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Summary 
 
A coupled description of flow and thermal-reactive transport is spanning a wide range of scales in space and time, 

which often introduces a significant complexity for the modelling of such processes. Subsurface reservoir 

heterogeneity with complex multi-scale features increases the modelling complexity even further. Traditional 

Algebraic Multiscale techniques are usually focused on the accuracy of the pressure solution and often ignore the 

transport. Improving the transport solution can however be quite significant for the performance of the simulation, 

especially in complex applications related to thermal-compositional flow. The use of an Adaptive Mesh 
Refinement enables the grid to adapt dynamically during the simulation, which facilitates the efficient use of 

computational resources. This is especially important in applications with reactive flow and transport where the 

region requires high-resolution calculations as often localized in space. In this work, the aim is to develop an 

Adaptive Mesh Refinement framework for general-purpose reservoir simulation. The approach uses a multi-level 

connection list and can be applied to fully unstructured grids. The adaptivity of the grid in the developed 

framework is based on a hierarchical approach. First, the fine-scale model is constructed, which accurately 

approximates all reservoir heterogeneity. Next, a global flow-based upscaling is applied, where an unstructured 

partitioning of the original grid is created. Once the full hierarchy of levels is constructed, the simulation is started 

at the coarsest grid. Grid space refinement criteria can be developed specifically for a particular application of 

interest. The multi-level connectivity lists are redefined at each timestep and used as an input for the next. The 

developed Adaptive Mesh Refinement framework was implemented in Delft Advanced Research Terra Simulator 
which uses the Operator-Based Linearization technique. The performance of the proposed approach is illustrated 

for several applications, including hydrocarbon production, geothermal energy extraction and subsurface storage. 

 

 



Introduction

Production development of prospective reservoirs includes the use of various technologies that provide
information at many different scales. These scales range from core plugs being a few centimeters in size
to well logs detecting properties a few meters around the well, and to seismic imaging covering a signif-
icant volume with limited resolution (few meters vertically and 10’s of meters horizontally). However,
time and capital limitations result in sparse direct sampling of reservoir rock and fluid properties. This is
why the construction of reservoir models, through integration of these data using geostatistical reservoir
description algorithms, has become a crucial step in resource development (Branets et al., 2009). These
algorithms conventionally result in fine-scale descriptions of reservoir properties (porosity, permeability)
on grids of tens of millions of cells (Christie, 1996).

An issue of considerable importance is the risk and uncertainty assessment of reservoir performance.
The uncertainty can be gauged by simulating an ensemble of different geological realizations. This may
require to run thousands of simulations to cover a wide range of parameter variation. It is however not
computationally feasible or desirable to perform these simulations on the high-fidelity (fine-grid) model.
Significantly upscaled models (i.e., the mapping of rock and fluid properties to a coarser resolution) are
therefore required, where these models should ideally be even coarser than typical reservoir simulators,
which can handle on the order of 105−106 simulation cells (Durlofsky, 2005). In the presence of more
complex physics, excessive upscaling may, however, result in non-satisfactory results, which necessitate
the use of advanced algorithms and solvers to allow for higher resolution grids to be employed (Cusini
et al., 2016).

Traditional Algebraic Multiscale techniques (Jenny et al., 2003; Wang et al., 2014), developed to solve
the elliptic (or parabolic) pressure equation in sequentially coupled simulations, mainly focus on the
pressure solution and often ignore the transport. However, in complex applications related to chemi-
cal and compositional EOR (Enhanced Oil Recovery), reservoir storage and geothermal industry, the
number of conserved chemical species can be large which makes any improvement in transport solu-
tion quite significant for the performance and robustness of the simulation. A technique called Adaptive
Mesh Refinement (AMR) provides an effective means for adapting the resolution of a model to solution
requirements. This method is well developed in many areas of computational physics (e.g. fluid dynam-
ics and solid mechanics) but is however not widely used for practical reservoir simulation (Karimi-Fard
& Durlofsky, 2014).

In today’s literature, several researchers have developed and proposed AMR procedures to capture the
local nature of transport processes. Bahrainian and Dezfuli (2014) have developed a novel unstructured
grid generation algorithm which considers the effect of geological features and well locations in the grid
resolution. This strategy involves the definition and construction of the initial grid based on the geolog-
ical model, geometry adaptation of geological features and grid resolution control. Trangenstein (2002)
used the combination of high-resolution discretization methods with dynamically adaptive mesh refine-
ment for a two-component single-phase model for miscible flooding. Pau et al. (2012) proposed an AMR
algorithm for compressible two-phase flow in porous media. The method is implemented within a block
structured adaptive mesh refinement framework which allows the grids to dynamically adapt to flow fea-
tures and enables efficient parallelization of the algorithm. The coarse-scale permeability was obtained
by averaging the fine-scale permeability. Similar techniques have been developed for compositional
simulation (Sammon et al., 2003), thermal problems (Christensen et al., 2004), improved/enhanced oil
recovery processes (Van Batenburg et al., 2011) and many more applications.

In this work, the aim was to develop a dynamic AMR scheme using an unstructured multi-level gridding
framework, for general-purpose reservoir simulation. The focus lied particularly on thermal-reactive
flow and transport formulation which are required for a wide range of subsurface applications. First, a
fine-scale geological model was constructed accurately, approximating all reservoir heterogeneity. This
model is represented by a list of volumes, depths and a connectivity list (Lim et al., 1995) describing
each control volume. Next, a global flow-based upscaling was applied and an unstructured partitioning
of the original grid was constructed as suggested in (Karimi-Fard & Durlofsky, 2014). This partitioning
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provides coarser levels of the original model each of which is also described by a list of volumes,
depths and a connectivity list. A coarser connectivity list includes connections between control volumes
at the given level as well as interconnections between the levels. Once the full hierarchy of levels is
constructed, the simulation is started at the coarsest grid. Grid space refinement criterion is developed
for particular applications. The multi-level connection list is reconstructed at each time step and used for
the simulation. The proposed approach was implemented in Delft Advanced Research Terra Simulator
(DARTS) which is based on Operator-Based Linearization techniques (Voskov, 2017).

Methodology

Governing equations

General-purpose reservoir simulation is based on the solution of governing equations which describe
mass and energy transfer of various species in the subsurface. The flow of mass and energy in a system
with np phases and nc components are described in this section. For this general-purpose thermal-
compositional model, nc component mass conservation equations and a single energy conservation
equation need to be solved (Khait & Voskov, 2018b). When chemical reactions occur in the system,
an additional term describing nk kinetic reactions is added on the right-hand side of the mass conserva-
tion equation. These governing relations are described as:

∂

∂ t

(
φ

np

∑
p=1

xcpρpsp

)
+div

np

∑
p=1

xcpρpup +
np

∑
p=1

xcpρpq̃p =
nk

∑
k

vckrk, c = 1, . . . ,nc, k = 1, . . . ,nk, (1)

∂

∂ t

(
φ

np

∑
p=1

ρpspUp +(1−φ)Ur

)
+div

np

∑
p=1

hpρp
−→up +div(κ∇T )+

np

∑
p=1

hpρpq̃p = 0, (2)

where t is the time, vck is the stoichiometric coefficient associated with kinetic reaction k, rk is the rate
of kinetic reaction k. The right-hand side of the mass conservation equation 1 is the kinetic term which
describes reactions. It is set to zero when no chemical processes are involved in the system. The rest of
the terms in the system can be described as functions of spatial coordinate ξ and/or physical state ω:

φ(ξ ,ω) : porosity,
xcp(ω) : the mole fraction of component c in phase p,
sp(ω) : phase saturation,
ρp(ω) : phase molar density,
−→up(ξ ,ω) : phase velocity,
q̃p(ξ ,ω,u) : source of phase p,
Up(ξ ) : phase internal energy,
Ur(ξ ) : rock internal energy,
hp(ξ ) : phase enthalpy,
κ(ξ ,ω) : thermal conduction.

An exception is the phase source term, which is also dependent on u - well control variables.

The rock internal energy and thermal conduction are assumed to be spatially homogeneous for simplifi-
cation of the problem, meaning that they are characterized as functions of the spatial coordinate ω only.
Phase flow velocity −→up is assumed to follow Darcy’s law, expressed as:

−→up =−
(

K
krp

µp

(
∇Pp−−→γ p∇D

))
, p = 1, . . . ,np, (3)

where
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K(ξ ) : permeability tensor,
krp(ω) : relative permeability of phase p,
µp(ω) : phase viscosity,
Pp(ω) : pressure in phase p,
−→
γ p(ω) : gravity vector,

D(ξ ) : depth (backward oriented).

The nonlinear unknowns in this system of equations are the pressure P, the overall compositions zc of
each component and the enthalpy h.

Modeling approach

In order to solve the governing equations 1 and 2, we apply a finite-volume discretization on a general
unstructured mesh and perform a backward Euler approximation in time to both equations, where the
phase velocities −→up are substituted by the Darcy relation (3):

V

(φ

np

∑
p=1

xcpρpsp

)n+1

−

(
φ

np

∑
p=1

xcpρpsp

)n]
−∆t ∑

l
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np

∑
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cpρ

l
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l
p∆ψ
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)

+∆t
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nr
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, (4)

V

(φ

np

∑
p=1

ρpspUp +(1−φ)Ur
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l
p∆ψ

l +Γ
l
c∆T l

)
+∆t

np

∑
p=1

hpρpqp = 0.

(5)

Here V is the control volume for which the system is being solved, qp = q̃pV is a source of phase p, n
is the previous time step whereas n+1 is the time step we want to solve for. Capillarity and gravity are
neglected in these equations, and a Two-Point Flux Approximation (TPFA) with an upstream weighting
is applied. ∆ψ l , the phase potential, therefore simply becomes the difference in pressure between blocks
connected via interface l, while ∆T l is the temperature difference between these blocks; Γl

p = Γlkl
rp/µ l

p

is a phase transmissibility, where Γl is the constant geometrical part of the transmissibility (involving
permeability and geometry of the control volume). Finally Γl

c = Γlκ is the thermal (conductive) trans-
missibility (Khait & Voskov, 2018b). This system of equations is solved for each mesh element in time,
where the unknowns are the composition of the nc components and the pressure for the mass conserva-
tion equation (4), and the pressure and enthalpy for the energy equation (5).

In general-purpose reservoir simulation, the solving process requires the linearization of strongly non-
linear governing equations. In conventional reservoir simulators, a Newton-Raphson based method is
typically used for the linearization, which solves on each nonlinear iteration a linear system of equations
in the following form:

J(ωn)(ωn+1−ω
n) =−r(ωn), (6)

where r is the residual and J is the Jacobian, which is the derivative of the residual with respect to pri-
mary nonlinear unknowns, defined at a nonlinear iteration n. In this work, we use a recently-developed
approach called Operator Based Linearization (OBL). The main idea of OBL is to transform the dis-
cretized mass and energy conservation equations (4 and 5) to an operator form, where space-dependent
ξ and state-dependent ω properties of governing equations are separated. This provides the opportunity
to approximate the representation of the exact physics of a problem through the discretization of the
state-dependent properties. The underlying methodology of OBL is explained in more detail in Voskov
(2017) and Khait and Voskov (2017, 2018a, 2018b).
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Connectivity list

The proposed AMR technique uses the Finite Volume Method (FVM) for discretization. The imple-
mentation of the finite volume discretization method to the mass conservation equation 1 requires the
evaluation of the flow between two adjacent control volumes in terms of the cell pressures. Using a
Two-Point Flux Approximation (TPFA), the flow rate is defined as:

Qi j = Γ
i j
p (Pi−Pj), (7)

where:

Qi j : flow rate at interface of cells i and j,
Γ

i j
p : phase transmissibility at interface of cells i and j,

Pi : pressure of cell i,
Pj : pressure of cell j.

Similarly, the heat flux between two adjacent control volumes is expressed in terms of thermal transmis-
sibility Γc and is, also using a TPFA, defined as:

Qh
i j = Γ

i j
c (Ti−Tj), (8)

where Γ
i j
c is the thermal transmissibility at interface i j, Ti and Tj are the temperatures of cell i and j

respectively, and Qh
i j is the heat flux at interface i j.

To evaluate the flux between two adjacent control volumes, a so-called connectivity list is constructed,
i.e. for each interface between two neighbouring control volumes, the indices of these cells are listed
together with the transmissibility (Lim et al., 1995). The result is a list with all connection pairs present
in the grid. A few important points to be noted are:

• Each connection consists of only two elements,

• The connection pairs are not repetitive,

• No-flow boundaries imply the absence of connections and are hence not listed in the connectivity
list.

The figure below shows a simple example of a 2D Cartesian structured grid, with corresponding cell
indexing. Table 1 shows its connectivity list. The list is expressed as two arrays, cell i and cell j, where
each column represent a connection pair. Each pair has an associated interface transmissibility stored in
the connectivity list.

3

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3 0, 2…15   cell index

connection

Figure 1 4x4 Cartesian grid denoting cell indexing and showing neighbouring connections. Indexing is
based on a Cartesian structured mesh for simplicity.

Multi-level grid generation

The adaptivity of the grid in the developed AMR scheme is based on a hierarchical representation of
connectivity list. The simulation grid is composed of several predefined levels representing the same
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Table 1 Connectivity list of the example grid from figure 1.

Dual connections
Cell i 0 0 1 1 2 2 3 4 4 5 5 6 6 7 8 8 9 9 10 10 11 12 13 14
Cell j 1 4 2 5 3 6 7 5 8 6 9 7 10 11 9 12 10 13 11 14 15 13 14 15

geological properties at different resolutions. We start with a fine-scale model (static geological model)
which accurately represents all reservoir heterogeneity. This grid is defined as level 0 and represents our
finest level. The modeling grid is defined by a list of control volumes, depths, reservoir properties (all
spatially distributed properties required to solve the discretized relations 4 and 5) for each mesh element,
and a list of connectivity with corresponding transmissibility between neighbouring cells.

Next, level 1 is defined, where control volumes are constructed by aggregating fine grid cells. Upscaling
is applied to redefine volume, depth and reservoir properties at a coarser level. A connectivity list, with
corresponding transmissibility, is constructed for this level and inter-level connections are defined in
addition. Similarly, more levels of coarsening can be constructed. A control volume in grid-level n
always consists of cells from grid-level (n−1), resulting in a hierarchical relationship (Karimi-Fard &
Durlofsky, 2014). The simulation grid is then obtained by combining control volumes from grids of
different levels. A schematic representation of this procedure is illustrated in figure 2 below.

Simulation grid

Level 0 Level 1 Level 2

Figure 2 2D Multi-level grid with three pre-constructed grids (levels) with an example simulation grid
which is constructed by aggregating control volumes from different levels.

Cell aggregation

A mesh consists of a set of finite elements, each having vertices with allocated coordinates. To conduct
cell aggregation, the centroid is first computed for each mesh element within the grid. Figure 3 shows
an example 2D unstructured grid to illustrate how cell aggregation is conducted. As can be seen, in this
particular example, each cell has 3 vertices, and a centroid (represented in red) with coordinates xc and
yc defined as

( x1+x2+x3
3 , y1+y2+y3

3

)
, where xi and yi are the coordinates of the vertices. Each mesh element

has an assigned index number.

Cell aggregation is then carried out by dividing the grid in the x- and y-direction (and in the z-direction
for 3D models) into equidistant intervals ∆x and ∆y using a predefined scaling factor. Figure 3 shows
the range partitioning (illustrated by the white lines) for a 2D unstructured grid. The x- and y-range
were divided in 5 and 3 equidistant intervals respectively. The yellow-highlighted 2D plane has range
[i, i+∆x] in the x-direction and [ j, j+∆y] in the y- direction. For this given example, all cell centroids
whose coordinates fall within this plane, are aggregated to form one coarse cell. I.e., cells 41, 46, 68,
77, 84, 92, 106, 111 and 118 form coarse cell 0.

For the given 2D unstructured grid example in figure 3, the so-called level 1 - i.e. the next level of
coarsening - is shown in figure 4. The numbers represent the assigned indices of the newly constructed
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Δx

Δy

(i+Δx, j)(i, j)

(i, j+Δy)

Figure 3 2D unstructured grid with centroids and with range partitioning (represented by the white
lines) in the x- and y-direction with ∆x and ∆y spacing respectively. Aggregation is carried out for cells
whose centroid fall within a given x- ([i : i+∆x]) and y-range ([ j : j+∆y]). E.g., all cells whose centroids
are found within the yellow-highlighted 2D range are aggregated to form one coarse cell.

coarse cells. If one wants to construct an additional level, the same procedure can be followed with a
larger x- and y-range partitioning, where grid cells of level 1 are aggregated to form level 2.

18

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

x

y

Figure 4 2D unstructured grid of figure 3 after cell aggregation. This grid represents the next level of
coarsening of the finest grid: level 1.

For further steps into the construction of the levels, a list - "fines in coarse" - is constructed where the cor-
responding indices of the aggregated fine cells are listed for each coarse cell. Note that cell aggregation
can also be conducted while taking care of highlighting geological features (e.g. fractures) and different
facies in the model. For example, cell aggregation can be conducted by grouping domains with the same
facies together into one coarse cell, or, in fractured reservoirs, by aggregating cells by isobar contours
similar to (Karimi-Fard & Durlofsky, 2014). After cell aggregation is conducted, the connectivity list is
then constructed describing all connections within each level and the inter-level connections.

Transmissibility and upscaling

In this work, the AMR method is implemented for unstructured grids of any geometry. The definition of
the transmissibility for unstructured grids is expressed as:

Γ
12
p = Γ

12
λ with Γ

12 =

(
α1α2

α1 +α2

)
and αi = A

ki

Di
n ·di, (9)
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where:

Γ12
p : transmissibility between cells 1 and 2,

Γ12 : constant geometrical part of the transmissibility,
λ : mobility of a given phase p,
A : interface area,
ki : permeability of cell i,
Di : distance between centroid of cell i to interface area A,
n : unit vector normal to the interface,
di : unit vector along the line joining centroid of cell i to the center of interface A.

Here, the directional permeability of each cell is expressed as the magnitude of the cell’s [kx,ky,kx]
coordinates multiplied by the unit vector di.

To solve the mass conservation equation (eq. 1), the flow rate must be computed for the interface of every
neighbouring cells. It is therefore necessary to compute the transmissibility for each dual connection
listed in the connectivity list. The result is a list consisting of all connections, with their corresponding
transmissibility. This methodology is applied at the finest level of refinement, level 0.

For thermal problems, another type of transmissibility Γl
c must be computed to approximate thermal

conductive flux in the energy equation 2. Since thermal rock conduction is not as heterogeneous as
permeability, the thermal transmissibility is defined as the geometric coefficient, that is, the area of the
interface l divided by the sum of the distances D1 and D2 from centroids to interface l, multiplied by the
average conduction κ12:

Γ
12
c = κ12

A
D1 +D2

. (10)

As mentioned earlier, level 0 is represented by a list of volumes, depths and reservoir properties which
are derived from the static geological model. Once the hierarchical grid is constructed, all cell properties
must be redefined for the coarser levels (level > 0). This is done by upscaling the properties of the
corresponding fine grid cells. The volume is upscaled by simply summing the volumes of the aggregated
fine grid cells vi;

VI = ∑
i∈I

vi. (11)

Depth upscaling is done by taking the average of the fine scale depths. The porosity, thermal conduc-
tivity, and rock heat capacity are upscaled using a volumetric averaging. For example, the sum of the
porosity φi multiplied by the corresponding cell volume vi of each fine cell i is taken over the total
volume of the coarse cell VI;

φ̄I =
1
VI

∑
i∈I

viφi. (12)

In this study, for the upscaling of permeability, we use the flow-based upscaling technique developed by
(Karimi-Fard et al., 2006; Gong et al., 2008; Karimi-Fard & Durlofsky, 2012). This technique uses the
pressure solution when the system has reached steady-state to compute the flow across each interface.
The transmissibility can then be derived by rearranging the flow equation 7. These approaches can be
applied to unstructured coarse grids with generally-shaped control volumes (Karimi-Fard & Durlofsky,
2014). The coarsening technique defines the coarse transmissibility ΓIJ

p between two adjacent control
volumes I and J. This is expressed as:

Γ
IJ
p =

∣∣∣∣ QIJ

PI−PJ

∣∣∣∣. (13)

The coarse-grid average pressures PI and PJ , and the coarse-grid flow rate QIJ , are computed using a
fine-grid pressure solution. These quantities are given by:

PI =
1
VI

∑
i∈I

vi pi, PJ =
1

VJ
∑
j∈J

v j p j, QIJ = ∑
(i∈I, j∈J)

Qi j = ∑
(i∈I, j∈J)

Γ
i j
p (pi− p j), (14)
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where pi and p j define the fine-scale pressures in the corresponding coarse blocks. In the flow rate
expression Qi j, i j indicates the interface between fine cells i and j and Γ

i j
p denotes the transmissibility

for this interface. This i j interface comprises a portion of the interface between coarse blocks I and J.
For inter-level connections, a similar approach is used. For a given fine cell i and coarse cell J with
interface iJ, equation 14 is used with PI = pi, the pressure of fine cell i, and PJ the pressure of coarse
cell J. This procedure is conducted for each inter-level connection found within the hierarchical grid.

For thermal problems, a similar method can be implemented, but is however not computationally effi-
cient as temperature takes significantly longer to reach a steady state. We therefore use equation 10 to
compute the upscaled thermal transmissibility, where the area is expressed as the sum of the fine-scale
faces which compose interface IJ, and the distances DI and DJ represent the distances between the cell
centroid and the centroid of the coarse interface.

Dynamic adaptivity framework

To determine whether grid adaptivity is necessary, we define refinement and coarsening criteria, which
are dependent on the application used. In this study, we adopted an approach where the difference in
solution variable is analysed between neighbouring blocks. Therefore, the difference in the solution
variable of interest X is computed between each pair of cells active in the simulation grid. If this
difference is higher than a given threshold, both neighbouring blocks are refined. For the coarsening of a
set of fine cells, belonging to a given coarse cell, the difference between all the corresponding fine cells
and their neighbouring cells is computed; if each and every one of these connections have a difference
in solution variable below a given threshold, the fine cells are coarsened to the next consecutive level.

For cells marked for refinement, the corresponding fine cells from the level below are added to the list
of active blocks, which is used for implementation of the next time step, while the indices of the coarse
cells in question are suppressed. Similarly, the cells marked for coarsening are suppressed from the
active cells, and the corresponding coarse blocks are added. Figure 5 below shows an example of a two-
level hierarchical grid. The current time step simulation grid is represented on the bottom left. After
a check for adaptivity was conducted, cells 1 and 2 were marked for refinement. Hence as explained
above, the cell indices 1 and 2 are suppressed from the list of active blocks, and their corresponding fine
cell indices are added (6, 7, 10 and 11 for coarse cell 1, and 12, 13, 16 and 17 for coarse cell 2). The
scheme at the bottom right of the figure shows the simulation grid which will be used for the next time
step. Cell adaptivity results in an unstructured indexing as shown in the figure below.

25

2 3

0 1

16 17 18 19

12 13 14 15

8 9 10 11

4 5 6 7

Level 1Level 0

2 3

0 1

16 17
3

12 13

0
10 11

6 7

Simulation grid tn
Simulation grid tn+1

Adaptivity

Figure 5 Schematic representation of a 2-level hierarchical grid, with illustrated the adaptivity proce-
dure and the redefinition of the active blocks for the simulation grid of the next time step tn+1.

Once the simulation grid is redefined and the list of active cells is updated, the connectivity list and
corresponding transmissibility must be redefined. This is done by copying the list of connections for the
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whole hierarchical grid, where only the connections and corresponding transmissibility involving the ac-
tive cells are kept, while connections involving non-active cells and their corresponding transmissibility
are suppressed. Similarly, the same holds for the list of volume, depth and relevant properties. Only the
cell properties of the active blocks are stored.

For computation of the next time step solution Xn+1, the solution of the previous time step Xn is required
(see equations 4 and 5). However, Xn doesn’t have the same grid configuration as the next time step tn+1.
It is therefore necessary to convert the grid of solution Xn to the same configuration as the simulation grid
at tn+1. To do so, we use simple mapping techniques. A prolongation operator is firstly used to redefine
the solution variable X at each cell of the finest level of refinement (level 0). A so-called constant
prolongation is implemented; i.e., all sub-domain values Xi are set to the coarse value solution variable
XI:

Xi = XI, ∀i ∈ I. (15)

Subsequently, restriction to the new simulation grid is conducted on the prolongated solution; i.e., for
cells already at the finest level, the solution stays the same; when several control volumes are grouped
into a single coarser control volume, the coarse value XI is set to the volume-weighted average of all
sub-domain values Xi (Karimi-Fard & Durlofsky, 2014):

XI =
1
VI

∑
i∈I

viXi. (16)

A schematic representation of this procedure for the 2-level hierarchical grid and for the new simulation
grid of figure 5 (tn+1) is shown in figure 6 below.
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Figure 6 Schematic representation of the prolongation and restriction for the example in figure 5.

Applications for Geothermal Reservoirs

Geothermal technology has recently received substantial attention as an alternative source of energy.
However, geothermal production systems have a relatively low return on investment, where uncertainties
related to lack of detailed information about subsurface formations can significantly affect the quantifi-
cation of the economic planning and feasibility of geothermal projects (Willems, 2017). It is therefore
important to reduce the uncertainty and produce a high accuracy solution while keeping the computa-
tional costs low. Geothermal systems therefore represent a good candidate for implementation of our
AMR framework since it keeps the accuracy of simulation process close to the fine-scale while the
performance is close to coarse-scale models.

Simulation of geothermal reservoirs implicates the solution of both mass (1) and energy (2) conservation
equations where pressure and enthalpy are the solution variables. We are mostly interested in the accu-
rate prediction of the temperature displacement front and resulting thermal breakthrough time. Dynamic
adaptivity will be illustrated for 2 synthetic geothermal examples:

• A homogeneous reservoir with unstructured meshing,

• A heterogeneous fluvial system from (Shetty et al., 2017) with low net-to-gross ratio.

In DARTS, the enthalpy is used as nonlinear unknown instead of the temperature. The adaptivity criteria
are therefore applied to the enthalpy solution where the difference in enthalpy between two adjacent
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control volumes is analysed. This is done for each pair of connection within the simulation grid. Here,
we applied the following adaptivity criteria:{

if ∆hi j > 70 kJ, mark cells i and j for refinement,
if ∆hl < 40 kJ, ∀l ∈ I, mark cells {∀i ∈ I} for coarsening. (17)

The geothermal examples are illustrated by showing the fine-scale solution at different time steps versus
the AMR solution and the coarse-scale solution. Each synthetic example was analyzed quantitatively
by conducting an error analysis where the error of both AMR and coarse solution are computed relative
to the fine-scale solution. Both the L2 norm and L-infinity norm were calculated for each time step
throughout the simulation. Moreover, to define the performance of the AMR method in terms of com-
putational resources, the percentage of grid cells utilized in the simulation using the AMR grid, relative
to the total number of cells in the fine-scale model was plotted for each example.

Homogeneous model

The first model is a simple 2D homogeneous reservoir (constant permeability) with unstructured tri-
angular mesh. We consider a single injector (I) and a single producer (P) configuration. A two-level
hierarchical grid is used, with 1420 cells in level 0 and 75 cells in level 1. Figure 7 below illustrates both
levels, along with the permeability field (constant permeability of 2000 mD), and the well locations.
The level 1 is illustrated above where each color represents a coarse cell. As can be seen, cell aggrega-
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Level 0 Level 1

P

I

Figure 7 Hierarchical grid of the unstructured homogeneous model. Left figure: permeability field
with reservoir dimensions and well locations; middle figure: level 0, the finest level of refinement, with
unstructured gridding; right figure: coarser level, level 1 where each color represents a coarse cell.

tion was conducted by dividing the x- and y- axes into 5 and 15 equidistant intervals. The cells at the
well locations are kept fine at all times. The simulation was conducted for a period of 5500 days. The
temperature solution at three different times is shown in figure 8. Figure (a) represents the temperature
solution at fine scale, figure (b) the solution on the AMR grid, figure (c) shows the coarse-scale solution,
and figure (d) shows the node distribution for the AMR simulation run.

The solution on the AMR grid demonstrates a particularly good match with the fine-scale solution. The
node distribution shows high concentration along the front and at the well locations, and low concentra-
tion behind and ahead of the front, where no significant changes are observed. This considerably lowers
the computational time as compared to running the fine-scale model. The coarse-scale solution differs
notably from the AMR and fine-scale solution, with a faster cold front propagation at the coarse grid
which is more pronounced in comparison at late times tD = 0.3 and 1.
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tD = 0.1 tD = 0.3

tD = 1

(a) (b) (c) (d) (a) (b) (c) (d)

(a) (b) (c) (d)

Figure 8 Temperature solution of the homogeneous reservoir with unstructured gridding at tD = 0.01,
0.3 and 1. (a) represents the fine-scale solution; (b) represents the AMR solution; (c) is the coarse-scale
solution; (d) is the node distribution of the AMR grid.

49

Figure 9 L2 norm (left) and L-infinity norm (right) of the difference between the coarse model and the
fine model, and between the AMR model and the fine model, both relative to the fine-scale solution, for
the homogeneous model with unstructured gridding from figures 7 to 8.

The relative error of the AMR solution is significantly lower than the coarse solution in both the L2
and L-infinity norm (figure 9). Moreover, the amount of cells is considerably reduced (see figure 10),
ranging from 8 to 60%. The trend shows an overall increase as the front propagates, and a decrease
when the cold front has reached the producing well, which results in coarsening at locations where no
more thermal variations are detected. This considerably improves the performance of simulation since
the AMR approach is much more favourable in terms of efficient use of computational resources.

Fluvial heterogeneous model

Our AMR framework was tested for a heterogeneous reservoir with a low net-to-gross ratio (N/G = 35%).
The permeability field ranges from 5 to 3400 mD with a significant amount of shale regions present. The
hierarchical grid for this example is a structured grid and it comprises two levels. The finest grid, level 0,
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Figure 10 Percentage of mesh elements used during the simulation of the AMR model, relative to the
total number of cells in the fine-scale model in time for the homogeneous model from figures 7 to 8.

consists of 2400 grid cells with 40 cells in the x-direction and 60 cells in the y-direction. Level 1 was
reduced to 150 mesh elements, where aggregation was done using 4x4 fine mesh elements, resulting in
10 grid cells in the x-direction and 15 grid cells in the y-direction. The permeability field along with
the hierarchical grid for this example is shown in figure 11 below. The location of the injector (I) and
producer (P) are depicted in yellow on the permeability distribution figure below.
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Figure 11 Hierarchical grid of the heterogeneous model with low net-to-gross ratio. Left figure: per-
meability field with reservoir dimensions and well locations; middle figure: level 0, the finest level of
refinement; right figure: coarser level, level 1.

The simulation was conducted until cold water breakthrough reached the producing well. Figure 12
below illustrates the temperature solution at different times throughout the simulation. For each time
shown, figure (a) represents the fine-scale solution, figure (b) is the AMR solution, and figure (c) is the
coarse-scale solution. The grid is kept at its finest level at well locations.

The AMR mesh exhibits a significant improvement in temperature solution compared to the solution on
the coarse grid. Refinement is mainly focused at the front and slightly beyond the front, while areas
where insignificant changes occur remain coarse. Important details, such as fingering effects at the cold
water front, which are neglected on the coarse grid, are clearly visible in both fine and AMR solutions,
which results in a more accurate representation of this physical phenomenon.

The relative error throughout the simulation run was recorded, where the fine model is taken as reference
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Figure 12 Temperature solution of the heterogeneous model with low net-to-gross ratio at three different
times: at tD = 0.1, 0.3 and 1. (a) is the fine-scale solution (level 0); (b) is the AMR solution; (c) is the
coarse-scale solution (level 1).

solution, for comparison between the coarse and AMR model. Figure 13 below shows the L2 norm and
the L-infinity norm error in time.

Figure 13 L2 norm (left) and L-infinity norm (right) of the difference between the coarse model and the
fine model, and between the AMR model and the fine model, both relative to the fine-scale solution, for
the heterogeneous model with low net-to-gross ratio from figures 11 to 12.

As can be seen, the marked improvement is also recorded in the error analysis, where the error between
the coarse and fine model is notably larger than the error between the AMR and fine model. The L2
norm remains relatively constant for the AMR solution whereas it increases slightly in time for the
coarse solution.

The amount of grid-cells used in the simulation ranges from 8 to 70% throughout the simulation (see fig-
ure 14). This represents a significant improvement in computational effort and time, while still capturing
important features.
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Figure 14 Percentage of mesh elements used during the simulation of the AMR model, relative to the
total number of cells in the fine-scale model in time for the heterogeneous model with low net-to-gross
ratio from figures 11 to 12.

Conclusions

This study aimed at developing an Adaptive Mesh Refinement (AMR) technique in Delft Advanced
Research Terra Simulator for general-purpose reservoir simulation. The developed AMR framework
consists of a multi-level hierarchical grid, where levels are constructed through a mesh partitioning of the
fine-scale model - the static geological model - which is represented by a list of properties (e.g. volume
and porosity). The framework consists of the construction of the coarse levels through cell aggregation
of the next consecutive fine level at the pre-processing stage. The method used to aggregate fine cells
includes the grouping of subdomains whose centroids are found within a predefined 3D domain. In this
study, domains are grouped by the partitioning of the x-, y- and z- axes into equidistant intervals.

The aggregation of the subdomains to form a coarser level is stored as a list of indices for next stages,
which consists of the indices of the fine cells comprised in its coarse control volume for each coarse cell.
Next, in order to solve the relevant governing equations, the flow must be computed at each interface
present in the mesh. We therefore generate a list - called a connectivity list - describing all neighbouring
cells within each level and between levels. The fine-scale transmissibility is then computed using the
permeability field. Hereafter, a flow-based upscaling is applied in order to acquire the transmissibility
of coarser levels, and the inter-level transmissibility. Each control volume has defined parameters which
are relevant for solving the system (volume, porosity, depth etc).

Once the hierarchy of levels is complete, the simulation can be started. Adaptivity check is performed at
every time step, using criteria specific to the application. Once the regions for coarsening and refinement
are defined, the solution is prolongated to the finest meshing level, and subsequently restricted from fine
to the adaptive simulation grid. A new connection list and grid properties are constructed for the new
coarsened schema. Once it is completed, the simulation runs for the next time step using the constructed
simulation model.

The accuracy of the method was demonstrated for geothermal applications. Two models were tested,
including a homogeneous model with unstructured gridding and a heterogeneous fluvial system model
with low net-to-gross ratio. High levels of solution accuracy relative to the reference fine-scale results
are observed for both cases. An error analysis was conducted to record the differences between the AMR
and the coarse solution relative to the reference fine-scale solution. The error resulting from the AMR
model is significantly lower than for the coarse model, for all tested problems. The overall percentage
of grid cells used in the AMR model relative to the fine-scale model is considerably decreased for most
problems.

To conclude, the developed AMR method shows high levels of accuracy for both homogeneous and
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heterogeneous models, and can be used for geothermal applications as well as for other applications
implemented in DARTS. The number of cells in the AMR simulation, relative to the total number of
cells of the finest level, is considerably reduced, which is very favourable in terms of efficient use of
computational resources. The framework is applicable to two- and three-dimensional models and for
unstructured as well as structured meshes. The applicability of the method to unstructured grids provides
an effective means for solving complex geological systems.
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