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ABSTRACT
This paper estimates the impact of quality design attributes on real 
estate value through empirical investigation of the owner-occupied 
multifamily residential sector. The methodological design is based on 
spatiotemporal modelling using a unique data-set of 424 Belfast City 
Centre apartments sold during the period 2000–2008. The key findings 
indicate that urban scale aspects of quality such as connectivity and 
vitality associated with building density add to real estate value. At 
the building level, quality features highly valued by home buyers 
are namely appropriateness of material quality, fenestration and 
massing to the surroundings. These key criteria are considered to 
have a significant visual perception compared to more complex 
concepts such as identity, material choice and overall condition. The 
contribution to knowledge involves extending the hedonic model 
to incorporate a wider selection of design quality variables; and 
improving estimation through the use of spatiotemporal modelling.

1.  Introduction

This paper investigates the impact of quality design attributes on the real estate market 
value of multi-family residential units through an empirical analysis of owner – occupied, 
inner-city apartments in a regional-tier UK city. The multi-family residential sector con-
stitutes a crucial component in ensuring the viability of urban regeneration schemes by 
providing the initial income return necessary to finance the commercial components in 
mixed use city centre developments. The post-1999 urban renaissance agenda provided a 
significant improvement in design standards through the ‘repopulation of and reinvestment 
in the major towns and cities’ (Punter, 2010). Planning policies for increasing densities in 
urban cores, as a crucial factor of good design, have played a key role in shaping the built 
environment of UK cities at the turn of the millennium (Dunse, Thanos, & Bramley, 2013; 
Evans & Unsworth, 2012). While high-quality design is considered an essential element of 
successful urban core redevelopment projects the accrued value is of an intangible nature 
thus leading to wide scepticism about its economic value. This has led to a growing body of 
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literature that investigates the economic value of design through hedonic modelling of real 
estate prices. The study presented in this paper focuses on the urban context of Belfast city 
centre and aims to advance knowledge by extending the hedonic model employing design 
quality variables and improving estimation through the use of spatiotemporal modelling 
techniques.

Quality design plays a key role in the production of a high standard built environment 
which in turn contributes to increased quality of life in towns and cities. This fact has found 
wide acceptance in the planning and design disciplines, however, research emphasises the 
importance of and need for empirical evidence on the economic value of building and 
urban features associated with high quality design. In this context, the main empirical 
advances are observed in hedonic modelling of property markets as the most appropriate 
tool for analysing implicit prices of composite goods based on the theoretical framework 
developed by Lancaster (1966) and Rosen (1974). In the existing body of knowledge only 
a small number of studies has focused on the modelling techniques that reduce bias in 
the parameter estimates for better statistical inference to help informed decision-making 
(Dubé & Legros, 2014; Pace, Barry, Gilley, & Sirmans, 2000; Smith & Wu, 2009; Sun, Tu, & 
Yu, 2005). Additional to its central aim of extending the property price equation to include 
design quality determinants, this paper builds upon previous hedonic studies based on 
design quality through an applied methodology that accounts for the spatial and temporal 
dimensions of property transaction data.

In the following section, the theoretical underpinnings of the paper are investigated. 
The third section includes a synopsis of the data-sets and discusses the construction of the 
variables for subsequent application in the models. The spatiotemporal methodology is the 
focus of the fourth section which details two key themes. Initially, we provide a detailed 
explanation of the specification of weight matrices for the spatiotemporal modelling of the 
real estate data-set. The paper then elaborates on the models and discusses the estimation 
of different variables employed in the empirical analysis. Finally, in part six of the paper we 
draw out the key conclusions and impacts on stakeholders/decision-makers.

2.  Theoretical framework: hedonic prices, quality design and 
spatiotemporal dependence of multi-family residential units

Hedonic price theory has provided a well-grounded framework for empirical analysis in 
the real estate domain where the unit of analysis is a clearly differentiated product whose 
package of characteristics cannot be united (Lancaster, 1966; Rosen, 1974). Particularly 
in the residential property sector broader concepts of urban economic theory have also 
been adopted to extend this ‘package of characteristics’ beyond the property-specific one. 
A consolidated body of knowledge in the urban economic literature has underlined the 
importance of location amenities on house prices (see Gibbons & Machin, 2008 for a 
review). Previous studies have shown, among other factors, the positive impact of recre-
ational amenities namely parks and open space (Anderson & West, 2006; Troy & Grove, 
2008), the negative impact associated with increased crime rates (Gibbons, 2004) and the 
positive impact of school quality (Brasington & Haurin, 2006; Cheshire & Sheppard, 2004). 
Hedonic studies in a design context have exclusively focused on commercial real estate 
and adopted the use of officially designated measures of quality by controlling for specific 
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national or local landmark status (Hough & Kratz, 1983) or have employed measures of 
quality derived from the opinion of experts (Vandell & Lane, 1989).

The subsequent body of knowledge in the field has adopted either of the above approaches 
estimating hedonic models through the use of the ordinary least square method which does 
not take into consideration the spatial dependence in real estate data resulting in potential 
estimation bias. The lack of control for spatial dependence constitutes the main drawback of 
previous studies in a design quality context which this paper attempts to address. Generally, 
this has been treated through controlling for possible rent gradients via distance to the centre 
or to various activities and by including submarket-specific dummies considered as spatial 
fixed effects. While the first approach controls for local amenities but not spatial dependence 
the second approach has been criticised for being unable to remove the spatial autocorre-
lation in the data (Anselin & Arribas-Bel, 2013). This has consequences for the adoption 
of spatial models and the ability to account for omitted variables with spatial dependence 
(LeSage & Pace, 2009). A comprehensive framework that considers different methodological 
issues in hedonic studies of design quality has been suggested by Nase, Berry, and Adair 
(2015). The authors call for, among others, a stronger theoretical basis in the construction 
of design quality variables, a more heuristic approach when specifying the nature of spatial 
interactions (see Corrado & Fingleton, 2012 for more details) and appropriate modelling 
of real estate data to account for the diverse nature of spatial and temporal dimensions (see 
Dubé & Legros, 2014 for more details).

Modelling issues are of particular importance in parameter estimations of hedonic 
studies and significant contributions in this context have been made in the field of spatial 
econometrics. The case for spatial hedonic models mentioned earlier is finding increasing 
acceptance within the real estate literature, however the treatment of the spatial interaction 
effects through the specification of the spatial weight matrix is its most critiqued aspect. The 
first critique is the lack of theory in the a priori specification of the spatial weight matrix 
by researchers (Corrado & Fingleton, 2012; Gibbons & Overman, 2012; Harris, Moffat, & 
Kravtsova, 2011). The second critique is the specification of cross-sectional spatial weight 
matrices for property transactions generally appearing in data-sets that have been described 
as spatial data pooled over time (Dubé & Legros, 2014). This specification does not account 
for the unidirectional time dependence in real estate data and incorrectly implies that house 
prices can be influenced by future transactions.

A growing body of literature is addressing this issue through ‘spatiotemporal’ models 
that account for both the space and time dimension of spatially dependent data observed 
over a period of time. The first studies in this context are those of Pace, Barry, Clapp, and 
Rodriquez (1998) and Pace et al. (2000) applied in the single-family residential sector. 
The approach employed by Pace involves specifying different weighting schemes for space 
and time and subsequently, through matrix multiplication, applying two filters for space 
first and then time and for time first and then space. This methodology was extended to 
multifamily residential units by Sun et al. (2005) through separately accounting for neigh-
bourhood and building-specific effects that arise in this sector. Their model further divided 
the spatial weight matrix into building and neighbourhood, respectively; and applied the 
same spatiotemporal filtering, resulting in a model that could suffer from over-parameter-
isation and multicollinearity issues in small to medium data-sets. This issue was further 
addressed by Smith and Wu (2009) who proposed a unit by unit (also known as Hadamard) 
multiplication of the weight matrices. As the data are ordered temporally, time dependence 



312   ﻿ I. NASE ET AL.

could be restricted so that prices can be influenced only through past transactions. In the 
analysis of apartment units a final consideration was suggested by Dubé and Legros (2014) 
who adopt the spatiotemporal weighting framework resulting from the Hadamard matrix 
product to restrict multidimensional spatial interactions to same period transactions. For 
unidirectional spatiotemporal effects, the authors combine the neighbourhood and build-
ing weight matrices so that the former are represented by a distance decay function with 
a cut-off point and same building transactions are given a weight of one. In the empirical 
analysis detailed later in this paper we adopt the latter approach.

3.  Data and variable description

The residential transaction database used in this empirical study was obtained from the 
records of the Ulster University Quarterly House Price Index (NIQHPI). It comprises 424 

Table 1. Variable names, descriptions and statistics.

Variable name Description Min. Max. Mean SD
Price (Y) Apartment transaction price in £ (in log form) 10.7986 12.4212 11.6304 0.3517
Age Age of apartment in years (in log form) 1.0986 3.2189 2.2211 0.3902
Area Area of apartment in m2 (in log form) 3.7550 4.7877 4.2081 0.1585
Garage Dummy variable for presence of a garage 0.0 1.0 .073 .2606
Bedrooms Number of bedrooms in apartment 1.0 4.0 1.856 .5463
Receproom Number of reception rooms in apartment 1.0 2.0 1.014 .1183
Floorno Number of floors in the building where the  

transaction took place (building height proxy)
3.0 10.0 6.849 1.3336

Finishing Appropriateness of exterior finishing to the  
surroundings 

2.0 5.0 2.847 .9290

Identity Appropriateness of building identity to the  
surroundings

2.0 5.0 3.363 .9725

Materialqual Appropriateness of used material’s quality to the 
surroundings

1.0 4.0 2.920 .8383

Fenestration Appropriateness of façade fenestration to the  
surroundings

2.0 4.0 2.698 .6934

Massing Appropriateness of building massing to the  
surroundings

1.0 5.0 2.882 1.2127

Height Appropriateness of building’s height to the  
surroundings

1.0 4.0 3.233 .6908

Condition Overall building condition’s appropriateness to the 
surroundings

1.0 4.0 2.396 .8186

Connect Connectivity index (as % points) (proxy for urban 
form accessibility) (Equation 1)

34.1270 40.0000 35.4223 1.4645

BpR Building footprint to plot ratio (as % points) (proxy 
for urban density)

19.3989 93.5821 52.1273 21.8077

Attindex Attraction index: interaction of apartment units with 
selected commercial node (Equation 2)

1.9044 13.1040 4.7481 3.0939

Dgreen Distance to active green area (× 100 m) 2.5025 12.8848 6.6731 3.1912
NearST Distance to the nearest train station (× 100 m) 1.6122 13.2209 6.6421 3.4878
PWdist Distance to peace wall (in Cupar Way) (× 100 m) 7.73 23.71 16.2967 4.58017
yr2000 Transaction year dummy 0.0 1.0 .120 .3257
yr2001 Transaction year dummy 0.0 1.0 .031 .1726
yr2002 Transaction year dummy 0.0 1.0 .108 .3114
yr2003 Transaction year dummy 0.0 1.0 .116 .3201
yr2004 Transaction year dummy 0.0 1.0 .186 .3898
yr2005 Transaction year dummy 0.0 1.0 .061 .2402
yr2006 Transaction year dummy 0.0 1.0 .130 .3364
yr2007 Transaction year dummy 0.0 1.0 .101 .3022
yr2008 Transaction year dummy 0.0 1.0 .146 .3538
N 424
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multi-family residential (apartment) units transacted in the City of Belfast (postcode areas 
BT1 and BT2) during the period 2000–2008.1 The data-set includes information on trans-
action price, area, transaction year,2 age of the property, presence of a garage, number of 
bedrooms, reception rooms and floor area. In a relatively new (sub)market which shows a 
high consistency with regard to floor area the latter three variables are used as proxies for 
interior subdivision quality. More specifically, larger properties offer better opportunities 
for diversity in design which increases end user options concerning utility maximisation. 
When coupled with the variables number of bedrooms and number of reception rooms, the 
combined outcomes gives an insight to the end user preferences for overall [living] space 
and its arrangement (subdivision design) in city centre apartments. A detailed description 
of all the variables generated including their respective statistics is given in Table 1.

Data obtained from the NIQHPI did not include information on exterior building charac-
teristics. To address this issue data from field observations were used. Subsequently, a group 
of local experts (architects/urban designers) was employed to assess the appropriateness of a 
building to its surroundings for seven different categories on a 5-grade Likert scale (see Nase, 
Berry, & Adair, 2013 for more details). The seven categories are namely choice of material 
(finishing), external façade identity, quality of material used (materialqual), fenestration that 
relates to the whole appearance/composition of a building frontage in relation to window/
bay levels, repetition etc. massing that relates to the external architectural form and size 
of a building, height (in floors) and building condition. The latter was included following 
discussions with the experts whereas the other six were included based on the literature 
review. Detailed information on the scoring process is given in Appendix 1.

The transacted properties were geocoded in a GIS framework following identification 
of their exact address. This enabled spatial analysis and the computation of various urban 
form proxies and distance control variables. The first category comprises indices widely 
used in planning and design such as building to plot ratio (BpR). This is a direct indicator 
of building density and in core urban areas BpR can be used as a proxy for the amount of 
open space within a block. Connect is another variable constructed using GIS and measures 
the connectivity of the surroundings of a property. The variable is generated using the 
gamma (γ) index for the spinal pattern of connectivity as explained by Taaffe, Gauthier, 
and O’Kelly (1996) given by the formula: 

where nodes are the street/segment intersections. The spinal pattern gamma values range 
between 1/3 ≤ γ ≤ 1/2 for #nodes ≥ 4. This pattern is particularly used in this study to rep-
resent city centre urban block networks by accounting for simplicity in the system and the 
lack of appeal of dead ends as explained in Appendix 2. To estimate this index we employ 
the ‘emergent neighbourhood model’ developed by Mehaffy, Porta, Rofè, and Salingaros 
(2010) for historic urban cores. According to this model the pre-motorised urban fabric 
is shaped by the 5 min walking distance rule that denotes the distance pedestrians are 
willing to walk to engage in daily activities. This results in neighbourhood units shaped by 
edges approximately 400 m long. We apply this model to Belfast City Centre to estimate 
the connectivity index for each emergent neighbourhood and use the values to generate the 
variable Connect.

(1)� =
#nodes − 1

3 ∗ (#nodes − 2)
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Based on urban economic theory, we control explicitly for distance to active green areas,3 
distance to main public transport nodes (nearest train stations) and additionally for local 
idiosyncrasies through the distance to the peace wall in Cupar Way. The impact of retail 
activity on apartment prices is captured through the attraction index which is generated 
using the interaction of an activity centre’s attraction power and the distance of the observed 
property to this centre (Equation 2). A similar variable is employed by Des Rosiers, Theriault, 
and Menetrier (2005) to measure the potential attraction power of a shopping centre. It is 
based on Reilly’s (1931) model that relates shopping centre size, distance of a cluster to that 
centre and the population in the cluster. The attraction index generated in this paper employs 
observed attraction power as measured by weekly footfall figures obtained by Belfast City 
Centre Management. It is a measure of the interaction between a commercial activity node 
in the city centre and observed transactions and is given by the formula

 

where FF
area

 is the customer drawing power of the activity centre (expressed as weekly average 
footfall) weighted by centre area (given as a ratio of centre area/area of urban block where 
shopping centre is situated). We construct attraction indices of three different activity foci 
aiming to capture the impact of centre attractiveness based on different footfall values. 
However, given the small size of our study area and the relative distances of the apartment 
buildings to these foci we expect these indices to be somewhat correlated. A final considera-
tion regards school quality as urban economic literature has clearly demonstrated its impact 
on house prices. Our study area includes higher educational institutions (such as regional 
colleges) but does not include primary or secondary schools. The latter are important in 
household location due to the fact that in the UK pupils are admitted according to school 
catchment areas. Based on the above, we do not explicitly control for distance to schools in 
our models which are described in the following section. We return to this issue in section 
5 when analysing model outcomes.

4.  Methods

The methodology in this paper falls within the ‘specific-to-general’ approach (Elhorst, 2014) 
that starts with the estimation of the base model utilising an ordinary least squares (OLS) 
routine. Subsequently, it tests more general nesting spatial models through classic tests well 
established in the spatial econometrics literature and complements them with Bayesian 
posterior tests. When analysing spatial dependence we start by comparing the hedonic base 
model OLS estimation outcomes with Maximum Likelihood (ML) estimation of the Spatial 
Error (SEM) Model, and then focus on the Spatial Autoregressive (SAR) Model where we 
additionally test for different spatiotemporal dependence.

4.1.  Weight matrix specification: accounting for building, multidirectional space 
and unidirectional time effects

In modelling multi-family residential property transactions, additional challenges have 
been pointed out relating to accounting for building and neighbourhood specific effects 
separately (Sun et al., 2005). As noted earlier, based on the need for filtering both space 

(2)Attindex =
FF

centre_area∕block_area
*
100

Dist
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first and then time and time first and then space the resulting model might suffer from 
over-parametrisation (Pace et al., 2000; Sun et al., 2005). In small to medium data-sets such 
as the one employed in this paper over-parameterisation can be a significant issue regarding 
degrees of freedom and multicollinearity. A crucial issue in spatial econometrics is that 
weight matrix specification has received a strong critique from different authors for the 
lack of robust theoretical underpinnings (Gibbons & Overman, 2012; Harris et al., 2011). 
Special emphasis relates to calls for practitioners to specify weight matrices based more 
on economic theory (Corrado & Fingleton, 2012). To appropriately address these issues in 
weight matrix specification we pay particular attention to the multidirectional nature of 
spatial effects and the unidirectional nature of the time dependence (Dubé & Legros, 2014).

This approach starts by ordering the data temporally with the oldest transaction first 
and the newest transaction in the last row. We consider two weight matrices that model 
multidirectional space relations (M) and unidirectional spatiotemporal relations (U). The 
matrix M is constructed using the pairwise distance between two transactions (dij) and  
U based on the combined interaction of the time elapsed between two transactions (τij) and 
their distance. The multidirectional spatial interactions are restricted to the transactions 
that took place in the same time period resulting in a block diagonal spatial weight matrix. 
We assign weights to the general elements of M (mij) based on the distance between two 
transactions (dij) according to the scheme detailed in Equation (3) below.

 

where d̄ is a distance cut-off value (in kilometres) and ν is any positive exponent. We take 
ν = 1 for a spatial weighting scheme specification based on the negative exponential distance 
function. This matrix combines the building and neighbourhood effects by assigning a 
weight of 1 to transactions in the same building and a distance decaying weight to transac-
tions in different buildings. The latter is based on the first law of geography, often associated 
with Tobler (1970), which states that interaction in space is stronger between two objects 
that are closer than those that are further apart from each other.

Initially, the temporal weight matrix T is constructed to contain elements (tij) based on 
the time elapsed between transactions i and j. When modelling time effects in spatiotem-
poral models the literature seems to have reached agreement in considering only previous 
transactions (unidirectional dimension) by employing lower triangular weight matrices4 
(Dubé & Legros, 2014; Pace et al., 1998; Smith & Wu, 2009; Thanos, Bristow, & Wardman, 
2012). However, when deciding on a cut-off point in time these studies adopt an approach 
based on specifications that best fit the data and information detail. More specifically, Pace 
et al. (1998) consider 5  years back in time while Dubé and Legros (2014) and Thanos  
et al. (2012) work on a quarterly basis. The latter study does not specify a cut-off point but 
provides a time decay rate based on the inverse of the time elapsed (in quarters) between 
two transactions. Consequently, transactions two years apart would be weighted 87.5% 
less than transactions in the same period. We try to approximate this time decay rate and, 
considering the time period level of detail in our data-set, we believe the weighting scheme 
expressed in Equation (4) best fits our data.

(3)mij =

⎧
⎪⎨⎪⎩

exp(−𝜈 dij) if dij ≤ d̄& 𝜏i = 𝜏j

1 if dij = 0∀ i ≠ j & 𝜏i = 𝜏j

0 otherwise
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where ν is any positive exponent. In testing for robustness of results to weight matrix 
specification we consider two cases, one based on ν = 2 and the other for a faster temporal 
decay where ν = 3.5

Specification of the spatiotemporal weight matrix is based on the two weighting schemes 
described above. For our purpose we use the negative exponential distance matrix S without 
any time restrictions or distance cut-off and the time weight matrix also with no cut-off. 
To obtain our spatiotemporal matrix U we use the unit by unit multiplication of these 
two matrices (U= S⊙ T), referred to earlier as the Hadamard product, which ensures a 
combined space and time weight in the final matrix (Dubé & Legros, 2014; Smith & Wu, 
2009). Additionally, this multiplication also ensures that U is lower triangular accounting 
for the unidirectional effect of time where only past transactions are allowed to influence 
sale prices. To model the market actors’ behaviour we consider nearest spatiotemporal 
neighbours in U and set the other values to zero.6 To test for robustness of results to weight 
matrix specification we examine weights based on the more widely used 5, 10 and 15 
nearest neighbours supplemented with the intermediary specifications of 8 and 12 neigh-
bours. These are considered for the two temporal decay rates described above for a set of  
10 competing spatiotemporal weights under investigation. Both M and U are row stochas-
tic – each row sums to 1.

4.2.  Spatial model specifications and effect estimation

As noted earlier, model specification in this paper follows the specific-to-general approach 
starting with the estimation of the standard hedonic base model estimated by OLS  
(Equation 5)

 

where Y is the n × 1 vector of observations on the dependent variable, ι is an n × 1 vector 
of ones related to the constant α to be estimated. X is an n × k matrix of hedonic property 
characteristics, β is a k × 1 vector of parameters to be estimated associated with these char-
acteristics, D is a n × (t−1) matrix of time period dummies and δ is a (t−1) × 1 vector of 
time dummy parameters to be estimated and ε is the n × 1 vector of error terms with all 
elements assumed to be independent and identically distributed (iid) with mean zero and 
variance σ2. In this annotation n = number of observations in the data-set, k = number of 
hedonic property characteristics (explanatory variables), t = number of time periods in the 
data-set and the (t−1) dimension takes into consideration the omission of the first time 
period dummy for use as reference.

Subsequently, we consider two spatial model specifications namely SAR and the SEM. 
The SAR specification accounts for spatial dependence through the lagged dependent var-
iable, spillover effects of neighbouring transactions in space. Its general form is given in 
Equation (6)

 

(4)tij =
(|||�i − �j

||| + 1
)−�

(5)Y = �� + X� + D� + �

� → iid(0, �2
I)

(6)Y = �WY + �� + X� + D� + �
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where ρ is the spatial autoregressive parameter vector of dimensions n × 1, W is the n × n 
spatial weight matrix that models the spatial dependence structure in the data and all other 
annotations are as above. The SEM specification on the other hand accounts for spatial 
dependence in the error terms associated mainly with omitted variable bias that might be 
spatially correlated with the dependent variable (Equation 7).

 

where u are heteroskedastic (spatially autocorrelated) disturbances (of dimensions n × 1), λ 
is the spatial error parameter vector of dimensions n × 1, ε is white noise (iid n × 1 vector) 
and W is the n × n spatial weight matrix.

To appropriately model real estate transaction data, the third type of model specified is 
the spatiotemporal autoregressive (STAR) model that accounts for both spatial and tem-
poral dependence in the data. We now slightly modify the general specification in (6) 
using the matrix annotation described in the previous subsection (M = multidirectional; 
U = unidirectional) and introducing the subscript (t) to describe the time periods. The 
model outlined in Equation (8) underlines that house prices sold at a particular time period 
are determined by a set of utility bearing property characteristics (assumed to be constant 
over time), neighbouring (including transactions in the same building and those within a 
predefined boundary) house prices sold in the same period and weighted average of nearest 
spatiotemporal neighbour house prices sold in the previous period(s) only.

 

The STAR model captures the multidirectional spatial spillovers through the parameter 
ρ and the dynamic spatiotemporal dependence through the parameter ψ. Based on the 
above specification the STAR model needs to eliminate the first period data in the data-set 
to ensure that prices are determined by previous transactions only (Dubé & Legros, 2014). 
This results in a final set of 373 observations for the empirical analysis detailed in the next 
section7 since in the original database (N = 424) properties sold in the first time period 
amounted to 12% of the total (Table 1).

As a final consideration in the specific-to-general approach we specify a ‘general’ model 
that nests the autoregressive and error models through spatial dependence in both the 
dependent variable and the error terms (Equation 9). Regarding terminology, the general 
form of this model has been described as the SAC, SARAR or Kelejian-Prucha model 
(Elhorst, 2014; Kelejian & Prucha, 1998; LeSage & Pace, 2009). We use the STARAR term to 
ensure terminology continuity of spatiotemporal model specification throughout the paper.

 

Since the ultimate goal of this analysis is the exact estimation of the impact of utility bearing 
descriptive variables (and particularly the specified quality design attributes) on value we 
now turn our attention to this issue. Hedonic theory has focused on the appropriate esti-
mation of marginal effects (willingness to pay) of any explanatory variable xr through the 
partial derivative of expected values of y with respect to changes in xr given as: ∂y/∂xr. In 
OLS (and SEM) models this specification might as well correspond to the point estimates 

(7)
Y = �� + X� + D� + u

u = �Wu + �

(8)Y t = �MY t + �UY (t−1) + �� + X t� + D� + �t

(9)
Y t = �MY t + �UY (t−1) + �� + X t� + D� + u

t

ut = �Mut + �t
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of β but it is not the case in presence of spatial dependence in the dependent variable. For 
the model specified in (6) the reduced form is given in Equation (10).
 

where (Ι-ρW)−1 is the spatial multiplier term and Ι is the identity matrix of dimension n × n. 
As it can be observed, this equation does not describe a linear relationship between y and 
the non-spatial multiplier right hand side terms. Under these conditions LeSage and Pace 
(2009) have suggested using the elements of the matrix of partial derivatives of expected 
values of y with respect to changes in the rth explanatory variable in X.

Based on the matrix expression of the spatial multiplier as an infinite sequence: 
Ιn + ρW + ρ2 W2 + ρ3 W3 + …, it can be seen that the first term (Ιn with ones only in the 
diagonal and zeros elsewhere) represents direct effect of a change in X. The second term (ρW 
with diagonal elements set to zero to avoid units being their own neighbours) represents an 
indirect effect of a change in X of the first order neighbours (power is = 1) and other terms 
represent second and higher order neighbours’ direct and indirect effects (Elhorst, 2014). 
Consequently, the correct interpretation of spatial models is based on direct and indirect 
effect estimates that are given as a scalar summary measure of the diagonal and off-diagonal 
elements of the matrix of partial derivatives as explained above. More specifically, for any 
variable xr in X the direct effects are given as the average of diagonal elements of the matrix 
(I-ρW)−1βr and the indirect effects are given as the average of off-diagonal elements of the 
matrix (I-ρW)−1βr (LeSage & Pace, 2009, 2014). We use scalar summaries to report effect 
estimates in our empirical analysis in the next section.

5.  Empirical analysis

The starting point of the empirical analysis is the standard hedonic model shown in (5). We 
estimate the base model with the OLS method and proceed with a twofold analysis. First, 
we compare the OLS outcomes with the standard SEM and SAR models. The estimation 
results are shown in Table 2 and indicate the high significance of the spatial parameters in 
both models. Additionally, the log-likelihoods of the spatial models are significantly larger 
than the OLS one with the SAR model exhibiting the highest. Second, we use the OLS 
residuals to analyse the presence of spatial autocorrelation through Moran’s I tests and for 
the classic Lagrange Multiplier (LM) tests to analyse the nature of spatial dependence. In 
order to test for robustness of results to weight matrix specification we employ an empirical 
approach informed by the physical characteristics of the data. A preliminary investigation 
indicates that the longest distance between two observations in the data is approximately 
1.9 km (no cut off) and the cut-off threshold that ensures each observation has at least 
one neighbour is 1.2 km8 in the block diagonal specified M. Based on this information, 
we consider eight different specifications of M starting with the full spatial interaction (no 
cut-off) and decreasing the bandwidth by 100 m.

Approaches that select weight matrices in a similar fashion have been criticised for 
picking up only the ‘local best’ specification and being able to select the right one only if it 
is included in the considered subset (Harris et al., 2011). Our empirical approach aims to 
address this issue by considering an exhaustive set of options (from maximum connectivity 
to the theoretically accepted, least connected weight matrix) with context-based in-between 
alternatives (cut-off increments). Moran’s I test statistics indicate that the hypothesis of no 

(10)Y = (I − �W)−1 (�� + X� + D� + �)
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spatial autocorrelation in the residuals can be rejected for all specifications of M providing 
strong evidence for the need to control for spatial externalities through spatial econometric 
models (Table 3). The LM tests point towards the spatial lag (SAR) model for all different 
cut-off distances (Table 4).9 Additionally, in selecting the most appropriate M for our study 
we consider those that maximise the test statistics (Boots & Dufournaud, 1994). The results 
indicate that the matrix with the 1.2 km cut-off best describes the multidirectional spatial 
relation with the combined building effects in the data. To additionally support the choice 
of M, Bayesian posterior model probabilities are compared (LeSage & Pace, 2009).10 As 
the results indicate, the two candidates are the matrices with 1.3 and 1.2 km cut-off points. 

Table 2. Hedonic and spatial model comparisons.

Notes: t values are in parentheses, * and ** denote 5% and 1% significance levels respectively. Multidirectional spatial 
weight matrix M based on negative exponential distance with 1.2 km cut-off.

Variable Model 1 Hedonic (OLS)  Model 2 SEM (ML)  Model 3 SAR (ML)
Constant 1.5332 (1.8328) 3.0714** (3.4862) −1.4176 (−1.6753)
Age −0.1312* (−2.3588) −0.1644** (−3.0613) −0.1241* (−2.4979)
Area 0.9155* (12.6764) 0.8427** (12.3922) 0.8054** (12.1854)
Garage 0.1761* (3.6562) 0.1930** (4.4050) 0.2111** (4.8876)
Bedrooms −0.0108 (−0.4963) −0.0016 (−0.0774) 0.0083 (0.4216)
Receproom 0.1357 (1.7292) 0.1741* (2.4100) 0.1682* (2.3957)
Floorno 0.0594** (3.8029) 0.0429* (2.8552) 0.0343* (2.3914)
Finishing 0.0823** (2.9538) 0.0529 (1.9259) 0.0432 (1.7071)
Identity 0.1172** (3.0372) 0.0817* (2.1308) 0.0447 (1.2421)
Materialqual 0.3195** (9.7516) 0.2394** (6.1798) 0.1749** (5.0190)
Fenestration 0.1102** (3.0104) 0.1102** (3.1965) 0.0909** (2.7652)
Massing 0.0724** (3.5583) 0.0675** (3.4033) 0.0769** (4.2348)
Height 0.0328 (1.3987) 0.0140 (0.5887) 0.0079 (0.3748)
Condition 0.0214 (0.6128) 0.0293 (0.8707) 0.0312 (1.0008)
Connect 0.0681** (2.9810) 0.0574* (2.5617) 0.0654** (3.2051)
BpR 0.0102** (5.7598) 0.0077** (4.4278) 0.0067** (4.0656)
Attindex −0.0392** (−2.7200) −0.0408** (−2.8341) −0.0471** (−3.6494)
Dgreen −0.0898** (−4.5197) −0.0807** (−4.0771) −0.0882** (−4.9730)
NearST 0.0220* (2.5806) 0.0201* (2.1370) 0.0289** (3.7711)
PWdist 0.0757** (7.6161) 0.0647** (6.4809) 0.0566** (6.1024)
yr2002 −0.0058 (−0.1151) 0.0577 (0.4684) 0.0527 (1.1633)
yr2003 0.1260* (2.5254) 0.1721 (1.4025) 0.1846** (4.1258)
yr2004 0.0556 (1.1846) 0.0969 (0.8203) 0.1056* (2.5103)
yr2005 0.1744** (3.2972) 0.2234 (1.6761) 0.1878** (3.9737)
yr2006 0.4421** (8.7191) 0.5057** (4.1295) 0.3189** (6.4205)
yr2007 0.6397** (11.9617) 0.6657** (5.3196) 0.4682** (8.5984)
yr2008 0.4555** (9.0797) 0.4825** (3.9844) 0.3387** (6.9931)
Lambda (λ) 0.6581** (8.9581)
Rho (ρ) 0.4279** (7.5933)
Sigma2 (σ2) 0.0210 0.0176 0.0167
R2 0.8494 0.8634 0.8706
Log-likelihood 18.9413 218.4580 231.9330
N 373 373 373

Table 3. Moran’s I tests for spatial autocorrelation in the OLS residuals.

M specification 1.9 km 1.8 km 1.7 km 1.6 km 1.5 km 1.4 km 1.3 km 1.2 km
Moran’s I 0.0404 0.0415 0.0383 0.0426 0.0581 0.0732 0.0789 0.0950
Moran’s I-statistic 16.7135 16.5283 14.9900 14.8962 16.1798 17.3529 15.7179 16.1742
Marginal probability (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Mean −0.0279 −0.0280 −0.0281 −0.0285 −0.0289 −0.0291 −0.0298 −0.0306
SD 0.0041 0.0042 0.0044 0.0048 0.0054 0.0059 0.0069 0.0078
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The latter matrix shows posterior probability more than four times the previous one hence, 
indicating that the best specification for M is the 1.2 km cut-off option.

Following the selection of the multidirectional matrix the analysis focuses on the spatio-
temporal weight matrix U which models the combined spatial and building effects consider-
ing the fact that apartment prices at any given time are only influenced by past transactions. 
More specifically, real estate agents value properties at time period t based on the average 
of transactions that happened at period t−1 hence the justification for using row-standard-
ised matrices of nearest neighbours (LeSage & Pace, 2009). Our combined spatiotemporal 
weight allows for higher weighting if transactions took place in the same building while 
accounting for the time elapsed between these observed transactions. In order to provide 
more empirical and/or theoretical context to weight matrix specification we follow LeSage 
and Pace (2009) who argue that, in valuing properties, real estate agents consider the aver-
age price of between 5 and 10 comparable properties sold in the market during previous 
period(s). The specification of U follows this evidence and, in adopting a more heuristic 
approach as in the case of M, we test for 5, 8, 10, 12 and 15 nearest neighbours (NN) with 
two time decay rates of ν = 2 and ν = 3 as explained in (4).

Table 5 (Models 4–8) shows the outcomes of five spatiotemporal autoregressive models 
estimated with the same M as specified in (3) with d̄  = 1.2 km and different U based on 
the number of nearest spatiotemporal neighbours. The spatiotemporal parameter (ψ) is 
significant in all the five models but shows decrease in significance levels for over and under- 
connected matrices (15 and 5 nearest neighbours, respectively), reinforcing the importance 
of our context-based approach in weight specification.11 Overall, the spatiotemporal model 
performance has increased from the purely spatial model (Model 3) albeit to a relatively 
low degree as can be seen from the log-likelihood values. The agreement of the estimates 
across various specifications is indicative of a lack of dramatic misspecification particularly 
with regards to omitted variables spatially correlated with the dependent variable. These 
outcomes further support our initial decision not to explicitly control for distance to schools 
considering their absence in the study area.

Table 4. LM tests for type of spatial dependence and general tests for multidirectional spatial weight 
matrix (M) specification.

Notes: LM tests use the OLS residuals from Model 1 (p-values are in parentheses). Posterior Bayesian probability tests are 
performed with the Bayesian estimation results of the model in (6) based on 2000 sample draws with the first 500 discard-
ed for burn-in (LeSage & Pace, 2009).

Tests

Weight specification

No cut-off 
(1.9 km) 1.8 km 1.7 km 1.6 km 1.5 km 1.4 km 1.3 km 1.2 km

LM test no spatial 
lag

37.9472 
(0.000) 

34.9251 
(0.000)

29.7284 
(0.000)

28.6771 
(0.000)

42.9065 
(0.000)

49.2513 
(0.000)

69.7060 
(0.000)

77.0109 
(0.000)

Robust LM test no 
spatial lag

 33.8396 
(0.000)

29.1800 
(0.000)

24.9843 
(0.000)

21.9840 
(0.000)

30.3701 
(0.000)

31.3528 
(0.000)

48.5134 
(0.000)

51.2744 
(0.000)

LM test no spatial 
error

7.0701 
(0.008)

7.1839 
(0.007)

5.9187 
(0.015)

6.7383 
(0.009)

12.6273 
(0.000)

19.6143 
(0.000)

21.6617 
(0.000)

29.6569 
(0.000)

Robust LM test no 
spatial error

2.9625 
(0.085)

1.4388 
(0.230)

2.9625 
(0.085)

1.1746 
(0.278)

0.0910 
(0.763)

 1.7158 
(0.190)

0.4691 
(0.493)

3.9204 
(0.048)

Posterior model 
probability (with 
SAR model)

0.0001 0.0000 0.0000 0.0000 0.0002 0.0012 0.1980 0.8005
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We employ Bayesian posterior model probabilities to select the most appropriate U and 
Table 5 outcomes indicate that this is the specification with 12 nearest neighbours (NN) 
and a relatively slower temporal decay rate (ν = 2, Equation (4)). It has an overall posterior 
probability of .527 (among 10 models) which is almost three times higher than the two other 
second best candidates (10NN with ν = 2 and 12NN with ν = 3). In light of these results, 
our preferred model is Model 7 (Table 5). This is a spatiotemporal autoregressive (STAR) 
model with combined multidirectional building and spatial effects restricted to the same 
time period with 1.2 km cut-off threshold and unidirectional spatiotemporal effects based 
on 12 nearest neighbours (both in space and time) with a relatively moderate temporal decay 
rate. Additionally, estimation consistency across the wide specification spectrum of M and 
U is in line with recent claims that estimation sensitivity to changes in the weight matrix 
might be indicative of model misspecification rather than typical flaws with the weighing 
scheme (LeSage & Pace, 2014).

As a final step of the specific-to-general approach, we consider the STARAR model 
which nests the STAR and SEM specifications through spatial dependence in both the 
dependent variable and the error terms as shown in (9). These outcomes are presented in 
the last two columns in Table 5 under the heading Model 9. The error term spatial param-
eter (λ) has a negative sign and does not reach the 5% significance level, indicating model 
over-specification issues. Overall, other parameter estimates seem consistent across the 
STAR and STARAR models albeit showing a slight decline in magnitude in the latter due to 
the slight impact of lambda (λ) and increased values of rho (ρ) and psi (ψ). To understand 
which model best describes the data we employ a formal likelihood ratio (LR) test using 
the Log-likelihood values of the restricted (STAR) and unrestricted (STARAR) models. 
This test is based on the formula -2*(L_likerestricted – L_likeunrestricted) and its statistic has a 
χ2 distribution with df = number of restrictions, in this case 1: the parameter λ (Elhorst, 
2014). The outcomes indicate that we cannot formally reject the STAR model in favour of 
the STARAR model (LR test value of 2.99 while the critical value for .05 significance level 
with 1 degree of freedom is 3.84).12

Having specified the model that best describes the data we turn our attention to the exact 
effect estimates of the explanatory variables. As indicated in the previous section, these 
cannot be represented by the point estimates of the k × 1 vector of parameters β due to the 
presence of the spatial multiplier (I−ρM)−1. We alternatively use the diagonal elements of 
(I−ρM)−1βr for the direct effect estimates and the off-diagonal elements of (I−ρM)−1βr for 
the indirect effect estimates (Elhorst, 2014; LeSage & Pace, 2009, 2014).13 In regional studies, 
the indirect effect estimates are a major analysis concern, however in econometric studies 
of hedonic property prices the exact estimates of direct effects is the focus of analysis that 
(ceteris paribus) reflects the willingness to pay of buyers for each utility bearing attribute 
under consideration. In addition, the SAC and SAR type of models have been criticised 
for producing wrong indirect effect estimates (Elhorst, 2014). Consequently, we focus on 
the effect of the spatial multiplier on the point estimates of the STAR model by analysing 
the differences between the β parameter and direct effect estimates. By and large, these are 
very small throughout the parameter vector of the utility bearing explanatory variables. The 
last column in Table 6 shows this impact as the percentage of STAR model point estimates. 
It can be observed that these percentage values are lower than 2% except for the variables 
Connect (significant at 1%), Receproom (significant at 5%) and height appropriateness (not 
significant). A relatively higher percentage value is observed only in the latter (value above 
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3.5%) which leads us to conclude that the model performs well with regard to estimation 
consistency.

Regarding key explanatory variables, as expected, Area makes the highest contribution 
to house prices (highest t-value). Overall, parameter signs meet prior expectations with the 
exception of commercial activity interaction (Attindex) and distance to the nearest train 
station (NearST) variables. One possible explanation might relate to the dis-amenity effect 
of being too close to the railway and also being close to the train station: 3.2% decrease 
in value for every 100 m proximity. As it can be observed, users value proximity to the 
green area (also city centre in our case: 8.9% increase in value for every 100 m decrease in 
distance) while preferring to be located farther away from the peace wall (6.2% increase in 
house value for every 100 m distance). Taller buildings also command higher prices (4% 
increase in price for 1 additional floor), a fact that can be associated with the view potential 
that the upper floors offer.

Findings related to interior subdivision are interesting as, all else being equal, users seem 
to value more a second reception room in their apartment (16% increase in price however, 
at 5% significance level), while similar results do not hold for number of bedrooms. This 
might be related to household composition in this area, the view potential of the extra recep-
tion room or its different purpose as a dining room. The latter explanation has particular 
importance in housing design as it might indicate that users do not particularly favour the 
‘modern open plan kitchen designs’ and that a separate dining room might be more valua-
ble than an extra bedroom in this market segment. Additionally, in line with expectations, 
presence of a garage seems to be highly valued in dense city centres as apartments with a 
garage seem to command an 18.7% price premium. This relatively high premium might be 
attributed to a combination of local idiosyncrasies namely scarcity of parking in the city 
centre and the fact that Belfast is considered to be the most motorised city in the UK. This 

Table 6. Effect estimates.

Note: t-values are in parentheses. Beta (β) values are from Model 7. Spatial effect (MY) on point estimates = (Direct-Beta)/
Beta*100.

Variable Direct Indirect Total Beta (β)
MY effect 
|% of β|

Age −0.1482 (−3.0187) −0.1096 (−2.4821) −0.2578 (−2.9121) −0.1457 1.6851
Area 0.7810 (11.8482) 0.5784 (4.4431) 1.3594 (8.5932) 0.7735 0.9737
Garage 0.1866 (4.2387) 0.1394 (2.8598) 0.3260 (3.7591) 0.1840 1.4219
Bedrooms 0.0272 (1.3444) 0.0208 (1.2301) 0.0480 (1.3125) 0.0269 1.2987
Receproom 0.1599 (2.3938) 0.1193 (2.0161) 0.2792 (2.2927) 0.1566 2.0965
Floorno 0.0401 (2.7659) 0.0292 (2.5390) 0.0693 (2.8015) 0.0397 0.8308
Finishing 0.0460 (1.8145) 0.0334 (1.7093) 0.0795 (1.8154) 0.0451 1.9850
Identity 0.0633 (1.7733) 0.0455 (1.7222) 0.1089 (1.7966) 0.0625 1.3781
Materialqual 0.1811 (5.1906) 0.1316 (4.7000) 0.3127 (5.9349) 0.1794 0.9191
Fenestration 0.1041 (3.3122) 0.0767 (2.7380) 0.1808 (3.2245) 0.1041 0.0086
Massing 0.0864 (4.6856) 0.0643 (3.1380) 0.1507 (4.1908) 0.0856 0.9351
Height 0.0129 (0.6277) 0.0089 (0.5941) 0.0218 (0.6183) 0.0133 3.5138
Condition 0.0471 (1.4522) 0.0353 (1.3163) 0.0824 (1.4160) 0.0466 1.0688
Connect 0.0640 (3.3092) 0.0476 (2.5723) 0.1117 (3.1125) 0.0625 2.4425
BpR 0.0082 (4.9756) 0.0060 (3.7997) 0.0142 (4.9933) 0.0081 1.2658
Attindex −0.0509 (−3.8918) −0.0379 (−2.8455) −0.0887 (−3.5901) −0.0500 1.7822
Dgreen −0.0888 (−5.1246) −0.0659 (−3.3650) −0.1546 (−4.6131) −0.0876 1.3218
NearST 0.0319 (4.0912) 0.0239 (2.8178) 0.0558 (3.6480) 0.0313 1.9212
PWdist 0.0621 (6.7944) 0.0457 (4.3211) 0.1078 (6.5949) 0.0615 1.0183
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finding needs to be treated cautiously also because properties with a garage comprise 7.3% 
of the data-set (Table 1).

In analysing the exterior quality variables a general pattern relates to the fact that from 
the seven variables employed those that reached statistical significance represent features of 
greater visual contrast and ease of identification, implying easier quantification. These vari-
ables are namely material quality, fenestration and massing while building height appropri-
ateness (which we also consider to be easily quantifiable) might not be highly significant due 
to the earlier reported preference for tall(er) buildings. Conversely, concepts such as building 
identity, exterior finishing and overall condition appropriateness to the surroundings might 
be less clearly perceived by buyers, although in this study they were employed based on the 
existing body of knowledge and rated by experts. Compared to the OLS estimates (Model 
1) there is a drop in the number of significant exterior quality variables (from five to three) 
in the STAR model (Model 7). This provides further supporting evidence regarding the 
estimation problems associated with OLS models in the presence of spatially autocorrelated 
disturbances (Table 3). Regarding impact on apartment prices, moving up one quintile in 
ratings for material quality, fenestration and massing appropriateness to the surroundings 
commanded 18, 10.4 and 8.6% premiums, respectively. Particularly the high premium in 
material quality appropriateness should be treated carefully as it might relate to an overall 
building quality appreciation of the experts (considering also the fact that there were no 
buildings rated in the top quintile (Table 1).

Urban density is an aspect of design quality particularly valued by the end-users of this 
residential sub-sector. A one decile increase in the Building to plot Ratio (e.g. from BpR = 0.4 
to BpR = 0.5) of the urban block where the property is situated commands approximately 
an 8.2% price premium. This suggests that inner-city apartment owners value vitality of the 
urban fabric which is generally associated with higher urban densities. Connectivity of the 
urban fabric also seems to be valued with properties located in more connected neighbour-
hood units commanding price premiums. Based on the definition of the spinal grid (Taaffe 
et al., 1996) this indicates preference for neighbourhood units of simple geometric shapes 
and a minimum number of dead ends. As a final analysis we consider the attraction index 
which captures interaction of retail activity foci and distance to the transacted property. Our 
initial tests point towards the relevance of only one activity focus attraction index out of the 
three originally constructed. We interpret this as a distance relationship where properties 
located further away from the shopping node command higher prices (all else being equal, 
5% premium for every 100 m increase in distance). This clearly shows the competition for 
space between different land uses in city centre localities that results in most newly built 
apartments locating in the edge of the old city centre with the core predominantly identified 
with commercial real estate. Both urban scale and exterior design quality variable outcomes 
represent a typical empirical work in a single urban context. Consequently, similar studies 
in other cities might contribute to better generalisability and/or improve assessment of 
different design considerations.

6.  Conclusions

The purpose of this paper is to estimate the impact of design quality on real estate value 
through empirical investigation of city centre-based apartments in a UK provincial city. 
Planning policies that focus on increasing density in central urban areas have shaped the 
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relatively new apartment market while quantitative empirical evidence on potential impact 
is still embryonic. This paper estimates the value of different aspects of design quality in 
apartment units in Belfast City Centre by applying and extending the hedonic model to 
include building and urban level quality variables. Additionally, a concerted method for 
appropriately modelling spatiotemporal real estate data aims to remove bias in effects esti-
mation for statistical inference. This is crucial in providing practitioners and policy-makers 
involved in shaping the built environment with the evidence required for decision-making 
on development, investment, financial and design criteria.

Empirical findings indicate that from the seven building quality features initially investi-
gated, the ones mostly valued by end users are those that are easily perceived visually. These 
concern the appropriateness to the surroundings of a building’s material quality, fenestra-
tion and massing. The other features namely finishing, identity, overall condition and height 
appropriateness were found to be statistically non-significant. The first three are considered 
to be relatively difficult for end-users to distinguish and visually assess when purchasing a 
home while the last is explained by more idiosyncratic factors. At the urban scale, the quality 
aspects valued by the users are built fabric density which is generally associated with vitality 
and increased urban fabric connectivity of simple patterns that do not include dead ends. These 
findings relate to the urban core of Belfast and considering the highly context-based nature 
of design, application to other cities necessitates research being undertaken in comparable 
urban contexts. From a modelling perspective, this paper has demonstrated the significance 
of the multidirectional spatial parameter restricted to the same time period and the dynamic 
spatiotemporal parameter that controls for transactions occurring only earlier in time. This 
indicates the importance of accounting for these factors in hedonic models.

The outcomes of this study have a high scaling-up potential through similar empiri-
cal work in other cities resulting in significant impact on the property development and 
investment process. Developers and investors can potentially benefit from the individual 
pricing of different aspects of quality design in shaping their investment priorities by tak-
ing into account the associated initial costs. Inner-city apartments are considered a crucial 
component in the successful delivery and long-term sustainability of urban regeneration. 
The current pressure for new housing development has significantly shifted the focus to 
the quantity of the new stock needed. A clear risk associated with direct action required to 
meet increasing demand for housing at affordable prices could result in a potential drop in 
design quality standards of the new proposed multi-family housing developments. In this 
context, this study is of relevance to stakeholders in providing evidence on the real estate 
value of the different aspects of built environment quality. Building upon the outcomes 
of this paper further research directions should integrate the financial case of delivering 
a higher quality product relative to the costs of production and the ability to buy in the 
current housing market.

Notes

1. � An initial set of 1133 residential transactions was obtained from the NIQHPI based on the 
postcode records on the original SPSS file. These entries were additionally verified for their 
typology (multi or single family units), construction period in the database and exact location 
in GIS. Based on software syntax a large number of entries in this extract fell outside our 
study area (e.g. ‘postcode’ entry 16 stands for both the postcode zone 16 and sub-zone 6 of 
postcode zone 1). Following this, the final set of 424 apartment transactions in Belfast City 
Centre (postcode areas BT1 and BT2) was obtained.
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2. � Considering the small study area and the number of transactions per year, in order to preserve 
confidentiality of the privately sourced data from real estate experts operating in the area, 
quarterly-based information is not available in the NIQHPI data-set. Additionally, post-2008 
data were not made available for the same confidentiality reasons due to the small volume of 
transactions during the market downturn.

3. � In our study area and its immediate vicinity the only active green space corresponds to the 
garden of the City Hall, we use the distance of each building centroid in our data-set to the 
main entrance of this area to construct the variable Dgreen.

4. � This requires that observation i happened before observation j which in our case is satisfied 
when i > j, since data is ordered temporally. For the case when i = j i.e. the diagonal values, 
these are set to zero to avoid considering each observation as their own neighbour, hence 
the final lower triangular form.

5. � More explicitly, for transactions happening in the same time period, one period earlier, two 
periods earlier the weights are 1; 0.25 & 0.111, respectively, for ν = 2 and 1; 0.125 & 0.037, 
respectively, for ν = 3. Additionally, following time on market evidence from the UK which 
indicates approximately 90% market clearance in half a year (see Pryce & Gibb, 2006 for an 
example in Strathclyde) we consider only faster decay rates than the one represented by ν = 2 
and not slower ones.

6. � For example, a weight of 1 is assigned only to transactions happening in the same building 
and at the same time period. Additionally, for the ν = 2 case, transactions in the same building 
but one time period apart are weighted by 0.25 whereas transactions in the same period but, 
say 1.5 km apart receive a weight of 0.223. This is crucial in selecting spatiotemporal nearest 
neighbours to appropriately consider the behaviour of buyers and real estate agents.

7. � Note that, following this specification, δ is now of dimension (t-2) × 1.
8. � Preliminary assessment indicates that these exact cut-off distances are 1.920 and 1.206 km, 

respectively.
9. � We additionally test for the 1 km cut-off (rather arbitrary and does not ensure that each 

observations has at least one neighbour) and, as expected, we find that LM tests point towards 
a SEM form; LM test no spatial lag: 0.3278 (0.567) and LM test no spatial error: 3572.2127 
(0.000), indicating clear misspecification problems, in this case of the weighting scheme. 
This further supports our empirical and context-based approach on weight testing based on 
preliminary analysis of the spatial dependence structure in the data. These outcomes might 
also explain to some extent SEM indication in the LM tests of related (spatiotemporal) studies 
with over-connected weight matrices (without cut-off distance) (Thanos et al., 2012).

10. � This test requires that all models are estimated with the Bayesian Markov Chain 
Monte Carlo (MCMC) method and their posterior probabilities compared. We 
use the matlab routine sar_g from the spatial econometrics toolbox available at the  
www.spatial-econometrics.com website (LeSage & Pace, 2009). We performed 2000 sample 
draws omitting the first 500 to estimate a model with homoscedastic disturbances, since this 
is an underlying assumption of the model in (Equation 8). These results are similar to the 
ML estimations and are available upon request.

11. � In an initial test of 6 models with 5, 10 and 15 NN and 2 temporal weight decays (ν = 2 & ν = 3) 
posterior Bayesian probabilities clearly point towards the specification of 10NN with ν = 2.

12. � As an indicative double check we refer the reader to the LR test between STAR and SAR models 
(Model 7 and 3, respectively) for the spatiotemporal parameter (ψ). This value is 16.17 and 
with 1 degree of freedom indicates that the SAR model can be rejected even at the .001 level 
(test statistic: 10.83) in favour of the STAR specification.

13. � Based on our N size and block diagonal specification of the weight matrix we use full 
computation of the log determinant ln |I−ρM| (reported in Table 6) and, following recent 
considerations on the routines in the www.spatial-econometrics.com website (Elhorst, 2014, 
p. 26), we additionally use the matlab routines made available by Paul Elhorst at the website 
www.regroningen.nl to check for consistency. The estimation results are consistent across the 
two routines and can be made available upon request.

http://www.spatial-econometrics.com
http://www.spatial-econometrics.com
http://www.spatial-econometrics.com
http://www.regroningen.nl
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Appendix 1. Scoring process for quality design variables

Figure A1. Visual representation of benchmarking.

This study is part of a larger project on the analysis of property performance in Belfast City Centre. 
Due to the large number of the buildings to be assessed (approximately 300) and the limited availabil-
ity of the experts a score benchmarking process that included averaging expert scores was performed 
with a sample of approximately 10%. The expert opinion score sheet included visual information 
(photo/image) on building location (map), street/surrounding view and façade view and building 
name and address for subsequent coding purposes in the dataset. Regarding the scoring process, 
façade and street views were used to assess all attributes and location maps were additionally employed 
to in the assessment of identity and massing.

Regarding benchmarking per attribute this is visually shown with examples in Figure B-1. In the 
finishing (material choice) category the lowest scores were for modern red brick finishing that were 
‘inappropriately mimicking’ the existing stock while the highest scores were for materials clearly indi-
cating different era trends (e.g. among others, a combination of glass with other materials). Identity 
lowest quartile was mainly represented by building complexes associated with what was considered 
as ‘non-appealing other land uses’ (e.g. multi story car parking) whereas the highest quartile reflected 
clear city landmarks that could also be distinguished by their land use. Lowest scoring buildings in 

finishing   
1 2 3 4   5

identity  
1 2 3 4   5

materialqual  
1 2 3 4   5

fenestration  
1 2 3 4   5

massing
1 2 3 4   5

height 
1 2 3 4   5

condition
1 2 3 4   5
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the material quality appropriateness category were those in need of refurbishment surrounded by 
newer or newly refurbished buildings and highest scoring buildings were generally represented by 
new buildings in newly redeveloped areas of the city centre. In other words, quality material (of e.g. 
plastering, marble, granite) surrounded by other buildings of the same quality material. Fenestration 
highest scores were awarded to floor levelling ‘respecting the existing’ and window repetition rhythms 
considering those of reference historic buildings and lowest scores for facades disregarding this. 
Massing considered both the building footprint and its volume and the ones that were clearly violat-
ing existing streetscapes and volumes scored the lowest with buildings of the infill type scoring on 
the highest quintile. Height appropriateness saw both relatively low and relatively high rise buildings 
scoring on the low end and same level or only one floor differences in height being awarded the high-
est scores. Overall condition reflected mainly façade maintenance levels and low scoring buildings 
showed clear need of façade refurbishment.

Appendix 2. Graphical explanation of the spinal connectivity pattern:  
γ = (#nodes-1)/ 3*(#nodes-2)

The graphical representation above indicates higher γ values of the connectivity index with 
‘simpler’ urban block forms that do not include dead ends. This is particularly important 
in the urban fabric of Belfast where peace walls and the process of closing off streets has 
contributed to a fabric represented in b. Hence, our expected positive sign for the Connect 
variable in this specific urban context (preference for a despite the apparent lower number 
of nodes).
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