

Delft University of Technology

Individual Fairness Guarantees for Neural Networks

Benussi, Elias; Patane, Andrea; Wicker, Matthew; Laurenti, Luca; Kwiatkowska, Marta

DOI
10.24963/ijcai.2022/92
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022

Citation (APA)
Benussi, E., Patane, A., Wicker, M., Laurenti, L., & Kwiatkowska, M. (2022). Individual Fairness Guarantees
for Neural Networks. In L. De Raedt (Ed.), Proceedings of the 31st International Joint Conference on
Artificial Intelligence, IJCAI 2022 (pp. 651-658). International Joint Conferences on Artificial Intelligence
(IJCAI). https://doi.org/10.24963/ijcai.2022/92
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.24963/ijcai.2022/92
https://doi.org/10.24963/ijcai.2022/92

Individual Fairness Guarantees for Neural Networks

Elias Benussi1∗ , Andrea Patane1 , Matthew Wicker1 , Luca Laurenti2 and Marta Kwiatkowska1

1University of Oxford
2TU Delft

{elias.benussi, andrea.patane, matthew.wicker, marta.kwiatkowska}@cs.ox.ac.uk, l.laurenti@tudelft.nl

Abstract
We consider the problem of certifying the individ-
ual fairness (IF) of feed-forward neural networks
(NNs). In particular, we work with the ϵ-δ-IF for-
mulation, which, given a NN and a similarity met-
ric learnt from data, requires that the output differ-
ence between any pair of ϵ-similar individuals is
bounded by a maximum decision tolerance δ ≥ 0.
Working with a range of metrics, including the Ma-
halanobis distance, we propose a method to over-
approximate the resulting optimisation problem us-
ing piecewise-linear functions to lower and upper
bound the NN’s non-linearities globally over the in-
put space. We encode this computation as the solu-
tion of a Mixed-Integer Linear Programming prob-
lem and demonstrate that it can be used to compute
IF guarantees on four datasets widely used for fair-
ness benchmarking. We show how this formulation
can be used to encourage models’ fairness at train-
ing time by modifying the NN loss, and empirically
confirm our approach yields NNs that are orders of
magnitude fairer than state-of-the-art methods.

1 Introduction
Reservations have been raised about the application of neu-
ral networks (NN) in contexts where fairness is of concern
[Barocas and Selbst, 2016]. Because of inherent biases
present in real-world data, if unchecked, these models have
been found to discriminate against individuals on the basis of
sensitive features, such as race or sex [Bolukbasi et al., 2016;
Angwin et al., 2016]. Recently, the topic has come under the
spotlight, with technologies being increasingly challenged for
bias [Kirk et al., 2021], leading to the introduction of a range
of definitions and techniques for capturing the multifaceted
properties of fairness.

Fairness approaches are broadly categorised into: group
fairness [Hardt et al., 2016], which inspects the model over
data demographics; and individual fairness (IF) [Dwork et
al., 2012], which considers the behaviour over each individ-
ual. Despite its wider adoption, group fairness is only con-
cerned with statistical properties of the model so that a situ-

∗Corresponding Author

ation may arise where predictions of a group-fair model can
be perceived as unfair by a particular individual. In contrast,
IF is a worst-case measure with guarantees over every possi-
ble individual in the input space. However, while techniques
exist for group fairness of NNs [Albarghouthi et al., 2017;
Bastani et al., 2019], research on IF has thus far been
limited to designing training procedures that favour fair-
ness [Yurochkin et al., 2020; Yeom and Fredrikson, 2021;
McNamara et al., 2017] and verification over specific indi-
viduals [Ruoss et al., 2020]. To the best of our knowledge,
there is currently no work targeted at global certification of
IF for NNs.

We develop an anytime algorithm with provable bounds
for the certification of IF on NNs. We build on the ϵ-δ-IF
formalisation employed by [John et al., 2020]. That is, given
ϵ, δ ≥ 0 and a distance metric dfair that captures the similar-
ity between individuals, we ask that, for every pair of points
x′ and x′′ in the input space with dfair(x

′, x′′) ≤ ϵ, the NN’s
output does not differ by more than δ. Although related to it,
IF certification on NNs poses a different problem than adver-
sarial robustness [Tjeng et al., 2018], as both x′ and x′′ are
here problem variables, spanning the whole space. Hence,
local approximation techniques developed in the adversarial
literature cannot be employed in the context of IF.

Nevertheless, we show how this global, non-linear require-
ment can be encoded in Mixed-Integer Linear Programming
(MILP) form, by deriving a set of global upper and lower
piecewise-linear (PWL) bounds over each activation function
in the NN over the whole input space, and performing lin-
ear encoding of the (generally non-linear) similarity metric
dfair(x

′, x′′). The formulation of our optimisation as a MILP
allows us to compute an anytime, worst-case bound on IF,
which can thus be computed using standard solvers from the
global optimisation literature [Dantzig, 2016]. Furthermore,
we demonstrate how our approach can be embedded into the
NN training so as to optimise for individual fairness at train-
ing time. We do this by performing gradient descent on a
weighted loss that also accounts for the maximum δ-variation
in dfair-neighborhoods for each training point, similarly to
what is done in adversarial learning [Goodfellow et al., 2015;
Wicker et al., 2021].

We apply our method on four benchmarks widely em-
ployed in the fairness literature, namely, the Adult, German,

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

651

Credit and Crime datasets1, and an array of similarity met-
rics learnt from data that include ℓ∞, Mahalanobis, and NN
embeddings. We empirically demonstrate how our method
is able to provide the first, non-trivial IF certificates for NNs
commonly employed for tasks from the IF literature, and even
larger NNs comprising up to thousands of neurons. Further-
more, we find that our MILP-based fair training approach
consistently outperforms, in terms of IF guarantees, NNs
trained with a competitive state-of-the-art technique by orders
of magnitude, albeit at an increased computational cost.

The paper makes the following main contributions:2

• We design a MILP-based, anytime verification approach
for the certification of IF as a global property on NNs.

• We demonstrate how our technique can be used to mod-
ify the loss function of a NN to take into account certifi-
cation of IF at training time.

• On four datasets, and an array of metrics, we show how
our techniques obtain non-trivial IF certificates and train
NNs that are significantly fairer than state-of-the-art.

Related Work. A number of works have considered IF by
employing techniques from adversarial robustness. [Yeom
and Fredrikson, 2021] rely on randomized smoothing to find
the highest stable per-feature difference in a model. Their
method, however, provides only (weak) guarantees on model
statistics. [Yurochkin et al., 2020] present a method for IF
training that builds on projected gradient descent and optimal
transport. While the method is found to decrease model bias
to state-of-the-art results, no formal guarantees are obtained.
[Ruoss et al., 2020] adapted the MILP formulation for adver-
sarial robustness to handle fair metric embeddings. However,
rather than tackling the IF problem globally as introduced by
[Dwork et al., 2012], the method only works iteratively on
a finite set of data, hence leaving open the possibility of un-
fairness in the model. In contrast, the MILP encoding we
obtain through PWL bounding of activations and similarity
metrics allows us to provide guarantees over any possible pair
of individuals. [Urban et al., 2020] employ static analysis
to certify causal fairness. While this method yields global
guarantees, it cannot be straightforwardly employed for IF,
and it is not anytime, making exhaustive analysis impracti-
cal. [John et al., 2020] present a method for the computation
of IF, though limited to linear and kernel models. MILP and
linear relaxation have been employed to certify NNs in local
adversarial settings [Ehlers, 2017; Tjeng et al., 2018; Wicker
et al., 2020]. However, local approximations cannot be em-
ployed for the global IF problem. While [Katz et al., 2017;
Leino et al., 2021] consider global robustness, their methods
are restricted to ℓp metrics. Furthermore, they require the
knowledge of a Lipschitz constant or are limited to ReLU.

2 Individual Fairness
We focus on regression and binary classification with NNs
with real-valued inputs and one-hot encoded categorical

1http://archive.ics.uci.edu/ml
2Proofs and additional details can be found in Appendix of an

extended version of the paper available at http://www.fun2model.
org/bibitem.php?key=BPW+22.

features.3 Such frameworks are often used in automated
decision-making, e.g. for loan applications [Hardt et al.,
2016]. Formally, given a compact input set X ⊆ Rn and
an output set Y ⊆ R, we consider an L layer fully-connected
NN fw : X → Y , parameterised by a vector of weights
w ∈ Rnw trained on D = {(xi, yi), i ∈ {1, ..., nd}}. For
an input x ∈ X , i = 1, . . . , L and j = 1, . . . , ni, the NN is
defined as:

ϕ
(i)
j =

ni−1∑
k=1

W
(i)
jk ζ

(i−1)
k + b

(i)
j , ζ

(i)
j = σ(i)

(
ϕ
(i)
j

)
(1)

where ζ
(0)
j = xj . Here, ni is the number of units in the ith

layer, W (i)
jk and b

(i)
j are its weights and biases, σ(i) is the

activation function, ϕ(i) is the pre-activation and ζ(i) the ac-
tivation. The NN output is the result of these computations,
fw(x) := ζ(L). In regression, fw(x) is the prediction, while
for classification it represents the class probability. In this pa-
per we focus on fully-connected NNs as widely employed in
the IF literature[Yurochkin et al., 2020; Urban et al., 2020;
Ruoss et al., 2020]. However, we should stress that our
framework, being based on MILP, can be easily extended to
convolutional, max-pool and batch-norm layers or res-nets by
using embedding techniques from the adversarial robustness
literature (see e.g. [Boopathy et al., 2019].
Individual Fairness. Given a NN fw, IF [Dwork et al.,
2012] enforces the property that similar individuals are sim-
ilarly treated. Similarity is defined according to a task-
dependent pseudometric, dfair : X × X 7→ R≥0, provided
by a domain expert (e.g., a Mahalanobis distance correlat-
ing each feature to the sensitive one), whereas similarity of
treatment is expressed via the absolute difference on the NN
output fw(x). We adopt the ϵ-δ-IF formulation of [John et
al., 2020] for the formalisation of input-output IF similarity.
Definition 1 (ϵ-δ-IF [John et al., 2020]). Consider ϵ ≥ 0 and
δ ≥ 0. We say that fw is ϵ-δ-individually fair w.r.t. dfair iff

∀x′, x′′ s.t. dfair(x
′, x′′) ≤ ϵ =⇒ |fw(x′)− fw(x′′)| ≤ δ.

Here, ϵ measures similarity between individuals and δ is
the difference in outcomes (class probability for classifi-
cation). We emphasise that individual fairness is a global
notion, as the condition in Definition 1 must hold for all pairs
of points in X . We remark that the ϵ-δ-IF formulation of
[John et al., 2020] (which is more general than IF formula-
tion typically used in the literature [Yurochkin et al., 2020;
Ruoss et al., 2020]) is a slight variation on the Lipschitz
property introduced by [Dwork et al., 2012]. While introduc-
ing greater flexibility thanks to its parametric form, it makes
an IF parametric analysis necessary at test time. In Section 4
we analyse how ϵ-δ-IF of NNs is affected by variations of ϵ
and δ. A crucial component of IF is the similarity dfair. The
intuition is that sensitive features, or their sensitive combina-
tion, should not influence the NN output. While a number of
metrics has been discussed in the literature [Ilvento, 2020],
we focus on the following representative set of metrics which
can be automatically learnt from data [John et al., 2020;

3Multi-class can be tackled with component-wise analyses.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

652

http://www.fun2model.org/bibitem.php?key=BPW+22
http://www.fun2model.org/bibitem.php?key=BPW+22

Ruoss et al., 2020; Mukherjee et al., 2020;
Yurochkin et al., 2020]. Details on metric learning is
given in Appendix B.

Weighted ℓp. In this case dfair(x
′, x′′) is de-

fined as a weighted version of an ℓp metric, i.e.
dfair(x

′, x′′) = p
√∑n

i=1 θi|x′
i − x′′

i |p. Intuitively, we
set the weights θi related to sensitive features to zero, so that
two individuals are considered similar if they only differ with
respect to those. The weights θi for the remaining features
can be tuned according to their degree of correlation to the
sensitive features.

Mahalanobis. In this case we have dfair(x
′, x′′) =√

(x′ − x′′)TS(x′ − x′′), for a given positive semi-definite
(SPD) matrix S. The Mahalanobis distance generalises the ℓ2
metric by taking into account the intra-correlation of features
to capture latent dependencies w.r.t. the sensitive features.

Feature Embedding. The metric is computed on an em-
bedding, so that dfair(x

′, x′′) = d̂(φ(x′), φ(x′′)), where d̂ is
either the Mahalanobis or the weighted ℓp metric, and φ is a
feature embedding map. These allow for greater modelling
flexibility, at the cost of reduced interpretability.

2.1 Problem Formulation
We aim at certifying ϵ-δ-IF for NNs. To this end we formalise
two problems: computing certificates and training for IF.

Problem 1 (Fairness Certification). Given a trained NN fw,
a similarity dfair and a distance threshold ϵ ≥ 0, compute

δmax = max
x′,x′′∈X

dfair(x
′,x′′)≤ϵ

|fw(x′)− fw(x′′)|.

Problem 1 provides a formulation in terms of optimisation,
seeking to compute the maximum output change δmax for any
pair of input points whose dfair distance is no more than ϵ.
One can then compare δmax with any threshold δ: if δmax ≤ δ
holds then the model fw has been certified to be ϵ-δ-IF.

While Problem 1 is concerned with an already trained NN,
the methods we develop can also be employed to encourage
IF at training time. Similarly to the approaches for adversarial
learning [Goodfellow et al., 2015], we modify the training
loss L(fw(x), y) to balance between the model fit and IF.

Problem 2 (Fairness Training). Consider an NN fw, a train-
ing set D, a similarity metric dfair and a distance threshold
ϵ ≥ 0. Let λ ∈ [0, 1] be a constant. Define the IF-fair loss as

Lfair(f
w(xi), yi, f

w(x∗
i), λ) =

λL(fw(xi), yi) + (1− λ)|fw(xi)− fw(x∗
i)|,

where x∗
i = argmaxx∈X s.t. dfair(xi,x)≤ϵ |fw(xi) − fw(x)|.

The ϵ-IF training problem is defined as finding wfair s.t.:

wfair = argmin
w

nd∑
i=1

Lfair(f
w(xi), yi).

In Problem 2 we seek to train a NN that not only is ac-
curate, but whose predictions are also fair according to Def-
inition 1. Parameter λ balances between accuracy and IF. In
particular, for λ = 1 we recover the standard training that
does not account for IF, while for λ = 0 we only consider IF.

3 A MILP Approach For Individual Fairness
Certification of individual fairness on a NN thus requires us to
solve the following global, non-convex optimisation problem:

max
x′,x′′∈X

|δ|

subject to δ = fw(x′)− fw(x′′) (2)

dfair(x
′, x′′) ≤ ϵ. (3)

We develop a Mixed-Integer Linear Programming (MILP)
over-approximation (i.e., providing a sound bound) to this
problem. We notice that there are two sources of non-linearity
here, one induced by the NN (Equation (2)), which we refer
to as the model constraint, and the other by the fairness met-
ric (Equation (3)), which we call fairness constraint. In the
following, we show how these can be modularly bounded by
piecewise-linear functions. In Section 3.3 we bring the results
together to derive a MILP formulation for ϵ-δ-IF.

3.1 Model Constraint
We develop a scheme based on piecewise-linear (PWL) upper
and lower bounding for over-approximating all commonly
used non-linear activation functions. An illustration of the
PWL bound is given in Figure 1. Let ϕ(i)L

j and ϕ
(i)U
j ∈ R be

lower and upper bounds on the pre-activation ϕ
(i)
j .4 We pro-

ceed by building a discretisation grid over the ϕ
(i)
j values on

M grid points: ϕgrid = [ϕ
(i)
j,0, . . . , ϕ

(i)
j,M], with ϕ

(i)
j,0 := ϕ

(i)L
j

and ϕ
(i)
j,M := ϕ

(i)U
j , such that, in each partition interval

[ϕ
(i)
j,l , ϕ

(i)
j,l+1], we have that σ(i) is either convex or concave.

We then compute linear lower and upper bound functions for
σ(i) in each [ϕ

(i)
j,l , ϕ

(i)
j,l+1] as follows. If σ(i) is convex (resp.

concave) in [ϕ
(i)
j,l , ϕ

(i)
j,l+1], then an upper (resp. lower) linear

bound is given by the segment connecting the two extremum
points of the interval, and a lower (resp. upper) linear bound
is given by the tangent through the mid-point of the interval.
We then compute the values of each linear bound in each of
its grid points, and select the minimum of the lower bounds
and the maximum of the upper bound values, which we
store in two vectors ζPWL,(i),U

j = [ζ
PWL,(i),U
j,0 , . . . , ζ

PWL,(i),U
j,M]

and ζ
PWL,(i),L
j = [ζ

PWL,(i),L
j,0 , . . . , ζ

PWL,(i),L
j,M]. The following

lemma is a consequence of this construction.

Lemma 1. Let ϕ ∈ [ϕ
(i)L
j , ϕ

(i)U
j]. Denote with l the index as-

sociated to the partition of ϕgrid in which ϕ falls and consider
η ∈ [0, 1] such that ϕ = ηϕ

(i)L
j,l−1 + (1− η)ϕ

(i)L
j,l . Then:

σ(i)(ϕ) ≥ ηζ
PWL,(i),L
j,l−1 + (1− η)ζ

PWL,(i),L
j,l ,

σ(i)(ϕ) ≤ ηζ
PWL,(i),U
j,l−1 + (1− η)ζ

PWL,(i),U
j,l ,

4Computed by bound propagation over X [Ehlers, 2017].

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

653

Figure 1: Upper and lower PWL functions to sigmoid for an increasing number of partition points M (marked with red ticks).

that is, ζ
PWL,(i),L
j and ζ

PWL,(i),U
j define continuous PWL

lower and upper bounds for ϕ in [ϕ
(i)L
j , ϕ

(i)U
j].

Lemma 3.1 guarantees that we can bound the non-linear
activation functions using PWL functions. Crucially, PWL
functions can then be encoded into the MILP constraints.
Proposition 1. Let y(i)j,l for l = 1, . . . ,M , be binary vari-

ables, and η
(i)
j,l ∈ [0, 1] be continuous ones. Consider ϕ(i)

j ∈
[ϕ

(i)L
j , ϕ

(i)U
j] then it follows that ζ(i)j = σ(i)

(
ϕ
(i)
j

)
implies:

M∑
l=1

y
(i)
j,l = 1,

M∑
l=1

η
(i)
j,l = 1, ϕ

(i)
j =

M∑
l=1

ϕ
(i)L
j,l η

(i)
j,l , y

(i)
j,l ≤

η
(i)
j,l + η

(i)
j,l+1,

M∑
l=1

ζ
PWL,(i),L
j,l η

(i)
j,l ≤ ζ

(i)
j ≤

M∑
l=1

ζ
PWL,(i),U
j,l η

(i)
j,l .

A proof can be found in Appendix A. Proposition 1 en-
sures that the global behaviour of each NN neuron can be
over-approximated by 5 linear constraints using 2M auxiliary
variables. Employing Proposition 1 we can encode the model
constraint of Equation (2) into the MILP form in a sound way.

The over-approximation error does not depend on the
MILP formulation (which is exact), but on the PWL bound-
ing, and is hence controllable through the selection of the
number of grid points M , and becomes exact in the limit.
Notice that in the particular case of ReLU activation func-
tions the over-approximation is exact for any M > 0.

Proposition 2. Assume σ(i) to be continuously differentiable
everywhere in [ϕ

(i)L
j , ϕ

(i)U
j], except possibly in a finite set.

Then PWL lower and upper bounding functions of Lemma
3.1 converge uniformly to σ(i) as M goes to infinity.

Furthermore, define ∆M = (ϕ
(i)U
j − ϕ

(i)L
j)/M , then

for finite values of M the error on the lower (resp. up-
per) bounding in convex (resp. concave) regions of σ(i) for
ϕ ∈ [ϕ

(i)
j,l , ϕ

(i)
j,l+1] is given by:

e1(ϕ) ≤
∆M

2

(
σ′(ϕ

(i)
j,l+1)− σ′

(
ϕ
(i)
j,l+1 −

∆M

2

))
and upper (resp. lower) in concave (resp. convex) regions:

e2(ϕ) ≤ ∆M

σ
(
ϕ
(i)
j,l +∆M

)
− σ(ϕ

(i)
j,l)

∆M
+ σ′(ϕ

(i)
j,l)

 .

A proof of Proposition 2 is given in Appendix A, alongside
an experimental analysis of the convergence rate.

We remark that the PWL bound can be used over all com-
monly employed activation functions σ. The only assumption
made is that σ has a finite number of inflection points over
any compact interval of R. For convergence (Prop. 2) we re-
quire continuous differentiability almost everywhere, which
is satisfied by commonly used activations.

3.2 Fairness Constraint

The encoding of the fairness constraint within the MILP for-
mulation depends on the specific form of the metric dfair.
Weighted ℓp Metric: The weighted ℓp metric can be tackled
by employing rectangular approximation regions. While this
is straightforward for the ℓ∞ metric, for the remaining cases
interval abstraction can be used [Dantzig, 2016].
Mahalanobis Metric: We first compute an orthogonal de-
composition of S as in UTSU = Λ, where U is the eigenvec-
tor matrix of S and Λ is a diagonal matrix with S eigenvalues
as entries. Consider the rotated variables z′ = UTx′ and
z′′ = UTx′′, then we have that Equation (3) can be re-written
as (z′−z′′)TΛ(z′−z′′) ≤ ϵ2. By simple algebra we thus have
that, for each i, (z′i−z′′i)

2 ≤ ϵ2

Λii
. By transforming back to the

original variables, we obtain that Equation (3) can be over-
approximated by: − ϵ√

diag(Λ)
≤ UTx′ − UTx′′ ≤ ϵ√

diag(Λ)
.

Feature Embedding Metric We tackle the case in which
φ used in the metric definition, i.e. dfair(x

′, x′′) =

d̂(φ(x′), φ(x′′)), is a NN embedding. This is straightforward
as φ can be encoded into MILP as for the model constraint.

3.3 Overall Formulation

We now formulate the MILP encoding for the over-
approximation δ∗ ≥ δmax of ϵ-δ-IF. For Equation (2), we
proceed by deriving a set of approximating constraints for
the variables x′ and x′′ by using the techniques described in
Section 3.1. We denote the corresponding variables as ϕ′(i)

j ,

ζ
′(i)
j and ϕ

′′(i)
j , ζ ′′(i)j , respectively. The NN final output on x′

and on x′′ will then respectively be ζ ′(L) and ζ ′′(L), so that
δ = ζ ′(L) − ζ ′′(L). Finally, we over-approximate Equation
(3) as described in Section 3.2. In the case of Mahalanobis

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

654

Figure 2: Certified bounds on IF (δ∗) for different architecture parameters (widths and depths) and maximum similarity (ϵ) for the Adult and
the Crime datasets. Top Row: Mahalanobis metric used for dfair. Bottom Row: Weighted ℓ∞ metric used for dfair.

distance, we thus obtain:
max

x′,x′′∈X
|δ| (4)

subjectto = ζ ′(L) − ζ ′′(L)

for i = 1, . . . , L, j = 1, . . . , ni, † ∈ {′,′′ } :

M∑
l=1

y
†(i)
j,l = 1,

M∑
l=1

η
†(i)
j,l = 1, y

(i)
j,l ≤ η

(i)
j,l + η

(i)
j,l+1

ϕ
†(i)
j =

ni−1∑
k=1

W
(i)
jk x†

k + b
(i)
j , ϕ

†(i)
j =

M∑
l=1

ϕ
(i)L
j,l η

†(i)
j,l

M∑
l=1

ζ
PWL,(i),L
j,l η

†(i)
j,l ≤ ζ

†(i)
j ≤

M∑
l=1

ζ
PWL,(i),U
j,l η

†(i)
j,l

− ϵ2√
diag(Λ)

≤ Ux′ − Ux′′ ≤ ϵ2√
diag(Λ)

.

Though similar, the above MILP is significantly different
from those used for adversarial robustness (see e.g. [Tjeng et
al., 2018]). First, rather than looking for perturbations around
a fixed a point, here we have both x′ and x′′ as variables.
Furthermore, rather than being local, the MILP problem for
ϵ-δ-IF is global, over the whole input space X . As such, lo-
cal approximations of non-linearities cannot be used, as the
bounding needs to be valid simultaneously over the whole in-
put space. Finally, while in adversarial robustness one can
ignore the last sigmoid layer, for IF, because of the two opti-
misation variables, one cannot simply map from the last pre-
activation value to the class probability, so that even for ReLU
NNs one needs to employ bounding of non-piecewise activa-
tions for the final sigmoid.

By combining the results from this section, we have:
Theorem 1. Consider ϵ ≥ 0, a similarity dfair and a NN
fw. Let x′

∗ and x′′
∗ be the optimal points for the optimisation

problem in Equation (4). Define δ∗ = |fw(x′
∗) − fw(x′′

∗)|.
Then fw is ϵ-δ-individually fair w.r.t. dfair for any δ ≥ δ∗.

Theorem 1, whose proof can be found in Appendix A,
states that a solution of the MILP problem provides us with a
sound estimation of individual fairness of an NN. Crucially, it
can be shown that branch-and-bound techniques for the solu-
tion of MILP problems converge in finite time to the optimal
solution [Del Pia and Weismantel, 2012], while furthermore
providing us with upper and lower bounds for the optimal
value at each iteration step. Therefore, we have:
Corollary 1. Let δLk and δUk lower and upper bounds com-
puted by a MILP solver at step k > 0. Then we have that:
δLk ≤ δ∗ ≤ δUk . Furthermore, given a precision, τ , there exist
a finite k∗ such that δUk∗

− δLk∗
≤ τ .

That is, our method is sound and anytime, as at each itera-
tion step in the MILP solving we can retrieve a lower and an
upper bound on δ∗, which can thus be used to provide prov-
able guarantees while converging to δ∗ in finite time.
Complexity Analysis. The encoding of the model con-
straint can be done in O(LMnmax), where nmax is the max-
imum width of fw, L is the number of layers, and M is the
number of grid points used for the PWL bound. The com-
putational complexity of the fairness constraints depends on
the similarity metric employed. While for ℓ∞ no process-
ing needs to be done, the computational complexity is O(n3)
for the Mahalanobis distance and again O(LMnmax) for the
feature embedding metric. Each iteration of the MILP solver
entails the solution of a linear programming problem and is
hence O((MnmaxL)

3). Finite time convergence of the MILP
solver to δ∗ with precision τ is exponential in the number of
problem variables, in τ and ϵ.

3.4 Fairness Training for Neural Networks
The ϵ-δ-IF MILP formulation introduced in Section 3 can
be adapted for the solution of Problem 2. The key step
is the computation of x∗

i in the second component of the
modified loss introduced in Problem 2, which is used to
introduce fairness directly into the loss of the neural net-
work. This computation can be done by observing that, for

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

655

every training point xi drawn from D, the computation of
x∗
i = argmaxx∈X s.t. dx(xi,x)≤ϵ |fw(xi) − fw(x)| is a par-

ticular case of the formulation described in Section 3, where,
instead of having two variable input points, only one input
point is a problem variable while the other is given and drawn
from the training dataset D. Therefore, x∗

i can be computed
by solving the MILP problem, where we fix a set of the prob-
lem variables to xi, and can be subsequently used to obtain
the value of the modified loss function. Note that these con-
straints are not cumulative, since they are built for each mini-
batch, and discarded after optimization is solved to update the
weights.

Algorithm 1 Fair Training with MILP.
Input: NN architecture: fw, Dataset: D, Learning rate: α, Itera-
tions: nepoch, Batch Size: nbatch, Similarity metric: dfair, Maximum
similarity: ϵ, Fairness Loss Weighting: λ.
Output: wfair: weight values balancing between accuracy and fair-
ness.
B1: wfair ← InitWeights(fw)
2: for t = 1, . . . , nepoch do
3: for b = 1, . . . , ⌈|D|/nbatch⌉ do
4: {X,Y } ← {xi, yi}nbatch

i=0 ∼ D #Sample Batch
5: Yclean ← fw(X) #Standard forward pass
6: [ϕ′, ζ′,ϕ′′, ζ′′]← InitMILP (fw, dfair, ϵ) # Section 3
7: XMILP ← ∅
8: for i = 0, . . . nbatch do
9: ϕ′

i, ζ
′
i ← FixV arConst(xi) #Fix constraints

10: x∗
i ←MILP (xi,ϕ

′
i, ζ

′
i) # Solve ‘local’ MILP prob.

11: XMILP ← XMILP
⋃
{x∗

i }
12: end for
13: YMILP ← fw(XMILP) #MILP inputs forward pass
14: l← Lfair(Yclean, Y, YMILP, λ) #Fair Loss
15: wfair ← wfair − α∇wl #Optimizer step (here, SGD)
16: end for
17: end for
18: return wfair #Weights optimized for fairness & accuracy

We summarise our fairness training method in Algo-
rithm 1. For each batch in each of the nepoch training epochs,
we perform a forward pass of the NN to obtain the output,
Yclean (line 5). We then formulate the MILP problem as in
Section 3 (line 6), and initialise an empty set variable to col-
lect the solutions to the various sub-problems (line 7). Then,
for each training point xi in the mini-batch, we fix the MILP
constraints to the variables associated with xi (line 9), solve
the resulting MILP for x∗

i , and place x∗
i in the set that col-

lects the solutions, i.e. XMILP. Finally, we compute the NN
predictions on XMILP (line 13); the result is used to compute
the modified loss function (line 14) and the weights are up-
dated by taking a step of gradient descent. The resulting set
of weights wfair balances the empirical accuracy and fairness
around the training points.

The choice of λ affects the relative importance of standard
training w.r.t. the fairness constraint: λ = 1 is equivalent to
standard training, while λ = 0 only optimises for fairness.
In our experiments we keep λ = 1 for half of the training
epochs, and then change it to λ = 0.5.

Figure 3: Balanced accuracy / individual fairness trade-off for NNs.

4 Experiments
In this section, we empirically validate the effectiveness of
our MILP formulation for computing ϵ-δ-IF guarantees as
well as for fairness training of NNs. We perform our experi-
ments on four UCI datasets: the Adult dataset (predicting in-
come), the Credit dataset (predicting payment defaults), the
German dataset (predicting credit risk) and the Crime dataset
(predicting violent crime). In each case, features encoding
information regarding gender or race are considered sensi-
tive. In the certification experiments we employ a precision
τ for the MILP solvers of 10−5 and a time cutoff of 180 sec-
onds. We compare our training approach with two different
learning methods: Fairness-Through-Unawareness (FTU), in
which the sensitive features are simply removed, and SenSR
[Yurochkin et al., 2020]. Exploration of the cutoff, group fair-
ness, certification of additional NNs, scalability of the meth-
ods and additional details on the experimental settings are
given in Appendix C and D.5

Fairness Certification. We analyse the suitability of our
method in providing non-trivial certificates on ϵ-δ-IF with
respect to the similarity threshold ϵ (which we vary from
0.01 to 0.25), the similarity metric dfair , the width of the
NN (from 8 to 64), and its number of layers (from 1 to 4).
These reflect the characteristics of NNs and metrics used in
the IF literature [Yurochkin et al., 2020; Ruoss et al., 2020;
Urban et al., 2020]; for experiments on larger architec-
tures, demonstrating the scalability of our approach, see Ap-
pendix D.3. For each dataset we train the NNs by employing
the FTU approach. The results for these analyses are plotted
in Figure 2 for the Adult and the Crime datasets (results for
Credit and German datasets can be found in Appendix D.1).
Each heat map depicts the variation of δ∗ as a function of ϵ
and the NN architecture. The top row in the figure was com-
puted by considering the Mahalanobis similarity metric; the

5An implementation of the method and of the experiments can be
found at https://github.com/eliasbenussi/nn-cert-individual-fairness.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

656

https://github.com/eliasbenussi/nn-cert-individual-fairness

Figure 4: Certified δ∗ as a function of the maximum similarity ϵ.

bottom row was computed for a weighted ℓ∞ metric (with co-
efficients chosen as in [John et al., 2020]) and results for the
feature embedding metrics are given in Appendix D.2. As
one might expect, we observe that, across all the datasets and
architectures, increasing ϵ correlates with an increase in the
values for δ∗, as higher values of ϵ allow for greater feature
changes. Interestingly, δ∗ tends to decrease (i.e., the NN be-
comes more fair) as we increase the number of NN layers.
This is the opposite to what is observed for the adversarial
robustness, where increased capacity generally implies more
fragile models [Madry et al., 2018]. In fact, as those NNs are
trained via FTU, the main sensitive features are not accessi-
ble to the NN. A possible explanation is that, as the number of
layers increases, the NN’s dependency on the specific value
of each feature diminishes, and the output becomes dependent
on their nonlinear combination. The result suggests that over-
parametrised NNs could be more adept at solving IF tasks
though this would come with a loss of model interpretability,
and exploration would be needed to assess under which con-
dition this holds. Finally, we observe that our analysis con-
firms how FTU training is generally insufficient in providing
fairness on the model behaviour for ϵ-δ-IF. For each model,
individuals that are dissimilar by ϵ ≥ 0.25 can already yield
a δ∗ > 0.5, meaning they would get assigned to different
classes if one was using the standard classification threshold.

Fairness Training. We investigate the behaviour of our
fairness training algorithm for improving ϵ-δ-IF of NNs. We
compare our method with FTU and SenSR [Yurochkin et al.,
2020]. For ease of comparison, in the rest of this section we
measure fairness with dfair equal to the Mahalanobis similar-
ity metric, with ϵ = 0.2, for which SenSR was developed.
The results for this analysis are given in Figure 3, where
each point in the scatter plot represents the values obtained
for a given NN architecture. We train architectures with up
to 2 hidden layers and 64 units, in order to be comparable
to those trained by [Yurochkin et al., 2020]. As expected,

we observe that FTU performs the worst in terms of certi-
fied fairness, as simple omission of the sensitive features is
unable to obfuscate latent dependencies between the sensi-
tive and non-sensitive features. As previously reported in the
literature, SenSR significantly improves on FTU by account-
ing for features latent dependencies. However, on all four
datasets, our MILP-based training methodology consistently
improves IF by orders of magnitude across all the architec-
tures when compared to SenSR. In particular, for the archi-
tectures with more than one hidden layer, on average, MILP
outperforms FTU by a factor of 78598 and SenSR by 27739.
Intuitively, while SenSR and our approach have a similar for-
mulation, the former is based on gradient optimisation so that
no guarantees are provided in the worst case for the training
loss. In contrast, by relying on MILP, our method optimises
the worst-case behaviour of the NN at each step, which fur-
ther encourages training of individually fair models. The cost
of the markedly improved guarantees is, of course, a higher
computational costs. In fact, the training of the models in
Figure 3 with MILP had an average training time of about
3 hours. While the increased cost is significant, we highlight
that this is a cost that is only paid once and may be justified in
sensitive applications by the necessity of fairness at deploy-
ment time. We furthermore notice that, while our implemen-
tation is sequential, parallel per-batch solution of the MILP
problems during training would markedly reduce the compu-
tational time and leave for future work the parallelisation and
tensorisation of the techniques. Interestingly, we find that bal-
anced accuracy also slightly improved with SenSR and MILP
training in the tasks considered here, possibly as a result of
the bias in the class labels w.r.t. sensitive features. Finally, in
Figure 4 we further analyse the certified δ∗-profile w.r.t. to the
input similarity ϵ, varying the value of ϵ used in for the ceri-
tification of ϵ-δ-IF. In the experiment, both SenSR and MILP
are trained with ϵ = 0.2, which means that our method, based
on formal IF certificates, is guaranteed to outperform SenSR
up until ϵ = 0.2 (as in fact is the case). Beyond 0.2, no such
statement can be made, and it is still theoretically possible
for SenSR to outperform MILP in particular circumstances.
Empirically, however, MILP-based training still largely out-
performs SenSR in terms of certified fairness obtained.

5 Conclusion
We introduced an anytime MILP-based method for the certi-
fication and training of ϵ-δ-IF in NNs, based on PWL bound-
ing and MILP encoding of non-linearities and similarity met-
rics. In an experimental evaluation comprising four datasets,
a selection of widely employed NN architectures and three
types of similarity metrics, we found that our method is able
to provide the first non-trivial certificates for ϵ-δ-IF in NNs
and yields NNs which are orders of magnitude more fair than
those obtained by a competitive techniques.

Acknowledgements
This project was funded by the ERC European Union’s
Horizon 2020 research and innovation programme
(FUN2MODEL, grant agreement No. 834115).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

657

References
[Albarghouthi et al., 2017] Aws Albarghouthi, Loris

D’Antoni, Samuel Drews, and Aditya V Nori. Fairsquare:
probabilistic verification of program fairness. Pro-
ceedings of the ACM on Programming Languages,
1(OOPSLA):1–30, 2017.

[Angwin et al., 2016] Julia Angwin, Jeff Larson, Surya
Mattu, and Lauren Kirchner. Machine bias. In Ethics
of Data and Analytics, pages 254–264. Auerbach Publi-
cations, 2016.

[Barocas and Selbst, 2016] Solon Barocas and Andrew D
Selbst. Big data’s disparate impact. Calif. L. Rev.,
104:671–733, 2016.

[Bastani et al., 2019] Osbert Bastani, Xin Zhang, and Ar-
mando Solar-Lezama. Probabilistic verification of fairness
properties via concentration. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):1–27, 2019.

[Bolukbasi et al., 2016] Tolga Bolukbasi, Kai-Wei Chang,
James Y Zou, Venkatesh Saligrama, and Adam T Kalai.
Man is to computer programmer as woman is to home-
maker? debiasing word embeddings. NeurIPS, 29:4349–
4357, 2016.

[Boopathy et al., 2019] Akhilan Boopathy, Tsui-Wei Weng,
Pin-Yu Chen, Sijia Liu, and Luca Daniel. Cnn-cert: An
efficient framework for certifying robustness of convolu-
tional neural networks. In AAAI, volume 33, pages 3240–
3247, 2019.

[Dantzig, 2016] George Dantzig. Linear programming and
extensions. Princeton university press, 2016.

[Del Pia and Weismantel, 2012] Alberto Del Pia and Robert
Weismantel. On convergence in mixed integer pro-
gramming. Mathematical programming, 135(1):397–412,
2012.

[Dwork et al., 2012] Cynthia Dwork, Moritz Hardt, Toniann
Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations
in theoretical computer science conference, pages 214–
226, 2012.

[Ehlers, 2017] Ruediger Ehlers. Formal verification of piece-
wise linear feed-forward neural networks. In International
Symposium on Automated Technology for Verification and
Analysis, pages 269–286. Springer, 2017.

[Goodfellow et al., 2015] Ian J. Goodfellow, Jonathon
Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In ICLR, 2015.

[Hardt et al., 2016] Moritz Hardt, Eric Price, and Nati Sre-
bro. Equality of opportunity in supervised learning.
NeurIPS, 29:3315–3323, 2016.

[Ilvento, 2020] Christina Ilvento. Metric learning for indi-
vidual fairness. In 1st Symposium on Foundations of Re-
sponsible Computing, 2020.

[John et al., 2020] Philips George John, Deepak Vijay-
keerthy, and Diptikalyan Saha. Verifying individual fair-
ness in machine learning models. In UAI, pages 749–758.
PMLR, 2020.

[Katz et al., 2017] Guy Katz, Clark Barrett, David L Dill,
Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In
International conference on computer aided verification,
pages 97–117. Springer, 2017.

[Kirk et al., 2021] Hannah Rose Kirk, Filippo Volpin,
Haider Iqbal, Elias Benussi, Frederic Dreyer, Aleksandar
Shtedritski, Yuki Asano, et al. Bias out-of-the-box: An
empirical analysis of intersectional occupational biases in
popular generative language models. NeurIPS, 34:2611–
2624, 2021.

[Leino et al., 2021] Klas Leino, Zifan Wang, and Matt
Fredrikson. Globally-robust neural networks. In Inter-
national Conference on Machine Learning, pages 6212–
6222. PMLR, 2021.

[Madry et al., 2018] Aleksander Madry, Aleksandar
Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018.

[McNamara et al., 2017] Daniel McNamara, Cheng Soon
Ong, and Robert C. Williamson. Provably fair represen-
tations. CoRR, abs/1710.04394, 2017.

[Mukherjee et al., 2020] Debarghya Mukherjee, Mikhail
Yurochkin, Moulinath Banerjee, and Yuekai Sun. Two
simple ways to learn individual fairness metrics from data.
In International Conference on Machine Learning, pages
7097–7107. PMLR, 2020.

[Ruoss et al., 2020] Anian Ruoss, Mislav Balunovic, Marc
Fischer, and Martin Vechev. Learning certified individu-
ally fair representations. NeurIPS, 33:7584–7596, 2020.

[Tjeng et al., 2018] Vincent Tjeng, Kai Y Xiao, and Russ
Tedrake. Evaluating robustness of neural networks with
mixed integer programming. In ICLR, 2018.

[Urban et al., 2020] Caterina Urban, Maria Christakis,
Valentin Wüstholz, and Fuyuan Zhang. Perfectly par-
allel fairness certification of neural networks. ACM on
Programming Languages, 4(OOPSLA):1–30, 2020.

[Wicker et al., 2020] Matthew Wicker, Luca Laurenti, An-
drea Patane, and Marta Kwiatkowska. Probabilistic safety
for bayesian neural networks. In UAI, pages 1198–1207.
PMLR, 2020.

[Wicker et al., 2021] Matthew Wicker, Luca Laurenti, An-
drea Patane, Zhuotong Chen, Zheng Zhang, and Marta
Kwiatkowska. Bayesian inference with certifiable adver-
sarial robustness. In AISTATS, pages 2431–2439. PMLR,
2021.

[Yeom and Fredrikson, 2021] Samuel Yeom and Matt
Fredrikson. Individual fairness revisited: transferring
techniques from adversarial robustness. In IJCAI, pages
437–443, 2021.

[Yurochkin et al., 2020] Mikhail Yurochkin, Amanda
Bower, and Yuekai Sun. Training individually fair ml
models with sensitive subspace robustness. In ICLR,
pages 1–18, 2020.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

658

	Introduction
	Individual Fairness
	Problem Formulation

	A MILP Approach For Individual Fairness
	Model Constraint
	Fairness Constraint
	Overall Formulation
	Fairness Training for Neural Networks

	Experiments
	Conclusion

