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Abstract

Storage systems, such as flash memories, suffer, apart from the always present
noise, also from offset. The presence of this noise can decrease the performance
of a decoder using the Euclidean distance significantly. To negate the effects of
offset, a new distance, the modified Euclidean distance, was introduced, which
offers immunity to offset. However, the modified Euclidean distance is less
resistant to noise, which calls for methods to improve its resistance. The coset
of Hamming codes, constant weight codes and Berger codes are discussed and are
simulated to investigate their performance with both distances. These codes are
compared to each other for the Euclidean distance and the modified Euclidean
distance.
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Chapter 1

Introduction

1.1 Problem Statement

In storage and communication systems noise is oftentimes an issue. When we
want to transmit data, noise can cause errors within this data, which can lead
to wrong data being received. However apart from the always present noise,
in storage systems in particular, there might also be an offset which may cause
problems as well. Particularly in Flash memories, offset is a well known issue
[7]. This offset is a result of charge leakage, which is a major issue within these
Flash memories, caused by factors such as temperature and aging. Due to this
leakage, the stored voltage level will decrease, which causes the mentioned offset.
Since the amount of voltage leakage is not constant, but depends on time, it
is not possible to shift all the voltage levels of the data to neutralize the shift
caused by the offset. Luckily there are various methods to counteract the offset,
however they also come with their own disadvantages. Some of these methods
will be discussed in Section 1.3 where we will formalize the problem.

1.2 Introduction to Coding Theory

To be able to formalize the problem, we first need to introduce the basic con-
cepts of coding theory. This will be partially based on [3]. Coding theory is
based on adding redundancy to the information to be able to detect and correct
errors made during transmission. Typically, we represent information using a
sequence of different symbols. In storage systems these symbols represent a cer-
tain voltage level. These symbols we can encode by adding redundant symbols
to protect our information symbols. All symbols we send, that is the informa-
tion symbols and the redundant symbols, form a codeword. Gathering multiple
codewords we can construct a code, which is the set of all the codewords that
we want to be able to send. If done properly we make sure that not all possible
sequences of a given length form a codeword, such that if we would receive for
example a sequence which is not part of the code, we know that an error was
made, since we could not have send this sequence. In general we can choose ¢
symbols to construct our words, so we can choose the symbols from the g-ary
alphabet {0,1,...,q — 1}, this means that we have ¢ different voltage levels,
where the 0 is the lowest voltage level and ¢ — 1 represents the highest voltage



level. When the codewords are constructed from n different symbols chosen
from the g-ary alphabet, the codewords are elements from the vector space Fy
over the finite field F,. For example if we would choose ¢ = 5 and n = 5, some
possible codewords could be {12341, 03123, 44120,00000}. In this report we will
only be looking at the binary case, so that means that our codewords are taken
from F% over the finite field Fo. In the binary case the symbols consist of only
0’s and 1’s and they are called bits. When a word is received, there is a high
probability that the received word is not part of the code due to errors made
during transmission. Since we do not know which codeword was sent, we need
to choose a codeword from the code that has the highest probability to be the
codeword that was actually sent. The selection of this codeword is done by
using a distance measure. Upon receipt of a vector, the decoder calculates the
distance from the received vector to each codeword in the code and picks the
codeword with the smallest distance to the received word. This way the chances
are the highest of picking the right codeword.

1.3 Formalization of the Problem

Now that we have given a small introduction into the coding theory, we can
formalize our problems with the use of mathematical terms. As we mentioned
in Section 1.1 the offset is dependent on time, however it is assumed to be
constant within each word, and thus the amount of offset is the same for each
bit in the word, but it can differ from word to word. Apart from the offset,
we also still have to take the noise in consideration, so if we send the codeword

x = (21,%2,...,2,) from a code book C' C {0, 1}", then we receive the word
r=x+v+5bl,
where
- x=(x1,...,2,) is the sent codeword of length n,
- v = (v1,...,V,) is the noise vector where v; is independently normally
distributed with mean 0 and variance o2 for alli = 1,...,n,

- b is the unknown offset with b € R,
- 1=(1,...,1) is the all-1 vector of length n,
-r=(ry,...,m,) is the received word with r; € R.

When offset plays no part and there is only noise, a good way to decode is
by using the squared Euclidean distance

S(u,v) = Z(u — )2 (1.1)

Here u = (uq,...,u,) and v = (v1,...,v,) are both vectors of length n.
While this distance performs well when there is only noise, when there is also
offset, the performance of a decoder using the § distance becomes worse, es-
pecially when the offset is quite large. To reduce the number of errors made



during the decoding process in the presence of offset, we need to adopt another
method.

There are various ways to reduce the number of errors caused by the off-
set, like using reference symbols [4] or using the Pearson distance, based on the
Pearson correlation coefficient [5],[9]. In the former method, two reference sym-
bols, equal to the lowest signal level and the highest signal level, are assigned
to two positions in each codeword. These positions and the signal levels of
the reference symbols are known to the receiver, meaning that the receiver can
measure the amplitude of the reference symbols and normalize the amplitudes
of the other symbols of the received word. While it is a solution to offset, it
does come with a price as we need to add two bits to each word, resulting in a
higher redundancy. As for the Pearson codes, while decoding with the Pearson
distance offers immunity to offset mismatch, it is more susceptible to noise.

Another distance that can be used is the modified Euclidean distance §*(u, v)
defined in [8] as:

0*(u,v) =6(u—nul,v—vl), (1.2)

where u = (uy,...,u,) and v = (vq,...,v,) are vectors of length n, §(u,v) is
the squared Euclidean distance and w = % S, wj is the average. For example,
the modified Euclidean distance between the two words u = (1,0,1,1,0,0) and
v=1(0,0,1,1,1,1) is 6*(u,v) = 6(u — 0.51,v — 0.671) ~ 2.83.

While the use of this distance offers immunity to offset, it poses another
problem as it is more sensitive to noise. The reason for this can be found by
looking at a possible interpretation of (1.2). This function can be interpreted
as a projection onto S = {a € R™ : a = 0}, since the average of a — al is equal
to zero for all vectors a € R™. This causes that all the projected words on .S are
closer to each other than the original words, resulting in higher noise sensitivity.
This is also apparent for the words of the previous example. In that example
we saw that §*(u,v) ~ 2.83. When we also calculate the Euclidean distance
we get d(u,v) = 3, which shows that they are indeed closer to each other for
the 6* distance. Luckily there are multiple codes that can be constructed that
have a better noise performance while also maintaining the immunity to offset.
Examples of these codes can be found in the cosets of linear codes, constant
weight codes and unordered codes.

1.4 Organization of the Report

The remaining report will be structured in the following way. In Chapter 2 some
preliminaries on coding theory, which is needed for our report, will be provided.
Then in Chapter 3, 4 and 5 we will be discussing the use of the Hamming
code, the constant weight code and the Berger code respectively and their use
in the problem setting along with simulations of these codes. In Chapter 6
the performances and properties of these codes will be compared. Finally, in
Chapter 7 the report is concluded.



Chapter 2

Prerequisites

This chapter will provide some extra information on coding theory, which will
be used in later parts of the report. Section 2.1 will provide some general
definitions and terminology used in coding theory. Following that, Section 2.2
will introduce the concept of linear codes and parity check matrices. Section
2.3 introduces the definition of cosets of codes and lastly, Section 2.4 will give
theoretical approximations of the word error rate.

2.1 Definitions and Terminology

In this section we will be introducing some definitions and terms that are com-
mon and useful within the coding theory. Last section we finished by talking
about using a distance measure to be able to detect and correct errors. The
most common distance when talking about binary codes is the Hamming dis-
tance. The Hamming distance between two binary words u,v of length n is
defined as

d(u,v) =Y |u; —vil. (2.1)
i=1

For example, the Hamming distance between u = (1,1,0,0,1,1) and v =
(0,1,0,1,0,1) is d(u,v) = 2. Note that the Hamming distance is actually the
same as the Euclidean distance if both words are elements from FZ, however
since in our scenario the received vector is no longer an element from F%, but
from R™, the Hamming distance is no longer defined for the received vector.
Another common term used for binary words is the weight of a word. The
weight of a binary word u is defined as

wa) = [{i:u; =1}. (2.2)

Taking the words u and v from the previous example, their weights are
respectively w(u) = 4 and w(v) = 3. When discussing different codes, it is often
useful to also consider their respective redundancy and code rate. Before we
introduce the redundancy and the code rate, we will first define the cardinality
|C| of a code C, which is the number of codewords in C

|IC]={u:ueC}|. (2.3)



As for the redundancy and code rate of a code, the redundancy is defined as

r=mn —log, (|C]) (2.4)
and the code rate is defined as
e loggélc’l)' (2.5)

The code rate of a code can be seen as the ratio of the codewords that carry
the information, while the redundancy is the amount of space we sacrifice to be
able to protect the information when sending a word. For example, when we
have 8 information bits in a word of length 12, we have a code rate of 0.67. To
make sure that these codewords containing the information have a big enough
distance between them, we append 4 bits, so a redundancy of 4, to protect the
message during transmission.

2.2 Linear Codes

A common class of codes is the linear code. A linear [n, k]-code is a code with the
property that for any two codewords u, v in a code C, the sum of the codewords
u+vV is again part of the code. Note that this property also implies that the all-0
vector, 0 = (0,...,0) is always an element of a linear code, since for any binary
word c it holds that ¢ + ¢ = 0. The parameters n and k indicate the length of
the codewords and the dimension of the code respectively. The dimension of a
code is the number of codewords in the basis of the code from which the entire
code can be constructed through linear combinations of the basis vectors. An
example of a linear code is the code C' = {0000,0001,0010,0011}. It is a code
of dimension 2 with basis vectors by = (0,0,0,1) and by = (0,0, 1,0).

Linear [n, k]-codes have k information bits and thus a code rate of £ and
a redundancy of k. The property that the sum of two codewords is again a
codeword offers some algebraic structure to linear codes, which can be found
helpful for decoding. When describing a linear code, a common way is by
describing it with a generator matrix. A generator matrix G of a linear [n, k]-
code will be given by a k x n matrix. Using the generator matrix, the code can
be constructed by taking all possible binary words u of length £ and multiplying
them with the matrix. Formally this means that C' can be written as

C ={uG, vucT}}. (2.6)

So for any codeword v of length n in the code, there exists a word u of length
k such that v = uG. Alongside the generator matrix, we also introduce the
parity check matrix. A matrix H is a parity check matrix for a linear code C
if the columns of H form a basis for the dual code C*+. The dual code C* of a
code C' is the set

Ct={ueF}u-v=0, ¥YveC} (2.7)

where x -y is the inner product between the two vectors. The dual code consists
of all the words orthogonal to the words in the original code. A parity check
matrix of a linear [n, k]-code is a n X (n — k) matrix. Since the columns of the



parity check matrix are a basis for the dual code, the code can be constructed
using the parity check matrix in the following way

C = {veTF|vH =0} (2.8)

2.3 Cosets of Codes

Furthermore we would like to discuss cosets of codes as it is useful for a later
chapter in this report. Let C' be a linear [n, k]-code and 3 be any binary vector
of length n, then we define the coset of C' determined by 3, denoted by Cg, as

Cg ={B+c (mod 2)|c € C}. (2.9)

The notation 8 + ¢ (mod 2) means that for words 3 and c of length n, we
take B; + ¢; (mod 2) for each ¢ = 1,...,n. If we for example take the linear
code from the previous section and the word 8 = (1,0, 0, 1), then the coset Cg
is {1001, 1000,1011,1010}. This example also makes clear that, even though C'
is a linear code, the coset does not have to be linear again, however it does have
the same number of codewords and length.

2.4 Theoretical Word Error Rate

Lastly we give some theoretical approximations of the word error rate (WER).
The WER is the number of words that are decoded improperly as a fraction of
the total number of words sent. So for example if we would have a code with
a WER of 0.5 and we send 10.000 words, then on average only 5000 of those
words would be decoded properly. The WER of a code C' when there is no offset
and the decoder uses (1.1), can be estimated for small values of o as follows [§]

WER’ ~ N(Smin X Q <67nm) Y (210)
20
where @ is the well known Q-function
Q=) = L /OO e 2 dy (2.11)
Varm J,
and
1
Ns, oo = 7=+ Z {vel v#u:iuv)= 0} (2.12)
|O| ueC
and
dmin = min  d(u,v). (2.13)

u,veC,u#v

In a similar matter, one can also find an approximation of the WER when
using (1.2) for small values of o when there is no offset

WER* ~ N}  x Q[ Y=min )| (2.14)

min 20.



where

1
N == — Z HveCv#£u:6"(u,v)=70,.1 (2.15)
|C| ueC
and
oF . = i o* . 2.1
min = min (u,v) (2.16)



Chapter 3

Hamming Codes

In this chapter we will discuss the first method to improve the performance of
the modified Euclidean distance with respect to noise, namely using the coset
of the Hamming codes. Section 3.1 will define Hamming codes and shortened
Hamming codes while also choosing a suitable coset to improve the performance.
After the shortened Hamming codes have been introduced, we will simulate its
performance in Section 3.2. Finally, in Section 3.3 the results of these simula-
tions are discussed.

3.1 (Shortened) Hamming Codes

As shown in [8], using a well chosen coset of a code can result in a better noise
performance using 0* while maintaining the offset immunity. An example of
such a coset is the coset of the Hamming code or the shortened Hamming code.
A Hamming code Hg, with s > 3, is a [2° —1,2° — 1 — s, 3] code where its parity
check matrix Hy is a s x (2° — 1) matrix which has all possible columus of length
s except for the all-zero column. From this Hamming code, we can create the
shortened Hamming code Hg[a] by removing a columns from the parity check
matrix of H,, while making sure the rank of the matrix does not change.

This resultsina [2° —1—a,2° —1—s—a,3] code forall 1 < a <2°—s—2.
Since the Hamming code contains both the all-1 vector and the all-0 vector,
using the §* distance can cause problems, because §*(0,1) = 0. So a coset has
to be chosen in such a way that both 0 and 1 are not part of the same code.
According to Theorem 2 in [8], we can choose a vector a of weight | %ziz |, where
dpmin is the minimum Hamming distance of the code, to have a higher §7,,. . As
the Hamming code has d,i, = 3, we choose a binary vector of weight 1.

3.2 Simulation of the Shortened Hamming Code

To investigate the performance of these codes with respect to their cosets, we
will do a simulation. In this simulation we will evaluate the performance of the
[12,8, 3] shortened Hamming code #H4[3] and its coset H4 g[3]. In this case the
coset is obtained by adding the word 8 of length 12 with weight 1 to each word
in the code. In Figure 3.1 we plot the WER against the signal to noise ratio
(SNR) for an offset value of b = 0.02, where the SNR is defined as —20log;,(0)



dB. In Figure 3.2, we again plot the WER against the SNR but with an offset
of b=0.2.

3.3 Results of the Simulations

100
*
10—1 .
&
10_4 T T T T T T
11.0 11.5 12.0 12.5 13.0 13.5 14.0

SNR(dB)

Figure 3.1: Simulation of the #4[3] code and its coset H g[3] with an offset of
b=0.02

From Figure 3.1 we can observe that a decoder using § has a better per-
formance. Furthermore it is noticeable that when using § there is almost no
difference in using the shortened Hamming code H4[3] or its coset Ha g[3] while
it does make a big difference for high SNR values when using §*. While there is
almost no difference in WER between the shortened Hamming code and its coset
when using §* for low SNR values, as the SNR increases, so does the difference
in performance. For example when we have a SNR of 14, the standard deviation
o of the noise is lower than for a SNR of 11. As expected, since there is less
noise, the WER 1is smaller for both 74[3] and 4 g[3], but the coset performs
considerably better, since it does not contain both 0 and 1 and thus is more
resistant to noise. However when the offset increases to b = 0.2, we can see that

10
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Figure 3.2: Simulation of the H4[3] code and its coset H4 g[3] with an offset of
b=0.2

0* performs the same, which is to be expected, since it is immune to offset, but
0 performs considerably worse.



Chapter 4

Constant Weight Codes

This chapter will discuss the second code which is useful to reduce the effect
of offset. Section 4.1 will provide the information about what constant weight
codes are. Section 4.2 introduces the the constructed code we used for simula-
tions and Section 4.3 will discuss the acquired results of the simulation.

4.1 Constant Weight Codes

Another useful code is the constant weight code. Constant weight codes C(n, M, d, w)
are codes with M codewords of length n, weight w and with a mutual Hamming
distance of at least d, 0 < w < n and 2 < d < n. As an example of a constant
weight code we take the code

(5,10,2,2) = {00011,00101,
00110, 01001,
01010, 01100,
10001, 10010,
10100, 11000}.

This code is constructed by taking all the codewords of length 5 with weight 2.
Constant weight codes have innate offset immunity, as we will see in Section 4.3,
which is useful in our setting. A downside of the constant weight codes however,
is that they do not have a nice structure, in the sense that the information bits
are not separated from the redundant bits.

4.2 Simulation of the Constant Weight Code

Like we did for the shortened Hamming code and its coset, we will also do a
simulation of a constant weight code. For this we choose the constant weight
code C(7,35,2,3), which contains all the 35 words of length 7 with weight 3. In
Figure 4.1 we again chose for an offset of b = 0.2.

12
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Figure 4.1: Simulation of the constant weight code C(7,35,2,3) containing all
possible codewords of length 7 with weight 3 with an offset of b = 0.2

4.3 Results of the Simulations

When evaluating the results of the simulations in figure 4.1 we remark that the
WER is the same for both distance measures. The reason for this can be found
by taking a closer look at (1.2) and (1.1). Assuming that the sent codeword x
of length n is received as r = x + v + b1, we can calculate the §* distance to an
arbitrary codeword y in the code:

07 (r,y) =" (x+v +bly) =d(x+v - (x+v)l,y —y1)

(v +vi— (X+ D) —y; +5)°

I

=1

(xi—l—yi—ﬂ—yi)Q.

I

=1

The third equation follows from the fact that all words have equal weight w and

the average of each codeword is equal to >. Further developing this equation



yields

5*(r,y):2(xifyi)2+22w —Y; +ZV 72112 —yi +v;) +nir?.
i=1

i=1
(4.1)
Doing the same for the § distance gives:

n

o(r,y) = Z(%‘—yi)Q‘F?Z —Yi +ZV +2bz —yi+v;)+nb. (4.2)
=1

i=1

Using (4.1) and (4.2) we can now look at the difference of these two functions
in (4.3). The reason that the terms containing y ., (z; —y;+v;) become Y 7" | v;
lies again in the fact that all words have the same weight. From (4.3) we observe
that the difference is constant for each codeword y. Since the difference is
constant, the word with minimum distance to r is the same for both §* and
6, which means that the WER will also be the same. Note that we can also
conclude from this that constant weight codes are inherently immune to offset.

6(r,y) = 6*(r,y)| = 206+ 2) > _vi +n(b* + 77)] . (4.3)

i=1
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Chapter 5

Berger Codes

This chapter will follow the same structure as the previous two chapters. First,
in Section 5.1, the Berger codes are introduced, secondly, we construct a Berger
code for the simulations in Section 5.2 and we end this chapter by discussing
the results of our simulations in Section 5.3.

5.1 Berger Codes

Berger codes are a type of unordered codes which are constructed by adding
a tail of [log,(k)] to k information bits, where the tail is the binary represen-
tation of the number of zeros in the k information bits. As a matter of fact,
in the binary case Berger codes are optimal systematic unordered codes [6]. A
code is said to be systematic when the information bits are separated from the
redundant bits. Systematic codes have the advantage that the information can
directly be retrieved from the codewords.

Binary unordered codes are a type of code where the positions of the ones in
each codeword is not a subset of the positions of ones for each other codeword
[2]. So for example the words x = (0,1,0,1,1) and y = (0,0,0,1,1) cannot be
contained in the same code since the positions of the ones of y is a subset of the
positions of the ones of x. A property of unordered codes is that they are able
to detect all unidirectional errors, which are errors of the type 0 — 1 or 1 — 0.
Denote the Berger code of length n with &k information bits and M codewords
as B(n,k, M). An example of a Berger code is the B(5,3,6) code

B(5,3,6) = {00011,10101,
11001, 00110,
10010, 11100},

where we take 3 information bits and append 2 redundant bits representing the
number of zeros in the information.

5.2 Simulation of the Berger Code

For this simulation we took the Berger code with words of length 10 which are
constructed by taking all possible words of length 7 and adding a tail of 3 bits

15



to them. The results of the simulations of § and 6* are shown in Figure 5.1 with
an offset of b = 0.2 and Figure 5.2 with an offset of b = 0.4.

5.3 Results of the Simulations

10°
— B(10,7,128)(6)
B(10,7,128)(6™)

1071 -
a9
w
=

10—2 .

1073 T T T T T T

11.0 115 12.0 125 13.0 135 14.0
SNR(dB)

Figure 5.1: Simulation of the Berger code B(10,7,128), constructed by taking
all possible codewords of length 7, with an offset of b = 0.2

When comparing Figure 5.1 with Figure 5.2 we can clearly see that the offset
has a negative impact on § while it has no effect on §*. Furthermore we observe
that the Berger code suffers the same amount from noise when using either § or
0*. This is especially evident in Figure 5.1 where the curve for §* has almost the
exact same behavior as the curve for 6. The main difference between the curves
is that one curve lies slightly above the other, which is caused by the offset.
As a matter of fact 0, for this code is the same as 6. , which implies that

when estimating the WER using (2.10) and (2.14), we have Q(&zT) = Q(%)
Furthermore we found out that for this code Ns_, = Nj. . Thus the WER
when using § will approximately be the same as the WElellnsing 0* when there
is no offset, which explains why the curve for § lies slightly above the curve for

0* for an offset of b = 0.2 as § has no immunity to offset.
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Figure 5.2: Simulation of the Berger code B(10,7,128), constructed by taking
all possible codewords of length 7, with an offset of b = 0.4



Chapter 6

Comparison of the Codes

This chapter will be composed of two sections. In the first section we compare
the results of the codes we constructed in Chapter 3, 4 and 5. In the second
section, we construct a new constant weight code and a new Berger code after
which we compare these new codes to the coset of the shortened Hamming code.

6.1 A first Comparison

Now that we have results for these three codes, we can start comparing their
performances and behavior. But first we calculate the the code rate and re-
dundancy of our codes following the definitions in Section 2.1. For the H4 g[3]
code, we have 8 information bits in a word of length 12, so we have a code
rate of 0.67. To make sure that these codewords containing the information
have a big enough distance between them, we append 4 bits, so a redundancy
of 4, to protect the message during transmission. Following the definitions, we
also calculate the code rate and redundancy for the C(7,35,2,3) code and the
B(10,7,128) code, which is presented in Table 6.1.

Code Length (n) | Code rate | Redundancy | Omin | 0.in
Hap[3) 12 0.67 4 3 2.25
C(7,35,2,3) | 7 0.73 1.87 2 2
B(10,7,128) | 10 0.7 3 2 2

Table 6.1: Length, code rate, redundancy, d,,:n, and 67, of the Hy [3] code,
C(7,35,2,3) code and B(10,7,128) code.

In Figure 6.1 we plotted the WER for the codes we used from the previous
sections while decoding with §. From this figure we can conclude that the
constant weight code performs best for all values of the SNR. While the WER’s
are very close to each other for smaller SNR values, for larger values the Berger
code has a considerably lower WER, than the coset of the shortened Hamming
code. Even though Hy 5[3] has the highest .4, namely 0., = 3, compared
to the dmin, (Omin = 2), from the Berger code and constant weight code, it
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has the worst performance, due to the offset. Like we saw in section 4 and
5, the constant weight code does not suffer from any value of offset, while the
Berger code suffers only a small amount for an offset of b = 0.2, which explains
why these codes have a better performance. As for the comparison between
the constant weight code and the Berger code, although they have the same
Omin, there are relatively more of pairs of codewords in the Berger code that
have a distance of 2 to each other than in the constant weight codes. Using the
theoretical expression (2.12) in the WER (2.10), we found that N;_, = 7 for
the Berger code, while it is N5, ., = 6 for the constant weight code.

In Figure 6.2 we compared the performance of the codes while using §* with
an offset of b = 0.2. Note that the WER of these codes is now only dependent on
the noise and not the offset, since §* does not suffer from offset. So it comes to
no surprise that the H4 g[3] code has the best performance as it has the highest
0. .in- Furthermore it is notable that the coset of the shortened Hamming code
is the only code which improves a fair amount from using 6* with an offset
of b = 0.2, since the constant weight code has the same performance for both
distances and the Berger code improves a considerably smaller amount.

To further investigate why the Berger code using the § distance changes very
little from using §*, while the coset of the Hamming code changes drastically,
we also simulated the codes for different offset values. Figure 6.3 shows these
results, where we plotted the WER against the offset b, for a fixed SNR of 12.
The graph clearly shows that the constant weight code is indeed immune to
offset when using d, like we showed in Section 4.3. Furthermore we can see that
when there is no offset, the coset of the shortened Hamming code clearly per-
forms best, while for larger values the constant weight code is a better option.
If we take a closer look at the WER for an offset of b = 0.2, we can see that the
WER of H4 g[3] has increased a lot with respect to the WER at b = 0, while the
WER of the Berger code has barely increased compared to its WER at b = 0.
This also explains why the curve of the Berger code using § was only slightly
higher than that of 6* in Figure 5.1 in Section 5.3. When the offset increases to
b = 0.4, there is indeed a more noticeable difference in the Berger code, like we
also shaw in Figure 5.1.

min
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Figure 6.1: Simulation of the #4 g[3] code, C(7,35,2,3) code and B(10,7,128)
code using § with and offset of b = 0.2.
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Figure 6.2: Simulation of the H4 (3] code, C(7,35,2,3) code and B(10, 7,128)
code using §* with and offset of b = 0.2.

21



10°

— Hapl3]
—— B(10,7,128)
— ¢(7,35,2,3)

10—1 4

WER

1072 -

-0.4 -0.2 0.0 0.2 0.4
b

Figure 6.3: Simulation of the H4 g[3] code, C(7,35,2,3) code and B(10, 7,128)
code using § with variable offset and SNR of 12.
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6.2 Comparison of the new Codes

These comparisons might offer some insights on the difference in performance
of these codes, however there are some unfair comparisons. For example, while
the coset of the shortened Hamming code has the best performance when using
0 ins it also has the highest redundancy, so it will be more expensive to use this
code, compared to the constant weight code. To make a more fair comparison,
we constructed another Berger code and another constant weight code to better
match the redundancy, code rate and length of the codewords of the H4 g[3]
code.

For the new Berger code we chose the B(12,8,256) code constructed by
taking all possible words of length 8 and appending a tail of 4 bits to them. This
way, it has the exact same redundancy, length and code rate as the shortened
Hamming code. As for the constant weight code, we chose the C(11,128,2,3)
constructed by taking all 165 codewords of length 11 and weight 3 and removing
37 codewords. By removing the 37 words, we end up with a redundancy of 4
and a code rate of 0.64. The properties of these new codes are summarized in
Table 6.2.

Code Length (n) | Code rate | Redundancy | Omin | 0.ip
Hap3] 12 0.67 1 3 2.25
C(11,128,2,3) | 11 0.64 4 2 2
B(12,8,256) | 12 0.67 4 2 2

Table 6.2: Length, code rate, redundancy, d,,:n, and d7,;, of the Hy g[3] code,

C(11,128,2,3) code and B(12,8,256) code.

n

When comparing the new codes in Figure 6.4 and 6.5 we immediately notice
that both the C(11,128,2,3) code and the B(12,8,256) perform worse than
the C(7,35,2,3) code and the B(10,7,128) code. We also note that now the
Berger code has a slightly better performance than the constant weight code,
despite still having the same 6 ;, and dmin. This again has to do with the fact
that the constant weight code has relatively more codewords with the minimum
distance to each other than the Berger code. Calculating Ns_, for both codes
again, we now found Nj,_, ~ 10.26 for the constant weight code and N5, =9
for the Berger code. From these new codes we can see that it would be best
to use the coset of the shortened Hamming code when using 0* as it has the
best performance of these three codes while also having the same code rate as
the Berger code and a slightly better code rate than the constant weight code.
However, when using § it would be better to use B(12,8,256) or C(7, 35,2, 3).
Furthermore, while the Berger code does not have the best performance in
Figure 6.5, it is able to detect all unidirectional errors, while H4 g[3] is not.

min
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Figure 6.4: Simulation of the H4 g[3], C(11,128,2,3) and B(12,8,256) using ¢
with and offset of b = 0.2
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Figure 6.5: Simulation of the H4 g[3], C(11, 128,2,3) and B(12,8,256) using §*
with and offset of b = 0.2
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Chapter 7

Conclusions and further
Research

7.1 Conclusions

In this report we discussed three different codes to deal with offset and make
use of the ¢* distance which has immunity to offset. Firstly, we examined
the coset of the shortened Hamming code, which was able to make use of §*
to gain offset immunity, while also maintaining a good noise performance. In
the simulations of H4[3] and H4 g[3], we saw that the coset indeed improves
the performance of the decoder using §* for higher SNR, while the shortened
Hamming code itself had a worse WER for a higher offset value of b = 0.2.
Secondly, we considered the use of constant weight codes as they inherently
have offset immunity. When doing simulations for the C(7,35,2,3) code, we
observed that the code has the exact same performance for both distances.
This was a result of the fact that §(u,v) = §*(u,v) for any pair of words u
and v. The third code we discussed was the Berger code, which also had a
higher 47 .. while also being able to detect unidirectional errors. Simulating the
B(10,7,128) code, it was clear that for an offset of b = 0.2, the performance of
the 0* distance was just slightly better than §. Furthermore, we saw that when
there was no offset, the WER, of § would be the same as the WER of §*, which
followed from the theoretical approximation. When we increased the offset to
b = 0.4, there was a clear difference between the use of the Euclidean distance
and the modified Euclidean distance. Finally, we compared the H, g[3] code,
the C(7,35,2,3) code and the B(10,7,128) code. It was clear that the coset of
the shortened Hamming code had the best performance when using the modified
Euclidean distance, while the constant weight code had the best performance
for the Euclidean distance. We argued that, while this might offer some insights,
it was not a fair comparison as the redundancy and code rate differed for the
codes. To make a better comparison, we introduced a new Berger code, the
B(12,8,256) code, and a new constant weight code, the C(11,128,2,3) code, to
better match the code rate and redundancy. Here we observed that the coset
of the shortened Hamming code still performed best, as it also has the highest
0.  but it was still worse when using J, since it is less resistant to an offset of

min?

b=0.2.
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7.2 Further Research

To conclude our report, we give some suggestions on further research that can
be done on this subject. The aim of this project was to compare the different
methods proposed in [8] by the means of simulations. In this project we only
studied cosets of Hamming codes, a single constant weight code and the Berger
codes. In [8] unions of constant weight codes are proposed and unordered codes
in general. It might be useful to investigate if taking the union of different con-
stant weight codes offers different results. Furthermore, instead of only taking
Berger codes into consideration, one can study the performance of t--EC AUED
codes [1], which are codes able to detect ¢ errors in addition to all unidirectional
errors. Additionally, cosets of other linear codes like the Reed Solomon code or
BCH code may be interesting to study. Lastly, it can be useful to investigate
the number of nearest neighbors for the codes as they might offer some insights
on the behavior of the performances of the codes.
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