table 8-2 Material and geometrical properties from experimental data [41] 

Material properties Brick unit Mortar Geometry Brick unit Mortar 

Young’s Modulus 𝐸 (MPa) 8990 5091 
Height ℎ (𝑚𝑚) 

(Half value only) 
35.5 35.5 Poisson ratio 𝜈 (−) 0.14 0.02 

Tension strength 𝜎𝑡 (MPa) 2.74 2.79 

Compression strength 𝜎𝑐 (MPa) 16 6.59 

Length 𝑙 (𝑚𝑚) 

(Half value only) 
106 106 

I fracture energy 𝐺𝐼 (N/mm) 0.081 0.082 

Compressive fracture energy 𝐺𝑐 (N/mm) 20.96 17.68 

Shear strength 𝜎𝑠 (MPa) - 0.14 

II fracture energy 𝐺𝐼𝐼 (N/mm) - 0.012 
Thickness 𝑡 (𝑚𝑚) 

(Half value only) 
- 5 Friction angle 𝜙 (°) 23.37 23.37 

Dilatancy angle 𝜓 (°) 10 10 

According to the formulations introduced by Maurizio Angelillo et al. in [39], the tensile (first), shear (second) 
and compressive fracture energy 𝐺𝐼 , 𝐺𝐼𝐼  and 𝐺𝑐  of the bricks and mortar joints could be computed by 

equations (8.16) to (8.18). 

𝐺𝐼 = 0.04 ∙ 𝜎𝑡
0.7 (8.16) 

𝐺𝐼𝐼 = 0.025 ∙ (
𝜎𝑐
10
)
0.7

(8.17) 

𝐺𝑐 = 15 + 0.43 ∙ 𝜎𝑐 ∙ 0.0036 ∙ 𝜎𝑐
2 (8.18) 

Where 𝜎𝑡 and 𝜎𝑐 are the tension and compression strength of the given component, respectively. 

As the results discussed in section 8.1.3, the values of the components’ dilatancy angles affect the 
compressive capacity and softening process. Therefore, the dilatancy angles should be suitably selected. 
The sensitivity of the dilatancy angle is studied to avoid overestimating the shear deformation with a large 
dilatancy angle. The macro strain-stress curves of the material model in the vertical direction with different 
material dilatancy angles could be investigated, as figure 8-37 shown.  

 

Figure 8-37 the vertical compressive stress 𝜎𝑦𝑦
0  versus compressive strain of the single element 𝜀𝑦𝑦,𝑠𝑒
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As shown in figure 8-37, the capacity of the material is underestimated if the dilatancy angle is very large or 
small. In this case, the dilatancy angles 𝜓 of the bricks and mortars are assumed to be 10° as the most 
suitable values.  

Many researchers suggest a dilatancy angle of 0 degrees to avoid over shear estimation as they did not 
consider the shear deformation and shear damage at the brick-mortar interface. In this model, the shear 
deformation and damage are considered, so components’ dilatancy angles have to be suitably chosen.  

Comparison: analytical solution versus experimental data 

Note that the results computed in MATLAB are the analytical solutions for a single element, while the 
experimental data is obtained from a specimen modelled by a set of elements.  

The vertical strain of the single element 𝜀𝑦𝑦,𝑠𝑒
0  should be: 

𝜀𝑦𝑦,𝑠𝑒
0 =

∆𝑢

𝐻
(8.19) 

Where ∆𝑢 is the loaded displacement in the vertical direction at each load step and 𝐻 is element size, with a 
value of 50 mm.  

The vertical strain of the specimen 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0  evaluated by the LVDTs should be: 

𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 =

∆𝑢

𝐿𝐿𝑉𝐷𝑇𝑠
(8.20) 

Where 𝐿𝐿𝑉𝐷𝑇𝑠 is the vertical distance between the two LVDTs in the same row. As can be seen from figure 8-
36, we can get 𝐿𝐿𝑉𝐷𝑇𝑠 = 243 mm.  

We can then get the relationship of 𝜀𝑦𝑦,𝑠𝑒
0  and 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠

0  by combining equation (8.19) and (8.20): 

𝜀𝑦𝑦,𝑠𝑒
0 =

𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 ∙ 𝐿𝐿𝑉𝐷𝑇𝑠

𝐻
= 4.86 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠

0 (8.21) 

With this transformation function, we could compare the experimental result and the analytical solution 
proposed in section 8.1.4, as figure 8-37 shows, by applying geometrical and material properties shown in 
table 8-2. Note that there is only vertically compressive loading. 

As shown in figure 8-38, the analytical results can predict the compressive capacity compared to the 
experimental results with a small error. The compressive capacity obtained from the test on average is 
5.93 MPa [41], while the one obtained from the analytical solution is 5.23 MPa. Therefore, the error between 
these two values should be: 

𝑒𝑟𝑟𝑜𝑟 =  
5.93 − 5.23

5.93
= 0.12 

The error is acceptable and may be caused by the variability of mortars as the mortars’ mechanical properties 
are dependent on manual actions.  

To investigate if the material model could correctly predict the crack patterns, we should first focus on the 
cracking process of the specimen and then make the relative comparisons. The cracking process of specimen 
“TUD_MAT_11b” was recorded and stated in [41], see figure 8-39.  
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Figure 8-38 Comparison: vertical compressive stress 𝜎𝑦𝑦

0  versus compressive strain tested by LVDTs 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0  from 

experimental results and the homogenized material model 

According to the descriptions of the cracking process of the specimen “TUD_MAT_11b” stated in [41], the 
shear cracks should first develop at the interface of the brick unit and the bed joint, as figure 8-39 (a) shows. 
After that, the vertical cracks were generated at the central part of the specimen when the maximum stress 
was reached, see figure 8-39 (b). In the post-peak phase shown in figures 8-39 (c) and (d), the vertical cracks 
mainly occurred in the bricks and developed uniformly through the length of the specimen by splitting it into 
two parts.  

 

(a) 𝜎𝑛 = 5.3 MPa 

𝜀𝑛 = 7.4 ‰ 

 

(b) 𝜎𝑛 = 6.2 MPa 

𝜀𝑛 = 11 ‰ 

 

(c) 𝜎𝑛 = 2.0 MPa 

 

 

(d) 𝜎𝑛 = 0.7 MPa 

 

Figure 8-39 Crack pattern of specimen TUD_MAT-11b tested under vertical compression test: (a) first crack; (b) maximum 

stress; (c)-(d) post-peak phase [41]. 

Note that the cracking phases shown in figures 8-39 (c) and (d) were not recorded by LVDTs reading as the 
LVDTs can not be attached to the specimen’s surface when the splitting developed throughout the thickness. 
However, phases (c) and (d) were tested by Jack’s reading. The vertical compressive strain-stress curves of 
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the specimen “TUD_MAT_11d” tested by LVDTs and Jack’s reading were investigated as figure 8-40 shown 
[41]. 

 
(a)  

 
(b)  

Figure 8-40 Comparisons: vertical compressive stress 𝜎𝑦𝑦
0  versus compressive strain from experimental result of specimen 

TUD_MAT_11b and the homogenized material model: (a) tested by LVDTs 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 ; (b) tested by Jack’s reading 𝜀𝑦𝑦,𝐽𝑎𝑐𝑘

0 . 

The cracking phases described in figures 8-39 (a) to (d) could be specified in figure 8-40 to discover the 
cracks predicted by the material model at which load step can reflect these phases. The load step 𝑛 can be 
obtained as equation (8.22) shown (the load step size for the analytical solution is 0.00001). 

𝑛 =
𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 ∙ 𝐿𝐿𝑉𝐷𝑇𝑠

𝜀𝑦𝑦,𝑠𝑒
0 ∙ 𝐻

= 2.06 × 104 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 ,  𝜀𝑦𝑦,𝐽𝑎𝑐𝑘

0 ≈ 𝜀𝑦𝑦,𝐿𝑉𝐷𝑇𝑠
0 (8.22) 

As a result, the relative load steps in numerical calculations of the cracking phases described in figures 8-40 
(a) to (c) can be obtained as table 8-3 shown.  

Table 8-3 The relative load steps in numerical calculations of the cracking phases 

Cracking phase Vertical strain tested by 𝐿𝑉𝐷𝑇𝑠 Load step Cracks 

(a) 0.0074 153 Shear cracks at the brick-mortar interface 

(b) 0.011 227 Vertical cracks in bricks 

(c) 0.017 351 Splitting cracks in bricks 

(d) 0.019 392 collapse 

Components’ damage state variables 𝑟𝑖 (𝑖 = 𝑢, ℎ, 𝑏, 𝑐)  can be investigated through the loading history to 

study if the cracks generate in each component, see figure 8-41. The cracks are developed when the 𝑟𝑖 is 
reduced from 1 to 0. 

As figure 8-41 shows, the shear crack develops in the bed joint at step 139, corresponding to the experimental 
result. After that, the head joint is cracked at step 203 as its equivalent splitting tensile stress reaches the 
material tensile strength. At load step 228, the brick unit is damaged in splitting tension, producing a vertical 
tensile crack, which could also be investigated from the tests. Therefore, it can be said that the material model 
could simulate all potential cracks of the unit cell in this typical case. 
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Figure 8-41 Damage state variables of components 𝑟𝑖 = 1 − 𝑑𝑖  (𝑖 = 𝑢, ℎ, 𝑏, 𝑐) versus load step 

The damaged internal stresses of the brick unit and head joint could be recorded through the load path, as 
figure 8-42 shown. These curves can be used to study if the failure mechanisms simulated by the material 
model is reasonable. 

The results in figure 8-42 indicate the failure mechanisms simulated by the material model. The hardening 
phase starts from step 37 (point 1 in figure 8-42) as the homogenized stiffness of the material model becomes 
smaller. Description for this phase in the report is: “the nonlinearity occurred at a stress level approximatively 
of 1/10 of the maximum stress”.  

However, the stress at point 1, where the nonlinearity occurred, is 2.71 MPa, about half of the maximum stress 
rather than 1/10. Note that the analytical solution solved by MATLAB is only a mathematic result, where the 
numerical integrations are not considered in the integration points. In comparison, the recorded stress from 
the tests is the average value of the specimen. As a result, differences in the simulations of the hardening 
process appear.  

 

Figure 8-42 the macro stress 𝜎𝑦𝑦
0 , damaged horizontal stresses 

of the brick unit 𝜎𝑦𝑦
𝑢  and head joint 𝜎𝑦𝑦

ℎ  versus load step 

 

Figure 8-43 the total energy, bulk energy and surface 

energy of the unit cell through the load path 

At point 2, the maximum stress is reached once the brick unit is damaged in splitting tension, which is 
correlated with the simulations of the crack pattern. After that, an exponential softening branch is investigated 
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from the analytical calculations rather than the linear one reported in [41]. The main reason is that we assume 
an exponential softening process for the components rather than the linear one in this work. 

The total energy and bulk energy can be computed by the same method introduced in section 8.1.3. As a 
result, the energy status of the unit cell through the loading history could be recorded as figure 8-43 shown. 
The surface energy has a value once the nonlinearity occurs, indicated in figure 8-42, as the surface energy 
has a value at point 1. At step 347 (point 3 in figure 8-43), the surface energy drops to zero, indicating that 
the compressive splitting effects disappear once the vertical splitting cracks split the specimens. 

In conclusion, the comparisons between the analytical and experimental results are stated in Table 8-4. 

Table 8-4 The comparisons between the analytical results and experimental results 

 The experimental results The analytical results Agreement 

Compressive 
capacity 

5.93 MPa 5.23 MPa Acceptable 

Crack pattern 

Cracks started at the mortar-brick 
interface for the joints orthogonal to 
the loading direction [41]. 

The vertical cracks mainly occurred 
in the central part of the specimens 
when the maximum stress was 
reached. 

In the post-peak phase, the vertical 
cracks mainly occurred in the bricks 
and developed uniformly through 
the length of the specimen by 
splitting it into two parts. 

The micro-cracks were vertically 
generated in the bricks and mortars 
after load step 37 due to the splitting 
effects. 

Shear cracks appeared in the 
horizontal joints orthogonal to the 
loading direction at load step 139. 

The vertical tensile crack occurred in 
the head joint at step 203. 

When the maximum stress was 
reached at step 227, the vertical 
tensile crack occurred in the bricks. 

Acceptable  

Failure 
mechanisms 

The pre-peak stage was 
characterized by linear-elastic 
followed by a hardening behaviour 
until the peak. In this stage, the 
nonlinearity occurred at a stress 
level approximatively of 1/10 of the 
maximum stress [41]. 

After the maximum stress was 
reached, a softening behaviour was 
observed. The softening branch 
was approximatively linear. 

The hardening phase starts from 
step 37, where the vertical stress is 
2.71 MPa.  

This hardening phase ends at step 
227 as the equivalent splitting failure 
occurs in the brick unit. After that, an 
exponential softening process is 
investigated. 

Partially 
acceptable 

Energy 
dissipation  

- 

Surface energy starts have value at 
load step 37. 

Surface energy drops to zero at step 
347. 

Acceptable 
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9. Conclusions and recommendations 
Although the macro models used to simulate masonry represent a good compromise between accuracy and 
efficiency, most cannot precisely identify the localized damages. Therefore, an alternative homogenized 
model developed based on Zucchini and Lourenço’s micro-mechanical models is proposed in this thesis. 
Zucchini and Lourenco’s work is characterized by an acceptable trade-off between accuracy and 
computational efforts. However, their material model is based on a complex algorithm that requires a 
significant computational time to run. Moreover, their work did not consider the following cases: shear damage 
in the bed joint occurring before other damages, the components’ compressive splitting effects and the 
hardening phase. 

Therefore, a research question can be stated as: 

Is that possible to define a homogenized constitutive model for masonry structures under in-plane loading 
that will consider shearing, tensile cracking, crushing and splitting failures based on a micro-mechanical 
approach with as few as possible computational efforts? 

To be more specific, this research question can be described by three sub-questions: 

(1) How to simplify the deformed mechanisms of Zucchini and Lourenço’s model when coupled behaviours 
in all directions are considered. 

(2) How to consider the phenomena that the horizontal shear crack potentially generated in bed joint may 
appear before the dissipation of compressive energy. 

(3) How to implement the new plastic model, in which the hardening phase and compressive splitting effects 
are considered with less computational costs. 

To reply to the research question, the basic unit cell is first defined. Each cell consists of two-quarters of 
bricks connected through a bed joint, and each one is connected to a head joint on one side. Cracking, 
crushing and shearing failure are included through four material models. Model 1 (presented in chapter 4) 
describes shear sliding, and model 2 (presented in chapter 5) describes cracking under horizontal tension. 
Model 3 (presented in chapter 6) describes compressive crushing and splitting, whereas model 4 (presented 
in chapter 7) couples the aforementioned failure mechanisms in one final model. The models’ analytical and 
numerical results shown in chapter 8 for models 1 and 2 indicate that the material model proposed in this 
work can analytically and numerically simulate the behaviours of bricks and mortars. The comparison of 
analytical solution and experimental results for model 3 is investigated, indicating that the Drucker-Prager 
yield criteria and the bi-parabolic hardening law can still be accurately implemented by applying the explicit 
method instead of the implicit one the load step is small enough. The results in chapter 8 for model 4 indicate 
that the material model proposed can still analytically predict as many localized damages as Zucchini and 
Lourenço’s model could if the head joint’s shear behaviour is neglected.  

Several new assumptions on deformed mechanisms, components’ failure modes, and elastoplastic 
behaviours are made in this thesis. An alternative constitutive model for masonry structures under in-plane 
loading is successfully proposed based on Zucchini and Lourenço’s research [20, 21, 30, 32], where the 
shearing, tensile cracking, crushing and splitting effects are coupling. This alternative constitutive model 
maintains the accuracy of the model suggested by Zucchini and Lourenço but reduce the computational 
efforts. Therefore, the answer to the main research question should indeed be “yes, it is possible”. 

In conclusion, the works presented in this thesis can be summarized by the answer to the sub-questions: 

(1) The material model for masonry’s coupled behaviour in normal directions is simulated by combining the 
quarter unit cell’s horizontal tensile and vertical compressive behaviours in a simple manner. This 
simulation is achieved by neglecting the head joint’s shear deformation so that the number of equations 
needed to be derived at brick-mortar interfaces could be reduced. As a result, also the numerical efforts 
are reduced.  
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(2) In the coupled material model, the bed joint is always damaged before any other damage occurs. When 

the bed joint is damaged in shear, it moves with the brick unit as a whole. In other words, the shear stress 
at the horizontal brick-mortar interface drops to zero once the horizontal shear crack is generated at the 
middle of the bed joint’s thickness. As a result, the constitutive model’s shear strength is dependent on 
the values of the head joint’s cohesion, vertical compressive loading and the friction angle of the mortars. 

(3) The compressive splitting effects are implemented into the final model by introducing the Drucker-Prager 
yield criterion in a 2D plane. This implementation requires more numerical efforts if we use the implicit 
method, as several quadratic algebraic equations are needed to be solved to compute the plastic 
multipliers for every component. Therefore, an explicit algorithm with a bi-parabolic hardening diagram is 
introduced to incorporate the splitting effects with less computational cost. 

9.1. Differences compared to previous works 

The work presented in this thesis is very close to the research carried out by Zucchini and Lourenço. Both 
aims are to derive a final homogenized material model for masonry with a completed stiffness matrix based 
on the compatibility and equilibrium equations of a representative unit cell.  Therefore, the four differences 
between the final material models proposed in this thesis and Zucchini and Lourenço’s works [21] are 
highlighted in the following.  

(i) Two damage parameters define the damage status of bricks and head joints. 

The brick unit’s and head joint’s damage status is controlled by two damage state variables in this final 
material model. One is obtained based on the deformed mechanisms of the unit cell under pure horizontal 
tension behaviour, and the other is obtained according to the deformed mechanisms of the unit cell under 
pure vertical compressive behaviour. These two damage variables are coupled together by incorporating the 
transverse strain produced by Poisson's effects into the axial one. 

From the physical aspect, the brick unit (or the head joint) may first have a vertical tensile crack at the middle 
of its length, and then the micro-cracks can still be generated in these half bodies if the brick’s (or the head 
joint’s) splitting tensile stress does not reach the material tensile strength of its compressive energy is not 
dissipated.  

Vice versa, the brick unit’s and head joint’s damage status is dependent on only one damage state variable 
in Zucchini and Lourenço’s work [21]. 

(ii) Shear damage of the bed joints occurs before any other failure mechanisms. 

As can be seen from the compatibility and equilibrium equations of the representative plane, the head joint’s 
horizontal stress is influenced by the bed joint’s shear stress. Meanwhile, the horizontal behaviour of the bed 
joint should be correlated with the cross joint as the bed joint is connected with the cross joint. 

In Zucchini and Lourenço’s works in [21], the bed joint’s compressive energy is assumed to be consumed 
before the horizontal shear crack can occur. Therefore, the shear stress at the horizontal brick-mortar 
interface kept increasing the head joint’s horizontal stress. This shear stress dropped to zero until the bed 
joint’s cohesion and compressive energy were consumed.  

In this thesis, a different failure mechanism of the bed joint is assumed. The shear crack is assumed to appear 
in the bed joint before all other cracks if the masonry is not loaded by vertical tension. This assumption is 
made based on two facts: first, the bed joint’s shear strength is generally smaller than the material 
compressive strength. Second, the bed joint’s tension behaviour is not such essential compared to its shear 
behaviour. As mentioned above, the bed joint’s horizontal behaviour is influenced by the cross joint’s. The 
cross joint’s horizontal behaviour is not such important as the volume of the cross joint is very small compared 
to other components. As a result, the head joint’s horizontal stress can be assumed to be no longer influenced 
by shear behaviour at the brick-mortar interface once the bed joint is fractured in shear. 

(iii) The compressive splitting effects are incorporated into the final material model. 
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Masonry is a composite quasi-brittle material as its components are brittle. Therefore, the tensile crack should 
develop rapidly in the bricks and mortars when imposed on axial tension forces. However, the micro-cracks 
are gradually generated when the masonry is loaded by axial compression. These micro-cracks change the 
components’ capacity, making the material yield surface expanding or shrinking. As a result, the plastic 
deformations in the lateral directions develop once the yield surface expands due to the axial compressive 
loading, leading to splitting effects. The Drucker-Prager yield surface can be used to find plastic strains in all 
directions. Therefore, the Drucker-Prager yield criterion is adopted in the components to describe the splitting 
effects. Such yield criterion is smooth at every corner, making it possible to describe the direction of potential 
energy or yield surface by a single direction vector for the whole yield surface.  

If the implicit return-mapping back algorithm is still used to derive the plastic model with the Drucker-Prager 
yield criterion, it will take a long time to compute each component’s plastic strain tensor as three quadratic 
algebraic equations need to be solved to compute the three plastic multipliers for the brick unit, head joint 
and bed joint. In Zucchini and Lourenço’s extended unit cell, more quadratic algebraic equations are needed 
to be solved as more components are incorporated into the extended unit cell. Therefore, Zucchini and 
Lourenço neglected the splitting effects and assumed that the shear flow only depends on axial or lateral 
plastic behaviour to save computational time by implementing the Mohr-coulomb yield criterion in the 𝜎-𝜏 
plane instead of the Drucker-Prager yield criterion [21].  

On the opposite, the splitting effects are considered in this work, and two things were done to save 
computational time. The first thing is that the explicit Euler-forward method, where the plastic correctors for 
each component can be computed from an explicit equation based on Prager’s consistency equation, is 
applied.  The second one is that the assumptions on deformed mechanisms make it is possible to derive the 
final material model based on the quarter unit cell. 

(iv) The plastic model is introduced by applying an explicit Euler-forward algorithm. 

The implicit Euler-backward method guarantees a return to the yield surface every step. Therefore, it has 
higher robustness and accuracy, especially when the load step size is large. However, it takes time to run if 
the implicit algorithm is applied to interpret the plastic model for such a complex model. Therefore, an explicit 
method is adopted in this work. The accuracy of the plastic model is guaranteed by applying a small loading 
step. However, this simplification leads to the limitation when the model is implemented in nonlinear finite 
element programs, which is discussed in sections 9.2 and 9.3. 

9.2. Limitations 

The material model has some limitations, which are described below.  

First of all, the micro-mechanical material can only be used to model the masonry structures with staggered 
alignment bricks. The compatibility and equilibrium equations of the model have to be rederived if it is used 
to model the masonry structures with other types of brick arrangements, such as the stack bond pattern, as 
all of the equations are derived based on the deformed mechanisms of the representative unit cell.  

Furthermore, the use of the explicit return-mapping algorithm requires a check of the accuracy of the results. 
Although the forward Euler method provides possibilities for the plastic strain tensor being computed with 
fewer computation efforts, the algorithm's error may be significant if the relatively large load step is applied. 
Apparently, the Euler-forward algorithm does not guarantee a rigorous return to the yield surface, which 
causes an error with a magnitude depending on the curvature of the yield surface. As a strongly curved corner 
is met, the directions of the yield surface and potential energy will change rapidly from the previous load step, 
leading to a large error as the Euler forward method solves the quadratic problem by a first-order method. If 
the relative load step is set to be large, the error accumulations may become significant, leading to numerical 
instability of the algorithm or scarce accuracy of the predictions. As a result, the material model may become 
unstable and collapse if the step size is not suitably chosen. That introduces some limitations regarding the 
step size of the numerical analyses. 

Additionally, the coupled material model did not incorporate the horizontal compressive behaviour. The 
homogenized stress in the horizontal direction is assumed to be zero if the external strain in the horizontal 
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direction is set to be negative. However, the micro-cracks should be generated in the components if the 
masonry is loaded by horizontal compression. The components may fail once the horizontal splitting cracks 
occur. Therefore, there should be compressive capacity in the horizontal direction as well. 

9.3. Future works 

As the instability of the explicit algorithm is mentioned above, it is hard to say that a stable material model is 
obtained. Although the analytical results of this material model look acceptable from its physical meaning and 
are correlated with some experimental results in the material scale, the model has not been validated against 
experimental results on the structural level. Therefore, future studies could focus on the validations of the 
material model’s robustness and accuracy. For instance, the final model could be implemented in a finite 
element program to assess the model’s robustness and accuracy, especially at the structural level.  

Furthermore, the sub-stepping techniques could be adopted and connected with the Euler-forward method to 
improve the stability of the analyses. In the sub-stepping technique, the strain increment tensor ∆𝜺 is divided 

into numbers of strain sub-increment tensor 𝑑𝜺 at every load step. As the explicit algorithm is applied to 
interpret the model’s plastic behaviours in this material model, it will be convenient to introduce this strain 
sub-increment tensor 𝑑𝜺 into the explicit functions of the plastic multipliers. As a result, the error could be 
reduced, especially when the strongly curved yield surface is met. 

As the sub-stepping techniques could reduce the error produced due to the strong curvature of the yield 
surface, the extended Drucker-Prager yield surface with the sub-stepping techniques can be introduced to 
solve the apex problem of the Drucker-Prager yield criterion.  

Additionally, some other points could be studied in the future as follows: 

 The variations of the friction and dilatancy angles could be studied and implemented into the model. In 
this material model, only the cohesion of the components could vary during the hardening or softening 
process. However, other parameters could also vary following the hardening or softening process. 

 The horizontal compressive behaviour of the masonry was not taken into account in the material model. 
It could be studied in future research and incorporated into the material model. 

 As shown in [41], the masonry structures with stiff brick units are cracking throughout the thickness during 
the post-peak under compressive loading. Therefore, the material model could be derived in a 3-
dimension space to introduce splitting effects in the thickness direction. 
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Appendix A: MATLAB Code (Model 2) 
clear all; 
% properties setting: 
% internal stress selection: SIGXXU(DU),SIGXXH(DH),TAUXYB(DB),SIGXXC(DC) 
E = 1000; C1 = 5;  
EU = C1*E; EB = E; EH = E; EC = E; 
V = 0.2; 
% shear modulus of mortar 
GB = E/(2*(1+V)); 
% I and II fracture energy 
GI = 0.01; GII = 0.05; 
% properties of masonry: L=C2*T, H=C3*T 
C2 = 12; C3 = 2; 
% initial value of external strain and damage factor:  
EPSXX0 = 0; 
DH = 0; DU = 0; DB = 0; DC = 0; 
% Shear and tension strength: 
% Tension strength of brick unit 
SIGTU = 1.3; 
% Tension strength of mortar 
SIGTM = 0.5; 
% Shear strength of mortar 
SIGS = 0.75; 
% element size 
% ATM must be positive, check maximum mesh size: HH < 80 
% ATU must be positive, check maximum mesh size: HH < 59 
% AS must be positive, check maximum mesh size: HH <74 
HH = 50; 
a = []; 
b = []; 
c = []; 
d = []; 
e = []; 
% Tolerance of calculted and assumed damge factor 
TOR = 0.00001; 
% outer loop: strain interation 
for i = 1:500 
    EPSXX0 = EPSXX0 + 0.00001; 
    % inner loop: verification of damage factor  
    while DH <= 1 & DU <= 1 & DC <= 1 & DB <= 1 
        % undamage factor of each component 
        RH = 1-DH; 
        RB = 1-DB; 
        RC = 1-DC; 
        RU = 1-DU; 
        % tension stress in head joint 
        SIGXXH = -0.4e1 * (C2 + 1) * E * EPSXX0 * (-(GB * RB * (V - 1) * (V + 1) * C2) / 0.4e1 + GB * RB * ((V 
^ 2) / 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RU) * (C1 * C2 * RU + RH) / (C1 * GB * RB * RU * (V - 1) * (V + 
1) * (C2 ^ 3) - 0.4e1 * (GB * RB * (-(V ^ 2) / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RU) * RH * (C2 ^ 2) + (-C1 
* GB * RB * RU * (V - 1) * (V + 1) + 0.4e1 * E * C3 * (RU ^ 2 * (V ^ 2 - 1) * C1 ^ 2 - 0.2e1 * C1 * RH * RU * (V 
^ 2) + RH ^ 2 * (V ^ 2 - 1))) * C2 - 0.4e1 * (GB * RB * ((V ^ 2) / 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RU) * 
RH); 
        % tension stress in brick unit 
        SIGXXU = -0.4e1 * (C2 + 1) * C1 * E * (-(GB * RB * (V - 1) * (V + 1) * C2) / 0.4e1 + GB * RB * ((V ^ 2) / 
0.4e1 - 0.1e1 / 0.4e1) + C3 * E * RH) * EPSXX0 * ((C1 * C2 * RU) + RH) / ((C1 * GB * RB * RU * (V - 1) * (V 
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+ 1) * C2 ^ 3) - 0.4e1 * (GB * RB * (-(V ^ 2) / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RU) * RH * (C2 ^ 2) + (-
(C1 * GB * RB * RU * (V - 1) * (V + 1)) + 0.4e1 * E * C3 * ((RU ^ 2 * (V ^ 2 - 1) * C1 ^ 2) - 0.2e1 * C1 * RH * 
RU * (V ^ 2) + RH ^ 2 * (V ^ 2 - 1))) * C2 - 0.4e1 * (GB * RB * ((V ^ 2) / 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * 
RU) * RH); 
        % tension stress in cross joint 
        SIGXXC = E * EPSXX0 * ((RU * C1 * GB * RB ^ 2 * RC * (V - 1) * (V + 1) * C2 ^ 3) / 0.4e1 - RH * RB * 
((-(V ^ 2 * GB) / 0.4e1 + GB / 0.4e1) * RB + (C1 * C3 * E * RU)) * RC * (C2 ^ 2) + (-(RU * C1 * GB * (V - 1) * 
(V + 1) * RB ^ 2) / 0.4e1 + E * C3 * ((RU ^ 2 * (V ^ 2 - 1) * C1 ^ 2) - 0.2e1 * C1 * RH * RU * (V ^ 2) + RH ^ 2 * 
(V ^ 2 - 1)) * RB + E * RU * (V ^ 2) * C1 * C3 * RH * ((RU * C1) - RH)) * RC * C2 + 0.2e1 * (-(GB * RC * (V - 
1) * (V + 1) * RB ^ 2) / 0.8e1 + E * RU * C1 * C3 * (-RC / 0.2e1 + (C1 * RU * V ^ 2) - RH * (V ^ 2)) * RB - E * 
RU * (V ^ 2) * C1 * C3 * RC * ((RU * C1) - RH) / 0.2e1) * RH) * (C2 + 1) / RC / ((C1 * GB * RB * RU * (V - 1) 
* (V + 1) * C2 ^ 3) / 0.4e1 - RH * ((-(V ^ 2 * GB) / 0.4e1 + GB / 0.4e1) * RB + (C1 * C3 * E * RU)) * (C2 ^ 2) + 
(-(C1 * GB * RB * RU * (V - 1) * (V + 1)) / 0.4e1 + E * C3 * ((RU ^ 2 * (V ^ 2 - 1) * C1 ^ 2) - 0.2e1 * C1 * RH * 
RU * (V ^ 2) + RH ^ 2 * (V ^ 2 - 1))) * C2 - RH * (((V ^ 2 * GB) / 0.4e1 - GB / 0.4e1) * RB + (C1 * C3 * E * RU))) 
/ (RC * C2 + 2 * RB - RC); 
        % shear stress between bed joint and brick unit 
        TAUXYB = 0.2e1 * (V - 1) * (V + 1) * ((C1 * C2 * RU) + RH) * C3 * E * EPSXX0 * (C2 + 1) * ((RU * C1) - 
RH) * GB / ((C1 * GB * RB * RU * (V - 1) * (V + 1) * C2 ^ 3) - 0.4e1 * ((C1 * C3 * E * RU) - (GB * RB * (V - 1) 
* (V + 1)) / 0.4e1) * RH * (C2 ^ 2) + ((4 * E * C3 * RU ^ 2 * (V - 1) * (V + 1) * C1 ^ 2) - 0.8e1 * RU * ((V ^ 2) * 
C3 * E * RH + (GB * RB * (V - 1) * (V + 1)) / 0.8e1) * C1 + 0.4e1 * E * C3 * RH ^ 2 * (V - 1) * (V + 1)) * C2 - 
0.4e1 * ((C1 * C3 * E * RU) + (GB * RB * (V - 1) * (V + 1)) / 0.4e1) * RH); 
        % effective stresses of each component based on damage factor 
        SXH = max(abs(SIGXXH),SIGTM); 
        SXU = max(abs(SIGXXU),SIGTU); 
        TXYB = max(abs(TAUXYB),SIGS); 
        SXC = max(abs(SIGXXC),SIGTM); 
        % with smeared crack model 
        % characteristic length of element is element size 
        LT = HH; 
        LS = HH; 
        ATM = (((GI*EH)/(LT*SIGTM^2))-(1/2))^(-1); 
        ATU = (((GI*EU)/(LT*SIGTU^2))-(1/2))^(-1); 
        ATC = (((GI*EC)/(LT*SIGTM^2))-(1/2))^(-1); 
        ASB = (((GII*GB)/(LS*SIGS^2))-(1/2))^(-1); 
        % Calculate damage factor from internal stresses 
        if RH < TOR 
            DHC = 1; 
        else 
            DHC = 1-(SIGTM*exp(ATM*(1-(SXH/SIGTM)))/SXH); 
        end 
        DUC = 1-(SIGTU*exp(ATU*(1-(SXU/SIGTU)))/SXU); 
        DCC = 1-(SIGTM*exp(ATC*(1-(SXC/SIGTM)))/SXC); 
        DBC = 1-(SIGS*exp(ASB*(1-(TXYB/SIGS)))/TXYB); 
        % Verification of damage factor 
        % Since damage factor will influence stress itself 
        % damage factor should be verificated together 
        if DHC >= 0 & DUC >=0 & DCC >=0 & DBC >= 0 
            if abs(DHC-DH) < TOR 
                if abs(DUC-DU) < TOR 
                    if abs(DCC-DC) < TOR 
                        if abs(DBC-DB) < TOR 
                            break; 
                        else 
                            DB = DBC; 
                        end 
                    else 
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                        DC = DCC; 
                    end 
                else 
                    DU = DUC; 
                end 
            else 
                DH = DHC; 
            end 
        else 
            break; 
        end 
    end 
  % total undamaged stress of cell 
    sigxxh = RH*SIGXXH;         
    sigxxu = RU*SIGXXU; 
    sigxxc = RC*SIGXXC; 
    tauxyb = RB*TAUXYB;    
    SIGXX0 = RH*SIGXXH*C3 + 2*RC*SIGXXC + C3*(RU*SIGXXU + RB*TAUXYB*(C2 - 1)/(2*C3))/2*(C3 + 
1); 
    STIFF = (C2 + 1) * (((GB * RB * RC * (V - 1) * (V + 1) * C2 ^ 3) / 0.4e1 + (GB * ((V ^ 2) / 0.2e1 - 0.1e1 / 
0.2e1) * (RB ^ 2) - (GB * RB * RC * (V - 1) * (V + 1)) / 0.2e1 - (E * C3 * RC * RH)) * (C2 ^ 2) + (GB * (-(V ^ 2) 
/ 0.2e1 + 0.1e1 / 0.2e1) * (RB ^ 2) + (-(2 * C3 * E * RH) + (E + GB / 0.4e1) * (V + 1) * (V - 1) * RC) * RB + (E 
* RC * RH * (V ^ 2 + C3))) * C2 + 0.2e1 * RH * E * (RB - RC / 0.2e1) * (V ^ 2)) * C3 * RU ^ 2 * C1 ^ 2 - 0.2e1 
* (-(GB * RC * (V - 1) * (V + 1) * RB ^ 2 * C2 ^ 3) / 0.8e1 + RH * RB * C3 * (-(V ^ 2 * GB) / 0.4e1 + E + GB / 
0.4e1) * RC * (C2 ^ 2) / 0.2e1 + (-GB * (V + 1) * (V - 1) * ((C3 * RH) - RC / 0.2e1) * (RB ^ 2) / 0.4e1 + C3 * 
RC * RH * ((E * V ^ 2) + (V ^ 2 * GB) / 0.4e1 - GB / 0.4e1) * RB + (E * C3 * RC * RH ^ 2 * (V ^ 2 + C3)) / 0.2e1) 
* C2 + (((V ^ 2) / 0.4e1 - 0.1e1 / 0.4e1) * GB * (RB ^ 2) + ((C3 * E * RH) + (E * V ^ 2 * RH) + (-(V ^ 2 * GB) / 
0.4e1 + E + GB / 0.4e1) * RC / 0.2e1) * RB - (E * RC * RH * (V ^ 2 + C3)) / 0.2e1) * RH * C3) * RU * C1 + (V 
+ 1) * RH * RB * ((E * C2 * C3 * RH) + (C2 ^ 2 * GB * RB) / 0.4e1 - (GB * RB) / 0.4e1) * (V - 1) * RC) * E / (E 
* RU ^ 2 * C2 * C3 * (V - 1) * (V + 1) * C1 ^ 2 - 0.2e1 * (-(GB * RB * (V - 1) * (V + 1) * C2 ^ 3) / 0.8e1 + (E * 
C2 ^ 2 * C3 * RH) / 0.2e1 + (GB * RB * ((V ^ 2) / 0.8e1 - 0.1e1 / 0.8e1) + (V ^ 2 * C3 * E * RH)) * C2 + (C3 * 
E * RH) / 0.2e1) * RU * C1 + (V + 1) * RH * ((E * C2 * C3 * RH) + (C2 ^ 2 * GB * RB) / 0.4e1 - (GB * RB) / 
0.4e1) * (V - 1)) / (C3 + 1) / (C2 * RC + 2 * RB - RC); 
    a = [a,SIGXX0]; 
    b = [b,sigxxh]; 
    c = [c,sigxxu]; 
    d = [d,sigxxc]; 
    e = [e,tauxyb]; 
end   
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Appendix B: Fortran Code (Model 2) 
!DEC$ ATTRIBUTES DLLEXPORT::USRMAT 
      SUBROUTINE USRMAT( EPS0, DEPS, NS, AGE0, DTIME, TEMP0, 
     $                   DTEMP, ELEMEN, INTPT, COORD, SE, ITER, 
     $                   USRMOD, USRVAL, NUV, USRSTA, NUS, 
     $                   USRIND, NUI, SIG, STIFF ) 
     IMPLICIT NONE 
C 
! IN  DBL EPS0(NS)     STRAIN VECTOR AT START OF STEP 
! IN  DBL DEPS(NS)     TOTAL STRAIN INCREMENT 
! IN  INT NS           NUMBER OF STRESS COMPONENTS 
! IN  DBL AGE0         AGE OF ELEMENT 
! IN  DBL DTIME        TOTAL TIME INCREMENT 
! IN  DBL TEMP0        TEMPERATURE 
! IN  DBL DTEMP        TOTAL TEMPERATURE INCREMENT 
! IN  INT ELEMEN       CURRENT ELEMENT NUMBER 
! IN  INT INTPT        CURRENT INTEGRATION POINT NUMBER 
! IN  DBL COORD(3)     COORDINATES OF INTERGRATION POINT 
! IN  DBL SE(NS,NS)    ELASTICITY MATRIX 
! IN  INT ITER         CURRENT ITERATION NUMBER 
! IN  CHA USRMOD*6     USER MODEL NAME 
! IN  DBL USRVAL(NUV)  USER PARAMETER 
! IN  INT NUV          NUMBER OF USER PARAMETERS 
! IN  DBL USRSTA(NUS)  USER STATE VARIABLES AT START OF STEP 
! OUT DBL USRSTA(NUS)  UPDATED USER STATE VARIABLES 
! IN  INT NUS          NUMBER OF USER STATE VARIABLES 
! IN  INT USRIND(NUI)  USER INDICATORS AT START OF STEP 
! OUT INT USRIND(NUI)  UPDATED USER INDICATORS 
! IN  INT NUI          NUMBER OF USER INDICATORS 
! IN  DBL SIG(NS)      TOTAL STRESS AT START OF STEP 
! OUT DBL SIG(NS)      CURRENT TOTAL STRESS 
! IN  DBL STIFF(NS,NS) PREVIOUS TANGENT STIFFNESS 
! OUT DBL STIFF(NS,NS) CURRENT TANGENT STIFFNESS  
C 
! MATHMATIC IDENTIFY OF VARIABLES 
      CHARACTER*6      USRMOD 
C  
! VARIABLES DEFINED BY USRMAT 
      INTEGER          NS, NUV, NUS, NUI, ELEMEN, INTPT, ITER 
      DOUBLE PRECISION EPS0(NS), DEPS(NS), AGE0, DTIME, TEMP0, 
     $                 DTEMP, COORD(3), SE(NS,NS), USRVAL(NUV),  
     $                 USRSTA(NUS), SIG(NS), STIFF(NS,NS) 
      INTEGER          USRIND(NUI) 
C            
! VAIABLES DEFINED BY SELF 
      DOUBLE PRECISION DH, DU, DC, DB, GI, GII, SIGTM, SIGTU, 
     $                 SIGS, E, V, TOR, HH, GB, C1, C2, C3 
      DOUBLE PRECISION EPSXX0, SIGXX0 
      DOUBLE PRECISION EU, EH, EC, EB, LT, LS, ATM, ATU, ASM, 
     $                 RH, RU, RC, RB, SIGXXHC, SIGXXUC,  
     $                 SIGXXCC, TAUXYBC, SXH, SXU, SXC, TXYB,  
     $                 DHC, DUC, DCC, DBC 
      DOUBLE PRECISION SIGXXH, SIGXXU, SIGXXC, TAUXYB, DMT,  
     $                 DUT, DMS, THC, TUC, TCC, TBC, SIGXX0C, 
     $                 STIFFNESS 



98 Appendix B: Fortran Code (Model 2) 

 
C 
C MAIN PROGRAM: MODELII 
! MODEL II: COUPLED SHEAR AND TENSION BEHAVIOURS 
! MATERIAL PROPERTIES 
      DH    = USRSTA(1) 
      DU    = USRSTA(2) 
      DC    = USRSTA(3) 
      DB    = USRSTA(4) 
      GI    = USRVAL(1) 
      GII   = USRVAL(2) 
      SIGTM = USRVAL(3) 
      SIGTU = USRVAL(4) 
      SIGS  = USRVAL(5) 
      E     = USRVAL(6) 
      V     = USRVAL(7) 
      TOR   = USRVAL(8) 
      HH    = USRVAL(9) 
      GB    = USRVAL(10) 
! INDENTIFY RELATIVE PARAMETERS             
      C1    = USRVAL(11) 
! GEOMETRICAL PROPERTIES: L=C2*T, H=C3*T 
! L IS HALF LENGTH OF BRICK UNIT 
! T IS HALF THICKNESS OF JOINT 
! H IS HALF HEIGHT OF BRICK UNIT AND HEAD JOINT 
      C2    = USRVAL(12) 
      C3    = USRVAL(13) 
C 
! MATERIAL PROPERTIES OF EACH COMPONENT 
      EU    = C1*E 
      EH    = E 
      EC    = E 
      EB    = E 
      LT    = HH 
      LS    = HH 
! CALCULATE OF DAMAGED PARAMETERS 
      ATM   = (((GI*EH)/(LT*SIGTM**2.0D0))-(1.0D0/2.0D0))**(-1.0D0) 
      ATU   = (((GI*EU)/(LT*SIGTU**2.0D0))-(1.0D0/2.0D0))**(-1.0D0) 
      ASM   = (((GII*GB)/(LS*SIGS**2.0D0))-(1.0D0/2.0D0))**(-1.0D0) 
! DEFINATION OF EXTERNALLY HORIZONTAL STRAIN  
      EPSXX0  = EPS0(1)+DEPS(1) 
C 
! INNER LOOP: CHECK DAMAGE FACTOR 
      DO 30, WHILE(DH .LE. 1.0D0) .AND. (DU .LE. 1.0D0) .AND. 
     $            (DC .LE. 1.0D0) .AND. (DB .LE. 1.0D0)  
! UNDAMAGE FACTOR OF EACH COMPONENT 
         RH    = 1-DH 
         RU    = 1-DU 
         RC    = 1-DC 
         RB    = 1-DB 
! TENSION STRESS IN HEAD JOINT 
         SIGXXHC = SIGXXH(EPSXX0, RH, RU, RC, RB, E, GB, V, 
        $                 C1, C2, C3) 
! TENSION STRESS IN BRICK UNIT 
         SIGXXUC = SIGXXU(EPSXX0, RH, RU, RC, RB, E, GB, V, 
        $                 C1, C2, C3) 
! TENSION STRESS IN CROSS JOINT 
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         SIGXXCC = SIGXXC(EPSXX0, RH, RU, RC, RB, E, GB, V, 
        $                 C1, C2, C3) 
! SHEAR STRESS BETWEEN BED JOINT AND BRICK UNIT 
         TAUXYBC = TAUXYB(EPSXX0, RH, RU, RC, RB, E, GB, V, 
        $                 C1, C2, C3) 
C 
! EFFECTIVE STRESSES OF EACH COMPONENT 
         SXH     = MAX(ABS(SIGXXHC),SIGTM) 
         SXU     = MAX(ABS(SIGXXUC),SIGTU) 
         SXC     = MAX(ABS(SIGXXCC),SIGTM) 
         TXYB    = MAX(ABS(TAUXYBC),SIGS) 
! CALCULATE DAMAGE FACTOR FROM INTERNAL STRESSES 
         DHC    = DMT(SIGTM, ATM, SXH) 
         DUC    = DUT(SIGTU, ATU, SXU) 
         DCC    = DMT(SIGTM, ATM, SXC) 
         DBC    = DMS(SIGS, ASM, TXYB) 
C 
! DAMAGE FACTOR FROM STRESS CAL. 
         IF (DHC .LT. 0.0D0) THEN 
             EXIT 
         END IF 
         IF (DUC .LT. 0.0D0) THEN 
             EXIT 
         END IF 
         IF (DCC .LT. 0.0D0) THEN 
             EXIT 
         END IF 
         IF (DBC .LT. 0.0D0) THEN 
             EXIT 
         END IF 
! FINAL DAMAGE FACTOR 
         THC   = ABS(DHC - DH) 
         TUC   = ABS(DUC - DU) 
         TCC   = ABS(DCC - DC) 
         TBC   = ABS(DBC - DB)  
         IF (THC .LT. TOR) THEN 
             IF (TUC .LT. TOR) THEN 
                 IF (TCC .LT. TOR) THEN 
                     IF (TBC .LT. TOR) THEN 
                         EXIT 
                     ELSE 
                         DB = DBC 
                     END IF 
                 ELSE 
                     DC = DCC 
                 END IF 
             ELSE 
                 DU = DUC 
             END IF 
         ELSE 
             DH = DHC 
         END IF 
30    CONTINUE 
C 
! DAMAGED STRESS AND DAMGED STIFFNESS 
      SIGXX0C    = SIGXX0(EPSXX0, RH, RU, RC, RB, E, GB, V, 
     $                    C1, C2, C3) 
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      SIG(1)     = SIGXX0C 
      STIFFC     = STIFFNESS(RH, RU, RC, RB, E, GB, V, C1, 
     $                       C2, C3) 
      STIFF(1,1) = STIFFC 
C 
! STORE OUTPU BY USRSTA MATRIX 
      USRSTA(1)  = DH 
      USRSTA(2)  = DU 
      USRSTA(3)  = DC 
      USRSTA(4)  = DB 
      END SUBROUTINE USRMAT 
C       
C SUBPROGRAM: INTERNAL STRESS TENSION STRESS IN HEAD JOINT 
      REAL FUNCTION SIGXXH(EPSXX0, RH, RU, RC, RB, E, GB, V, 
     $                     C1, C2, C3) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB 
      REAL            ::E, GB, V, C1, C2, C3 
      SIGXXH = -0.4D1 * DBLE(C2 + 1) * E * EPSXX0 * (-DBLE(GB 
     $ * RB * (V - 1) * (V + 1) * C2) / 0.4D1 + DBLE(GB) * 
     $ DBLE(RB) * (DBLE(V ** 2) / 0.4D1 - 0.1D1 / 0.4D1) + 
     $ C1 * C3 * E * RU) * (C1 * DBLE(C2) * RU + RH) / 
     $ (C1 * DBLE(GB) * DBLE(RB) * RU * DBLE(V - 1) * 
     $ DBLE(V + 1) * DBLE(C2 ** 3) - 0.4D1 * (DBLE(GB) * 
     $ DBLE(RB) * (-DBLE(V ** 2) / 0.4D1 + 0.1D1 / 0.4D1) + 
     $ C1 * C3 * E * RU) * RH * DBLE(C2 ** 2) + (-C1 * 
     $ DBLE(GB) * DBLE(RB) * RU * DBLE(V - 1) * DBLE(V + 1) 
     $ + 0.4D1 * E * C3 * (RU ** 2 * DBLE(V ** 2 - 1) * C1 
     $ ** 2 - 0.2D1 * C1 * RH * RU * DBLE(V ** 2) + RH ** 2 
     $ * DBLE(V ** 2 - 1))) * DBLE(C2) - 0.4D1 * (DBLE(GB) 
     $ * DBLE(RB) * (DBLE(V ** 2) / 0.4D1 - 0.1D1 / 0.4D1) 
     $ + C1 * C3 * E * RU) * RH) 
      RETURN  
      END FUNCTION SIGXXH 
C 
C SUBPROGRAM: INTERNAL STRESS TENSION STRESS IN HEAD JOINT 
      REAL FUNCTION SIGXXU(EPSXX0, RH, RU, RC, RB, E, GB, V, 
     $                     C1, C2, C3) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB 
      REAL            ::E, GB, V, C1, C2, C3 
      SIGXXU = -0.4D1 * DBLE(C2 + 1) * DBLE(C1) * E * 
     $ (-DBLE(GB * RB * (V - 1) * (V + 1) * C2) / 0.4D1 + 
     $ DBLE(GB) * DBLE(RB) * (DBLE(V ** 2) / 0.4D1 - 0.1D1 / 
     $ 0.4D1) + C3 * E * RH) * EPSXX0 * (DBLE(C1 * C2 * RU) 
     $ + RH) / (DBLE(C1 * GB * RB * RU * (V - 1) * (V + 1) * 
     $ C2 ** 3) - 0.4D1 * (DBLE(GB) * DBLE(RB) * (-DBLE(V ** 
     $ 2) / 0.4D1 + 0.1D1 / 0.4D1) + DBLE(C1) * C3 * E * 
     $ DBLE(RU)) * RH * DBLE(C2 ** 2) + (-DBLE(C1 * GB * RB * 
     $ RU * (V - 1) * (V + 1)) + 0.4D1 * E * C3 * (DBLE(RU ** 
     $ 2 * (V ** 2 - 1) * C1 ** 2) - 0.2D1 * DBLE(C1) * RH * 
     $ DBLE(RU) * DBLE(V ** 2) + RH ** 2 * DBLE(V ** 2 - 1))) 
     $ * DBLE(C2) - 0.4D1 * (DBLE(GB) * DBLE(RB) * (DBLE(V ** 
     $ 2) / 0.4D1 - 0.1D1 / 0.4D1) + DBLE(C1) * C3 * E * 
     $ DBLE(RU)) * RH)  
      RETURN  
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      END FUNCTION SIGXXU 
C 
C SUBPROGRAM: INTERNAL STRESS TENSION STRESS IN HEAD JOINT 
      REAL FUNCTION SIGXXC(EPSXX0, RH, RU, RC, RB, E, GB, V, 
     $                     C1, C2, C3) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB 
      REAL            ::E, GB, V, C1, C2, C3 
      SIGXXC = DBLE(C2 + 1) * DBLE(E) * EPSXX0 * (DBLE(RU * 
     $ C1 * GB * RB ** 2 * RC * (V - 1) * (V + 1) * C2 ** 3) 
     $ / 0.4D1 - RH * DBLE(RB) * ((-DBLE(V ** 2 * GB) / 0.4D1 
     $ + DBLE(GB) / 0.4D1) * DBLE(RB) + DBLE(C1 * C3 * E * 
     $ RU)) * DBLE(RC) * DBLE(C2 ** 2) + (-DBLE(RU * C1 * GB 
     $ * (V - 1) * (V + 1) * RB ** 2) / 0.4D1 + DBLE(E) * 
     $ DBLE(C3) * (DBLE(RU ** 2 * (V ** 2 - 1) * C1 ** 2) - 
     $ 0.2D1 * DBLE(C1) * RH * DBLE(RU) * DBLE(V ** 2) + RH 
     $ ** 2 * DBLE(V ** 2 - 1)) * DBLE(RB) + DBLE(E) * 
     $ DBLE(RU) * DBLE(V ** 2) * DBLE(C1) * DBLE(C3) * RH 
     $ * (DBLE(RU * C1) - RH)) * DBLE(RC) * DBLE(C2) + 0.2D1 
     $ * (-DBLE(GB * RC * (V - 1) * (V + 1) * RB ** 2) / 
     $ 0.8D1 + DBLE(E) * DBLE(RU) * DBLE(C1) * DBLE(C3) * 
     $ (-DBLE(RC) / 0.2D1 + DBLE(C1 * RU * V ** 2) - RH * 
     $ DBLE(V ** 2)) * DBLE(RB) - DBLE(E) * DBLE(RU) * 
     $ DBLE(V ** 2) * DBLE(C1) * DBLE(C3) * DBLE(RC) * 
     $ (DBLE(RU * C1) - RH) / 0.2D1) * RH) / (DBLE(C1 * 
     $ GB * RB * RU * (V - 1) * (V + 1) * C2 ** 3) / 0.4D1 
     $ - RH * ((-DBLE(V ** 2 * GB) / 0.4D1 + DBLE(GB) / 0.4D1) 
     $ * DBLE(RB) + DBLE(C1 * C3 * E * RU)) * DBLE(C2 ** 2) + 
     $ (-DBLE(C1 * GB * RB * RU * (V - 1) * (V + 1)) / 0.4D1 + 
     $ DBLE(E) * DBLE(C3) * (DBLE(RU ** 2 * (V ** 2 - 1) * C1 
     $ ** 2) - 0.2D1 * DBLE(C1) * RH * DBLE(RU) * DBLE(V ** 2) 
     $ + RH ** 2 * DBLE(V ** 2 - 1))) * DBLE(C2) - RH * 
     $ ((DBLE(V ** 2 * GB) / 0.4D1 - DBLE(GB) / 0.4D1) * 
     $ DBLE(RB) + DBLE(C1 * C3 * E * RU))) / DBLE(RC) / 
     $ DBLE(RC * C2 + 2 * RB - RC) 
      RETURN  
      END FUNCTION SIGXXC 
C 
C SUBPROGRAM: INTERNAL STRESS SHEAR STRESS IN BED JOINT 
      REAL FUNCTION TAUXYB(EPSXX0, RH, RU, RC, RB, E, GB, V, 
     $                     C1, C2, C3) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB 
      REAL            ::E, GB, V, C1, C2, C3 
      TAUXYB = 0.2D1 * DBLE(V - 1) * DBLE(V + 1) * 
     $ (DBLE(C1 * C2 * RU) + RH) * DBLE(C3) * DBLE(E) * 
     $ EPSXX0 * DBLE(C2 + 1) * (DBLE(RU * C1) - RH) * 
     $ DBLE(GB) / (DBLE(C1 * GB * RB * RU * (V - 1) * 
     $ (V + 1) * C2 ** 3) - 0.4D1 * (DBLE(C1 * C3 * E 
     $ * RU) - DBLE(GB * RB * (V - 1) * (V + 1)) / 0.4D1) 
     $ * RH * DBLE(C2 ** 2) + (DBLE(4 * E * C3 * RU ** 2 
     $ * (V - 1) * (V + 1) * C1 ** 2) - 0.8D1 * DBLE(RU) 
     $ * (DBLE(V ** 2) * DBLE(C3) * DBLE(E) * RH + 
     $ DBLE(GB * RB * (V - 1) * (V + 1)) / 0.8D1) * 
     $ DBLE(C1) + 0.4D1 * DBLE(E) * DBLE(C3) * RH ** 2 
     $ * DBLE(V - 1) * DBLE(V + 1)) * DBLE(C2) - 0.4D1 
     $ * (DBLE(C1 * C3 * E * RU) + DBLE(GB * RB * (V - 1) 
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     $ * (V + 1)) / 0.4D1) * RH) 
      RETURN  
      END FUNCTION TAUXYB 
C 
C SUBPROGRAM: INTERNAL STRESS SHEAR STRESS IN BED JOINT 
      REAL FUNCTION SIGXX0(EPSXX0, RH, RU, RC, RB, E, GB, V, 
     $                     C1, C2, C3) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::EPSXX0, RH, RU, RC, RB 
      REAL            ::E, GB, V, C1, C2, C3 
      SIGXX0 = DBLE(C2 + 1) * ((DBLE(GB * RB * RC * (V - 1) 
     $ * (V + 1) * C2 ** 3) / 0.4D1 + (DBLE(GB) * (DBLE(V ** 2) 
     $ / 0.2D1 - 0.1D1 / 0.2D1) * DBLE(RB ** 2) - DBLE(GB * 
     $ RB * RC * (V - 1) * (V + 1)) / 0.2D1 - DBLE(E * C3 * 
     $ RC * RH)) * DBLE(C2 ** 2) + (DBLE(GB) * (-DBLE(V ** 
     $ 2) / 0.2D1 + 0.1D1 / 0.2D1) * DBLE(RB ** 2) + 
     $ (-DBLE(2 * C3 * E * RH) + (DBLE(E) + DBLE(GB) / 0.4D1) 
     $ * DBLE(V + 1) * DBLE(V - 1) * DBLE(RC)) * DBLE(RB) + 
     $ DBLE(E * RC * RH * (V ** 2 + C3))) * DBLE(C2) + 0.2D1 
     $ * DBLE(RH) * DBLE(E) * (DBLE(RB) - DBLE(RC) / 0.2D1) 
     $ * DBLE(V ** 2)) * DBLE(C3) * RU ** 2 * C1 ** 2 - 0.2D1 
     $ * (-DBLE(GB * RC * (V - 1) * (V + 1) * RB ** 2 * C2 
     $ ** 3) / 0.8D1 + DBLE(RH) * DBLE(RB) * DBLE(C3) * 
     $ (-DBLE(V ** 2 * GB) / 0.4D1 + DBLE(E) + DBLE(GB) / 
     $ 0.4D1) * DBLE(RC) * DBLE(C2 ** 2) / 0.2D1 + (-DBLE(GB) 
     $ * DBLE(V + 1) * DBLE(V - 1) * (DBLE(C3 * RH) - DBLE(RC) 
     $ / 0.2D1) * DBLE(RB ** 2) / 0.4D1 + DBLE(C3) * DBLE(RC) 
     $ * DBLE(RH) * (DBLE(E * V ** 2) + DBLE(V ** 2 * GB) / 
     $ 0.4D1 - DBLE(GB) / 0.4D1) * DBLE(RB) + DBLE(E * C3 * 
     $ RC * RH ** 2 * (V ** 2 + C3)) / 0.2D1) * DBLE(C2) + 
     $ ((DBLE(V ** 2) / 0.4D1 - 0.1D1 / 0.4D1) * DBLE(GB) * 
     $ DBLE(RB ** 2) + (DBLE(C3 * E * RH) + DBLE(E * V ** 2 
     $ * RH) + (-DBLE(V ** 2 * GB) / 0.4D1 + DBLE(E) + DBLE(GB) 
     $ / 0.4D1) * DBLE(RC) / 0.2D1) * DBLE(RB) - DBLE(E * RC 
     $ * RH * (V ** 2 + C3)) / 0.2D1) * DBLE(RH) * DBLE(C3)) 
     $ * RU * C1 + DBLE(V + 1) * DBLE(RH) * DBLE(RB) * (DBLE(E 
     $ * C2 * C3 * RH) + DBLE(C2 ** 2 * GB * RB) / 0.4D1 - 
     $ DBLE(GB * RB) / 0.4D1) * DBLE(V - 1) * DBLE(RC)) * 
     $ DBLE(E) * EPSXX0 / (DBLE(E) * RU ** 2 * DBLE(C2) * 
     $ DBLE(C3) * DBLE(V - 1) * DBLE(V + 1) * C1 ** 2 - 
     $ 0.2D1 * (-DBLE(GB * RB * (V - 1) * (V + 1) * C2 ** 3) 
     $ / 0.8D1 + DBLE(E * C2 ** 2 * C3 * RH) / 0.2D1 + 
     $ (DBLE(GB) * DBLE(RB) * (DBLE(V ** 2) / 0.8D1 - 0.1D1 
     $ / 0.8D1) + DBLE(V ** 2 * C3 * E * RH)) * DBLE(C2) + 
     $ DBLE(C3 * E * RH) / 0.2D1) * RU * C1 + DBLE(V + 1) * 
     $ DBLE(RH) * (DBLE(E * C2 * C3 * RH) + DBLE(C2 ** 2 * 
     $ GB * RB) / 0.4D1 - DBLE(GB * RB) / 0.4D1) * DBLE(V 
     $ - 1)) / DBLE(C3 + 1) / DBLE(RC * C2 + 2 * RB - RC) 
      RETURN  
      END FUNCTION SIGXX0 
C 
C SUBPROGRAM: STIFFNESS OF HOMOGENIZED CELL 
      REAL FUNCTION STIFFNESS( RH, RU, RC, RB, E, GB, V, 
     $                        C1, C2, C3) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::RH, RU, RC, RB 
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      REAL            ::E, GB, V, C1, C2, C3 
      STIFF = DBLE(C2 + 1) * ((DBLE(GB * RB * RC * (V - 1) * 
     $ (V + 1) * C2 ** 3) / 0.4D1 + (DBLE(GB) * (DBLE(V ** 
     $ 2) / 0.2D1 - 0.1D1 / 0.2D1) * DBLE(RB ** 2) - 
     $ DBLE(GB * RB * RC * (V - 1) * (V + 1)) / 0.2D1 - 
     $ DBLE(E * C3 * RC * RH)) * DBLE(C2 ** 2) + (DBLE(GB) 
     $ * (-DBLE(V ** 2) / 0.2D1 + 0.1D1 / 0.2D1) * 
     $ DBLE(RB ** 2) + (-DBLE(2 * C3 * E * RH) + (DBLE(E) 
     $ + DBLE(GB) / 0.4D1) * DBLE(V + 1) * DBLE(V - 1) * 
     $ DBLE(RC)) * DBLE(RB) + DBLE(E * RC * RH * (V ** 2 
     $ + C3))) * DBLE(C2) + 0.2D1 * DBLE(RH) * DBLE(E) * 
     $ (DBLE(RB) - DBLE(RC) / 0.2D1) * DBLE(V ** 2)) * 
     $ DBLE(C3) * RU ** 2 * C1 ** 2 - 0.2D1 * (-DBLE(GB 
     $ * RC * (V - 1) * (V + 1) * RB ** 2 * C2 ** 3) / 
     $ 0.8D1 + DBLE(RH) * DBLE(RB) * DBLE(C3) * (-DBLE(V 
     $ ** 2 * GB) / 0.4D1 + DBLE(E) + DBLE(GB) / 0.4D1) * 
     $ DBLE(RC) * DBLE(C2 ** 2) / 0.2D1 + (-DBLE(GB) * 
     $ DBLE(V + 1) * DBLE(V - 1) * (DBLE(C3 * RH) - 
     $ DBLE(RC) / 0.2D1) * DBLE(RB ** 2) / 0.4D1 + DBLE(C3) 
     $ * DBLE(RC) * DBLE(RH) * (DBLE(E * V ** 2) + DBLE(V 
     $ ** 2 * GB) / 0.4D1 - DBLE(GB) / 0.4D1) * DBLE(RB) + 
     $ DBLE(E * C3 * RC * RH ** 2 * (V ** 2 + C3)) / 0.2D1) 
     $ * DBLE(C2) + ((DBLE(V ** 2) / 0.4D1 - 0.1D1 / 0.4D1) 
     $ * DBLE(GB) * DBLE(RB ** 2) + (DBLE(C3 * E * RH) + 
     $ DBLE(E * V ** 2 * RH) + (-DBLE(V ** 2 * GB) / 0.4D1 
     $ + DBLE(E) + DBLE(GB) / 0.4D1) * DBLE(RC) / 0.2D1) * 
     $ DBLE(RB) - DBLE(E * RC * RH * (V ** 2 + C3)) / 0.2D1) 
     $ * DBLE(RH) * DBLE(C3)) * RU * C1 + DBLE(V + 1) * 
     $ DBLE(RH) * DBLE(RB) * (DBLE(E * C2 * C3 * RH) + 
     $ DBLE(C2 ** 2 * GB * RB) / 0.4D1 - DBLE(GB * RB) / 
     $ 0.4D1) * DBLE(V - 1) * DBLE(RC)) * DBLE(E) / (DBLE(E) 
     $ * RU ** 2 * DBLE(C2) * DBLE(C3) * DBLE(V - 1) * 
     $ DBLE(V + 1) * C1 ** 2 - 0.2D1 * (-DBLE(GB * RB * 
     $ (V - 1) * (V + 1) * C2 ** 3) / 0.8D1 + DBLE(E * C2 
     $ ** 2 * C3 * RH) / 0.2D1 + (DBLE(GB) * DBLE(RB) * 
     $ (DBLE(V ** 2) / 0.8D1 - 0.1D1 / 0.8D1) + DBLE(V ** 
     $ 2 * C3 * E * RH)) * DBLE(C2) + DBLE(C3 * E * RH) / 
     $ 0.2D1) * RU * C1 + DBLE(V + 1) * DBLE(RH) * (DBLE(E 
     $ * C2 * C3 * RH) + DBLE(C2 ** 2 * GB * RB) / 0.4D1 
     $ - DBLE(GB * RB) / 0.4D1) * DBLE(V - 1)) / 
     $ DBLE(C3 + 1) / DBLE(C2 * RC + 2 * RB - RC) 
      RETURN  
      END FUNCTION STIFFNESS 
C 
C SUBPROGRAM: DAMAGE FACTOR CAL. FOR MORTAR IN TENSION 
      REAL FUNCTION DMT(SIGTM, ATM, SXM) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::SXM 
      REAL            ::SIGTM, ATM 
      DMT    = 1.0D0-SIGTM*EXP(ATM*(1.0D0-(SXM/SIGTM)))/SXM 
      RETURN  
      END FUNCTION DMT 
C 
C SUBPROGRAM: DAMAGE FACTOR CAL. FOR MORTAR IN SHEAR 
      REAL FUNCTION DMS(SIGS, ASM, TXY) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::TXY 
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      REAL            ::SIGS, ASM 
      DMS    = 1.0D0-SIGS*EXP(ASM*(1.0D0-(TXY/SIGS)))/TXY 
      RETURN  
      END FUNCTION DMS 
C 
C SUBPROGRAM: DAMAGE FACTOR CAL. FOR BRICK IN TENSION 
      REAL FUNCTION DUT(SIGTU, ATU, SXU) 
      IMPLICIT NONE 
      REAL, INTENT(IN)::SXU 
      REAL            ::SIGTU, ATU 
      DUT    = 1.0D0-SIGTU*EXP(ATU*(1.0D0-(SXU/SIGTU)))/SXU 
      RETURN  
      END FUNCTION DUT 
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Appendix C: MATLAB Code (Model 3 Brick Unit) 
clear all; 
% properties setting: 
% internal stress selection: SIGXXU(DU),SIGXXH(DH),TAUXYB(DB),SIGXXC(DC) 
E = 1178; C1 = 4.13; 
EU = C1*E; 
V = 0.094; 
VU = V; 
phi = (10*pi)/180; 
psi = (5*pi)/180; 
GC = 29.8; 
% I fracture energy 
GI = 1.9; 
% initial value of external strain and damage factor:  
EPSYY0 = 0; 
DEPSYY0 = 0.0005; 
EPSPXXU = 0; 
EPSPYYU = 0; 
K = 0; 
% initialize value of variables: 
DU = 0; SU = 0; 
DEPSPXXU = 0; 
DEPSPYYU = 0; 
% Tension and compression strength of brick unit 
SIGTU = 3.7; fc = 26.9; 
eps0 = 2*fc/EU; % ultimate strain 
% element size 
% ATU must be positive, check maximum mesh size: HH < 59 
HH = 50; 
LC = HH; 
a = []; 
b = []; 
d = []; 
% Tolerance of calculted and assumed damge factor 
TOR = 0.00001; 
TOR2 = 0.00001; 
% outer loop: strain interation 
for i = 1:300 
    EPSYY0 = EPSYY0 + DEPSYY0; 
    DK = sqrt((6 * DEPSPXXU ^ 2 + 6 * DEPSPYYU ^ 2)) / 0.3e1; 
    K  = K + DK; 
    % find compressive strength by hardening parameter K: 
    KMAX = ((2 * LC * eps0 * fc + 3 * GC) / LC / fc) / 0.2e1; 
    if K <= eps0 
        SIGC = (fc * (-2 * K ^ 2 / eps0 ^ 2 + 4 * K / eps0 + 1)) / 0.3e1; 
        KC = (fc * (-4 * K / eps0 ^ 2 + 4 / eps0)) / 0.3e1; 
    else 
        if K < KMAX 
            SIGC = fc * (0.1e1 - 0.4e1 / 0.9e1 * fc ^ 2 * LC ^ 2 / GC ^ 2 * (K - eps0) ^ 2); 
            KC = -0.8e1 / 0.9e1 * fc ^ 3 * LC ^ 2 / GC ^ 2 * (K - eps0); 
        else 
            SIGC = 0; 
            KC = -0.8e1 / 0.9e1 * fc ^ 3 * LC ^ 2 / GC ^ 2 * (KMAX - eps0); 
        end 
    end 
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    % find critical stress: 
    c = (0.1e1 - sin(phi)) / cos(phi) * SIGC / 0.2e1; 
    SIGYYUC = (0.6e1 * (phi)) * SIGC / (sin(phi) + 0.3e1); 
    SIGXXUC = 0; 
    % judge if yielding: 
    FU = sqrt(EPSYY0 ^ 2 * EU ^ 2) + 0.2e1 * sin(phi) / (0.3e1 - sin(phi)) * EPSYY0 * EU - 0.6e1 * c * cos(phi) 
/ (0.3e1 - sin(phi));     
    if FU <= 0 
        DEPSPXXU = 0; 
        DEPSPYYU = 0; 
    else 
        while c > 0 
            % calculate plastic strain increment: 
            DEPSPXXU = 0.6e1 * DEPSYY0 * (((((VU ^ 2 - 0.7e1 / 0.3e1 * VU + 0.7e1 / 0.3e1) * SIGXXUC ^ 2 - 
0.3e1 / 0.2e1 * (VU ^ 2 - 0.11e2 / 0.9e1 * VU + 0.11e2 / 0.9e1) * SIGYYUC * SIGXXUC + (VU ^ 2 - 0.14e2 / 
0.3e1 * VU + 0.14e2 / 0.3e1) * SIGYYUC ^ 2 / 0.2e1) * sin(phi) - 0.3e1 * ((VU ^ 2 + VU / 0.3e1 - 0.1e1 / 0.3e1) 
* SIGXXUC - (VU ^ 2 + 0.2e1 / 0.3e1 * VU - 0.2e1 / 0.3e1) * SIGYYUC) * (-SIGYYUC / 0.2e1 + SIGXXUC)) * 
sin(psi) - 0.3e1 * (-0.3e1 + sin(phi)) * ((VU ^ 2 + VU / 0.3e1 - 0.1e1 / 0.3e1) * SIGXXUC - (VU ^ 2 + 0.2e1 / 
0.3e1 * VU - 0.2e1 / 0.3e1) * SIGYYUC) * (-SIGYYUC / 0.2e1 + SIGXXUC)) * sqrt(SIGXXUC ^ 2 - SIGXXUC 
* SIGYYUC + SIGYYUC ^ 2) - 0.2e1 * ((((VU ^ 2 - VU / 0.3e1 + 0.1e1 / 0.3e1) * SIGXXUC - (VU ^ 2 + VU / 
0.3e1 - 0.1e1 / 0.3e1) * SIGYYUC) * sin(phi) + (-0.3e1 * VU ^ 2 - VU + 0.1e1) * SIGXXUC + SIGYYUC * 
(0.3e1 * VU ^ 2 + 0.2e1 * VU - 0.2e1)) * sin(psi) + 0.2e1 * (VU - 0.1e1) * (-SIGYYUC / 0.2e1 + SIGXXUC) * 
sin(phi)) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2)) * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU) 
+ 0.4e1 * SU) * VU - (37 * EU) - 0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU 
^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC + 0.9e1 * 
SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 
0.9e1 * SU)) * sin(phi) + (-0.24e2 * SU * VU ^ 2 + (-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) 
* SIGXXUC ^ 2 + 0.54e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 
/ 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC - 0.27e2 * SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU 
+ 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) * sin(psi) - 0.27e2 * (-0.3e1 + sin(phi)) 
* ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * 
SIGXXUC ^ 2 - 0.2e1 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 
0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC + SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 
0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + 
SIGYYUC ̂  2) + 0.8e1 * ((sin(phi) - 0.3e1 / 0.2e1) * sin(psi) - 0.3e1 / 0.2e1 * sin(phi)) * (SIGXXUC + SIGYYUC) 
* (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * EU); 
 
            DEPSPYYU = 0.3e1 * (((((VU ^ 2 + 0.17e2 / 0.3e1 * VU - 0.17e2 / 0.3e1) * SIGXXUC ^ 2 - 0.3e1 * 
(VU ^ 2 + 0.20e2 / 0.9e1 * VU - 0.20e2 / 0.9e1) * SIGYYUC * SIGXXUC + 0.2e1 * (VU ^ 2 + 0.10e2 / 0.3e1 * 
VU - 0.10e2 / 0.3e1) * SIGYYUC ^ 2) * sin(phi) - 0.3e1 * ((VU ^ 2 + VU / 0.3e1 - 0.1e1 / 0.3e1) * SIGXXUC - 
(VU ^ 2 + 0.2e1 / 0.3e1 * VU - 0.2e1 / 0.3e1) * SIGYYUC) * (SIGXXUC - 0.2e1 * SIGYYUC)) * sin(psi) - 0.3e1 
* (-0.3e1 + sin(phi)) * ((VU ^ 2 + VU / 0.3e1 - 0.1e1 / 0.3e1) * SIGXXUC - (VU ^ 2 + 0.2e1 / 0.3e1 * VU - 0.2e1 
/ 0.3e1) * SIGYYUC) * (SIGXXUC - 0.2e1 * SIGYYUC)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + 
SIGYYUC ^ 2) + 0.4e1 * ((((VU ^ 2 + 0.2e1 / 0.3e1 * VU - 0.2e1 / 0.3e1) * SIGXXUC - (VU + 0.2e1) * (VU - 
0.2e1 / 0.3e1) * SIGYYUC) * sin(phi) + (-0.3e1 * VU ^ 2 - VU + 0.1e1) * SIGXXUC + SIGYYUC * (0.3e1 * VU 
^ 2 + 0.2e1 * VU - 0.2e1)) * sin(psi) - sin(phi) * (SIGXXUC - 0.2e1 * SIGYYUC) * (VU - 0.1e1)) * (SIGXXUC ^ 
2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2)) * DEPSYY0 * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU) + 0.4e1 * 
SU) * VU - (37 * EU) - 0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU 
+ 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC + 0.9e1 * SIGYYUC ^ 2 * 
(0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) * 
sin(phi) + (-0.24e2 * SU * VU ^ 2 + (-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^ 
2 + 0.54e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU 
- 0.2e1 / 0.9e1 * SU) * SIGXXUC - 0.27e2 * SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 
0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) * sin(psi) - 0.27e2 * (-0.3e1 + sin(phi)) * ((0.8e1 
/ 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC 
^ 2 - 0.2e1 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU 
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- 0.2e1 / 0.9e1 * SU) * SIGXXUC + SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) 
* VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 
2) + 0.8e1 * ((sin(phi) - 0.3e1 / 0.2e1) * sin(psi) - 0.3e1 / 0.2e1 * sin(phi)) * (SIGXXUC + SIGYYUC) * 
(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * EU); 
 
            % recalculate softening modulus SUC: 
            DL = 0.6e1 * ((-0.3e1 + sin(phi)) * (((-DEPSYY0 * VU - DEPSYY0) * VU + 0.2e1 / 0.3e1 * DEPSYY0 
* VU + DEPSYY0 / 0.3e1) * SIGXXUC - SIGYYUC * ((-DEPSYY0 * VU - DEPSYY0) * VU + DEPSYY0 * VU 
/ 0.3e1 + 0.2e1 / 0.3e1 * DEPSYY0)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.4e1 / 
0.3e1 * sin(phi) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (-DEPSYY0 * VU + DEPSYY0)) 
* EU * (-0.3e1 + sin(psi)) / (0.8e1 * (SIGXXUC + SIGYYUC) * ((sin(psi) - 0.3e1 / 0.2e1) * sin(phi) - 0.3e1 / 
0.2e1 * sin(psi)) * EU * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + (((0.8e1 * SU * VU ^ 2 
+ (0.9e1 * EU + 0.4e1 * SU) * VU - 0.37e2 * EU - 0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * SIGYYUC * (0.4e1 / 
0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC 
+ 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 
* SU) * SIGYYUC ^ 2) * sin(psi) + (-0.24e2 * SU * VU ^ 2 + (-0.27e2 * EU - 0.12e2 * SU) * VU + 0.15e2 * EU 
+ 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * 
SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC - 0.27e2 * SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * 
SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) * sin(phi) - 0.27e2 * 
((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * 
SIGXXUC ^ 2 - 0.2e1 * SIGYYUC * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 
0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGXXUC + SIGYYUC ^ 2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 
0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU)) * (-0.3e1 + sin(psi))); 
 
            fk = 0.3e1 / (0.3e1 - sin(phi)) * (0.1e1 - sin(phi)) * KC; 
 
            SUC = 0.1e1 / (0.3e1 - sin(phi)) * (0.1e1 - sin(phi)) * KC * sqrt((6 * DEPSPXXU ^ 2 + 6 * DEPSPYYU 
^ 2)) / DL; 
 
            if abs(SUC-SU) < TOR2 
                break; 
            else 
                SU = SUC; 
            end 
            d = [d,DL]; 
        end 
    end 
    EPSPXXU = EPSPXXU + DEPSPXXU; 
    EPSPYYU = EPSPYYU + DEPSPYYU; 
    if EPSYY0-EPSPYYU < 0 
        EPSPYYU = EPSYY0; 
    else 
    end 
    % inner loop: verification of damage factor 
    % damage factor: 
    while DU < 1 
        % undamage factor of each component 
        RU = 1-DU; 
        SIGXXUP = 0; 
        % stress in brick unit 
        SXU = max(SIGXXUP,SIGTU); 
        % characteristic length of element is element size 
        LT = HH; 
        ATU = (((GI*C1*E)/(LT*SIGTU^2))-(1/2))^(-1); 
        % Calculate damage factor from internal stresses 
        DUC = 1-(SIGTU*exp(ATU*(1-(SXU/SIGTU)))/SXU); 
        % Verification of damage factor 
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        % Since damage factor and aplhai will influence stress itself 
        % damage factor and coefficent alpha should be verificated 
        if DUC >= 0 
            if abs(DUC-DU) < TOR 
               break; 
            else 
                DUC = DU; 
            end 
        else  
            break; 
        end 
    end 
% total undamaged stress of cell 
  SIGYY0 = RU * EU * (-EPSPYYU + EPSYY0); 
  a = [a,SIGYY0]; 
  b = [b,SIGYYUC]; 
end   
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Appendix D: MATLAB Code (Model 3) 
clear all; 
% properties setting: 
E = 1178; C1 = 4.13; 
EU = C1*E; EH = E; EB = E; EC = E; 
V = 0.057; % Poisson's ratio of mortar 
VU = 0.094; % Poisson's ratio of brick 
GB = E/(2*(1+V)); % shear modulus of mortar 
% friction and dilatancy angel: 
PHIU = (10*pi)/180; 
PSIU = (5*pi)/180; 
PHIM = (10*pi)/180; 
PSIM = (5*pi)/180; 
% I and II fracture energy 
GIU = 1.9; GIM = 0.35; 
GII = 0.05; 
% compressive fracture energy 
GCU = 29.8; GCM = 6.43; 
% Shear, tension and compressive strength: 
SIGTU = 3.7; % Tension strength of brick unit 
SIGTM = 0.7; % Tension strength of mortar 
FCU   = 26.9; %compressive strength of brick 
FCM   = 3.2; % compressive strength of mortar 
% Shear strength of mortar: 
SIGS  = 0.75; % should always be smaller than "2c*cos(phi)^2/(1-sin(phi))" with cmax = fc 
% maximum strain of strain-stress curve under compression 
EPS0U = 2*FCU/EU; 
EPS0M = 2*FCM/E; 
  
% geometrical properties: 
C2 = 12; C3 = 2; % properties of masonry: L=C2*T, H=C3*T 
  
% initial value of external strain and damage factor: 
EPSYY0 = 0; % external strain 
DEPSYY0 = 0.0001; % external strain increment 
EPSPXXU = 0;EPSPYYU = 0; % initial value of plastic strain 
EPSPXXH = 0;EPSPYYH = 0; 
EPSPXXB = 0;EPSPYYB = 0;EPSPXYB = 0; 
KU = 0; KH = 0; KB = 0; % initial value of hardening(softening) parameter 
% initialize value of variables: 
DH = 0; DU = 0; DB = 0; DC = 0; % damage varaiables 
SU = 0; SH = 0; SB = 0; %softening modulus 
DEPSPXXU = 0;DEPSPYYU = 0; % initialized value of plastic strain increment 
DEPSPXXH = 0;DEPSPYYH = 0; 
DEPSPXXB = 0;DEPSPYYB = 0;DEPSPXYB = 0; 
  
% ATM must be positive, check maximum mesh size: HH < 80 
% ATU must be positive, check maximum mesh size: HH < 59 
% AS must be positive, check maximum mesh size: HH <74 
HH = 10; % element size 
LT = HH; LS = HH; LC = HH; % characteristic length of element is element size 
  
% Tolerance of calculted and assumed damge factor 
TOR = 0.00001; % verify damage factor 
TOR2 = 0.00001; % verify hardening modulus 
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SWC = 0; 
  
a = []; b = []; d = []; e = []; f = []; g = []; h = []; 
  
% outer loop: strain integration 
for i = 1:500 
    EPSYY0 = EPSYY0 + DEPSYY0; 
     
    % inner loop: verification of damage factor 
    % undamage factor of each component 
    RH = 1-DH; 
    RB = 1-DB; 
    RC = 1-DC; 
    RU = 1-DU; 
         
    % drucker pragar plasiticy model of brick unit 
    % elastic predictor of brick unit 

SIGXXUE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) * 
(RC * C3 + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * 
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC 
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V - 
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 - 0.2e1) 
* RH) * RH) * E * C1 * RB * V * EPSYY0 / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 - (V - 1) * (V 
+ 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (RC * C3 + (2 * RH)) * (C2 - 0.1e1) * RB ^ 3 - 0.4e1 * 
(0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 + E * C2 * RH) 
* (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * C1 * (-(V ^ 2) * 
RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 0.1e1) * (C2 + 0.1e1) 
* (V - 1) * (V + 1) / 0.4e1) * (RC * C3 + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E * RC ^ 2 * RH * (C2 - 
0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * (C3 ^ 2) + ((-RU * (V - 
1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * RH * ((V ^ 2) - C2) / 0.2e1) 
* RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * (V + 1)) * C3 - RC * RH * (RU 
* (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - E * C2 * RH)) * RB + 0.4e1 * E 
* RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (RC * C3 + (2 * RH)) * (C2 - 0.1e1)); 

 
SIGYYUE = -0.4e1 * (C3 + 1) * E * ((RC * E * RU * C1 * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) + (-(RU 

* C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * GB) / 
0.4e1 + E) * C1 - (E * RH * (V ^ 2 + C2))) * (RC ^ 2) + (4 * RU * C1 * E * RH ^ 2)) * RB - (2 * RC * E * RU * (V 
^ 2 * RC - RH * (C2 - 1)) * C1 * RH)) * (C3 ^ 2) + 0.2e1 * (-GB * (V - 1) * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * (RC ^ 
2) + (RU * C1 * RH)) * (V + 1) * (C2 - 1) * RB / 0.2e1 + RC * ((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * GB) / 
0.4e1 + E) * C1 - (E * C2 * RH)) * RH) * RB * C3 + (GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V 
+ 1)) / 0.2e1) * C1 * RB * EPSYY0 / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 4) + 
((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-0.4e1 * (V - 1) * (RU * (-((C2 - 1) ^ 2 * GB) / 
0.4e1 + E) * C1 + (E * C2 * RH)) * (V + 1) * (RC ^ 2) + (8 * E * RU * V ^ 2 * C1 * RC * RH) - (16 * RU * C1 * E 
* RH ^ 2)) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB) + (4 * E * RU 
^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V + 1) * (-((V - 1) 
* (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1 + (C1 * RC * RU * V ^ 2) - (2 * RU * C1 * RH)) * (C2 - 1) * (RB ^ 3) + ((2 
* RU * C1 * V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) - 0.8e1 * (V - 1) * (V + 1) * ((RU ^ 2 * GB * (V - 1) 
* (V + 1) * (C2 - 1) * C1 ^ 2) / 0.4e1 + RU * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH * C1 + (E * C2 * RH ^ 2)) * 
RC + (16 * E * RU * V ^ 2 * C1 * RH ^ 2)) * (RB ^ 2) - 0.4e1 * ((RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * 
(V + 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V ^ 2 - C2))) * (RC ^ 2) + (2 * E * V ^ 2 * RC * RH ^ 2) - (4 * RU * 
C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) 
* (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC) / 
0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) 
* (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * RB / 0.2e1 + RC * RU * C1 * 
RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH))) * RB * 
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C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1))); 
 

    % increment of elastic strain exceed yiled surface 
DEPSXXU0 = 0.4e1 * DEPSYY0 * ((VU * RH * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 3) + 

(-(RU * VU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (RU * ((V + 1) * VU * (V - 1) * (-((C2 
- 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (2 * V * RH * RC * E) + (4 * E * VU * RH ^ 2)) * C1 - (E * V * RC ^ 2 * 
RH * (VU - 1) * (VU + 1))) * RB - 0.2e1 * (V * ((V * VU) + C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC - (VU * RH * (C2 - 
1))) * RC * RU * E * C1 * RH) * (C3 ^ 2) + 0.2e1 * (-GB * (V + 1) * (V - 1) * (C2 - 1) * ((VU * RH) - (V * RC) / 
0.2e1) * (RB ^ 2) / 0.2e1 + ((V * GB * (C2 - 1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2) / 0.8e1 + (V + 1) * VU * (V - 1) * 
RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC - (2 * E * V * RH ^ 2)) * RB - (V * RH * (-RC + RH * (C2 - 1)) * RC 
* E)) * RU * C1 * C3 + (V * GB * (V + 1) * (V - 1) * RH * RB * (C2 - 1) * (2 * RB + RC * (C2 - 1)) * RU * C1) / 
0.2e1) * RB * (C3 + 1) / (-(4 * RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + ((2 * RU * C1 
* GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (0.8e1 * RU * (-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 
+ E) * (RC ^ 2) / 0.2e1 + (E * VU * V * RC * RH) - (2 * E * RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (VU - 1) 
* (VU + 1))) * (RB ^ 2) + 0.8e1 * RC * RU * E * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 
- 1))) * C1 * RH * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 
* GB * (V - 1) * (C2 - 1) * (V + 1) * ((RU * (V * RC * VU - 2 * RH) * C1) - (RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 
1)) / 0.2e1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) + 0.16e2 * RU * 
((V * VU * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) / 0.8e1 - (V + 1) * (V - 1) * RH * (-((C2 - 1) ^ 2 * GB) / 
0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH ^ 2)) * C1 - (8 * E * C2 * RC * RH ^ 2 * (VU - 1) * (VU + 1))) * (RB 
^ 2) - 0.4e1 * RU * C1 * ((V - 1) * RU * ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * 
RH ^ 2)) * (V + 1) * C1 + (((V * VU - C2) * RC + 2 * V * VU * RH) * RH * RC * E)) * RB + (8 * E * RU ^ 2 * C1 
^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * ((RU * VU * V * C1) - (RC * (VU - 1) 
* (VU + 1) * (C2 + 1)) / 0.2e1) * (V - 1) * (C2 - 1) * (V + 1) * RH * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * C1 * 
(C2 - 1) * ((RU * RH * (V - 1) * (V + 1) * C1) - RC * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * RC + (V * VU * RH))) * (V 
+ 1) * RB / 0.2e1 + RC * RU * C1 * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) 
* C1 - (E * C2 * RH)) * RH) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * 
(V + 1))); 

 
    DEPSYYU0 = 0.4e1 * RB * DEPSYY0 * (-GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC 
* (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * RB ^ 2 / 0.2e1 + 0.2e1 * (C3 * RC + 
2 * RH) * (-(RU * C1 * E * C3 ^ 2 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 / 
0.2e1 - (E * C2 * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC + (RU * C1 * E * VU * V * RH)) * C3 - RU * VU * V * 
C1 * GB * RC * ((C2 - 1) ^ 2) * (V - 1) * (V + 1) / 0.8e1) * RB + (RH * (-RC * (C2 - 1) * C3 ^ 2 + (V * (2 * V + 
VU * (C2 - 1)) * RC - 2 * RH * (C2 - 1)) * C3 + 2 * V * VU * (-RC + RH * (C2 - 1))) * C3 * RU * C1 * RC * E)) * 
(C3 + 1) / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU + 1) * 
(C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * RB ^ 3 + 0.8e1 * (C3 * RC + 2 * RH) * (-(RU * C1 * E 
* C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 / 0.2e1 - (E * C2 * RH * (VU 
- 1) * (VU + 1)) / 0.2e1) * RC + (RU * C1 * E * VU * V * RH)) * (C3 ^ 2) - GB * (V + 1) * (V - 1) * (C2 - 1) * (-V 
* RC * VU + RU * (V - 1) * (V + 1) * C1) * RU * C1 * C3 / 0.4e1 - RU * C1 * RC * GB * (C2 - 1) * (C2 + 1) * (V 
- 1) * (V + 1) / 0.8e1) * RB ^ 2 + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 0.2e1 + RH * ((RU 
* (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + ((-RU * (V - 1) * (V + 1) 
* (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - (E * RH * (V * VU - C2)) / 0.2e1) * (RC ^ 2) 
- (E * RC * RH ^ 2 * V * VU) + (2 * RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * C3 - RH * (RU * (V - 1) * (V + 1) 
* (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * C1 * RB + (4 * E * RU ^ 2 * 
C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1))); 
     
    % caculated cohesion of brick unit by value of hardening(softening) parameter K 
    DKU = sqrt((6 * DEPSPXXU ^ 2 + 6 * DEPSPYYU ^ 2)) / 0.3e1; 
    KU  = KU + DKU; 
    KUMAX = ((2 * LC * EPS0U * FCU + 3 * GCU) / LC / FCU) / 0.2e1; 
    % find compressive strength by hardening parameter K: 
    if KU <= EPS0U 
        SIGCU = (FCU * (-2 * KU ^ 2 / EPS0U ^ 2 + 4 * KU / EPS0U + 1)) / 0.3e1; 
        KCU = (FCU * (-4 * KU / EPS0U ^ 2 + 4 / EPS0U)) / 0.3e1; 
    else 
        if KU < KUMAX 
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            SIGCU = FCU * (0.1e1 - 0.4e1 / 0.9e1 * FCU ^ 2 * LC ^ 2 / GCU ^ 2 * (KU - EPS0U) ^ 2); 
            KCU = -0.8e1 / 0.9e1 * FCU ^ 3 * LC ^ 2 / GCU ^ 2 * (KU - EPS0U); 
        else 
            SIGCU = 0; 
            KCU   = -0.8e1 / 0.9e1 * FCU ^ 3 * LC ^ 2 / GCU ^ 2 * (KUMAX - EPS0U); 
        end 
    end 
    % find critical stress: 

CU = (0.1e1 - sin(PHIU)) / cos(PHIU) * SIGCU / 0.2e1; 
 
SIGXXUC1 = -0.18e2 * (-0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) - 0.6e1 * SIGYYUE * 

sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) * 
SIGXXUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ̂  2 * sin(PHIU) ̂  2 / (0.3e1 - sin(PHIU)) 
^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * SIGYYUE ^ 2 * 
sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * SIGYYUE - 0.9e1 * 
SIGYYUE ^ 2); 

 
SIGYYUC1 = 0.18e2 * (0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.6e1 * SIGYYUE * 

sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) * 
SIGYYUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ̂  2 * sin(PHIU) ̂  2 / (0.3e1 - sin(PHIU)) 
^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * SIGYYUE ^ 2 * 
sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * SIGYYUE - 0.9e1 * 
SIGYYUE ^ 2); 

 
SIGXXUC2 = 0.18e2 * (0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.6e1 * SIGYYUE * 

sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) * 
SIGXXUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ̂  2 * sin(PHIU) ̂  2 / (0.3e1 - sin(PHIU)) 
^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * SIGYYUE ^ 2 * 
sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * SIGYYUE - 0.9e1 * 
SIGYYUE ^ 2); 

 
SIGYYUC2 = -0.18e2 * (-0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) - 0.6e1 * SIGYYUE * 

sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) * 
SIGYYUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ̂  2 * sin(PHIU) ̂  2 / (0.3e1 - sin(PHIU)) 
^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * SIGYYUE ^ 2 * 
sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * SIGYYUE - 0.9e1 * 
SIGYYUE ^ 2); 

 
    if SIGXXUE/SIGXXUC1 > 0 
        SIGXXUC = SIGXXUC1; 
    else 
        SIGXXUC = SIGXXUC2; 
    end 
    if SIGYYUE/SIGYYUC1 > 0 
        SIGYYUC = SIGYYUC1; 
    else 
        SIGYYUC = SIGYYUC2; 
    end 
    
    % drucker pragar plasiticy model of head joint 
    % elastic predictor of head joint: 

SIGXXHE = -0.4e1 * (C3 + 1) * E * RB * ((((2 * RU * C1 - RC * (C2 + 1)) * RB + RU * C1 * RC * (C2 - 1)) 
* RC * E * RU * C1 * C3 ^ 2) + (-GB * ((RU * (V ^ 2 * RC - RC + 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) * 
RC ^ 2) / 0.2e1) * (C2 - 1) * (RB ^ 2) / 0.2e1 + 0.4e1 * RU * C1 * (RU * (-GB * (V - 1) * (V + 1) * (C2 - 1) * RC 
/ 0.4e1 + (E * RH)) * C1 - (-GB * ((C2 + 3) * V ^ 2 + C2 - 1) * (C2 - 1) * RC / 0.8e1 + (((C2 - 1) ^ 2) * GB / 
0.4e1 + (E * C2)) * RH) * RC / 0.2e1) * RB + 0.2e1 * RC * (RU ^ 2) * (C1 ^ 2) * ((-((C2 - 1) ^ 2) * (V - 1) * (V + 
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1) * GB / 0.4e1 - E) * RC + (E * RH * (C2 - 1)))) * C3 - GB * RU * C1 * RB * (-2 * RB * RH + RC * (RC * (C2 + 
1) - RH * (C2 - 1))) * (C2 - 1) / 0.2e1) * V * EPSYY0 / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 
- 1)) * C3 ^ 4) + (0.2e1 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * (RB ^ 3) + (-0.4e1 * RU * ((V - 1) * 
(V + 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * (RC ^ 2) - (2 * E * V ^ 2 * RC * RH) + (4 * E * RH ^ 2)) * C1 - (4 * 
E * C2 * RC ^ 2 * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH 
* (C2 - 1)) * RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * 
GB * (V - 1) * (V + 1) * ((RU * (V ^ 2 * RC - 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1) * (C2 
- 1) * (RB ^ 3) + (-0.2e1 * (RU ^ 2) * GB * RC * ((V - 1) ^ 2) * ((V + 1) ^ 2) * (C2 - 1) * (C1 ^ 2) - 0.8e1 * (-(V ^ 
2) * GB * (V - 1) * (V + 1) * (C2 - 1) * (RC ^ 2) / 0.4e1 + (V - 1) * (V + 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * 
RH * RC - (2 * E * V ^ 2 * RH ^ 2)) * RU * C1 - (8 * RC * RH ^ 2 * E * C2 * (V - 1) * (V + 1))) * (RB ^ 2) - 0.4e1 
* ((V - 1) * RU * (V + 1) * ((((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * C1 
+ (RC * E * ((V ^ 2 - C2) * RC + 2 * V ^ 2 * RH) * RH)) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 
2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V - 1) * (V + 1) * 
(C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 * ((C2 / 0.4e1 
+ 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * RB / 0.2e1 + 
RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 
* RH))) * RB * C3 - 0.2e1 * RU * C1 * GB * (RB ^ 2) * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)); 

 
SIGYYHE = -0.4e1 * (C3 + 1) * E * ((RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) + 

RC * (-(RU * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) / 0.2e1 + ((2 * C1 ^ 2 * E * RU ^ 2 * V ^ 2) - RU * 
((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + (E * (C2 * V ^ 2 + 1))) * RC + (2 * E * RH * V ^ 2)) * C1 + (E * 
C2 * RC * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (E * RU * C1 * ((V ^ 2 * (C2 - 1) * RC - 4 * V ^ 2 * RH + 4 * RH) 
* RU * C1 + V ^ 2 * RC * RH * (C2 + 1)) * RB) - (2 * E * RU ^ 2 * C1 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C2 - 
1))) * (C3 ^ 2) + 0.2e1 * (-GB * (-((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.4e1 + (C1 * RH * RU * V ^ 2)) * (C2 
- 1) * (RB ^ 2) / 0.2e1 + 0.2e1 * (RU * (-(GB * (V - 1) * (V + 1) * (C2 - 1) * RC) / 0.4e1 + (E * RH * V ^ 2)) * C1 
- RC * (GB * (0.1e1 / 0.4e1 - (C2 ^ 2) / 0.4e1) * RC + (((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * RH) * (V ^ 2) / 
0.2e1) * RU * C1 * RB + RC * RU * C1 * (((-((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 - E) * RC + (E * V ^ 2 
* RH * (C2 - 1))) * RU * C1 - (E * C2 * RC * RH))) * RB * C3 + (GB * RU * C1 * RB ^ 2 * (2 * V ^ 2 * RB * RH 
+ RC * ((-C2 - 1) * RC + V ^ 2 * RH * (C2 - 1))) * (C2 - 1)) / 0.2e1) * EPSYY0 / (-(4 * RC * E * RU * C1 * RB * 
RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-
0.4e1 * RU * ((V - 1) * (V + 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (2 * E * V ^ 2 * RC * RH) + (4 * E 
* RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * 
(V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * 
(C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V + 1) * ((RU * (V ^ 2 * RC - 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) * 
RC ^ 2) / 0.2e1) * (C2 - 1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) - 
0.8e1 * (-(V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) / 0.4e1 + (V - 1) * (V + 1) * (-((C2 - 1) ^ 2 * GB) / 
0.4e1 + E) * RH * RC - (2 * E * V ^ 2 * RH ^ 2)) * RU * C1 - (8 * RC * RH ^ 2 * E * C2 * (V - 1) * (V + 1))) * (RB 
^ 2) - 0.4e1 * ((V - 1) * RU * (V + 1) * ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * 
RH ^ 2)) * C1 + (RC * E * ((V ^ 2 - C2) * RC + 2 * V ^ 2 * RH) * RH)) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 
2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V 
- 1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 
* ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * 
RB / 0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * 
C1 - (E * C2 * RH))) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1))); 

 
    % increment of elastic strain exceed yiled surface 

DEPSXXH0 = 0.4e1 * (-(RU * C1 * GB * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1) * (C3 * VU - V) 
* RB ^ 3) / 0.2e1 + ((2 * C1 * C3 ^ 3 * E * RC * RH * RU * V) + 0.2e1 * ((E * RU ^ 2 * V * (V - 1) * (V + 1) * C1 
^ 2) - ((((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * (V + 1) * (V - 1) * RC + (2 * E * V ^ 2 * RH)) * VU * RU * C1 / 
0.2e1 + (E * V * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC * (C3 ^ 2) + 0.4e1 * (V + 1) * (V - 1) * ((C1 
* E * RH * RU * V) - (-(V * GB * (C2 - 1) ^ 2 * RC) / 0.8e1 + (((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * VU * RH) 
* RC / 0.2e1) * RU * C1 * C3 + (RU * V * C1 * GB * RC * RH * (C2 - 1) ^ 2 * (V - 1) * (V + 1)) / 0.2e1) * (RB ^ 
2) + ((RH * RC * (C2 - 1) * C3 ^ 2 + ((V + 1) * (V - 1) * (RC * (C2 - 1) - 4 * RH) * RU * C1 + VU * V * RC * RH 
* (C2 + 1)) * C3 + 2 * RH * (RU * (V - 1) * (V + 1) * (C2 - 1) * C1 - RC * C2)) * V * C3 * RU * C1 * RC * E * RB) 
- (2 * E * RU ^ 2 * V * C1 ^ 2 * C3 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * DEPSYY0 * (C3 + 1) / (-
0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 
0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * (RB ^ 3) + 0.8e1 * (C3 * RC + 2 * RH) * (-(E * RU * C1 * C3 ^ 3 
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* RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH)) * RU * C1 - (E 
* C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * (C3 ^ 2) - (GB * (V + 1) * (V - 1) * (C2 - 1) * (RU * (V ^ 2 - 1) * 
C1 - VU * V * RC) * RU * C1 * C3) / 0.4e1 - (RU * C1 * RC * GB * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.8e1) 
* (RB ^ 2) + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 0.2e1 + RH * ((RU * (V ^ 2 - 1) * C1) - 
(V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + (-(V + 1) * (V - 1) * ((((C2 - 1) ^ 2 * GB * V ^ 
2) / 0.4e1 - ((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 / 0.2e1 - (((V * VU - C2) * 
RC + 2 * VU * V * RH) * RH * RC * E) / 0.2e1) * C3 - RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * GB * V ^ 2) 
/ 0.4e1 - ((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * C1 * RB + (4 * E * RU ^ 2 * C1 ^ 2 * C3 
^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1))); 

 
    DEPSYYH0 = 0.8e1 * (-(RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * E * C3 ^ 3) / 0.2e1 + ((RU * C1 * 
GB * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) / 0.4e1 + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC 
/ 0.2e1 + (E * VU * V * RH)) * RU * C1 - (E * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * (RB ^ 2) + 0.2e1 * 
RH * ((RU * (V ^ 2 - 1) * C1) - (VU * V * (C2 + 1) * RC) / 0.4e1) * RU * C1 * E * RB + (RH * RU ^ 2 * C1 ^ 2 * 
RC * E * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - RB * (GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RC * (VU 
- 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C2 - 1) * (RB ^ 2) / 0.4e1 + GB * ((RU * (V ^ 2 - 1) * C1) - (VU * V * RC * 
(C2 + 3)) / 0.4e1) * (V + 1) * (V - 1) * (C2 - 1) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2 * 
(V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RU * C1 * RC) * C3 - (RU * C1 * GB * RB ^ 2 * RC 
* (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.4e1) * DEPSYY0 * RC * (C3 + 1) / (-(4 * RH * RB * (2 * RB + RC * 
(C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (0.8e1 
* RU * (-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) / 0.2e1 + (E * VU * V * RC * RH) - (2 * 
E * RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (VU - 1) * (VU + 1))) * (RB ^ 2) + 0.8e1 * RH * ((RU * (V ^ 2 - 
1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RU * C1 * RC * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 * 
RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V + 1) * (V - 1) * (C2 - 1) * ((RU * (VU * 
V * RC - 2 * RH) * C1) - (RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC 
* (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) + 0.16e2 * ((VU * V * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) / 
0.8e1 - (V + 1) * (V - 1) * RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH ^ 2)) * RU * 
C1 - (8 * E * C2 * RC * RH ^ 2 * (VU - 1) * (VU + 1))) * (RB ^ 2) - 0.4e1 * ((V + 1) * (V - 1) * ((((C2 - 1) ^ 2 * (V 
- 1) * (V + 1) * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 + (((V * VU - C2) * RC + 2 * VU * V * 
RH) * RH * RC * E)) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * 
(C3 ^ 2) - 0.8e1 * RB * (GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 
0.2e1) * RH * (C2 - 1) * (RB ^ 2) / 0.2e1 + RU * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * ((RU * RH * (V - 1) * (V 
+ 1) * C1) - ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * RC + (VU * V * RH)) * RC) * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * 
(((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC) * C3 - (2 * RU * 
C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1))); 
     
    % caculated cohesion of brick unit by value of hardening(softening) parameter K 
    DKH = sqrt((6 * DEPSPXXH ^ 2 + 6 * DEPSPYYH ^ 2)) / 0.3e1; 
    KH  = KH + DKH; 
    KHMAX = ((2 * LC * EPS0M * FCM + 3 * GCM) / LC / FCM) / 0.2e1; 
    % find compressive strength by hardening parameter K: 
    if KH <= EPS0M 
        SIGCH = (FCM * (-2 * KH ^ 2 / EPS0M ^ 2 + 4 * KH / EPS0M + 1)) / 0.3e1; 
        KCH = (FCM * (-4 * KH / EPS0M ^ 2 + 4 / EPS0M)) / 0.3e1; 
    else 
        if KH < KHMAX 
            SIGCH = FCM * (0.1e1 - 0.4e1 / 0.9e1 * FCM ^ 2 * LC ^ 2 / GCM ^ 2 * (KH - EPS0M) ^ 2); 
            KCH = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KH - EPS0M); 
        else 
            SIGCH = 0; 
            KCH = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KHMAX - EPS0M); 
        end 
    end 
    % find critical stress: 

CH = (0.1e1 - sin(PHIM)) / cos(PHIM) * SIGCH / 0.2e1; 
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SIGXXHC1 = -0.18e2 * (-0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYHE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) * 
SIGXXHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) 
^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * SIGYYHE ^ 2 * 
sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * SIGYYHE - 0.9e1 * 
SIGYYHE ^ 2); 

 
SIGYYHC1 = 0.18e2 * (0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYHE * 

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) * 
SIGYYHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) 
^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * SIGYYHE ^ 2 * 
sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * SIGYYHE - 0.9e1 * 
SIGYYHE ^ 2); 

 
SIGXXHC2 = 0.18e2 * (0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYHE * 

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) * 
SIGXXHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) 
^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * SIGYYHE ^ 2 * 
sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * SIGYYHE - 0.9e1 * 
SIGYYHE ^ 2); 

 
SIGYYHC2 = -0.18e2 * (-0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYHE * 

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) * 
SIGYYHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) 
^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * SIGYYHE ^ 2 * 
sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * SIGYYHE - 0.9e1 * 
SIGYYHE ^ 2); 

 
    if SIGXXHE/SIGXXHC1 > 0 
        SIGXXHC = SIGXXHC1; 
    else 
        SIGXXHC = SIGXXHC2; 
    end 
    if SIGYYHE/SIGYYHC1 > 0 
        SIGYYHC = SIGYYHC1; 
    else 
        SIGYYHC = SIGYYHC2; 
    end 
     
    % drucker pragar plasiticy model of bed joint 
    % elastic predictor of bed joint: 

SIGXXBE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) * 
(C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * 
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC 
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V - 
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 - 0.2e1) 
* RH) * RH) * E * RU * C1 * C3 * V * EPSYY0 / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 - (V - 1) 
* (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 3 - 0.4e1 
* (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 + E * C2 * 
RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * C1 * (-(V ^ 
2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 0.1e1) * (C2 + 
0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (C3 * RC + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E * RC ^ 2 * RH * 
(C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * (C3 ^ 2) + ((-RU * 
(V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * RH * ((V ^ 2) - C2) / 
0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * (V + 1)) * C3 - RC * 
RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - E * C2 * RH)) * RB + 
0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1)); 
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SIGYYBE = -0.4e1 * (C3 + 1) * E * RU * ((RC * E * RU * C1 * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) + 

(-(RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * 
GB) / 0.4e1 + E) * C1 - (E * RH * (V ^ 2 + C2))) * (RC ^ 2) + (4 * RU * C1 * E * RH ^ 2)) * RB - (2 * RC * E * 
RU * (V ^ 2 * RC - RH * (C2 - 1)) * C1 * RH)) * (C3 ^ 2) + 0.2e1 * (-GB * (V - 1) * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) 
* (RC ^ 2) + (RU * C1 * RH)) * (V + 1) * (C2 - 1) * RB / 0.2e1 + RC * ((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * 
GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH) * RB * C3 + (GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 
1) * (V + 1)) / 0.2e1) * C1 * EPSYY0 / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 4) 
+ ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-0.4e1 * (V - 1) * (RU * (-((C2 - 1) ^ 2 * GB) 
/ 0.4e1 + E) * C1 + (E * C2 * RH)) * (V + 1) * (RC ^ 2) + (8 * E * RU * V ^ 2 * C1 * RC * RH) - (16 * RU * C1 * 
E * RH ^ 2)) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB) + (4 * E * 
RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V + 1) * (-((V 
- 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1 + (C1 * RC * RU * V ^ 2) - (2 * RU * C1 * RH)) * (C2 - 1) * (RB ^ 3) + 
((2 * RU * C1 * V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) - 0.8e1 * (V - 1) * (V + 1) * ((RU ^ 2 * GB * (V 
- 1) * (V + 1) * (C2 - 1) * C1 ^ 2) / 0.4e1 + RU * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH * C1 + (E * C2 * RH ^ 
2)) * RC + (16 * E * RU * V ^ 2 * C1 * RH ^ 2)) * (RB ^ 2) - 0.4e1 * ((RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V 
- 1) * (V + 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V ^ 2 - C2))) * (RC ^ 2) + (2 * E * V ^ 2 * RC * RH ^ 2) - (4 * 
RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V 
+ 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC) 
/ 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) 
* (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * RB / 0.2e1 + RC * RU * C1 * 
RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH))) * RB * 
C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1))); 

 
TAUXYBE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) 

* (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * 
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC 
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V - 
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 - 0.2e1) 
* RH) * RH) * E * RU * C1 * C3 * V * EPSYY0 / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 - (V - 1) 
* (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 3 - 0.4e1 
* (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 + E * C2 * 
RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * C1 * (-(V ^ 
2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 0.1e1) * (C2 + 
0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (C3 * RC + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E * RC ^ 2 * RH * 
(C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * (C3 ^ 2) + ((-RU * 
(V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * RH * ((V ^ 2) - C2) / 
0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * (V + 1)) * C3 - RC * 
RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - E * C2 * RH)) * RB + 
0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1)); 

 
    % increment of elastic strain exceed yiled surface 

DEPSXXB0 = 0.4e1 * (E * RB * RC * RH * (C2 * VU + V) * C3 ^ 3 + (-(VU * GB * RC * (C2 - 1) * (C2 + 
1) * (V - 1) * (V + 1) * RB ^ 2) / 0.4e1 + (((RU * (V ^ 2 - 1) * C1 - RH * (V * VU + C2)) * V * RC + 2 * VU * C2 * 
RH ^ 2) * E * RB) - (2 * E * RU * V * C1 * RC * RH * (V - 1) * (V + 1))) * C3 ^ 2 + 0.2e1 * (-GB * (V + 1) * (V - 
1) * (C2 - 1) * (C2 + 1) * ((VU * RH) - (V * RC) / 0.2e1) * RB / 0.4e1 + (V * (RU * (V ^ 2 - 1) * C1 - RH * C2) * 
RH * E)) * RB * C3 + (V * GB * RB ^ 2 * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.2e1) * DEPSYY0 * RU 
* C1 * RC * (C3 + 0.1e1) / (-0.4e1 * RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4 + ((2 * RU 
* C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + ((-0.4e1 * (V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 
+ E) * RU * C1 - (4 * E * C2 * RH * (VU - 1) * (VU + 1))) * (RC ^ 2) + (8 * RU * C1 * E * VU * V * RC * RH) - 
(16 * RU * C1 * E * RH ^ 2)) * (RB ^ 2) + 0.8e1 * RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - 
(RH * (C2 - 1))) * RU * C1 * RC * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) 
* C3 ^ 3 + (-0.2e1 * GB * (V + 1) * (V - 1) * (C2 - 1) * (-(RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1 + (C1 
* RC * RU * V * VU) - (2 * C1 * RH * RU)) * (RB ^ 3) + ((2 * RU * VU * V * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) 
* RC ^ 2) + (-(2 * RU ^ 2 * GB * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) - 0.8e1 * (V + 1) * (V - 1) * RH * (-
((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RU * C1 - (8 * E * C2 * RH ^ 2 * (VU - 1) * (VU + 1))) * RC + (16 * RU * C1 * 
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E * VU * V * RH ^ 2)) * (RB ^ 2) - 0.4e1 * (((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 
+ E) * C1 + (E * RH * (V * VU - C2))) * (RC ^ 2) + (2 * E * RC * RH ^ 2 * V * VU) - (4 * E * RU * C1 * RH ^ 2 * 
(V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * C3 ^ 
2 - 0.8e1 * (GB * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (V + 1) * (V - 1) * RH * 
(C2 - 1) * (RB ^ 2) / 0.2e1 + GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (VU * 
V * RC * RH) + (RU * RH * (V - 1) * (V + 1) * C1)) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * (((C2 - 1) 
^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC) * RB * C3 - (2 * RU * C1 * 
GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1))); 

 
DEPSYYB0 = 0.4e1 * DEPSYY0 * ((RH * (((-C2 * V * VU - V ^ 2) * RC + (2 * V ^ 2 - 2) * RU * C1) * RB 

+ RU * C1 * RC * (V - 1) * (V + 1) * (C2 - 1)) * RC * E * C3 ^ 3) + (-GB * (V + 1) * (V - 1) * (-(V * VU * (C2 + 1) 
* RC) / 0.2e1 + ((V + 1) * (V - 1) * RU * C1)) * (C2 - 1) * RC * (RB ^ 2) / 0.2e1 + ((-(V + 1) * (V - 1) * RU * (((C2 
- 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 + (E * RH * (V * VU + C2))) * (RC ^ 2) - (2 * E * VU * V * C2 
* RC * RH ^ 2) + (4 * E * RU * C1 * RH ^ 2 * (V - 1) * (V + 1))) * RB + (2 * E * RU * C1 * RC * RH ^ 2 * (V - 1) 
* (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.2e1 * (GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC 
^ 2) - (VU * V * RC * RH * (C2 + 1)) / 0.2e1 + (RU * RH * (V - 1) * (V + 1) * C1)) * RB / 0.2e1 + RH * ((V + 1) 
* (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * RB * C3 - GB 
* RH * (RB ^ 2) * RC * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1) / 0.2e1) * RU * C1 * (C3 + 1) / (-(4 * RH * RB * (2 
* RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + (0.2e1 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) 
* (RB ^ 3) + ((-0.4e1 * (V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 - (4 * E * C2 * RH * (VU - 
1) * (VU + 1))) * (RC ^ 2) + (8 * RU * C1 * E * VU * V * RC * RH) - (16 * RU * C1 * E * RH ^ 2)) * (RB ^ 2) + 
0.8e1 * RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RU * C1 * RC * E * RB + 
(4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V + 1) * (V - 
1) * (C2 - 1) * (-(RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1 + (C1 * RC * RU * V * VU) - (2 * C1 * RH * 
RU)) * (RB ^ 3) + (0.2e1 * RU * VU * V * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * (RC ^ 2) + (-0.2e1 * (RU ^ 2) * 
GB * ((V - 1) ^ 2) * ((V + 1) ^ 2) * (C2 - 1) * (C1 ^ 2) - 0.8e1 * (V + 1) * (V - 1) * RH * (-((C2 - 1) ^ 2) * GB / 
0.4e1 + E) * RU * C1 - (8 * E * C2 * RH ^ 2 * (VU - 1) * (VU + 1))) * RC + (16 * RU * C1 * E * VU * V * RH ^ 
2)) * (RB ^ 2) - 0.4e1 * (((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 + (E * 
RH * (V * VU - C2))) * (RC ^ 2) + (2 * E * RC * RH ^ 2 * V * VU) - (4 * E * RU * C1 * RH ^ 2 * (V - 1) * (V + 1))) 
* RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB 
* ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (V + 1) * (V - 1) * RH * (C2 - 1) * (RB ^ 
2) / 0.2e1 + GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (VU * V * RC * RH) + 
(RU * RH * (V - 1) * (V + 1) * C1)) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) * 
(V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC) * RB * C3 - 0.2e1 * RU * C1 * GB * (RB 
^ 2) * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)); 

 
    DEPSXYB0 = DEPSYY0 * C3 * ((-(2 * RH * RU * C1 * RC * (VU - V) * C3 ^ 2) + ((-(RU * VU * (V - 1) * (V 
+ 1) * C1 + (-VU ^ 2 + 1) * V * RH) * (C2 + 1) * RC ^ 2 + 2 * V * RU * C1 * (RU * (V ^ 2 - 1) * C1 + (-V * VU + 
1) * RH) * RC - 4 * RU * VU * C1 * RH ^ 2) * C3) + 0.4e1 * (-(VU * (V - 1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 + 
(V * (RU * (V ^ 2 - 1) * C1 + RH))) * RH * RU * C1) * RB ^ 2 + (-(RH * RC * (C2 - 1) * (VU - V) * C3 ^ 2) + ((V 
* (RU * (V - 1) * (V + 1) * (C2 - 1) * C1 + (VU * (C2 + 3) * V + C2 - 1) * RH) * RC) - 0.4e1 * (((V ^ 3 - V) * RU * 
C1) + (VU * RH * (C2 - 1)) / 0.2e1) * RH) * C3 + (2 * V * RH * ((-C2 - 1) * RC + (C2 - 1) * (RU * (V ^ 2 - 1) * 
C1 + RH)))) * RU * C1 * RC * RB - (2 * RU ^ 2 * V * C1 ^ 2 * C3 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * 
(C3 + 1) * E / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU + 
1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * RB ^ 3 + 0.8e1 * (C3 * RC + 2 * RH) * (-(E * RU 
* C1 * C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 / 0.2e1 - (E * C2 * RH * 
(VU - 1) * (VU + 1)) / 0.2e1) * RC + (E * RU * C1 * VU * V * RH)) * (C3 ^ 2) - GB * (V + 1) * (V - 1) * (C2 - 1) * 
(-V * RC * VU + (V + 1) * (V - 1) * RU * C1) * RU * C1 * C3 / 0.4e1 - RU * C1 * RC * GB * (C2 - 1) * (C2 + 1) 
* (V - 1) * (V + 1) / 0.8e1) * RB ^ 2 + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 0.2e1 + RH * 
((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + ((-(V + 1) * (V - 1) 
* RU * (((C2 - 1) ^ 2) * GB * (V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2) * GB / 0.4e1 + E) * C1 / 0.2e1 - (E * RH * (V * VU - 
C2)) / 0.2e1) * (RC ^ 2) - (E * RC * RH ^ 2 * V * VU) + (2 * E * RU * C1 * RH ^ 2 * (V - 1) * (V + 1))) * C3 - RH 
* ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * GB * (V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2) * GB / 0.4e1 + E) * C1 - (E * C2 
* RH)) * RC) * C1 * RB + (4 * E * RU ^ 2 * C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * 
(C2 - 1))); 
     
    % caculated cohesion of brick unit by value of hardening(softening) parameter K 
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    DKB = sqrt((6 * DEPSPXXB ^ 2 + 6 * DEPSPXYB ^ 2 + 6 * DEPSPYYB ^ 2)) / 0.3e1; 
    KB  = KB + DKB; 
    KBMAX = ((2 * LC * EPS0M * FCM + 3 * GCM) / LC / FCM) / 0.2e1; 
    % find compressive strength by hardening parameter K: 
    if KB <= EPS0M 
        SIGCB = (FCM * (-2 * KB ^ 2 / EPS0M ^ 2 + 4 * KB / EPS0M + 1)) / 0.3e1; 
        KCB = (FCM * (-4 * KB / EPS0M ^ 2 + 4 / EPS0M)) / 0.3e1; 
    else 
        if KB < KBMAX 
            SIGCB = FCM * (0.1e1 - 0.4e1 / 0.9e1 * FCM ^ 2 * LC ^ 2 / GCM ^ 2 * (KB - EPS0M) ^ 2); 
            KCB = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KB - EPS0M); 
        else 
            SIGCB = 0; 
            KCB = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KBMAX - EPS0M); 
        end 
    end 
    % find critical stress: 

CB = (0.1e1 - sin(PHIM)) / cos(PHIM) * SIGCB / 0.2e1; 
 
SIGXXBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE * 

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * SIGXXBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 
* SIGYYBE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) ̂  2 - 0.9e1 * SIGXXBE ̂  2 + 0.9e1 * SIGXXBE * SIGYYBE 
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 

 
SIGYYBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE * 

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * SIGYYBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 
* SIGYYBE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) ̂  2 - 0.9e1 * SIGXXBE ̂  2 + 0.9e1 * SIGXXBE * SIGYYBE 
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 

 
TAUXYBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE * 

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) * TAUXYBE / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 
* SIGYYBE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) ̂  2 - 0.9e1 * SIGXXBE ̂  2 + 0.9e1 * SIGXXBE * SIGYYBE 
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 

 
SIGXXBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE * 

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * SIGXXBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 
* SIGYYBE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) ̂  2 - 0.9e1 * SIGXXBE ̂  2 + 0.9e1 * SIGXXBE * SIGYYBE 
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 

 
SIGYYBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE * 

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * SIGYYBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 
* SIGYYBE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) ̂  2 - 0.9e1 * SIGXXBE ̂  2 + 0.9e1 * SIGXXBE * SIGYYBE 
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 

 
TAUXYBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE * 

sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
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TAUXYBE ^ 2))) * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) * TAUXYBE / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 
* SIGYYBE ̂  2 * sin(PHIM) ̂  2 / (0.3e1 - sin(PHIM)) ̂  2 - 0.9e1 * SIGXXBE ̂  2 + 0.9e1 * SIGXXBE * SIGYYBE 
- 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 

 
    if SIGXXBE/SIGXXBC1 > 0 
        SIGXXBC = SIGXXBC1; 
    else 
        SIGXXBC = SIGXXBC2; 
    end 
    if SIGYYBE/SIGYYBC1 > 0 
        SIGYYBC = SIGYYBC1; 
    else 
        SIGYYBC = SIGYYBC2; 
    end 
    if TAUXYBE/TAUXYBC1 > 0 
        TAUXYBC = TAUXYBC1; 
    else 
        TAUXYBC = TAUXYBC2; 
    end 
     
    while CU >= 0  
        % yield function of brick unit: 
        FU = (sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2) * (-0.3e1 + sin(PHIU)) + (-0.2e1 * 
SIGXXUE - 0.2e1 * SIGYYUE) * sin(PHIU) + 0.6e1 * CU * cos(PHIU)) / (-0.3e1 + sin(PHIU)); 
        if FU <= 0 % before yielding, plastic strain = 0 
            DEPSPXXU = 0; 
            DEPSPYYU = 0; 
            break; 
        else 
            % calculate plastic strain increment: 
            DEPSPXXU = 0.6e1 * ((((((DEPSXXU0 - DEPSYYU0) * VU - 0.10e2 / 0.3e1 * DEPSXXU0 - 0.7e1 / 
0.3e1 * DEPSYYU0) * SIGXXUC ^ 2 - 0.3e1 / 0.2e1 * ((DEPSXXU0 - DEPSYYU0) * VU - 0.20e2 / 0.9e1 * 
DEPSXXU0 - 0.11e2 / 0.9e1 * DEPSYYU0) * SIGYYUC * SIGXXUC + ((DEPSXXU0 - DEPSYYU0) * VU - 
0.17e2 / 0.3e1 * DEPSXXU0 - 0.14e2 / 0.3e1 * DEPSYYU0) * SIGYYUC ^ 2 / 0.2e1) * sin(PHIU) - 0.3e1 * 
(((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - 
((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-
SIGYYUC / 0.2e1 + SIGXXUC)) * sin(PSIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * 
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-SIGYYUC / 0.2e1 + SIGXXUC) * (-0.3e1 + sin(PHIU))) * 
sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) - 0.2e1 * (((((DEPSXXU0 - DEPSYYU0) * VU - 
0.4e1 / 0.3e1 * DEPSXXU0 - DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 
0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGYYUC) * sin(PHIU) + ((-0.3e1 * DEPSXXU0 + 0.3e1 * 
DEPSYYU0) * VU + 0.2e1 * DEPSXXU0 - DEPSYYU0) * SIGXXUC + 0.3e1 * ((DEPSXXU0 - DEPSYYU0) * 
VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sin(PSIU) + 0.2e1 * sin(PHIU) * 
(DEPSXXU0 + DEPSYYU0) * (-SIGYYUC / 0.2e1 + SIGXXUC)) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + 
SIGYYUC ^ 2)) * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU) + 0.4e1 * SU) * VU - (37 * EU) - 0.4e1 * SU) * 
SIGXXUC ^ 2 - 0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU 
- 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * 
SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PHIU) + (-0.24e2 * SU * VU ^ 2 + 
(-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 / 0.9e1 * SU * 
VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC - 
0.27e2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * 
SU) * SIGYYUC ^ 2) * sin(PSIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 
0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 
/ 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + (0.8e1 / 0.9e1 * SU * 
VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * (-0.3e1 
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+ sin(PHIU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.8e1 * EU * (SIGXXUC ^ 2 - 
SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (SIGXXUC + SIGYYUC) * ((sin(PHIU) - 0.3e1 / 0.2e1) * sin(PSIU) 
- 0.3e1 / 0.2e1 * sin(PHIU))); 
 
            DEPSPYYU = -0.3e1 * ((((((DEPSXXU0 - DEPSYYU0) * VU + 0.14e2 / 0.3e1 * DEPSXXU0 + 0.17e2 
/ 0.3e1 * DEPSYYU0) * SIGXXUC ^ 2 - 0.3e1 * ((DEPSXXU0 - DEPSYYU0) * VU + 0.11e2 / 0.9e1 * 
DEPSXXU0 + 0.20e2 / 0.9e1 * DEPSYYU0) * SIGYYUC * SIGXXUC + 0.2e1 * SIGYYUC ^ 2 * ((DEPSXXU0 
- DEPSYYU0) * VU + 0.7e1 / 0.3e1 * DEPSXXU0 + 0.10e2 / 0.3e1 * DEPSYYU0)) * sin(PHIU) - 0.3e1 * 
(((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - 
((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * 
(SIGXXUC - 0.2e1 * SIGYYUC)) * sin(PSIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * 
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-0.3e1 + sin(PHIU)) * (SIGXXUC - 0.2e1 * SIGYYUC)) * 
sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.4e1 * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC 
+ SIGYYUC ^ 2) * (((((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * 
SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU + DEPSXXU0 / 0.3e1 + 0.4e1 / 0.3e1 * DEPSYYU0) * 
SIGYYUC) * sin(PHIU) + ((-0.3e1 * DEPSXXU0 + 0.3e1 * DEPSYYU0) * VU + 0.2e1 * DEPSXXU0 - 
DEPSYYU0) * SIGXXUC + 0.3e1 * ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * 
DEPSYYU0) * SIGYYUC) * sin(PSIU) - sin(PHIU) * (DEPSXXU0 + DEPSYYU0) * (SIGXXUC - 0.2e1 * 
SIGYYUC))) * EU / (((((0.8e1 * SU * VU ̂  2 + ((9 * EU) + 0.4e1 * SU) * VU - (37 * EU) - 0.4e1 * SU) * SIGXXUC 
^ 2 - 0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 
0.9e1 * SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU 
- 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PHIU) + (-0.24e2 * SU * VU ^ 2 + (-(27 * EU) 
- 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU 
+ 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC - 0.27e2 * (0.8e1 
/ 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC 
^ 2) * sin(PSIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * 
EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * 
VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU 
+ 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * (-0.3e1 + sin(PHIU))) 
* sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.8e1 * EU * (SIGXXUC ^ 2 - SIGXXUC * 
SIGYYUC + SIGYYUC ^ 2) * (SIGXXUC + SIGYYUC) * ((sin(PHIU) - 0.3e1 / 0.2e1) * sin(PSIU) - 0.3e1 / 
0.2e1 * sin(PHIU))); 
 
            % recalculate softening modulus SUC: 
            DLU = 0.6e1 * EU * ((-0.3e1 + sin(PHIU)) * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * 
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 
0.4e1 / 0.3e1 * sin(PHIU) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (DEPSXXU0 + 
DEPSYYU0)) * (-0.3e1 + sin(PSIU)) / (0.8e1 * EU * (SIGXXUC + SIGYYUC) * ((sin(PSIU) - 0.3e1 / 0.2e1) * 
sin(PHIU) - 0.3e1 / 0.2e1 * sin(PSIU)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + (((0.8e1 
* SU * VU ^ 2 + (0.9e1 * EU + 0.4e1 * SU) * VU - 0.37e2 * EU - 0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * (0.4e1 
/ 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC 
* SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 
0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PSIU) + (-0.24e2 * SU * VU ^ 2 + (-0.27e2 * EU - 0.12e2 * SU) * 
VU + 0.15e2 * EU + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 
0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC - 0.27e2 * (0.8e1 / 0.9e1 
* SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * 
sin(PHIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 
0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 
0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 
/ 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * (-0.3e1 + sin(PSIU))); 
 
            FKU = -0.3e1 / (0.3e1 - sin(PHIU)) * (0.1e1 - sin(PHIU)) * KCU; 
            SUC = -FKU*DKU/DLU; 
            if abs(SUC-SU) < TOR2 



       

121 

 

                break; 
            else 
                SU = SUC; 
            end 
        end 
    end 
         
    while CH >= 0 
        % yield function of brick unit: 
        FH = (sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2) * (-0.3e1 + sin(PHIM)) + (-0.2e1 * 
SIGXXHE - 0.2e1 * SIGYYHE) * sin(PHIM) + 0.6e1 * CH * cos(PHIM)) / (-0.3e1 + sin(PHIM)); 
        if FH <= 0 % before yielding, plastic strain = 0 
            DEPSPXXH = 0; 
            DEPSPYYH = 0; 
            break; 
        else 
            % calculate plastic strain increment: 
            DEPSPXXH = ((((((((20 * DEPSYYH0 - 6 * DEPSXXH0) * E - 14 * EU * DEPSYYH0) * V + 20 * E * 
DEPSXXH0 + 14 * EU * DEPSYYH0) * SIGXXHC ̂  2) - 0.20e2 * (((DEPSYYH0 - 0.9e1 / 0.20e2 * DEPSXXH0) 
* E - 0.11e2 / 0.20e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.11e2 / 0.20e2 * EU * DEPSYYH0) * 
SIGYYHC * SIGXXHC + 0.17e2 * (((DEPSYYH0 - 0.3e1 / 0.17e2 * DEPSXXH0) * E - 0.14e2 / 0.17e2 * EU * 
DEPSYYH0) * V + (E * DEPSXXH0) + 0.14e2 / 0.17e2 * EU * DEPSYYH0) * SIGYYHC ^ 2) * sin(PHIM) - 
0.12e2 * (SIGXXHC - SIGYYHC / 0.2e1) * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * 
DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC * 
(((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) / 
0.2e1)) * sin(PSIM) - 0.12e2 * (SIGXXHC - SIGYYHC / 0.2e1) * (sin(PHIM) - 0.3e1) * ((((DEPSYYH0 - 0.3e1 
/ 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) 
* SIGXXHC - SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 
- 2 * EU * DEPSYYH0) / 0.2e1)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) - 0.16e2 * 
((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((((DEPSYYH0 - 0.3e1 / 0.4e1 * DEPSXXH0) * 
E - (EU * DEPSYYH0) / 0.4e1) * V + (E * DEPSXXH0) + (EU * DEPSYYH0) / 0.4e1) * SIGXXHC - 
(((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU 
* DEPSYYH0) / 0.2e1) * SIGYYHC / 0.2e1) * sin(PHIM) + (((-0.3e1 / 0.2e1 * DEPSYYH0 + 0.9e1 / 0.4e1 * 
DEPSXXH0) * E - 0.3e1 / 0.4e1 * EU * DEPSYYH0) * V - 0.3e1 / 0.2e1 * E * DEPSXXH0 + 0.3e1 / 0.4e1 * 
EU * DEPSYYH0) * SIGXXHC + 0.3e1 / 0.4e1 * SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * 
DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0)) * sin(PSIM) - 0.3e1 / 0.2e1 * (DEPSYYH0 * (E - 
EU) * V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC - SIGYYHC / 0.2e1) * sin(PHIM))) / ((((((-8 * V ^ 
2 * SH + (8 * E - 17 * EU - 4 * SH) * V + 20 * E + 17 * EU + 4 * SH) * SIGXXHC ^ 2) - 0.2e1 * SIGYYHC * (-4 
* V ^ 2 * SH + (E - 10 * EU - 2 * SH) * V + 10 * E + 10 * EU + 2 * SH) * SIGXXHC + 0.11e2 * SIGYYHC ^ 2 * 
(-0.8e1 / 0.11e2 * (V ^ 2) * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E + 
0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PHIM) + ((24 * V ^ 2 * SH + (24 * E + 3 * EU + 12 * SH) * 
V - 12 * E - 3 * EU - 12 * SH) * SIGXXHC ^ 2) - 0.42e2 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * 
EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * 
SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 
0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) * sin(PSIM) + 0.24e2 * (sin(PHIM) - 0.3e1) 
* (((V ^ 2 * SH) + (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1) * (SIGXXHC ^ 2) - 
0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 
* E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1 * (V ^ 
2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * 
SH) * SIGYYHC ^ 2)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + 0.8e1 * ((SIGXXHC 
^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((E - EU) * V - 2 * E + EU) * SIGXXHC) - 0.2e1 * (((E - EU) 
* V) - E / 0.2e1 + EU) * SIGYYHC) * ((sin(PHIM) - 0.3e1 / 0.2e1) * sin(PSIM) - 0.3e1 / 0.2e1 * sin(PHIM))); 
 
            DEPSPYYH = ((((((((14 * DEPSYYH0 + 3 * DEPSXXH0) * E - 17 * EU * DEPSYYH0) * V + 14 * E * 
DEPSXXH0 + 17 * EU * DEPSYYH0) * SIGXXHC ̂  2) - 0.11e2 * (((DEPSYYH0 + 0.9e1 / 0.11e2 * DEPSXXH0) 
* E - 0.20e2 / 0.11e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.20e2 / 0.11e2 * EU * DEPSYYH0) * 
SIGYYHC * SIGXXHC + 0.14e2 * (((DEPSYYH0 + 0.3e1 / 0.7e1 * DEPSXXH0) * E - 0.10e2 / 0.7e1 * EU * 
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DEPSYYH0) * V + (E * DEPSXXH0) + 0.10e2 / 0.7e1 * EU * DEPSYYH0) * SIGYYHC ^ 2) * sin(PHIM) + 
0.6e1 * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) 
- (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * 
DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) / 0.2e1) * (SIGXXHC - 0.2e1 * SIGYYHC)) * 
sin(PSIM) + 0.6e1 * (sin(PHIM) - 0.3e1) * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * 
DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC * 
(((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) / 
0.2e1) * (SIGXXHC - 0.2e1 * SIGYYHC)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) - 
0.4e1 * ((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * (((((((DEPSYYH0 - 3 * DEPSXXH0) * E 
+ 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) * SIGXXHC) + (((DEPSYYH0 + 3 * 
DEPSXXH0) * E - 4 * EU * DEPSYYH0) * V + E * DEPSXXH0 + 4 * EU * DEPSYYH0) * SIGYYHC) * sin(PHIM) 
+ ((((-6 * DEPSYYH0 + 9 * DEPSXXH0) * E - 3 * EU * DEPSYYH0) * V - 6 * E * DEPSXXH0 + 3 * EU * 
DEPSYYH0) * SIGXXHC) + 0.3e1 * SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) 
* V + E * DEPSXXH0 - 2 * EU * DEPSYYH0)) * sin(PSIM) + 0.3e1 * (DEPSYYH0 * (E - EU) * V + E * 
DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC - 0.2e1 * SIGYYHC) * sin(PHIM))) / ((((((-8 * V ^ 2 * SH + (8 * 
E - 17 * EU - 4 * SH) * V + 20 * E + 17 * EU + 4 * SH) * SIGXXHC ^ 2) - 0.2e1 * SIGYYHC * (-4 * V ^ 2 * SH 
+ (E - 10 * EU - 2 * SH) * V + 10 * E + 10 * EU + 2 * SH) * SIGXXHC + 0.11e2 * SIGYYHC ^ 2 * (-0.8e1 / 
0.11e2 * (V ^ 2) * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E + 0.20e2 / 
0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PHIM) + ((24 * V ^ 2 * SH + (24 * E + 3 * EU + 12 * SH) * V - 12 * 
E - 3 * EU - 12 * SH) * SIGXXHC ^ 2) - 0.42e2 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU + 
0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC 
+ 0.15e2 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 
/ 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) * sin(PSIM) + 0.24e2 * (sin(PHIM) - 0.3e1) * (((V ^ 2 * SH) 
+ (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1) * (SIGXXHC ^ 2) - 0.7e1 / 0.4e1 * 
(0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 
0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E 
+ 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC 
^ 2)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + 0.8e1 * ((SIGXXHC ^ 2) - SIGXXHC * 
SIGYYHC + SIGYYHC ^ 2) * ((((E - EU) * V - 2 * E + EU) * SIGXXHC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + 
EU) * SIGYYHC) * ((sin(PHIM) - 0.3e1 / 0.2e1) * sin(PSIM) - 0.3e1 / 0.2e1 * sin(PHIM))); 
 
            % recalculate softening modulus SUC: 
            DLH = 0.4e1 * (((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + EU * DEPSYYH0 / 0.2e1) * V + E 
* DEPSXXH0 - EU * DEPSYYH0 / 0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 0.3e1 * DEPSXXH0) * E 
+ 0.2e1 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 0.2e1 * EU * DEPSYYH0) / 0.2e1) * (sin(PHIM) - 0.3e1) 
* sqrt(SIGXXHC ^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) - 0.2e1 * sin(PHIM) * (DEPSYYH0 * (E - EU) * 
V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC ^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2)) * (-0.3e1 
+ sin(PSIM)) / (0.8e1 * ((sin(PSIM) - 0.3e1 / 0.2e1) * sin(PHIM) - 0.3e1 / 0.2e1 * sin(PSIM)) * (((E - EU) * V - 
0.2e1 * E + EU) * SIGXXHC - 0.2e1 * ((E - EU) * V - E / 0.2e1 + EU) * SIGYYHC) * sqrt(SIGXXHC ^ 2 - 
SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + (((-0.8e1 * V ^ 2 * SH + (0.8e1 * E - 0.17e2 * EU - 0.4e1 * SH) * V 
+ 0.20e2 * E + 0.17e2 * EU + 0.4e1 * SH) * SIGXXHC ^ 2 - 0.2e1 * SIGYYHC * (-0.4e1 * V ^ 2 * SH + (E - 
0.10e2 * EU - 0.2e1 * SH) * V + 0.10e2 * E + 0.10e2 * EU + 0.2e1 * SH) * SIGXXHC + 0.11e2 * SIGYYHC ^ 
2 * (-0.8e1 / 0.11e2 * V ^ 2 * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E 
+ 0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PSIM) + (0.24e2 * V ^ 2 * SH + (0.24e2 * E + 0.3e1 * EU 
+ 0.12e2 * SH) * V - 0.12e2 * E - 0.3e1 * EU - 0.12e2 * SH) * SIGXXHC ^ 2 - 0.42e2 * (0.4e1 / 0.7e1 * V ^ 2 
* SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 
0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * V ^ 2 * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 
/ 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) * sin(PHIM) + 0.24e2 
* (-0.3e1 + sin(PSIM)) * ((V ^ 2 * SH + (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1) 
* SIGXXHC ^ 2 - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * V ^ 2 * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * 
V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 * 
(0.8e1 / 0.5e1 * V ^ 2 * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * 
EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2)); 
 
            FKH = -0.3e1 / (0.3e1 - sin(PHIM)) * (0.1e1 - sin(PHIM)) * KCH; 
            SHC = -FKH* DKH / DLH ; 
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            if abs(SHC-SH) < TOR2 
                break; 
            else 
                SH = SHC; 
            end 
        end 
    end 
  
    while CB >= 0 
        % yield function of brick unit: 
        FB = (sqrt((SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + 3 * TAUXYBE^2)) * (-0.3e1 + 
sin(PHIM)) + (-2 * SIGXXBE - 2 * SIGYYBE) * sin(PHIM) + 0.6e1 * CB * cos(PHIM)) / (-0.3e1 + sin(PHIM)); 
        if FB <= 0 
            DEPSPXXB = 0; 
            DEPSPYYB = 0; 
            DEPSPXYB = 0; 
            break; 
        else 
            % calculate plastic strain increment: 
            DEPSPXXB = ((((((((18 * DEPSXXB0 - 28 * DEPSYYB0) * E + 10 * EU * DEPSYYB0) * V - 28 * E * 
DEPSXXB0 - 10 * EU * DEPSYYB0) * SIGXXBC ^ 2) + (((((-27 * DEPSXXB0 + 28 * DEPSYYB0) * E - EU * 
DEPSYYB0) * V + 28 * E * DEPSXXB0 + EU * DEPSYYB0) * SIGYYBC) + 0.72e2 * DEPSXYB0 * TAUXYBC 
* (V - 0.1e1 / 0.2e1) * E) * SIGXXBC + ((((9 * DEPSXXB0 - 19 * DEPSYYB0) * E + 10 * EU * DEPSYYB0) * 
V - 19 * E * DEPSXXB0 - 10 * EU * DEPSYYB0) * SIGYYBC ^ 2) - 0.36e2 * DEPSXYB0 * TAUXYBC * (V - 
0.1e1 / 0.2e1) * E * SIGYYBC - 0.48e2 * TAUXYBC ^ 2 * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU 
* DEPSYYB0)) * sin(PHIM) - 0.54e2 * (SIGXXBC - SIGYYBC / 0.2e1) * ((((DEPSXXB0 - 0.2e1 / 0.3e1 * 
DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) / 
0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * V + (E 
* DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V 
- 0.1e1 / 0.2e1) * E)) * sin(PSIM) - 0.54e2 * (SIGXXBC - SIGYYBC / 0.2e1) * (sin(PHIM) - 0.3e1) * 
((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * 
DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 
0.3e1 * EU * DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 
0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + 
(SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.12e2 * ((((((DEPSXXB0 - 0.8e1 / 0.3e1 * DEPSYYB0) * E + 0.5e1 
/ 0.3e1 * EU * DEPSYYB0) * V - 0.5e1 / 0.3e1 * EU * DEPSYYB0 - 0.8e1 / 0.3e1 * E * DEPSXXB0) * SIGXXBC 
+ (((-DEPSXXB0 + 0.4e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V + 0.4e1 / 0.3e1 * E * 
DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) 
* E) * sin(PHIM) + ((((-3 * DEPSXXB0 + 2 * DEPSYYB0) * E + EU * DEPSYYB0) * V + 2 * E * DEPSXXB0 - 
EU * DEPSYYB0) * SIGXXBC) + ((((3 * DEPSXXB0 - DEPSYYB0) * E - 2 * EU * DEPSYYB0) * V - E * 
DEPSXXB0 + 2 * EU * DEPSYYB0) * SIGYYBC) - 0.12e2 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * 
E) * sin(PSIM) + 0.6e1 * (SIGXXBC - SIGYYBC / 0.2e1) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU 
* DEPSYYB0) * sin(PHIM)) * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC 
^ 2)) / ((((((24 * V ^ 2 * SB + (8 * E + 19 * EU + 12 * SB) * V - 28 * E - 19 * EU - 12 * SB) * SIGXXBC ^ 2) - 
0.26e2 * (0.12e2 / 0.13e2 * (V ^ 2) * SB + (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * V - 0.14e2 / 
0.13e2 * E - 0.14e2 / 0.13e2 * EU - 0.6e1 / 0.13e2 * SB) * SIGYYBC * SIGXXBC + ((24 * V ^ 2 * SB + (-E + 
28 * EU + 12 * SB) * V - 19 * E - 28 * EU - 12 * SB) * SIGYYBC ^ 2) + 0.168e3 * (0.3e1 / 0.7e1 * (V ^ 2) * SB 
+ (E + 0.2e1 / 0.7e1 * EU + 0.3e1 / 0.14e2 * SB) * V - 0.13e2 / 0.14e2 * E - 0.2e1 / 0.7e1 * EU - 0.3e1 / 0.14e2 
* SB) * TAUXYBC ^ 2) * sin(PHIM) + ((-72 * V ^ 2 * SB + (-72 * E - 9 * EU - 36 * SB) * V + 36 * E + 9 * EU + 
36 * SB) * SIGXXBC ^ 2) + 0.126e3 * (0.4e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 
* SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((-72 * V ^ 2 
* SB + (-45 * E - 36 * EU - 36 * SB) * V + 9 * E + 36 * EU + 36 * SB) * SIGYYBC ^ 2) - 0.648e3 * TAUXYBC 
^ 2 * (V - 0.1e1 / 0.2e1) * ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * sin(PSIM) - 0.72e2 * (((V ^ 2 * SB) + (E + EU 
/ 0.8e1 + SB / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * (SIGXXBC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 / 
0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * 
EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((V ^ 2 * SB) + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 
0.2e1) * V - E / 0.8e1 - EU / 0.2e1 - SB / 0.2e1) * (SIGYYBC ^ 2) + 0.9e1 * TAUXYBC ^ 2 * (V - 0.1e1 / 0.2e1) 
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* ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * (sin(PHIM) - 0.3e1)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + 
(SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.16e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 
2) + 0.3e1 * TAUXYBC ^ 2) * ((sin(PHIM) - 0.3e1 / 0.4e1) * sin(PSIM) - 0.9e1 / 0.4e1 * sin(PHIM)) * ((((E - 
EU) * V - 2 * E + EU) * SIGXXBC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYBC)); 
 
            DEPSPYYB = ((((((((-9 * DEPSXXB0 - 10 * DEPSYYB0) * E + 19 * EU * DEPSYYB0) * V - 10 * E * 
DEPSXXB0 - 19 * EU * DEPSYYB0) * SIGXXBC ^ 2) + (((((27 * DEPSXXB0 + DEPSYYB0) * E - 28 * EU * 
DEPSYYB0) * V + E * DEPSXXB0 + 28 * EU * DEPSYYB0) * SIGYYBC) - 0.36e2 * DEPSXYB0 * TAUXYBC 
* (V - 0.1e1 / 0.2e1) * E) * SIGXXBC + ((((-18 * DEPSXXB0 - 10 * DEPSYYB0) * E + 28 * EU * DEPSYYB0) 
* V - 10 * E * DEPSXXB0 - 28 * EU * DEPSYYB0) * SIGYYBC ^ 2) + 0.72e2 * DEPSXYB0 * TAUXYBC * (V 
- 0.1e1 / 0.2e1) * E * SIGYYBC - 0.48e2 * TAUXYBC ^ 2 * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU 
* DEPSYYB0)) * sin(PHIM) + 0.27e2 * (SIGXXBC - 2 * SIGYYBC) * ((((DEPSXXB0 - 0.2e1 / 0.3e1 * 
DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) / 
0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * V + (E 
* DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V 
- 0.1e1 / 0.2e1) * E)) * sin(PSIM) + 0.27e2 * (SIGXXBC - 2 * SIGYYBC) * (sin(PHIM) - 0.3e1) * ((((DEPSXXB0 
- 0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * 
DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * 
DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * 
DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + 
(SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.12e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 
2) + 0.3e1 * TAUXYBC ^ 2) * ((((((DEPSXXB0 + DEPSYYB0 / 0.3e1) * E - 0.4e1 / 0.3e1 * EU * DEPSYYB0) 
* V + (E * DEPSXXB0) / 0.3e1 + 0.4e1 / 0.3e1 * EU * DEPSYYB0) * SIGXXBC + (((-DEPSXXB0 - 0.5e1 / 
0.3e1 * DEPSYYB0) * E + 0.8e1 / 0.3e1 * EU * DEPSYYB0) * V - 0.5e1 / 0.3e1 * E * DEPSXXB0 - 0.8e1 / 
0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PHIM) 
+ ((((-3 * DEPSXXB0 + 2 * DEPSYYB0) * E + EU * DEPSYYB0) * V + 2 * E * DEPSXXB0 - EU * DEPSYYB0) 
* SIGXXBC) + ((((3 * DEPSXXB0 - DEPSYYB0) * E - 2 * EU * DEPSYYB0) * V - E * DEPSXXB0 + 2 * EU * 
DEPSYYB0) * SIGYYBC) - 0.12e2 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PSIM) - 0.3e1 * 
(SIGXXBC - 2 * SIGYYBC) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0) * sin(PHIM))) 
/ ((((((24 * V ^ 2 * SB + (8 * E + 19 * EU + 12 * SB) * V - 28 * E - 19 * EU - 12 * SB) * SIGXXBC ^ 2) - 0.26e2 
* (0.12e2 / 0.13e2 * (V ^ 2) * SB + (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * V - 0.14e2 / 0.13e2 * E 
- 0.14e2 / 0.13e2 * EU - 0.6e1 / 0.13e2 * SB) * SIGYYBC * SIGXXBC + ((24 * V ^ 2 * SB + (-E + 28 * EU + 
12 * SB) * V - 19 * E - 28 * EU - 12 * SB) * SIGYYBC ^ 2) + 0.168e3 * (0.3e1 / 0.7e1 * (V ^ 2) * SB + (E + 
0.2e1 / 0.7e1 * EU + 0.3e1 / 0.14e2 * SB) * V - 0.13e2 / 0.14e2 * E - 0.2e1 / 0.7e1 * EU - 0.3e1 / 0.14e2 * SB) 
* TAUXYBC ^ 2) * sin(PHIM) + ((-72 * V ^ 2 * SB + (-72 * E - 9 * EU - 36 * SB) * V + 36 * E + 9 * EU + 36 * 
SB) * SIGXXBC ^ 2) + 0.126e3 * (0.4e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) 
* V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((-72 * V ^ 2 * SB 
+ (-45 * E - 36 * EU - 36 * SB) * V + 9 * E + 36 * EU + 36 * SB) * SIGYYBC ^ 2) - 0.648e3 * TAUXYBC ^ 2 * 
(V - 0.1e1 / 0.2e1) * ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * sin(PSIM) - 0.72e2 * (((V ^ 2 * SB) + (E + EU / 0.8e1 
+ SB / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * (SIGXXBC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V 
^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 
/ 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((V ^ 2 * SB) + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * V - E / 
0.8e1 - EU / 0.2e1 - SB / 0.2e1) * (SIGYYBC ^ 2) + 0.9e1 * TAUXYBC ^ 2 * (V - 0.1e1 / 0.2e1) * ((V * SB) / 
0.3e1 + E + SB / 0.3e1)) * (sin(PHIM) - 0.3e1)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC 
^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.16e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 
* TAUXYBC ^ 2) * ((sin(PHIM) - 0.3e1 / 0.4e1) * sin(PSIM) - 0.9e1 / 0.4e1 * sin(PHIM)) * ((((E - EU) * V - 2 * 
E + EU) * SIGXXBC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYBC)); 
 
            DEPSPXYB = -0.54e2 * (((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - EU * DEPSYYB0 / 0.3e1) 
* SIGXXBC + ((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 
0.4e1 * TAUXYBC * E * DEPSXYB0) * V + (-0.2e1 / 0.3e1 * E * DEPSXXB0 + EU * DEPSYYB0 / 0.3e1) * 
SIGXXBC + (E * DEPSXXB0 / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC - 0.2e1 * TAUXYBC * E 
* DEPSXYB0) * (sin(PHIM) - 0.3e1) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * 
TAUXYBC ^ 2) + 0.4e1 / 0.3e1 * sin(PHIM) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 
* TAUXYBC ^ 2) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0)) * (-0.3e1 + sin(PSIM)) 
* TAUXYBC / (0.16e2 * ((SIGXXBC - 0.2e1 * SIGYYBC) * (E - EU) * V + (-0.2e1 * E + EU) * SIGXXBC + 
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SIGYYBC * (E - 0.2e1 * EU)) * ((sin(PSIM) - 0.9e1 / 0.4e1) * sin(PHIM) - 0.3e1 / 0.4e1 * sin(PSIM)) * 
sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) + ((-0.24e2 * SB * 
(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((-0.8e1 * E - 
0.19e2 * EU - 0.12e2 * SB) * SIGXXBC ^ 2 + 0.26e2 * SIGYYBC * (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 
* SB) * SIGXXBC + (E - 0.28e2 * EU - 0.12e2 * SB) * SIGYYBC ^ 2 - 0.168e3 * TAUXYBC ^ 2 * (E + 0.2e1 / 
0.7e1 * EU + 0.3e1 / 0.14e2 * SB)) * V + (0.28e2 * E + 0.19e2 * EU + 0.12e2 * SB) * SIGXXBC ^ 2 - 0.28e2 
* (E + EU + 0.3e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + (0.19e2 * E + 0.28e2 * EU + 0.12e2 * SB) * 
SIGYYBC ^ 2 + 0.156e3 * (E + 0.4e1 / 0.13e2 * EU + 0.3e1 / 0.13e2 * SB) * TAUXYBC ^ 2) * sin(PSIM) + 
0.72e2 * SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + 
((0.72e2 * E + 0.9e1 * EU + 0.36e2 * SB) * SIGXXBC ^ 2 - 0.126e3 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 
0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.45e2 * E + 0.36e2 * EU + 0.36e2 * SB) * SIGYYBC ^ 2 + 0.648e3 * 
TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-0.36e2 * E - 0.9e1 * EU - 0.36e2 * SB) * SIGXXBC ^ 2 + 0.36e2 * 
SIGYYBC * (E + EU + SB) * SIGXXBC + (-0.9e1 * E - 0.36e2 * EU - 0.36e2 * SB) * SIGYYBC ^ 2 - 0.324e3 
* TAUXYBC ^ 2 * (E + SB / 0.3e1)) * sin(PHIM) + 0.72e2 * (-0.3e1 + sin(PSIM)) * (SB * (SIGXXBC ^ 2 - 
SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((E + EU / 0.8e1 + SB / 0.2e1) * 
SIGXXBC ^ 2 - 0.7e1 / 0.4e1 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.5e1 
/ 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * SIGYYBC ^ 2 + 0.9e1 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-E / 
0.2e1 - EU / 0.8e1 - SB / 0.2e1) * SIGXXBC ^ 2 + SIGYYBC * (E + EU + SB) * SIGXXBC / 0.2e1 + (-E / 0.8e1 
- EU / 0.2e1 - SB / 0.2e1) * SIGYYBC ^ 2 - 0.9e1 / 0.2e1 * TAUXYBC ^ 2 * (E + SB / 0.3e1))) * (SIGXXBC ^ 
2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) ^ (-0.1e1 / 0.2e1); 
 
            % recalculate softening modulus SUC: 
            DLB = -0.18e2 * (((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - EU * DEPSYYB0 / 0.3e1) * 
SIGXXBC + ((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 
* TAUXYBC * E * DEPSXYB0) * V + (-0.2e1 / 0.3e1 * E * DEPSXXB0 + EU * DEPSYYB0 / 0.3e1) * SIGXXBC 
+ (E * DEPSXXB0 / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC - 0.2e1 * TAUXYBC * E * 
DEPSXYB0) * (sin(PHIM) - 0.3e1) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * 
TAUXYBC ^ 2) + 0.4e1 / 0.3e1 * sin(PHIM) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 
* TAUXYBC ^ 2) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0)) * (-0.3e1 + sin(PSIM)) 
/ (0.16e2 * ((SIGXXBC - 0.2e1 * SIGYYBC) * (E - EU) * V + (-0.2e1 * E + EU) * SIGXXBC + SIGYYBC * (E - 
0.2e1 * EU)) * ((sin(PSIM) - 0.9e1 / 0.4e1) * sin(PHIM) - 0.3e1 / 0.4e1 * sin(PSIM)) * sqrt(SIGXXBC ^ 2 - 
SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) + ((-0.24e2 * SB * (SIGXXBC ^ 2 - SIGXXBC 
* SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((-0.8e1 * E - 0.19e2 * EU - 0.12e2 * SB) * 
SIGXXBC ^ 2 + 0.26e2 * SIGYYBC * (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * SIGXXBC + (E - 
0.28e2 * EU - 0.12e2 * SB) * SIGYYBC ^ 2 - 0.168e3 * TAUXYBC ^ 2 * (E + 0.2e1 / 0.7e1 * EU + 0.3e1 / 
0.14e2 * SB)) * V + (0.28e2 * E + 0.19e2 * EU + 0.12e2 * SB) * SIGXXBC ^ 2 - 0.28e2 * (E + EU + 0.3e1 / 
0.7e1 * SB) * SIGYYBC * SIGXXBC + (0.19e2 * E + 0.28e2 * EU + 0.12e2 * SB) * SIGYYBC ^ 2 + 0.156e3 * 
(E + 0.4e1 / 0.13e2 * EU + 0.3e1 / 0.13e2 * SB) * TAUXYBC ^ 2) * sin(PSIM) + 0.72e2 * SB * (SIGXXBC ^ 2 
- SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((0.72e2 * E + 0.9e1 * EU + 0.36e2 
* SB) * SIGXXBC ^ 2 - 0.126e3 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC + 
(0.45e2 * E + 0.36e2 * EU + 0.36e2 * SB) * SIGYYBC ^ 2 + 0.648e3 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V 
+ (-0.36e2 * E - 0.9e1 * EU - 0.36e2 * SB) * SIGXXBC ^ 2 + 0.36e2 * SIGYYBC * (E + EU + SB) * SIGXXBC 
+ (-0.9e1 * E - 0.36e2 * EU - 0.36e2 * SB) * SIGYYBC ^ 2 - 0.324e3 * TAUXYBC ^ 2 * (E + SB / 0.3e1)) * 
sin(PHIM) + 0.72e2 * (-0.3e1 + sin(PSIM)) * (SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 
0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((E + EU / 0.8e1 + SB / 0.2e1) * SIGXXBC ^ 2 - 0.7e1 / 0.4e1 * SIGYYBC * 
(E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * 
SIGYYBC ^ 2 + 0.9e1 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * 
SIGXXBC ^ 2 + SIGYYBC * (E + EU + SB) * SIGXXBC / 0.2e1 + (-E / 0.8e1 - EU / 0.2e1 - SB / 0.2e1) * 
SIGYYBC ^ 2 - 0.9e1 / 0.2e1 * TAUXYBC ^ 2 * (E + SB / 0.3e1))); 
 
            FKB = -0.3e1 / (0.3e1 - sin(PHIM)) * (0.1e1 - sin(PHIM)) * KCB; 
            SBC = -FKB* DKB / DLB ; 
            if abs(SBC-SB) < TOR2 
                break; 
            else 
                SB = SBC; 
            end 
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        end 
    end 
         
    EPSPXXU = EPSPXXU + DEPSPXXU; 
    EPSPYYU = EPSPYYU + DEPSPYYU; 
    % vertical elastic stress should always be positive: 
    EPSXXUE = (SIGXXUE-VU*SIGYYUE)/EU; 
    EPSYYUE = (SIGYYUE-VU*SIGXXUE)/EU; 
    if EPSPYYU > EPSYYUE 
        if EPSPXXU > EPSXXUE 
            EPSPXXU = EPSXXUE; 
        else 
        end 
        EPSPYYU = EPSYYUE; 
    else 
    end 
     
    EPSPXXH = EPSPXXH + DEPSPXXH; 
    EPSPYYH = EPSPYYH + DEPSPYYH; 
    % elastic stress should always be positive: 
    EPSXXHE = (SIGXXHE-V*SIGYYHE)/E; 
    EPSYYHE = (SIGYYHE-V*SIGXXHE)/E; 
    if EPSPYYH > EPSYYHE 
        if EPSPXXH > EPSXXHE 
            EPSPXXH = EPSXXHE; 
        else 
        end 
        EPSPYYH = EPSYYHE; 
    else 
    end 
     
    EPSPXXB = EPSPXXB + DEPSPXXB; 
    EPSPYYB = EPSPYYB + DEPSPYYB; 
    EPSPXYB = EPSPXYB + DEPSPXYB; 
    % vertical elastic predicted stress should always be positive: 
    EPSXXBE = (SIGXXBE-V*SIGYYBE)/E; 
    EPSYYBE = (SIGYYBE-V*SIGXXBE)/E; 
    EPSXYBE = TAUXYBE/(2*GB);  
    if EPSPYYB > EPSYYBE 
        if EPSPXXB > EPSXXBE 
            if EPSPXYB > EPSXYBE 
                EPSPXYB = EPSXYBE; 
            else 
            end 
            EPSPXXB = EPSXXBE; 
        else 
        end 
        EPSPYYB = EPSYYBE; 
    else 
    end 
  
%     EPSPXXU = 0; 
%     EPSPYYU = 0; 
%     EPSPXXH = 0; 
%     EPSPYYH = 0; 
%     EPSPXXB = 0; 
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%     EPSPYYB = 0; 
%     EPSPXYB = 0; 
     
    % damage factor: 
    while DH < 1 & DU < 1 & DC < 1 & DB < 1 
        % damage model 
        % Stresses with plastic corrector of each component in x direction: 
        SIGXXUP = (EU*(1-VU)*(EPSXXUE-EPSPXXU))/((1+VU)*(1-2*VU))+(EU*(VU)*(EPSYYUE-
EPSPYYU))/((1+VU)*(1-2*VU)); 
 
        SIGXXHP = (EH*(1-V)*(EPSXXHE-EPSPXXH))/((1+V)*(1-2*V))+(EH*(V)*(EPSYYHE-
EPSPYYH))/((1+V)*(1-2*V)); 
 
        SIGXXCP = RB*(EB*(1-V)*(EPSXXBE-EPSPXXB))/((1+V)*(1-2*V))+(EB*(V)*(EPSYYBE-
EPSPYYB))/((1+V)*(1-2*V))/RC; 
        % shear stresses with plastic corrector of each component in shear direction: 
        TAUXYBP = 2*GB*(EPSXYBE-EPSPXYB); 
  
        %find maximum stress between stress at n step and intial maximum value 
        SXH = max(SIGXXHP,SIGTM); % head joint 
        SXU = max(SIGXXUP,SIGTU); % brick unit 
        SXC = max(SIGXXCP,SIGTM); % cross joint 
        TXYB = max(abs(TAUXYBP),SIGS); % bed joint 
        % with smeared crack model 
        ATM = (((GIM*EH)/(LT*SIGTM^2))-(1/2))^(-1); % paramter AT/AS of each component 
        ATU = (((GIU*EU)/(LT*SIGTU^2))-(1/2))^(-1); 
        ASB = (((GII*GB)/(LS*SIGS^2))-(1/2))^(-1); 
         
        % Calculate damage factor from internal stresses 
        DHC = 1-(SIGTM*exp(ATM*(1-(SXH/SIGTM)))/SXH); % DH should not increasing 
        DUC = 1-(SIGTU*exp(ATU*(1-(SXU/SIGTU)))/SXU); % once DH tend to increased, brick is damaged 
        DBC = 1-(SIGS*exp(ASB*(1-(TXYB/SIGS)))/TXYB); 
        if abs(DHC/DH) < 1 
            if abs(DUC/DU) < 1 
                if abs(DBC/DB) < 1 
                    DBC = DB; 
                else 
                end 
                DUC = DU; 
            else 
            end 
            DHC = DH; 
            SWC = 1; 
        else 
        end 
        if SIGXXCP < 0 % cross joint failure in tension only happened once sigxxc < 0 (tension stress) 
            DCC = 1-(SIGTM*exp(ATM*(1-(SXC/SIGTM)))/SXC); 
        else 
            DCC = (DB+DH)/2; 
        end 
         
        % Verification of damage factor 
        % Since damage factor will influence stress itself 
        % damage factor should be verificated together 
        if DHC >= 0 & DUC >=0 & DCC >=0 & DBC >= 0 
            if abs(DHC-DH) < TOR 
                if abs(DUC-DU) < TOR 
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                    if abs(DCC-DC) < TOR 
                        if abs(DBC-DB) < TOR 
                            break; 
                        else 
                            DB = DBC; 
                        end 
                    else 
                        DC = DCC; 
                    end 
                else 
                    DU = DUC; 
                end 
            else 
                DH = DHC; 
            end 
        else 
            break; 
        end 
    end 
  

EPSXX0YT         =           - ((EPSXXUE)* C2 + (EPSXXHE))/(C2+1); 
EPSXX0YP         =           - ((EPSPXXU)* C2 + (EPSPXXH))/(C2+1); 
 
SIGYYUP = (EU*(1-VU)*(EPSYYUE-EPSPYYU))/((1+VU)*(1-2*VU))+(EU*(VU)*(EPSXXUE-

EPSPXXU))/((1+VU)*(1-2*VU)); 
 

    SIGYYHP = (EH*(1-V)*(EPSYYHE-EPSPYYH))/((1+V)*(1-2*V))+(EH*(V)*(EPSXXHE-
EPSPXXH))/((1+V)*(1-2*V)); 
     
    % total undamaged stress of cell 
    SIGYY0C = (RH*SIGYYHP + C2*RU*SIGYYUP)/(C2+1); 
    if SWC == 1 
        SIGYY0 = SIGYY0; 
    else 
        SIGYY0 = SIGYY0C; 
    end 
        
    % record value: 
    a = [a,SIGYY0]; 
    b = [b,RH*SIGYYHP]; 
    d = [d,FU]; 

e = [e,RB*TAUXYBP]; 
f =  [f,RU*SIGYYUP]; 
g = [g,EPSXX0YT]; 
h = [h,EPSXX0YP]; 

end 
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Appendix E: MATLAB Code (Model 4) 
clear all; 
% properties setting: 
E = 5091; C1 = 1.77; 
EU = C1*E; EH = E; EB = E; EC = E; 
V = 0.02; % Poisson's ratio of mortar 
VU = 0.14; % Poisson's ratio of brick 
GB = E/(2*(1+V)); % shear modulus of mortar 
  
% friction and dilatancy angle: 
PHIU = (23.27*pi)/180; 
PSIU = (10*pi)/180; 
PHIM = (23.27*pi)/180; 
PSIM = (10*pi)/180; 
  
% I and II fracture energy 
GIU = 0.081; GIM = 0.082; 
GII = 0.012;  
% compressive fracture energy 
GCU = 20.96; GCM = 17.68; 
  
% Shear, tension and compressive strength: 
SIGTU = 2.74; % Tension strength of brick unit 
SIGTM = 2.79; % Tension strength of mortar 
FCU   = 16; %compressive strength of brick 
FCM   = 6.59; % compressive strength of mortar 
% Shear strength of mortar: 
SIGS  = 0.14; % should always be smaller than "2c*cos(phi)^2/(1-sin(phi))" with cmax = fc 
  
% maximum strain of strain-stress curve under compression 
EPS0U = 2*FCU/EU; 
EPS0M = 2*FCM/E; 
  
% geometrical properties: 
C2 = 21.2; C3 = 7.1; % properties of masonry: L=C2*T, H=C3*T 
  
% initial value of external strain and damage factor: 
EPSYY0 = 0; EPSXX0 = 0; EPSXY0 = 0; % external strain 
DEPSYY0 = - 0.00001; % external vertical strain increment 
DEPSXX0 = 0.00001; % external horizantal strain increment 
DEPSXY0 = 0.00001; % external shear strain increment 
  
% initial value of plastic strain of each component: 
EPSPXXU = 0;EPSPYYU = 0; % initial value of plastic strain 
EPSPXXH = 0;EPSPYYH = 0; 
EPSPXXB = 0;EPSPYYB = 0;EPSPXYB = 0; 
KU = 0; KH = 0; KB = 0; % initial value of hardening(softening) parameter 
  
% initialize value of variables: 
DH = 0; DU = 0; DB = 0; DC = 0; % damage varaiables of compression splitting 
SU = 0; SH = 0; SB = 0; %softening modulus 
DEPSPXXU = 0;DEPSPYYU = 0; % initialized value of plastic strain increment 
DEPSPXXH = 0;DEPSPYYH = 0; 
DEPSPXXB = 0;DEPSPYYB = 0;DEPSPXYB = 0; 
% damage variables of tension behaviour 
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DHX = 0; DUX = 0; DBX = 0; DCX = 0; 
% damage variable of shear behaviour 
DBXY = 0;  
  
% ATM must be positive, check maximum mesh size: HH < 80 
% ATU must be positive, check maximum mesh size: HH < 59 
% AS must be positive, check maximum mesh size: HH <74 
HH = 50; % element size 
LT = HH; LS = HH; LC = HH; % characteristic length of element is element size 
  
% Tolerance of calculted and assumed damge factor 
TOR = 0.00001; % verify damage factor 
TOR2 = 0.00001; % verify hardening modulus 
  
% switch code: SWC 
SWC = 0; % when damage factor decresed, error happened then SWC = 1 
SIGYY0 = 0; 
a = []; b = []; d = []; e = []; f = [];g = []; h = []; 
  
% outer loop: strain integration 
for i = 1:1000 
    EPSYY0 = EPSYY0 + DEPSYY0; 
    EPSXX0 = EPSXX0 + DEPSXX0; 
    EPSXY0 = EPSXY0 + DEPSXY0; 
     
    % inner loop: verification of damage factor 
    % undamage factor of each component for compression splitting 
    RH = 1-DH; 
    RB = 1-DB; 
    RC = 1-DC; 
    RU = 1-DU; 
  
    % undamage factor of each component for horizontal tension behaviour 
    RHX = 1-DHX; 
    RBX = 1-DBX; 
    RCX = 1-DCX; 
    RUX = 1-DUX; 
   
    EPSXX0Y = -(-(2 * RBX + (C2 - 1) * RCX) * C1 * RBX * ((E * RHX * (C2 * VU + V) * C3 ^ 2) + (-(VU * GB 
* (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1) * RBX) / 0.4e1 + (((-V ^ 2 + 1) * C1 * RUX + RHX * (V * VU + C2)) * E 
* V)) * C3 - (V * GB * RBX * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.4e1) * (C3 + 1) * EPSYY0 * RUX / (-
(RBX * RHX * C1 * (2 * RBX + (C2 - 1) * RCX) * RUX * E * C3 ^ 3) + ((RUX * C1 * GB * (V - 1) * (V + 1) * 
(C2 - 1) * RBX ^ 3) / 0.2e1 + (-0.2e1 * RUX * (-(RCX * (C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.8e1 + E * ((-(V 
^ 2) / 0.2e1 + 0.1e1 / 0.2e1) * RCX + (RHX * V * VU))) * C1 + (E * C2 * RCX * RHX * (VU - 1) * (VU + 1))) * 
(RBX ^ 2) + 0.2e1 * C1 * ((RUX * (V ^ 2 - 1) * C1) - (V * RCX * (2 * C2 * VU + V - VU)) / 0.2e1) * RHX * E * 
RUX * RBX + (E * RUX ^ 2 * C1 ^ 2 * RCX * RHX * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - (-(C2 - 1) * (V + 
1) * ((V * VU * RUX * C1) - (RCX * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * GB * (V - 1) * (RBX ^ 2) / 0.2e1 
+ ((C2 - 1) * (V + 1) * C1 * RUX * GB * (RUX * (V ^ 2 - 1) * C1 - C2 * RCX * V * VU) * (V - 1) * RBX) / 0.2e1 
+ C1 * (-(V + 1) * RUX * (-((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * (V - 1) * C1 + (E * RHX * (V * 
VU + C2))) * RUX * RCX) * RBX * C3 + (RUX * C1 * GB * RBX ^ 2 * RCX * (C2 - 1) * (C2 + 1) * (V - 1) * (V 
+ 1)) / 0.4e1) / (C2 + 1)); 
  
    EPSYY0X = -(EPSXX0 * ((C3 * GB * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1) * (C1 * C2 * RU + 
RH) * RB ^ 3) / 0.2e1 + (-(2 * E * RU * C1 * RC * RH * (C2 + 1) * C3 ^ 3) + ((GB * (C2 - 1) ^ 2 * (V - 1) * (V + 
1) * (C1 * C2 * RU + RH) * RC ^ 2) / 0.4e1 - (4 * E * RU * C1 * RH ^ 2 * (C2 + 1))) * (C3 ^ 2) + (GB * (V - 1) * 
(C2 - 1) * RC * (V + 1) * ((C2 + 1) * (C1 * C2 * RU - RH) * RC + 2 * RH * ((C2 - 1) * RH + C1 * RU * (C2 ^ 2 - 
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C2 + 2))) * C3) / 0.4e1 + (RH * C1 * GB * (V - 1) * (C2 - 1) * RU * ((C2 ^ 2 + C2) * RC + 2 * RH) * (V + 1)) / 
0.2e1) * (RB ^ 2) + (-(E * RU * C1 * RC ^ 2 * RH * (C2 - 1) * (C2 + 1) * C3 ^ 3) + ((((-V ^ 2 + 1) * C2 * RH ^ 2 
+ (-C2 ^ 2 + 1) * RU * C1 * RH + RU ^ 2 * C1 ^ 2 * C2 * (V - 1) * (V + 1)) * RC + 2 * RH * C1 * ((-C2 ^ 2 + V ^ 
2) * RH + RU * (V - 1) * (V + 1) * C1) * RU) * RC * E * C3 ^ 2) + 0.2e1 * RH * C1 * ((GB * (C2 - 1) ^ 2 * (V - 
1) * (V + 1) * RC ^ 2) / 0.4e1 + (((-V ^ 2 - C2) * RH + RU * (V - 1) * (V + 1) * C1) * E * C2 * RC) + (2 * E * RU 
* C1 * RH * (V - 1) * (V + 1))) * RU * C3 + (C1 * RU * GB * RC * RH ^ 2 * (C2 - 1) ^ 2 * (V - 1) * (V + 1)) / 
0.2e1) * RB + (RH * C1 * (C3 * (C1 * RU + RH) * RC + 2 * RH * C1 * RU) * (V - 1) * (C2 - 1) * RC * E * RU * 
C3 * (V + 1))) * (C2 + 1) * V / ((C2 - 1) * RC + 2 * RB) / (C3 + 1) / ((GB * (V - 1) * (C2 - 1) * (C2 + 1) * (V + 1) 
* (C3 * (C1 * C2 * RU + RH) * RC + 2 * C1 * C2 * RU * RH) * RB ^ 2) / 0.4e1 + (RC * E * ((C2 * (V ^ 2 - 1) * 
RH ^ 2) - 0.2e1 * C1 * RU * ((C2 * V ^ 2) + (C2 ^ 2) / 0.2e1 + 0.1e1 / 0.2e1) * RH + (RU ^ 2 * C1 ^ 2 * C2 * 
(V - 1) * (V + 1))) * (C3 ^ 2) + (2 * RH * C1 * ((-V ^ 2 - C2) * RH + RU * (V - 1) * (V + 1) * C1) * E * RU * C3 * 
C2) + (C1 * RU * GB * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.2e1) * RB + (2 * E * RU * C1 * C3 
* RC * RH * (V - 1) * (V + 1) * (C1 * RU + C2 * RH)))); 
  
    DEPSXX0Y = -(-RUX * (E * RHX * (C2 * VU + V) * C3 ^ 2 + (((-0.25e0 * C2 ^ 2 * VU + 0.25e0 * VU) * V ^ 
2 + 0.25e0 * C2 ^ 2 * VU - 0.25e0 * VU) * GB * RBX + (-0.1e1 * E * V ^ 3 + E * V) * C1 * RUX + E * RHX * V 
* (V * VU + C2)) * C3 + (-0.25e0 * C2 ^ 2 * V ^ 3 + 0.25e0 * C2 ^ 2 * V + 0.25e0 * V ^ 3 - 0.25e0 * V) * GB * 
RBX) * (0.2e1 * RBX + (C2 - 0.1e1) * RCX) * DEPSYY0 * C1 * RBX * (C3 + 0.1000000000e1) / (C2 + 
0.1000000000e1) / ((-0.2e1 * C1 * E * RBX ^ 2 * RHX * RUX + (E * RHX - 0.1e1 * C2 * E * RHX) * RCX * 
C1 * RUX * RBX) * C3 ^ 3 + (((0.5e0 * C2 - 0.5e0) * V ^ 2 + 0.5e0 - 0.5e0 * C2) * GB * C1 * RUX * RBX ^ 3 
+ (((0.25e0 * (C2 - 0.1e1) ^ 2 * V ^ 2 - 0.25e0 * (C2 - 0.1e1) ^ 2) * RCX * GB + (E * V ^ 2 - 0.1e1 * E) * RCX 
- 0.2e1 * E * RHX * V * VU) * C1 * RUX + (RHX * VU ^ 2 - 0.1e1 * RHX) * E * C2 * RCX) * RBX ^ 2 + 
((0.2e1 * RHX * E * V ^ 2 - 0.2e1 * E * RHX) * C1 ^ 2 * RUX ^ 2 + (-0.1e1 * RHX * E * V ^ 2 + (E * RHX * VU 
- 0.2e1 * C2 * E * RHX * VU) * V) * RCX * C1 * RUX) * RBX + ((-0.1e1 * E * RHX + C2 * E * RHX) * V ^ 2 + 
E * RHX - 0.1e1 * C2 * E * RHX) * RCX * C1 ^ 2 * RUX ^ 2) * C3 ^ 2 + ((((0.5e0 * C2 * VU - 0.5e0 * VU) * V 
^ 3 + (-0.5e0 * C2 * VU + 0.5e0 * VU) * V) * GB * C1 * RUX + (((0.25e0 - 0.25e0 * VU ^ 2) * C2 ^ 2 + 0.25e0 
* VU ^ 2 - 0.25e0) * V ^ 2 + (0.25e0 * VU ^ 2 - 0.25e0) * C2 ^ 2 + 0.25e0 - 0.25e0 * VU ^ 2) * RCX * GB) * 
RBX ^ 3 + (((0.5e0 - 0.5e0 * C2) * V ^ 4 + (C2 - 0.1e1) * V ^ 2 + 0.5e0 - 0.5e0 * C2) * GB * C1 ^ 2 * RUX ^ 2 
+ ((0.5e0 * C2 ^ 2 * VU - 0.5e0 * C2 * VU) * V ^ 3 + (-0.5e0 * C2 ^ 2 * VU + 0.5e0 * C2 * VU) * V) * RCX * 
GB * C1 * RUX) * RBX ^ 2 + (((-0.25e0 * (C2 - 0.1e1) ^ 2 * V ^ 4 + 0.5e0 * (C2 - 0.1e1) ^ 2 * V ^ 2 - 0.25e0 * 
(C2 - 0.1e1) ^ 2) * RCX * GB + (E * V ^ 2 - 0.1e1 * E) * RCX) * C1 ^ 2 * RUX ^ 2 + (-0.1e1 * E * RHX * V * 
VU - 0.1e1 * C2 * E * RHX) * RCX * C1 * RUX) * RBX) * C3 + ((0.25e0 * C2 ^ 2 - 0.25e0) * V ^ 2 - 0.25e0 * 
C2 ^ 2 + 0.25e0) * RCX * GB * C1 * RUX * RBX ^ 2)); 
  
    DEPSYY0X = -(DEPSXX0 * ((C3 * GB * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1) * (C1 * C2 * RU + 
RH) * RB ^ 3) / 0.2e1 + (-(2 * E * RU * C1 * RC * RH * (C2 + 1) * C3 ^ 3) + (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * 
GB * (C1 * C2 * RU + RH) * RC ^ 2) / 0.4e1 - (4 * E * RU * C1 * RH ^ 2 * (C2 + 1))) * (C3 ^ 2) + (GB * (V - 1) 
* (C2 - 1) * RC * (V + 1) * ((C2 + 1) * (C1 * C2 * RU - RH) * RC + 2 * RH * ((C2 - 1) * RH + RU * C1 * (C2 ^ 2 
- C2 + 2))) * C3) / 0.4e1 + (RH * C1 * GB * (V - 1) * (C2 - 1) * RU * ((C2 ^ 2 + C2) * RC + 2 * RH) * (V + 1)) / 
0.2e1) * (RB ^ 2) + (-(E * RU * C1 * RC ^ 2 * RH * (C2 - 1) * (C2 + 1) * C3 ^ 3) + ((((-V ^ 2 + 1) * C2 * RH ^ 2 
+ (-C2 ^ 2 + 1) * RU * C1 * RH + RU ^ 2 * C1 ^ 2 * C2 * (V - 1) * (V + 1)) * RC + 2 * RH * C1 * ((-C2 ^ 2 + V ^ 
2) * RH + RU * (V - 1) * (V + 1) * C1) * RU) * RC * E * C3 ^ 2) + 0.2e1 * RH * C1 * (((C2 - 1) ^ 2 * (V - 1) * (V 
+ 1) * GB * RC ^ 2) / 0.4e1 + (((-V ^ 2 - C2) * RH + RU * (V - 1) * (V + 1) * C1) * E * C2 * RC) + (2 * E * RU * 
C1 * RH * (V - 1) * (V + 1))) * RU * C3 + (RU * C1 * GB * RC * RH ^ 2 * (C2 - 1) ^ 2 * (V - 1) * (V + 1)) / 
0.2e1) * RB + (RH * C1 * (C3 * (RU * C1 + RH) * RC + 2 * RH * C1 * RU) * (V - 1) * (C2 - 1) * RC * E * RU * 
C3 * (V + 1))) * (C2 + 1) * V / ((C2 - 1) * RC + 2 * RB) / (C3 + 1) / ((GB * (V - 1) * (C2 - 1) * (C2 + 1) * (V + 1) 
* (C3 * (C1 * C2 * RU + RH) * RC + 2 * C1 * C2 * RU * RH) * RB ^ 2) / 0.4e1 + (RC * E * ((C2 * (V ^ 2 - 1) * 
RH ^ 2) - 0.2e1 * RU * C1 * ((C2 * V ^ 2) + (C2 ^ 2) / 0.2e1 + 0.1e1 / 0.2e1) * RH + (RU ^ 2 * C1 ^ 2 * C2 * 
(V - 1) * (V + 1))) * (C3 ^ 2) + (2 * RH * C1 * ((-V ^ 2 - C2) * RH + RU * (V - 1) * (V + 1) * C1) * E * RU * C3 * 
C2) + (RU * C1 * GB * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.2e1) * RB + (2 * E * RU * C1 * C3 
* RC * RH * (V - 1) * (V + 1) * (RU * C1 + RH * C2)))); 
     
    % vertical stress: 
    EPSYY0TC = EPSYY0 + EPSYY0X; 
    DEPSYY0TC = DEPSYY0 + DEPSYY0X; 
     
    % horizantal stress: 
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    EPSXX0TC = EPSXX0 + EPSXX0Y; 
    DEPSXX0TC = DEPSXX0 + DEPSXX0Y; 
     
    % material properties: with smeared crack model 
    ATM = (((GIM*EH)/(LT*SIGTM^2))-(1/2))^(-1); % paramter AT/AS of each component 
    ATU = (((GIU*EU)/(LT*SIGTU^2))-(1/2))^(-1); 
    ASB = (((GII*GB)/(LS*SIGS^2))-(1/2))^(-1); 
     
    % compression behaviour (without shear loading): brick crushing 
    EPSYY0T = abs(EPSYY0TC); 
    DEPSYY0T = abs(DEPSYY0TC); 
     
    % drucker pragar plasiticy model of brick unit 
    % elastic predictor of brick unit 
    SIGXXUE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) * 
(RC * C3 + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * 
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC 
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V - 
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 - 
0.2e1) * RH) * RH) * E * C1 * RB * V * EPSYY0T / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 - (V 
- 1) * (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (RC * C3 + (2 * RH)) * (C2 - 0.1e1) * RB ^ 3 - 
0.4e1 * (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 + E * 
C2 * RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * C1 * (-
(V ^ 2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 0.1e1) * 
(C2 + 0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (RC * C3 + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E * RC ^ 2 
* RH * (C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * (C3 ^ 2) + 
((-RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * RH * ((V ^ 2) 
- C2) / 0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * (V + 1)) * C3 - 
RC * RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - E * C2 * RH)) 
* RB + 0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (RC * C3 + (2 * RH)) * (C2 - 
0.1e1)); 
  
    SIGYYUE = -0.4e1 * (C3 + 1) * E * ((RC * E * RU * C1 * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) + (-(RU * 
C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * GB) / 
0.4e1 + E) * C1 - (E * RH * (V ^ 2 + C2))) * (RC ^ 2) + (4 * RU * C1 * E * RH ^ 2)) * RB - (2 * RC * E * RU * 
(V ^ 2 * RC - RH * (C2 - 1)) * C1 * RH)) * (C3 ^ 2) + 0.2e1 * (-GB * (V - 1) * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * 
(RC ^ 2) + (RU * C1 * RH)) * (V + 1) * (C2 - 1) * RB / 0.2e1 + RC * ((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * 
GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH) * RB * C3 + (GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 
1) * (V + 1)) / 0.2e1) * C1 * RB * EPSYY0T / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * 
C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-0.4e1 * (V - 1) * (RU * (-((C2 - 1) 
^ 2 * GB) / 0.4e1 + E) * C1 + (E * C2 * RH)) * (V + 1) * (RC ^ 2) + (8 * E * RU * V ^ 2 * C1 * RC * RH) - (16 * 
RU * C1 * E * RH ^ 2)) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB) 
+ (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V 
+ 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1 + (C1 * RC * RU * V ^ 2) - (2 * RU * C1 * RH)) * (C2 - 1) 
* (RB ^ 3) + ((2 * RU * C1 * V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) - 0.8e1 * (V - 1) * (V + 1) * ((RU 
^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * C1 ^ 2) / 0.4e1 + RU * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH * C1 + (E 
* C2 * RH ^ 2)) * RC + (16 * E * RU * V ^ 2 * C1 * RH ^ 2)) * (RB ^ 2) - 0.4e1 * ((RU * (V - 1) * (V + 1) * (((C2 
- 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V ^ 2 - C2))) * (RC ^ 2) + (2 * E * V ^ 2 * RC * 
RH ^ 2) - (4 * RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 
2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V - 1) * (V + 1) * 
(C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 * ((C2 / 
0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * RB / 
0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 
- (E * C2 * RH))) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1))); 
  
    % increment of elastic strain exceed yiled surface 



       

133 

 

    DEPSXXU0 = 0.4e1 * RB * (C3 + 1) * DEPSYY0T * ((VU * RH * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * 
E * C3 ^ 3) + (-(RU * VU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V + 1) * VU * (V - 
1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (2 * V * RH * RC * E) + (4 * E * VU * RH ^ 2)) * RU * C1 - 
(E * V * RC ^ 2 * RH * (VU - 1) * (VU + 1))) * RB - 0.2e1 * (V * ((V * VU) + C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC - 
(VU * RH * (C2 - 1))) * RH * C1 * RC * RU * E) * (C3 ^ 2) + 0.2e1 * (-GB * (V + 1) * (V - 1) * (C2 - 1) * ((VU * 
RH) - (V * RC) / 0.2e1) * (RB ^ 2) / 0.2e1 + ((V * GB * (C2 - 1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2) / 0.8e1 + (V + 
1) * VU * (V - 1) * RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC - (2 * E * V * RH ^ 2)) * RB - (V * RH * (-RC + 
RH * (C2 - 1)) * RC * E)) * RU * C1 * C3 + (V * GB * (V + 1) * (V - 1) * RH * RB * (C2 - 1) * (2 * RB + RC * 
(C2 - 1)) * RU * C1) / 0.2e1) / (-(4 * RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + ((2 * 
RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (0.8e1 * (-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 
0.4e1 + E) * (RC ^ 2) / 0.2e1 + (E * VU * V * RC * RH) - (2 * E * RH ^ 2)) * RU * C1 - (4 * E * C2 * RC ^ 2 * 
RH * (VU - 1) * (VU + 1))) * (RB ^ 2) + 0.8e1 * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * 
(C2 - 1))) * RH * C1 * RC * RU * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 
1))) * (C3 ^ 3) + (-0.2e1 * (V - 1) * GB * (C2 - 1) * (V + 1) * ((RU * (V * RC * VU - 2 * RH) * C1) - (RC ^ 2 * 
(VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 
1) * C1 ^ 2) + 0.16e2 * ((V * VU * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) / 0.8e1 - (V + 1) * (V - 1) * RH * (-
((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH ^ 2)) * RU * C1 - (8 * E * C2 * RC * RH ^ 2 * 
(VU - 1) * (VU + 1))) * (RB ^ 2) - 0.4e1 * ((V - 1) * (V + 1) * ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) 
* (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 + (((V * VU - C2) * RC + 2 * V * VU * RH) * RH * RC * E)) * C1 * RU 
* RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * ((V - 1) * GB * 
RH * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C2 - 1) * (V + 1) * (RB ^ 2) / 0.2e1 
+ (V - 1) * GB * ((RU * RH * (V - 1) * (V + 1) * C1) - RC * ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * RC + (V * VU * 
RH))) * (C2 - 1) * C1 * (V + 1) * RU * RB / 0.2e1 + (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * 
GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * C1 * RC * RU) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * 
RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1))); 
    DEPSYYU0 = 0.4e1 * RB * DEPSYY0T * (-GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - 
(RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * RB ^ 2 / 0.2e1 + 0.2e1 * (C3 * 
RC + 2 * RH) * (-(RU * C1 * E * C3 ^ 2 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * 
C1 / 0.2e1 - (E * C2 * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC + (RU * C1 * E * VU * V * RH)) * C3 - RU * VU 
* V * C1 * GB * RC * ((C2 - 1) ^ 2) * (V - 1) * (V + 1) / 0.8e1) * RB + (RH * (-RC * (C2 - 1) * C3 ^ 2 + (V * (2 * 
V + VU * (C2 - 1)) * RC - 2 * RH * (C2 - 1)) * C3 + 2 * V * VU * (-RC + RH * (C2 - 1))) * C3 * RU * C1 * RC * 
E)) * (C3 + 1) / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU + 
1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * RB ^ 3 + 0.8e1 * (C3 * RC + 2 * RH) * (-(RU * 
C1 * E * C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 / 0.2e1 - (E * C2 * 
RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC + (RU * C1 * E * VU * V * RH)) * (C3 ^ 2) - GB * (V + 1) * (V - 1) * 
(C2 - 1) * (-V * RC * VU + RU * (V - 1) * (V + 1) * C1) * RU * C1 * C3 / 0.4e1 - RU * C1 * RC * GB * (C2 - 1) 
* (C2 + 1) * (V - 1) * (V + 1) / 0.8e1) * RB ^ 2 + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 
0.2e1 + RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + ((-
RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - (E * RH * (V * VU - 
C2)) / 0.2e1) * (RC ^ 2) - (E * RC * RH ^ 2 * V * VU) + (2 * RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * C3 - 
RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * 
C1 * RB + (4 * E * RU ^ 2 * C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1))); 
     
    % caculated cohesion of brick unit by value of hardening(softening) parameter K 
    DKU = sqrt((6 * DEPSPXXU ^ 2 + 6 * DEPSPYYU ^ 2)) / 0.3e1; 
    KU  = KU + DKU; 
    KUMAX = ((2 * LC * EPS0U * FCU + 3 * GCU) / LC / FCU) / 0.2e1; 
    % find compressive strength by hardening parameter K: 
    if KU <= EPS0U 
        SIGCU = (FCU * (-2 * KU ^ 2 / EPS0U ^ 2 + 4 * KU / EPS0U + 1)) / 0.3e1; 
        KCU = (FCU * (-4 * KU / EPS0U ^ 2 + 4 / EPS0U)) / 0.3e1; 
    else 
        if KU < KUMAX 
            SIGCU = FCU * (0.1e1 - 0.4e1 / 0.9e1 * FCU ^ 2 * LC ^ 2 / GCU ^ 2 * (KU - EPS0U) ^ 2); 
            KCU = -0.8e1 / 0.9e1 * FCU ^ 3 * LC ^ 2 / GCU ^ 2 * (KU - EPS0U); 
        else 
            SIGCU = 0; 
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            KCU   = -0.8e1 / 0.9e1 * FCU ^ 3 * LC ^ 2 / GCU ^ 2 * (KUMAX - EPS0U); 
        end 
    end 
    % find critical stress: 
    CU = (0.1e1 - sin(PHIU)) / cos(PHIU) * SIGCU / 0.2e1; 
  
    SIGXXUC1 = -0.18e2 * (-0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) - 0.6e1 * SIGYYUE * 
sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) * 
SIGXXUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - 
sin(PHIU)) ^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * 
SIGYYUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * 
SIGYYUE - 0.9e1 * SIGYYUE ^ 2); 
  
    SIGYYUC1 = 0.18e2 * (0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.6e1 * SIGYYUE * 
sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) * 
SIGYYUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - 
sin(PHIU)) ^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * 
SIGYYUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * 
SIGYYUE - 0.9e1 * SIGYYUE ^ 2); 
  
    SIGXXUC2 = 0.18e2 * (0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.6e1 * SIGYYUE * 
sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) * 
SIGXXUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - 
sin(PHIU)) ^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * 
SIGYYUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * 
SIGYYUE - 0.9e1 * SIGYYUE ^ 2); 
  
    SIGYYUC2 = -0.18e2 * (-0.6e1 * SIGXXUE * sin(PHIU) / (0.3e1 - sin(PHIU)) - 0.6e1 * SIGYYUE * 
sin(PHIU) / (0.3e1 - sin(PHIU)) + 0.3e1 * sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2)) * 
SIGYYUE * CU * cos(PHIU) / (0.3e1 - sin(PHIU)) / (0.36e2 * SIGXXUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - 
sin(PHIU)) ^ 2 + 0.72e2 * SIGXXUE * SIGYYUE * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 + 0.36e2 * 
SIGYYUE ^ 2 * sin(PHIU) ^ 2 / (0.3e1 - sin(PHIU)) ^ 2 - 0.9e1 * SIGXXUE ^ 2 + 0.9e1 * SIGXXUE * 
SIGYYUE - 0.9e1 * SIGYYUE ^ 2); 
  
    if SIGXXUE/SIGXXUC1 > 0 
        SIGXXUC = SIGXXUC1; 
    else 
        SIGXXUC = SIGXXUC2; 
    end 
    if SIGYYUE/SIGYYUC1 > 0 
        SIGYYUC = SIGYYUC1; 
    else 
        SIGYYUC = SIGYYUC2; 
    end 
     
    % drucker pragar plasiticy model of head joint 
    % elastic predictor of head joint: 
    SIGXXHE = -0.4e1 * (C3 + 1) * E * RB * ((((2 * RU * C1 - RC * (C2 + 1)) * RB + RU * C1 * RC * (C2 - 1)) * 
RC * E * RU * C1 * C3 ^ 2) + (-GB * ((RU * (V ^ 2 * RC - RC + 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) * 
RC ^ 2) / 0.2e1) * (C2 - 1) * (RB ^ 2) / 0.2e1 + 0.4e1 * RU * C1 * (RU * (-GB * (V - 1) * (V + 1) * (C2 - 1) * 
RC / 0.4e1 + (E * RH)) * C1 - (-GB * ((C2 + 3) * V ^ 2 + C2 - 1) * (C2 - 1) * RC / 0.8e1 + (((C2 - 1) ^ 2) * GB / 
0.4e1 + (E * C2)) * RH) * RC / 0.2e1) * RB + 0.2e1 * RC * (RU ^ 2) * (C1 ^ 2) * ((-((C2 - 1) ^ 2) * (V - 1) * (V 
+ 1) * GB / 0.4e1 - E) * RC + (E * RH * (C2 - 1)))) * C3 - GB * RU * C1 * RB * (-2 * RB * RH + RC * (RC * 
(C2 + 1) - RH * (C2 - 1))) * (C2 - 1) / 0.2e1) * V * EPSYY0T / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + 
RC * (C2 - 1)) * C3 ^ 4) + (0.2e1 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * (RB ^ 3) + (-0.4e1 * RU * 
((V - 1) * (V + 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * (RC ^ 2) - (2 * E * V ^ 2 * RC * RH) + (4 * E * RH ^ 2)) * 
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C1 - (4 * E * C2 * RC ^ 2 * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) 
* C1 - RH * (C2 - 1)) * RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + 
(-0.2e1 * GB * (V - 1) * (V + 1) * ((RU * (V ^ 2 * RC - 2 * RH) * C1) - ((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 
0.2e1) * (C2 - 1) * (RB ^ 3) + (-0.2e1 * (RU ^ 2) * GB * RC * ((V - 1) ^ 2) * ((V + 1) ^ 2) * (C2 - 1) * (C1 ^ 2) - 
0.8e1 * (-(V ^ 2) * GB * (V - 1) * (V + 1) * (C2 - 1) * (RC ^ 2) / 0.4e1 + (V - 1) * (V + 1) * (-((C2 - 1) ^ 2) * GB / 
0.4e1 + E) * RH * RC - (2 * E * V ^ 2 * RH ^ 2)) * RU * C1 - (8 * RC * RH ^ 2 * E * C2 * (V - 1) * (V + 1))) * 
(RB ^ 2) - 0.4e1 * ((V - 1) * RU * (V + 1) * ((((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * (RC ^ 2) - (4 * 
E * RH ^ 2)) * C1 + (RC * E * ((V ^ 2 - C2) * RC + 2 * V ^ 2 * RH) * RH)) * RU * C1 * RB + (8 * E * RU ^ 2 * 
C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * 
(-((V - 1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 
1) * C1 * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * 
(C2 - 1) * RB / 0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 
0.4e1 + E) * C1 - (E * C2 * RH))) * RB * C3 - 0.2e1 * RU * C1 * GB * (RB ^ 2) * RC * RH * (C2 - 1) * (C2 + 1) 
* (V - 1) * (V + 1)); 
  
    SIGYYHE = -0.4e1 * (C3 + 1) * E * ((RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) + 
RC * (-(RU * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) / 0.2e1 + ((2 * C1 ^ 2 * E * RU ^ 2 * V ^ 2) - RU * 
((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + (E * (C2 * V ^ 2 + 1))) * RC + (2 * E * RH * V ^ 2)) * C1 + (E * 
C2 * RC * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (E * RU * C1 * ((V ^ 2 * (C2 - 1) * RC - 4 * V ^ 2 * RH + 4 * 
RH) * RU * C1 + V ^ 2 * RC * RH * (C2 + 1)) * RB) - (2 * E * RU ^ 2 * C1 ^ 2 * RC * RH * (V - 1) * (V + 1) * 
(C2 - 1))) * (C3 ^ 2) + 0.2e1 * (-GB * (-((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.4e1 + (C1 * RH * RU * V ^ 2)) 
* (C2 - 1) * (RB ^ 2) / 0.2e1 + 0.2e1 * (RU * (-(GB * (V - 1) * (V + 1) * (C2 - 1) * RC) / 0.4e1 + (E * RH * V ^ 
2)) * C1 - RC * (GB * (0.1e1 / 0.4e1 - (C2 ^ 2) / 0.4e1) * RC + (((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * RH) * 
(V ^ 2) / 0.2e1) * RU * C1 * RB + RC * RU * C1 * (((-((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 - E) * RC + 
(E * V ^ 2 * RH * (C2 - 1))) * RU * C1 - (E * C2 * RC * RH))) * RB * C3 + (GB * RU * C1 * RB ^ 2 * (2 * V ^ 2 
* RB * RH + RC * ((-C2 - 1) * RC + V ^ 2 * RH * (C2 - 1))) * (C2 - 1)) / 0.2e1) * EPSYY0T / (-(4 * RC * E * 
RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 
1) * RB ^ 3) + (-0.4e1 * RU * ((V - 1) * (V + 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (2 * E * V ^ 2 * 
RC * RH) + (4 * E * RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (V - 1) * (V + 1))) * (RB ^ 2) + (8 * RC * E * 
RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1)) * RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) 
* (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V - 1) * (V + 1) * ((RU * (V ^ 2 * RC - 2 * RH) * C1) - ((V - 1) 
* (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1) * (C2 - 1) * (RB ^ 3) + (-(2 * RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2 
* (C2 - 1) * C1 ^ 2) - 0.8e1 * (-(V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) / 0.4e1 + (V - 1) * (V + 1) * (-
((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH * RC - (2 * E * V ^ 2 * RH ^ 2)) * RU * C1 - (8 * RC * RH ^ 2 * E * C2 * 
(V - 1) * (V + 1))) * (RB ^ 2) - 0.4e1 * ((V - 1) * RU * (V + 1) * ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + 
E) * (RC ^ 2) - (4 * E * RH ^ 2)) * C1 + (RC * E * ((V ^ 2 - C2) * RC + 2 * V ^ 2 * RH) * RH)) * RU * C1 * RB + 
(8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) 
* RH * (C2 - 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V 
- 1) * RU * (V + 1) * C1 * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 
1) * (V + 1))) * (C2 - 1) * RB / 0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * 
(V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH))) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) 
* (C2 + 1) * (V - 1) * (V + 1))); 
  
    % increment of elastic strain exceed yiled surface 
    DEPSXXH0 = 0.4e1 * (-(RU * C1 * GB * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1) * (C3 * VU - V) * 
RB ^ 3) / 0.2e1 + ((2 * C1 * C3 ^ 3 * E * RC * RH * RU * V) + 0.2e1 * ((E * RU ^ 2 * V * (V - 1) * (V + 1) * C1 
^ 2) - ((((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * (V + 1) * (V - 1) * RC + (2 * E * V ^ 2 * RH)) * VU * RU * C1 / 
0.2e1 + (E * V * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC * (C3 ^ 2) + 0.4e1 * (V + 1) * (V - 1) * ((C1 
* E * RH * RU * V) - (-(V * GB * (C2 - 1) ^ 2 * RC) / 0.8e1 + (((C2 - 1) ^ 2 * GB) / 0.4e1 + (E * C2)) * VU * 
RH) * RC / 0.2e1) * RU * C1 * C3 + (RU * V * C1 * GB * RC * RH * (C2 - 1) ^ 2 * (V - 1) * (V + 1)) / 0.2e1) * 
(RB ^ 2) + ((RH * RC * (C2 - 1) * C3 ^ 2 + ((V + 1) * (V - 1) * (RC * (C2 - 1) - 4 * RH) * RU * C1 + VU * V * 
RC * RH * (C2 + 1)) * C3 + 2 * RH * (RU * (V - 1) * (V + 1) * (C2 - 1) * C1 - RC * C2)) * V * C3 * RU * C1 * 
RC * E * RB) - (2 * E * RU ^ 2 * V * C1 ^ 2 * C3 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * DEPSYY0T 
* (C3 + 1) / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 1) * (VU + 1) 
* (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * (RB ^ 3) + 0.8e1 * (C3 * RC + 2 * RH) * (-(E * RU * 
C1 * C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU * V * RH)) * 
RU * C1 - (E * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * (C3 ^ 2) - (GB * (V + 1) * (V - 1) * (C2 - 1) * (RU 
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* (V ^ 2 - 1) * C1 - VU * V * RC) * RU * C1 * C3) / 0.4e1 - (RU * C1 * RC * GB * (C2 - 1) * (C2 + 1) * (V - 1) * 
(V + 1)) / 0.8e1) * (RB ^ 2) + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 0.2e1 + RH * ((RU * 
(V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + (-(V + 1) * (V - 1) * ((((C2 
- 1) ^ 2 * GB * V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 / 0.2e1 
- (((V * VU - C2) * RC + 2 * VU * V * RH) * RH * RC * E) / 0.2e1) * C3 - RH * (RU * (V - 1) * (V + 1) * (((C2 - 
1) ^ 2 * GB * V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * C1 * RB + (4 * E * 
RU ^ 2 * C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) * (C3 * RC + 2 * RH) * (C2 - 1))); 
  
    DEPSYYH0 = 0.8e1 * (-(RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * E * C3 ^ 3) / 0.2e1 + ((RU * C1 * 
GB * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) / 0.4e1 + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC 
/ 0.2e1 + (E * VU * V * RH)) * RU * C1 - (E * C2 * RC * RH * (VU - 1) * (VU + 1)) / 0.2e1) * (RB ^ 2) + 0.2e1 
* RH * ((RU * (V ^ 2 - 1) * C1) - (VU * V * (C2 + 1) * RC) / 0.4e1) * RU * C1 * E * RB + (RH * RU ^ 2 * C1 ^ 2 
* RC * E * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - RB * (GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RC * 
(VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C2 - 1) * (RB ^ 2) / 0.4e1 + GB * ((RU * (V ^ 2 - 1) * C1) - (VU * V * 
RC * (C2 + 3)) / 0.4e1) * (V + 1) * (V - 1) * (C2 - 1) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * (((C2 - 
1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RU * C1 * RC) * C3 - (RU * C1 * GB * RB ^ 
2 * RC * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.4e1) * DEPSYY0T * RC * (C3 + 1) / (-(4 * RH * RB * (2 * 
RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB 
^ 3) + (0.8e1 * RU * (-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * (RC ^ 2) / 0.2e1 + (E * VU * V * 
RC * RH) - (2 * E * RH ^ 2)) * C1 - (4 * E * C2 * RC ^ 2 * RH * (VU - 1) * (VU + 1))) * (RB ^ 2) + 0.8e1 * RH * 
((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RU * C1 * RC * E * RB + (4 * E * RU 
^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V + 1) * (V - 1) * (C2 - 1) 
* ((RU * (VU * V * RC - 2 * RH) * C1) - (RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (RB ^ 3) + (-(2 * 
RU ^ 2 * GB * RC * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) + 0.16e2 * ((VU * V * GB * (V - 1) * (V + 1) * 
(C2 - 1) * RC ^ 2) / 0.8e1 - (V + 1) * (V - 1) * RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RC / 0.2e1 + (E * VU * 
V * RH ^ 2)) * RU * C1 - (8 * E * C2 * RC * RH ^ 2 * (VU - 1) * (VU + 1))) * (RB ^ 2) - 0.4e1 * ((V + 1) * (V - 1) 
* ((((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * (RC ^ 2) - (4 * E * RH ^ 2)) * RU * C1 + (((V * VU - C2) 
* RC + 2 * VU * V * RH) * RH * RC * E)) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * 
(V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * RB * (GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RC * (VU - 1) * 
(VU + 1) * (C2 + 1)) / 0.2e1) * RH * (C2 - 1) * (RB ^ 2) / 0.2e1 + RU * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * 
((RU * RH * (V - 1) * (V + 1) * C1) - ((-C2 / 0.4e1 - 0.1e1 / 0.4e1) * RC + (VU * V * RH)) * RC) * RB / 0.2e1 + 
((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * 
C1 * RC) * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1))); 
     
    % caculated cohesion of brick unit by value of hardening(softening) parameter K 
    DKH = sqrt((6 * DEPSPXXH ^ 2 + 6 * DEPSPYYH ^ 2)) / 0.3e1; 
    KH  = KH + DKH; 
    KHMAX = ((2 * LC * EPS0M * FCM + 3 * GCM) / LC / FCM) / 0.2e1; 
    % find compressive strength by hardening parameter K: 
    if KH <= EPS0M 
        SIGCH = (FCM * (-2 * KH ^ 2 / EPS0M ^ 2 + 4 * KH / EPS0M + 1)) / 0.3e1; 
        KCH = (FCM * (-4 * KH / EPS0M ^ 2 + 4 / EPS0M)) / 0.3e1; 
    else 
        if KH < KHMAX 
            SIGCH = FCM * (0.1e1 - 0.4e1 / 0.9e1 * FCM ^ 2 * LC ^ 2 / GCM ^ 2 * (KH - EPS0M) ^ 2); 
            KCH = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KH - EPS0M); 
        else 
            SIGCH = 0; 
            KCH = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KHMAX - EPS0M); 
        end 
    end 
    % find critical stress: 
    CH = (0.1e1 - sin(PHIM)) / cos(PHIM) * SIGCH / 0.2e1; 
    SIGXXHC1 = -0.18e2 * (-0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYHE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) * 
SIGXXHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - 
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sin(PHIM)) ^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * 
SIGYYHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * 
SIGYYHE - 0.9e1 * SIGYYHE ^ 2); 
  
    SIGYYHC1 = 0.18e2 * (0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYHE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) * 
SIGYYHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - 
sin(PHIM)) ^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * 
SIGYYHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * 
SIGYYHE - 0.9e1 * SIGYYHE ^ 2); 
  
    SIGXXHC2 = 0.18e2 * (0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYHE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) * 
SIGXXHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - 
sin(PHIM)) ^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * 
SIGYYHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * 
SIGYYHE - 0.9e1 * SIGYYHE ^ 2); 
  
    SIGYYHC2 = -0.18e2 * (-0.6e1 * SIGXXHE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYHE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2)) * 
SIGYYHE * CH * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - 
sin(PHIM)) ^ 2 + 0.72e2 * SIGXXHE * SIGYYHE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.36e2 * 
SIGYYHE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXHE ^ 2 + 0.9e1 * SIGXXHE * 
SIGYYHE - 0.9e1 * SIGYYHE ^ 2); 
  
    if SIGXXHE/SIGXXHC1 > 0 
        SIGXXHC = SIGXXHC1; 
    else 
        SIGXXHC = SIGXXHC2; 
    end 
    if SIGYYHE/SIGYYHC1 > 0 
        SIGYYHC = SIGYYHC1; 
    else 
        SIGYYHC = SIGYYHC2; 
    end 
     
    % drucker pragar plasiticy model of bed joint 
    % elastic predictor of bed joint: 
    SIGXXBE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) * 
(C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * 
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC 
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V - 
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 - 
0.2e1) * RH) * RH) * E * RU * C1 * C3 * V * EPSYY0T / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 
- (V - 1) * (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB 
^ 3 - 0.4e1 * (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 
+ E * C2 * RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * 
C1 * (-(V ^ 2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 
0.1e1) * (C2 + 0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (C3 * RC + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E 
* RC ^ 2 * RH * (C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * 
(C3 ^ 2) + ((-RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * 
RH * ((V ^ 2) - C2) / 0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * 
(V + 1)) * C3 - RC * RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - 
E * C2 * RH)) * RB + 0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (C3 * RC + (2 * 
RH)) * (C2 - 0.1e1)); 
  
    SIGYYBE = -0.4e1 * (C3 + 1) * E * RU * ((RC * E * RU * C1 * RH * (2 * RB + RC * (C2 - 1)) * C3 ^ 3) + (-
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(RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 2) / 0.2e1 + (((V - 1) * RU * (V + 1) * (-((C2 - 1) ^ 2 * 
GB) / 0.4e1 + E) * C1 - (E * RH * (V ^ 2 + C2))) * (RC ^ 2) + (4 * RU * C1 * E * RH ^ 2)) * RB - (2 * RC * E * 
RU * (V ^ 2 * RC - RH * (C2 - 1)) * C1 * RH)) * (C3 ^ 2) + 0.2e1 * (-GB * (V - 1) * ((-C2 / 0.4e1 - 0.1e1 / 
0.4e1) * (RC ^ 2) + (RU * C1 * RH)) * (V + 1) * (C2 - 1) * RB / 0.2e1 + RC * ((V - 1) * RU * (V + 1) * (-((C2 - 
1) ^ 2 * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH) * RB * C3 + (GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 
1) * (V - 1) * (V + 1)) / 0.2e1) * C1 * EPSYY0T / (-(4 * RC * E * RU * C1 * RB * RH * (2 * RB + RC * (C2 - 1)) 
* C3 ^ 4) + ((2 * RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + (-0.4e1 * (V - 1) * (RU * (-((C2 - 
1) ^ 2 * GB) / 0.4e1 + E) * C1 + (E * C2 * RH)) * (V + 1) * (RC ^ 2) + (8 * E * RU * V ^ 2 * C1 * RC * RH) - 
(16 * RU * C1 * E * RH ^ 2)) * (RB ^ 2) + (8 * RC * E * RU * C1 * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 1)) 
* RB) + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB * (V - 
1) * (V + 1) * (-((V - 1) * (V + 1) * (C2 + 1) * RC ^ 2) / 0.2e1 + (C1 * RC * RU * V ^ 2) - (2 * RU * C1 * RH)) * 
(C2 - 1) * (RB ^ 3) + ((2 * RU * C1 * V ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * RC ^ 2) - 0.8e1 * (V - 1) * (V + 
1) * ((RU ^ 2 * GB * (V - 1) * (V + 1) * (C2 - 1) * C1 ^ 2) / 0.4e1 + RU * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RH 
* C1 + (E * C2 * RH ^ 2)) * RC + (16 * E * RU * V ^ 2 * C1 * RH ^ 2)) * (RB ^ 2) - 0.4e1 * ((RU * (V - 1) * (V + 
1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V ^ 2 - C2))) * (RC ^ 2) + (2 * E * V ^ 
2 * RC * RH ^ 2) - (4 * RU * C1 * E * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * 
RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.8e1 * (GB * (V - 1) * (V + 1) * RH * (C2 - 1) * (-((V - 
1) * (V + 1) * (C2 + 1) * RC) / 0.2e1 + (RU * C1 * V ^ 2)) * (RB ^ 2) / 0.2e1 + GB * (V - 1) * RU * (V + 1) * C1 
* ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - (V ^ 2 * RC * RH) + (RU * C1 * RH * (V - 1) * (V + 1))) * (C2 - 1) * 
RB / 0.2e1 + RC * RU * C1 * RH * (RU * (V - 1) * (V + 1) * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) 
* C1 - (E * C2 * RH))) * RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 
1))); 
  
    TAUXYBE = -0.4e1 * (C3 + 1) * (-GB * (V - 1) * (V + 1) * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * RC + RU * C1) * 
(C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB ^ 2 / 0.2e1 + (0.2e1 * RC * E * RH * ((-C2 / 0.2e1 - 0.1e1 / 0.2e1) * 
RC + RU * C1) * (C3 ^ 2) + (-RU * C1 * GB * (C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * RC ^ 2 / 0.4e1 - 0.2e1 * RC 
* (RH ^ 2) * E * C2 + 0.4e1 * RU * C1 * E * (RH ^ 2)) * C3 - RU * C1 * GB * RC * RH * (C2 - 0.1e1) ^ 2 * (V - 
1) * (V + 1) / 0.2e1) * RB + RC * E * RU * C1 * C3 * (RC * (C2 - 0.1e1) * C3 - 0.2e1 * RC + (0.2e1 * C2 - 
0.2e1) * RH) * RH) * E * RU * C1 * C3 * V * EPSYY0T / (-0.2e1 * GB * (V - 1) * (V + 1) * C3 * (-RU * C1 * C3 
- (V - 1) * (V + 1) * (C2 + 0.1e1) * RC / 0.2e1 + RU * C1 * (V ^ 2)) * (C3 * RC + (2 * RH)) * (C2 - 0.1e1) * RB 
^ 3 - 0.4e1 * (0.2e1 * RU * C1 * E * (C3 ^ 3) * RH + ((V - 1) * (RU * (-(C2 - 0.1e1) ^ 2 * GB / 0.4e1 + E) * C1 
+ E * C2 * RH) * (V + 1) * RC - 0.2e1 * RU * C1 * E * RH * (V ^ 2)) * (C3 ^ 2) + GB * (V - 1) * RU * (V + 1) * 
C1 * (-(V ^ 2) * RC + RU * (V - 1) * (V + 1) * C1) * (C2 - 0.1e1) * C3 / 0.2e1 + RU * C1 * GB * RC * (C2 - 
0.1e1) * (C2 + 0.1e1) * (V - 1) * (V + 1) / 0.4e1) * (C3 * RC + (2 * RH)) * RB ^ 2 + 0.8e1 * RU * C1 * C3 * (-E 
* RC ^ 2 * RH * (C2 - 0.1e1) * (C3 ^ 3) / 0.2e1 + RC * E * RH * (RU * (V ^ 2 - 1) * C1 - RH * (C2 - 0.1e1)) * 
(C3 ^ 2) + ((-RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 / 0.2e1 - E * 
RH * ((V ^ 2) - C2) / 0.2e1) * RC ^ 2 - E * (V ^ 2) * RC * (RH ^ 2) + 0.2e1 * RU * C1 * E * (RH ^ 2) * (V - 1) * 
(V + 1)) * C3 - RC * RH * (RU * (V - 1) * (V + 1) * ((C2 - 0.1e1) ^ 2 * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - 
E * C2 * RH)) * RB + 0.4e1 * E * RU ^ 2 * C1 ^ 2 * (C3 ^ 2) * RC * RH * (V - 1) * (V + 1) * (C3 * RC + (2 * 
RH)) * (C2 - 0.1e1)); 
  
    % increment of elastic strain exceeds yieLd surface 
    DEPSXXB0 = 0.4e1 * (E * RB * RC * RH * (C2 * VU + V) * C3 ^ 3 + (-(VU * GB * RC * (C2 - 1) * (C2 + 1) 
* (V - 1) * (V + 1) * RB ^ 2) / 0.4e1 + (((RU * (V ^ 2 - 1) * C1 - RH * (V * VU + C2)) * V * RC + 2 * VU * C2 * 
RH ^ 2) * E * RB) - (2 * E * RU * V * C1 * RC * RH * (V - 1) * (V + 1))) * C3 ^ 2 + 0.2e1 * (-GB * (V + 1) * (V - 
1) * (C2 - 1) * (C2 + 1) * ((VU * RH) - (V * RC) / 0.2e1) * RB / 0.4e1 + (V * (RU * (V ^ 2 - 1) * C1 - RH * C2) * 
RH * E)) * RB * C3 + (V * GB * RB ^ 2 * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)) / 0.2e1) * DEPSYY0T * 
RU * C1 * RC * (C3 + 0.1e1) / (-0.4e1 * RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4 + ((2 
* RU * C1 * GB * RC * (V - 1) * (V + 1) * (C2 - 1) * RB ^ 3) + ((-0.4e1 * (V + 1) * (V - 1) * (-((C2 - 1) ^ 2 * GB) 
/ 0.4e1 + E) * RU * C1 - (4 * E * C2 * RH * (VU - 1) * (VU + 1))) * (RC ^ 2) + (8 * RU * C1 * E * VU * V * RC * 
RH) - (16 * RU * C1 * E * RH ^ 2)) * (RB ^ 2) + 0.8e1 * RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 
0.2e1 - (RH * (C2 - 1))) * RU * C1 * RC * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * 
(C2 - 1))) * C3 ^ 3 + (-0.2e1 * GB * (V + 1) * (V - 1) * (C2 - 1) * (-(RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 
0.2e1 + (C1 * RC * RU * V * VU) - (2 * C1 * RH * RU)) * (RB ^ 3) + ((2 * RU * VU * V * C1 * GB * (V - 1) * (V 
+ 1) * (C2 - 1) * RC ^ 2) + (-(2 * RU ^ 2 * GB * (V - 1) ^ 2 * (V + 1) ^ 2 * (C2 - 1) * C1 ^ 2) - 0.8e1 * (V + 1) * 
(V - 1) * RH * (-((C2 - 1) ^ 2 * GB) / 0.4e1 + E) * RU * C1 - (8 * E * C2 * RH ^ 2 * (VU - 1) * (VU + 1))) * RC + 
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(16 * RU * C1 * E * VU * V * RH ^ 2)) * (RB ^ 2) - 0.4e1 * (((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2 * (V - 1) * (V 
+ 1) * GB) / 0.4e1 + E) * C1 + (E * RH * (V * VU - C2))) * (RC ^ 2) + (2 * E * RC * RH ^ 2 * V * VU) - (4 * E * 
RU * C1 * RH ^ 2 * (V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 
1) * (C2 - 1))) * C3 ^ 2 - 0.8e1 * (GB * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (V 
+ 1) * (V - 1) * RH * (C2 - 1) * (RB ^ 2) / 0.2e1 + GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 
0.4e1) * (RC ^ 2) - (VU * V * RC * RH) + (RU * RH * (V - 1) * (V + 1) * C1)) * RU * C1 * RB / 0.2e1 + ((V + 1) 
* (V - 1) * RU * (((C2 - 1) ^ 2 * (V - 1) * (V + 1) * GB) / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC) 
* RB * C3 - (2 * RU * C1 * GB * RB ^ 2 * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1))); 
  
    DEPSYYB0 = 0.4e1 * DEPSYY0T * ((RH * (((-C2 * V * VU - V ^ 2) * RC + (2 * V ^ 2 - 2) * RU * C1) * RB 
+ RU * C1 * RC * (V - 1) * (V + 1) * (C2 - 1)) * RC * E * C3 ^ 3) + (-GB * (V + 1) * (V - 1) * (-(VU * V * (C2 + 
1) * RC) / 0.2e1 + ((V + 1) * (V - 1) * RU * C1)) * (C2 - 1) * RC * (RB ^ 2) / 0.2e1 + ((-(V + 1) * (V - 1) * RU * 
(((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 + (E * RH * (V * VU + C2))) * (RC ^ 2) - (2 * E * VU * 
V * C2 * RC * RH ^ 2) + (4 * E * RU * C1 * RH ^ 2 * (V - 1) * (V + 1))) * RB + (2 * E * RU * C1 * RC * RH ^ 2 
* (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 2) - 0.2e1 * (GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 
0.4e1) * (RC ^ 2) - (VU * V * RC * RH * (C2 + 1)) / 0.2e1 + (RU * RH * (V - 1) * (V + 1) * C1)) * RB / 0.2e1 + 
RH * ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RC) * 
RB * C3 - GB * RH * (RB ^ 2) * RC * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1) / 0.2e1) * RU * C1 * (C3 + 1) / (-(4 
* RH * RB * (2 * RB + RC * (C2 - 1)) * RU * C1 * RC * E * C3 ^ 4) + (0.2e1 * RU * C1 * GB * RC * (V - 1) * (V 
+ 1) * (C2 - 1) * (RB ^ 3) + ((-0.4e1 * (V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 - (4 * E * 
C2 * RH * (VU - 1) * (VU + 1))) * (RC ^ 2) + (8 * RU * C1 * E * VU * V * RC * RH) - (16 * RU * C1 * E * RH ^ 
2)) * (RB ^ 2) + 0.8e1 * RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RU * C1 
* RC * E * RB + (4 * E * RU ^ 2 * C1 ^ 2 * RC ^ 2 * RH * (V - 1) * (V + 1) * (C2 - 1))) * (C3 ^ 3) + (-0.2e1 * GB 
* (V + 1) * (V - 1) * (C2 - 1) * (-(RC ^ 2 * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1 + (C1 * RC * RU * V * VU) - (2 
* C1 * RH * RU)) * (RB ^ 3) + (0.2e1 * RU * VU * V * C1 * GB * (V - 1) * (V + 1) * (C2 - 1) * (RC ^ 2) + (-
0.2e1 * (RU ^ 2) * GB * ((V - 1) ^ 2) * ((V + 1) ^ 2) * (C2 - 1) * (C1 ^ 2) - 0.8e1 * (V + 1) * (V - 1) * RH * (-((C2 
- 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 - (8 * E * C2 * RH ^ 2 * (VU - 1) * (VU + 1))) * RC + (16 * RU * C1 * E * 
VU * V * RH ^ 2)) * (RB ^ 2) - 0.4e1 * (((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + 
E) * C1 + (E * RH * (V * VU - C2))) * (RC ^ 2) + (2 * E * RC * RH ^ 2 * V * VU) - (4 * E * RU * C1 * RH ^ 2 * 
(V - 1) * (V + 1))) * RU * C1 * RB + (8 * E * RU ^ 2 * C1 ^ 2 * RC * RH ^ 2 * (V - 1) * (V + 1) * (C2 - 1))) * (C3 
^ 2) - 0.8e1 * (GB * ((RU * VU * V * C1) - (RC * (VU - 1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (V + 1) * (V - 1) * 
RH * (C2 - 1) * (RB ^ 2) / 0.2e1 + GB * (V + 1) * (V - 1) * (C2 - 1) * ((C2 / 0.4e1 + 0.1e1 / 0.4e1) * (RC ^ 2) - 
(VU * V * RC * RH) + (RU * RH * (V - 1) * (V + 1) * C1)) * RU * C1 * RB / 0.2e1 + ((V + 1) * (V - 1) * RU * 
(((C2 - 1) ^ 2) * (V - 1) * (V + 1) * GB / 0.4e1 + E) * C1 - (E * C2 * RH)) * RH * RU * C1 * RC) * RB * C3 - 
0.2e1 * RU * C1 * GB * (RB ^ 2) * RC * RH * (C2 - 1) * (C2 + 1) * (V - 1) * (V + 1)); 
  
    DEPSXYB0 = DEPSYY0T * C3 * ((-(2 * RH * RU * C1 * RC * (VU - V) * C3 ^ 2) + ((-(RU * VU * (V - 1) * 
(V + 1) * C1 + (-VU ^ 2 + 1) * V * RH) * (C2 + 1) * RC ^ 2 + 2 * V * RU * C1 * (RU * (V ^ 2 - 1) * C1 + (-V * 
VU + 1) * RH) * RC - 4 * RU * VU * C1 * RH ^ 2) * C3) + 0.4e1 * (-(VU * (V - 1) * (V + 1) * (C2 + 1) * RC) / 
0.2e1 + (V * (RU * (V ^ 2 - 1) * C1 + RH))) * RH * RU * C1) * RB ^ 2 + (-(RH * RC * (C2 - 1) * (VU - V) * C3 ^ 
2) + ((V * (RU * (V - 1) * (V + 1) * (C2 - 1) * C1 + (VU * (C2 + 3) * V + C2 - 1) * RH) * RC) - 0.4e1 * (((V ^ 3 - 
V) * RU * C1) + (VU * RH * (C2 - 1)) / 0.2e1) * RH) * C3 + (2 * V * RH * ((-C2 - 1) * RC + (C2 - 1) * (RU * (V 
^ 2 - 1) * C1 + RH)))) * RU * C1 * RC * RB - (2 * RU ^ 2 * V * C1 ^ 2 * C3 * RC ^ 2 * RH * (V - 1) * (V + 1) * 
(C2 - 1))) * (C3 + 1) * E / (-0.2e1 * GB * (V + 1) * (V - 1) * ((RU * VU * V * C1) - (RU * C1 * C3) - (RC * (VU - 
1) * (VU + 1) * (C2 + 1)) / 0.2e1) * (C3 * RC + 2 * RH) * (C2 - 1) * C3 * RB ^ 3 + 0.8e1 * (C3 * RC + 2 * RH) * 
(-(E * RU * C1 * C3 ^ 3 * RH) + ((-(V + 1) * (V - 1) * (-((C2 - 1) ^ 2) * GB / 0.4e1 + E) * RU * C1 / 0.2e1 - (E * 
C2 * RH * (VU - 1) * (VU + 1)) / 0.2e1) * RC + (E * RU * C1 * VU * V * RH)) * (C3 ^ 2) - GB * (V + 1) * (V - 1) 
* (C2 - 1) * (-V * RC * VU + (V + 1) * (V - 1) * RU * C1) * RU * C1 * C3 / 0.4e1 - RU * C1 * RC * GB * (C2 - 
1) * (C2 + 1) * (V - 1) * (V + 1) / 0.8e1) * RB ^ 2 + 0.8e1 * C3 * RU * (-(E * RC ^ 2 * RH * (C2 - 1) * C3 ^ 3) / 
0.2e1 + RH * ((RU * (V ^ 2 - 1) * C1) - (V * (VU - V) * RC) / 0.2e1 - (RH * (C2 - 1))) * RC * E * (C3 ^ 2) + ((-
(V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * GB * (V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2) * GB / 0.4e1 + E) * C1 / 0.2e1 - (E 
* RH * (V * VU - C2)) / 0.2e1) * (RC ^ 2) - (E * RC * RH ^ 2 * V * VU) + (2 * E * RU * C1 * RH ^ 2 * (V - 1) * 
(V + 1))) * C3 - RH * ((V + 1) * (V - 1) * RU * (((C2 - 1) ^ 2) * GB * (V ^ 2) / 0.4e1 - ((C2 - 1) ^ 2) * GB / 0.4e1 
+ E) * C1 - (E * C2 * RH)) * RC) * C1 * RB + (4 * E * RU ^ 2 * C1 ^ 2 * C3 ^ 2 * RC * RH * (V - 1) * (V + 1) * 
(C3 * RC + 2 * RH) * (C2 - 1))); 
     
    % caculated cohesion of brick unit by value of hardening(softening) parameter K 
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    DKB = sqrt((6 * DEPSPXXB ^ 2 + 6 * DEPSPXYB ^ 2 + 6 * DEPSPYYB ^ 2)) / 0.3e1; 
    KB  = KB + DKB; 
    KBMAX = ((2 * LC * EPS0M * FCM + 3 * GCM) / LC / FCM) / 0.2e1; 
    % find compressive strength by hardening parameter K: 
    if KB <= EPS0M 
        SIGCB = (FCM * (-2 * KB ^ 2 / EPS0M ^ 2 + 4 * KB / EPS0M + 1)) / 0.3e1; 
        KCB = (FCM * (-4 * KB / EPS0M ^ 2 + 4 / EPS0M)) / 0.3e1; 
    else 
        if KB < KBMAX 
            SIGCB = FCM * (0.1e1 - 0.4e1 / 0.9e1 * FCM ^ 2 * LC ^ 2 / GCM ^ 2 * (KB - EPS0M) ^ 2); 
            KCB = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KB - EPS0M); 
        else 
            SIGCB = 0; 
            KCB = -0.8e1 / 0.9e1 * FCM ^ 3 * LC ^ 2 / GCM ^ 2 * (KBMAX - EPS0M); 
        end 
    end 
    % find critical stress: 
    CB = (0.1e1 - sin(PHIM)) / cos(PHIM) * SIGCB / 0.2e1; 
    SIGXXBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * SIGXXBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE 
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 
  
    SIGYYBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * SIGYYBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE 
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 
  
    TAUXYBC1 = 0.18e2 * (0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.6e1 * SIGYYBE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) * TAUXYBE / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE 
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 
  
    SIGXXBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * SIGXXBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE 
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 
  
    SIGYYBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * SIGYYBE * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE 
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 
  
    TAUXYBC2 = -0.18e2 * (-0.6e1 * SIGXXBE * sin(PHIM) / (0.3e1 - sin(PHIM)) - 0.6e1 * SIGYYBE * 
sin(PHIM) / (0.3e1 - sin(PHIM)) + 0.3e1 * sqrt(SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + (3 * 
TAUXYBE ^ 2))) * CB * cos(PHIM) / (0.3e1 - sin(PHIM)) * TAUXYBE / (0.36e2 * SIGXXBE ^ 2 * sin(PHIM) ^ 
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2 / (0.3e1 - sin(PHIM)) ^ 2 + 0.72e2 * SIGXXBE * SIGYYBE * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 + 
0.36e2 * SIGYYBE ^ 2 * sin(PHIM) ^ 2 / (0.3e1 - sin(PHIM)) ^ 2 - 0.9e1 * SIGXXBE ^ 2 + 0.9e1 * SIGXXBE 
* SIGYYBE - 0.9e1 * SIGYYBE ^ 2 - (27 * TAUXYBE ^ 2)); 
  
    if SIGXXBE/SIGXXBC1 > 0 
        SIGXXBC = SIGXXBC1; 
    else 
        SIGXXBC = SIGXXBC2; 
    end 
    if SIGYYBE/SIGYYBC1 > 0 
        SIGYYBC = SIGYYBC1; 
    else 
        SIGYYBC = SIGYYBC2; 
    end 
    if TAUXYBE/TAUXYBC1 > 0 
        TAUXYBC = TAUXYBC1; 
    else 
        TAUXYBC = TAUXYBC2; 
    end 
     
    while CU >= 0 
        % yield function of brick unit: 
        FU = (sqrt(SIGXXUE ^ 2 - SIGXXUE * SIGYYUE + SIGYYUE ^ 2) * (-0.3e1 + sin(PHIU)) + (-0.2e1 * 
SIGXXUE - 0.2e1 * SIGYYUE) * sin(PHIU) + 0.6e1 * CU * cos(PHIU)) / (-0.3e1 + sin(PHIU)); 
        if FU <= 0 % before yielding, plastic strain = 0 
            DEPSPXXU = 0; 
            DEPSPYYU = 0; 
            break; 
        else 
  
            % calculate plastic strain increment: 
            DEPSPXXU = 0.6e1 * ((((((DEPSXXU0 - DEPSYYU0) * VU - 0.10e2 / 0.3e1 * DEPSXXU0 - 0.7e1 / 
0.3e1 * DEPSYYU0) * SIGXXUC ^ 2 - 0.3e1 / 0.2e1 * ((DEPSXXU0 - DEPSYYU0) * VU - 0.20e2 / 0.9e1 * 
DEPSXXU0 - 0.11e2 / 0.9e1 * DEPSYYU0) * SIGYYUC * SIGXXUC + ((DEPSXXU0 - DEPSYYU0) * VU - 
0.17e2 / 0.3e1 * DEPSXXU0 - 0.14e2 / 0.3e1 * DEPSYYU0) * SIGYYUC ^ 2 / 0.2e1) * sin(PHIU) - 0.3e1 * 
(((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - 
((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-
SIGYYUC / 0.2e1 + SIGXXUC)) * sin(PSIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * 
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-SIGYYUC / 0.2e1 + SIGXXUC) * (-0.3e1 + sin(PHIU))) * 
sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) - 0.2e1 * (((((DEPSXXU0 - DEPSYYU0) * VU - 
0.4e1 / 0.3e1 * DEPSXXU0 - DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 
0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGYYUC) * sin(PHIU) + ((-0.3e1 * DEPSXXU0 + 0.3e1 * 
DEPSYYU0) * VU + 0.2e1 * DEPSXXU0 - DEPSYYU0) * SIGXXUC + 0.3e1 * ((DEPSXXU0 - DEPSYYU0) 
* VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sin(PSIU) + 0.2e1 * sin(PHIU) * 
(DEPSXXU0 + DEPSYYU0) * (-SIGYYUC / 0.2e1 + SIGXXUC)) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + 
SIGYYUC ^ 2)) * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU) + 0.4e1 * SU) * VU - (37 * EU) - 0.4e1 * SU) * 
SIGXXUC ^ 2 - 0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * 
EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 
0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PHIU) + (-0.24e2 * SU * 
VU ^ 2 + (-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 / 
0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC 
* SIGXXUC - 0.27e2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 
0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PSIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 
0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU * 
VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC 
+ (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * 
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SIGYYUC ^ 2) * (-0.3e1 + sin(PHIU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 
0.8e1 * EU * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (SIGXXUC + SIGYYUC) * 
((sin(PHIU) - 0.3e1 / 0.2e1) * sin(PSIU) - 0.3e1 / 0.2e1 * sin(PHIU))); 
  
            DEPSPYYU = -0.3e1 * ((((((DEPSXXU0 - DEPSYYU0) * VU + 0.14e2 / 0.3e1 * DEPSXXU0 + 
0.17e2 / 0.3e1 * DEPSYYU0) * SIGXXUC ^ 2 - 0.3e1 * ((DEPSXXU0 - DEPSYYU0) * VU + 0.11e2 / 0.9e1 * 
DEPSXXU0 + 0.20e2 / 0.9e1 * DEPSYYU0) * SIGYYUC * SIGXXUC + 0.2e1 * SIGYYUC ^ 2 * 
((DEPSXXU0 - DEPSYYU0) * VU + 0.7e1 / 0.3e1 * DEPSXXU0 + 0.10e2 / 0.3e1 * DEPSYYU0)) * 
sin(PHIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * 
SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * 
SIGYYUC) * (SIGXXUC - 0.2e1 * SIGYYUC)) * sin(PSIU) - 0.3e1 * (((DEPSXXU0 - DEPSYYU0) * VU - 
0.2e1 / 0.3e1 * DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - 
DEPSXXU0 / 0.3e1 + 0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * (-0.3e1 + sin(PHIU)) * (SIGXXUC - 0.2e1 
* SIGYYUC)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 0.4e1 * (SIGXXUC ^ 2 - 
SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (((((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 0.2e1 
/ 0.3e1 * DEPSYYU0) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU + DEPSXXU0 / 0.3e1 + 0.4e1 / 0.3e1 
* DEPSYYU0) * SIGYYUC) * sin(PHIU) + ((-0.3e1 * DEPSXXU0 + 0.3e1 * DEPSYYU0) * VU + 0.2e1 * 
DEPSXXU0 - DEPSYYU0) * SIGXXUC + 0.3e1 * ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sin(PSIU) - sin(PHIU) * (DEPSXXU0 + DEPSYYU0) * 
(SIGXXUC - 0.2e1 * SIGYYUC))) * EU / (((((0.8e1 * SU * VU ^ 2 + ((9 * EU) + 0.4e1 * SU) * VU - (37 * EU) - 
0.4e1 * SU) * SIGXXUC ^ 2 - 0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 
0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + 
(EU + 0.4e1 / 0.9e1 * SU) * VU - 0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PHIU) + (-
0.24e2 * SU * VU ^ 2 + (-(27 * EU) - 0.12e2 * SU) * VU + (15 * EU) + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 
* (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * 
SIGYYUC * SIGXXUC - 0.27e2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 
0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PSIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU 
+ 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 
* SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * 
SIGXXUC + (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 
0.9e1 * SU) * SIGYYUC ^ 2) * (-0.3e1 + sin(PHIU))) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + 
SIGYYUC ^ 2) + 0.8e1 * EU * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (SIGXXUC + 
SIGYYUC) * ((sin(PHIU) - 0.3e1 / 0.2e1) * sin(PSIU) - 0.3e1 / 0.2e1 * sin(PHIU))); 
  
            % recalculate softening modulus SUC: 
            DLU = 0.6e1 * EU * ((-0.3e1 + sin(PHIU)) * (((DEPSXXU0 - DEPSYYU0) * VU - 0.2e1 / 0.3e1 * 
DEPSXXU0 + DEPSYYU0 / 0.3e1) * SIGXXUC - ((DEPSXXU0 - DEPSYYU0) * VU - DEPSXXU0 / 0.3e1 + 
0.2e1 / 0.3e1 * DEPSYYU0) * SIGYYUC) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 
0.4e1 / 0.3e1 * sin(PHIU) * (SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) * (DEPSXXU0 + 
DEPSYYU0)) * (-0.3e1 + sin(PSIU)) / (0.8e1 * EU * (SIGXXUC + SIGYYUC) * ((sin(PSIU) - 0.3e1 / 0.2e1) * 
sin(PHIU) - 0.3e1 / 0.2e1 * sin(PSIU)) * sqrt(SIGXXUC ^ 2 - SIGXXUC * SIGYYUC + SIGYYUC ^ 2) + 
(((0.8e1 * SU * VU ^ 2 + (0.9e1 * EU + 0.4e1 * SU) * VU - 0.37e2 * EU - 0.4e1 * SU) * SIGXXUC ^ 2 - 
0.18e2 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.20e2 / 0.9e1 * EU - 0.2e1 / 0.9e1 
* SU) * SIGYYUC * SIGXXUC + 0.9e1 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 
0.37e2 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * sin(PSIU) + (-0.24e2 * SU * VU ^ 2 + (-0.27e2 * 
EU - 0.12e2 * SU) * VU + 0.15e2 * EU + 0.12e2 * SU) * SIGXXUC ^ 2 + 0.54e2 * (0.4e1 / 0.9e1 * SU * VU ^ 
2 + (EU + 0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC - 
0.27e2 * (0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 
* SU) * SIGYYUC ^ 2) * sin(PHIU) - 0.27e2 * ((0.8e1 / 0.9e1 * SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU 
- 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGXXUC ^ 2 - 0.2e1 * (0.4e1 / 0.9e1 * SU * VU ^ 2 + (EU + 
0.2e1 / 0.9e1 * SU) * VU - 0.4e1 / 0.9e1 * EU - 0.2e1 / 0.9e1 * SU) * SIGYYUC * SIGXXUC + (0.8e1 / 0.9e1 
* SU * VU ^ 2 + (EU + 0.4e1 / 0.9e1 * SU) * VU - 0.5e1 / 0.9e1 * EU - 0.4e1 / 0.9e1 * SU) * SIGYYUC ^ 2) * 
(-0.3e1 + sin(PSIU))); 
  
            FKU = -0.3e1 / (0.3e1 - sin(PHIU)) * (0.1e1 - sin(PHIU)) * KCU; 
            SUC = -FKU*DKU/DLU; 
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            if abs(SUC-SU) < TOR2 
                break; 
            else 
                SU = SUC; 
            end 
        end 
    end 
     
    while CH >= 0 
        % yield function of brick unit: 
        FH = (sqrt(SIGXXHE ^ 2 - SIGXXHE * SIGYYHE + SIGYYHE ^ 2) * (-0.3e1 + sin(PHIM)) + (-0.2e1 * 
SIGXXHE - 0.2e1 * SIGYYHE) * sin(PHIM) + 0.6e1 * CH * cos(PHIM)) / (-0.3e1 + sin(PHIM)); 
        if FH <= 0 % before yielding, plastic strain = 0 
            DEPSPXXH = 0; 
            DEPSPYYH = 0; 
            break; 
        else 
  
            % calculate plastic strain increment: 
            DEPSPXXH = ((((((((20 * DEPSYYH0 - 6 * DEPSXXH0) * E - 14 * EU * DEPSYYH0) * V + 20 * E * 
DEPSXXH0 + 14 * EU * DEPSYYH0) * SIGXXHC ^ 2) - 0.20e2 * (((DEPSYYH0 - 0.9e1 / 0.20e2 * 
DEPSXXH0) * E - 0.11e2 / 0.20e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.11e2 / 0.20e2 * EU * 
DEPSYYH0) * SIGYYHC * SIGXXHC + 0.17e2 * (((DEPSYYH0 - 0.3e1 / 0.17e2 * DEPSXXH0) * E - 0.14e2 
/ 0.17e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.14e2 / 0.17e2 * EU * DEPSYYH0) * SIGYYHC ^ 2) 
* sin(PHIM) - 0.12e2 * (SIGXXHC - SIGYYHC / 0.2e1) * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + 
(EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC * 
(((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) / 
0.2e1)) * sin(PSIM) - 0.12e2 * (SIGXXHC - SIGYYHC / 0.2e1) * (sin(PHIM) - 0.3e1) * ((((DEPSYYH0 - 
0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 
0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * 
DEPSXXH0 - 2 * EU * DEPSYYH0) / 0.2e1)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 
2) - 0.16e2 * ((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((((DEPSYYH0 - 0.3e1 / 0.4e1 * 
DEPSXXH0) * E - (EU * DEPSYYH0) / 0.4e1) * V + (E * DEPSXXH0) + (EU * DEPSYYH0) / 0.4e1) * 
SIGXXHC - (((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E * 
DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGYYHC / 0.2e1) * sin(PHIM) + (((-0.3e1 / 0.2e1 * DEPSYYH0 
+ 0.9e1 / 0.4e1 * DEPSXXH0) * E - 0.3e1 / 0.4e1 * EU * DEPSYYH0) * V - 0.3e1 / 0.2e1 * E * DEPSXXH0 + 
0.3e1 / 0.4e1 * EU * DEPSYYH0) * SIGXXHC + 0.3e1 / 0.4e1 * SIGYYHC * (((DEPSYYH0 - 3 * 
DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0)) * sin(PSIM) - 0.3e1 / 
0.2e1 * (DEPSYYH0 * (E - EU) * V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC - SIGYYHC / 0.2e1) 
* sin(PHIM))) / ((((((-8 * V ^ 2 * SH + (8 * E - 17 * EU - 4 * SH) * V + 20 * E + 17 * EU + 4 * SH) * SIGXXHC 
^ 2) - 0.2e1 * SIGYYHC * (-4 * V ^ 2 * SH + (E - 10 * EU - 2 * SH) * V + 10 * E + 10 * EU + 2 * SH) * 
SIGXXHC + 0.11e2 * SIGYYHC ^ 2 * (-0.8e1 / 0.11e2 * (V ^ 2) * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 
0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E + 0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PHIM) + ((24 * 
V ^ 2 * SH + (24 * E + 3 * EU + 12 * SH) * V - 12 * E - 3 * EU - 12 * SH) * SIGXXHC ^ 2) - 0.42e2 * (0.4e1 / 
0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * 
EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 / 
0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) * 
sin(PSIM) + 0.24e2 * (sin(PHIM) - 0.3e1) * (((V ^ 2 * SH) + (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 - 
EU / 0.8e1 - SH / 0.2e1) * (SIGXXHC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 
* EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * 
SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V 
- E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * 
SIGYYHC + SIGYYHC ^ 2) + 0.8e1 * ((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((E - EU) 
* V - 2 * E + EU) * SIGXXHC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYHC) * ((sin(PHIM) - 0.3e1 / 
0.2e1) * sin(PSIM) - 0.3e1 / 0.2e1 * sin(PHIM))); 
  
            DEPSPYYH = ((((((((14 * DEPSYYH0 + 3 * DEPSXXH0) * E - 17 * EU * DEPSYYH0) * V + 14 * E * 
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DEPSXXH0 + 17 * EU * DEPSYYH0) * SIGXXHC ^ 2) - 0.11e2 * (((DEPSYYH0 + 0.9e1 / 0.11e2 * 
DEPSXXH0) * E - 0.20e2 / 0.11e2 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.20e2 / 0.11e2 * EU * 
DEPSYYH0) * SIGYYHC * SIGXXHC + 0.14e2 * (((DEPSYYH0 + 0.3e1 / 0.7e1 * DEPSXXH0) * E - 0.10e2 
/ 0.7e1 * EU * DEPSYYH0) * V + (E * DEPSXXH0) + 0.10e2 / 0.7e1 * EU * DEPSYYH0) * SIGYYHC ^ 2) * 
sin(PHIM) + 0.6e1 * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + (EU * DEPSYYH0) / 0.2e1) * V + (E 
* DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E 
+ 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) / 0.2e1) * (SIGXXHC - 0.2e1 * 
SIGYYHC)) * sin(PSIM) + 0.6e1 * (sin(PHIM) - 0.3e1) * ((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + 
(EU * DEPSYYH0) / 0.2e1) * V + (E * DEPSXXH0) - (EU * DEPSYYH0) / 0.2e1) * SIGXXHC - SIGYYHC * 
(((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) / 
0.2e1) * (SIGXXHC - 0.2e1 * SIGYYHC)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) - 
0.4e1 * ((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * (((((((DEPSYYH0 - 3 * DEPSXXH0) * E 
+ 2 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0) * SIGXXHC) + (((DEPSYYH0 + 3 * 
DEPSXXH0) * E - 4 * EU * DEPSYYH0) * V + E * DEPSXXH0 + 4 * EU * DEPSYYH0) * SIGYYHC) * 
sin(PHIM) + ((((-6 * DEPSYYH0 + 9 * DEPSXXH0) * E - 3 * EU * DEPSYYH0) * V - 6 * E * DEPSXXH0 + 3 * 
EU * DEPSYYH0) * SIGXXHC) + 0.3e1 * SIGYYHC * (((DEPSYYH0 - 3 * DEPSXXH0) * E + 2 * EU * 
DEPSYYH0) * V + E * DEPSXXH0 - 2 * EU * DEPSYYH0)) * sin(PSIM) + 0.3e1 * (DEPSYYH0 * (E - EU) * 
V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC - 0.2e1 * SIGYYHC) * sin(PHIM))) / ((((((-8 * V ^ 2 * 
SH + (8 * E - 17 * EU - 4 * SH) * V + 20 * E + 17 * EU + 4 * SH) * SIGXXHC ^ 2) - 0.2e1 * SIGYYHC * (-4 * 
V ^ 2 * SH + (E - 10 * EU - 2 * SH) * V + 10 * E + 10 * EU + 2 * SH) * SIGXXHC + 0.11e2 * SIGYYHC ^ 2 * 
(-0.8e1 / 0.11e2 * (V ^ 2) * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2 / 0.11e2 * E + 
0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PHIM) + ((24 * V ^ 2 * SH + (24 * E + 3 * EU + 12 * SH) * 
V - 12 * E - 3 * EU - 12 * SH) * SIGXXHC ^ 2) - 0.42e2 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * 
EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * 
SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 
0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2) * sin(PSIM) + 0.24e2 * (sin(PHIM) - 0.3e1) 
* (((V ^ 2 * SH) + (E + EU / 0.8e1 + SH / 0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1) * (SIGXXHC ^ 2) - 
0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 
0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1 
* (V ^ 2) * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 
0.5e1 * SH) * SIGYYHC ^ 2)) * sqrt((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + 0.8e1 * 
((SIGXXHC ^ 2) - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) * ((((E - EU) * V - 2 * E + EU) * SIGXXHC) - 
0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYHC) * ((sin(PHIM) - 0.3e1 / 0.2e1) * sin(PSIM) - 0.3e1 / 
0.2e1 * sin(PHIM))); 
  
            % recalculate softening modulus SUC: 
            DLH = 0.4e1 * (((((DEPSYYH0 - 0.3e1 / 0.2e1 * DEPSXXH0) * E + EU * DEPSYYH0 / 0.2e1) * V + 
E * DEPSXXH0 - EU * DEPSYYH0 / 0.2e1) * SIGXXHC - SIGYYHC * (((DEPSYYH0 - 0.3e1 * DEPSXXH0) 
* E + 0.2e1 * EU * DEPSYYH0) * V + E * DEPSXXH0 - 0.2e1 * EU * DEPSYYH0) / 0.2e1) * (sin(PHIM) - 
0.3e1) * sqrt(SIGXXHC ^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) - 0.2e1 * sin(PHIM) * (DEPSYYH0 * (E 
- EU) * V + E * DEPSXXH0 + EU * DEPSYYH0) * (SIGXXHC ^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2)) 
* (-0.3e1 + sin(PSIM)) / (0.8e1 * ((sin(PSIM) - 0.3e1 / 0.2e1) * sin(PHIM) - 0.3e1 / 0.2e1 * sin(PSIM)) * (((E - 
EU) * V - 0.2e1 * E + EU) * SIGXXHC - 0.2e1 * ((E - EU) * V - E / 0.2e1 + EU) * SIGYYHC) * sqrt(SIGXXHC 
^ 2 - SIGXXHC * SIGYYHC + SIGYYHC ^ 2) + (((-0.8e1 * V ^ 2 * SH + (0.8e1 * E - 0.17e2 * EU - 0.4e1 * 
SH) * V + 0.20e2 * E + 0.17e2 * EU + 0.4e1 * SH) * SIGXXHC ^ 2 - 0.2e1 * SIGYYHC * (-0.4e1 * V ^ 2 * SH 
+ (E - 0.10e2 * EU - 0.2e1 * SH) * V + 0.10e2 * E + 0.10e2 * EU + 0.2e1 * SH) * SIGXXHC + 0.11e2 * 
SIGYYHC ^ 2 * (-0.8e1 / 0.11e2 * V ^ 2 * SH + (E - 0.20e2 / 0.11e2 * EU - 0.4e1 / 0.11e2 * SH) * V + 0.17e2 
/ 0.11e2 * E + 0.20e2 / 0.11e2 * EU + 0.4e1 / 0.11e2 * SH)) * sin(PSIM) + (0.24e2 * V ^ 2 * SH + (0.24e2 * 
E + 0.3e1 * EU + 0.12e2 * SH) * V - 0.12e2 * E - 0.3e1 * EU - 0.12e2 * SH) * SIGXXHC ^ 2 - 0.42e2 * 
(0.4e1 / 0.7e1 * V ^ 2 * SH + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 
0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * SIGYYHC * SIGXXHC + 0.15e2 * (0.8e1 / 0.5e1 * V ^ 2 * SH + (E + 
0.4e1 / 0.5e1 * EU + 0.4e1 / 0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * 
SIGYYHC ^ 2) * sin(PHIM) + 0.24e2 * (-0.3e1 + sin(PSIM)) * ((V ^ 2 * SH + (E + EU / 0.8e1 + SH / 0.2e1) * 
V - E / 0.2e1 - EU / 0.8e1 - SH / 0.2e1) * SIGXXHC ^ 2 - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * V ^ 2 * SH + (E + 
0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SH) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SH) * 
SIGYYHC * SIGXXHC + 0.5e1 / 0.8e1 * (0.8e1 / 0.5e1 * V ^ 2 * SH + (E + 0.4e1 / 0.5e1 * EU + 0.4e1 / 



       

145 

 

0.5e1 * SH) * V - E / 0.5e1 - 0.4e1 / 0.5e1 * EU - 0.4e1 / 0.5e1 * SH) * SIGYYHC ^ 2)); 
  
            FKH = -0.3e1 / (0.3e1 - sin(PHIM)) * (0.1e1 - sin(PHIM)) * KCH; 
            SHC = -FKH* DKH / DLH ; 
            if abs(SHC-SH) < TOR2 
                break; 
            else 
                SH = SHC; 
            end 
        end 
    end 
     
    while CB >= 0 
        % yield function of brick unit: 
        FB = (sqrt((SIGXXBE ^ 2 - SIGXXBE * SIGYYBE + SIGYYBE ^ 2 + 3 * TAUXYBE^2)) * (-0.3e1 + 
sin(PHIM)) + (-2 * SIGXXBE - 2 * SIGYYBE) * sin(PHIM) + 0.6e1 * CB * cos(PHIM)) / (-0.3e1 + sin(PHIM)); 
        if FB <= 0 
            DEPSPXXB = 0; 
            DEPSPYYB = 0; 
            DEPSPXYB = 0; 
            break; 
        else 
  
            % calculate plastic strain increment: 
            DEPSPXXB = ((((((((18 * DEPSXXB0 - 28 * DEPSYYB0) * E + 10 * EU * DEPSYYB0) * V - 28 * E * 
DEPSXXB0 - 10 * EU * DEPSYYB0) * SIGXXBC ^ 2) + (((((-27 * DEPSXXB0 + 28 * DEPSYYB0) * E - EU * 
DEPSYYB0) * V + 28 * E * DEPSXXB0 + EU * DEPSYYB0) * SIGYYBC) + 0.72e2 * DEPSXYB0 * 
TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * SIGXXBC + ((((9 * DEPSXXB0 - 19 * DEPSYYB0) * E + 10 * EU * 
DEPSYYB0) * V - 19 * E * DEPSXXB0 - 10 * EU * DEPSYYB0) * SIGYYBC ^ 2) - 0.36e2 * DEPSXYB0 * 
TAUXYBC * (V - 0.1e1 / 0.2e1) * E * SIGYYBC - 0.48e2 * TAUXYBC ^ 2 * (DEPSYYB0 * (E - EU) * V + E * 
DEPSXXB0 + EU * DEPSYYB0)) * sin(PHIM) - 0.54e2 * (SIGXXBC - SIGYYBC / 0.2e1) * ((((DEPSXXB0 - 
0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * 
DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * 
DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * 
DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sin(PSIM) - 0.54e2 * (SIGXXBC - SIGYYBC / 0.2e1) * 
(sin(PHIM) - 0.3e1) * ((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 
0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 
0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * 
DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sqrt((SIGXXBC ^ 2) 
- (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.12e2 * ((((((DEPSXXB0 - 0.8e1 / 
0.3e1 * DEPSYYB0) * E + 0.5e1 / 0.3e1 * EU * DEPSYYB0) * V - 0.5e1 / 0.3e1 * EU * DEPSYYB0 - 0.8e1 / 
0.3e1 * E * DEPSXXB0) * SIGXXBC + (((-DEPSXXB0 + 0.4e1 / 0.3e1 * DEPSYYB0) * E - (EU * 
DEPSYYB0) / 0.3e1) * V + 0.4e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGYYBC + 
0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PHIM) + ((((-3 * DEPSXXB0 + 2 * 
DEPSYYB0) * E + EU * DEPSYYB0) * V + 2 * E * DEPSXXB0 - EU * DEPSYYB0) * SIGXXBC) + ((((3 * 
DEPSXXB0 - DEPSYYB0) * E - 2 * EU * DEPSYYB0) * V - E * DEPSXXB0 + 2 * EU * DEPSYYB0) * 
SIGYYBC) - 0.12e2 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PSIM) + 0.6e1 * (SIGXXBC - 
SIGYYBC / 0.2e1) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0) * sin(PHIM)) * 
((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2)) / ((((((24 * V ^ 2 * SB 
+ (8 * E + 19 * EU + 12 * SB) * V - 28 * E - 19 * EU - 12 * SB) * SIGXXBC ^ 2) - 0.26e2 * (0.12e2 / 0.13e2 * 
(V ^ 2) * SB + (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * V - 0.14e2 / 0.13e2 * E - 0.14e2 / 0.13e2 * 
EU - 0.6e1 / 0.13e2 * SB) * SIGYYBC * SIGXXBC + ((24 * V ^ 2 * SB + (-E + 28 * EU + 12 * SB) * V - 19 * E 
- 28 * EU - 12 * SB) * SIGYYBC ^ 2) + 0.168e3 * (0.3e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 
0.3e1 / 0.14e2 * SB) * V - 0.13e2 / 0.14e2 * E - 0.2e1 / 0.7e1 * EU - 0.3e1 / 0.14e2 * SB) * TAUXYBC ^ 2) * 
sin(PHIM) + ((-72 * V ^ 2 * SB + (-72 * E - 9 * EU - 36 * SB) * V + 36 * E + 9 * EU + 36 * SB) * SIGXXBC ^ 
2) + 0.126e3 * (0.4e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 
0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((-72 * V ^ 2 * SB + (-45 * E - 
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36 * EU - 36 * SB) * V + 9 * E + 36 * EU + 36 * SB) * SIGYYBC ^ 2) - 0.648e3 * TAUXYBC ^ 2 * (V - 0.1e1 / 
0.2e1) * ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * sin(PSIM) - 0.72e2 * (((V ^ 2 * SB) + (E + EU / 0.8e1 + SB / 
0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * (SIGXXBC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) * 
SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 
0.7e1 * SB) * SIGYYBC * SIGXXBC + ((V ^ 2 * SB) + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * V - E / 
0.8e1 - EU / 0.2e1 - SB / 0.2e1) * (SIGYYBC ^ 2) + 0.9e1 * TAUXYBC ^ 2 * (V - 0.1e1 / 0.2e1) * ((V * SB) / 
0.3e1 + E + SB / 0.3e1)) * (sin(PHIM) - 0.3e1)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC 
^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.16e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 
* TAUXYBC ^ 2) * ((sin(PHIM) - 0.3e1 / 0.4e1) * sin(PSIM) - 0.9e1 / 0.4e1 * sin(PHIM)) * ((((E - EU) * V - 2 * 
E + EU) * SIGXXBC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYBC)); 
  
            DEPSPYYB = ((((((((-9 * DEPSXXB0 - 10 * DEPSYYB0) * E + 19 * EU * DEPSYYB0) * V - 10 * E * 
DEPSXXB0 - 19 * EU * DEPSYYB0) * SIGXXBC ^ 2) + (((((27 * DEPSXXB0 + DEPSYYB0) * E - 28 * EU * 
DEPSYYB0) * V + E * DEPSXXB0 + 28 * EU * DEPSYYB0) * SIGYYBC) - 0.36e2 * DEPSXYB0 * 
TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * SIGXXBC + ((((-18 * DEPSXXB0 - 10 * DEPSYYB0) * E + 28 * EU * 
DEPSYYB0) * V - 10 * E * DEPSXXB0 - 28 * EU * DEPSYYB0) * SIGYYBC ^ 2) + 0.72e2 * DEPSXYB0 * 
TAUXYBC * (V - 0.1e1 / 0.2e1) * E * SIGYYBC - 0.48e2 * TAUXYBC ^ 2 * (DEPSYYB0 * (E - EU) * V + E * 
DEPSXXB0 + EU * DEPSYYB0)) * sin(PHIM) + 0.27e2 * (SIGXXBC - 2 * SIGYYBC) * ((((DEPSXXB0 - 
0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * 
DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * 
DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * 
DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sin(PSIM) + 0.27e2 * (SIGXXBC - 2 * SIGYYBC) * 
(sin(PHIM) - 0.3e1) * ((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - (EU * DEPSYYB0) / 0.3e1) * V - 
0.2e1 / 0.3e1 * E * DEPSXXB0 + (EU * DEPSYYB0) / 0.3e1) * SIGXXBC + (((-DEPSXXB0 + DEPSYYB0 / 
0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 - 0.2e1 / 0.3e1 * EU * 
DEPSYYB0) * SIGYYBC + 0.4e1 * DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E)) * sqrt((SIGXXBC ^ 2) 
- (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.12e2 * ((SIGXXBC ^ 2) - 
(SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 * TAUXYBC ^ 2) * ((((((DEPSXXB0 + DEPSYYB0 / 
0.3e1) * E - 0.4e1 / 0.3e1 * EU * DEPSYYB0) * V + (E * DEPSXXB0) / 0.3e1 + 0.4e1 / 0.3e1 * EU * 
DEPSYYB0) * SIGXXBC + (((-DEPSXXB0 - 0.5e1 / 0.3e1 * DEPSYYB0) * E + 0.8e1 / 0.3e1 * EU * 
DEPSYYB0) * V - 0.5e1 / 0.3e1 * E * DEPSXXB0 - 0.8e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 0.4e1 * 
DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PHIM) + ((((-3 * DEPSXXB0 + 2 * DEPSYYB0) * E + 
EU * DEPSYYB0) * V + 2 * E * DEPSXXB0 - EU * DEPSYYB0) * SIGXXBC) + ((((3 * DEPSXXB0 - 
DEPSYYB0) * E - 2 * EU * DEPSYYB0) * V - E * DEPSXXB0 + 2 * EU * DEPSYYB0) * SIGYYBC) - 0.12e2 
* DEPSXYB0 * TAUXYBC * (V - 0.1e1 / 0.2e1) * E) * sin(PSIM) - 0.3e1 * (SIGXXBC - 2 * SIGYYBC) * 
(DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0) * sin(PHIM))) / ((((((24 * V ^ 2 * SB + (8 * 
E + 19 * EU + 12 * SB) * V - 28 * E - 19 * EU - 12 * SB) * SIGXXBC ^ 2) - 0.26e2 * (0.12e2 / 0.13e2 * (V ^ 2) 
* SB + (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 0.13e2 * SB) * V - 0.14e2 / 0.13e2 * E - 0.14e2 / 0.13e2 * EU - 
0.6e1 / 0.13e2 * SB) * SIGYYBC * SIGXXBC + ((24 * V ^ 2 * SB + (-E + 28 * EU + 12 * SB) * V - 19 * E - 28 
* EU - 12 * SB) * SIGYYBC ^ 2) + 0.168e3 * (0.3e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.3e1 / 
0.14e2 * SB) * V - 0.13e2 / 0.14e2 * E - 0.2e1 / 0.7e1 * EU - 0.3e1 / 0.14e2 * SB) * TAUXYBC ^ 2) * 
sin(PHIM) + ((-72 * V ^ 2 * SB + (-72 * E - 9 * EU - 36 * SB) * V + 36 * E + 9 * EU + 36 * SB) * SIGXXBC ^ 
2) + 0.126e3 * (0.4e1 / 0.7e1 * (V ^ 2) * SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 
0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + ((-72 * V ^ 2 * SB + (-45 * E - 
36 * EU - 36 * SB) * V + 9 * E + 36 * EU + 36 * SB) * SIGYYBC ^ 2) - 0.648e3 * TAUXYBC ^ 2 * (V - 0.1e1 / 
0.2e1) * ((V * SB) / 0.3e1 + E + SB / 0.3e1)) * sin(PSIM) - 0.72e2 * (((V ^ 2 * SB) + (E + EU / 0.8e1 + SB / 
0.2e1) * V - E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * (SIGXXBC ^ 2) - 0.7e1 / 0.4e1 * (0.4e1 / 0.7e1 * (V ^ 2) * 
SB + (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * V - 0.2e1 / 0.7e1 * E - 0.2e1 / 0.7e1 * EU - 0.2e1 / 
0.7e1 * SB) * SIGYYBC * SIGXXBC + ((V ^ 2 * SB) + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * V - E / 
0.8e1 - EU / 0.2e1 - SB / 0.2e1) * (SIGYYBC ^ 2) + 0.9e1 * TAUXYBC ^ 2 * (V - 0.1e1 / 0.2e1) * ((V * SB) / 
0.3e1 + E + SB / 0.3e1)) * (sin(PHIM) - 0.3e1)) * sqrt((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC 
^ 2) + 0.3e1 * TAUXYBC ^ 2) - 0.16e2 * ((SIGXXBC ^ 2) - (SIGXXBC * SIGYYBC) + (SIGYYBC ^ 2) + 0.3e1 
* TAUXYBC ^ 2) * ((sin(PHIM) - 0.3e1 / 0.4e1) * sin(PSIM) - 0.9e1 / 0.4e1 * sin(PHIM)) * ((((E - EU) * V - 2 * 
E + EU) * SIGXXBC) - 0.2e1 * (((E - EU) * V) - E / 0.2e1 + EU) * SIGYYBC)); 
  
            DEPSPXYB = -0.54e2 * (((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - EU * DEPSYYB0 / 
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0.3e1) * SIGXXBC + ((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * 
SIGYYBC + 0.4e1 * TAUXYBC * E * DEPSXYB0) * V + (-0.2e1 / 0.3e1 * E * DEPSXXB0 + EU * 
DEPSYYB0 / 0.3e1) * SIGXXBC + (E * DEPSXXB0 / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC - 
0.2e1 * TAUXYBC * E * DEPSXYB0) * (sin(PHIM) - 0.3e1) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + 
SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) + 0.4e1 / 0.3e1 * sin(PHIM) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC 
+ SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * 
DEPSYYB0)) * (-0.3e1 + sin(PSIM)) * TAUXYBC / (0.16e2 * ((SIGXXBC - 0.2e1 * SIGYYBC) * (E - EU) * V 
+ (-0.2e1 * E + EU) * SIGXXBC + SIGYYBC * (E - 0.2e1 * EU)) * ((sin(PSIM) - 0.9e1 / 0.4e1) * sin(PHIM) - 
0.3e1 / 0.4e1 * sin(PSIM)) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC 
^ 2) + ((-0.24e2 * SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V 
^ 2 + ((-0.8e1 * E - 0.19e2 * EU - 0.12e2 * SB) * SIGXXBC ^ 2 + 0.26e2 * SIGYYBC * (E + 0.14e2 / 0.13e2 * 
EU + 0.6e1 / 0.13e2 * SB) * SIGXXBC + (E - 0.28e2 * EU - 0.12e2 * SB) * SIGYYBC ^ 2 - 0.168e3 * 
TAUXYBC ^ 2 * (E + 0.2e1 / 0.7e1 * EU + 0.3e1 / 0.14e2 * SB)) * V + (0.28e2 * E + 0.19e2 * EU + 0.12e2 * 
SB) * SIGXXBC ^ 2 - 0.28e2 * (E + EU + 0.3e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + (0.19e2 * E + 
0.28e2 * EU + 0.12e2 * SB) * SIGYYBC ^ 2 + 0.156e3 * (E + 0.4e1 / 0.13e2 * EU + 0.3e1 / 0.13e2 * SB) * 
TAUXYBC ^ 2) * sin(PSIM) + 0.72e2 * SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 
* TAUXYBC ^ 2) * V ^ 2 + ((0.72e2 * E + 0.9e1 * EU + 0.36e2 * SB) * SIGXXBC ^ 2 - 0.126e3 * SIGYYBC * 
(E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.45e2 * E + 0.36e2 * EU + 0.36e2 * SB) * 
SIGYYBC ^ 2 + 0.648e3 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-0.36e2 * E - 0.9e1 * EU - 0.36e2 * SB) * 
SIGXXBC ^ 2 + 0.36e2 * SIGYYBC * (E + EU + SB) * SIGXXBC + (-0.9e1 * E - 0.36e2 * EU - 0.36e2 * SB) * 
SIGYYBC ^ 2 - 0.324e3 * TAUXYBC ^ 2 * (E + SB / 0.3e1)) * sin(PHIM) + 0.72e2 * (-0.3e1 + sin(PSIM)) * 
(SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((E + EU / 
0.8e1 + SB / 0.2e1) * SIGXXBC ^ 2 - 0.7e1 / 0.4e1 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * 
SB) * SIGXXBC + (0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * SIGYYBC ^ 2 + 0.9e1 * TAUXYBC ^ 2 * 
(E + SB / 0.6e1)) * V + (-E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * SIGXXBC ^ 2 + SIGYYBC * (E + EU + SB) * 
SIGXXBC / 0.2e1 + (-E / 0.8e1 - EU / 0.2e1 - SB / 0.2e1) * SIGYYBC ^ 2 - 0.9e1 / 0.2e1 * TAUXYBC ^ 2 * 
(E + SB / 0.3e1))) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) ^ (-
0.1e1 / 0.2e1); 
  
            % recalculate softening modulus SUC: 
            DLB = -0.18e2 * (((((DEPSXXB0 - 0.2e1 / 0.3e1 * DEPSYYB0) * E - EU * DEPSYYB0 / 0.3e1) * 
SIGXXBC + ((-DEPSXXB0 + DEPSYYB0 / 0.3e1) * E + 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC + 
0.4e1 * TAUXYBC * E * DEPSXYB0) * V + (-0.2e1 / 0.3e1 * E * DEPSXXB0 + EU * DEPSYYB0 / 0.3e1) * 
SIGXXBC + (E * DEPSXXB0 / 0.3e1 - 0.2e1 / 0.3e1 * EU * DEPSYYB0) * SIGYYBC - 0.2e1 * TAUXYBC * 
E * DEPSXYB0) * (sin(PHIM) - 0.3e1) * sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 
* TAUXYBC ^ 2) + 0.4e1 / 0.3e1 * sin(PHIM) * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 
0.3e1 * TAUXYBC ^ 2) * (DEPSYYB0 * (E - EU) * V + E * DEPSXXB0 + EU * DEPSYYB0)) * (-0.3e1 + 
sin(PSIM)) / (0.16e2 * ((SIGXXBC - 0.2e1 * SIGYYBC) * (E - EU) * V + (-0.2e1 * E + EU) * SIGXXBC + 
SIGYYBC * (E - 0.2e1 * EU)) * ((sin(PSIM) - 0.9e1 / 0.4e1) * sin(PHIM) - 0.3e1 / 0.4e1 * sin(PSIM)) * 
sqrt(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) + ((-0.24e2 * SB * 
(SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((-0.8e1 * E - 
0.19e2 * EU - 0.12e2 * SB) * SIGXXBC ^ 2 + 0.26e2 * SIGYYBC * (E + 0.14e2 / 0.13e2 * EU + 0.6e1 / 
0.13e2 * SB) * SIGXXBC + (E - 0.28e2 * EU - 0.12e2 * SB) * SIGYYBC ^ 2 - 0.168e3 * TAUXYBC ^ 2 * (E + 
0.2e1 / 0.7e1 * EU + 0.3e1 / 0.14e2 * SB)) * V + (0.28e2 * E + 0.19e2 * EU + 0.12e2 * SB) * SIGXXBC ^ 2 - 
0.28e2 * (E + EU + 0.3e1 / 0.7e1 * SB) * SIGYYBC * SIGXXBC + (0.19e2 * E + 0.28e2 * EU + 0.12e2 * SB) 
* SIGYYBC ^ 2 + 0.156e3 * (E + 0.4e1 / 0.13e2 * EU + 0.3e1 / 0.13e2 * SB) * TAUXYBC ^ 2) * sin(PSIM) + 
0.72e2 * SB * (SIGXXBC ^ 2 - SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + 
((0.72e2 * E + 0.9e1 * EU + 0.36e2 * SB) * SIGXXBC ^ 2 - 0.126e3 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 
0.2e1 / 0.7e1 * SB) * SIGXXBC + (0.45e2 * E + 0.36e2 * EU + 0.36e2 * SB) * SIGYYBC ^ 2 + 0.648e3 * 
TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V + (-0.36e2 * E - 0.9e1 * EU - 0.36e2 * SB) * SIGXXBC ^ 2 + 0.36e2 * 
SIGYYBC * (E + EU + SB) * SIGXXBC + (-0.9e1 * E - 0.36e2 * EU - 0.36e2 * SB) * SIGYYBC ^ 2 - 0.324e3 
* TAUXYBC ^ 2 * (E + SB / 0.3e1)) * sin(PHIM) + 0.72e2 * (-0.3e1 + sin(PSIM)) * (SB * (SIGXXBC ^ 2 - 
SIGXXBC * SIGYYBC + SIGYYBC ^ 2 + 0.3e1 * TAUXYBC ^ 2) * V ^ 2 + ((E + EU / 0.8e1 + SB / 0.2e1) * 
SIGXXBC ^ 2 - 0.7e1 / 0.4e1 * SIGYYBC * (E + 0.2e1 / 0.7e1 * EU + 0.2e1 / 0.7e1 * SB) * SIGXXBC + 
(0.5e1 / 0.8e1 * E + EU / 0.2e1 + SB / 0.2e1) * SIGYYBC ^ 2 + 0.9e1 * TAUXYBC ^ 2 * (E + SB / 0.6e1)) * V 
+ (-E / 0.2e1 - EU / 0.8e1 - SB / 0.2e1) * SIGXXBC ^ 2 + SIGYYBC * (E + EU + SB) * SIGXXBC / 0.2e1 + (-
E / 0.8e1 - EU / 0.2e1 - SB / 0.2e1) * SIGYYBC ^ 2 - 0.9e1 / 0.2e1 * TAUXYBC ^ 2 * (E + SB / 0.3e1))); 
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            FKB = -0.3e1 / (0.3e1 - sin(PHIM)) * (0.1e1 - sin(PHIM)) * KCB; 
            SBC = -FKB* DKB / DLB ; 
            if abs(SBC-SB) < TOR2 
                break; 
            else 
                SB = SBC; 
            end 
        end 
    end 
     
    EPSPXXU = EPSPXXU + DEPSPXXU; 
    EPSPYYU = EPSPYYU + DEPSPYYU; 
    % vertical elastic stress should always be positive: 
    EPSXXUE = (SIGXXUE-VU*SIGYYUE)/EU; 
    EPSYYUE = (SIGYYUE-VU*SIGXXUE)/EU; 
    if EPSPYYU > EPSYYUE 
        if EPSPXXU > EPSXXUE 
            EPSPXXU = EPSXXUE; 
        else 
        end 
        EPSPYYU = EPSYYUE; 
    else 
    end 
     
    EPSPXXH = EPSPXXH + DEPSPXXH; 
    EPSPYYH = EPSPYYH + DEPSPYYH; 
    % elastic stress should always be positive: 
    EPSXXHE = (SIGXXHE-V*SIGYYHE)/E; 
    EPSYYHE = (SIGYYHE-V*SIGXXHE)/E; 
    if EPSPYYH > EPSYYHE 
        if EPSPXXH > EPSXXHE 
            EPSPXXH = EPSXXHE; 
        else 
        end 
        EPSPYYH = EPSYYHE; 
    else 
    end 
     
    EPSPXXB = EPSPXXB + DEPSPXXB; 
    EPSPYYB = EPSPYYB + DEPSPYYB; 
    EPSPXYB = EPSPXYB + DEPSPXYB; 
    % vertical elastic predicted stress should always be positive: 
    EPSXXBE = (SIGXXBE-V*SIGYYBE)/E; 
    EPSYYBE = (SIGYYBE-V*SIGXXBE)/E; 
    EPSXYBE = TAUXYBE/(2*GB); 
    if EPSPYYB > EPSYYBE 
        if EPSPXXB > EPSXXBE 
            if EPSPXYB > EPSXYBE 
                EPSPXYB = EPSXYBE; 
            else 
            end 
            EPSPXXB = EPSXXBE; 
        else 
        end 
        EPSPYYB = EPSYYBE; 
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    else 
    end 
     
    % Stresses with plastic corrector of each component in x direction: 
    SIGXXUP = (EU*(1-VU)*(EPSXXUE-EPSPXXU))/((1+VU)*(1-2*VU))+(EU*(VU)*(EPSYYUE-
EPSPYYU))/((1+VU)*(1-2*VU)); 
  
    SIGXXHP = (EH*(1-V)*(EPSXXHE-EPSPXXH))/((1+V)*(1-2*V))+(EH*(V)*(EPSYYHE-
EPSPYYH))/((1+V)*(1-2*V)); 
  
    SIGXXCP = RB*(EC*(1-V))*(EPSXXBE-EPSPXXB)/((1+V)*(1-2*V))+(EH*(V)*(EPSYYBE-
EPSPYYB))/((1+V)*(1-2*V))/RC; 
     
    % Stresses with plastic corrector in y direction: 
    SIGYYUP = (EU*(1-VU)*(EPSYYUE-EPSPYYU))/((1+VU)*(1-2*VU))+(EU*(VU)*(EPSXXUE-
EPSPXXU))/((1+VU)*(1-2*VU)); 
  
    SIGYYHP = (EH*(1-V)*(EPSYYHE-EPSPYYH))/((1+V)*(1-2*V))+(EH*(V)*(EPSXXHE-
EPSPXXH))/((1+V)*(1-2*V)); 
     
    SIGYYCE = EC * (RH * EPSYYHE / RC); 
     
    % shear stresses with plastic corrector of each component in shear direction: 
    TAUXYBP = 2*GB*(EPSXYBE-EPSPXYB); 
  
    if EPSYY0TC < 0 
        % damage factor: 
        while DH < 1 & DU < 1 & DC < 1 & DB < 1 
            % damage model             
            %find maximum stress between stress at n step and intial maximum value 
            SXH = max(SIGXXHP,SIGTM); % head joint 
            SXU = max(SIGXXUP,SIGTU); % brick unit 
            SXC = max(-SIGXXCP,SIGTM); % cross joint 
            TXYB = max(abs(TAUXYBP),SIGS); % bed joint 
             
            % Calculate damage factor from internal stresses 
            DHC = 1-(SIGTM*exp(ATM*(1-(SXH/SIGTM)))/SXH); % DH should not increasing 
            DUC = 1-(SIGTU*exp(ATU*(1-(SXU/SIGTU)))/SXU); % once DH tend to increased, brick is 
damaged 
            DBC = 1-(SIGS*exp(ASB*(1-(TXYB/SIGS)))/TXYB); 
            if abs(DHC/DH) < 1 
                DHC = DH; 
                SWC = 1; 
            else 
            end 
            if abs(DUC/DU) < 1 
                DUC = DU; 
            else 
            end 
            if abs(DBC/DB) < 1 
                DBC = DB; 
            else 
            end 
             
            if SIGXXCP < 0 
                DCC = 1-(SIGTM*exp(ATM*(1-(SXC/SIGTM)))/SXC); 
            else 
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                DCC = (DBC+DHC)/2;% For compressive deformed cell, sigxxc is in compression direction 
            end 
             
            % Verification of damage factor 
            % Since damage factor will influence stress itself 
            % damage factor should be verificated together 
            if DHC >= 0 & DUC >=0 & DCC >=0 & DBC >= 0 
                if abs(DHC-DH) < TOR 
                    if abs(DUC-DU) < TOR 
                        if abs(DCC-DC) < TOR 
                            if abs(DBC-DB) < TOR 
                                break; 
                            else 
                                DB = DBC; 
                            end 
                        else 
                            DC = DCC; 
                        end 
                    else 
                        DU = DUC; 
                    end 
                else 
                    DH = DHC; 
                end 
            else 
                break; 
            end 
        end 
        SIGYY0C = -(RH*SIGYYHP + C2*RU*SIGYYUP)/(C2+1); 
         
        % shear behaviour  
        RBXY = 1 - DBXY; % with vertical compression load 
        while DBXY < 1 
            TAUXYBXY = 2 * GB * EPSXY0 * (C3+1); 
            CC = CH; 
            TXYBXY = max(abs(TAUXYBXY),CC); 
            ASBXY = (((GII*GB)/(LS*CC^2))-(1/2))^(-1); 
            DBCXY =  1-(CC*exp(ASBXY*(1-(TXYBXY/CC)))/TXYBXY); 
            if DBCXY >= 0 
                if abs(DBCXY-DBXY) < TOR 
                    break; 
                else 
                    DBXY = DBCXY; 
                end 
            else 
                break; 
            end 
        end 
        TAUXY0 = - SIGYY0 * tan(PHIM)+ RBXY * TAUXYBXY; 
    else      
        while DH < 1 & DU < 1 & DC < 1 & DB < 1 
            % damage model for vertical tension cracking             
            %find maximum stress between stress at n step and intial maximum value 
            SYH = max(SIGYYHE,SIGTM); % head joint 
            SYU = max(SIGYYUE,SIGTU); % brick unit 
            SYC = max(-SIGYYCE,SIGTM); % cross joint 
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            SYB = max(abs(SIGYYBE),SIGTM); % bed joint 
             
            % Calculate damage factor from internal stresses 
            DHC = 1-(SIGTM*exp(ATM*(1-(SYH/SIGTM)))/SYH); % DH should not increasing 
            DUC = 1-(SIGTU*exp(ATU*(1-(SYU/SIGTU)))/SYU); % once DH tend to increased, brick is 
damaged 
            DBC = 1-(SIGTM*exp(ATM*(1-(SYB/SIGTM)))/SYB); 
            if abs(DHC/DH) < 1 
                DHC = DH; 
                SWC = 1; 
            else 
            end 
            if abs(DUC/DU) < 1 
                DUC = DU; 
            else 
            end 
            if abs(DBC/DB) < 1 
                DBC = DB; 
            else 
            end 
             
            if SIGYYCE < 0 
                DCC = 1-(SIGTM*exp(ATM*(1-(SYC/SIGTM)))/SYC); 
            else 
                DCC = (DBC+DHC)/2;% For compressive deformed cell, sigxxc is in compression direction 
            end 
             
            % Verification of damage factor in y direction 
            % Since damage factor will influence stress itself 
            % damage factor should be verificated together 
            if DHC >= 0 & DUC >=0 & DCC >=0 & DBC >= 0 
                if abs(DHC-DH) < TOR 
                    if abs(DUC-DU) < TOR 
                        if abs(DCC-DC) < TOR 
                            if abs(DBC-DB) < TOR 
                                break; 
                            else 
                                DB = DBC; 
                            end 
                        else 
                            DC = DCC; 
                        end 
                    else 
                        DU = DUC; 
                    end 
                else 
                    DH = DHC; 
                end 
            else 
                break; 
            end 
        end 
        SIGYY0C = (RH*SIGYYHE + C2*RU*SIGYYUE)/(C2+1); 
         
        % shear behaviour 
        RBXY = 1 - DBXY; % shear slidding failure pattern 
        while DBXY < 1 
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            TAUXYBXY = 2 * GB * EPSXY0 * (C3+1); 
            CC = SIGS; 
            TXYBXY = max(abs(TAUXYBXY),CC); 
            ASBXY = (((GII*GB)/(LS*CC^2))-(1/2))^(-1); 
            DBCXY =  1-(CC*exp(ASBXY*(1-(TXYBXY/CC)))/TXYBXY); 
            if DBCXY >= 0 
                if abs(DBCXY-DBXY) < TOR 
                    break; 
                else 
                    DBXY = DBCXY; 
                end 
            else 
                break; 
            end 
        end 
        TAUXY0 = RBXY * TAUXYBXY; 
    end 
     
    % undamaged stresses of basic cell in y direction: 
    if SWC == 1 
        SIGYY0 = SIGYY0; 
    else 
        SIGYY0 = SIGYY0C; 
    end 
     
    % tension behaviour (without shear loading): brick tension cracking 
    EPSXX0T = abs(EPSXX0TC); 
    DEPSXX0T = abs(DEPSXX0TC); 
     
    % horizontal stress in components 
    SIGXXHX = -0.4e1 * E * (C2 + 1) * (-(C1 * GB * RBX * RUX * (V * VU - 1) * C2 ^ 2) / 0.4e1 + (((C1 * (V * 
VU - 1) * RUX + (-VU ^ 2 + 1) * RHX) * GB * RBX) / 0.4e1 + (C1 ^ 2 * C3 * E * RUX ^ 2)) * C2 + (GB * RBX 
* ((VU ^ 2) / 0.4e1 - 0.1e1 / 0.4e1) + (C1 * C3 * E * RUX)) * RHX) * EPSXX0T / ((C1 * GB * RBX * RUX * (V 
- 1) * (V + 1) * C2 ^ 3) - 0.4e1 * RHX * (GB * RBX * (-(VU ^ 2) / 0.4e1 + 0.1e1 / 0.4e1) + (C1 * C3 * E * 
RUX)) * (C2 ^ 2) + ((-C1 * GB * RBX * RUX * (V - 1) * (V + 1) + 4 * C3 * E * (RUX ^ 2 * (V ^ 2 - 1) * C1 ^ 2 - 
2 * C1 * RHX * RUX * V * VU + RHX ^ 2 * (VU ^ 2 - 1))) * C2) - 0.4e1 * (GB * RBX * ((VU ^ 2) / 0.4e1 - 0.1e1 
/ 0.4e1) + (C1 * C3 * E * RUX)) * RHX); 
  
    SIGXXUX = -0.4e1 * E * C1 * (C2 + 1) * EPSXX0T * (-(C1 * GB * RBX * RUX * (V - 1) * (V + 1) * C2 ^ 2) / 
0.4e1 + ((GB * (C1 * RUX * V ^ 2 - RHX * V * VU - RUX * C1 + RHX) * RBX) / 0.4e1 + (C1 * RHX * C3 * E * 
RUX)) * C2 + ((C3 * E * RHX) + (GB * RBX * (V * VU - 1)) / 0.4e1) * RHX) / ((C1 * GB * RBX * RUX * (V - 1) 
* (V + 1) * C2 ^ 3) - 0.4e1 * RHX * (GB * RBX * (-(VU ^ 2) / 0.4e1 + 0.1e1 / 0.4e1) + (C1 * C3 * E * RUX)) * 
(C2 ^ 2) + ((-C1 * GB * RBX * RUX * (V - 1) * (V + 1) + 4 * E * (RHX ^ 2 * (VU ^ 2 - 1) - 2 * C1 * RHX * RUX 
* V * VU + RUX ^ 2 * C1 ^ 2 * (V - 1) * (V + 1)) * C3) * C2) - 0.4e1 * (GB * RBX * ((VU ^ 2) / 0.4e1 - 0.1e1 / 
0.4e1) + (C1 * C3 * E * RUX)) * RHX); 
  
    SIGXXCX = -E * (C2 + 1) * EPSXX0T * (-(((V * C1 * (V - VU) * RUX) + (RCX * (VU - 1) * (VU + 1) * (C2 + 
1)) / 0.2e1) * RHX + (RUX * C1 * C2 * RCX * (V - 1) * (V + 1) * (C2 + 1)) / 0.2e1) * (C2 - 1) * GB * RBX ^ 2 / 
0.2e1 + (0.2e1 * E * ((RUX * V * C1 * VU) - (C2 * RCX * (VU - 1) * (VU + 1)) / 0.2e1) * C3 * RHX ^ 2 - 0.2e1 
* (E * RUX * (V ^ 2) * C1 * C3 - ((-V * (V - VU) * GB / 0.8e1 + C3 * E / 0.2e1) * (C2 ^ 2) + V * ((-VU / 0.4e1 + 
V / 0.4e1) * GB + E * VU * C3) * C2 - V * (V - VU) * GB / 0.8e1 + C3 * E / 0.2e1) * RCX) * C1 * RUX * RHX - 
E * (RUX ^ 2) * (C1 ^ 2) * C2 * C3 * RCX * (V - 1) * (V + 1)) * RBX + E * RHX * RUX * V * C1 * C3 * RCX * 
(C2 - 1) * (-(C1 * RUX * V) + RHX * VU)) / (((C2 - 1) * RCX) + 0.2e1 * RBX) / ((C2 + 1) * (C2 - 1) * GB * 
((RUX * (V - 1) * (V + 1) * C1 * C2) + RHX * (VU ^ 2 - 1)) * RBX / 0.4e1 + (C2 * (VU ^ 2 - 1) * RHX ^ 2 - 
0.2e1 * RHX * ((VU * V * C2) + (C2 ^ 2) / 0.2e1 + 0.1e1 / 0.2e1) * RUX * C1 + (RUX ^ 2 * C2 * (V - 1) * (V + 
1) * C1 ^ 2)) * E * C3) / RCX; 
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    SIGXXBX = RC * SIGXXCX / RB; 
     
    % vertical stresses in components 
    SIGYYUX = 0.4e1 * EPSXX0T * (GB * RBX * (V - VU) * C2 / 0.4e1 - GB * RBX * (V - VU) / 0.4e1 + E * 
C3 * (C1 * RUX * V - RHX * VU)) * RHX * C1 * E * (C2 + 0.1e1) / (C1 * GB * RBX * RUX * (V - 0.1e1) * (V + 
0.1e1) * C2 ^ 3 - 0.4e1 * RHX * (GB * RBX * (-VU ^ 2 / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * C2 ^ 2 
+ (-C1 * GB * RBX * RUX * (V - 0.1e1) * (V + 0.1e1) + 0.4e1 * (RHX ^ 2 * (VU ^ 2 - 0.1e1) - 0.2e1 * C1 * 
RHX * RUX * V * VU + RUX ^ 2 * C1 ^ 2 * (V - 0.1e1) * (V + 0.1e1)) * C3 * E) * C2 - 0.4e1 * (GB * RBX * 
(VU ^ 2 / 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * RHX); 
  
    SIGYYHX = -0.4e1 * C2 * EPSXX0T * C1 * RUX * E * (GB * RBX * (V - VU) * C2 / 0.4e1 - GB * RBX * (V 
- VU) / 0.4e1 + E * C3 * (C1 * RUX * V - RHX * VU)) * (C2 + 0.1e1) / (C1 * GB * RBX * RUX * (V - 0.1e1) * 
(V + 0.1e1) * C2 ^ 3 - 0.4e1 * RHX * (GB * RBX * (-VU ^ 2 / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * 
C2 ^ 2 + (-C1 * GB * RBX * RUX * (V - 0.1e1) * (V + 0.1e1) + 0.4e1 * E * C3 * (RUX ^ 2 * (V ^ 2 - 0.1e1) * 
C1 ^ 2 - 0.2e1 * C1 * RHX * RUX * V * VU + RHX ^ 2 * (VU ^ 2 - 0.1e1))) * C2 - 0.4e1 * (GB * RBX * (VU ^ 2 
/ 0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * RHX); 
  
    SIGYYBX = EPSXX0T * RHX * C1 * RUX * E * (GB * RBX * (V - VU) * C2 / 0.4e1 - GB * RBX * (V - VU) / 
0.4e1 + E * C3 * (C1 * RUX * V - RHX * VU)) * (C2 + 0.1e1) / (C1 * GB * RBX * RUX * (V - 0.1e1) * (V + 
0.1e1) * C2 ^ 3 / 0.4e1 - RHX * (GB * RBX * (-VU ^ 2 / 0.4e1 + 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * C2 ^ 2 
+ (-C1 * GB * RBX * RUX * (V - 0.1e1) * (V + 0.1e1) / 0.4e1 + (RHX ^ 2 * (VU ^ 2 - 0.1e1) - 0.2e1 * C1 * 
RHX * RUX * V * VU + RUX ^ 2 * C1 ^ 2 * (V - 0.1e1) * (V + 0.1e1)) * C3 * E) * C2 - (GB * RBX * (VU ^ 2 / 
0.4e1 - 0.1e1 / 0.4e1) + C1 * C3 * E * RUX) * RHX) / RBX; 
  
    EPSYYBX = (SIGYYBX - V * SIGXXBX) / EB; 
     
    SIGYYCX = EC * (RB * EPSYYBX / RC); 
     
    % shear stress between bed joint and brick unit 
    TAUXYBX =  0.2e1 * (RUX * C1 * ((-V * VU + 1) * RHX + RUX * C1 * (V - 1) * (V + 1)) * C2 + RHX * (C1 * 
(V * VU - 1) * RUX + (-VU ^ 2 + 1) * RHX)) * E * (C2 + 1) * C3 * EPSXX0T * GB / ((C1 * GB * RBX * RUX * 
(V - 1) * (V + 1) * C2 ^ 3) - 0.4e1 * RHX * ((C1 * C3 * E * RUX) - (GB * RBX * (VU - 1) * (VU + 1)) / 0.4e1) * 
(C2 ^ 2) + (((4 * VU ^ 2 - 4) * E * C3 * RHX ^ 2) - (8 * E * RUX * V * C1 * C3 * VU * RHX) + 0.4e1 * RUX * 
C1 * (V - 1) * ((C1 * C3 * E * RUX) - (GB * RBX) / 0.4e1) * (V + 1)) * C2 - 0.4e1 * ((C1 * C3 * E * RUX) + 
(GB * RBX * (VU - 1) * (VU + 1)) / 0.4e1) * RHX); 
  
    if EPSXX0TC >= 0 
        % inner loop: find damage factor 
        while DHX < 1 & DUX < 1 & DCX < 1 & DBX < 1 
            % effective stresses of each component based on damage factor 
            SXHX = max(SIGXXHX,SIGTM); 
            SXUX = max(SIGXXUX,SIGTU); 
            SXCX = max(SIGXXCX,SIGTM); 
            TXYBX = max(abs(TAUXYBX),SIGS); 
             
            % Calculate damage factor from internal stresses 
            DUCX = 1-(SIGTU*exp(ATU*(1-(SXUX/SIGTU)))/SXUX); 
            DHCX = 1-(SIGTM*exp(ATM*(1-(SXHX/SIGTM)))/SXHX); 
            DCCX = 1-(SIGTM*exp(ATM*(1-(SXCX/SIGTM)))/SXCX); 
            DBCX = 1-(SIGS*exp(ASB*(1-(TXYBX/SIGS)))/TXYBX); 
            if abs(DHCX/DHX) < 1 
                if abs(DUCX/DUX) < 1 
                    if abs(DBCX/DBX) < 1 
                        if abs(DCCX/DCX) < 1 
                            DCCX = DCX; 
                        else 
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                        end 
                        DBCX = DBX; 
                    else 
                    end 
                    DUCX = DUX; 
                else 
                end 
                DHCX = DHX; 
            else 
            end 
             
            % Verification of damage factor 
            % Since damage factor will influence stress itself 
            % damage factor should be verificated together 
            if DHCX >= 0 & DUCX >=0 & DCCX >=0 & DBCX >= 0 
                if abs(DHCX-DHX) < TOR 
                    if abs(DUCX-DUX) < TOR 
                        if abs(DCCX-DCX) < TOR 
                            if abs(DBCX-DBX) < TOR 
                                break; 
                            else 
                                DBX = DBCX; 
                            end 
                        else 
                            DCX = DCCX; 
                        end 
                    else 
                        DUX = DUCX; 
                    end 
                else 
                    DHX = DHCX; 
                end 
            else 
                break; 
            end 
        end 
        % total horizontal undamaged stress of cell 
        SIGXX0 = (RHX*SIGXXHX*C3 + 2*RCX*SIGXXCX + C3*(RUX*SIGXXUX + RBX*TAUXYBX*(C2 - 
1)/(2*C3)))/(2*(C3 + 1)); 
    else 
        SIGXX0 = 0; 
    end 
     
    % Stiffness of basic cell: 
    % K11, K12, K13=0, K21, K22, K23=0, 0, K32, K33 
     
    % record value: 
    a = [a,SIGYY0]; 
    b = [b,SIGXX0]; 
    d = [d,TAUXY0]; 
    e = [e,RH*SIGXXHP+RHX*SIGXXHX]; 
    f = [f,RU*SIGXXUP+RUX*SIGXXUX]; 
    g = [g,RB*TAUXYBP+RBX*TAUXYBX+RBXY*TAUXYBXY]; 
    h = [h,RC*SIGXXCP+RCX*SIGXXCX]; 
end 
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Appendix F: dcf. File (Single Element Model) 
*FILOS 
INITIA 
*INPUT 
*FORTRAN 
USE "model1.dll" 
*NONLIN LABEL="Structural nonlinear" 
  TYPE PHYSIC PLASTI MITERA 100 
  BEGIN EXECUT 
    LOAD STEPS EXPLIC SIZES 1e-5(300) 
    BEGIN ITERAT 
      MAXITE 500 
      METHOD NEWTON 
      BEGIN CONVER 
        FORCE OFF 
        DISPLA OFF 
        ENERGY 
      END CONVER 
    END ITERAT 
  END EXECUT 
  SOLVE PARDIS 
  BEGIN OUTPUT 
    TEXT "Output" 
    BINARY 
    SELECT STEPS ALL / 
    DISPLA TOTAL TRANSL GLOBAL 
    BEGIN STRAIN 
      BEGIN TOTAL 
        BEGIN GREEN 
          BEGIN GLOBAL 
            INTPNT 
            ERROR OFF 
          END GLOBAL 
        END GREEN 
      END TOTAL 
    END STRAIN 
    STRESS TOTAL CAUCHY GLOBAL INTPNT 
    FORCE REACTI TRANSL GLOBAL 
  END OUTPUT 
*END 




