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Abstract
Phylogenetic networks are used to describe evolutionary histories and are a generalisation of evo
lutionary trees. They can contain so called reticulations, representing reticulate evolution, such as
hybridization, lateral gene transfer and recombination. Methods are being developed to construct cer
tain rooted phylogenetic networks from their subnetworks. A constructed network is encoded by their
subnetworks if it is uniquely determined by that set. It has been shown that phylogenetic trees are
encoded by their set of triplets, which are rooted trees on three species. However, triplets do not en
code phylogenetic networks. Huber and Moulton introduced trinets, rooted networks on three species,
which do encode level1 phylogenetic networks, which are networks containing at most one reticulation
in each biconnected component. Van Iersel and Moulton proved that level2 phylogenetic networks are
encoded by their set of trinets and Nipius proved that level3 phylogenetic networks are encoded by
their set of quarnets, which are rooted networks on four species.

In this thesis we prove that for all 𝑘 ≥ 2, level𝑘 networks without symmetry in their biconnected
components are encoded by their set of (𝑘 + 1)nets, which are rooted networks on 𝑘 + 1 leaves. This
result provides some evidence for the conjecture that all level𝑘 phylogenetic networks are encoded by
their set of (𝑘 + 1)nets. Thereafter, we generalise encoding results for level2 and level3 networks,
where the underlying structure, called generator, and its sides play an important role. A generator is
a directed acyclic biconnected multigraph, containing only vertices with indegree 2 and outdegree at
most 1, indegree 1 and outdegree 2, and indegree 0 and outdegree 2. The sides of a generator are the
arcs and outdegree0 vertices of a generator. We have not been able to prove that level𝑘 networks
with symmetry in the generators of their biconnected components are in general encoded by 𝑘+1nets.
For the networks with symmetry, we prove encoding results for networks with leaves on at most 𝑝 sides
of the underlying generators of their biconnected components. We further prove that level4 networks
are encoded by 6nets.

Although Nipius gave a counterexample showing that not all (level3) phylogenetic networks are
encoded by their set of trinets, it is useful to know which networks are encoded by their set of trinets
or 𝑘nets. In this thesis, we provide an algorithm which can serve as tool for proving that certain level
𝑘 networks are encoded by their set of 𝑘nets. Our presented algorithm is a first step to generalise
encoding results to level𝑘 networks with 𝑘 ≥ 4 by using trinets. Furthermore, we are a step closer to
proving the conjecture that all level𝑘 networks are encoded by (𝑘 + 1)nets, including networks with
symmetry in the generators of their biconnected components.

iii





Preface
During my education, I have been fascinated by discrete mathematics and graph theory. In the re
search field of phylogenetics, many questions are unanswered. Last year, I spent my time on trying to
solve a few of the open problems to complete my master Applied Mathematics at the Delft University
of Technology. The project was carried out under the supervision of dr. ir. Leo van Iersel and dr.
Mark Jones. I did theoretical research on constructing phylogenetic networks from smaller subnets. I
proved encoding results for networks with a different number of reticulations, where I mainly focused
on generalising existing results to a higher number of reticulations.

I would like to thank Leo van Iersel and Mark Jones for the supervision during the year. Their ideas,
feedback and enthusiasm is very appreciated. I also want to thank Leonie Boortman for organising
weekly meetings with other graduation students, in which we helped each other with studying during
the pandemic. Lastly, I want to thank Wolter Groenevelt for being part of the thesis committee and my
family and friends for the support.

Frank Janisse
Delft, August 2021

v





Contents

1 Introduction 1

2 Preliminaries 5
2.1 Phylogenetic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Recoverable networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Encoding networks with subnets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Generators and symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Restricting the problem 13
3.1 Crucial subnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Getting stronger results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Reducing the problem to simple networks . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Encoding level𝑘 networks without symmetry 21
4.1 Strongly encoded by (𝑘 + 1)nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 𝑁′ is a binary network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 𝑁′ is a simple network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 𝑁′ is a level𝑘 network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.4 Isomorphic generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.5 The same leaves on the same sides . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.6 The order of the leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.8 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Weakly encoded by smaller subnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Isomorphic generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 The same leaves on the same sides . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 The order of the leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.5 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Encoding networks with leaves on a bounded number of sides 29
5.1 Weakly encoded by (𝑝 + 1)nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Leaves on the same number of sides . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Isomorphic generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.3 The same leaves on the same sides . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.4 The order of the leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Strongly encoded by (𝑝 + 1)nets if 𝑝 > 𝑘. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 𝑁′ is a binary, simple level𝑘 network . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 𝑁′ has leaves on at most 𝑝 sides . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Weakly encoded by 𝑝nets if 𝑝 > 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.1 Leaves on the same number of sides and isomorphic generators . . . . . . . . . . 34
5.3.2 Leaves stay together on a side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.3 The same leaves on the same sides . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.4 The order of the leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Strongly encoded by 𝑝nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



viii Contents

6 Encoding level4 networks with 6nets 37
6.1 Leaves on crucial sides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 Individual leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2 Leaves stay together on a side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.3 Combining results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Level4 networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3.1 3cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.2 Generators with 4cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.3 𝑘cycles for 𝑘 greater than 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.4 𝑁 = 𝑁′ for specific generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4 Set of symmetric sides of size at least three . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.1 The tail of 𝑆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.2 The head of 𝑆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.3 The same leaves on the same sides . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Set of symmetric sides of size at most two . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5.1 The same leaves are on the same sides if there is no symmetry left . . . . . . . . 50
6.5.2 Unique relabelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.3 The same leaves are on the same sides if there is symmetry left . . . . . . . . . . 50
6.5.4 Combining results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Algorithm for proving encoding results 53
7.1 Encoding level3 networks with trinets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Example for a specific generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.2 Constructing level2 from level3 generators . . . . . . . . . . . . . . . . . . . . . 55
7.1.3 Algorithm for level3 networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Towards encoding level𝑘 networks with 𝑘nets . . . . . . . . . . . . . . . . . . . . . . . 60

8 Conclusion and further research directions 65

Bibliography 69



1
Introduction

Phylogenetics is the biological study of the evolutionary history of a set of species or taxa. A famous
example is the Tree of Life from Darwin, 1859, a model where he describes evolution and the rela
tionships between organisms. Phylogenetic trees are traditionally used, but they are limited in the
sense that they are unable to represent complex evolutionary events such as hybridization, horizontal
gene transfer and recombination (Mallet et al., 2016, Soucy et al., 2015), called reticulation events.
Trees can represent speciation events, the formation of new, distinct species form one species, but
phylogenetic networks are used to give a more complete representation of the history (Bapteste et al.,
2013) because they can represent the formation of a new species from multiple parent species, too. In
graph theoretic terms, a rooted phylogenetic network is a directed acyclic graph that has a single root,
no indegree1 outdegree1 vertices, and has its leaves bijectively labelled by the elements of a set of
species 𝑋 (Huson et al., 2010). In contrary to a phylogenetic tree, a network can contain reticulations,
vertices with indegree greater than one. In Figure 1.1a, an example of a phylogenetic tree is given; in
Figure 1.1b, an example of a phylogenetic network is given.

(a) An example of a phylogenetic tree, representing the phylogeny of the
major clades of oaks (Mcvay et al., 2017). (b) A phylogenetic network for wheat species (Marcussen et al.,

2014). This network contains three reticulations.

Figure 1.1: Examples of a phylogenetic tree and a phylogenetic network. The network contains reticulations and the tree does
not. The directions of the arcs are indicated by the arrows.

Phylogenetic trees and their properties have been studied intensively since the 1970s, but the inter
est in phylogenetic networks has grown more recently. It is of interest how to construct a ‘complete’
phylogenetic network, displaying all relations between species from a certain genus, family, order, et
cetera, from biological data sets (Bapteste et al., 2013), such as DNA data. PhyloNet (Than et al.,
2008), PADRE (Lott et al., 2009), TripNet (Poormohammadi et al., 2014), and Dendroscope 3 (Huson
and Scornavacca, 2012) are examples of algorithms for constructing phylogenetic networks, including
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2 1. Introduction

reticulations.
An important result is that a phylogenetic tree is encoded by its triplets (see e.g. Dress et al.,

2011), where triplets are rooted trees on three species. That is, each phylogenetic tree 𝑇 is the unique
phylogenetic tree that contains the set of triplets that can be obtained by restricting 𝑇 to three of its
leaves. The uniqueness is important, because it ensures that 𝑇 is the only tree that represents the
correct evolutionary history. Ranwez et al., 2007 and Scornavacca et al., 2008 present algorithms to
construct a phylogenetic tree from its set of triplets. The set of triplets of a phylogenetic network does
not necessarily encode the network (Gambette and Huber, 2011). There are examples of algorithms
that construct a phylogenetic network, given a set of triplets (Byrka et al., 2010), but the disadvantage is
that it is not sure that the constructed phylogenetic network represents the evolutionary history correctly.

In this thesis, we focus on binary level𝑘 networks. A phylogenetic network is binary if all vertices
have indegree and outdegree at most two and a total degree of at least three, and a binary phyloge
netic network is level𝑘 if each biconnected component has at most 𝑘 reticulations. TriLoNet (Oldman et
al., 2016) is an algorithm that constructs level1 networks from smaller level1 networks on three taxa,
called trinets. TriL2Net (Kole, 2020) constructs a level2 phylogenetic network from a set of level2
trinets. To make sure that such algorithms give the phylogenetic network that represents the evolution
ary history correctly, it is of interest to know whether phylogenetic networks are encoded by their set
of trinets or other subnets. In Huber and Moulton, 2013 it is proved that level1 phylogenetic networks
are encoded by their trinets. In Van Iersel and Moulton, 2012, it is proved that level2 phylogenetic net
works are encoded by trinets and in Nipius, 2020 it is shown that level3 phylogenetic networks are not
encoded by trinets, but are encoded by quarnets, where a quarnet is a rooted phylogenetic network on
four leaves. In Nipius, 2020, it is also proved that most, but not all level3 networks are weakly encoded
by trinets. It is useful to know which level𝑘 networks are encoded by trinets or 𝑘nets.

We see that level𝑘 phylogenetic networks are encoded by their (𝑘 + 1)nets for 𝑘 = 2 and 𝑘 = 3.
We conjecture that this holds for all 𝑘 ≥ 2. If we are able to prove this, algorithms can be used to
determine the original network from subnetworks for every number of reticulations in its biconnected
components, although the more complex the networks are, the larger the subnetworks would need to
be. In this way, it is useful to know which other networks are encoded by their subnets, where we want
the subnets to be as small as possible. The smaller the subnets are, the less knowledge is needed to
determine the phylogenetic network that gives the complete representation of the evolutionary history.
The aim of this thesis is to prove as strong as possible encoding results for level𝑘 networks in general.

Important concepts in this thesis to classify rooted phylogenetic networks are biconnected compo
nents, generators and symmetry. A simple phylogenetic network contains only one nontrivial bicon
nected component, which is a maximal biconnected subgraph that is not an arc for which its deletion
results in a disconnected graph. A generator is a directed acyclic biconnected multigraph, containing
only vertices having either indegree 2 and outdegree at most 1, indegree 1 and outdegree 2, inde
gree 0 and outdegree 2. The underlying generator of a simple network is the graph obtained from the
network by deleting all its leaves and suppressing indegree1 outdegree1 vertices. In this thesis, we
will prove for level𝑘 networks that have no symmetry in the underlying generators of all biconnected
components that they are encoded by (𝑘 + 1)nets. A generator has symmetry if there exists a graph
automorphism on its vertices such that at least one vertex is not mapped to itself, or the generator con
tains a pair of parallel arcs. For networks with such symmetry, we will prove different encoding results
if a network has leaves on at most 𝑝 sides of the underlying generators of restrictions to its biconnected
components. Sides are the arcs and the outdegree0 vertices of a generator. The advantage of these
results is that they hold for all networks, with and without the defined symmetry. We will also prove a
more concrete result, namely that level4 networks are encoded by 6nets. We conjecture that level4
networks are even encoded by 5nets. Lastly, after providing an analysis of the proof in Nipius, 2020
that most level3 networks are weakly encoded by trinets, we provide an algorithm that may be useful
to prove for certain level𝑘 networks that they are encoded by 𝑘nets.

The structure of the thesis is as follows. First, we will formalize the necessary concepts in Chapter
2. This includes several properties and classifications of rooted phylogenetic networks, that we use to
prove encoding results. In Chapter 3, we will generalise results from Nipius, 2020 and Van Iersel and
Moulton, 2012. It turns out that we can reduce all our problems to simple networks. In Chapter 4, we
will prove our first encoding result. It states that all level𝑘 networks without symmetry in the generators
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of its biconnected components are encoded by (𝑘+1)nets. We prove in Chapter 5 encoding results for
networks with leaves on a bounded number of sides of the generators of its biconnected components.
In Chapter 6, we prove that all level4 networks are encoded by 6nets. In Chapter 7, we analyse how
it is proved in Nipius, 2020 that most level3 networks are encoded by trinets. We give an algorithm
that can be used to automate the most laborious part of their proof. Thereafter, we generalise this
algorithm, such that it can be used to attempt to prove that certain level𝑘 networks are encoded by
𝑘nets. Finally, we give a conclusion and further research directions in Chapter 8.





2
Preliminaries

We will formalize the concepts that are used in this thesis, give some properties and make some
assumptions that hold for the whole thesis. Most definitions are the same as in Van Iersel and Moulton,
2012. The definitions will be useful to decompose phylogenetic networks, determine their subnets and
observe the symmetries.

2.1. Phylogenetic networks
A rooted phylogenetic network is defined as follows.

Definition 2.1. For a set of species 𝑋, a rooted phylogenetic network 𝑁 = (𝑉, 𝐸) on 𝑋 is a directed
acyclic graph with a single indegree0 vertex, in which its outdegree0 vertices are bijectively labelled
by the elements of 𝑋 and each vertex has either

• indegree 0 and outdegree at least 2,

• indegree 1 and outdegree at least 2,

• indegree at least 2 and outdegree 1,

• indegree 1 and outdegree 0.

Furthermore, duplicate arcs are not allowed in 𝐸(𝑁). The unique indegree0 vertex is called the root
and the outdegree0 vertices are called the leaves of 𝑁. For an arc (𝑢, 𝑣) we say that 𝑢 is the tail vertex
and 𝑣 is the head vertex.

Since the leaves are bijectively labelled by the elements of 𝑋, we can identify each leaf with its la
bel. We assume for the whole thesis that a phylogenetic network has finitely many vertices and that
𝑋 is a finite set. We refer in this thesis to a rooted phylogenetic network as a phylogenetic network or
network. In this thesis, the arcs of all networks in all figures are directed from top to bottom. An exam
ple of a phylogenetic network can be found in Figure 2.1. The following definition shows the difference
between a phylogenetic network and a phylogenetic tree.

Definition 2.2. A rooted phylogenetic tree is a rooted phylogenetic network that does not contain
vertices with indegree at least 2.

The vertices that are allowed in a phylogenetic network, but not in a phylogenetic tree are called retic
ulations as in the definition below.

Definition 2.3. In a phylogenetic network, vertices with indegree at least 2 are called reticulations or
reticulation vertices. Vertices with indegree1 and outdegree at least 2 are called tree vertices.

The reticulations in Figure 2.1 are indicated by squares. In this thesis, we will only consider binary
phylogenetic networks which are defined as follows.

Definition 2.4. A phylogenetic network is called binary if all vertices have indegree and outdegree at
most two.

5
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Figure 2.1: Example of a binary rooted phylogenetic network on 𝑋 = {𝑥1 , ... , 𝑥7}. The root is denoted by 𝜌 and the reticulation
vertices are indicated by squares.

2.2. Recoverable networks
In this section, we will define when a phylogenetic network is recoverable. We will first give some other
useful definitions.

Definition 2.5. Let 𝑁 = (𝑉, 𝐸) be a phylogenetic network on 𝑋 and let 𝑢, 𝑣 ∈ 𝑉(𝑁). If (𝑢, 𝑣) ∈ 𝐸(𝑁),
then 𝑢 is a parent of 𝑣 and 𝑣 is a child of 𝑢. Furthermore, if 𝑢 ∉ 𝑋, then we say that 𝑣 is below 𝑢 if 𝑢 = 𝑣
or if there exists a directed path from 𝑢 to 𝑣 in 𝑁. If 𝑢 ∈ 𝑋, then 𝑣 is below 𝑢 if 𝑣 is below the parent of
𝑢. Lastly, let 𝑒 = (𝑢, 𝑣) ∈ 𝐸(𝑁) and 𝑤 ∈ 𝑉(𝑁). Then, 𝑤 is below 𝑒 if 𝑤 is below 𝑣.

Definition 2.6. Let𝐷 = (𝑉, 𝐸) be a directed graph with and let𝐷′ = (𝑉′, 𝐸′) be the underlying undirected
graph of 𝐷 with 𝑉 = 𝑉′ and 𝐷′ connected. A vertex 𝑣 ∈ 𝑉 is called a cutvertex if 𝐷′−𝑣 is disconnected.
Similarly, an arc 𝑎 = (𝑢, 𝑣) ∈ 𝐸 is a cutarc if 𝐷′ − 𝑎′ is disconnected, with 𝑎′ = {𝑢, 𝑣} ∈ 𝐸′.

We will use cutvertices to define a biconnected graph and a biconnected component.

Definition 2.7. A directed graph is biconnected if it has no cutvertices. Furthermore, a biconnected
component is a maximal biconnected subgraph (i.e. a biconnected subgraph that is not contained in
any other biconnected subgraph).

According to this definition, each cutarc is a biconnected component. We will call such a cutarc a triv
ial biconnected component. The network in Figure 2.1 contains two nontrivial biconnected components
and nine trivial biconnected components. Arcs (𝑎, 𝑏) and (𝑐, 𝑑) are for example cutarcs, and each cut
arc is a trivial biconnected component. In this thesis, we will make use of the biconnected components
of a network to get results for the whole network. So considering these components makes a lot of
problems easier.

In Figure 2.2b each node of the displayed tree represents a nontrivial biconnected component of the
network in Figure 2.2a. Trivial biconnected components are represented by edges of the tree, except
for ingoing arcs of leaves. We will now define the frequently used definition of a level𝑘 network.

Definition 2.8. A (binary) phylogenetic network is level𝑘 if each biconnected component has at most
𝑘 reticulations.

For example, the networks in Figure 2.1 and 2.2a are both level3. The following definition defines
some special cases of biconnected components.

Definition 2.9. Let 𝑁 be a network and 𝐵 be a nontrivial biconnected component. 𝐵 is redundant
if it has only one outgoing arc. Furthermore, 𝐵 is strongly redundant if it has only one outgoing arc
𝑎 = (𝑢, 𝑣) and all leaves of 𝑁 are below 𝑣.
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(a) Network 𝑁 with a strongly redundant biconnected component.

(b) A tree where each node represents a biconnected component
of 𝑁. The red and blue nodes represent the red and blue bicon
nected components of 𝑁. The edges represent cutarcs of 𝑁, not
ending in a leaf.

Figure 2.2: A phylogenetic network, with the network displaying its nontrivial biconnected components.

The red arcs in Figure 2.2a form a strongly redundant biconnected component and the red circle in
Figure 2.2b represents it. The blue arcs form a redundant biconnected component and the blue circle
in Figure 2.2b represents this component. Finally, we can give the definition of a recoverable network.

Definition 2.10. A phylogenetic network is recoverable if it has no strongly redundant biconnected
components.

The network in Figure 2.1 is recoverable, but the network in Figure 2.2a is not recoverable, since the red
arcs form a strongly redundant biconnected component. The importance of this concept will become
clear in the next sections.

2.3. Encoding networks with subnets
In this section we will define what it means for a network to be ‘determined’ or ‘encoded’ by its subnets.
We begin with the definition of a lowest stable ancestor.

Definition 2.11. Let 𝑁 = (𝑉, 𝐸) be a network and let 𝑉′ ⊆ 𝑉. A lowest stable ancestor 𝐿𝑆𝐴(𝑉′) is a
vertex 𝑤 ∈ 𝑉 ⧵ 𝑉′ for which all paths from the root to any 𝑣 ∈ 𝑉′ pass through 𝑤, such that there is no
vertex below 𝑤 for which this property holds. Observe that the lowest stable ancestor is unique.

Observation 1. Let 𝑁 be a network on 𝑋 and let 𝑋′ ⊆ 𝑋 with |𝑋′| ≥ 2. Then there exist two leaves
𝑥𝑖 , 𝑥𝑗 ∈ 𝑋′ for which 𝐿𝑆𝐴(𝑥𝑖 , 𝑥𝑗) = 𝐿𝑆𝐴(𝑋′).

Proof. First, we will prove the following claim.

Claim: For any 𝑆1, 𝑆2 ⊆ 𝑋′ such that 𝑆1 ∩ 𝑆2 ≠ ∅, 𝐿𝑆𝐴(𝑆1 ∪ 𝑆2) equals either 𝐿𝑆𝐴(𝑆1) or 𝐿𝑆𝐴(𝑆2).
Proof: Let 𝑥1 ∈ 𝑆1 ∩𝑆2. Then, either 𝐿𝑆𝐴(𝑆1) is below 𝐿𝑆𝐴(𝑆2) or 𝐿𝑆𝐴(𝑆2) is below 𝐿𝑆𝐴(𝑆1), otherwise
there is a path from the root of 𝑁 to 𝑥1 that does not pass through 𝐿𝑆𝐴(𝑆1) or does not pass through
𝐿𝑆𝐴(𝑆2). Suppose that 𝐿𝑆𝐴(𝑆2) is below 𝐿𝑆𝐴(𝑆1). Then any path from the root to a leaf in 𝑆2 must
pass through 𝐿𝑆𝐴(𝑆1). If not, then there exists a path from the root to 𝑥1 that passes through 𝐿𝑆𝐴(𝑆2),
but does not pass through 𝐿𝑆𝐴(𝑆1). This contradicts with the definition, that is, any path from the root
of 𝑁 to a leaf in 𝑆1 passes through 𝐿𝑆𝐴(𝑆1). In the same way, if 𝐿𝑆𝐴(𝑆1) is below 𝐿𝑆𝐴(𝑆2), then any
path from the root to a leaf in 𝑆1 passes through 𝐿𝑆𝐴(𝑆2). Then by definition of lowest stable ancestor,
𝐿𝑆𝐴(𝑆1 ∪ 𝑆2) equals either 𝐿𝑆𝐴(𝑆1) or 𝐿𝑆𝐴(𝑆2). □
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Let 𝑋′ = {𝑥1, ... , 𝑥𝑛}. We will prove now by induction on 𝑛 that 𝐿𝑆𝐴(𝑋′) = 𝐿𝑆𝐴({𝑥𝑖 , 𝑥𝑗}) for some
𝑖, 𝑗 ∈ {1, ... , 𝑛}, 𝑖 ≠ 𝑗. First, suppose that 𝑛 = 2. Then 𝑋′ = {𝑥1, 𝑥2} and 𝐿𝑆𝐴(𝑋′) = 𝐿𝑆𝐴({𝑥1, 𝑥2}),
so the statement holds for 𝑛 = 2. Now, assume that the statement holds for 𝑛 = 𝑘 ≥ 2. That is, if
𝑋′ = {𝑥1, ... , 𝑥𝑘}, then 𝐿𝑆𝐴(𝑋′) = 𝐿𝑆𝐴({𝑥𝑖 , 𝑥𝑗}) for some 𝑖, 𝑗 ∈ {1, ... , 𝑘}, 𝑖 ≠ 𝑗. Now, suppose that
𝑋′ = {𝑥1, ... , 𝑥𝑘+1} and 𝑆1 = {𝑥1, ... , 𝑥𝑘} and 𝑆2 = {𝑥𝑘 , 𝑥𝑘+1}. Note that 𝑋′ = 𝑆1 ∪ 𝑆2 and 𝑆1 ∩ 𝑆2 ≠
∅. By the claim, 𝐿𝑆𝐴(𝑆1 ∪ 𝑆2) equals either 𝐿𝑆𝐴({𝑥1, ... , 𝑥𝑘}) or 𝐿𝑆𝐴({𝑥𝑘 , 𝑥𝑘+1}). If 𝐿𝑆𝐴(𝑆1 ∪ 𝑆2) =
𝐿𝑆𝐴({𝑥𝑘 , 𝑥𝑘+1}), then 𝐿𝑆𝐴(𝑋′) = 𝐿𝑆𝐴({𝑥𝑘 , 𝑥𝑘+1}) and we are done. If 𝐿𝑆𝐴(𝑆1 ∪ 𝑆2) = 𝐿𝑆𝐴({𝑥1, ... , 𝑥𝑘}),
then by the induction hypothesis 𝐿𝑆𝐴(𝑋′) = 𝐿𝑆𝐴(𝑆1∪𝑆2) = 𝐿𝑆𝐴({𝑥𝑖 , 𝑥𝑗}) for some 𝑖, 𝑗 ∈ {1, ... , 𝑘}, 𝑖 ≠ 𝑗.
By induction, it holds for all 𝑛 ≥ 2 that if 𝑋′ = {𝑥1, ... , 𝑥𝑛}, then 𝐿𝑆𝐴(𝑋′) = 𝐿𝑆𝐴({𝑥𝑖 , 𝑥𝑗}) for some
𝑖, 𝑗 ∈ {1, ... , 𝑛}, 𝑖 ≠ 𝑗.

In the network in Figure 2.1, we see for example that 𝐿𝑆𝐴(𝑥3, 𝑥7) = 𝑐 and 𝐿𝑆𝐴(𝑥4, 𝑥7) = 𝜌. In this thesis
we look at subnets of networks where the 𝐿𝑆𝐴 and the leaves play an important role.

Definition 2.12. A 𝑘net is a binary, rooted phylogenetic network on 𝑘 leaves.

Since we often use 2nets and 3nets, we call them binets and trinets, respectively. The 𝑘nets are
obtained from a network in the following way.

Definition 2.13. Let𝑁 be a phylogenetic network on 𝑋 and let {𝑥1, ... , 𝑥𝑝} ⊆ 𝑋. The 𝑝net on {𝑥1, ... , 𝑥𝑝}
exhibited by 𝑁 is the 𝑝net obtained from 𝑁 by deleting all vertices that are not contained in any path
from 𝐿𝑆𝐴({𝑥1, ... , 𝑥𝑝}) to 𝑥1, ... , 𝑥𝑝 and subsequently suppressing all indegree1 outdegree1 vertices
and parallel arcs until neither is possible.

Note that a 𝑘net is a rooted phylogenetic network, so it cannot contain indegree1 outdegree1 ver
tices and parallel arcs. Suppressing parallel arcs means replacing by a single arc. An example of a
phylogenetic network 𝑁 on 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖} is given in Figure 2.3a. The blue arcs represent
all paths from 𝐿𝑆𝐴({𝑓, ℎ}) to 𝑓 and ℎ. Then, the binet on {𝑓, ℎ} exhibited by 𝑁 is the network in Figure
2.3b. The trinet on {𝑑, 𝑒, 𝑔} exhibited by 𝑁 is given in Figure 2.3c.
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f

g h i

(a) Phylogenetic network 𝑁 on 𝑋.

f

h

(b) The binet on {𝑓, ℎ} exhibited by 𝑁.

e d g

(c) The trinet on {𝑑, 𝑒, 𝑔} exhibited by 𝑁.

Figure 2.3: A phylogenetic network with one of its binets and one of its trinets.

We will denote the set of all trinets of a phylogenetic network 𝑁 by 𝑇𝑛(𝑁) and denote the set of all
𝑝nets of a phylogenetic network 𝑁 with 𝒮𝑝(𝑁). In Definition 2.16, this notation is used, together with
the definition of equal networks. We will first define a graph isomorphism for directed graphs.

Definition 2.14. Let 𝐺1 and 𝐺2 be two directed graphs. A graph isomorphism between 𝐺1 and 𝐺2 is a
bijection 𝑓 ∶ 𝑉(𝐺1) → 𝑉(𝐺2) such that for any 𝑢, 𝑣 ∈ 𝑉(𝐺1) it holds that (𝑢, 𝑣) is an arc of 𝐺1 if and only if
(𝑓(𝑢), 𝑓(𝑣)) is an arc of 𝐺2. Moreover, 𝐺1 and 𝐺2 are isomorphic graphs if there exists such a bijection
between 𝐺1 and 𝐺2.

Definition 2.15. Let 𝑁 and 𝑁′ be two phylogenetic networks on 𝑋. 𝑁 and 𝑁′ are equal networks (or:
𝑁 = 𝑁′) if there exists a graph isomorphism 𝑓 between 𝑁 and 𝑁′ such that 𝑓(𝑥) = 𝑥 for each leaf 𝑥 ∈ 𝑋.
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Finally, we can define when a network is determined (encoded) by its set of 𝑘nets. We distinguish
between weakly and strongly encoded.

Definition 2.16. For 𝑘 ≥ 2, a phylogenetic network 𝑁 is strongly encoded or encoded by its set of
𝑘nets 𝒮𝑘(𝑁) if there does not exist a recoverable phylogenetic network 𝑁′ with 𝑁′ ≠ 𝑁 such that
𝒮𝑘(𝑁) = 𝒮𝑘(𝑁′).
Definition 2.17. For 𝑘 ≥ 2, a class 𝒞 of phylogenetic networks is weakly encoded by 𝑘nets if there
are no two recoverable networks 𝑁,𝑁′ in 𝒞 with 𝑁 ≠ 𝑁′ such that 𝒮𝑘(𝑁) = 𝒮𝑘(𝑁′).
Note that if 𝑁′ is not recoverable, there is a strongly redundant biconnected component (as in Figure
2.2a), but it is suppressed by constructing any 𝑘net. Therefore we cannot know what this biconnected
component is. Therefore, we restrict to recoverable networks in Definition 2.16 and 2.17.

2.4. Generators and symmetry
In many proofs in this thesis, the generator of a phylogenetic network is used. We use that networks
can be divided into groups of networks with the same underlying structure. We will call this kind of
structure the generator. The symmetries in such a generator turn out to be important. Before we define
it formally, we will define what a simple phylogenetic network is. Note the definition of simple in this
thesis is different from the common definition of a simple graph.

Definition 2.18. A phylogenetic network is simple if the head of each cutarc is a leaf.

Definition 2.19. A level𝑘 phylogenetic network is a simple level𝑘 network if it is simple.

We will now define a level𝑘 generator. Thereafter, we define how to obtain a generator from a network.

Definition 2.20. A level𝑘 generator is a directed acyclic biconnected multigraph with exactly 𝑘 reticu
lations. Furthermore, each vertex has either

• indegree 2 and outdegree at most 1,

• indegree 1 and outdegree 2,

• indegree 0 and outdegree 2 (the single root).

Note that we defined a generator as a binary graph. Also, it can contain pairs of parallel arcs. The
example of a level4 generator in Figure 2.4b has one pair of parallel arcs.

Definition 2.21. Let 𝐺 be a generator. The sides of 𝐺 are the arcs and outdegree0 vertices of 𝐺.
Definition 2.22. Let 𝐺 be a generator and let 𝐴1 and 𝐴2 be two sides of 𝐺 that form a pair of parallel
arcs. Then, 𝐴1 is the parallel arc of 𝐴2, and vice versa.

Each side will be labelled by a capital letter. In Figure 2.4b all sides of this generator are labelled and
𝐶1 is a parallel arc of 𝐶2. Sides 𝐿 and 𝑀 are outdegree0 vertices.

Definition 2.23. Let 𝑁 be a simple phylogenetic network. The graph obtained from 𝑁 by deleting all
leaves and suppressing all indegree1 outdegree1 vertices is called the underlying generator of 𝑁 and
is denoted by 𝐺𝑁.
𝑁 can be reconstructed from 𝐺𝑁 in the following way.

• Replace each arc of 𝐺𝑁 by a directed path with 𝑙 ≥ 0 internal vertices 𝑣1, ... , 𝑣𝑙 and, for each such
internal vertex 𝑣𝑖, add a leaf 𝑥𝑖 ∈ 𝑋 and an arc (𝑣𝑖 , 𝑥𝑖);

• for each indegree2 outdegree0 vertex 𝑣, add a leaf 𝑥 ∈ 𝑋 and an arc (𝑣, 𝑥).
It is defined below what it means for a leaf of a network to be on a certain side of the underlying
generator.

Definition 2.24. Let 𝑁 be a simple level𝑘 network on 𝑋, let 𝐺𝑁 be its underlying generator and let 𝑆
be a side of 𝐺𝑁. Leaf 𝑥 ∈ 𝑋 is on side 𝑆 if it is ‘hung’ on side 𝑆 in this construction of 𝑁 from 𝐺𝑁. More
precisely, 𝑥 is on side 𝑆 if
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• 𝑆 is an outdegree0 vertex in 𝑉(𝐺𝑁), 𝑠 is the corresponding vertex in 𝑉(𝑁) and (𝑠, 𝑥) is an arc in
𝐸(𝑁),

• or 𝑆 is an edge (𝑢, 𝑣) ∈ 𝐸(𝐺𝑁) and the parent of 𝑥 in 𝑁 is one of the internal nodes of the directed
path that is the replacement of (𝑢, 𝑣) in the construction of 𝑁 from 𝐺𝑁.

x1

x2
x3

x4

x5

x6
(a) A simple level4 network 𝑁 on 𝑋.
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(b) The underlying generator of 𝑁.

Figure 2.4: Example of a network with its underlying generator.

In Figure 2.4, leaves 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 are on sides 𝐶1, 𝐻, 𝐿, 𝐺, 𝐺,𝑀 of 𝐺𝑁, respectively. 𝐺𝑁 is the un
derlying generator of 𝑁, and we see that the sides are labelled in 𝐺𝑁, the leaves are deleted from 𝑁 to
obtain 𝐺𝑁, and all indegree1 outdegree1 vertices are suppressed.

In Chapter 3 we will see that for a simple level𝑘 network 𝑁 on 𝑋, there are 𝑝nets exhibited by 𝑁,
with 𝑝 ≤ 𝑘, with the same underlying generator as 𝑁. This is a very useful result that we prove and use
in this thesis. Therefore, we will first define the crucial sides of a generator.

Definition 2.25. Let 𝑁 be a network on 𝑋 and 𝐺𝑁 its underlying generator. A set of sides of 𝐺𝑁 is a set
of crucial sides if it contains all indegree2 outdegree0 vertices together with at least one arc of each
pair of parallel arcs. A side is crucial if it is contained in a set of crucial sides and noncrucial if it is not
contained in any set of crucial sides. For a leaf 𝑥 ∈ 𝑋 on side 𝑆, 𝑥 is a crucial leaf if 𝑆 is crucial; 𝑥 is a
noncrucial leaf if 𝑆 is noncrucial.
For example, {𝐶1, 𝐿,𝑀} and {𝐶2, 𝐿,𝑀} are all sets of crucial sides of 𝐺𝑁 in Figure 2.4 and 𝑥1, 𝑥3 and 𝑥6
are crucial leaves. We will now give the definition of a crucial 𝑘net.
Definition 2.26. Let 𝑁 be a simple level𝑘 network on 𝑋 and 𝐺𝑁 its underlying generator. Let 𝑃 be a
𝑝net on 𝑋′ ⊆ 𝑋 exhibited by 𝑁 for 𝑝 ≥ 2. 𝑃 is a crucial 𝑝net of 𝑁 if 𝑋′ contains at least one leaf on
each side in some set of crucial sides of 𝐺𝑁.
In Chapter 3 we will see that if 𝑝 = 𝑘, then there always exists a crucial 𝑝net. But for a network with a
set of crucial sides of size exactly 𝑘, it has no crucial 𝑝nets for 𝑝 < 𝑘. Furthermore, we will see that a
crucial 𝑝net of 𝑁 has the same underlying generator as 𝑁.

We will now concentrate on symmetries in a generator. Having parallel arcs leads for example to a
symmetry in a generator. When a generator has symmetry is formally defined below.

Definition 2.27. A generator has symmetry if

• there exists a graph automorphism 𝑓 ∶ 𝑉(𝐺) → 𝑉(𝐺) such that 𝑓(𝑣) ≠ 𝑣 for at least one 𝑣 ∈ 𝑉(𝐺),
where a graph automorphism is a graph isomorphism from a graph to itself,

• or it contains a pair of parallel arcs.
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Symmetry in a generator leads to the existence of a relabelling of sides of the generator such that an
isomorphic generator is obtained. A relabelling of sides is defined below.

Definition 2.28. Let 𝐺 be a generator with symmetry and let 𝑍 be the set of sides of 𝐺. A relabelling
of sides is a bijective function 𝑓 ∶ 𝑍 → 𝑍 such that 𝑓(𝑠) ≠ 𝑠 for some 𝑠 ∈ 𝑍.

Definition 2.29. Let 𝐺 be a generator with set of sides 𝑍 and let {𝑆1, 𝑆2} ⊆ 𝑍 be a set of sides of 𝐺
which form a pair of parallel arcs. 𝑆1 and 𝑆2 are switched if a relabelling of sides 𝑓 is applied to 𝑍 such
that 𝑓(𝑆1) = 𝑆2, 𝑓(𝑆2) = 𝑆1 and 𝑓(𝑠) = 𝑠 for all 𝑠 ∈ 𝑍 ⧵ {𝑆1, 𝑆2}.

Definition 2.30. Let 𝑁 be a network on 𝑋 and 𝐺𝑁 its underlying generator with symmetry. Let 𝑓 ∶
𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) be a graph automorphism such that 𝑓(𝑥) ≠ 𝑥 for some 𝑥 ∈ 𝑉(𝐺𝑁) giving an isomorphic
generator. The relabelling of sides belonging to 𝑓 is the automorphism 𝑓′ ∶ 𝑍 → 𝑍 such that 𝑓(𝑥) = 𝑓′(𝑥)
for all 𝑥 in the set of outdegree0 vertices of 𝐺𝑁 and 𝑓′(𝑦) = (𝑓(𝑢), 𝑓(𝑣)) for all sides 𝑦 ∈ 𝑍 that are
arcs (𝑢, 𝑣) ∈ 𝐸(𝐺𝑁) for some 𝑢, 𝑣 ∈ 𝑉(𝐺𝑁).

The network 𝑁 on 𝑋 in Figure 2.5a equals the network 𝑁′ in Figure 2.5b, so 𝑁 = 𝑁′. 𝑁 and 𝑁′ have the
same underlying generator 𝐺𝑁, presented in Figure 2.5c. Note that in the construction of 𝐺𝑁 from 𝑁,
all leaves of 𝑋 are deleted and vertices 𝑎, 𝑖, ℎ and 𝑜 are suppressed. Furthermore, leaves 𝑙 and 𝑝 in 𝑁
and 𝑁′ are sides in 𝐺𝑁 and therefore denoted by capital letters 𝑆 and 𝑈. 𝐺𝑁 has symmetry; we will give
examples of a graph automorphisms and a relabellings of sides giving an isomorphic generator to 𝐺𝑁.

Let 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) be the graph automorphism such that 𝑓(𝑆) = 𝑈, 𝑓(𝑈) = 𝑆 and 𝑓(𝑣) = 𝑣
for all 𝑣 ∈ 𝑉(𝐺𝑁) ⧵ {𝑆, 𝑈}. Then, the relabelling of sides of 𝐺𝑁 belonging to 𝑓 is 𝑓′ ∶ 𝑍 → 𝑍 such that 𝑓′
maps sides in the following way: 𝑂 ⟺ 𝑃;𝑅 ⟺ 𝑇; 𝑆 ⟺ 𝑈 and 𝑓′(𝑠) = 𝑠 ∀𝑠 ∈ 𝑍 ⧵ {𝑂, 𝑃, 𝑅, 𝑆, 𝑇, 𝑈}. This
symmetry leads to the possibility for leaves 𝑥5 and 𝑥6 to be on side 𝑇 and 𝑅 in 𝑁, but on side 𝑅 and 𝑇
in 𝑁′, respectively, while 𝑁 = 𝑁′.

Consider leaf 𝑥4 in 𝑁. It is on side 𝑇 in 𝑁 and on side 𝑂 in 𝑁′, while 𝑁 = 𝑁′. This can be explained
by the existence of another graph isomorphism besides 𝑓, 𝑔 ≠ 𝑓, that gives an isomorphic generator
to 𝐺𝑁, too. 𝑔 maps the vertices of 𝐺𝑁 in the following way: 𝑐 ⟺ 𝑏; 𝑔 ⟺ 𝑑; 𝑓 ⟺ 𝑒; 𝑛 ⟺ 𝑗;𝑚 ⟺ 𝑘
and 𝜌, 𝑆 and 𝑈 are mapped to itself by 𝑔. This symmetry causes for example that 𝑥1 is on side 𝐵 in
𝑁 and on side 𝐴 in 𝑁′. The relabelling of sides belonging to the composition of 𝑓 and 𝑔 maps 𝑇 to 𝑂.
Therefore there exists equal networks with leaf 𝑥4 on the different mentioned sides. In another way, if
only network 𝑁 and 𝐺𝑁 are considered, we say that for an simple network 𝑁′ on the same leaf set with
a generator isomorphic to 𝐺𝑁, leaf 𝑥4 is on side 𝑂, 𝑃, 𝑅 or 𝑇 in 𝑁′, due to the symmetries of 𝐺𝑁.
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(a) Phylogenetic network 𝑁 on 𝑋.
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(b) Phylogenetic network 𝑁′ on 𝑋.

A B

C D E
F

G H

I
J K

L

M
O P Q

R T
S

U

ρ

b c

d g
e f

j nk m

(c) The underlying generator 𝐺𝑁 of𝑁 and𝑁′
with symmetry.

Figure 2.5: Two equal networks 𝑁,𝑁′ with their underlying generator 𝐺𝑁 having symmetry.





3
Restricting the problem

To determine networks according to their level, it would be helpful if there is a way to reduce the problem
to a smaller problem. For example, a level𝑘 network contains at least one biconnected component
with 𝑘 reticulations, but the number of reticulations in the other biconnected components is just at least
𝑘, and there can be many nontrivial biconnected components, which makes the network more complex.
In this chapter, we will first generalise existing results for crucial subnets. They are of great importance
to determine the structure of a simple network. Thereafter, we will show how our determination problem
can be reduced to the strongest result, namely encoding networks with 𝑝nets, where 𝑝 is as small as
possible. Finally, it will turn out that we can restrict ourselves to the level𝑘 biconnected component of
a level𝑘 network to determine whether it is encoded by subnets. Therefore, we will mostly focus on
simple networks in this thesis.

3.1. Crucial subnets
The existence of a crucial 𝑘net for 𝑘 as small as possible is useful to reconstruct the whole phylogenetic
network from its subnets. In Nipius, 2020 it is proved for simple level3 networks that they have at least
one crucial trinet, see the lemma below. This can be generalised for level𝑘 networks; this is stated in
Lemma 2.
Lemma 1. (Lemma 5.1 in Nipius, 2020) If 𝐺 is a level3 generator, then it has a set of crucial sides of
size at most 3. Hence, every simple level3 network 𝑁 has at least one crucial trinet.

Lemma 2. Let 𝑁 be a binary, simple level𝑘 network on 𝑋 with |𝑋| ≥ 𝑐 where 𝑐 is the size of a set of
crucial sides of 𝐺𝑁, with 𝑐 ≤ 𝑘. Then 𝑁 has at least one crucial 𝑐net.
Proof. Let {𝑋1, ..., 𝑋𝑐} be a set of crucial sides of 𝐺𝑁 such that each side contains at least one leaf, and
let 𝑥1, ... , 𝑥𝑐 be leaves on sides 𝑋1, ..., 𝑋𝑐 respectively. Let 𝐶 ∈ 𝒮𝑐(𝑁) be the 𝑐net on 𝑥1, ... , 𝑥𝑐. Since
𝑁 is a phylogenetic network and simple, 𝑁 contains a leaf on each crucial side which is an outdegree0
vertex in its underlying generator. Also, for a pair of parallel arcs in 𝐺𝑁, at least one of these arcs
contains a leaf of 𝑁. Therefore, there indeed exists a set of crucial sides of 𝐺𝑁 such that each side
contains at least one leaf of 𝑁. 𝐶 now contains exactly one leaf on each side in some set of crucial
sides of 𝐺𝑁, so 𝐶 is a crucial 𝑐net.
What it means for a trinet to be crucial, becomes clear in the following lemma from Van Iersel and
Moulton, 2012. It has the same generator as the whole phylogenetic network. Therefore, it is easier
to say something about the sides of the leaves, what we need in the next sections. We will generalise
this by proving Lemma 4.
Lemma 3. (Lemma 1 in Van Iersel and Moulton, 2012) Let 𝑁 be a simple level𝑘 network, 𝐺𝑁 its
underlying generator and 𝑇 ∈ 𝑇𝑛(𝑁). Then, 𝑇 is a crucial trinet of 𝑁 if and only if 𝑇 is a simple level𝑘
network. Moreover, if 𝑇 is a crucial trinet of 𝑁 then 𝐺𝑁 is its underlying generator.

Lemma 4. Let 𝑁 be a simple level𝑘 network, 𝐺𝑁 its underlying generator and 𝑃, a 𝑝net of 𝑁 with
𝑝 ≥ 2. Then, 𝑃 is a crucial 𝑝net of 𝑁 if and only if 𝑃 is a simple level𝑘 network. Moreover, if 𝑃 is a
crucial 𝑝net of 𝑁, then 𝐺𝑁 is the underlying generator of 𝑃.
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Proof. Let 𝑃 be a crucial 𝑝net exhibited by 𝑁. By definition, 𝑃 contains at least one leaf on each side
in some set of crucial sides of 𝐺𝑁, the underlying generator of 𝑁. Furthermore, 𝑁 contains 𝑘 reticu
lation vertices. The following claim is useful to prove that no reticulations are deleted to obtain 𝑃 from𝑁.

Claim: Let 𝑁 be a binary, simple network. There exists an outdegree0 vertex below each arc in its
underlying generator.
Proof: Let 𝐺𝑁 be the underlying generator of network 𝑁. All vertices in 𝐺𝑁 have outdegree 𝑥 ∈ ℤ≥0
by construction. Let 𝑎 = (𝑒, 𝑓) be an arc in 𝐺𝑁. Suppose there does not exist an outdegree0 vertex
below 𝑎. It follows that each vertex below 𝑎 has outdegree 𝑥 ∈ ℤ>0. As a consequence, each vertex
below 𝑎 has at least one vertex below it, different from itself. Then 𝑉(𝐺𝑁) → ∞. By construction of 𝐺𝑁,
𝑉(𝑁) → ∞, which contradicts with 𝑉(𝑁) being finite. So for each arc in 𝐺𝑁, there is an outdegree0
vertex below it. □

It also follows that there is an outdegree0 vertex below each vertex of 𝐺𝑁. So 𝑃 contains a leaf below
each reticulation. Therefore, no reticulation vertices are deleted. Also, 𝑃 contains at least one leaf on
one of the arcs forming a pair of parallel arcs in 𝐺𝑁. As a consequence, no parallel arcs are suppressed
by constructing 𝑃 from 𝑁. It follows that 𝑃 contains 𝑘 reticulation vertices. Hence, 𝑃 is a simple level𝑘
network. Indeed, if 𝑃 is not simple, some reticulation vertex must be deleted.

No reticulation vertices are deleted and no parallel arcs are suppressed to obtain 𝑃 from 𝑁. Then,
if a vertex is deleted to obtain 𝑃 from 𝑁, then it is a leaf or a parent of a leaf. It follows that 𝐺𝑃, the
underlying generator of 𝑃, is isomorphic to 𝐺𝑁. We can conclude that 𝐺𝑁 is also the underlying generator
of 𝑃.

To prove the ifdirection, assume, for the sake of contradiction, that 𝑃 is not a crucial 𝑝net. Then
for each set of crucial sides of 𝐺𝑁, there is some side in this set for which 𝑃 does not contain a leaf on
that side. Then there are two cases to distinguish. The first case is that there is some leaf, a crucial
leaf, that is the child of an indegree2 outdegree0 reticulation in 𝑁 that is not contained in 𝑃. It follows
that at least one reticulation is deleted to obtain 𝑃 from 𝑁. The second case is that there is some pair
of parallel arcs in 𝐺𝑁 for which 𝑃 does not contain a leaf that is on any of these parallel arcs in 𝑁. In
this case, a pair of parallel arcs is suppressed to obtain 𝑃 from 𝑁. In both cases a reticulation vertex
is deleted, so 𝑃 has less reticulations than 𝑁. We can conclude that 𝑃 is not simple level𝑘, otherwise
𝑃 would have exactly 𝑘 reticulation vertices. Note that this proof holds for all 𝑝 ≥ 2 so the lemma
follows.

If, for example, a leaf on a side which is an outdegree0 vertex in a generator is not contained in a 𝑝net
exhibited by some network 𝑁, then this 𝑝net will not have the same underlying generator. If 𝑥1, 𝑥3 or 𝑥6
is not contained in a 𝑝net exhibited the network𝑁 in Figure 3.1a, then 𝐺𝑁 is not the underlying generator
of the 𝑝net. In Figure 3.1, we see that 𝐺𝑁 is the underlying generator of the trinet on {𝑥1, 𝑥3, 𝑥6}. Indeed,
{𝐶1, 𝐿,𝑀} is a set of crucial sides of size three, while 𝑁 is a level4 network. The underlying generator of
the 4net on {𝑥2, 𝑥3, 𝑥4, 𝑥5} is not 𝐺𝑁. In fact, the 4net on {𝑥2, 𝑥3, 𝑥4, 𝑥5} is not simple and an underlying
generator is only defined for simple networks. Therefore, the underlying generator of this 4net is not
defined and so it is not 𝐺𝑁, too.

3.2. Getting stronger results
We will now prove that if a network is determined by its set of 𝑝nets, then it is determined by its set of
(𝑝 + 1)nets. This is very useful because if one is able to prove that a certain network is encoded by
its set of 𝑝nets, then the network is encoded by its set of 𝑞nets for 𝑞 ≥ 𝑝. It also shows that a lower
𝑝 gives a stronger result.

Lemma 5. Let 𝑁 and 𝑁′ be phylogenetic networks on at least 𝑝 leaves. If their sets of 𝑝nets are the
same, then their sets of (𝑝 − 1)nets are the same.

Proof. Let 𝑥1, 𝑥2, ... , 𝑥𝑝−1 be 𝑝−1 leaves of 𝑁. Since |𝑋| ≥ 𝑝, there exists a 𝑝net 𝑃 ∈ 𝒮𝑝(𝑁) containing
leaves 𝑥1, 𝑥2, ... , 𝑥𝑝−1. Then, the (𝑝 − 1)net 𝑃−1 ∈ 𝒮𝑝−1(𝑃) on {𝑥1, 𝑥2, ... , 𝑥𝑝−1} exhibited by 𝑃 is, by
construction, in the set of (𝑝−1)nets exhibited by 𝑁, 𝒮𝑝−1(𝑁). Since 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′), 𝑃 is also a 𝑝net
of 𝑁′, so 𝑃−1 is, also by construction, contained in the set of (𝑝 − 1)nets exhibited by 𝑁′, 𝒮𝑝−1(𝑁′). So
𝑃1 ∈ 𝒮𝑝−1(𝑁) ⟹ 𝑃1 ∈ 𝒮𝑝−1(𝑁′). By exactly the same reasoning, 𝑃1 ∈ 𝒮𝑝−1(𝑁′) ⟹ 𝑃1 ∈ 𝒮𝑝−1(𝑁).
𝑥1, 𝑥2, ... , 𝑥𝑝−1 were chosen arbitrarily, so we can conclude that 𝒮𝑝−1(𝑁) = 𝒮𝑝−1(𝑁′).
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(c) The underlying generator of 𝑇,
with 𝐺𝑇 = 𝐺𝑁.
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(d) The 4net on {𝑥2 , 𝑥3 , 𝑥4 , 𝑥5},
which has no underlying generator.

Figure 3.1: A crucial trinet with the same underlying generator as the phylogenetic network 𝑁, and an example of a 4net that is
not crucial.

Corollary 1. Let 𝑁 be a network on at least 𝑝 + 1 leaves. If 𝑁 is encoded by its set of 𝑝nets, then it is
encoded by its set of (𝑝 + 1)nets.

Proof. Let 𝑁 be a network on at least 𝑝+1 leaves which is encoded by its set of 𝑝nets. Suppose 𝑁 is
not encoded by its set of (𝑝+1)nets, then there exists a network 𝑁′ ≠ 𝑁 for which 𝒮𝑝+1(𝑁′) = 𝒮𝑝+1(𝑁).
It follows from Lemma 5 that 𝒮𝑝(𝑁′) = 𝒮𝑝(𝑁), which leads to a contradiction with the assumption that
𝑁 is encoded by its set of 𝑝nets. We can conclude that 𝑁 is encoded by its set of (𝑝 + 1)nets.

3.3. Reducing the problem to simple networks
A large number of nontrivial biconnected components in a network canmake our determination problem
more complicated. In this section, we will generalise Theorem 2 from Van Iersel and Moulton, 2012.
This theorem simplifies our problem a lot, since we have only to consider simple networks instead of all
networks as a whole. For example, in Nipius, 2020 the problem for level3 networks is reduced to only
65 level3 generators. First, we will define cutarc sets and give a decomposition theorem, Theorem 1,
which is proved by Van Iersel and Moulton, 2012.

Definition 3.1. Let 𝑁 be a phylogenetic network on 𝑋 and 𝑋′ ⊆ 𝑋. 𝑋′ is a CAset (cutarc set) of 𝑁 if
there exists a cutarc (𝑢, 𝑣) ∈ 𝐸(𝑁) such that 𝑋′ = {𝑥 ∈ 𝑋|𝑥 is below 𝑣}.

Note that a CAset is a set of leaves of the network. For example, {𝑥4, 𝑥5} in the network 𝑁 in Figure
2.1 is a CAset because 𝑥4, 𝑥5 are all leaves below 𝑏 where (𝑎, 𝑏) is a cutarc of 𝑁.

Theorem 1. (Theorem 1 in Van Iersel and Moulton, 2012) Let 𝑁 be a recoverable binary phylogenetic
network on 𝑋, and 𝐴 ⊂ 𝑋. Then, 𝐴 is a CAset of 𝑁 if and only if |𝐴| = 1 or, for all 𝑧 ∈ 𝑋\𝐴 and 𝑥, 𝑦 ∈ 𝐴
with 𝑥 ≠ 𝑦, {𝑥, 𝑦} is a CAset of the trinet on {𝑥, 𝑦, 𝑧} exhibited by 𝑁.

We will prove the following corollary of this and use this in the proof of Lemma 7.

Corollary 2. Let 𝑁 and 𝑁′ be two phylogenetic networks on 𝑋. If 𝒮𝑘(𝑁) = 𝒮𝑘(𝑁′) for some 𝑘 ≥ 3, then
the CAsets of 𝑁 and 𝑁′ are the same.

Proof. Let 𝐴 ⊂ 𝑋 be a CAset of 𝑁 with |𝐴| ≥ 2. Then by Theorem 1, for all 𝑧 ∈ 𝑋 ⧵ 𝐴 and 𝑥, 𝑦 ∈ 𝐴 with
𝑥 ≠ 𝑦, {𝑥, 𝑦} is a CAset of the trinet 𝑇 on {𝑥, 𝑦, 𝑧} exhibited by 𝑁. 𝒮𝑘(𝑁) = 𝒮𝑘(𝑁′), so 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′)
for 2 ≤ 𝑝 ≤ 𝑘 by Lemma 5. Let 𝑇′ be the trinet on {𝑥, 𝑦, 𝑧} exhibited by 𝑁′. Then, 𝑇 = 𝑇′, so {𝑥, 𝑦} is a
CAset of 𝑇′ where 𝑧 was chosen arbitrarily. Then, 𝐴 is a CAset of 𝑁′ by Theorem 1. If |𝐴| = 1, then
𝐴 is trivially a CAset of 𝑁′, too.

In Van Iersel and Moulton, 2012, the decomposition theorem below, which can only be used for encod
ing with trinets, is proved. We state this theorem for the sets of 𝑘nets of a network, see Theorem 3,
such that we can use it in the whole thesis.
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Theorem 2. (Theorem 2 in Van Iersel and Moulton, 2012) A recoverable phylogenetic network 𝑁 on
𝑋, with |𝑋| ≥ 3, is encoded by its set of trinets 𝑇𝑛(𝑁) if and only if, for each nontrivial biconnected
component 𝐵 of 𝑁 with at least four outgoing cutarcs, 𝑁𝐵 is encoded by 𝑇𝑛(𝑁𝐵).

Theorem 3. A recoverable binary phylogenetic network 𝑁 on 𝑋 with |𝑋| ≥ 𝑘 is encoded by its set of
𝑘nets 𝒮𝑘(𝑁) if and only if for each nontrivial biconnected component 𝐵 of 𝑁 with at least 𝑘+1 outgoing
cutarcs, 𝑁𝐵 is encoded by 𝒮𝑘(𝑁𝐵).

Proof. In the rest of this section, we will prove Theorem 3.

‘Only if’ direction
To prove the ‘only if’ direction, suppose that 𝑁 is a recoverable binary phylogenetic network on 𝑋 with
|𝑋| ≥ 𝑘 that is encoded by its set of 𝑘nets 𝒮𝑘(𝑁). For the first part, we will mostly follow the proof of
Theorem 2 in Van Iersel and Moulton, 2012. Suppose, for the sake of contradiction, that there exists
a nontrivial biconnected component 𝐵 of 𝑁 such that 𝑁𝐵 is not encoded by its set of 𝑘nets 𝒮𝑘(𝑁𝐵),
where 𝑁𝐵 has at least 𝑘 + 1 outgoing cutarcs. That is, there exists a recoverable network 𝑁′𝐵 such
that 𝑁′𝐵 ≠ 𝑁𝐵 and 𝒮𝑘(𝑁′𝐵) = 𝒮𝑘(𝑁𝐵). It follows 𝑇𝑛(𝑁′𝐵) = 𝑇𝑛(𝑁𝐵) by Lemma 5 and by Theorem 1 and
corollary 2, 𝑁′𝐵 has the same CAsets as 𝑁𝐵. Hence, all CAsets of 𝑁′𝐵 are singletons, because the
CAsets of 𝑁𝐵 are. Indeed, 𝑁𝐵 is biconnected.

Claim: 𝑁′𝐵 has no redundant biconnected components.
Proof: Suppose, for the sake of contradiction, that 𝑁′𝐵 has a redundant biconnected component. Then
there is only one arc below it by definition. If this is not a cut arc, then this redundant biconnected
component is ’embedded’ in a bigger biconnected component, so then this is not a biconnected com
ponent by definition. So the outgoing arc of the redundant biconnected component must be a cutarc,
and so it’s a leaf, say 𝑥, by the result in the previous paragraph. Then all trinets containing 𝑥 have a
redundant biconnected component with 𝑥 directly below it. But since 𝑇𝑛(𝑁′𝐵) = 𝑇𝑛(𝑁𝐵) and since 𝐵 is
biconnected, for each leaf 𝑥, there exists a trinet in 𝑇𝑛(𝑁𝐵) with no redundant biconnected component.
We have now proved the claim that 𝑁′𝐵 has no redundant biconnected components. □

Combining this with the observation that all CAset of 𝑁′𝐵 are singletons, it now follows that 𝑁′𝐵 consists
of one nontrivial biconnected component with leaves attached to it by cutarcs, i.e. it is a simple net
work. We want to contradict that 𝑁 is encoded by 𝒮𝑘(𝑁). We can do this by showing that there exist
a network 𝑁′ ≠ 𝑁 with 𝒮𝑘(𝑁′) = 𝒮𝑘(𝑁). We use 𝑁′𝐵 ≠ 𝑁𝐵 to construct 𝑁′. Let 𝐵′ be the nontrivial
biconnected component of which 𝑁′𝐵 is the restriction. Let 𝑁′ be the resulting network after replacing 𝐵
by 𝐵′ in 𝑁. Now 𝑁′ ≠ 𝑁, and 𝑁′ is recoverable, since we only replaced 𝐵 by 𝐵′, and 𝑁′𝐵 is simple. What
is left to show is 𝒮𝑘(𝑁′) = 𝒮𝑘(𝑁), while𝑁 ≠ 𝑁′, which will contradict the fact that𝑁 is encoded by 𝒮𝑘(𝑁).

To show 𝒮𝑘(𝑁′) = 𝒮𝑘(𝑁), let 𝐾 ∈ 𝒮𝑘(𝑁) be a 𝑘net on {𝑥1, ... , 𝑥𝑘} ⊂ 𝑋. We consider different places
where these leaves can be and prove that 𝐾 ∈ 𝒮𝑘(𝑁′) for each case.

First, suppose that 𝑥1, ... , 𝑥𝑘 are all below the same cutarc leaving 𝐵. Then 𝐵 is not contained in
𝐾 by construction. Indeed, 𝐿𝑆𝐴(𝑥1, ... , 𝑥𝑘) ∉ 𝑉(𝐵). Then, since the only difference between 𝑁 and 𝑁′
is that 𝐵 is replaced by 𝐵′, it holds that 𝐾 ∈ 𝒮𝑘(𝑁′).

Second, suppose that 𝑥1, ... , 𝑥𝑘 are all not below a cutarc leaving 𝐵. Then then 𝐾 ∈ 𝒮𝑘(𝑁′) since
𝐾 contains no arc or vertex of 𝐵.

Third, suppose that the leaves are all below different cutarcs leaving 𝐵. Then clearly 𝐾 ∈ 𝒮𝑘(𝑁′)
since 𝒮𝑘(𝑁𝐵) = 𝒮𝑘(𝑁′𝐵) and the only difference between 𝑁 and 𝑁′ is that 𝐵 is replaced by 𝐵′.

Fourth, suppose that 𝑥1, ... , 𝑥𝑘 are below 𝑞 different cutarcs 𝑎1, ... , 𝑎𝑞 leaving 𝐵, with 𝑞 < 𝑘. Also,
suppose without loss of generality that 𝑥1, ... , 𝑥𝑞 are below 𝑎1, ... , 𝑎𝑞, respectively. Then, consider
leaves 𝑦1, ... , 𝑦𝑘−𝑞 below 𝑘 − 𝑞 different cutarcs 𝑏1, ... , 𝑏𝑘−𝑞 leaving 𝐵, such that 𝑎𝑖 ≠ 𝑏𝑗 ∀𝑖, 𝑗. Note
that these leaves exist because there exists at least one leaf in 𝑁 below each cutarc. Since 𝒮𝑘(𝑁𝐵) =
𝒮𝑘(𝑁′𝐵), the 𝑘nets on {𝑥1, ... , 𝑥𝑞 , 𝑦1, ... , 𝑦𝑘−𝑞} exhibited by 𝑁 and 𝑁′ are the same, where 𝑥1, ... , 𝑥𝑞 are
below 𝑎1, ... , 𝑎𝑞, respectively. 𝒮𝑞(𝑁𝐵) = 𝒮𝑞(𝑁′𝐵) by Lemma 5, so the 𝑞nets on {𝑥1, ... , 𝑥𝑞} exhibited
by 𝑁 and 𝑁′ are the same. Therefore, the 𝑘nets on {𝑥1, ... , 𝑥𝑘} exhibited by 𝑁 and 𝑁′ are the same.
It follows that 𝐾 ∈ 𝒮𝑘(𝑁′). Suppose that in the network in Figure 3.2a 𝑘 = 4 and 𝑞 = 3. 𝑁𝐵 has five
outgoing cutarcs. Consider for example leaves 𝑥1, 𝑥2, 𝑥3 and 𝑥6. They are below three different cut
arcs leaving 𝐵. The 4nets on {𝑥1, 𝑥2, 𝑥3, 𝑦1}, exhibited by 𝑁𝐵 and 𝑁′𝐵, respectively, are the same, and
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therefore, the 4nets on {𝑥1, 𝑥2, 𝑥3, 𝑥6} are the same.
Fifth, suppose that 𝑥1, ... , 𝑥𝑞′ are not below a cutarc leaving 𝐵 with 𝑞′ < 𝑘, and 𝑥𝑞′+1, ... , 𝑥𝑘 are

below 𝑞 different cutarcs 𝑎1, ... , 𝑎𝑞, with 𝑞 ≤ 𝑘−𝑞′. By the same reasoning as before, the (𝑘−𝑞′)nets
on {𝑥𝑞′+1, ... , 𝑥𝑘} exhibited by 𝑁 and 𝑁′ are the same.

Claim: For a simple network 𝑁 on 𝑋 with |𝑋| ≥ 3, let 𝜌 be the root of 𝑁. Then, 𝐿𝑆𝐴(𝑋) = 𝜌.
Proof: Suppose for the sake of contradiction that 𝐿𝑆𝐴(𝑋) ≠ 𝜌. Then 𝐿𝑆𝐴(𝑋) is a vertex below 𝜌, say
𝑤 ∈ 𝑉(𝑁). All paths from 𝜌 to any 𝑥 ∈ 𝑋 pass through 𝑤. 𝑤 is a lowest stable ancestor, so 𝑤 is not
outdegree1. Then 𝑤 is indegree1 since 𝑁 is a phylogenetic network. Let 𝑢 be the only parent of 𝑤 in
𝑁. Then, (𝑢, 𝑤) is a cutarc of 𝑁. This contradicts with 𝑁 being simple, so 𝐿𝑆𝐴(𝑋) = 𝜌. □

By the claim and by Observation 1 there exist two leaves 𝑥, 𝑦 of 𝑁𝐵 below two different cutarcs leaving
𝐵 such that 𝐿𝑆𝐴(𝑥, 𝑦) is the root of 𝑁𝐵. 𝒮𝑘(𝑁𝐵) = 𝒮𝑘(𝑁′𝐵) so 𝐿𝑆𝐴(𝑥, 𝑦) is then also the root of 𝑁′𝐵. Then,
the 𝑘net on 𝑥1, ... , 𝑥𝑘 exhibited by 𝑁 and 𝑁′ are the same, so 𝐾 ∈ 𝒮𝑘(𝑁′). Indeed, extending the
(𝑘 −𝑞′)net on {𝑥𝑞′+1, ... , 𝑥𝑘} to 𝐾 is independent of 𝐵 or 𝐵′. Lastly, if 𝑘−𝑞′ = 1, then there is only one
leaf, say 𝑥, below a cutarc of 𝐵. Then, all paths from the root of 𝑁𝐵 in 𝑁 are contained in 𝐾. That is also
the case for some trinet containing 𝑥 of which all leaves are below cutarcs leaving 𝐵. We can conclude
𝐾 ∈ 𝒮𝑘(𝑁′). Suppose that in the network in Figure 3.2b 𝑘 = 4 and 𝑞′ = 2. We see that 𝑥1, 𝑥2 are not
below a cutarc leaving 𝐵, and 𝑥3, 𝑥4 are below 𝑎1 and 𝑎2, respectively. The 4nets on {𝑥3, 𝑥4, 𝑦1, 𝑦2}
exhibited by 𝑁𝐵 and 𝑁′𝐵, respectively, are the same, and therefore the binets on {𝑥3, 𝑥4}, exhibited by
𝑁 and 𝑁′,respectively, are the same. It follows that the 4nets on, for example, {𝑥1, 𝑥2, 𝑥3, 𝑥4} exhibited
by 𝑁 and 𝑁′, respectively, are the same.
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Figure 3.2: Examples of phylogenetic networks, where the circles represent biconnected components.

It follows that 𝐾 ∈ 𝒮𝑘(𝑁′) for all cases, so 𝒮𝑘(𝑁′) = 𝒮𝑘(𝑁). So there is a network 𝑁′ such that 𝑁′ ≠ 𝑁
and 𝒮𝑘(𝑁′) = 𝒮𝑘(𝑁). This contradicts with 𝑁 is encoded by its set of 𝑘nets.

‘If’ direction
To prove the ‘if’ direction, let 𝑁 be a recoverable phylogenetic network on 𝑋 such that for each nontrivial
biconnected component 𝐵 with at least 𝑘 + 1 outgoing cutarcs the network 𝑁𝐵 is encoded by 𝒮𝑘(𝑁𝐵).
Let 𝑁′ be a recoverable network on 𝑋 with 𝒮𝑘(𝑁) = 𝒮𝑘(𝑁′). We will show that 𝑁 = 𝑁′, so that 𝑁 is
encoded by its set of 𝑘nets, for 𝑘 ≥ 3 by following in general the proof of Theorem 2 in Van Iersel
and Moulton, 2012. Note, if a biconnected component 𝐵 has exactly 𝑘 outgoing cutarcs, 𝑁𝐵 is trivially
encoded by 𝒮𝑘(𝑁𝐵), since in that case 𝑁𝐵 is isomorphic to the single 𝑘net in 𝒮𝑘(𝑁𝐵). Therefore we
consider ’at least 𝑘 + 1’ outgoing cutarcs.

We will continue with induction on |𝑋|. If |𝑋| = 𝑘, then, since 𝑁 and 𝑁′ are recoverable, they are
both equal to the single 𝑘net in 𝒮𝑘(𝑁) and we are done. Assume |𝑋| ≥ 𝑘. Consider the root 𝜌 of 𝑁.
We shall assume that 𝜌 is in some biconnected component 𝐵𝜌 and that 𝑎1 = (𝑢1, 𝑣1), ... , 𝑎𝑏 = (𝑢𝑏 , 𝑣𝑏)
are the cutarcs leaving 𝐵𝜌. The network in Figure 3.3a shows an example of a network where 𝐵𝜌 has
two outgoing cutarcs. If 𝜌 is not in a biconnected component, then you can see the root itself as a
component with two outgoing arcs and 𝑏 = 2. Note, if 𝑏 = 1, there is a strongly redundant biconnected
component.

Let 𝑁1, ... , 𝑁𝑏 be the networks rooted at 𝑣1, ... , 𝑣𝑏. More precisely, for 𝑖 ∈ {1, ... , 𝑏}, let 𝑁𝑖 be the
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network obtained from 𝑁 by deleting all vertices that are not below 𝑣𝑖. Suppose that 𝑋𝑖 is the leafset of
𝑁𝑖. Then, since 𝑏 ≥ 2, we have |𝑋𝑖| < |𝑋|. Note that 𝑁𝑖 is not necessarily recoverable. In Figure 3.3a,
𝑁1 is the black part of the network, and 𝑁2 is the red part of the network. Note that 𝑁1 is not recoverable
and 𝑋1 = {𝑥, 𝑥1, 𝑥2, 𝑦}.

Since the root of 𝑁 is in some biconnected component 𝐵𝜌, it follows that also the root 𝜌′ of 𝑁′ is in
some nontrivial biconnected component 𝐵𝜌′ . In the same way as before, let 𝑎′1 = (𝑢′1, 𝑣′1), ... , 𝑎′𝑏 =
(𝑢′𝑏 , 𝑣′𝑏) be the cutarcs leaving 𝐵𝜌′ . Let 𝑁′1, ... , 𝑁′𝑏 be the networks rooted at 𝑣′1, ... , 𝑣′𝑏. Now, by
Corollary 2, 𝑁′ has the same CAsets as 𝑁, because the set of 𝑘nets are the same. Thus, 𝑋𝑖 is a
CAset of 𝑁′ for 𝑖 = 1, ... , 𝑏. So let 𝑁′𝑖 be the network on 𝑋𝑖 for 𝑖 = 1, ... , 𝑏. To show that 𝑁 = 𝑁′, it
remains to show that 𝑁𝐵𝜌 = 𝑁′𝐵𝜌′ and 𝑁𝑖 = 𝑁

′
𝑖 for 𝑖 = 1, ... , 𝑏.

To show 𝑁𝐵𝜌 = 𝑁′𝐵𝜌′ , we first observe that 𝒮𝑘(𝑁𝐵𝜌) = 𝒮𝑘(𝑁′𝐵𝜌′ ). Indeed, if for any 𝑘 leaves the
𝑘nets exhibited by 𝑁𝐵𝜌 and 𝑁′𝐵𝜌′ are not the same, then for any 𝑘 leaves 𝑥1, ... , 𝑥𝑘 below 𝑎1, ... , 𝑎𝑘
respectively, the 𝑘nets exhibited by 𝑁 and 𝑁′ are not the same, which is a contradiction. First sup
pose that 𝑏 > 𝑘. Since we assumed 𝑁𝐵 encoded by 𝒮𝑘(𝑁𝐵) and we observed 𝒮𝑘(𝑁𝐵𝜌) = 𝒮𝑘(𝑁′𝐵𝜌′ ),
it directly follows 𝑁𝐵𝜌 = 𝑁′𝐵𝜌′ . Indeed, for each nontrivial biconnected component 𝐵 of 𝑁 with at least
𝑘 + 1 outgoing cutarcs 𝑁𝐵 is encoded by 𝒮𝑘(𝑁𝐵). Second, suppose that 𝑏 = 𝑘. This case is trivial,
because there is only one 𝑘net exhibited by 𝑁𝐵𝜌 . Remember, every cutarc has become a leaf in 𝑁𝐵𝜌
so clearly 𝑁𝐵𝜌 = 𝑁′𝐵𝜌′ . Third, suppose that 𝑏 < 𝑘. Consider 𝑞𝑖 leaves of 𝑁 below the cutarc 𝑎𝑖 leaving
𝐵𝜌, 𝑖 = 1, ... , 𝑏, and ∑𝑏𝑖=1 𝑞𝑖 = 𝑘. These 𝑘 leaves exists since |𝑋| ≥ 𝑘. Consider the 𝑘net 𝐾 on
the 𝑘 leaves below the cutarcs of 𝐵𝜌. Note that this 𝑘net is not a restriction of 𝑁 to a biconnected
component, it’s just a 𝑘net exhibited by 𝑁, i.e. 𝐾 ∈ 𝒮𝑘(𝑁). Let 𝐵𝐾𝜌 be the biconnected component of 𝐾
containing the root of 𝐾. Then, 𝑁𝐵𝐾𝜌 = 𝑁𝐵𝜌 . Moreover, 𝐾 ∈ 𝒮𝑘(𝑁′) since we assumed 𝒮𝑘(𝑁′) = 𝒮𝑘(𝑁).
It follows that 𝑁𝐵𝐾𝜌 = 𝑁

′
𝐵𝜌′ and we can conclude that 𝑁𝐵𝜌 = 𝑁′𝐵𝜌′ for all 𝑏 ≥ 2.

We will show 𝑁𝑖 = 𝑁′𝑖 for 𝑖 = 1, ... , 𝑏. For the same reasons as in the previous paragraph, 𝒮𝑘(𝑁𝑖) =
𝒮𝑘(𝑁′𝑖 ). We will construct recoverable networks from 𝑁𝑖 and 𝑁′𝑖 and do the proof in two parts. Consider
𝑅𝑖 and 𝑅′𝑖 obtained from 𝑁𝑖 and 𝑁′𝑖 respectively by suppressing all strongly redundant biconnected com
ponents. Then, 𝑅𝑖 and 𝑅′𝑖 are recoverable. The network in Figure 3.3b is 𝑅1; it is obtained from the black
part of 𝑁 by suppressing the strongly redundant biconnected component. First, we will prove 𝑅𝑖 = 𝑅′𝑖.
Second, we will prove that 𝑁′𝑖 and 𝑁𝑖 have the same strongly redundant biconnected components, in
the same order.

We distinguish between the number of leaves. Note that we assumed that 𝑁𝐵 is encoded by 𝒮𝑘(𝑁𝐵)
for each biconnected component 𝐵 and that 𝒮𝑘(𝑁) = 𝒮𝑘(𝑁′). So first suppose that |𝑋𝑖| ≥ 𝑘. |𝑋𝑖| = 𝑘
is a trivial case. Since we observed that 𝒮𝑘(𝑁𝑖) = 𝒮𝑘(𝑁′𝑖 ), it directly follows 𝑁𝑖 = 𝑁′𝑖 . Indeed, for each
nontrivial biconnected component 𝐵 of 𝑁 with at least 𝑘+1 outgoing cutarcs 𝑁𝐵 is encoded by 𝒮𝑘(𝑁𝐵).
Second, suppose that |𝑋𝑖| = 1. It follows that 𝑅𝑖 = 𝑅′𝑖 because both consist of a single leaf. Third,
suppose that |𝑋𝑖| = 𝑝 with 2 ≤ 𝑝 < 𝑘. 𝒮𝑘(𝑁𝑖) = 𝒮𝑘(𝑁′𝑖 ), so 𝒮𝑝(𝑁𝑖) = 𝒮𝑝(𝑁′𝑖 ) for 2 ≤ 𝑝 < 𝑘 by Lemma 5.
Let 𝑃 be the 𝑝net on 𝑋𝑖 exhibited by 𝑁𝑖. By construction, 𝑃 contains no strongly redundant biconnected
components. Furthermore, 𝐿𝑆𝐴(𝑋𝑖) is below 𝑣𝑖, so only leaves of 𝑋𝑖 are below 𝐿𝑆𝐴(𝑋𝑖). In Figure 3.3a,
the location of 𝐿𝑆𝐴(𝑋1) is indicated. In general, the ingoing arc of 𝐿𝑆𝐴(𝑋𝑖) is a cutarc, and all vertices
and arcs below 𝐿𝑆𝐴(𝑋𝑖) are in 𝑃. Then 𝑃 = 𝑅𝑖. Let 𝑃′ be the 𝑝net on 𝑋𝑖 exhibited by 𝑁′𝑖 . By the same
reasoning, 𝑃′ = 𝑅′𝑖. 𝒮𝑝(𝑁𝑖) = 𝒮𝑝(𝑁′𝑖 ), so 𝑃 = 𝑃′ and therefore 𝑅𝑖 = 𝑅′𝑖. So in all cases 𝑅𝑖 = 𝑅′𝑖.

It remains to show that 𝑁′𝑖 and 𝑁𝑖 have the same strongly redundant biconnected components, in
the same order. We distinguish between two cases. First, suppose |𝑋𝑖| = 1 and let 𝑋𝑖 = {𝑥}. For
this case, we will follow the proof of Theorem 2 in Van Iersel and Moulton, 2012, too. 𝑥 is below all
strongly redundant biconnected components of 𝑁𝑖, so all leaves of 𝑁𝑖 are below them. Then all strongly
redundant biconnected components have only one outgoing cutarc. Let 𝑦, 𝑧 ∈ 𝑋\𝑋𝑖 such that 𝑧 is below
𝐿𝑆𝐴(𝑢𝑖). Remember 𝑎𝑖 = (𝑢𝑖 , 𝑣𝑖) is a cutarc leaving 𝐵𝜌. Note that such a 𝑧 exists in 𝑁 since are no
cutarcs above 𝑢𝑖 because 𝑢𝑖 is contained in 𝐵𝜌. Let 𝑇 be the trinet on {𝑥, 𝑦, 𝑧} exhibited by 𝑁. Let
𝑎 be the cutarc in 𝑇 such that 𝑥 is below 𝑎 and 𝑥, 𝑦 are not below 𝑎 and such that there is no such
cutarc above 𝑎. Then, arc 𝑎 corresponds to arc 𝑎𝑖 = (𝑢𝑖 , 𝑣𝑖) in 𝑁. Indeed, 𝑎 cannot be above 𝐿𝑆𝐴(𝑢𝑖)
since 𝑧 is below 𝐿𝑆𝐴(𝑢𝑖), and 𝑎 cannot be between 𝐿𝑆𝐴(𝑢𝑖) and 𝑢𝑖 because it is a cutarc. First, note
that 𝒮𝑘(𝑁) = 𝒮𝑘(𝑁′), so 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′) and 𝑇 ∈ 𝑇𝑛(𝑁′) by Lemma 5. Now, consider the network 𝑇𝑥
obtained from 𝑇 by deleting all vertices that are not below 𝑎. Note that 𝑎 is in 𝑇. Then, 𝑇𝑥 = 𝑁𝑖 and
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Figure 3.3: Example of a network 𝑁 with 𝑁1 and 𝑁2 and the construction of 𝑅1, where the circles represent biconnected compo
nents.

𝑇𝑥 = 𝑁′𝑖 . It follows that 𝑁𝑖 = 𝑁′𝑖 .
Second, suppose |𝑋𝑖| ≥ 2. Let 𝑥, 𝑦 ∈ 𝑋𝑖 be such that 𝐿𝑆𝐴(𝑥, 𝑦) = 𝐿𝑆𝐴(𝑋𝑖). These leaves exist by

Observation 1. Let 𝑧 ∈ 𝑋 ⧵ 𝑋𝑖 such that 𝑧 is below 𝐿𝑆𝐴(𝑢𝑖). 𝑧 exists by the same reasoning as in the
previous paragraph. An example of the locations of 𝑥, 𝑦 and 𝑧 such that 𝐿𝑆𝐴(𝑥, 𝑦) = 𝐿𝑆𝐴(𝑋𝑖), 𝑧 ∈ 𝑋⧵𝑋𝑖
and 𝑧 is below 𝐿𝑆𝐴(𝑢𝑖) is displayed in Figure 3.3a. Let 𝑇 be the trinet on {𝑥, 𝑦, 𝑧} exhibited by 𝑁. Then
𝑇 ∈ 𝑇𝑛(𝑁′) since 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′). Consider the cutarc 𝑎 in 𝑇 such that 𝑥 and 𝑦 are below 𝑎, 𝑧 is
not below 𝑎 and such that there is no cutarc 𝑎′ with the same properties above 𝑎. It follows by the
same reasoning as in the previous paragraph that 𝑎 corresponds to arc 𝑎𝑖 = (𝑢𝑖 , 𝑣𝑖) of 𝑁. Let 𝐷 be
the directed graph obtained from 𝑇 by deleting all vertices that are not below 𝑎 and deleting all vertices
that are below 𝐿𝑆𝐴(𝑥, 𝑦) = 𝐿𝑆𝐴(𝑋𝑖). Then 𝐷 is isomorphic to the strongly redundant biconnected
components of 𝑁𝑖 and 𝑁′𝑖 because 𝑇 ∈ 𝑇𝑛(𝑁′) and 𝑇 ∈ 𝑇𝑛(𝑁). Therefore, the strongly redundant
biconnected components of 𝑁𝑖 and 𝑁′𝑖 are the same and in the same order.

We have proved that 𝑁𝑖 and 𝑁′𝑖 have the same strongly redundant biconnected components, in the
same order, independent of the number of leaves of𝑁𝑖. Furthermore, we proved that 𝑅𝑖 = 𝑅′𝑖, so we can
conclude that 𝑁𝑖 = 𝑁′𝑖 for all 𝑖 ∈ {1, ... , 𝑏}. Together with 𝑁𝐵𝜌 = 𝑁′𝐵𝜌′ it follows that 𝑁 = 𝑁

′. So if for each
nontrivial biconnected component 𝐵 of 𝑁 with at least 𝑘+1 outgoing cutarcs 𝑁𝐵 is encoded by 𝒮𝑘(𝑁𝐵),
then 𝑁 is encoded by its set of 𝑘nets, with 𝑁 a binary recoverable network on 𝑋 with |𝑋| ≥ 𝑘.





4
Encoding level𝑘 networks without

symmetry
Underlying generators are used to prove that networks are encoded by subnets. In this thesis, symme
try in underlying generators of simple networks causes some difficulties, that we avoid in this chapter.
In Van Iersel and Moulton, 2012 it is proved that level2 networks are encoded by 4nets and in Nip
ius, 2020 it is proved that level3 networks are encoded by 4nets. We conjecture that the general
case holds. That is, level𝑘 networks are encoded by (𝑘 + 1)nets. In this chapter we will prove this
generalisation for the nonsymmetric case and prove a related result.

4.1. Strongly encoded by (𝑘 + 1)nets
In this section, we will prove the theorem below from which Corollary 3 will follow. Note that this is
a generalisation of Theorem 3 in Van Iersel and Moulton, 2012 for nonsymmetric cases, except for
parallel arcs.

Theorem 4. Every binary, simple level𝑘 network𝑁 on 𝑋 with |𝑋| ≥ 𝑘+1 and without symmetry besides
parallel arcs in its underlying generator is encoded by its set of (𝑘 + 1)nets for 𝑘 ≥ 2.
Proof. Let 𝑁 be a binary, simple level𝑘 network on 𝑋, with |𝑋| ≥ 𝑘 + 1 and let 𝐺𝑁 be its underlying
generator, such that 𝐺𝑁 has no symmetry other then sets of parallel arcs. Assume that this network
is not encoded by its set of (𝑘 + 1)nets 𝒮𝑘+1(𝑁). Then, there is a recoverable network 𝑁′ ≠ 𝑁 with
𝒮𝑘+1(𝑁) = 𝒮𝑘+1(𝑁′). Then, it follows by Lemma 5 that 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′) for 2 ≤ 𝑝 ≤ 𝑘 +1. We will show
that 𝑁 = 𝑁′, which is a contradiction, so then the lemma follows.

To prove that 𝑁 = 𝑁′, we will first prove that 𝑁′ is also a binary network. Second, we will prove
that 𝑁′ is a simple network. Third, we will prove that 𝑁′ is also level𝑘. Next, we will prove that 𝑁 and
𝑁′ have isomorphic generators. Next, we will prove that all leaves in 𝑁′ are on the same sides of 𝐺𝑁′
as they are in 𝑁. Finally, we will prove that all leaves on each side are in the same order in 𝑁 and 𝑁′.
Then, we can conclude that these results lead to 𝑁 = 𝑁′.

4.1.1. 𝑁′ is a binary network
We will prove that 𝑁′ is a binary network by proving the following lemma.

Lemma 6. Let 𝑁 and 𝑁′ be two phylogenetic networks on 𝑋 with |𝑋| ≥ 3. If 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′) and 𝑁 is
binary, then 𝑁′ is binary.

Proof. Assume, for the sake of contradiction, that 𝑁′ contains a vertex 𝑣 with indegree greater than
2. Let 𝑥 be a leaf below 𝑣 and let 𝑦, 𝑧 ∈ 𝑋 be leaves such that 𝐿𝑆𝐴(𝑥, 𝑦, 𝑧) = 𝐿𝑆𝐴(𝑋). These leaves
exist by Observation 1 and since 𝑁′ is recoverable. In the proof of Theorem 3, we proved the claim
that 𝐿𝑆𝐴(𝑋) = 𝜌 if 𝑁 is simple. Then, the trinet on {𝑥, 𝑦, 𝑧} exhibited by 𝑁′ contains 𝑣 and all its parents
by the claim, the fact that 𝑥 is below 𝑣 and the assumption that 𝑁′ is recoverable. Then, the trinet on
{𝑥, 𝑦, 𝑧} is nonbinary. This contradicts with 𝑁 being binary. Indeed, 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′) by Lemma 5 and
𝑇𝑛(𝑁) contains only binary trinets. So 𝑁′ has no vertices with indegree greater than 2.

21
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Following the proof in Van Iersel and Moulton, 2012, assume that 𝑁′ has a vertex 𝑣 with outdegree
greater than 2. Let 𝑐1, 𝑐2 and 𝑐3 be three children of 𝑣. Consider three (not necessarily different) leaves
𝑥1, 𝑥2 and 𝑥3 below 𝑐1, 𝑐2 and 𝑐3 respectively. Then, any trinet containing 𝑥1, 𝑥2 and 𝑥3 exhibited by 𝑁′
is nonbinary. 𝑁 is a binary network, so 𝑇𝑛(𝑁) contains only binary trinets. 𝑇𝑛(𝑁) = 𝑇(𝑁′), so 𝑇𝑛(𝑁′)
contains only binary trinets. This contradicts with 𝑁′ having a nonbinary trinet. So 𝑁′ does not contain
any vertex with outdegree greater than 2. We can conclude that 𝑁′ is a binary phylogenetic network,
since 𝑁′ has no vertices with indegree or outdegree greater than 2.

4.1.2. 𝑁′ is a simple network
We will prove that 𝑁′ is a simple network by proving the following lemma.

Lemma 7. Let 𝑁 and 𝑁′ be two phylogenetic networks on 𝑋 with |𝑋| ≥ 3. If 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′) and 𝑁 is
simple, then 𝑁′ is simple.

Proof. We can follow the proofs of Theorem 2 and 3 in Van Iersel and Moulton, 2012 because 𝑇𝑛(𝑁) =
𝑇𝑛(𝑁′) and |𝑋| ≥ 3 also holds for our case. Since 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′), we have by Corollary 2 that the set
of CAsets of𝑁′ equals the set of CAsets of𝑁. Note that all CAsets of𝑁, and also of𝑁′, are singletons,
since 𝑁 is a simple network. We claim now that 𝑁′ has no redundant biconnected components. If it has
one, then there is only one leaf 𝑥 below it, otherwise there is a CAset of two or more leaves. Then all
trinets containing leaf 𝑥 would have a redundant biconnected component with 𝑥 directly below it. Since
𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′) and 𝑁 is simple, a trinet cannot contain such redundant biconnected component. So
𝑁′ has no redundant biconnected component and the sets of CAsets of 𝑁 and 𝑁′ are the same. It
follows that the head of each cutarc of 𝑁′ must be a leaf. 𝑁′ meets now the definition of a simple
network.

4.1.3. 𝑁′ is a level𝑘 network
We will prove that 𝑁′ is a level𝑘 network by proving the following lemma.

Lemma 8. Let 𝑁 and 𝑁′ be binary, simple networks on 𝑋 with |𝑋| ≥ 𝑘+1. If 𝑁 is level𝑘 and 𝒮𝑘+1(𝑁) =
𝒮𝑘+1(𝑁′), then 𝑁′ is level𝑘.

Proof. 𝑁′ is a binary simple network on 𝑋 with |𝑋| ≥ 𝑘 + 1 and 𝒮𝑘+1(𝑁) = 𝒮𝑘+1(𝑁′). Suppose, for the
sake of contradiction, that 𝑁′ is a level𝑙 network with 𝑙 > 𝑘. Then, 𝑁′ has exactly 𝑙 reticulations, since
it is simple. We will now construct a (𝑘+1)net in 𝒮𝑘+1(𝑁′) with a level greater than 𝑘. We will consider
three cases.

First, suppose that there are at least 𝑘 + 1 leaves 𝑥1, ... , 𝑥𝑘+1 whose parent is a reticulation. Then, let
𝐾1 ∈ 𝒮𝑘+1(𝑁′) be the (𝑘 + 1)net on {𝑥1, ... , 𝑥𝑘+1}.

Second, suppose that there are exactly 𝑞 leaves 𝑥1, ... , 𝑥𝑞 for 𝑞 < 𝑘+1 with a reticulation as parent.
If there are at least 𝑟 leaves 𝑥𝑞+1, ... , 𝑥𝑞+𝑟 with 𝑞 + 𝑟 = 𝑘 + 1 on sides that form parallel arcs in the
underlying generator, such that we can choose at most one leaf per pair of parallel arcs, let in that case
𝐾1 ∈ 𝒮𝑘+1(𝑁′) be the (𝑘 + 1)net on {𝑥1, ... , 𝑥𝑞 , 𝑥𝑞+1, ... , 𝑥𝑞+𝑟}.

Third, suppose that there are exactly 𝑞 leaves 𝑥1, ... , 𝑥𝑞 for 𝑞 < 𝑘 + 1 with a reticulation as parent.
If there are exactly 𝑟 leaves 𝑥𝑞+1, ... , 𝑥𝑞+𝑟 for 0 ≤ 𝑟 < (𝑘 + 1) − 𝑞 on sides that form parallel arcs
in the underlying generator, such that we can choose at most one leaf per pair of parallel arcs, let
𝐾1 ∈ 𝒮𝑘+1(𝑁′) be the (𝑘 + 1)net on {𝑥1, ... , 𝑥𝑞 , 𝑥𝑞+1, ... , 𝑥𝑞+𝑟 , 𝑥𝑞+𝑟+1, ... , 𝑥𝑘+1}, where 𝑥𝑞+𝑟+1, ... , 𝑥𝑘+1
are arbitrary leaves of 𝑁′. In Figure 4.1 an example of a level7 network is given. For this network, 𝐾1
is for example the 8net on {𝑥1, ... , 𝑥8}, where 𝑞 = 2, 𝑟 = 2 < 𝑘 + 1 − 𝑞 = 6 and 𝑥5, ... , 𝑥8 are chosen
arbitrary.

We have chosen the leaves such that 𝐾1 has at least 𝑘 + 1 reticulations. Note that if a leaf is chosen
on one of the parallel arcs in the underlying generator, the pair of parallel arcs will not be suppressed,
so we get a reticulation for that leaf in 𝐾1. As a consequence, 𝐾1 ∈ 𝒮𝑘+1(𝑁′) is a level𝑙′ (𝑘 + 1)net
with 𝑙′ > 𝑘.

𝒮𝑘+1(𝑁) contains only (𝑘 + 1)nets of level at most 𝑘 since 𝑁 is level𝑘, so 𝒮𝑘+1(𝑁′) contains only
(𝑘 + 1)nets of level at most 𝑘 since 𝒮𝑘+1(𝑁) = 𝒮𝑘+1(𝑁′). This contradicts with 𝑁′ having a level𝑙′
(𝑘 + 1)net with 𝑙′ > 𝑘. So the level of 𝑁′ cannot be greater than 𝑘.
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Figure 4.1: A binary, simple level7 network 𝑁 on 𝑋.

𝑁 is level𝑘 with |𝑋| ≥ 𝑘 + 1. By Lemma 2, 𝑁 has at least one crucial 𝑘net which is simple level𝑘
by Lemma 4. Since 𝒮𝑘(𝑁′) = 𝒮𝑘(𝑁), the level of 𝑁′ is at least 𝑘. Combining results gives that 𝑁′ is a
level𝑘 network.

4.1.4. Isomorphic generators
In this section we will show that 𝐺𝑁 is also the underlying generator of 𝑁′. First observe that 𝑁 is a
binary, simple level𝑘 network on 𝑋 with |𝑋| ≥ 𝑘 + 1. Then, by lemma 2, 𝑁 has at least one crucial
𝑘net 𝐾. So let 𝐾 be a crucial 𝑘net of 𝑁. 𝐾 ∈ 𝒦(𝑁) is crucial, so by Lemma 4, 𝐾 is simple and level𝑘.
Moreover, by Lemma 4, 𝐺𝑁 is also the underlying generator of 𝐾.

Observe that since 𝒦(𝑁) = 𝒦(𝑁′), 𝐾 is also a 𝑘net of 𝑁′. 𝑁′ is a binary, simple level𝑘 network,
𝐺𝑁′ its underlying generator and 𝐾 ∈ 𝒦(𝑁′). 𝐾 is simple level𝑘, so by Lemma 4, 𝐾 is a crucial 𝑘net
of 𝑁′. Moreover, also by Lemma 4, 𝐺𝑁′ is the underlying generator of 𝐾. 𝐺𝑁 and 𝐺𝑁′ are now both
underlying generators of the 𝑘net 𝐾. It follows 𝐺𝑁 and 𝐺𝑁′ are isomorphic. We will now prove the
following property of generators.

Lemma 9. Let 𝑁 and 𝑁′ be binary, simple level𝑘 networks and let 𝐺𝑁 and 𝐺𝑁′ be their underlying
generators, respectively, such that 𝐺𝑁 and 𝐺𝑁′ are isomorphic. Then, 𝐺𝑁 and 𝐺𝑁′ have a set of crucial
sides of equal size.

Proof. Let 𝑐 be size of a set of crucial sides of 𝐺𝑁. Then, 𝑐 ≤ 𝑘 because 𝑁 is level𝑘. We will prove
that a set of crucial sides of 𝐺𝑁′ is also of size 𝑐. 𝑁 and 𝑁′ are level𝑘 networks, so 𝐺𝑁 and 𝐺𝑁′ are
level𝑘 generators. We have already proved that 𝐺𝑁 and 𝐺𝑁′ are isomorphic, so there exist a bijection
𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁′) such that for any 𝑢, 𝑣 ∈ 𝑉(𝐺𝑁), (𝑢, 𝑣) is an arc of 𝐺𝑁 if and only if (𝑓(𝑢), 𝑓(𝑣))
is an arc of 𝐺𝑁′ . So |𝑉(𝐺𝑁)| = |𝑉(𝐺𝑁′)| and both generators have exactly 𝑘 reticulation vertices. Let
𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁′) be a bijection as described.

First note that by definition a generator consists of reticulation vertices with indegree 2 and outde
gree at most 1, a single vertex with indegree 0 and outdegree 2, and apart from that only treevertices
with indegree 1 and outdegree 2. Let 𝑣 ∈ 𝑉(𝐺𝑁) and suppose that 𝑣 has indegree2 and two different
parents. If (𝑢, 𝑣), (𝑢′, 𝑣) ∈ 𝐸(𝐺𝑁) with 𝑢 ≠ 𝑢′, then (𝑓(𝑢), 𝑓(𝑣)), (𝑓(𝑢′), 𝑓(𝑣)) ∈ 𝐸(𝐺𝑁) and 𝑓(𝑢) ≠ 𝑓(𝑢′)
since 𝑓 is bijective. So 𝑓(𝑣) is indegree2 and has two different parents in 𝐺𝑁′ . By the same reasoning,
the number of parents and the number of children of 𝑤 and 𝑓(𝑤) are the same, as their indegree and
outdegree. Therefore, the number of outdegree0 vertices in 𝐺𝑁 is the same as in 𝐺𝑁′ , and the num
ber of indegree2 outdegree1 vertices with exactly one parent in 𝐺𝑁 is the same as in 𝐺𝑁′ . The latter
implies that the number of sets of parallel arcs in 𝐺𝑁 is the same as in 𝐺𝑁′ . Then, the size of a set of
crucial sides of 𝐺𝑁′ is 𝑐, which proves the lemma.

4.1.5. The same leaves on the same sides
First observe that 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′) for all 2 ≤ 𝑝 ≤ 𝑘 + 1 by Lemma 5. Second, by Lemma 9, we may
assume that 𝐺𝑁 and 𝐺𝑁′ have both a set of crucial sides of size 𝑐. 𝑁 and 𝑁′ are level𝑘, therefore 𝑐 ≤ 𝑘
and so 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′). Since we assumed that 𝐺𝑁 has no symmetry besides sets of parallel arcs,
we are now able to prove that all leaves are on the same sides in 𝑁 and 𝑁′. In this section we will prove
the following lemma.
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Lemma 10. Let𝑁 and𝑁′ be two binary, simple level𝑘 networks on 𝑋 and let 𝐺𝑁 and 𝐺𝑁′ the isomorphic
underlying generators of 𝑁 and 𝑁′, respectively, without symmetry besides parallel arcs and with a set
of crucial sides of size 𝑐. If 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′), then all leaves of 𝑁 are on the same sides in 𝑁′.

Proof. By Lemma 2, 𝑁 has a crucial 𝑐net. |𝑋| ≥ 𝑐+1, so𝑁 has also a crucial 𝑐+1net. Let 𝑦 be on side
𝑌 and let 𝑥1, ... , 𝑥𝑐 be on sides 𝑋1, ... , 𝑋𝑐 in 𝑁, respectively, such that {𝑋1, ... , 𝑋𝑐} forms a set of crucial
sides. Let 𝐶1 be the crucial 𝑐 + 1net on {𝑥1, ... , 𝑥𝑐 , 𝑦} ⊆ 𝑋 exhibited by 𝑁. Then, by Lemma 4, leaves
𝑥1, ... , 𝑥𝑐 , 𝑦 are also on sides 𝑋1, ... , 𝑋𝑐 , 𝑌 in 𝐶1, respectively. Note that 𝑌 can be a noncrucial side, and
𝑌 can be an arc in a pair of parallel arcs, too. Let 𝐶′1 be the 𝑐 + 1net on {𝑥1, ... , 𝑥𝑐 , 𝑦} exhibited by 𝑁′.
Since 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′), 𝐶′1 = 𝐶1 and therefore 𝐶′1 is also a simple level𝑘 network. By Lemma 4, 𝐶′1
is a crucial 𝑐 + 1net exhibited by 𝑁′. Moreover, 𝐺𝑁′ is the underlying generator of 𝐶′1. To summarize,
𝐶′1 equals 𝐶1, 𝐺𝑁 is the underlying generator of both 𝑁 and 𝐶1, 𝐺𝑁′ is the underlying generator of both
𝑁′ and 𝐶′1, and 𝐺𝑁 and 𝐺𝑁′ are isomorphic generators.

Observe that 𝐺𝑁 has no symmetry besides parallel arcs, so there exists no graph automorphism
𝑔 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) such that 𝑔(𝑣) ≠ 𝑣 for at least one 𝑣 ∈ 𝑉(𝐺𝑁) giving an isomorphic generator. 𝐺𝑁
and 𝐺𝑁′ are isomorphic, so there does not exist such a graph isomorphism 𝑔 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁′) such
that 𝑔(𝑣) ≠ 𝑣 for at least one 𝑣 ∈ 𝑉(𝐺𝑁), too. Furthermore, observe that 𝐶′1 and 𝐶1 are equal. Let 𝐹 be
the set of all bijective functions 𝑓 ∶ 𝑉(𝐶1) → 𝑉(𝐶′1) such that 𝑓(𝑥) = 𝑥 for each leaf 𝑥 of 𝐶1 and such that
for every 𝑢, 𝑣 ∈ 𝑉(𝐶1) holds that (𝑢, 𝑣) is an arc of 𝐶1 if and only if (𝑓(𝑢), 𝑓(𝑣)) is an arc of 𝐶′1. Then
𝐹 ≠ ∅ since 𝐶1 = 𝐶′1.

We will begin with proving that each leaf itself is on the same side in 𝑁 and 𝑁′. Suppose that side 𝑋𝑖 is
an outdegree0 reticulation in 𝐺𝑁 and 𝑢 ∈ 𝑉(𝐶1) is the parent of 𝑥𝑖 in 𝐶1. Then, since 𝑢 ∈ 𝑉(𝐶1)∩𝑉(𝐺𝑁)
and 𝐺𝑁 has no symmetry, it holds that (𝑢, 𝑥𝑖) ∈ 𝐸(𝐶1), (𝑓(𝑢), 𝑥𝑖) ∈ 𝐸(𝐶′1) and 𝑓(𝑢) = 𝑢 for all 𝑓 ∈ 𝐹. So
𝑥𝑖 is on the same side in 𝐶′1 as in 𝐶1 and so on the same side in 𝑁′ as in 𝑁. Then, each leaf in 𝑁 on a
side which is an outdegree0 reticulation in 𝐺𝑁 is on the same side in 𝑁 and 𝑁′.

Suppose that side 𝑋𝑖 = (𝑤,𝑤′) ∈ 𝐸(𝐺𝑁) is an arc in a pair of parallel arcs and 𝑢 ∈ 𝑉(𝐶1) ⧵ 𝑉(𝐺𝑁)
is the parent of 𝑥𝑖 in 𝐶1. Note that 𝑤,𝑤′ ∈ 𝑉(𝐺𝑁) ∩ 𝑉(𝐶1). By construction of 𝐶1, at least one of the
adjacent vertices of 𝑢 in 𝐶1 is contained in 𝑉(𝐺𝑁). Indeed, 𝑥𝑗 is not on side 𝑋𝑖 for all 𝑗 ∈ {1, ... , 𝑐}, 𝑗 ≠ 𝑖,
so only 𝑦 can possibly be on side 𝑋𝑖. Then, (𝑓(𝑤), 𝑓(𝑢)) ∈ 𝐸(𝐶′1) or (𝑓(𝑢), 𝑓(𝑤′)) ∈ 𝐸(𝐶′1). Also
(𝑓(𝑢), 𝑥𝑖) ∈ 𝐸(𝐶′1). Since 𝑓(𝑤) = 𝑤 and 𝑓(𝑤′) = 𝑤′ for all 𝑓 ∈ 𝐹, 𝑥 is again on 𝑋𝑖 or its parallel arc in
𝐶′1 and so in 𝑁′. We can now assume without loss of generality that 𝑥𝑖 is on 𝑋𝑖 in 𝑁′, otherwise, we
can relabel sides by switching 𝑋𝑖 with its parallel arc in 𝐺𝑁′ such that 𝑥𝑖 is on 𝑋𝑖 in 𝑁′ and 𝐶′1. Note that
this relabelling is not belonging to an automorphism that maps vertices of 𝐺𝑁. Then, each leaf in 𝑁 on
a side which is in a pair of parallel arcs in 𝐺𝑁 is on the same side in 𝑁 and 𝑁′. An example of 𝐶1 is
given in Figure 4.2, where 𝑥1 is on side 𝑋1 in 𝑁 and on its parallel arc, side 𝑋′1, in 𝑁′, as can be seen in
Figure 4.2b and 4.2c. Switching side 𝑋1 with 𝑋′1 in 𝐺𝑁′ and mapping all other sides to itself gives that
𝑥1 is also on side 𝑋1 in 𝑁′.

For each pair of parallel arcs of 𝐺𝑁, a relabelling that switches the sides in the set can be applied
to 𝐴′, where 𝐴′ is the set of sides of 𝐺𝑁′ . A composition of bijective functions is a bijective function,
so there exist a relabelling ℎ ∶ 𝐴′ → 𝐴′ such that after applying ℎ if necessary, each leaf of 𝑁′ on a
side contained in a pair of parallel arcs is on the same side as in 𝑁. In order to conclude that not only
individual leaves, but all leaves on parallel arcs are on the same sides in 𝑁 and 𝑁′, we have prove
that after such a relabelling, no leaves that are not considered are moved to a ‘wrong’ side. So the
proof above is not enough to conclude the latter for all leaves on parallel arcs. Figure 4.3 will clarify
this. It shows two unequal level2 networks 𝑁 and 𝑁′ on 𝑋 with isomorphic underlying generators with
a set of crucial sides of size 2. If we let 𝐶1 be the trinet on {𝑥1, 𝑥2, 𝑦} with 𝑦 = 𝑥6, we can assume by
the reasoning above that 𝑥1 is on the same side in 𝑁′. The same holds for leaf 𝑥3 by taking the trinet
on {𝑥3, 𝑥2, 𝑦} with 𝑦 = 𝑥6. But leaf 𝑥3 was not considered if we let 𝐶1 be the trinet on {𝑥1, 𝑥2, 𝑦} with
𝑦 = 𝑥6. It turns out that 𝑦 cannot be taken arbitrarily in this case. A trinet on {𝑥1, 𝑥2, 𝑥6} is not sufficient
to conclude that all leaves are on the same sides in 𝑁 and 𝑁′, as can be seen for Figure 4.3a and
4.3b. Indeed, if in the network in Figure 4.3a leaf 𝑥1 is considered and is on a different side in 𝑁′, then
sides 𝑋1 and 𝑋′1 are switched such that 𝑥1 is on the same side in 𝑁 and 𝑁′. The side of leaf 𝑥3 is then
changed, too. To prove that all leaves on parallel arcs, after possibly relabelling sides are on the same
sides in 𝑁 and 𝑁′, we will prove that two leaves stay together on a side or stay on opposite sides of
parallel arcs in 𝑁 and 𝑁′, after possibly switching parallel arcs. Only if the latter holds, we can conclude
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that 𝑁 and 𝑁′ have the same leaves on the same sides.
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(a) Crucial 4net 𝐶1 on {𝑥1 , 𝑥2 , 𝑥3 , 𝑦}.
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(c) Generator 𝐺𝑁′ , isomorphic to 𝐺𝑁.

Figure 4.2: Example of 𝐶1 = 𝐶′1 with their isomorphic underlying generators, having a pair of parallel arcs and no other symmetry.
Leaf 𝑥1 is on a different side in 𝑁 than in 𝑁′.

We will now prove that individual leaves on noncrucial sides are on the same sides in 𝑁 and 𝑁′. Sup
pose that 𝑌 = (𝑤,𝑤′) ∈ 𝐸(𝐺𝑁) is an arc, not in a pair of parallel arcs, with 𝑤,𝑤′ ∈ 𝑉(𝐺𝑁). Then, 𝑥𝑗 is not
on side 𝑌 in 𝑁 for all 𝑗 ∈ {1, ... , 𝑐}. Let 𝑢 ∈ 𝑉(𝐶1) be the parent of 𝑦. Then, (𝑤, 𝑢), (𝑢, 𝑤′), (𝑢, 𝑦) ∈ 𝐸(𝐶1),
and (𝑓(𝑤), 𝑓(𝑢)), (𝑓(𝑢), 𝑓(𝑤′)), (𝑓(𝑢), 𝑦) ∈ 𝐸(𝐶′1). Since 𝑓(𝑤) = 𝑤 and 𝑓(𝑤′) = 𝑤′ for all 𝑓 ∈ 𝐹, 𝑦 is
again on 𝑌 in 𝐶′1 and so in 𝑁′. Then, each leaf in 𝑁 on a side which is an arc, not in a pair of parallel
arcs of 𝐺𝑁, is on the same side in 𝑁 and 𝑁′. {𝑥1, ... , 𝑥𝑐} was chosen as an arbitrary set of crucial leaves
and 𝑦 was chosen arbitrary. Therefore, we can conclude for each leaf of 𝑁 that it is on the same side
in 𝑁′ as in 𝑁, after possibly relabelling sides.
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Figure 4.3: Example of two unequal networks where we can assume that their individual leaves are on the same sides, using 𝐶1
on two crucial leaves and one arbitrary noncrucial leaf 𝑦.

To conclude that all leaves of 𝑁′ are on the same side as in 𝑁, we will now prove that two leaves stay
on the same side or, for parallel arcs, stay on opposite sides. We will first prove that if two leaves are
together on one arc in a pair of parallel arcs in 𝐺𝑁, they are also together on one arc of 𝐺𝑁′ . Suppose
that two leaves are together on one side in 𝑁 which is contained in a pair of parallel arcs of 𝐺𝑁. Let
𝐶1 be the crucial 𝑐net as before on {𝑥1, ... , 𝑥𝑐 , 𝑦} exhibited by 𝑁 such that 𝑥𝑖 and 𝑦 are together on
one arc in a pair of parallel arcs in 𝐺𝑁 for some 𝑖 ∈ {1, ... , 𝑐}. Let 𝑢𝑖 , 𝑢𝑦 be the parents of 𝑥𝑖 , 𝑦 in 𝑁
respectively. 𝑢𝑖 , 𝑢𝑦 must be indegree1 outdegree2 vertices. Suppose without loss of generality that
𝑢𝑦 is below 𝑢𝑖 and so that (𝑢𝑖 , 𝑢𝑦) is an arc of 𝐶1. Let 𝐶′1 be the 𝑐 + 1net on {𝑥1, ... , 𝑥𝑐 , 𝑦} exhibited by
𝑁′. We know that 𝐶1 equals 𝐶′1, so there exists a bijective function 𝑓 ∶ 𝑉(𝐶1) → 𝑉(𝐶′1) such that 𝑓(𝑥) = 𝑥
for each leaf 𝑥 of 𝐶1 and such that for every 𝑢, 𝑣 ∈ 𝑉(𝐶1) it holds that (𝑢, 𝑣) is an arc of 𝐶1 if and only
if (𝑓(𝑢), 𝑓(𝑣)) is an arc of 𝐶′1. Let 𝑓 be such a function. We know that (𝑢𝑖 , 𝑥𝑖), (𝑢𝑦 , 𝑦) and (𝑢𝑖 , 𝑢𝑦) are
arcs of 𝐶1, 𝑓(𝑥𝑖) = 𝑥𝑖 and 𝑓(𝑦) = 𝑦. Then (𝑓(𝑢𝑖), 𝑓(𝑥𝑖)) = (𝑓(𝑢𝑖), 𝑥𝑖)), (𝑓(𝑢𝑦), 𝑓(𝑦)) = (𝑓(𝑢𝑦), 𝑦) and
(𝑓(𝑢𝑖), 𝑓(𝑢𝑦)) are arcs of 𝐶′1 while 𝑥𝑖 and 𝑦 are leaves. So there is an arc from the parent of 𝑥𝑖 to the
parent of 𝑦 in 𝐶′1, and 𝑓(𝑢𝑖), 𝑓(𝑢𝑦) must also be indegree1 outdegree2 in 𝐶′1 because 𝑓 preserves
adjacency. It follows that 𝑥𝑖 and 𝑦 are together on one side in 𝐶′1. Furthermore, since 𝐺𝑁 and 𝐺𝑁′ are
the generators of 𝐶1 and 𝐶′1 respectively, 𝑥𝑖 and 𝑦 are together on one side in 𝑁′.

Now we prove that if two leaves are on opposite sides in a pair of parallel arcs in 𝑁, then they
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are also on opposite sides in 𝑁′. So suppose that two leaves are on two different sides of a pair of
parallel arcs in 𝑁. Let 𝐶1 be the crucial 𝑐 + 1net on {𝑥1, ... , 𝑥𝑐 , 𝑦} exhibited by 𝑁 as defined before
such that 𝑦 and 𝑥𝑖 are on opposite sides of a pair of parallel arcs of 𝐺𝑁. That is, 𝑢𝑖 and 𝑢𝑦 are tree
vertices that share their parent and exactly one child in 𝐶1, where 𝑢𝑖 and 𝑢𝑦 are the parents of 𝑥𝑖 and
𝑦, respectively. Let 𝑢 ∈ 𝑉(𝐶1) be the tail vertex of both parallel arcs and 𝑣 be the head vertex. Then,
{(𝑢𝑖 , 𝑥𝑖), (𝑢𝑦 , 𝑦), (𝑢, 𝑢𝑖), (𝑢, 𝑢𝑦), (𝑢𝑖 , 𝑣), (𝑢𝑦 , 𝑣)} ⊂ 𝐸(𝐶1). Let 𝐶′1 be the subnet exhibited by 𝑁′ as defined
before. 𝐶1 = 𝐶′1, so there exists again a bijective function 𝑓 ∶ 𝑉(𝐶1) → 𝑉(𝐶′1) as defined before. Let 𝑓1
be such a function. 𝑓(𝑥𝑖) = 𝑥𝑖 , 𝑓(𝑦) = 𝑦 and 𝑓(𝑢) = 𝑢 and 𝑓(𝑣) = 𝑣 since 𝑢, 𝑣 ∈ 𝑉(𝐺𝑁) ⊂ 𝑉(𝐶1). Then,
{(𝑓(𝑢𝑖), 𝑥𝑖), (𝑓(𝑢𝑦), 𝑦), (𝑢, 𝑓(𝑢𝑖)), (𝑢, 𝑓(𝑢𝑦)), (𝑓(𝑢𝑖), 𝑣), (𝑓(𝑢𝑦), 𝑣)} ⊂ 𝐸(𝐶′1), while 𝑥𝑖 and 𝑦 are leaves. It
follows that 𝑥𝑖 and 𝑦 are on different sides in a pair of parallel arcs in 𝐶′1 and so in 𝑁′.

At last, we will now prove that if two leaves are together on a noncrucial side in 𝑁, then they are
together on one side in 𝑁′. Suppose that 𝑦1, 𝑦2 ∈ 𝑋 are together on one side which is not an arc
from a pair of parallel arcs in 𝐺𝑁. Let 𝑌 be this noncrucial side and let 𝐶𝑦1 be the crucial 𝑐 + 1net on
{𝑥1, ... , 𝑥𝑐 , 𝑦1} exhibited by 𝑁, such that 𝑥1, ... , 𝑥𝑐 are on sides 𝑋1, ... , 𝑋𝑐 respectively, as defined before.
Let 𝐶′𝑦1 be the crucial 𝑐 + 1net on 𝑥1, ... , 𝑥𝑐 , 𝑦1 exhibited by 𝑁′. By construction of 𝐶𝑦1 and the proof
for individual leaves, we know that 𝑦1 is on side 𝑌 of the underlying generator of 𝐶′1, which is 𝐺𝑁′ . Note
that this is independent of the number of sets of parallel arcs in 𝐺𝑁 and without any relabelling of sides.
Let now 𝐶𝑦2 be the crucial 𝑐 + 1net on {𝑥1, ... , 𝑥𝑐 , 𝑦2} exhibited by 𝑁, such that 𝑥1, ... , 𝑥𝑐 are on sides
𝑋1, ... , 𝑋𝑐 respectively, as defined before. By exactly the same reasoning, 𝑦2 is on side 𝑌 in 𝐺𝑁′ , without
any relabelling of sides. We have chosen 𝑦1 and 𝑦2 arbitrarily on side 𝑌, so for every pair of leaves of
𝑁 that are together on one side which is not an arc from a pair of parallel arcs in 𝐺𝑁, they are together
on one side in 𝑁′. Then, for a set of leaves 𝑋′ ⊂ 𝑋, it holds that if all leaves of 𝑋′ are together on one
side in 𝑁, then they are together on one side in 𝑁′.

To summarize, each leaf of 𝑁 is on the same side in 𝑁′, each pair of leaves on one side in 𝑁 is
together on one side in 𝑁′ and leaves on opposite sides in 𝑁 stay on opposite sides in 𝑁′. Now we can
conclude that all leaves of 𝑁 are on the same side in 𝑁′, which proves Lemma 10.

4.1.6. The order of the leaves
We will prove that the order of the leaves on each side is the same in 𝑁 and 𝑁′ by proving the following
Lemma.

Lemma 11. Let 𝑁 and 𝑁′ be binary, simple networks on 𝑋 with |𝑋| ≥ 3, 𝐺𝑁 = 𝐺𝑁′ and 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′).
If all leaves are on the same sides in 𝐺𝑁′ as they are in 𝐺𝑁, then the order of the leaves on each side
in 𝑁′ is the same as in 𝑁.

Proof. Let 𝑆 be a side in 𝐺𝑁 which is an arc. If there is no leaf or only one leaf on 𝑆 in 𝑁, then the order
in 𝑁′ is trivially the same. Suppose there are two or more leaves on side 𝑆 in 𝑁. Note that 𝑆 is now
in 𝐸(𝐺𝑁). Let 𝑣, 𝑣′ ∈ 𝑋 be leaves on 𝑆 in 𝑁 such that 𝑣′ is below 𝑣. We can suppose this without loss
of generality. By the claim in the proof of Lemma 4, there exists an outdegree0 vertex below each
vertex in 𝐺𝑁. So let𝑊 be an (arbitrarily) outdegree0 vertex in 𝐺𝑁 below 𝑆. Let 𝑤 ∈ 𝑋 be the child of𝑊.
Consider the trinet 𝑇 on {𝑣, 𝑣′, 𝑤}. Since 𝑣′ is below 𝑣 in 𝑁 and by construction of 𝑇 (and by definition
of ‘below’), 𝑣′ is below 𝑣 in 𝑇. An example of such a trinet exhibited by a network is given in Figure
4.4a. In this trinet, 𝑣′ is below 𝑣, as it is in 𝑁. Note that the binet on {𝑣, 𝑣′} in Figure 4.4c is a so called
cherry. A cherry is a network consisting of with a root, two leaves, and no other vertices. In this binet,
there is no order of the leaves, that is, the leaves are not below each other.

Since 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′), 𝑇 is a trinet of 𝑁′. Given that 𝑣 and 𝑣′ are also on side 𝑆 in 𝑁′, 𝑣′ is below 𝑣
in 𝑁′. 𝑣 and 𝑣′ are chosen arbitrarily on 𝑆, so each pair of leaves on the same side in 𝑁′ is in the same
order as in 𝑁. It follows that the order of all leaves on each side in 𝑁′ is the same as in 𝑁.

4.1.7. Conclusion
We have proved that𝑁 and𝑁′ are binary, simple level𝑘 networks on 𝑋 with |𝑋| ≥ 𝑘+1, 𝐺𝑁 is isomorphic
to 𝐺𝑁′ and 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′) for 2 ≤ 𝑝 ≤ 𝑘 + 1. Furthermore, 𝑁 and 𝑁′ contain the same leaves on the
same sides. Then, by Lemma 11, the order of the leaves on each side in 𝑁′ is the same as in 𝑁. Now,
𝑁 and 𝑁′ have the same underlying generator, the same leaves on each side and on each side the
leaves are in the same order. These results imply the existence of a graph isomorphism 𝑓 between
𝑁 and 𝑁′ such that 𝑓(𝑥) = 𝑥 for each leaf 𝑥 ∈ 𝑋, and so 𝑁 = 𝑁′. This is a contradiction, so we can
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Figure 4.4: A trinet where the order of 𝑣 and 𝑣′ stays the same as in 𝑁, and a cherry where 𝑣 is not below 𝑣′ an vice versa.

now conclude that every binary simple level𝑘 network 𝑁 on 𝑋 with |𝑋| ≥ 𝑘 + 1 and without symmetry
besides parallel arcs in its underlying generator is encoded by its set of (𝑘 + 1)nets for 𝑘 ≥ 2. This
concludes the proof of Theorem 4.

We can now state Theorem 4 for more general networks.

4.1.8. Corollary
We can now prove Corollary 3, which generalises Theorem 4 from simple to recoverable networks.
Note that only the underlying generators of restrictions to biconnected components are required not to
have symmetry. There is no such a requirement for a network itself.

Corollary 3. Every binary, recoverable level𝑘 network 𝑁 on 𝑋, with |𝑋| ≥ 𝑘 + 1 without symmetry
besides parallel arcs in the underlying generator of the restriction of 𝑁 to any nontrivial biconnected
component is encoded by its set of (𝑘 + 1)nets for 𝑘 ≥ 2.

Proof. The proof follows from Theorem 4, Corollary 1, Theorem 3 and the fact that level1 networks
are encoded by their trinets (Huber and Moulton, 2013).

4.2. Weakly encoded by smaller subnets
In Section 4.1, we proved that level𝑘 networks are strongly encoded by (𝑘+1)nets, if no biconnected
component has symmetry besides parallel arcs. In this section, we will prove that networks in this set
are weakly encoded by subnets on a potentially smaller set of leaves. Indeed, for simple networks,
we will consider the number of sides 𝑐 in a set of crucial sides instead of 𝑘, the level, with 𝑐 ≤ 𝑘. The
advantage is that these networks can be encoded by smaller subnets if 𝑐 < 𝑘. The disadvantage is that
we can only prove the weakly encoded version of the theorem, since we do not know how to generalise
Lemma 8. Again, we will first prove a theorem for simple networks. Thereafter, we will use Theorem 3
to generalise the result to general networks.

Theorem 5. Let 𝑐 ≥ 2. The class of binary, simple level𝑘 networks with at least 𝑐 + 1 leaves, no
symmetry in their underlying generator other than sets of parallel arcs, and a set of crucial sides of their
underlying generator of size at most 𝑐 is weakly encoded by 𝑐 + 1nets.

Proof. Let 𝑐 ≥ 2 and let 𝒞 be the class of binary, simple level𝑘 networks with at least 𝑐 + 1 leaves,
no symmetry in their underlying generator other than sets of parallel arcs, and a set of crucial sides
of their underlying generator of size at most 𝑐. Assume, for the sake of contradiction, that 𝒞 is not
weakly encoded by 𝑐 + 1nets. Then, there are two networks 𝑁 and 𝑁′ on 𝑋 in 𝒞 such that 𝑁 ≠ 𝑁′ and
𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′). We will show that 𝑁 = 𝑁′, which is a contradiction.
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4.2.1. Isomorphic generators
Let 𝐺𝑁 be the underlying generator of 𝑁. We will show that 𝐺𝑁 is also the underlying generator of 𝑁′.
First observe that 𝑁 is a binary, simple level𝑘 network on 𝑋 with |𝑋| ≥ 𝑐 + 1 with a set of crucial sides
of their underlying generator of size at most 𝑐. Suppose 𝐺𝑁 contains a set of crucial sides of size 𝑞 with
𝑞 ≤ 𝑐. Then, by Lemma 2, 𝑁 has at least one crucial 𝑞net. So let 𝑄 be a crucial 𝑞net exhibited by 𝑁.

Observe that since 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′), it follows from Lemma 5 that 𝒮𝑞(𝑁) = 𝒮𝑞(𝑁′) for 2 ≤ 𝑞 ≤
𝑐+1. We will now follow the proof in Section 4.1.4. It follows that 𝑄 is also a 𝑞net exhibited by 𝑁′. 𝑁′ is
a binary, simple level𝑘 network, 𝐺𝑁′ its underlying generator and 𝑄 ∈ 𝒮𝑞(𝑁′). 𝑄 is simple level𝑘, since
it is a crucial 𝑞net exhibited by 𝑁. Then, by Lemma 4, 𝑄 is a crucial 𝑞net exhibited by 𝑁′. Moreover,
also by Lemma 4, 𝐺𝑁′ is the underlying generator of 𝑄. 𝐺𝑁 and 𝐺𝑁′ are now both underlying generators
of 𝑄. It follows 𝐺𝑁 and 𝐺𝑁′ are isomorphic.

4.2.2. The same leaves on the same sides
First, since we have proved that 𝐺𝑁 and 𝐺𝑁′ are isomorphic, we can deduce that 𝐺𝑁 and 𝐺𝑁′ have a
set of crucial sides of equal size by Lemma 9. From now on, we assume that 𝐺𝑁 and 𝐺𝑁′ have a set of
crucial sides of size 𝑐. Since 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′), it follows that 𝑁 and 𝑁′ have the same leaves on the
same sides by Lemma 4.1.5

4.2.3. The order of the leaves
Observe again that 𝒮𝑞(𝑁) = 𝒮𝑞(𝑁′) for 2 ≤ 𝑞 ≤ 𝑐 +1. 𝑁 and 𝑁′ are both binary, simple networks on 𝑋.
Since 𝑐 ≥ 2 and 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′), we know that |𝑋| ≥ 3 and 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′). Furthermore, 𝐺𝑁 and
𝐺𝑁′ are isomorphic and each leaf in 𝑋 is on the same side in 𝑁′ as it is in 𝑁. By Lemma 11, it follows
that the order of the leaves on each side in 𝑁′ is the same as in 𝑁.

4.2.4. Conclusion
We assumed, for the sake of contradiction, that 𝒞 is not weakly encoded by 𝑐 + 1nets with the conse
quence that there exist two binary, simple level𝑘 networks 𝑁 and 𝑁′ on 𝑋 with |𝑋| ≥ 𝑐 +1 with a set of
crucial sides of their underlying generator of size at most 𝑐 such that 𝑁 ≠ 𝑁′ and 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′).
We now have proved, under the assumption that 𝑁 and 𝑁′ have a set of crucial sides of size exactly 𝑐,
that 𝐺𝑁 and 𝐺𝑁′ are isomorphic generators, that the leaves of 𝑁 are on the same side in 𝑁′, and that the
order of leaves on each side is the same in 𝑁′ as in 𝑁. By Lemma 5, these results still hold if 𝑁 and 𝑁′
have a set of crucial sides of size 𝑞 for 2 ≤ 𝑞 ≤ 𝑐, because we only used 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′). These
three conditions result in the fact that 𝑁 and 𝑁′ must be equal, that is, 𝑁 = 𝑁′ which is a contradiction.
We can conclude that the class of binary, simple level𝑘 networks with at least 𝑐 + 1 leaves and a
set of crucial sides of their underlying generator of size at most 𝑐 is weakly encoded by 𝑐 + 1nets for
𝑐 ≥ 2.

4.2.5. Corollary
The following corollary states the theorem for more general networks. Due to Theorem 3, whether a
recoverable network is encoded by subnets depends only on the biconnected components of which
the generators have a set of crucial sides of biggest size. This is formulated more precise below.

Corollary 4. Let 𝑐 ≥ 2 and let 𝒞 be the class of binary, recoverable level𝑘 networks such that for all
networks 𝑁 in 𝒞 it holds that

• 𝑁 has at least 𝑐 + 1 leaves;

• the underlying generator of the restriction 𝑁𝐵 to any nontrivial biconnected component 𝐵 of 𝑁 has
no symmetry besides parallel arcs;

• a set of crucial sides of the underlying generator of the restriction 𝑁𝐵 to any biconnected compo
nent 𝐵 is of size at most 𝑐.

Then 𝒞 is weakly encoded by 𝑐 + 1nets.

Proof. The proof follows from Theorem 5, Corollary 1, Theorem 3 and the fact that level1 networks
are encoded by their trinets (Huber and Moulton, 2013).
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Encoding networks with leaves on a

bounded number of sides
In Chapter 4, we focused on the level and the size of a set of crucial sides of a generator to encode
nonsymmetric networks by subnets. In this chapter, we will encode networks by subnets on leaves
on a bounded number of sides. It turns out that generators with symmetry can be considered in this
way, so we get results for a much bigger set of networks. Again, we will first prove theorems for simple
networks. Thereafter, we will use Theorem 3 again to generalise our results to recoverable networks.

To encode level𝑘 networks by their subnets by considering the number of sides containing leaves,
we will use again crucial subnets of simple networks, as in Chapter 4. Therefore, we prove the following
lemma.

Lemma 12. For a binary, simple level𝑘 network 𝑁 with |𝑋| ≥ 𝑝 with leaves on 𝑝 sides of its underlying
generator 𝐺𝑁, let 𝑥1, ... , 𝑥𝑝 be leaves on 𝑝 different sides in 𝐺𝑁 and let 𝑃 ∈ 𝒮𝑝(𝑁) the 𝑝net on 𝑥1, ... , 𝑥𝑝.
Then 𝑃 is a crucial 𝑝net.

Proof. Since 𝑁 is a phylogenetic network and it is simple, 𝑁 contains a leaf on each crucial side which
is an outdegree0 vertex in its underlying generator. Also, for a pair of parallel arcs in 𝐺𝑁, at least one
of these sides contains a leaf in 𝑁. Therefore, there exists a set of crucial sides of 𝐺𝑁 of size 𝑞 with
𝑞 ≤ 𝑝 such that each side contains at least one leaf in 𝑁. 𝑃 is constructed such that it contains exactly
one leaf on each side containing at least one leaf in 𝑁. So 𝑃 contains exactly one leaf on each side in
some set of crucial sides of 𝐺𝑁, so 𝑃 is a crucial 𝑝net.

The following property of simple networks will also be useful in the upcoming sections.

Lemma 13. Let 𝑁 and 𝑁′ be binary, simple level𝑘 networks on 𝑋 with |𝑋| ≥ 𝑝 and 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′).
If 𝑁 and 𝑁′ contain leaves on 𝑞 and 𝑞′ sides of their underlying generator, respectively, with 𝑞, 𝑞′ ≤ 𝑝,
then 𝑞 = 𝑞′.

Proof. Let 𝐺𝑁 be the underlying generator of 𝑁, let 𝑥1, ... , 𝑥𝑞 ∈ 𝑋 such that 𝑥1, ... , 𝑥𝑞 are on 𝑞 different
sides of 𝐺𝑁 and let 𝑄 ∈ 𝒮𝑞(𝑁) the 𝑞net on {𝑥1, ... , 𝑥𝑞}. Then 𝑄 is a crucial 𝑞net by Lemma 12. Let
𝑃 ∈ 𝒮𝑝(𝑁) be the 𝑝net on {𝑥1, ... , 𝑥𝑞 , 𝑥𝑞+1, ... , 𝑥𝑝}, where 𝑥𝑞+1, ... , 𝑥𝑝 are arbitrary leaves of 𝑋 different
from 𝑥1, ... , 𝑥𝑞. These leaves exist since |𝑋| ≥ 𝑝. Then, 𝑃 is crucial by Lemma 12, so 𝑃 is a simple
level𝑘 network by Lemma 4 and 𝐺𝑁 is also the underlying generator of 𝑃.

Let 𝑃′ be the 𝑝net on {𝑥1, ... , 𝑥𝑞 , 𝑥𝑞+1, ... , 𝑥𝑝} exhibited by 𝑁′. Since 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′), it holds that
𝑃 = 𝑃′. This means that there exists a bijective function 𝑓 ∶ 𝑉(𝑃′) → 𝑉(𝑃) such that 𝑓(𝑥) = 𝑥 for every
leaf 𝑥 of 𝑃′ and such that for every 𝑢, 𝑣 ∈ 𝑉(𝑃′) it holds that (𝑢, 𝑣) is an arc of 𝑃′ if and only if (𝑓(𝑢), 𝑓(𝑣))
is an arc of 𝑃. Furthermore, 𝑃′ is then also simple level𝑘, and by Lemma 4, 𝑃′ is a crucial 𝑝net of 𝑁′.

Suppose, for the sake of contradiction, 𝑞 ≠ 𝑞′. Then, suppose 𝑞 > 𝑞′. We can do this without loss
of generality, because if 𝑞 < 𝑞′, we can interchange the names of 𝑁 and 𝑁′ in the theorem. 𝑃 is crucial
and contains, by definition, leaves on 𝑞 different sides of 𝐺𝑁. Furthermore, 𝑞′ < 𝑞 ≤ 𝑝. It follows that
there exists at least one pair of vertices in 𝑃, say {𝑥𝑖 , 𝑥𝑗} ⊂ {𝑥1, ... , 𝑥𝑝} such that 𝑥𝑖 and 𝑥𝑗 are on two
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different sides in 𝑁 and so in 𝑃, and together on the same side in 𝑁′. Since 𝑃′ is crucial, 𝑥𝑖 and 𝑥𝑗 are
together on the same side in 𝑃′ while 𝐺𝑁 is the underlying generator of both 𝑃 and 𝑃′. This contradicts
with 𝑃 = 𝑃′. Therefore, we can conclude that 𝑞 = 𝑞′. So if 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′) and 𝑞, 𝑞′ ≤ 𝑝, 𝑁 and 𝑁′
have leaves on the same number of sides of their underlying generator.

5.1. Weakly encoded by (𝑝 + 1)nets
In this section, we will again concentrate on the generator of a simple network. It turns out that networks
with leaves on 𝑝 sides of their underlying generator are weakly encoded by (𝑝+1)nets for 𝑝 ≥ 2. This
holds for all level𝑘 networks with 𝑘 ≥ 1. Indeed, level1 networks are encoded by trinets (Huber
and Moulton, 2013). The advantage compared to the results in Chapter 4 is that the results hold for
generators with symmetry, too. A disadvantage is that the networks are weakly encoded instead of
strongly encoded. This is because 𝑝 can be smaller than 𝑘, and we cannot generalise Lemma 8 to this
case as we may not have that 𝒮𝑘+1(𝑁) ≠ 𝒮𝑘+1(𝑁′). Furthermore, we need more leaves in the subnets,
making the result also weaker. In Section 5.2 we will prove a stronger variant of the theorem below.

Theorem 6. Let 𝑝 ≥ 2. The class of binary, simple level𝑘 networks with at least 𝑝 + 1 leaves and
leaves on at most 𝑝 sides of their underlying generator is weakly encoded by (𝑝 + 1)nets.

Proof. Let 𝑝 ≥ 2 and let 𝒞 be the class of binary, simple level𝑘 networks with at least 𝑝+1 leaves and
leaves on at most 𝑝 sides of their underlying generator. Assume, for the sake of contradiction, that 𝒞
is not weakly encoded by (𝑝 + 1)nets. Then, there are two binary, simple level𝑘 networks 𝑁 and 𝑁′
on 𝑋 with |𝑋| ≥ 𝑝 + 1 with leaves on at most 𝑝 sides such that 𝑁 ≠ 𝑁′ and 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′). We
will show that 𝑁 = 𝑁′, which is a contradiction, so then the lemma follows.

5.1.1. Leaves on the same number of sides
Let 𝐺𝑁 and 𝐺𝑁′ be the underlying generators of 𝑁 and 𝑁′ respectively. Suppose 𝑁 has leaves on 𝑞
sides of 𝐺𝑁 and 𝑁′ has leaves on 𝑞′ sides of 𝐺𝑁′ , with 𝑞, 𝑞′ ≤ 𝑝. 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′), so by Lemma 13 it
holds that 𝑞 = 𝑞′. We can conclude that 𝑁 and 𝑁′ have leaves on the same number of sides of their
underlying generator.

We may now assume without loss of generality that 𝑁 and 𝑁′ have leaves on exactly 𝑝 sides of
their underlying generator. By Lemma 5, 𝒮𝑞(𝑁) = 𝒮𝑞(𝑁′) holds for 2 ≤ 𝑞 ≤ 𝑝 + 1, and we will see
that therefore the proof of Theorem 6 also holds if 𝑁 and 𝑁′ have leaves on 𝑞 sides of their underlying
generator for 2 ≤ 𝑞 ≤ 𝑝.

5.1.2. Isomorphic generators
We will show that 𝐺𝑁 is also the underlying generator of 𝑁′. First observe that 𝑁 is a binary, simple
level𝑘 network on 𝑋 with |𝑋| ≥ 𝑝 + 1 with leaves on 𝑝 sides. Then, by Lemma 12, 𝑁 has at least one
crucial 𝑝net. So let 𝑃 be a crucial 𝑝net of 𝑁. 𝑃 ∈ 𝒮𝑝(𝑁) is crucial, so by Lemma 4, 𝑃 is simple and
level𝑘. Moreover, by Lemma 4, 𝐺𝑁 is also the underlying generator of 𝑃.

Observe that since 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′), it follows from Lemma 5 that 𝒮𝑞(𝑁) = 𝒮𝑞(𝑁′) for 2 ≤
𝑞 ≤ 𝑝 + 1. 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′), so 𝑃 is also a 𝑝net of 𝑁′. 𝑁′ is a binary, simple level𝑘 network, 𝐺𝑁′ its
underlying generator and 𝑃 ∈ 𝒮𝑝(𝑁′). 𝑃 is simple level𝑘, so by Lemma 4, 𝑃 is a crucial 𝑝net of 𝑁′.
Moreover, also by Lemma 4, 𝐺𝑁′ is the underlying generator of 𝑃. 𝐺𝑁 and 𝐺𝑁′ are now both underlying
generators of the 𝑝net 𝑃. It follows 𝐺𝑁 and 𝐺𝑁′ are isomorphic.

5.1.3. The same leaves on the same sides
We know that 𝒮𝑞(𝑁) = 𝒮𝑞(𝑁′) for 2 ≤ 𝑞 ≤ 𝑝 + 1, that 𝐺𝑁 and 𝐺𝑁′ are isomorphic and that both 𝑁 and
𝑁′ have leaves on 𝑝 sides. As in Chapter 4, to conclude 𝑁 = 𝑁′, it is left to prove that 𝑁 and 𝑁′ have
the same leaves on each side and that the leaves on each side of 𝐺𝑁 are in the same order in 𝑁′ as
they are in 𝑁. In this section, we will prove the first. 𝑁 on 𝑋 is binary, simple level𝑘, with |𝑋| ≥ 𝑝 + 1
and has leaves on exactly 𝑝 sides. Let 𝑥1, ... , 𝑥𝑝 be 𝑝 leaves of 𝑁 on sides 𝑋1, ... , 𝑋𝑝 respectively, such
that 𝑋𝑖 ≠ 𝑋𝑗 for all 𝑖, 𝑗 ∈ {1, ... , 𝑝}, 𝑖 ≠ 𝑗. Let 𝑃 be the 𝑝net on 𝑥1, ... , 𝑥𝑝 exhibited by 𝑁. Then 𝑃 is a
crucial 𝑝net by Lemma 12, so leaves 𝑥1, ... , 𝑥𝑝 are also on sides 𝑋1, ... , 𝑋𝑝 in 𝑃, respectively.

Since |𝑋| ≥ 𝑝+1, there exists at least one side in 𝐺𝑁 containing two or more leaves in 𝑁. Let 𝑋𝑖 be
such a side for 𝑖 ∈ {1, ... , 𝑝}. Then there exists a leaf 𝑠 on side 𝑋𝑖 such that 𝑠 ≠ 𝑥𝑖. Let 𝑃1 be the (𝑝+1)
net on {𝑥1, ... , 𝑥𝑝, 𝑠}. 𝑃 is crucial and so is 𝑃1. Then, by Lemma 4, 𝑃1 is simple level𝑘 and 𝐺𝑁 is also the
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underlying generator of 𝑃1. Furthermore, it follows that leaves 𝑥1, ... , 𝑥𝑝, 𝑠 are on sides 𝑋1, ... , 𝑋𝑝, 𝑋𝑖
in 𝑃1, respectively. Let 𝑃′1 be the (𝑝 + 1)net on 𝑥1, ... , 𝑥𝑝, 𝑠 exhibited by 𝑁′. Since 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′),
𝑃′1 equals 𝑃1 and since 𝑃1 is simple level𝑘, 𝑃′1 is also a simple level𝑘 network. By Lemma 4, 𝑃′1 is a
crucial (𝑝 + 1)net of 𝑁′. Moreover, 𝐺𝑁′ is the underlying generator of 𝑃′1 . To summarize, 𝑃′1 equals 𝑃1,
𝐺𝑁 is the underlying generator of both 𝑁 and 𝑃1, 𝐺𝑁′ is the underlying generator of both 𝑁′ and 𝑃′1 , and
𝐺𝑁 and 𝐺𝑁′ are isomorphic generators.

We will now show that leaves stay together on a side. In the proof of Lemma 10, we proved for gener
ators with no symmetry that two leaves stay together on a side and two leaves stay on opposite sides
of parallel arcs in 𝑁 and in 𝑁′. To prove Theorem 6 we prove this result for the more general case. We
will now prove that the leaves in a set 𝑆 ⊂ 𝑋 are together on one side in 𝑁 if and only if these leaves
are together on one side in 𝑁′.

We begin with the ‘only if’ direction. First note that 𝑁′ has also leaves on exactly 𝑝 sides of 𝐺𝑁′ . Let
𝑥𝑖 ∈ {𝑥1, ... , 𝑥𝑝} and suppose that 𝑥𝑖 , 𝑠 are together on side 𝑋𝑖 in 𝑁, with 𝑠 as defined before. Note that
𝑋𝑖 is then an arc in 𝐸(𝐺𝑁). Suppose without loss of generality that 𝑠 is below 𝑥𝑖 in 𝑁 and let 𝑢 and 𝑣 be
the parents of 𝑥𝑖 and 𝑠 respectively. We may assume that (𝑢, 𝑣) is an arc in 𝑁. Then, (𝑢, 𝑣) is an arc of
𝑃1. Note that 𝑥𝑖 and 𝑠 can also be on a side which is an arc in pair of parallel arcs.

We mostly follow the proof of Lemma 10. Observe that (𝑢, 𝑣), (𝑢, 𝑥𝑖) and (𝑣, 𝑠) are arcs of 𝑃1 and 𝑢
and 𝑣 are both indegree1 outdegree2. Since 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′), 𝑃1 and 𝑃′1 are equal networks, so
there exists a bijective function 𝑓 ∶ 𝑉(𝑃1) → 𝑉(𝑃′1) such that 𝑓(𝑥) = 𝑥 for each leaf 𝑥 ∈ {𝑥1, ... , 𝑥𝑝, 𝑠}
and such that for every 𝑎, 𝑏 ∈ 𝑉(𝑃1) it holds that (𝑎, 𝑏) is an arc of 𝑃1 if and only if (𝑓(𝑎), 𝑓(𝑏)) is an
arc of 𝑃′1 . So (𝑓(𝑢), 𝑓(𝑣)), (𝑓(𝑢), 𝑓(𝑥𝑖)) and (𝑓(𝑣), 𝑓(𝑠)) are arcs of 𝑃′1 and 𝑓(𝑥𝑖) = 𝑥𝑖 and 𝑓(𝑠) = 𝑠.
It follows that 𝑓(𝑢) and 𝑓(𝑣) are the parents of 𝑥𝑖 and 𝑠 in 𝑃′1 respectively. Together with the fact that
(𝑓(𝑢), 𝑓(𝑣)) is an arc of 𝑃′1 and that 𝑓(𝑣) must be outdegree2 in 𝑃′1 gives us that 𝑥𝑖 and 𝑠 are together
on one side in 𝑁′.

The proof of the ‘if’ direction works in exactly the same way. As a consequence, by the fact that 𝑥𝑖
and 𝑠 are chosen arbitrarily with the requirement that (𝑢, 𝑣) is an arc in 𝑁, for a set of leaves 𝑆 ⊆ 𝑋 it
holds that all leaves in 𝑆 are together on a unique side in 𝑁 if and only if all leaves in 𝑆 are together on
a unique side in 𝑁′. Observe that it also holds that two leaves are on different sides in 𝑁 if and only if
two leaves are on different sides in 𝑁′.

We will now prove that leaves are individually on the same sides. Given that 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′),
it follows that 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′) by Lemma 5, where 𝑐 is the size of a set of crucial sides of 𝐺𝑁.
Indeed, 𝑐 ≤ 𝑝 because each side in a set of crucial sides of 𝐺𝑁 contains a leaf in 𝑁. Then, by Lemma
10, if 𝐺𝑁 has no symmetry besides parallel arcs, then all leaves in 𝑁 are on the same sides in 𝑁′.

From now on, we suppose that 𝐺𝑁 has symmetry besides parallel arcs. If 𝐺𝑁 has symmetry, then
𝑥1, ... , 𝑥𝑝, 𝑠 are on the same sides in 𝑁′ as in 𝑁, after possibly relabelling sides in 𝐺𝑁′ . We will prove
that there always exists such a relabelling. While 𝐺𝑁 has symmetry, there is at least one pair of parallel
arcs or at least one automorphism 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) such that 𝑓(𝑣) ≠ 𝑣 for at least one 𝑣 ∈ 𝑉(𝐺𝑁).
That is, there exists at least one relabelling of sides 𝑔 ∶ 𝐴 → 𝐴, where 𝐴 is the set of sides in 𝐺𝑁, giving
a generator isomorphic to 𝐺𝑁. This leads to the possibility for a number of leaves of 𝑥1, ... , 𝑥𝑝, 𝑠 to be
on a different side in 𝑁′ than in 𝑁, while 𝐺𝑁 and 𝐺𝑁′ are isomorphic and 𝑃1 equals 𝑃′1 . We know that if a
set of leaves is together on one side in 𝑁, then these leaves are together on one side in 𝑁′. Therefore
it is sufficient to look at 𝑃1, containing at least one leaf on each of the 𝑝 sides containing leaves in 𝑁.

If leaves are on different sides in 𝑁′ as in 𝑁 and only a strict subset of these sides are arcs that are
in a pair of parallel arcs, we come to a relabelling in the following way, which holds for every choice
of 𝑠. By definition of equal networks, there is a graph isomorphism between 𝑃1 and 𝑃′1 that preserves
leaf labels, that is, there exists a bijective function 𝑓 ∶ 𝑉(𝑃1) → 𝑉(𝑃′1) such that 𝑓(𝑥) = 𝑥 for each leaf 𝑥
of 𝑃1 and such that for every 𝑢, 𝑣 ∈ 𝑉(𝑃1) it holds that (𝑢, 𝑣) is an arc of 𝑃1 if and only if (𝑓(𝑢), 𝑓(𝑣)) is
an arc of 𝑃′1 . Let 𝑓 be such a function. If there is at least one leaf in 𝑁′ not on the same side as in 𝑁
which is not a side in a pair of parallel arcs, then there is at least one leaf in 𝑃′1 not on the same side as
in 𝑃1, because 𝐺𝑁 is the generator of both 𝑁 and 𝑃1, and 𝐺𝑁′ is the generator of both 𝑁′ and 𝑃′1 . Also
note that 𝑃1 and 𝑃′1 are also crucial. Since 𝑃1 equals 𝑃′1 , it follows that 𝑓(𝑣) ≠ 𝑣 for some 𝑣 ∈ 𝑉(𝑃1).
Furthermore, 𝑓(𝑥) = 𝑥 for each leaf 𝑥 of 𝑃1 and for every 𝑢, 𝑣 ∈ 𝑉(𝑃1) it holds that (𝑢, 𝑣) is an arc of 𝑃1
if and only if (𝑓(𝑢), 𝑓(𝑣)) is an arc of 𝑃′1 , so 𝑣 is not a leaf and not a parent of a leaf in 𝑃1. Then 𝑣 is also
a vertex of 𝐺𝑁 by construction. Applying 𝑓 to the vertex set of 𝐺𝑁 gives the generator isomorphic to 𝐺𝑁,
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which must be the generator of 𝑃′1 , which is 𝐺𝑁′ . Indeed, 𝑓 exists because 𝐺𝑁 has symmetry other then
a pair of parallel arcs, and 𝑓 is the automorphism 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) such that 𝑓(𝑣) ≠ 𝑣 for at least
one 𝑣 ∈ 𝑉(𝐺𝑁). The isomorphism 𝑓′ ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁′) such that 𝑓′(𝑦) = 𝑓(𝑦) ∀𝑦 ∈ 𝑉(𝐺𝑁) represents
the relabelling of sides resulting in another side in 𝑁′ for at least one leaf of 𝑁. 𝑓′ is bijective, so (𝑓′)−1
exists. Applying (𝑓′)−1 to the vertex set of 𝐺𝑁′ gives now the relabelling of sides that belongs to 𝑓−1
giving for each leaf in 𝑁′ that it is on the same side of the underlying generator as in 𝑁. Together with
the result that leaves stay together on a side, it follows for all leaves that they are on the same sides in
𝑁 and 𝑁′.

We see that considering all sides of 𝐺𝑁 that contain leaves in 𝑁 is necessary to determine the sides
of noncrucial leaves. In Section 6.1, we did the same for 𝑐 crucial leaves on 𝑐 crucial sides, where
no more than 𝑐 crucial sides (except for parallel arcs) were possibilities for the leaves to be on. That
is comparable to this case, where we considered 𝑝 leaves on 𝑝 sides (and 𝑝 + 1 leaves to prove that
leaves stay together on a side), where no more than 𝑝 sides were possibilities for the leaves to be on.

5.1.4. The order of the leaves
𝑁 and 𝑁′ are both binary, simple networks on 𝑋. Since 𝑝 ≥ 2 and 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′), we know that
|𝑋| ≥ 3 and 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′) by Lemma 5. Furthermore, 𝐺𝑁 and 𝐺𝑁′ are isomorphic and each leaf of
𝑋 is on the same side in 𝑁′ as it is in 𝑁. By Lemma 11, it follows that the order of the leaves on each
side in 𝑁′ is the same as in 𝑁.

5.1.5. Conclusion
We assumed, for the sake of contradiction, that 𝒞 is not weakly encoded by (𝑝 + 1)nets with the
consequence that there exist two binary, simple level𝑘 networks 𝑁 and 𝑁′ on 𝑋 with |𝑋| ≥ 𝑝 + 1 with
leaves on at most 𝑝 sides such that 𝑁 ≠ 𝑁′ and 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′). We now have proved, under the
assumption that 𝑁 and 𝑁′ have leaves on exactly 𝑝 sides, that 𝐺𝑁 and 𝐺𝑁′ are isomorphic generators,
that each leaf of 𝑁 is on the same side in 𝑁′, that two leaves stay together on a side, and that the order
of leaves on each side is the same in 𝑁′ as in 𝑁. By Lemma 5, if 𝑁 and 𝑁′ have leaves on 𝑞 sides with
2 ≤ 𝑞 ≤ 𝑝, these results still hold. These conditions result in the fact that 𝑁 and 𝑁′ must be equal, that
is 𝑁 = 𝑁′ which is a contradiction. We can conclude that the class of binary, simple level𝑘 networks
with at least 𝑝+1 leaves and leaves on at most 𝑝 sides of their underlying generator is weakly encoded
by (𝑝 + 1)nets for 𝑝 ≥ 2.

Corollary 5. Let 𝑝 ≥ 2 and let 𝒞 be the class of binary, recoverable level𝑘 networks on at least 𝑝 + 1
leaves such that for all networks 𝑁 in 𝒞 the restriction 𝑁𝐵 to any biconnected component 𝐵 has leaves
on at most 𝑝 sides of its underlying generator. Then, 𝒞 is weakly encoded by (𝑝 + 1)nets.
Proof. The proof follows from Theorem 6, Corollary 1, Theorem 3 and the fact that level1 networks
are encoded by their trinets (Huber and Moulton, 2013).

5.2. Strongly encoded by (𝑝 + 1)nets if 𝑝 > 𝑘
It turns out that if 𝑝 > 𝑘 in the previous section, then we are able to prove for 𝑁 and 𝑁′ being networks
as in Section 5.1 that they are both binary and simple level𝑘. Furthermore, 𝑁 and 𝑁′ have both leaves
on at most 𝑝 sides, too. We can now prove that a different set of networks is strongly encoded by their
sets of (𝑝 + 1)nets.
Theorem 7. Let 𝑝 > 𝑘. Every binary, simple level𝑘 network 𝑁 on 𝑋 with |𝑋| ≥ 𝑝 + 1 with leaves on at
most 𝑝 sides of its underlying generator is encoded by its set of (𝑝 + 1)nets.
Proof. Let 𝒞 be the class of binary, simple level𝑘 networks with at least 𝑝 + 1 leaves and leaves on
at most 𝑝 sides of their underlying generator. By Theorem 6, 𝒞 is weakly encoded by (𝑝 + 1)nets for
𝑝 ≥ 2. We will show that if 𝑁 is in 𝒞, 𝑝 > 𝑘, and 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′) for some network 𝑁′, then 𝑁′ is
contained in 𝒞. Namely, if 𝑝 > 𝑘, we can prove for 𝑁′ that it is binary, simple and level𝑘 with leaves on
at most 𝑝 sides of its underlying generator. Thereafter, we can use Theorem 6 to prove the lemma.

Let 𝑁 be a binary, simple level𝑘 network on 𝑋 with |𝑋| ≥ 𝑝 + 1 with leaves on at most 𝑝 sides of
its underlying generator 𝐺𝑁 for 𝑝 > 𝑘. Suppose, for the sake of contradiction, that 𝑁 is not encoded by
its set of (𝑝 + 1)nets. Then there exists a recoverable network 𝑁′ such that 𝑁′ ≠ 𝑁 and 𝒮𝑝+1(𝑁) =
𝒮𝑝+1(𝑁′). We will deduce a contradiction by showing that 𝑁′ = 𝑁.



5.3. Weakly encoded by 𝑝nets if 𝑝 > 2 33

5.2.1. 𝑁′ is a binary, simple level𝑘 network
First observe that 𝑁 and 𝑁′ are networks on 𝑋 with |𝑋| ≥ 𝑝 + 1 and 𝑝 ≥ 2. Furthermore, 𝒮𝑝+1(𝑁) =
𝒮𝑝+1(𝑁′), so 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′) by Lemma 5. It follows that 𝑁′ is a binary network by Lemma 6. Second,
observe again that 𝑁 and 𝑁′ are networks on 𝑋 with |𝑋| ≥ 𝑝 + 1 and 𝑝 ≥ 2. Furthermore, 𝑇𝑛(𝑁) =
𝑇𝑛(𝑁′). It follows that 𝑁′ is a simple network by Lemma 7. Third, observe now that 𝑁 and 𝑁′ are
binary, simple networks on 𝑋 with |𝑋| ≥ 𝑝 + 1. 𝑁 has leaves on at most 𝑝 sides. 𝑝 > 𝑘, so |𝑋| > 𝑘 + 1.
𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′), so 𝒮𝑘+1(𝑁) = 𝒮𝑘+1(𝑁′) by Lemma 5. It follows that 𝑁′ is level𝑘 by Lemma 8.
Note that if 𝑝 ≤ 𝑘, there are leaves on at most 𝑘 sides of 𝐺𝑁. We cannot construct a (𝑘 + 1)net as in
the proof of Lemma 8 and we cannot conclude that 𝑁′ is level𝑘. Furthermore, we cannot prove that 𝑁
is strongly encoded by its set of (𝑝 + 1)nets.

5.2.2. 𝑁′ has leaves on at most 𝑝 sides
𝑁 and 𝑁′ are binary, simple level𝑘 networks on 𝑋 with |𝑋| ≥ 𝑝 + 1 and 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′). 𝑁
has leaves on 𝑝 sides of 𝐺𝑁. Let 𝐺𝑁′ be the underlying generator of 𝑁′. Suppose, for the sake of
contradiction, that 𝑁′ has leaves on at least 𝑝 + 1 sides of 𝐺𝑁′ . Let 𝑥1, ... , 𝑥𝑝+1 be leaves on 𝑝 + 1
different sides in 𝐺𝑁′ and let 𝑃′1 ∈ 𝒮𝑝+1(𝑁′) the (𝑝+1)net on {𝑥1, ... , 𝑥𝑝+1}. Then 𝑃′1 is a crucial (𝑝+1)
net by Lemma 12, and 𝑃′1 is level𝑘 by lemma 4. Let 𝑃1 be the (𝑝 + 1)net on {𝑥1, ... , 𝑥𝑝+1} exhibited
by 𝑁. It follows that 𝑃1 = 𝑃′1 since 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′). Then 𝑃1 is simple level𝑘 and so it is a crucial
(𝑝 + 1)net by Lemma 4. Then, 𝑁 has leaves on 𝑝 sides of 𝐺𝑁 and 𝑃1 and 𝑃′1 are crucial. It follows that
there exists a pair of leaves {𝑥𝑖 , 𝑥𝑗} ⊂ {𝑥1, ... , 𝑥𝑝+1} that are together on one side in 𝑃1 and on different
sides in 𝑃′1 . We will deduce a contradiction.

Since, 𝑃1 = 𝑃′1 , there exists a bijective function 𝑓 ∶ 𝑉(𝑃1) → 𝑉(𝑃′1) such that 𝑓(𝑥) = 𝑥 for each leaf
𝑥 of 𝑃1 and such that for every 𝑢, 𝑣 ∈ 𝑉(𝑃1) holds that (𝑢, 𝑣) is an arc of 𝑃1 if and only if (𝑓(𝑢), 𝑓(𝑣)) is
an arc of 𝑃′1 . Let 𝑢𝑖 and 𝑢𝑗 be the parents of 𝑥𝑖 and 𝑥𝑗 in 𝑃1, respectively and suppose without loss of
generality that 𝑥𝑗 is below 𝑥𝑖 in 𝑃1 and that (𝑢𝑖 , 𝑢𝑗) is an arc of 𝑃1. We can suppose the latter without
loss of generality too, because every pair of leaves from {𝑥1, ... , 𝑥𝑝+1} are on different sides in 𝑃′1 . Then
(𝑓(𝑢𝑖), 𝑓(𝑢𝑗)) is an arc of 𝑃′1 and since 𝑓(𝑥𝑖) = 𝑥𝑖 and 𝑓(𝑥𝑗) = 𝑥𝑗, it holds that (𝑓(𝑢𝑖), 𝑥𝑖) and (𝑓(𝑢𝑗), 𝑥𝑗)
are also arcs of 𝑃′1 . 𝑢𝑖 and 𝑢𝑗 are indegree1 outdegree2 in 𝑃1, so 𝑓(𝑢𝑖) and 𝑓(𝑢𝑗) are also indegree1
outdegree2 in 𝑃′1 . It follows that 𝑥𝑖 and 𝑥𝑗 are on the same side in 𝑃′1 and so in 𝑁′, since 𝑃′1 is crucial.
This contradicts with 𝑥1, ... , 𝑥𝑝+1 being on 𝑝+1 different sides in 𝐺𝑁′ . So 𝑁′ cannot have leaves on at
least 𝑝 + 1 sides. To conclude, 𝑁′ has leaves on at most 𝑝 sides of 𝐺𝑁′ .

5.2.3. Conclusion
Given that 𝑁 is in class 𝒞, we have now proved that if 𝑝 > 𝑘 and 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′), then 𝑁′ is in class
𝒞. By Theorem 6, 𝒞 is weakly encoded by its set of (𝑝 + 1)nets for 𝑝 ≥ 2. It now follows that every
binary, simple level𝑘 network 𝑁 on 𝑋 with |𝑋| ≥ 𝑝 + 1 with leaves on at most 𝑝 sides of its underlying
generator is encoded by its set of (𝑝 + 1)nets for 𝑝 > 𝑘.

Corollary 6. Let 𝑝 > 𝑘. Every binary, recoverable level𝑘 network 𝑁 on 𝑋 with |𝑋| ≥ 𝑝 + 1 such that
the restriction 𝑁𝐵 to any biconnected component 𝐵 has leaves on at most 𝑝 sides of its underlying
generator is encoded by its set of (𝑝 + 1)nets.

Proof. The proof follows from Theorem 7, Corollary 1, Theorem 3 and the fact that level1 networks
are encoded by their trinets (Huber and Moulton, 2013).

5.3. Weakly encoded by 𝑝nets if 𝑝 > 2
Figure 5.1 shows two different networks 𝑁,𝑁′ with the same set of binets. We see that the order of the
leaves is different, but all leaves are on the same side in 𝑁 and 𝑁′. The networks are binary, simple
level1, and have leaves on two sides of their underlying generator. So it turns out that simple level𝑘
networks with leaves on 𝑝 sides of their underlying generator are not encoded by their set of 𝑝nets.
For this counterexample, the binets do not display the order of the leaves on a certain side. In this
section, we will prove that if 𝑝 > 2, level𝑘 networks with leaves on 𝑝 sides are weakly encoded by
𝑝nets.

We will now prove the following theorem which is a strengthening of Theorem 6 and from which Corol
lary 7 will follow.
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(a) Simple level1 networks 𝑁 and 𝑁′, with 𝑁 ≠ 𝑁′.
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(b) The set of six binets of 𝑁 and 𝑁′.

Figure 5.1: Two unequal simple level1 networks with leaves on two sides of their underlying generator, having the same set of
binets.

Theorem 8. Let 𝑝 > 2. The class of binary, simple level𝑘 networks with at least 𝑝 leaves with leaves
on at most 𝑝 sides of their underlying generator is weakly encoded by 𝑝nets.
Proof. We will largely follow the proof in Section 5.1. Let 𝑝 > 2 and let 𝒞 be the class of binary, simple
level𝑘 networks with at least 𝑝 leaves and leaves on at most 𝑝 sides of their underlying generator.
Assume, for the sake of contradiction, that 𝒞 is not weakly encoded by 𝑝nets. Then, there are two
binary, simple level𝑘 networks 𝑁 and 𝑁′ on 𝑋 with |𝑋| ≥ 𝑝 with leaves on at most 𝑝 sides such that
𝑁 ≠ 𝑁′ and 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′). We will show that 𝑁 = 𝑁′, which is a contradiction, so then the lemma
follows.

5.3.1. Leaves on the same number of sides and isomorphic generators
Let 𝐺𝑁 and 𝐺𝑁′ be the underlying generators of 𝑁 and 𝑁′ respectively. Suppose 𝑁 has leaves on 𝑞
sides of 𝐺𝑁 and 𝑁′ has leaves on 𝑞′ sides of 𝐺𝑁′ , with 𝑞, 𝑞′ ≤ 𝑝. 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′), so by Lemma 13 it
holds that 𝑞 = 𝑞′. We can conclude that 𝑁 and 𝑁′ have leaves on the same number of sides of their
underlying generator.

We may now assume without loss of generality that 𝑁 and 𝑁′ have leaves on exactly 𝑝 sides of its
underlying generator. 𝒮𝑞(𝑁) = 𝒮𝑞(𝑁′) holds for 2 ≤ 𝑞 ≤ 𝑝, and we will see that therefore the proof also
holds if 𝑁 and 𝑁′ have leaves on 𝑞 sides of their underlying generator for 3 ≤ 𝑞 ≤ 𝑝 − 1. By following
exactly the same reasoning in Section 5.1.2, 𝑁 and 𝑁′ have isomorphic underlying generators.

5.3.2. Leaves stay together on a side
We will prove that two leaves are together on one side in 𝑁 if and only if they are together on one side
in 𝑁′. To prove this, we will use parts of the proof of Theorem 6, but we cannot use that 𝒮𝑝+1(𝑁) =
𝒮𝑝+1(𝑁′) since we only assumed 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′). Let 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋 be leaves such that they are together
on one side in 𝑁, and suppose, for the sake of contradiction, that they are on two different sides in 𝑁′.
Let 𝑃′ ∈ 𝒮𝑝(𝑁′) the 𝑝net on {𝑥1, ... , 𝑥𝑖 , 𝑥𝑗 , ... , 𝑥𝑝} such that leaves 𝑥𝛼 and 𝑥𝛽 are on different sides for
all 𝛼, 𝛽 ∈ {1, ... , 𝑝}, 𝛼 ≠ 𝛽. These leaves exist since |𝑋| ≥ 𝑝, 𝑁′ contains leaves on exactly 𝑝 sides,
and 𝑥𝑖 and 𝑥𝑗 are on two different sides in 𝑁′. Then, 𝑃′ is crucial by Lemma 12.

Let 𝑃 be the 𝑝net on 𝑥1, ... , 𝑥𝑖 , 𝑥𝑗 , ... , 𝑥𝑝 exhibited by𝑁. Leaves 𝑥1, ... , 𝑥𝑖 , 𝑥𝑗 , ... , 𝑥𝑝 are on 𝑞 different
sides of 𝐺𝑁 for 𝑞 < 𝑝, because at least two of these leaves, namely 𝑥𝑖 and 𝑥𝑗, are together on one side.
𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′), so 𝑃 = 𝑃′, implying that there exists a bijective function 𝑓 ∶ 𝑉(𝑃) → 𝑉(𝑃′) such that
𝑓(𝑥) = 𝑥 for each leaf 𝑥 of 𝑃 and such that for every 𝑢, 𝑣 ∈ 𝑉(𝑃) it holds that (𝑢, 𝑣) is an arc of 𝑃 if and
only if (𝑓(𝑢), 𝑓(𝑣)) is an arc of 𝑃′. Note 𝑃′ is simple level𝑘 by Lemma 4, so 𝑃 is simple level𝑘. Then,
also by Lemma 4, 𝑃 is a crucial 𝑝net of 𝑁.

Let 𝑢𝑖 and 𝑢𝑗 be the parents of 𝑥𝑖 and 𝑥𝑗 in 𝑃, respectively. 𝑃 is crucial, so suppose without loss
of generality that 𝑥𝑗 is below 𝑥𝑖 in 𝑃 and that (𝑢𝑖 , 𝑢𝑗) is an arc of 𝑃. We can suppose the latter without
loss of generality too, because every pair of leaves from {𝑥1, ... , 𝑥𝑝} are on different sides in 𝑃′. Then,
(𝑓(𝑢𝑖), 𝑓(𝑢𝑗)) is an arc of 𝑃′ and since 𝑓(𝑥𝑖) = 𝑥𝑖 and 𝑓(𝑥𝑗) = 𝑥𝑗, it holds that (𝑓(𝑢𝑖), 𝑥𝑖) and (𝑓(𝑢𝑗), 𝑥𝑗)
are also arcs of 𝑃′. 𝑢𝑖 and 𝑢𝑗 are indegree1 outdegree2 in 𝑃, so 𝑓(𝑢𝑖) and 𝑓(𝑢𝑗) are also indegree1
outdegree2 in 𝑃′. It follows that 𝑥𝑖 and 𝑥𝑗 are on the same side in 𝑃′ and so in 𝑁′, since 𝑃′ is crucial.
This contradicts with 𝑥1, ... , 𝑥𝑝 being on 𝑝 different sides of 𝐺𝑁′ .
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We can conclude that if two leaves are together on the same side in 𝑁, then they are together on the
same side in 𝑁′. In exactly the same way, if two leaves are together on the same side in 𝑁′, then they
are together on the same side in 𝑁, so the result follows. As a consequence, if for a set of leaves 𝑆 ⊆ 𝑋
it holds that all leaves in 𝑆 are together on a unique side in 𝑁, then all leaves in 𝑆 are together on a
unique side in 𝑁′.

5.3.3. The same leaves on the same sides
Let 𝑥1, ... , 𝑥𝑝 be 𝑝 leaves of𝑁 on sides 𝑋1, ... , 𝑋𝑝 respectively, such that 𝑋𝑖 ≠ 𝑋𝑗 for all 𝑖, 𝑗 ∈ {1, ... , 𝑝}, 𝑖 ≠
𝑗. Let 𝑃 be the 𝑝net on {𝑥1, ... , 𝑥𝑝} exhibited by 𝑁. Then 𝑃 is a crucial 𝑝net by Lemma 12, so leaves
𝑥1, ... , 𝑥𝑝 are also on sides 𝑋1, ... , 𝑋𝑝 in 𝑃, respectively. By Lemma 4, 𝑃 is simple level𝑘 and 𝐺𝑁 is also
the underlying generator of 𝑃. Let 𝑃′ be the 𝑝net on {𝑥1, ... , 𝑥𝑝} exhibited by𝑁′. Since 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′),
𝑃′ equals 𝑃 and therefore 𝑃′ is also a simple level𝑘 network. By Lemma 4, 𝑃′ ∈ 𝒮𝑝(𝑁′) is a crucial
𝑝net. Moreover, 𝐺𝑁′ is the underlying generator of 𝑃′.

Furthermore, from the previous subsection, if 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′) and if for a set of leaves 𝑆 ⊆ 𝑋 it holds
that all leaves in 𝑆 are together on a unique side in 𝑁, then all leaves in 𝑆 are together on a unique side
in 𝑁′. Since this holds as well while the sets of 𝑝nets are the same, it follows by the proof in Section
5.1.3 that the leaves of 𝑁 are on the same sides in 𝑁′, after possibly relabelling sides of 𝐺𝑁′ .

5.3.4. The order of the leaves
𝑁 and 𝑁′ are both binary, simple networks on 𝑋. Since 𝑝 > 2 and 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′), we know that |𝑋| ≥ 3
and 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′). Furthermore, 𝐺𝑁 and 𝐺𝑁′ are isomorphic and each leaf of 𝑋 is on the same side
in 𝑁′ as it is in 𝑁. By Lemma 11, it follows that the order of the leaves on each side in 𝑁′ is the same
as in 𝑁.

5.3.5. Conclusion
We were able to follow mostly the proof of Theorem 6 while we assumed 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′) instead of
𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′). However, proving that sets of leaves stay together on one side has been done in
a different way. To summarize, we assumed, for the sake of contradiction, that 𝒞 is not weakly encoded
by 𝑝nets with the consequence that there exist two binary, simple level𝑘 networks 𝑁 and 𝑁′ on 𝑋 with
|𝑋| ≥ 𝑝 with leaves on at most 𝑝 sides such that 𝑁 ≠ 𝑁′ and 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′). We now have proved,
under the assumption that 𝑁 and 𝑁′ have leaves on exactly 𝑝 sides, that 𝐺𝑁 and 𝐺𝑁′ are isomorphic
generators, that each leaf is individually on the same side in 𝑁′ as in 𝑁, that sets of leaves stay together
on one side and that the order of leaves on each side is the same in 𝑁′ as in 𝑁. By Lemma 5, if 𝑁 and
𝑁′ have leaves on 𝑞 sides with 3 ≤ 𝑞 ≤ 𝑝, these results still hold. These conditions result in the fact
that 𝑁 and 𝑁′ must be equal, that is 𝑁 = 𝑁′ which is a contradiction. We can conclude that the class of
binary, simple level𝑘 networks with at least 𝑝 leaves and leaves on at most 𝑝 sides of their underlying
generator is weakly encoded by 𝑝nets for 𝑝 > 2.

Corollary 7. Let 𝑝 > 2 and let 𝒞 be the class of binary, recoverable level𝑘 networks on at least 𝑝
leaves such that for all networks 𝑁 in 𝒞 the restriction 𝑁𝐵 to any biconnected component 𝐵 has leaves
on at most 𝑝 sides of its underlying generator. Then, 𝒞 is weakly encoded by 𝑝nets.

Proof. The proof follows from Theorem 8, Corollary 1, Theorem 3 and the fact that level1 networks
are encoded by their trinets (Huber and Moulton, 2013).

5.4. Strongly encoded by 𝑝nets
It turn out that if we also assume that 𝑝 > 𝑘 + 1 in the proof of Theorem 8, we can also prove that 𝑁′
is binary, simple level𝑘 and that 𝑁′ has leaves on at most 𝑝 sides of its underlying generator. This is
comparable with the aim of Section 5.2. Then, we can prove a variant of Corollary 7, that is Corollary 8.
We actually prove that 𝑁′ from the previous section is in the class 𝒞 as defined before. We will prove it
in this section. As before, we will use Theorem 3, such that we can reduce the problem first to simple
networks. It turns out that if we require 𝑝 > 𝑘, as we do in Theorem 7, is not enough here.

Corollary 8. Let 𝑝 > max{2, 𝑘+1}. Every binary, recoverable level𝑘 network 𝑁 on 𝑋 with |𝑋| ≥ 𝑝 such
that the restriction 𝑁𝐵 to any biconnected component 𝐵 has leaves on at most 𝑝 sides of its underlying
generator is encoded by its set of 𝑝nets.
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Proof. We can mostly follow the proof of Theorem 7 and use Corollary 1, Theorem 3 and the fact
that level1 networks are encoded by their trinets (Huber and Moulton, 2013) to prove this corollary.
However, we cannot prove that 𝑁′ has leaves on at most 𝑝 sides as in Section 5.2.2. We will first prove
that for 𝑝 > max{2, 𝑘 + 1}, every binary, simple level𝑘 network 𝑁 on 𝑋 with |𝑋| ≥ 𝑝 with leaves on at
most 𝑝 sides of its underlying generator is encoded by its set of 𝑝nets.

As in the proof of Theorem 7, let 𝒞 be the class of binary, simple level𝑘 networks with at least 𝑝
leaves and leaves on at most 𝑝 sides of their underlying generator, with 𝑝 > max{2, 𝑘+1}. We will show
that if 𝑁 is in 𝒞 and 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′) for some network 𝑁′, then 𝑁′ is contained in 𝒞. Let 𝑁 be a binary,
simple level𝑘 network on 𝑋 with |𝑋| ≥ 𝑝 with leaves on at most 𝑝 sides of its underlying generator 𝐺𝑁
for 𝑝 > 𝑘+1 and let 𝑁′ be a recoverable network with 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′). First observe that 𝑁 and 𝑁′ are
networks on 𝑋 with |𝑋| ≥ 𝑝 and 𝑝 > 2. Furthermore, 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′), so 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′) by Lemma 5.
It follows that 𝑁′ is a binary and simple network by Lemma 6 and 7, respectively. |𝑋| ≥ 𝑝 and 𝑝 > 𝑘+1,
so |𝑋| > 𝑘 + 1. 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′), so 𝒮𝑘+1(𝑁) = 𝒮𝑘+1(𝑁′) by Lemma 5. It follows that 𝑁′ is level𝑘 by
Lemma 8.

We will now prove that 𝑁′ has leaves on at most 𝑝 sides of its underlying generator, not following
the proof of Theorem 7. Indeed, we cannot use that 𝒮𝑝+1(𝑁) = 𝒮𝑝+1(𝑁′). Suppose, for the sake of
contradiction, that 𝑁′ has leaves on at least 𝑝 + 1 sides of 𝐺𝑁′ . 𝑁 and 𝑁′ have the same number
of leaves because 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′). Then, there exist two leaves 𝑦1, 𝑦2 ∈ 𝑋 such that 𝑦1 and 𝑦2 are
together on one side in 𝑁 and on two different sides in 𝑁′. Let {𝑋1, ..., 𝑋𝑐} be a set of crucial sides
of 𝐺𝑁 such that each side contains at least one leaf, and let 𝑥1, ... , 𝑥𝑐 be leaves on sides 𝑋1, ..., 𝑋𝑐
respectively. Let 𝐶 be the 𝑐 + 2net on {𝑥1, ... , 𝑥𝑐 , 𝑦1, 𝑦2} exhibited by 𝑁. 𝐶 is crucial by the proof of
Lemma 2. Let 𝐶′ be the 𝑐 + 2net on {𝑥1, ... , 𝑥𝑐 , 𝑦1, 𝑦2} exhibited by 𝑁′. 𝒮𝑝(𝑁) = 𝒮𝑝(𝑁′) and 𝑝 > 𝑘 + 1,
so 𝒮𝑐+2(𝑁) = 𝒮𝑐+2(𝑁′) by Lemma 5. Note that this is the reason for taking 𝑝 > 𝑘 + 1 instead of 𝑝 > 𝑘
in Theorem 7. Then, 𝐶 = 𝐶′ and 𝐶′ is crucial by Lemma 4 and has 𝐺𝑁′ as underlying generator. Also,
𝐶 has 𝐺𝑁 as underlying generator. Then 𝑦1, 𝑦2 are on the same side in 𝐶 and on two different sides in
𝐶′. This contradicts with 𝐶 = 𝐶′. Note that 𝑦𝑖 = 𝑥𝑗 for some 𝑖 ∈ {1, 2} and some 𝑗 ∈ {1, ... , 𝑐}, then
the result follows by the same reasoning, by taking a crucial 𝑐 + 1net. We can conclude that 𝑁′ has
leaves on at most 𝑝 sides of 𝐺𝑁′ .

It follows that 𝑁′ is in class 𝒞. By Theorem 8, for 𝑝 > max{2, 𝑘 + 1}, every binary, simple level𝑘
network 𝑁 on 𝑋 with |𝑋| ≥ 𝑝 with leaves on at most 𝑝 sides of its underlying generator is encoded by
its set of 𝑝nets. Then, the proof follows from Corollary 1, Theorem 3 and the fact that level1 networks
are encoded by their trinets (Huber and Moulton, 2013).



6
Encoding level4 networks with 6nets

If we want to get stronger results for determining networks by their subnets, we can try to use smaller
subnets, that is, subnets on a smaller leaf set, determining the whole network. In Chapter 5 we de
termine networks by 𝑝nets, where 𝑝 is relatively large. The advantage is that generators of simple
networks with symmetry can also be considered. In this chapter, we want to determine level4 net
works with subnets on a leaf set that is as small as possible. We will also consider generators of simple
networks with symmetry. Therefore, we have to determine what the symmetries are. Indeed, it is nec
essary to prove that leaves in 𝑁 and 𝑁′ are on the same side, as part of the proof by contradiction, as
we did before in the previous chapters. We assume that the symmetries of each generator are known
in advance. To clarify, we also say that ‘leaves are on the same side in 𝑁 and 𝑁′’ if ‘we may assume
that leaves are on the same sides in 𝑁 and 𝑁′’. This means that there exists a relabelling of the sides
of 𝐺𝑁′ , giving an isomorphic generator, such that all leaves in 𝑁′ are on sides of 𝐺𝑁′ with the same
label as their side in 𝐺𝑁. First, we will give some additional definitions and a useful lemma. Thereafter,
we will prove that leaves on crucial sides are, after possibly relabelling sides, on the same sides in 𝑁
and 𝑁′, where 𝑁 and 𝑁′ are binary, simple level𝑘 networks on 𝑋 with isomorphic generators such that
𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′), with 𝑐 the size of a set of crucial sides of their underlying generators. Note that the
generators of 𝑁 and 𝑁′ can have symmetry. So contrary to Chapter 4, we have found a useful result
for simple networks with symmetry in their underlying generator. We will use this result to ‘fix’ crucial
leaves in the proof (by contradiction) of the main theorem in this chapter. It states that binary, simple
level4 networks are encoded by their 6nets.
Definition 6.1. Let 𝑁 be a binary, simple phylogenetic network on 𝑋 and 𝐺𝑁 its underlying generator.
Let 𝑆1, ... , 𝑆𝑛 be sides of 𝐺𝑁 with 𝑆𝑖 ≠ 𝑆𝑗 ∀𝑖, 𝑗 ∈ {1, ... , 𝑛} such that for all 𝑖, 𝑗 ∈ {1, ... , 𝑛}, 𝑖 ≠ 𝑗, there
exists a relabelling of sides mapping 𝑆𝑖 to 𝑆𝑗 giving an isomorphic generator. Then, 𝑆𝑖 is a symmetric
side of 𝑆𝑗 for all 𝑖, 𝑗. Furthermore, {𝑆1, ... , 𝑆𝑛} forms a set of symmetric sides if there is no bigger set
with this property that contains {𝑆1, ... , 𝑆𝑛}.
In Figure 6.1, {𝐴, 𝐵} forms a set of symmetric sides and 𝐴 is a symmetric side of 𝐵 and vice versa.
Definition 6.2. Let 𝑁 be binary, simple level𝑘 phylogenetic network with underlying generator 𝐺𝑁. Let
𝐴 be the set of sides of 𝐺𝑁 and let 𝐶 ⊂ 𝐴 be the set of all sides that are outdegree0 reticulations or the
arcs of a pair of parallellel arcs in 𝐺𝑁. Let 𝑓 ∶ 𝐴 → 𝐴 be a relabelling of sides such that 𝑓(𝑐) = 𝑐 ∀𝑐 ∈ 𝐶
and 𝑓(𝑎) ≠ 𝑎 for some 𝑎 ∈ 𝐴 giving an isomorphic generator. Then 𝑓 is a noncrucial relabelling.
Note that a noncrucial relabelling is not mapping sides in a set of crucial sides. In the generator in
Figure 6.1, a relabelling of sides of 𝐺𝑁 is called a noncrucial relabelling if it maps for example the sides
in the following way: 𝐴 ⟺ 𝐵;𝐶 ⟺ 𝐷;𝐸 ⟺ 𝐺; 𝐽 ⟺ 𝐾; 𝐿 ⟺ 𝑀.
The following lemma is useful to determine the minimum number of reticulations below a certain set of
vertices in a generator.
Lemma 14. Let 𝑁 be a binary, simple network and 𝐺𝑁 its underlying generator. Let 𝑥1, ... , 𝑥𝑙 ∈ 𝑉(𝐺𝑁)
with 𝑙 ∈ ℕ be vertices such that there is no path from 𝑥𝑖 to 𝑥𝑗 for all 𝑖, 𝑗 ∈ {1, ... , 𝑙}, with 𝑖 ≠ 𝑗 and such
that 𝑥1, ... , 𝑥𝑙 have outdegree at least 1. Let 𝑎1, ... , 𝑎𝑘 ∈ 𝐸(𝐺𝑁) with 𝑘 ≥ 𝑙 be the outgoing arcs of
𝑥1, ... , 𝑥𝑙. Then, there are at least ⌈12𝑘⌉ reticulation vertices below 𝑥1, ... , 𝑥𝑙 in 𝐺𝑁.

37
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Figure 6.1: The underlying generator 𝐺𝑁 with symmetry
of some simple level5 network 𝑁.
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Figure 6.2: An example of a generator used in the proof
of Lemma 14. Note that from the fact that 𝑥1 , ... , 𝑥4 have
five outgoing arcs, it follows that there are at least five
reticulations below them.

Proof. Let 𝑎𝑖 = (𝑢𝑖 , 𝑣𝑖) for 𝑖 = 1, ... , 𝑘, where 𝑢𝑖 is not necessarily different from 𝑢𝑗, and 𝑣𝑖 not neces
sarily different from 𝑣𝑗 for 𝑖, 𝑗 ∈ {1, ... , 𝑘}. For each reticulation vertex in 𝑉(𝐺𝑁) it holds that its indegree
is exactly 2 by definition and its two ingoing arcs are different from each other and different from ingoing
arcs of other reticulation vertices. 𝑉(𝐺𝑁) is a finite set, so for each 𝑣 ∈ 𝑉(𝐺𝑁) there is a path from 𝑣 to
an outdegree0 vertex in 𝐺𝑁, so for all 𝑖 ∈ {1, ... , 𝑘}, there is a path from 𝑣𝑖 to an outdegree0 vertex in
𝐺𝑁. Let 𝑃 = {𝑝1, ... , 𝑝𝑘} be the set of 𝑘 different paths where 𝑝𝑖 is a path from 𝑢𝑖 to a reticulation vertex,
such that 𝑝𝑖 contains (𝑢𝑖 , 𝑣𝑖) and exactly one reticulation vertex. These exist by the reasoning before.
Also observe that if 𝑢𝑖 ≠ 𝑢𝑗, then there is no path from 𝑢𝑖 to 𝑢𝑗 in 𝐺𝑁 for all 𝑖, 𝑗 ∈ {1, ... , 𝑘}.

Let 𝑟 be the reticulation vertex below 𝑣𝑖 such that 𝑟 is not below an other reticulation vertex below
𝑣𝑖. Intuitively, 𝑟 is the first (and only) reticulation vertex on path 𝑝𝑖. Observe that 𝑝𝑖 only contains
treevertices and reticulation vertices with outdegree at most 1 for all 𝑖 ∈ {1, ... , 𝑘}. At most two paths
can contain 𝑟. Furthermore, each path of 𝑃 ends in a reticulation vertex, so the minimum number of
reticulations below 𝑎1, ... , 𝑎𝑘 is ⌈12𝑘⌉. Note that 𝑎𝑖 was chosen arbitrarily. It follows that there are at

least 12𝑘 reticulation vertices below 𝑥1, ... , 𝑥𝑘 if 𝑘 is even, and there are at least
𝑘+1
2 reticulation vertices

below 𝑥1, ... , 𝑥𝑘 if 𝑘 is odd. We can conclude that there are at least ⌈12𝑘⌉ reticulation vertices below
𝑥1, ... , 𝑥𝑙.

In Figure 6.2, 𝑎1, ... , 𝑎5 are the outgoing vertices of 𝑥1, ... , 𝑥4, and there is not path from 𝑥𝑖 to 𝑥𝑗 for
some 𝑖 ≠ 𝑗. Observe that 𝑢1 = 𝑢2, and 𝑢1 is the (first) reticulation in the path 𝑝1 and 𝑝2. If for example,
𝑢4 = 𝑢5 and it is therefore a reticulation (in case of the dotted lines), then there must be at least one
reticulation in path 𝑝3, unequal to 𝑢1 or 𝑢4. Otherwise, the generator is nonbinary or not biconnected.
The dotted edges show a possible way to ‘finish’ the generator.

6.1. Leaves on crucial sides
By Lemma 10, leaves are on the same sides in 𝑁 and 𝑁′, where 𝑁 and 𝑁′ are binary, simple level𝑘
networks with isomorphic generators. However, we proved the lemma for simple networks where 𝐺𝑁
has no symmetry besides parallel arcs. In this section, we will present a result that holds for networks
with symmetry in their underlying generator. That is, we will prove that leaves on crucial sides in 𝑁 are
also on the same sides in 𝑁′, for 𝑁 and 𝑁′ binary, simple level𝑘 networks with isomorphic generators.
Furthermore, we will assume 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′), with 𝑐 the number of crucial sides. The advantage
is that we can use a 𝑐net on 𝑐 crucial leaves, such that each leaf is on a different side in a set of
crucial sides. It turns out that the only possibility for for crucial leaves in 𝑁 and 𝑁′ is a crucial side. That
reduces the problem to the crucial sides of the networks. Considering a crucial 𝑐 + 1net or 𝑐 + 2net
would not work for determining the sides of noncrucial leaves in the proof of the lemma below. Indeed,
𝑐 + 2 is not the total number of sides and we saw in Chapter 5 that we need in that case a 𝑝net where
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𝑝 is the number of sides containing leaves. We will now prove the following result and will use it later
in this Chapter.

Lemma 15. Let 𝑁 and 𝑁′ be two binary, simple level𝑘 networks on 𝑋 with isomorphic generators 𝐺𝑁
and 𝐺𝑁′ , respectively, such that 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′), with 𝑐 the size of a set of crucial sides of 𝐺𝑁. Then,
all leaves on crucial sides in 𝑁 are on the same side in 𝑁′ after possibly relabelling sides.

Proof. Since 𝐺𝑁 and 𝐺𝑁′ are isomorphic, a set of crucial sides of 𝐺𝑁 has the same size as a set of
crucial sides of 𝐺𝑁′ by Lemma 9. Let 𝑇 be a crucial 𝑐net exhibited by 𝑁 such that 𝑇 contains 𝑥. 𝑇
exists by Lemma 2 and by the choice of 𝑆. 𝑇 contains a leaf on each outdegree0 vertex of 𝐺𝑁, and 𝑇
contains exactly one leaf on one arc of a pair of parallel arcs. 𝑇 is a crucial subnet, so 𝑥 is on side 𝑆 in
𝑇. Let 𝑇′ be the 𝑐net on the same leaf set as 𝑇 exhibited by 𝑁′. 𝒮𝑐(𝑁) = 𝒮𝑐(𝑁′), so 𝑇 = 𝑇′. Then 𝑇′ is
a simple level𝑘 network and crucial by Lemma 4. 𝑇 and 𝑇′ now have the same underlying generator
as 𝑁 and 𝑁′, respectively. So a set of crucial sides of 𝐺𝑁′ is of size 𝑐 and 𝑇′ is a crucial 𝑐net. It follows
that all leaves of 𝑇′ are on a crucial side in 𝑇′, and so in 𝑁′. So each leaf on a crucial side in 𝑁, is on a
crucial side in 𝑁′.

6.1.1. Individual leaves
We will first prove that each crucial leaf is on the same side in 𝑁 and 𝑁′. To conclude that all crucial
leaves are on the same sides in 𝑁 and 𝑁′, we have to prove that if two leaves are together on one
parallel arc in 𝑁, then they are together on one parallel arc in 𝑁′, what we do in the next section. If 𝐺𝑁
has no symmetry besides sets of parallel arcs, all leaves are on the same side in 𝑁′ as in 𝑁 by Lemma
10. From now on, we suppose that 𝐺𝑁 has symmetry besides sets of parallel arcs. Then, there exists
an automorphism 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) such that 𝑓(𝑦) ≠ 𝑦 for some 𝑦 ∈ 𝑉(𝐺𝑁) giving an isomorphic
generator. Let 𝐴 and 𝐴′ be the sets of sides of 𝐺𝑁 and 𝐺𝑁′ , respectively. 𝐺𝑁′ is isomorphic to 𝐺𝑁, so
𝑉(𝐺𝑁) = 𝑉(𝐺𝑁′) and 𝐴 = 𝐴′. 𝑇 = 𝑇′, so by definition of equal networks, there exists a bijective function
𝑔 ∶ 𝑉(𝑇) → 𝑉(𝑇′) such that 𝑔(𝑙) = 𝑙 for each leaf 𝑙 of 𝑇 and such that for every 𝑢, 𝑣 ∈ 𝑉(𝑇) it holds
that (𝑢, 𝑣) is an arc of 𝑇 if and only if (𝑔(𝑢), 𝑔(𝑣)) is an arc of 𝑇′. Note that 𝑉(𝐺𝑁) ⊂ 𝑉(𝑇). Since 𝑇′
is crucial and 𝐺𝑁 and 𝐺𝑁′ are isomorphic, there exists an isomorphism 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁′) such that
𝑓(𝑥) = 𝑔(𝑥) ∀𝑥 ∈ 𝑉(𝐺𝑁), 𝑓(𝑦) ≠ 𝑦 for some 𝑦 ∈ 𝑉(𝐺𝑁), and it gives an isomorphic generator. Then,
there exists a relabelling of sides belonging to an automorphism with the requirements of 𝑓, that can
be applied to 𝐴′ such that leaf 𝑥 is on side 𝑆 in 𝑇′ and so in 𝑁′ for an arbitrary leaf 𝑥 on side 𝑆 in 𝑇 and
so in 𝑁. The existence of the relabelling of sides does not depend on the choice of 𝑥. We can conclude
that each leaf on a crucial side in 𝑁 is on the same side in 𝑁′ after a certain relabelling of sides of 𝐴′.
Since we have chosen 𝑇 to be a 𝑐net, we have to prove that crucial leaves are together on one side
in 𝑁 which is a parallel arc, if and only if they are together on one side in 𝑁′.

6.1.2. Leaves stay together on a side
Let 𝑥, 𝑦 ∈ 𝑋 be on side 𝑆 in 𝑁, with 𝑆 crucial. Then, 𝑆 is an arc in a pair of parallel arcs in 𝐺𝑁. We will
prove that 𝑥 and 𝑦 are together on one side in 𝑁′. Let 𝐶1 be a crucial 𝑐 +1net exhibited by 𝑁 such that
it contains leaves 𝑥 and 𝑦. 𝐶1 exists by Lemma 2 since 𝐺𝑁 has a set of crucial sides of size 𝑐. Then,
𝑥, 𝑦 are on side 𝑆 in 𝐶1. Suppose without loss of generality that 𝑦 is below 𝑥 in 𝑁 and 𝐶1. Let 𝐶′1 be
the 𝑐 + 1net on the same leaf set as 𝐶1 exhibited by 𝑁′. Since 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′), 𝐶1 = 𝐶′1 and 𝐶′1 is
simple level𝑘. Then, by Lemma 4, 𝐶′1 is crucial.

𝐶1 = 𝐶′1, so there exists a bijective function 𝑓 ∶ 𝑉(𝐶1) → 𝑉(𝐶′1) such that 𝑓(𝑧) = 𝑧 for each leaf 𝑧 of
𝑁 and such that for every 𝑢, 𝑣 ∈ 𝑉(𝐶1) holds that (𝑢, 𝑣) is an arc of 𝐶1 if and only if (𝑓(𝑢), 𝑓(𝑣)) is an
arc of 𝐶′1. Suppose that 𝑥 and 𝑦 are on different sides in 𝑁′. Then, 𝑥 and 𝑦 are on different sides in 𝐶′1,
but on one side in 𝐶1. Let 𝑢, 𝑣 be the parents of 𝑥 and 𝑦 in 𝐶1 respectively. Then (𝑢, 𝑣), (𝑢, 𝑥), (𝑣, 𝑦) ∈
𝐸(𝐶1). If there exists a bijective function 𝑓 as mentioned, then 𝑓(𝑥) = 𝑥 and 𝑓(𝑦) = 𝑦. Furthermore,
(𝑓(𝑢), 𝑓(𝑥)) = (𝑓(𝑢), 𝑥) ∈ 𝐸(𝐶′1) and (𝑓(𝑣), 𝑓(𝑦)) = (𝑓(𝑣), 𝑦) ∈ 𝐸(𝐶′1), so 𝑓(𝑢), 𝑓(𝑣) are the parents of
𝑥 and 𝑦 in 𝐶′1, respectively. Also, (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸(𝐶′1). Since 𝑣 and 𝑓(𝑣) are treevertices, it follows
that 𝑥 and 𝑦 are on one side, which is an arc, in 𝐶′1. 𝐶′1 is crucial so 𝑥 and 𝑦 are on one side in 𝑁′. In
exactly the same way, if 𝑥, 𝑦 ∈ 𝑋 are on one the same crucial side in 𝑁′ then they are together on the
same crucial side in 𝑁. We can conclude that two or more leaves are together on one side in 𝑁 if and
only if they are together on one side in 𝑁′.
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6.1.3. Combining results
We have proved that individual leaves on crucial sides are on the same side in 𝑁 as in 𝑁′ after possibly
relabelling sides by using that 𝒮𝑐(𝑁) = 𝒮𝑐(𝑁′). Thereafter, we have proved that leaves stay together
on one side in 𝑁 and 𝑁′ by using that 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′). Then, for all leaves on some crucial side in
𝑁 it holds that by the choice of 𝑇 one leaf on this side is on the same side in 𝑁′ after possibly relabelling
sides, and all leaves are together on this side in 𝑁′. We can now conclude that all crucial leaves are
on the same sides in 𝑁 and 𝑁′, which proves the lemma.

6.2. Level4 networks
Level2 networks are encoded by trinets (Van Iersel and Moulton, 2012) and level3 networks are en
coded by 4nets (Nipius, 2020). We proved that level4 networks are encoded by 5nets if underlying
generators have no symmetry other than parallel arcs (Corollary 3). We conjecture that recoverable
level4 networks with generators with symmetry are encoded by their 5nets, but we prove in this sec
tion that these are encoded by 6nets. Again, we first consider simple networks. The difficulties are
symmetries in the underlying generators of these. We are able to prove it by focusing on the structure
and symmetries of the generators. We will first focus on the 𝑘cycles where vertices of the generator
can be mapped in. Thereafter, we will prove results depending on the number of the number of sides
in a set of symmetric sides. We will now prove Theorem 9 that states the result for simple level4
networks. Corollary 9, that follows from this theorem, states it for all recoverable level4 networks.

Theorem 9. Every binary, simple level4 network 𝑁 on 𝑋, with |𝑋| ≥ 6, is encoded by its 6nets.

Proof. Let 𝑁 be a binary, simple level4 network on 𝑋 with |𝑋| ≥ 6. Suppose, for the sake of contradic
tion, that 𝑁 is not encoded by its set of 6nets. Then there exists a recoverable network 𝑁′ such that
𝑁′ ≠ 𝑁 and 𝒮6(𝑁) = 𝒮6(𝑁′). We will deduce a contradiction by showing that 𝑁′ = 𝑁. First observe
that 𝒮5(𝑁) = 𝒮5(𝑁′) and 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′) by Lemma 5. Then, it follows from Lemma 6, 7 and 8 that
𝑁′ is a binary, simple level4 network, respectively. Indeed, these lemmas still hold if a generator has
symmetry. By the same reasoning as in Section 4.1.4, the underlying generator 𝐺𝑁′ of 𝑁′ is isomorphic
to 𝐺𝑁. Furthermore, by Lemma 10, if 𝐺𝑁 has no symmetry other than parallel arcs, all leaves in 𝑁 are
on the same sides in 𝑁′.

We will now prove that if 𝐺𝑁 has also other symmetry than parallel arcs, then each leaf in𝑁′ is still on
the same side as in 𝑁, after possibly relabelling sides. 𝒮6(𝑁) = 𝒮6(𝑁′) and 𝐺𝑁 is level4, so by Lemma
15, leaves on crucial sides in 𝑁 are on the same sides in 𝑁′. That is, there exists some relabelling
belonging to an isomorphism 𝑓 ∶ 𝑉(𝐺𝑁′) → 𝑉(𝐺𝑁), such that all crucial leaves are on the same sides in
𝑁 and 𝑁′, after eventually applying such a relabelling. We will now prove that this holds for all leaves
on all sides in 𝑁 and 𝑁′.

First, we will prove that if there is an automorphism that maps vertices in 𝑉(𝐺𝑁) in a 𝑘cycle for
𝑘 > 2, then 𝑁 has only two possibilities for its underlying generator, all leaves are on the same sides
in 𝑁 and 𝑁′, and 𝑁 = 𝑁′. Second, we assume that automorphisms map vertices in 𝑉(𝐺𝑁) in 𝑘cycles
for 𝑘 ≤ 2 and prove that leaves on noncrucial sides in 𝑁 are on the same sides in 𝑁′ if there are more
than two possible sides for that leaf to be on, that is, the set of symmetric sides that contains the side
of the leaf is of size at least three. Finally, we prove the same if the side of the leaf is contained in a set
of symmetric sides of size at most two.

6.3. Cycles
In this section, wewill prove the following lemma, stating that if 𝑘 vertices aremapped in a 𝑘cycle for 𝑘 >
2 under an automorphism giving a generator isomorphic to 𝐺𝑁, there are only two level4 generators for
which this holds. Next, we will prove that 𝑁 = 𝑁′ for networks with one of these underlying generators,
which proves Theorem 9 for specific cases. Thereafter, we can assume that if there is an automorphism
mapping the vertices of 𝐺𝑁 such that it gives an isomorphic generator, then it maps vertices in 2cycles,
that is, it only switches pairs of vertices.

Lemma 16. Let 𝑁 and 𝑁′ be binary, simple level4 networks and 𝐺𝑁 and 𝐺𝑁′ its isomorphic underlying
generators, respectively. Let 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) be an automorphism such that 𝑓(𝑥) ≠ 𝑥 for some
𝑥 ∈ 𝑉(𝐺𝑁). If 𝒮6(𝑁) = 𝒮6(𝑁′) and 𝑓 maps vertices in a 𝑘cycle 𝑥1 → 𝑥2 → ... → 𝑥𝑘 → 𝑥1 for 𝑘 > 2, then
𝐺𝑁 is the generator as in Figure 6.3a or 6.4a.
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Proof. We will first prove that there are no generators of which the vertices can be mapped in 3cycles
by 𝑓 in the following section.

6.3.1. 3cycles
Assume without loss of generality that 𝑓 maps 𝑥1, 𝑥2 and 𝑥3 in the cycle 𝑥1 → 𝑥2 → 𝑥3 → 𝑥1 with
{𝑥1, 𝑥2, 𝑥3} ⊂ 𝑋. 𝑓 is an automorphism, so for any 𝑢, 𝑣 ∈ 𝑉(𝐺𝑁), 𝑢 and 𝑣 are adjacent in 𝐺𝑁 if and
only if 𝑓(𝑢) and 𝑓(𝑣) are adjacent in 𝐺𝑁. Then, 𝑥1, 𝑥2, 𝑥3 must have equal indegree and outdegree
and the same distance to the root. Indeed, if one of these requirements is not true, there is some arc
(𝑢, 𝑣) ∈ 𝐸(𝐺𝑁) for which (𝑓(𝑢), 𝑓(𝑣)) ∉ 𝐸(𝐺𝑁).

Suppose 𝑥1, 𝑥2, 𝑥3 are outdegree1 reticulations. If 𝑥𝑖 is a parent of 𝑥𝑗 for some 𝑖, 𝑗 ∈ {1, 2, 3}, then
(𝑥𝑘 , 𝑥𝑙) ∈ 𝐸(𝐺𝑁) for some 𝑘, 𝑙 ∈ {1, 2, 3}. Then (𝑓(𝑥𝑘), 𝑓(𝑥𝑙)) ∈ 𝐸(𝐺𝑁) and (𝑓(𝑓(𝑥𝑘)), 𝑓(𝑓(𝑥𝑙))) ∈ 𝐸(𝐺𝑁).
In that case, 𝐺𝑁 contains the cycle 𝑥1 → 𝑥2 → 𝑥3 → 𝑥1 or 𝑥1 → 𝑥3 → 𝑥2 → 𝑥1. This contradicts with 𝑁
being acyclic. So 𝑥𝑖 is not a parent of 𝑥𝑗 for any 𝑖, 𝑗 ∈ {1, 2, 3}. 𝐺𝑁 is biconnected, so the three children
of 𝑥1, 𝑥2, 𝑥3 cannot be cutvertices. By Lemma 14, 𝐺𝑁 must have at least two reticulations below 𝑥1, 𝑥2
and 𝑥3. This contradicts with 𝐺𝑁 being level4, so 𝑥1, 𝑥2 and 𝑥3 are not outdegree1 reticulations.

Suppose 𝑥1, 𝑥2, 𝑥3 are treevertices. By the same reasoning as before, 𝑥𝑖 is not a parent of 𝑥𝑗
for any 𝑖, 𝑗 ∈ {1, 2, 3}. 𝐺𝑁 is binary, so 𝑥1, 𝑥2, 𝑥3 cannot have all three the same parent. Suppose
without loss of generality that 𝑥1 and 𝑥2 have the same parent 𝑦 and 𝑥3 has a different parent 𝑧.
(𝑦, 𝑥1), (𝑦, 𝑥2), (𝑧, 𝑥3) ∈ 𝐸(𝐺𝑁), (𝑓(𝑦), 𝑓(𝑥1)) = (𝑓(𝑦), 𝑥2), (𝑓(𝑦), 𝑓(𝑥2)) = (𝑓(𝑦), 𝑥3) and (𝑓(𝑧), 𝑓(𝑥3)) =
(𝑓(𝑧), 𝑥1). If (𝑓(𝑦), 𝑥2) ∈ 𝐸(𝐺𝑁), then 𝑓(𝑦) = 𝑦. If (𝑓(𝑦), 𝑥3) ∈ 𝐸(𝐺𝑁), then 𝑓(𝑦) ≠ 𝑦. This is a contra
diction, so 𝑥𝑖 , 𝑥𝑗 cannot have the same parent for 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗. Suppose 𝑥1, 𝑥2, 𝑥3 have different
parents 𝑥, 𝑦, 𝑧, respectively. Then 𝑓 must map 𝑥, 𝑦 and 𝑧 in the cycle 𝑥 → 𝑦 → 𝑧 → 𝑥. 𝑥, 𝑦, 𝑧 cannot be
outdegree0 reticulations and by the previous paragraph, 𝑥, 𝑦, 𝑧 cannot be outdegree1 reticulations, so
they are treevertices. They cannot be the root or a child of the root since 𝑥, 𝑦, 𝑧 are different from each
other. The root, 𝑥, 𝑦, 𝑧 and 𝑥1, 𝑥2, 𝑥3 are outdegree2 vertices, so they have together 14 outgoing ver
tices, all different from each other. 𝑥, 𝑦, 𝑧 and 𝑥1, 𝑥2, 𝑥3 are not children of the root, so |𝐸(𝐺𝑁)| > 14. By
Gambette et al., 2009, it holds that |𝐸(𝐺𝑁)| ≤ 14 since 𝐺𝑁 is level4. We have deduced a contradiction,
so 𝑥1, 𝑥2, 𝑥3 cannot be treevertices.

Suppose 𝑥1, 𝑥2, 𝑥3 are outdegree0 reticulations. 𝐺𝑁 is binary, so there are at least three and at most
six different parents of 𝑥1, 𝑥2 and 𝑥3. Let 𝑦1, 𝑦2 be the parents of 𝑥1 with 𝑦1 ≠ 𝑦2. Then, (𝑦1, 𝑥1), (𝑦2, 𝑥1) ∈
𝐸(𝐺𝑁), (𝑓(𝑦1), 𝑥2), (𝑓(𝑦2), 𝑥2) ∈ 𝐸(𝐺𝑁), (𝑓(𝑓(𝑦1)), 𝑥3), (𝑓(𝑓(𝑦2)), 𝑥3) ∈ 𝐸(𝐺𝑁) and
(𝑓(𝑓(𝑓(𝑦1))), 𝑥1), (𝑓(𝑓(𝑓(𝑦2))), 𝑥1) ∈ 𝐸(𝐺𝑁). If there are three different parents of 𝑥1, 𝑥2, 𝑥3, then 𝑦1 →
𝑓(𝑦1) = 𝑦2 → 𝑓(𝑓(𝑦1)) → 𝑦1 is a 3cycle under 𝑓. These three parents cannot be treevertices by
the proof before; they cannot be reticulations, too, since 𝐺𝑁 is level4. So 𝑥1, 𝑥2, 𝑥3 have at least four
different parents in 𝐺𝑁.

If there are four or five different parents of 𝑥1, 𝑥2 and 𝑥3, then (𝑦, 𝑥𝑖), (𝑦, 𝑓(𝑥𝑖)) ∈ 𝐸(𝐺𝑁) for some 𝑖 ∈
{1, 2, 3} and for some parent 𝑦 of 𝑥1, 𝑥2, 𝑥3, that is, there are two reticulations that share a parent. Then,
(𝑓(𝑦), 𝑓(𝑥𝑖)), (𝑓(𝑦), 𝑓(𝑥𝑖+1)) ∈ 𝐸(𝐺𝑁). But then, (𝑓(𝑓(𝑦)), 𝑓(𝑓(𝑥𝑖))), (𝑓(𝑓(𝑦)), 𝑓(𝑓(𝑥𝑖+1))) ∈ 𝐸(𝐺𝑁). It
follows that each pair of 𝑥1, 𝑥2, 𝑥3 shares a parent, so there are three different parents, which is a
contradiction. So 𝑥1, 𝑥2, 𝑥3 cannot have five or less different parents.

If there are six different parents of 𝑥1, 𝑥2 and 𝑥3, let 𝑦1, 𝑦2 be the parents of 𝑥1. Then 𝑦1 → 𝑓(𝑦1) →
𝑓(𝑓(𝑦1)) → 𝑦1 is a 3cycle under 𝑓, or 𝑦1 → 𝑓(𝑦1) → 𝑓(𝑓(𝑦1)) → 𝑦2 → 𝑓(𝑦2) → 𝑓(𝑓(𝑦2)) → 𝑦1 is a
6cycle under 𝑓. Both cycles lead to a contradiction. Indeed, the vertices in both cycles cannot all be
reticulations since 𝐺𝑁 is level4 and they cannot be treevertices by Lemma 14 since 12 outgoing arcs
lead to at least six reticulations in this way. We can now conclude that there are no automorphisms
mapping vertices of 𝐺𝑁 in 3cycles and giving an isomorphic generator.

6.3.2. Generators with 4cycles
Assume without loss of generality that 𝑓 maps 𝑥1, 𝑥2, 𝑥3 and 𝑥4 in the cycle 𝑥1 → 𝑥2 → 𝑥3 → 𝑥4 → 𝑥1
with {𝑥1, 𝑥2, 𝑥3, 𝑥4} ⊂ 𝑋. First, suppose 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are all outdegree1 reticulations. By the same
reason as in Section 6.3.1, 𝑥𝑖 is not a parent of 𝑥𝑗 for all 𝑖, 𝑗 ∈ {1, 2, 3, 4} and there is no path from 𝑥𝑖 to
𝑥𝑗 for all 𝑖, 𝑗 ∈ {1, 2, 3, 4}. 𝐺𝑁 is biconnected so their children cannot be cutvertices. By Lemma 14, it
follows that 𝐺𝑁 has at least six reticulations, which contradicts with 𝐺𝑁 being level4.

Suppose 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are all treevertices. Then, they have outdegree2 so they have eight
outgoing arcs. By the same reason as in Section 6.3.1, 𝑥𝑖 is not a parent of 𝑥𝑗 for all 𝑖, 𝑗 ∈ {1, 2, 3, 4}. By
Lemma 14, there are at least four reticulations below 𝑥1, 𝑥2, 𝑥3, 𝑥4. Since 𝐺𝑁 is level4, there are exactly
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four reticulations below them. It follows that 𝑥1, 𝑥2, 𝑥3, 𝑥4 have four children in total, say 𝑦1, 𝑦2, 𝑦3, 𝑦4,
which are all outdegree0 reticulations, also by Lemma 14. Then, the eight outgoing arcs will be of the
form (𝑥𝑖 , 𝑦𝑗) with 𝑖, 𝑗 ∈ {1, 2, 3, 4} where 𝑦𝑗 is an outdegree0 reticulation for 𝑗 = 1, ... , 4.

𝑥1, 𝑥2, 𝑥3 and 𝑥4 have the same distance to the root and they cannot have the root as parent since 𝐺𝑁
is binary. Since |𝐸(𝐺𝑁)| ≤ 14 and 𝑥1, 𝑥2, 𝑥3, 𝑥4 are indegree1 outdegree2, they have a child of the root
as parent, say 𝑧1 or 𝑧2. Suppose that (𝑧1, 𝑥1), (𝑧1, 𝑥2) ∈ 𝐸(𝐺𝑁). Then, (𝑓(𝑧1), 𝑥2), (𝑓(𝑧1), 𝑥3) ∈ 𝐸(𝐺𝑁).
𝑥2 is indegree1 so 𝑓(𝑧1) = 𝑧1, but 𝐺𝑁 is binary so (𝑧1, 𝑥3) ∉ 𝐸(𝐺𝑁), which is a contradiction. By a
similar argument, if (𝑧𝑘 , 𝑥𝑖) ∈ 𝐸(𝐺𝑁), then (𝑧𝑘 , 𝑓(𝑥𝑖)) ∉ 𝐸(𝐺𝑁) for 𝑘 ∈ {1, 2}, 𝑖 ∈ {1, 2, 3, 4}. Then it holds
that (𝑧𝑘 , 𝑥𝑖) ∈ 𝐸(𝐺𝑁) implies (𝑧𝑘 , 𝑓(𝑓(𝑥𝑖))) ∈ 𝐸(𝐺𝑁) for all 𝑘 ∈ {1, 2}, 𝑖 ∈ {1, 2, 3, 4}.

We will now show how 𝑥1, 𝑥2, 𝑥3, 𝑥4 are connected to their four children. Suppose that 𝑥𝑖 and 𝑓(𝑥𝑖)
have a child in common for some 𝑖, say 𝑦𝑗. Then (𝑥𝑖 , 𝑦𝑗), (𝑓(𝑥𝑖), 𝑦𝑗) ∈ 𝐸(𝐺𝑁), then (𝑓(𝑥𝑖), 𝑓(𝑦𝑗)),
(𝑓(𝑓(𝑥𝑖)), 𝑓(𝑦𝑗)) ∈ 𝐸(𝐺𝑁), and so on. It follows that 𝑓(𝑥𝑖) and 𝑓(𝑓(𝑥𝑖)) have a child in common.
Furthermore, 𝑥𝑖 and 𝑓(𝑥𝑖) have a child in common for all 𝑖. 𝐺𝑁 is now the generator as in Figure 6.3a.
Note that 𝑓 maps vertices in the following 4cycle: 𝑦1 → 𝑦2 → 𝑦3 → 𝑦4 → 𝑦1.

Suppose that 𝑥𝑖 and 𝑓(𝑓(𝑥𝑖)) have one child in common, then 𝑓(𝑥𝑖) and 𝑓(𝑓(𝑓(𝑥𝑖))) have a child
in common by the same reasoning. In this case, 𝑥𝑖 and 𝑓(𝑥𝑖) cannot have a child in common for some
𝑖, because 𝑥𝑖 and 𝑓(𝑥𝑖) would have a child in common for all 𝑖. Then, 𝐺𝑁 is the generator as in Figure
6.3b and is not biconnected.

z1 z2

x1 x2 x3 x4

y1 y2 y3 y4

(a) 𝑥𝑖 and 𝑓(𝑥𝑖) have a child in common for all 𝑖.

z1 z2

x1 x2x3 x4

y1 y2y3 y4

(b) 𝑥𝑖 and 𝑓(𝑓(𝑥𝑖)) have two children in common. As a
consequence, this graph is not biconnected.

Figure 6.3: Directed graphs with symmetry and with four vertices that can be mapped in the 4cycle 𝑥1 → 𝑥2 → 𝑥3 → 𝑥4 → 𝑥1.
The graph in (a) is a generator, but the graph in (b) is not because it is not biconnected.

Suppose 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are all outdegree0 reticulations. Their parents must be treevertices since
𝐺𝑁 is level4. If one of their parents has a child different from 𝑥1, 𝑥2, 𝑥3 and 𝑥4, then an extra reticulation
is necessary to have no cutvertices in 𝐺𝑁. So 𝑥1, 𝑥2, 𝑥3 and 𝑥4 have four different parents in total.
Let 𝑧1, 𝑧2, 𝑧3, 𝑧4 ∈ 𝑉(𝐺𝑁) be the parents of 𝑥1, 𝑥2, 𝑥3 and 𝑥4. If (𝑧𝑗 , 𝑥𝑖), (𝑧𝑗 , 𝑓(𝑥𝑖)) ∈ 𝐸(𝐺𝑁) for some
𝑗, 𝑖 ∈ {1, 2, 3, 4}, then (𝑓(𝑧𝑗), 𝑓(𝑥𝑖)), (𝑓(𝑧𝑗), 𝑓(𝑓(𝑥𝑖))) ∈ 𝐸(𝐺𝑁). So if 𝑥𝑖 and 𝑓(𝑥𝑖) share a parent, then
𝑓(𝑥𝑖) and 𝑓(𝑓(𝑥𝑖)) share a parent. Suppose without loss of generality that (𝑧1, 𝑥𝑖), (𝑧1, 𝑓(𝑥𝑖)) ∈ 𝐸(𝐺𝑁),
then 𝑓 maps vertices 𝑧1, 𝑧2, 𝑧3, 𝑧4 in the 4cycle 𝑧1 → 𝑧2 → 𝑧3 → 𝑧4 → 𝑧1. In this case, 𝑓 maps four
treevertices in a 4cycle. Since |𝐸(𝐺𝑁)| ≤ 14, 𝐺𝑁 equals the generator in Figure 6.3a.

It follows that if 𝑥𝑖 and 𝑓(𝑓(𝑥𝑖)) share a parent in 𝐺𝑁, 𝑥𝑖 and 𝑓(𝑥𝑖) do not share a parent for any
𝑖 because there are exactly four reticulations in 𝐺𝑁. 𝐺𝑁 is binary, so 𝑥𝑖 and 𝑓(𝑓(𝑥𝑖)) must share two
parents, and 𝑓(𝑥𝑖) and 𝑓(𝑓(𝑓(𝑥𝑖))) must share two parents, too. |𝐸(𝐺𝑁)| ≤ 14 and 𝑥𝑖 and 𝑥𝑗 have
the same distance from the root for all 𝑖, 𝑗 ∈ {1, 2, 3, 4}, so the parent of 𝑧𝑖 is a child of the root for all
𝑖 ∈ {1, 2, 3, 4}. Then 𝐺𝑁 is as in Figure 6.4a and 6.4b, which are the same. Note that the parents of 𝑥1
and 𝑥3 cannot share their parent, because 𝐺𝑁 is not biconnected in that case (see Figure 6.3b). So if
𝑥𝑖 and 𝑓(𝑓(𝑥𝑖)) share a parent in 𝐺𝑁, the generator in Figure 6.4a is the only possibility for 𝐺𝑁.

We can conclude that if four vertices in a symmetric level4 generator can be mapped in a 4cycle,
giving an isomorphic generator, the generator is as in Figure 6.3a or 6.4a. We will prove in Section
6.3.4 that 𝑁 = 𝑁′ if 𝑁 has one of these generators as underlying generator.
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Figure 6.4: Two equal generators with symmetry. They are just drawn differently. Four vertices can be mapped in the 4cycle
𝑥1 → 𝑥2 → 𝑥3 → 𝑥4 → 𝑥1. 𝑥𝑖 and 𝑓(𝑓(𝑥𝑖)) share a parent for all 𝑖.

6.3.3. 𝑘cycles for 𝑘 greater than 4
If 𝑓 maps 𝑘 > 4 vertices in a 𝑘cycle while their in and outdegree must be equal for each vertex, then
these vertices cannot be reticulation vertices since 𝐺𝑁 is level4. If there are 𝑘 treevertices with the
same distance to the root, the distance is at least three, while the total number of outgoing arcs of the 𝑘
treevertices is at least ten. There exists no such level4 generator since |𝐸(𝐺𝑁)| ≤ 14. So there exist
no symmetric level4 generators where five or more vertices can be mapped in a 𝑘cycle with 𝑘 > 4,
giving an isomorphic generator. We can conclude that there are no 𝑘cycles for 𝑘 = 3 and 𝑘 > 4.
Furthermore, if 𝑘 = 4, then 𝑁 has a generator as in Figure 6.3a or 6.4a. This proves Lemma 16.

We will prove in Section 6.3.4 that 𝑁 = 𝑁′ if 𝐺𝑁 is one of these generators. So for the rest of the proof
of Theorem 9, we assume that all automorphisms 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) that give isomorphic generators
for which 𝑓(𝑦) ≠ 𝑦 for some 𝑦 ∈ 𝑉(𝐺𝑁) only map vertices in 2cycles or 1cycles.

6.3.4. 𝑁 = 𝑁′ for specific generators
In this section, we will prove that 𝑁 = 𝑁′ for networks with one of the generators from Figure 6.3a and
6.4a. Suppose that 𝐺𝑁 is the generator in Figure 6.3a. 𝒮6(𝑁) = 𝒮6(𝑁′), so by Lemma 15, we can
assume that all leaves on crucial sides are on the same sides in 𝑁′ as in 𝑁, after eventually relabelling
the sides of 𝐺𝑁′ . Then, there is no isomorphism 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁′) such that 𝑓(𝑥𝑖) = 𝑥𝑖 for all
𝑖 ∈ {1, 2, 3, 4} and 𝑓(𝑣) ≠ 𝑣 for some 𝑣 ∈ 𝑉(𝐺𝑁).

Let 𝑥 ∈ 𝑋 be on noncrucial side 𝑆 in 𝑁. Let 𝑇 be a crucial 6net on 𝑥 and five other leaves of 𝑁.
𝑇 exists by Lemma 2 and by the fact that 𝐺𝑁 is level4. Let 𝑇′ be the 6net on the same leaves as 𝑇,
exhibited by 𝑁′. Since 𝒮6(𝑁) = 𝒮6(𝑁′), 𝑇 = 𝑇′ and 𝑇′ is also simple level4. By Lemma 4, 𝑇′ is crucial.
Since there exists no such isomorphism 𝑓 as described, we can say that 𝐺𝑁 has no other symmetry
than the 4cycle as described before. The crucial leaves are all on the same sides, 𝑇 = 𝑇′, and 𝑇 and
𝑇′ have 𝐺𝑁 and 𝐺𝑁′ as underlying generator, respectively. If some leaf is on a different side in 𝑇′ than in
𝑇, while the crucial leaves stay on the same sides, then 𝑇 ≠ 𝑇′ because there are no other symmetries.

We have proved for individual leaves that we can assume that they are on the same sides in 𝑁 and 𝑁′.
We will use the following Lemma to prove that all leaves are on the same sides in 𝑁 and 𝑁′.

Lemma 17. Let 𝑁 and 𝑁′ be binary, simple level𝑘 networks on 𝑋 with isomorphic generators 𝐺𝑁 and
𝐺𝑁′ , respectively. Let 𝑐 ≥ 1 be the size of a set of crucial sides of 𝐺𝑁. If |𝑋| ≥ 𝑐 + 2 and 𝒮𝑐+2(𝑁) =
𝒮𝑐+2(𝑁′), then a set of leaves is on one side in 𝑁 if and only if they are on one side in 𝑁′.

Proof. We will prove the lemma for two leaves and conclude that it follows that it holds for an arbitrary
number of leaves on one side. We will also follow mostly the proof in Section 5.1.3. To prove the ‘only
if’ direction, let {𝑋1, ..., 𝑋𝑐} be a set of crucial sides of 𝐺𝑁 such that each side contains at least one leaf,
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and let 𝑥1, ... , 𝑥𝑐 be leaves on sides 𝑋1, ..., 𝑋𝑐 respectively. Let 𝑥, 𝑦 ∈ 𝑋 be two leaves that are on one
side 𝑆 in 𝑁. Suppose without loss of generality that 𝑦 is below 𝑥 in 𝑁. Note that 𝑆 is an arc in 𝐺𝑁. Let
𝐶 ∈ 𝒮𝑐+2(𝑁) be the 𝑐 + 2net on {𝑥1, ... , 𝑥𝑐 , 𝑥, 𝑦} exhibited by 𝑁. Then 𝐶 is a crucial 𝑐 + 2net by the
proof of Lemma 2. Note that it is possible that 𝑥 or 𝑦 equals 𝑥𝑖 for some 𝑖 ∈ {1, ... , 𝑐}. In that case, the
proof works the same since 𝒮𝑐+1(𝑁) = 𝒮𝑐+1(𝑁′). Let 𝐶′ be the 𝑐 + 2net on {𝑥1, ... , 𝑥𝑐 , 𝑥, 𝑦} exhibited
by 𝑁′. It follows from 𝒮𝑐+2(𝑁) = 𝒮𝑐+2(𝑁′) that 𝐶 = 𝐶′ and 𝐶′ is simple level𝑘. Furthermore, 𝐶′ is a
crucial 𝑐 + 2net by Lemma 4.

Let 𝑢 and 𝑣 be the parents of 𝑥 and 𝑦 in 𝑁, respectively. We may assume that (𝑢, 𝑣) is an arc in 𝑁.
Then (𝑢, 𝑣) is an arc in 𝐶 by construction. Observe that (𝑢, 𝑣), (𝑢, 𝑥) and (𝑣, 𝑦) are arcs of 𝐶 and 𝑢 and
𝑣 are both indegree1 outdegree2. Since 𝒮𝑐+2(𝑁) = 𝒮𝑐+2(𝑁′), 𝐶 and 𝐶′ are equal networks, so there
exist a bijective function 𝑓 ∶ 𝑉(𝐶) → 𝑉(𝐶′) such that 𝑓(𝑥) = 𝑥 for each leaf 𝑥 ∈ {𝑥1, ... , 𝑥𝑐 , 𝑥, 𝑦} and
such that for every 𝑎, 𝑏 ∈ 𝑉(𝐶) it holds that (𝑎, 𝑏) is an arc of 𝐶 if and only if (𝑓(𝑎), 𝑓(𝑏)) is an arc of 𝐶′.
So (𝑓(𝑢), 𝑓(𝑣)), (𝑓(𝑢), 𝑓(𝑥)) and (𝑓(𝑣), 𝑓(𝑦)) are arcs of 𝐶′ and 𝑓(𝑥) = 𝑥 and 𝑓(𝑦) = 𝑦. It follows that
𝑓(𝑢) and 𝑓(𝑣) are the parents of 𝑥 and 𝑦 in 𝐶′ respectively. Together with the fact that (𝑓(𝑢), 𝑓(𝑣)) is
an arc of 𝐶′ and that 𝑓(𝑣) must be outdegree2 in 𝐶′ gives us that 𝑥 and 𝑦 are together on one side in
𝑁′.

The proof of the ‘if’ direction works in exactly the same way. Furthermore, the lemma holds for all
pairs of leaves on a certain side for which their parents form an arc in the network because we have
chosen 𝑥 and 𝑦 arbitrary, with these requirements. Then, for a set of leaves 𝑋′ ⊂ 𝑋 it holds that all
leaves in 𝑋′ are together on a unique side in 𝑁 if and only if all leaves in 𝑋′ are together on a unique
side in 𝑁′.

To conclude that all leaves are on the same sides in 𝑁 and 𝑁′, we remark that relabelling the sides
of 𝐺𝑁′ to make sure that all crucial leaves occur on the same side in 𝑁′ can influence the sides of
noncrucial leaves. By the choice of 𝑇 and 𝑇′, it is necessary to apply the relabelling of sides to all sides
to obtain an isomorphic generator. If 𝐺𝑁 has no other symmetries, then the noncrucial leaves must be
on the same sides in 𝑁′ after this relabelling. If 𝐺𝑁 has also other symmetry, we eventually have to
apply another relabelling of sides, not mapping the crucial sides to different sides, as we will see in
the next case. It follows that for simple networks 𝑁 with an underlying generator as in Figure 6.3a, all
leaves are on the same sides in 𝑁′ as in 𝑁.

Suppose that 𝐺𝑁 is the generator in Figure 6.4a. Let 𝑥 ∈ 𝑋 be on side 𝑆 in 𝑁. In the same way as
for the previous case, we can assume that all leaves on crucial sides are on the same sides in 𝑁′ as in
𝑁, after possibly relabelling sides of 𝐺𝑁′ . Note that there is an isomorphism 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁′) such
that 𝑓(𝑥𝑖) = 𝑥𝑖 for all 𝑖 ∈ {1, 2, 3, 4} and 𝑓(𝑣) ≠ 𝑣 for some 𝑣 ∈ 𝑉(𝐺𝑁). Indeed, there is one possibility
for 𝑓 and it switches 𝑎1 with 𝑎2, 𝑧1 with 𝑧2 and 𝑧3 with 𝑧4.

Let 𝑥 ∈ 𝑋 be on noncrucial side 𝑆 in 𝑁 and let 𝑇 and 𝑇′ be as in the previous case. Then, a
relabelling that relabels a crucial side cannot be applied to the sides of 𝐺𝑁′ . Let 𝑔 be the automorphism
that switches vertices 𝑎1 with 𝑎2, 𝑧1 with 𝑧2, and 𝑧3 with 𝑧4 in 𝐺𝑁. Note that the relabelling ℎ belonging
to 𝑔 does not relabel a crucial side, and this is the only symmetry that maps the outdegree0 vertices
to themselves. Note that all noncrucial sides are relabelled by ℎ. Let 𝑦 be the leaf in 𝑇 on side 𝑆2, with
𝑆2 noncrucial. If 𝑦 is on side 𝑆2 in 𝑇′, then 𝑥 is on side 𝑆 in 𝑇′. If 𝑥 is not, we have to apply ℎ to 𝐺𝑁′ ,
relabelling 𝑆2 to ℎ(𝑆2) = 𝑆′2 ≠ 𝑆2 which is a contradiction. If 𝑦 is on side 𝑆′2 in 𝑇′, then 𝑥 is on side
ℎ(𝑆) = 𝑆′ ≠ 𝑆 in 𝑇′, otherwise 𝑇 ≠ 𝑇′. In this case, we can apply ℎ to the sides of 𝐺𝑁′ such that 𝑥 and
𝑦 are on sides 𝑆 and 𝑆2, respectively, in 𝑇′ and so in 𝑁′, and the crucial leaves stay on the same side.

By Lemma 17, leaves stay together on a side in 𝑁 and 𝑁′. To conclude that all leaves are on the
same sides in 𝑁 and 𝑁′, we remark that relabelling the sides of 𝐺𝑁′ to make sure that all crucial leaves
occur on the same side in𝑁′ can influence the sides of noncrucial leaves. By the choice of 𝑇 and 𝑇′, it is
necessary to apply the relabelling of sides to all sides to obtain an isomorphic generator. We saw in this
case that after such a relabelling, noncrucial leaves can still be on different sides in 𝑁′ than in 𝑁. Then
we have to apply another relabelling. As long as 𝑇 = 𝑇′, we can do this. A combination of relabellings
is a composition of bijections, which is a bijection again, giving again an isomorphic generator. We can
now conclude that all leaves are on the same sides in 𝑁 and 𝑁′ for this case, after possibly relabelling
sides.

For both cases, the leaves on each side in 𝑁 and 𝑁′ are in the same order since 𝒮6(𝑁) = 𝒮6(𝑁′)
and by Lemma 11. It follows that 𝑁 = 𝑁′ for networks with one of the generators from Figure 6.3a and
6.4a.
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6.4. Set of symmetric sides of size at least three
In the following sections we will prove that we may assume that all noncrucial leaves are on the same
sides in 𝑁 and 𝑁′. We will consider two cases. First we will prove this for individual leaves of 𝑁 of
which the side in 𝐺𝑁 is in a set of symmetric sides of size at least three, that is, the side has itself and
at least two other sides as symmetric side. In Section 6.5, we will prove this if the side of a leaf in 𝐺𝑁
is in a set of symmetric sides of size at most two.

By Lemma 15, we can assume that all leaves on crucial sides are on the same sides in 𝑁 and 𝑁′.
This means the following. For example, let 𝑥 be a crucial leaf on side 𝑆 in 𝑁. We may assume that 𝑥 is
on side 𝑆 in 𝑁′. Side 𝑆 is an arc in a pair of parallel arcs or an outdegree0 reticulation. It follows that
a relabelling belonging to an automorphism 𝑓 that maps the parent of 𝑥 to a different vertex in 𝑉(𝐺𝑁)
cannot be applied to the set of sides in 𝐺𝑁′ anymore, otherwise 𝑥 is not on side 𝑆 in 𝑁′. This means
that a leaf on a noncrucial side in 𝑁 cannot be on its symmetric side in 𝑁′ if the symmetric side is the
image under a relabelling that also maps a crucial side to a different side.

Lemma 18. Let 𝑁 and 𝑁′ be two binary, simple level4 networks on 𝑋 such that 𝒮6(𝑁) = 𝒮6(𝑁′). Let
𝐺𝑁 and 𝐺𝑁′ the isomorphic underlying generators of 𝑁 and 𝑁′, respectively. Suppose that all crucial
leaves are on the same sides in 𝑁 and 𝑁′ after possibly relabelling sides of 𝐺𝑁′ . If there exists a set of
symmetric sides in 𝐺𝑁 of size at least three, then we may assume that all leaves in 𝑁 are on the same
sides in 𝑁′.

Proof. Let 𝑥 ∈ 𝑋 be on noncrucial side 𝑆 in 𝑁. Then, 𝑆 is an arc in 𝐺𝑁 which is not in a pair of parallel
arcs. Let 𝑆 = (𝑢, 𝑣) ∈ 𝐸(𝐺𝑁) with 𝑢, 𝑣 ∈ 𝑉(𝐺𝑁). It is given that there are at least three possibilities
for sides of 𝑥 in 𝑁′ while 𝐺𝑁′ is still isomorphic to 𝐺𝑁. Remember, each relabelling belongs to an
automorphism 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) for which 𝑓(𝑦) ≠ 𝑦 for some 𝑦 ∈ 𝑉(𝐺𝑁). We can assume that all
crucial leaves are on the same sides in 𝑁 and 𝑁′, so 𝑦 is not an outdegree0 vertex, not a treevertex of
which its outgoing arcs are parallel, and not a reticulation vertex of which its ingoing arcs are parallel.
Furthermore, we assume that all automorphisms 𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) that give isomorphic generators
for which 𝑓(𝑦) ≠ 𝑦 for some 𝑦 ∈ 𝑉(𝐺𝑁) only map vertices in 2cycles or 1cycles. There exists at least
two functions 𝑔1 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) and 𝑔2 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) such that 𝑔1 ≠ 𝑔2, 𝑔1(𝑢) ≠ 𝑢 and 𝑔2(𝑣) ≠ 𝑣.
Indeed, if there is no such function as 𝑔1 or 𝑔2, then side 𝑆 has just one symmetric side since 𝐺𝑁 is
binary. It follows that 𝑢 cannot be the root 𝜌 ∈ 𝑉(𝐺𝑁), since 𝑓(𝜌) = 𝜌 for all automorphisms 𝑓.

6.4.1. The tail of 𝑆
If 𝑢 is an outdegree1 reticulation, then the sides symmetric to 𝑆 must be outgoing arcs of a reticulation,
too, because 𝑢 must be mapped to an outdegree1 reticulation for all automorphisms 𝑓. Note that there
cannot be a path from 𝑢′ to 𝑢”, 𝑢′ ≠ 𝑢”, where 𝑢′ and 𝑢” are images of 𝑢 under some automorphism
𝑓. Indeed, applying 𝑓 must give an isomorphic generator. We can now use Lemma 14. If 𝑥 can be
on at least three different sides in 𝑁′, 𝑆 has at least three symmetric sides, so there are at least three
outdegree1 reticulations in 𝐺𝑁. Then, by Lemma 14, there are at least two reticulation vertices below 𝑆
and its symmetric sides. This contradicts with 𝐺𝑁 being level4, so 𝑢 is not an outdegree1 reticulation.

It follows that 𝑢 is a treevertex. By each automorphism giving an isomorphic generator, 𝑢 is mapped
to a treevertex with the same distance to the root. Let 𝑑 > 0. 𝑢 is outdegree2, so 𝑢 is in some set of
treevertices 𝑉′ ⊂ 𝑉(𝐺𝑁), |𝑉′| ≥ 3 for which all 𝑣′ ∈ 𝑉′ have distance 𝑑 to the root. Suppose without
loss of generalisation 𝑉′ = {𝑢1, 𝑢2, 𝑢3}. The distance to the root is then at least two. Since 𝑣 has
outdegree at least one, there does not exist such a generator with at least three such treevertices with
|𝐸(𝐺𝑁)| ≤ 14. Indeed, 𝑢1, 𝑢2, 𝑢3 have in total three ingoing arcs and six outgoing arcs. The ingoing arcs
of 𝑢1, 𝑢2, 𝑢3 are not outgoing arcs of the root, so there are two more arcs in 𝐺𝑁. Furthermore, they have
at least three children of 𝑢1, 𝑢2, 𝑢3 that can be mapped to each other and that have outdegree at least
1. Then, |𝐸(𝐺𝑁)| > 14 since 𝐺𝑁 is biconnected and binary. This is a contradiction. So 𝑢 can only be
mapped to at most one other treevertex in 𝑉(𝐺𝑁) by an automorphism. Therefore, 𝑆 can be mapped
to at most four different arcs, which are outgoing arcs of two treevertices 𝑢, 𝑢′ that are mapped to each
other by some automorphism.

6.4.2. The head of 𝑆
Crucial leaves stay on the same sides, so 𝑣 cannot be outdegree0. First, suppose that 𝑣 is a tree
vertex. Then 𝑢, 𝑢′ have four children in total, since 𝑣 and at least two other children of 𝑢 and 𝑢′ must
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have indegree one. Moreover, all four children of 𝑢 and 𝑢′ must have indegree one. Indeed, 𝑆 has
at least three symmetric sides which are outgoing arcs of 𝑢 and 𝑢′. The head of three arcs must be
also indegree one. Suppose without loss of generality that the fourth arc is (𝑢, 𝑣′) ∈ 𝐸(𝐺𝑁) with 𝑣′
a reticulation. Then, for the automorphism 𝑓 mapping 𝑢 to 𝑢′ it holds that 𝑓(𝑣′) ≠ 𝑣′ and 𝑓(𝑣′) is a
treevertex since three of the four outgoing arcs of 𝑢, 𝑢′ must have a treevertex as head. We can now
suppose that all children of 𝑢, 𝑢′ are treevertices. The root is also a treevertex, so 𝑉(𝐺𝑁) contains
seven treevertices and |𝐸(𝐺𝑁)| = 14.

𝑆 has at least three symmetric sides, so suppose that (𝑢, 𝑣) and (𝑢, 𝑣′) are symmetric sides. We can
suppose this without loss of generality because otherwise we can use that the two outgoing arcs of 𝑢′
are symmetric sides. Then there is some automorphism 𝑓 such that 𝑓(𝑢) = 𝑢, 𝑓(𝑣) = 𝑣′ and 𝑓(𝑣′) = 𝑣
giving an isomorphic generator. Then, 𝑣 and 𝑣′ are mapped to each other by 𝑓. If 𝑣 and 𝑣′ have two
children in common, then 𝐺𝑁 is the generator in Figure 6.5b and not biconnected. If 𝑣 and 𝑣′ have one
child in common, then 𝐺𝑁 is the generator as in Figure 6.5a, but we assumed that all automorphisms
𝑓 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) that give isomorphic generators for which 𝑓(𝑦) ≠ 𝑦 for some 𝑦 ∈ 𝑉(𝐺𝑁) only
map vertices in 2cycles or 1cycles, so we have already considered this case (and proved 𝑁 = 𝑁′
for networks with this generator) in Section 6.3.4. If 𝑣 and 𝑣′ have no children in common, 𝐺𝑁 is the
generator in Figure 6.4a. We have already considered this case, too.

u u′

v v′

(a) The generator where 𝑣 and 𝑣′ have one child in com
mon.

u u′

v v′

(b) The generator where 𝑣 and 𝑣′ have two children in com
mon.

Figure 6.5: Two generators where 𝑢, 𝑢′, and their children are treevertices.

Suppose 𝑣 is an outdegree1 reticulation. Then all children of 𝑢, 𝑢′ must be indegree2 outdegree
1. Indeed, 𝑆 has at least three symmetric sides which are outgoing arcs of 𝑢 and 𝑢′. The head of
three arcs must be an outdegree1 reticulation. Suppose without loss of generality that the fourth arc is
(𝑢, 𝑣′) ∈ 𝐸(𝐺𝑁) with 𝑣′ a treevertex or outdegree0 reticulation. Then, for the automorphism 𝑓 mapping
𝑢 to 𝑢′ it holds that 𝑓(𝑣′) ≠ 𝑣′ and 𝑓(𝑣′) is indegree2 outdegree1 since three of the four outgoing arcs
of 𝑢, 𝑢′ must have an outdegree1 reticulation as head. We can now suppose that all children of 𝑢, 𝑢′
are outdegree1 reticulations. 𝑢 and 𝑢′ have four outgoing arcs in total, so 𝑢 and 𝑢′ have at least two
children in total. Then 𝑢 and 𝑢′ have two common children. Indeed, 𝐺𝑁 is level4 and cannot contain
three or more outdegree1 reticulations that can be mapped to each other by an automorphism giving
an isomorphic generator by Lemma 14. So if 𝑣 is an outdegree1 reticulation, then 𝑢, 𝑢′ are treevertices
with two children in common which are outdegree1 reticulations. Then, 𝐺𝑁 must contain a subgraph
as in Figure 6.6a.

We see that 𝑆 has in that case four symmetric sides: (𝑢, 𝑣), (𝑢, 𝑣′), (𝑢′, 𝑣), (𝑢′, 𝑣′). We will now prove
that 𝐺𝑁 must be one of the generators as in Figure 6.7. Let 𝑓 be the automorphism such that 𝑓(𝑢) = 𝑢′
and 𝑓(𝑢′) = 𝑢. Then, 𝑓(𝑣) = 𝑣 and 𝑓(𝑣′) = 𝑣′. Suppose 𝑢, 𝑢′ have one parent 𝑡. Then 𝑓(𝑡) = 𝑡.
If 𝑡 is the root of 𝐺𝑁, then 𝐺𝑁 contains indeed a subnetwork as in Figure 6.6a. If 𝑡 is not the root of
𝐺𝑁, then the parent of 𝑡 is the root of 𝐺𝑁. Indeed, 𝐺𝑁 is level4 and biconnected, so the outgoing arcs
of 𝑣, 𝑣′ result in at least one reticulation by Lemma 14, and by the same lemma, the outgoing arcs of
the root not ending in 𝑡 result in at least one reticulation, too. Furthermore, since there must be an
automorphism mapping 𝑣 and 𝑣′ to each other, 𝐺𝑁 is as in Figure 6.7a and contains also a subgraph
as in Figure 6.6a.

Suppose 𝑢 and 𝑢′ have two parents 𝑡 and 𝑡′, respectively. Then 𝑡 and 𝑡′ must be mapped to each
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Figure 6.6: The subnetwork that 𝐺𝑁 must contain if there is a set of symmetric noncrucial sides of size four.

other by 𝑓, too. The outgoing arcs of 𝑣 and 𝑣′ result in at least one reticulation, so 𝑡 and 𝑡′ cannot be
reticulations, so they are treevertices. Note that there must be an automorphism mapping 𝑣 and 𝑣′ to
each other after fixing crucial leaves, and 𝐺𝑁 is level4. Then, by Lemma 14, the outgoing vertices of 𝑡
and 𝑡′ that have neither 𝑢 nor 𝑢′ as head vertices must have the same head vertex. Then 𝐺𝑁 is as in
Figure 6.7b and contains indeed a subgraph as in Figure 6.6a.
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Figure 6.7: Three possibilities for 𝐺𝑁 if it contains a subgraph as in Figure 6.6.

Let 𝑔 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) be the automorphism such that 𝑔(𝑣) = 𝑣′ and 𝑔(𝑣′) = 𝑣. Then, 𝑔(𝑢) = 𝑢 and
𝑔(𝑢′) = 𝑢′. Suppose 𝑣 and 𝑣′ share the same child 𝑤 ∈ 𝑉(𝐺𝑁), then 𝑔(𝑤) = 𝑤 and 𝐺𝑁 contains indeed
a subnetwork as in Figure 6.6a. Suppose 𝑣 and 𝑣′ have two different children 𝑤 and 𝑤′ in 𝑉(𝐺𝑁). Then
𝑔(𝑤) = 𝑤′ and 𝑔(𝑤′) = 𝑤. 𝑤 and 𝑤′ cannot be outdegree0 since crucial leaves are fixed and they
cannot be outdegree1 by Lemma 14. So 𝑤,𝑤′ are treevertices and have together four outgoing arcs
that lead to at least two more reticulations by Lemma 14. 𝐺𝑁 is level4 and biconnected, so the result
that 𝑤 and 𝑤′ are treevertices leads to one possibility for 𝐺𝑁. Indeed, 𝐺𝑁 is the generator in Figure
6.7c and contains a subnetwork as in Figure 6.6a.

6.4.3. The same leaves on the same sides
Suppose that 𝑁 has a generator with a subnetwork as in Figure 6.6a. Let side 𝐼 be an outdegree0
vertex of 𝐺𝑁 below 𝑣 and 𝑣′ and let 𝑖 be the leaf on side 𝐼 in 𝑁. The sides in that subnetwork are
denoted as in Figure 6.6b. We assumed that |𝑋| ≥ 6 and 𝒮6(𝑁) = 𝒮6(𝑁′) and so 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′).
Suppose that we consider the possible relabellings of the sides of 𝐺𝑁 giving an isomorphic generator as
the relabellings belonging to the automorphism that switches 𝑢 with 𝑢′, the automorphism that switches
𝑣 with 𝑣′, and the automorphism that switches 𝑢 with 𝑢′ and 𝑣 with 𝑣′. We will now follow the proof of
Lemma 5.2, ‘Group 7’ in Nipius, 2020 to prove that the leaves on sides 𝐶, 𝐷, 𝐸 and 𝐹 are on the same
sides in 𝑁 and 𝑁′, after possibly relabelling sides. The prove that is given in Nipius, 2020 holds for the
generator in Figure 6.8a, but the proof will hold for all generators in Figure 6.7, because the subnetwork
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(b) A level4 generator with symmetry.
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(c) A level4 generator with symmetry.

Figure 6.8: One level3 and two level4 generators containing a subnetwork as in Figure 6.6. In all generators, sides 𝐶,𝐷, 𝐸 and
𝐹 form the considered subnetwork.

Observe that there is some symmetry. Sides 𝐴, 𝐶, 𝐷 can be interchanged with sides 𝐵, 𝐸, 𝐹, respec
tively, to obtain an isomorphic generator. Also, sides 𝐶, 𝐸, 𝐺 can be interchanged with sides 𝐷, 𝐹, 𝐻,
respectively, again yielding an isomorphic generator. Moreover, sides 𝐴, 𝐶, 𝐷, 𝐺 can be interchanged
with sides 𝐵, 𝐹, 𝐸, 𝐻, respectively, again yielding an isomorphic generator. Note, a set of crucial sides
has one element, namely side 𝐼. Consider the crucial trinet 𝑇 exhibited by 𝑁 on {𝑖, 𝑥, 𝑦}, where 𝑖 is on
side 𝐼 and 𝑥 and 𝑦 are on noncrucial sides. Let 𝑇′ be the crucial trinet on {𝑖, 𝑥, 𝑦} exhibited by 𝑁′. This
trinet exists by Lemma 2 and since 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′). Then 𝑇 = 𝑇′. By this trinet, a leaf on side 𝐶, 𝐷, 𝐸
or 𝐹 in 𝑁 is on side 𝐶, 𝐷, 𝐸 or 𝐹 in 𝑁′. Note, we use the symmetry of the generator.

We will now repeat the proof in Nipius, 2020. First, assume that there is at least one leaf on side
𝐶 in 𝑁 and that the leaves that are on side 𝐶 in 𝑁 are on side 𝐶 in 𝑁′. Let 𝑐 be such a leaf on side 𝐶 in
𝑁.

Let 𝑎 be the leaf on side 𝐴 in 𝑁. This leaf is then on side 𝐴 or 𝐵 in 𝑁′. Let 𝑇 be now the crucial trinet
on {𝑎, 𝑐, 𝑖}, which has the same underlying generator as 𝑁 and 𝑁′. Then, leaves 𝑎 and 𝑐 are on sides
that are arcs of the generator and for which holds that the end point of one of the two sides is the same
as the begin point of the other sides. So, since 𝑐 is on side 𝐶 in 𝑁′ and since 𝑇 = 𝑇′, 𝑎 is on side 𝐴 in
𝑁′. In the same way, let 𝑏 a leaf on side 𝐵 in 𝑁 and let 𝑇 be the trinet on {𝑏, 𝑐, 𝑖}. Then, leaves 𝑏 and 𝑐
are on sides that are arcs of the generator and for which does not hold that the end point of one of the
two sides is the same as the begin point of the other side. By the same reasoning, 𝑏 is on side 𝐵 in 𝑁′.

Let 𝑑 be a leaf on side 𝐷 in 𝑁. Earlier we saw that this leaf then is on side 𝐶, 𝐷, 𝐸 or 𝐹 in 𝑁′. Let 𝑇 be
now the crucial trinet on {𝑐, 𝑑, 𝑖}, which has the same underlying generator as 𝑁 and 𝑁′. Then, leaves 𝑐
and 𝑑 are on sides that are arcs of the generator and that have the same begin point but different end
points. So, since 𝑐 is on side 𝐶 in 𝑁′ and since 𝑇 = 𝑇′, 𝑑 is on side 𝐷 in 𝑁′. Let 𝑒 be a leaf on side 𝐸
in 𝑁. Earlier we saw that this leaf then is on side 𝐶, 𝐷, 𝐸 or 𝐹 in 𝑁′. Let 𝑇 be now the crucial trinet on
{𝑐, 𝑒, 𝑖}, which has the same underlying generator as 𝑁 and 𝑁′. Then, leaves 𝑐 and 𝑒 are on sides that
are arcs of the generator and that have the same end point but different begin points. So, since 𝑐 is
on side 𝐶 in 𝑁′ and since 𝑇 = 𝑇′, 𝑒 is on side 𝐸 in 𝑁′. In the same way, let 𝑓 be a leaf on side 𝐹 in 𝑁.
Earlier we saw that this leaf then is on side 𝐶, 𝐷, 𝐸 or 𝐹 in 𝑁′. Let 𝑇 be now the crucial trinet on {𝑐, 𝑓, 𝑖},
which has the same underlying generator as 𝑁 and 𝑁′. Then, leaves 𝑐 and 𝑓 are on sides that are arcs
of the generator and that have different begin points and different end points. So, since 𝑐 is on side 𝐶
in 𝑁′ and since 𝑇 = 𝑇′, 𝑓 is on side 𝐹 in 𝑁′.

Let 𝑔 be the leaf on side 𝐺 in 𝑁. This leaf is then on side 𝐺 or 𝐻 in 𝑁′. Let 𝑇 be now the crucial
trinet on {𝑔, 𝑐, 𝑖}, which has the same underlying generator as 𝑁 and 𝑁′. Then, leaves 𝑔 and 𝑐 are on
sides that are arcs of the generator and for which holds that the end point of one of the two sides is the
same as the begin point of the other side. So, since 𝑐 is on side 𝐶 in 𝑁′ and since 𝑇 = 𝑇′, 𝑔 is on side
𝐺 in 𝑁′. In the same way, let ℎ a leaf on side 𝐻 in 𝑁 and let 𝑇 be the trinet on {ℎ, 𝑐, 𝑖}. Then, leaves ℎ
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and 𝑐 are on sides that are arcs of the generator and for which does not hold that the end point of one
of the two sides is the same as the begin point of the other side. By the same reasoning, ℎ is on side
𝐻 in 𝑁′. We can conclude that all leaves on sides 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 and 𝐻 are on the same sides in 𝑁′
as in 𝑁. We can assume by Lemma 15 that leaf 𝑖 is on side 𝐼 in 𝑁 and 𝑁′.

Now, assume that the leaves that are on side 𝐶 are not on side 𝐶 in 𝑁′. Earlier we saw that these
leaves then are on side 𝐷, 𝐸 or 𝐹 in 𝑁′. First, if the leaves that are on side 𝐶 in 𝑁 are on side 𝐷 in
𝑁′, then we can argue in exactly the same way that the leaves that are on sides 𝐴, 𝐵, 𝐷, 𝐸, 𝐹, 𝐺 and 𝐻
are on sides 𝐴, 𝐵, 𝐶, 𝐹, 𝐸, 𝐻 and 𝐺 in 𝑁′, respectively. Now, relabelling sides 𝐶, 𝐸, 𝐺 with sides 𝐷, 𝐹, 𝐻,
respectively, gives that all leaves are on the same sides in 𝑁′ as in 𝑁.

Secondly, if the leaves that are on side 𝐶 in 𝑁 are on side 𝐸 in 𝑁′, then we can argue in exactly the
same way that the leaves that are on sides 𝐴, 𝐵, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻 in 𝑁, are on sides 𝐴, 𝐵, 𝐶, 𝐹, 𝐸, 𝐻, 𝐺 in 𝑁′,
respectively. Now, relabelling sides 𝐴, 𝐶, 𝐷 with sides 𝐵, 𝐸, 𝐹, respectively, gives that the leaves are on
the same sides in 𝑁′ as in 𝑁. Thirdly, if the leaves that are on side 𝐶 in 𝑁 are on side 𝐹 in 𝑁′, then we
can argue in exactly the same way that the leaves that are on sides 𝐴, 𝐵, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻 in 𝑁, are on sides
𝐵, 𝐴, 𝐸, 𝐷, 𝐶, 𝐻, 𝐺 in 𝑁′, respectively. Now, relabelling sides 𝐴, 𝐶, 𝐷, 𝐺 with sides 𝐵, 𝐹, 𝐸, 𝐻, respectively,
gives that the leaves are on the same sides in 𝑁′ as in 𝑁.

Finally, suppose there is no leaf on side 𝐶 in𝑁 and there is a leaf on one of the sides 𝐴, 𝐵, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻
in 𝑁. First, assume that there is a leaf on one of the sides 𝐷, 𝐸 or 𝐹. Then, we can apply similar argu
ments based on that leaf as we did for the leaf on side 𝐶 in order to get that all leaves are on the same
side in 𝑁′ as in 𝑁. Now, if there is no leaf on sides 𝐶, 𝐷, 𝐸 and 𝐹 in 𝑁, then there is a leaf on one of the
sides 𝐴, 𝐵, 𝐺 or 𝐻 in 𝑁. Earlier we saw that if a leaf is on side 𝐴 or 𝐵 in 𝑁, this leaf is on side 𝐴 or 𝐵 in
𝑁′. Assume that the leaves that are on side 𝐴 in 𝑁 are on side 𝐴 in 𝑁′ and that the leaves that are on
side 𝐵 in 𝑁 are on side 𝐵 in 𝑁′. We can assume this without loss of generality, because if it is not the
case, we can relabel sides 𝐴, 𝐶, 𝐷 with sides 𝐵, 𝐸, 𝐹, respectively. Earlier we also saw that if a leaf is
on side 𝐺 or 𝐻 in 𝑁, this leaf is on side 𝐺 or 𝐻 in 𝑁′. Assume that the leaves that are on side 𝐺 in 𝑁 are
on side 𝐺 in 𝑁′ and that the leaves that are on side 𝐻 in 𝑁 are on side 𝐻 in 𝑁′. We can assume this
without loss of generality, because if it is not the case, we can relabel sides 𝐶, 𝐸, 𝐺 with sides 𝐷, 𝐹, 𝐻,
respectively. So, all leaves are on the same side in 𝑁′ as in 𝑁, after possibly relabelling sides.

The proof for the generator in Figure 6.7a works in the same way as this proof, but side 𝐼 is then
the outdegree0 vertex and for the noncrucial sides that are not mapped to a different side by any rela
belling, it directly follows by 𝑇 = 𝑇′ that the leaves on these sides in 𝑁 must be on the same sides in 𝑁′.
For the generator in Figure 6.7b, let the sides be labelled as in Figure 6.8b. Then, the proof works the
same using 𝒮4(𝑁) = 𝒮4(𝑁′) if the following two changes are made. First, the relabelling that relabels
sides 𝐴, 𝐶, 𝐷 with 𝐵, 𝐸, 𝐹, respectively, must be replaced by the relabelling that relabels sides 𝐽, 𝐿, 𝐴, 𝐶, 𝐷
with 𝐾,𝑀, 𝐵, 𝐸, 𝐹, respectively. Second, let 𝑇 be the quarnet on {𝑖, 𝑜, 𝑥, 𝑦} instead of {𝑖, 𝑥, 𝑦}, where 𝑜 is
the leaf on side 𝑂 and 𝑥, 𝑦 two noncrucial leaves. Note that a leaf on side 𝐽 or 𝐾 in 𝑁 is on side 𝐽 or 𝐾 in
𝑁′ and a leaf on side 𝐿 or 𝑀 in 𝑁 is on side 𝐿 or 𝑀 in 𝑁′. For the generator in Figure 6.7c, let the sides
be labelled as in Figure 6.8c. Then, the proof works the same using 𝒮4(𝑁) = 𝒮4(𝑁′) if the following
two changes are made. First, the relabelling that relabels sides 𝐶, 𝐸, 𝐺 with 𝐷, 𝐹, 𝐻, respectively, must
be replaced by the relabelling that relabels sides 𝐶, 𝐸, 𝐺, 𝐽, 𝐿 with 𝐷, 𝐹, 𝐻, 𝐾,𝑀, respectively. Second, let
𝑇 be the quarnet on {𝑖, 𝑜, 𝑥, 𝑦} instead of {𝑖, 𝑥, 𝑦}, where 𝑜 is the leaf on side 𝑂 and 𝑥, 𝑦 two noncrucial
leaves.

6.4.4. Conclusion
To conclude, if the side of leaf 𝑥 is in a set of symmetric sides of size at least three, then this size is four
and 𝐺𝑁 contains a subnetwork as in Figure 6.6a or 𝐺𝑁 is the generator in Figure 6.3a or 6.4b. We have
already considered the latter. Moreover, if 𝐺𝑁 is the generator as in Figure 6.3a or 6.4b, then 𝑁 = 𝑁′
and the lemma follows for this case. If 𝐺𝑁 contains a subnetwork as in Figure 6.6a, we have proved that
𝑥 is on the same side in 𝑁′. By Lemma 17, all leaves are on the same sides, so the lemma follows.

6.5. Set of symmetric sides of size at most two
We have cut the problem of proving that we may assume that all noncrucial leaves are on the same
sides in 𝑁 and 𝑁′ in two parts. In this section, we will prove the lemma below, which is the second part.
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Lemma 18 was the first part, assuming that there exists a set of symmetric sides in 𝐺𝑁 of size at least
three. Combining Lemma 18 with the following lemma gives that we may assume that all leaves on
noncrucial sides are on the same sides in 𝑁 and 𝑁′.

Lemma 19. Let 𝑁 and 𝑁′ be two binary, simple level4 networks on 𝑋 such that 𝒮6(𝑁) = 𝒮6(𝑁′). Let
𝐺𝑁 and 𝐺𝑁′ be the isomorphic underlying generators of 𝑁 and 𝑁′, respectively. Suppose that all crucial
leaves are on the same sides in𝑁 and𝑁′ after possibly relabelling sides of 𝐺𝑁′ . If each set of symmetric
sides in 𝐺𝑁 is of size at most two, then we may assume that all leaves of 𝑁 are on the same sides in
𝑁′.

Proof. Let 𝑇 ∈ 𝒮6(𝑁) be a crucial 6net exhibited by 𝑁 and let 𝑥 ∈ 𝑋 be a leaf on side 𝑆1 in 𝑁, with 𝑆1
noncrucial. Suppose that 𝑥 is a leaf of 𝑇. This is possible since a set of crucial sides of 𝐺𝑁 is of size at
most four. Then, 𝑥 is on side 𝑆1 in 𝑇, since 𝑇 is crucial. Let 𝑇′ be the 6net exhibited by 𝑁′ on the same
leaf set as 𝑇. 𝑇 is simple and level4 and 𝑇′ ∈ 𝒮6(𝑁′). Since 𝒮6(𝑁) = 𝒮6(𝑁′), 𝑇′ is also simple and
level4 and therefore it is crucial by Lemma 4. We suppose that all crucial leaves are on the same sides
in 𝑁 and 𝑁′ after possibly relabelling sides of 𝐺𝑁′ . First, note that if 𝑆1 is in a set of symmetric sides of
size one, then 𝑥 is on side 𝑆1 in 𝑁′ since 𝑇 = 𝑇′ and they have 𝐺𝑁 and 𝐺𝑁′ as underlying generators. Let
𝐴 and 𝐴′ be the set of sides of 𝐺𝑁 and 𝐺𝑁′ , respectively, let 𝐵 ⊂ 𝑉(𝐺𝑁) the set of outdegree0 vertices
and head and tailvertices of sets of parallel arcs in 𝐺𝑁 and let 𝐶 ⊂ 𝐴 be the set of all outdegree0
reticulations and all arcs in a pair of parallellel arcs in 𝐺𝑁. Note that 𝐴 = 𝐴′ and 𝑉(𝐺𝑁) = 𝑉(𝐺𝑁′) since
𝐺𝑁 and 𝐺𝑁′ are isomorphic. Let 𝑓 ∶ 𝐴 → 𝐴 be a noncrucial relabelling. This is a relabelling of sides of
𝐺𝑁 giving an isomorphic generator, such that crucial sides keep the same label. Note that there exists
an automorphism 𝑔 ∶ 𝑉(𝐺𝑁) → 𝑉(𝐺𝑁) such that 𝑔(𝑥) ≠ 𝑥 for some 𝑥 ∈ 𝑉(𝐺𝑁) and 𝑔(𝑦) = 𝑦 for all 𝑦 ∈ 𝐵
giving an isomorphic generator such that 𝑓 is the relabelling of sides belonging to 𝑔.

6.5.1. The same leaves are on the same sides if there is no symmetry left
Suppose that there does not exist such noncrucial relabelling of sides as in the previous paragraph.
That is, there is no symmetry left in 𝐺𝑁 after fixing crucial leaves. The generator in Figure 6.9a has no
noncrucial relabelling. Indeed, it has symmetry, but after assuming that the leaves on sides 𝑋1, 𝑋2, 𝑋3, 𝑋4
in 𝑁 are on the same sides in 𝑁′, the only relabelling cannot be applied anymore. Indeed, that would
change the side of the leaves on 𝑋2 and 𝑋4 again. Let 𝑇 be a crucial 6net such that it contains 𝑥. Then,
𝑥 is on side 𝑆1 in 𝑇. Since 𝒮6(𝑁) = 𝒮6(𝑁′), all crucial leaves are on the same sides in 𝑁 and 𝑁′ after
possibly relabelling sides of 𝐺𝑁′ , and since there exists no noncrucial relabelling, 𝑥 is on side 𝑆1 in 𝑇′.
𝑇′ is crucial so 𝑥 is on side 𝑆1 in 𝑁′. This holds for all noncrucial leaves of 𝑁. So all leaves in 𝑁 are in
this case on the same side in 𝑁′.

6.5.2. Unique relabelling
Suppose for the rest of the proof that there exists at least one noncrucial relabelling as defined before.
If there are two noncrucial relabellings 𝑓 and 𝑔 such that 𝑓 ≠ 𝑔 and 𝑓(𝑆) = 𝑔(𝑆) ≠ 𝑆 for some
𝑆 ∈ 𝐴 ⧵ 𝐶, then there exists a 𝑃 ∈ 𝐴 ⧵ 𝐶 for which 𝑓(𝑃) = 𝑃 and 𝑔(𝑃) ≠ 𝑃. Indeed, 𝑃 has at most
two symmetric sides. Then, applying 𝑔 to 𝐴 maps 𝑆 to 𝑆′ ≠ 𝑆 and maps 𝑃 to 𝑃′ ≠ 𝑃 and gives an
isomorphic generator. But applying 𝑓 to 𝐴 maps 𝑆 to 𝑆′ and maps 𝑃 to 𝑃 and gives an isomorphic
generator, too. We know that 𝑓(𝑆′) = 𝑆. Then, 𝑓∘𝑔(𝐴) gives an isomorphic generator, and 𝑓∘𝑔(𝑆) = 𝑆
and 𝑓 ∘ 𝑔(𝑃) = 𝑃′. It follows that 𝑔 must be a composition of noncrucial relabellings 𝑔 = 𝑓 ∘ ℎ with
𝐷 = {𝑎 ∈ 𝐴 ∶ 𝑓(𝑎) ≠ 𝑎}; 𝐸 = {𝑎 ∈ 𝐴 ∶ ℎ(𝑎) ≠ 𝑎}; 𝐷 ∩ 𝐸 = ∅, that is, a composition of two functions of
which the sets of sides that these two functions map to other sides are disjoint. So we can now assume
that if a noncrucial relabelling 𝑓 maps a noncrucial side 𝑆 to 𝑆′ ≠ 𝑆, than there exists no noncrucial
relabelling 𝑔 ≠ 𝑓 such that 𝑔(𝑆) = 𝑆′ with 𝑆′ ≠ 𝑆 and 𝑔 is not a composition of relabellings of which the
sets of sides that are mapped to other sides by these functions are disjoint.

6.5.3. The same leaves are on the same sides if there is symmetry left
Suppose that 𝑥 is on noncrucial side 𝑆1 in 𝑁 and 𝑥 is on side 𝑆1 or 𝑆′1 ≠ 𝑆1 in 𝑁′. Then, there exists a
noncrucial relabelling 𝑓 ∶ 𝐴 → 𝐴 for which 𝑓(𝑆1) = 𝑆′1. Let 𝐷 = {𝑎 ∈ 𝐴 ∶ 𝑓(𝑎) ≠ 𝑎} and let the crucial
6net 𝑇 be such that 𝑥 is a leaf of 𝑇. Then 𝑥 is on side 𝑆1 in 𝑇 and on side 𝑆′1 in 𝑇′ since 𝑇 and 𝑇′ are
crucial. A set of crucial sides of 𝐺𝑁 is of size at most four. Then, 𝑇 contains at least one noncrucial leaf,
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say 𝑦 for which 𝑦 ≠ 𝑥. So let 𝑦 ∈ 𝑋 be on noncrucial side 𝑆2 in 𝑁 and let 𝑇 be such that 𝑇 is a 6net on
𝑥, 𝑦 and four other leaves.
An example is the generator in Figure 6.9b. It contains a set of crucial sides of size four and it holds
that 𝐷 = 𝐴⧵{𝑋1, 𝑋2, 𝑋3, 𝑋4} because the noncrucial relabelling relabels all noncrucial sides (from the left
to the right and vice versa), where 𝐷 is defined as in Section 6.5.2. Also, there is symmetry left after
assuming that the leaves on sides 𝑋1, 𝑋2, 𝑋3, 𝑋4 in 𝑁 are on the same sides in 𝑁′. Examples of sides
𝑆1 and 𝑆2 are given, with their symmetric sides 𝑆′1 and 𝑆′2, respectively.

X1

X2 X3 X4

(a) Example of a generator with symmetry,
but without symmetry after fixing the crucial
leaves.

S1 S ′
1

X5 X6

X7 X8

X9
X10

X11 X12

S2 S ′
2

X13 X14

X1

X2

X3

X4

(b) Example of a generator with four crucial
sides and a noncrucial relabelling.

X1

X2

(c) Example of a generator with symmetry,
and with the same symmetry after fixing the
crucial leaves.

Figure 6.9: Examples of level4 generators with sets of symmetric sides of size at most two.

Suppose 𝑆2 ∈ 𝐷, 𝑓(𝑆2) = 𝑆′2 ≠ 𝑆2 and 𝑦 is on side 𝑆2 in 𝑁′. If 𝑥 is on side 𝑆′1 in 𝑁′, then we have to
apply the relabelling 𝑓 to the sides of 𝐺𝑁′ such that 𝑥 is on side 𝑆1 in 𝑁′, but side 𝑦 will then be on side
𝑆′2 in 𝑁′. Then, 𝑥 is on side 𝑆1 in 𝑇 and on side 𝑆1 in 𝑇′, and 𝑦 is on side 𝑆2 in 𝑇 and on 𝑆′2 in 𝑇′. Then
𝑇 ≠ 𝑇′ which is a contradiction. Indeed, 𝑇 ≠ 𝑇′ because we assumed that there exists no noncrucial
relabelling 𝑔 ≠ 𝑓 such that 𝑔(𝑆2) = 𝑆′2 and 𝑓(𝑆1) = 𝑆1 and 𝑔 is not a composition of relabellings. So 𝑥
is on side 𝑆1 in 𝑇′ and so in 𝑁′. For example, the generator in Figure 6.9c has two crucial sides, and it
holds that there is symmetry left after assuming that the leaves on 𝑋1, 𝑋2 are on the same sides in 𝑁′
as in 𝑁. However, to determine the side of 𝑥, a crucial 6net is not necessary, but a crucial 4net is in
this case. To determine the side if the generator is as in Figure 6.9b, a crucial 6net is necessary, since
there are four crucial leaves in 𝑇.

Suppose 𝑆2 ∈ 𝐷, 𝑓(𝑆2) = 𝑆′2 ≠ 𝑆2 and 𝑦 is on side 𝑆′2 in 𝑁′. Then 𝑦 is on side 𝑆′2 in 𝑇′. If 𝑥 is on side
𝑆1 in 𝑁′ and so in 𝑇′, then 𝑇 ≠ 𝑇′ by the same reasoning as in the previous paragraph. So 𝑥 is on side
𝑆′1 in 𝑇′ and so in 𝑁′. Then, we can apply the relabelling 𝑓 to 𝐴′ such that 𝑥 is on the same side in 𝑁′
as in 𝑁. The same holds for 𝑦.

Suppose 𝑆2 ∉ 𝐷 and so 𝑓(𝑆2) = 𝑆2. If 𝑇 contains four crucial leaves, then we can assume without
loss of generality that 𝑥 is on side 𝑆1 in 𝑇′ and so in 𝑁′. Indeed, 𝑇 contains four crucial leaves and
𝑆2 ∉ 𝐷, so if 𝑥 is on side 𝑆′1 in 𝑁, we can apply the relabelling 𝑓 to 𝐴′ such that 𝑥 is on the same side
in 𝑁′ as in 𝑁, while the sides of 𝑦 and the crucial leaves of 𝑇 are not influenced by applying 𝑓. If 𝑇
contains less than four crucial leaves, we can suppose without loss of generality that the sides of the
noncrucial leaves of 𝑇 are not in 𝐷, since leaf 𝑦 was chosen arbitrarily. Then we can assume without
loss of generality that 𝑥 is on side 𝑆1 in 𝑇′ and so in 𝑁′. By the same reasoning as before, if 𝑥 is on
side 𝑆′1 in 𝑁′, we can apply 𝑓 to 𝐴′. Note that 𝑥 and 𝑦 were chosen arbitrarily on noncrucial sides. So
for each pair of noncrucial sides containing leaves, where a side of these leaves can be mapped to
another side by a noncrucial relabelling, the proof holds. By the assumption we made in Section 6.5.2,
the applied relabelling is not a composition of relabellings of which the sets of sides that are mapped
to other sides by these relabellings are disjoint. We therefore can assume that if one leaf on a side in
𝐷 is on a different side in 𝑁′ than in 𝑁, all leaves on sides in 𝐷 are on a different side in 𝑁′ than in 𝑁.
So applying a relabelling such that some leaf is on the same side in 𝑁 as 𝑁′, gives the result that all
leaves on sides in 𝐷 are on the same sides in 𝑁 and 𝑁′. Also, leaves stay together on one side in 𝑁
and 𝑁′ by Lemma 17. We have now proved Lemma 19.
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6.5.4. Combining results
We first proved Lemma 16 and proved for networks with a generator as in Figure 6.3a or 6.4a that
𝑁 = 𝑁′. Thereafter, we proved for networks with one of the generators as in Figure 6.7 that we may
assume that all leaves are on the same sides. Subsequently, we could assume that for the rest of the
level4 generators with symmetry that automorphisms map only in 1cycles or 2cycles, and that sets
of symmetric sides are of size at most two. For these generators, we assumed that all leaves on crucial
sides are on the same sides and proved that we may assume that leaves on noncrucial sides are on
the same sides in 𝑁 and 𝑁′. So for the last group of generators, we may also assume that all leaves are
on the same sides in 𝑁 and 𝑁′. Indeed, we considered the noncrucial relabellings and the relabellings
that map crucial sides to different sides, eventually with other noncrucial sides in the domain. If there
is no noncrucial relabelling, all leaves are on the same side, otherwise there is some crucial leaf on a
wrong side. If there is at least one noncrucial relabelling, we proved uniqueness and that all leaves are
still on the same sides in 𝑁 and 𝑁′.

By Theorem 4, all leaves are on the same sides in 𝑁 and 𝑁′ if 𝐺𝑁 has no symmetry besides parallel
arcs. Combining the results gives that for all binary, simple level4 networks 𝑁 and 𝑁′ on 𝑋 with |𝑋| ≥ 6
and with isomorphic underlying generators the leaves in 𝑁 are on the same sides in 𝑁′. 𝑇𝑛(𝑁) =
𝑇𝑛(𝑁′), so by Lemma 11, the order of the leaves on each side is the same in 𝑁′ as in 𝑁. We can
conclude that 𝑁 = 𝑁′ which contradicts with the assumption. Therefore, we can conclude that every
binary, simple level4 network on 𝑋, with |𝑋| ≥ 6, is encoded by its 6nets.

The following Corollary is a corollary of Theorem 9.

Corollary 9. Every binary, recoverable level4 network on 𝑋, with |𝑋| ≥ 6, is encoded by its 6nets.

Proof. The proof follows from Theorem 9, Corollary 1, Theorem 3 and the fact that level1 networks
are encoded by their trinets (Huber and Moulton, 2013).



7
Algorithm for proving encoding results

It is proved in Nipius, 2020 that most level3 networks are encoded by their trinets. In this thesis, all
level3 generators from Gambette et al., 2009 are considered, divided into groups according to the
number of sides in a set of crucial sides, the number of sets of parallel arcs, and symmetry. Extending
the proof in Nipius, 2020 to higher level generators would be even much more work. Especially the
part of the proof where it is proved that leaves in 𝑁 are on the same side in 𝑁′, where 𝑁 and 𝑁′ are
binary, simple level3 networks with isomorphic generators, given that 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′). Therefore, it is
useful to have an algorithm that can be used to determine the side of a leaf in 𝑁′ given a certain side in
𝑁. Note that for proving that binary, simple level3 networks are encoded by trinets, it is necessary that
we can assume that leaves are on a unique side in 𝑁′. In this chapter, we first analyse how the sides
for a leaf in 𝑁′ are determined in Nipius, 2020. Thereafter, we present an algorithm for determining the
possible sides in 𝑁′ for a leaf in 𝑁. Lastly, we will generalise this algorithm such that it works for simple
level𝑘 networks.

7.1. Encoding level3 networks with trinets
In this subsection, we analyse the proof in Nipius, 2020 of the theorem stating that the class of most
binary, simple level3 networks with at least three leaves is weakly encoded by trinets. There is one
generator for which networks with this generator are not encoded by their trinets (Nipius, 2020). This
counterexample is given in Figure 7.1. The binary, simple level3 networks 𝑁 and 𝑁′ in Figure 7.1a
and 7.1b are unequal. Indeed, the paths from the parent of 𝑥1 to 𝑥2 and 𝑥4 in 𝑁 have not the same
length as these paths in 𝑁′. We see that the four different trinets exhibited by 𝑁 are the same as the
four different trinets exhibited by 𝑁′ in Figure 7.1c. It follows that 𝑁 and 𝑁′ are not encoded by their set
of trinets.

x2 x3 x4

x1

(a) Network 𝑁

x1

x2 x3 x4

(b) Network 𝑁′
x2 x3 x4

x1

x3 x4

x1

x2 x4

x1

x2 x3

(c) The set of trinets exhibited by 𝑁 and 𝑁′.

Figure 7.1: Two different simple level3 networks with the same set of trinets (Nipius, 2020).

Nipius first assumes that the class of binary simple level3 networks is not encoded by trinets, except
for networks with the underlying generator of the network in Figure 7.1a with leaves on the sides that
are outgoing arcs of the root, and no leaves on other noncrucial sides. Then there are two binary,
simple level3 networks 𝑁 and 𝑁′, not as the exception, such that 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′). Second, in Nipius,
2020 it is proved that 𝑁 and 𝑁′ have isomorphic underlying generators 𝐺𝑁 and 𝐺𝑁′ , respectively. Then
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it is shown that for each of the 65 level3 generators from Gambette et al., 2009 that if 𝐺𝑁 and 𝐺𝑁′
are isomorphic, then 𝑁 = 𝑁′. By Lemma 11, if all leaves are on the same sides in 𝑁 and 𝑁′, then
the order of the leaves on each side is the same in 𝑁 and 𝑁′. First we will prove that leaves are on
the same sides, thereafter we will give an example of the proof for one certain generator. The level2
generators will be underlying generators of noncrucial trinets exhibited by a level3 network, and they
are presented in Figure 7.2.

2a 2b 2c 2d

Figure 7.2: The four level2 generators (Gambette et al., 2009).

7.1.1. Example for a specific generator
To proof that a leaf is on the same side in 𝑁′ as it is in 𝑁 in general, it is often useful to build up
crucial 𝑘nets, as we saw before in this thesis. For level3 networks with one or two sides in a set of
crucial sides of their underlying generator, there exists a crucial trinet containing a noncrucial leaf by
Lemma 2. If a set of crucial sides is of size three, the single crucial trinet contains only crucial leaves.
Then, we cannot conclude anything about the sides of noncrucial leaves in 𝑁′. Nipius assumed that
the set of trinets of 𝑁 and 𝑁′ is the same, but the set of 𝑘nets for 𝑘 ≥ 4 is not necessarily the same.
Therefore, only trinets are used, which are not necessary crucial. For determining the possible sides
for a noncrucial leaf in 𝑁′, the trinet needs to be noncrucial if there is a set of crucial sides of size three.
In this section, we concentrate on generators with three sides in a set of crucial sides.

Let𝑁 be a simple level3 network with three sides in a set of crucial sides of its underlying generator.
We want to construct a trinet exhibited by 𝑁 on a noncrucial leaf, say 𝑥. To determine the side in 𝑁′
for 𝑥, it is better to have a maximum number of crucial leaves of 𝑁 in the trinet. Then, the trinet is
on 𝑥 and two crucial leaves. There are three choices for the sides of the crucial leaves in 𝑁. Indeed,
we choose two out of three crucial sides containing leaves. Then, we obtain three different noncrucial
level2 or level1 trinets, that determine the possibilities for the sides that 𝑥 can be on in 𝑁′, because
𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′). We can also say that we obtain the three trinets by deleting one crucial leaf (for each
trinet a different leaf).

We will consider the generator in Figure 7.3a as an example. Suppose 𝑁 is a network with an
underlying generator 𝐺𝑁 as in Figure 7.3a and such that 𝑁 contains a leaf on each side of 𝐺𝑁. Let
𝑎, ... , 𝑚 be leaves on sides 𝐴, ... , 𝑀 in 𝑁, respectively. Suppose that we want to determine the side of
leaf 𝑑 in 𝑁′. Then, as in Nipius, 2020, we let 𝑇𝑆,1 be the trinet on {𝑠, 𝑘, 𝑙}, 𝑇𝑆,2 the trinet on {𝑠, 𝑘,𝑚} and
𝑇𝑆,3 the trinet on {𝑠, 𝑙, 𝑚} for a leaf 𝑠 on side 𝑆. In Figure 7.3c, 𝑇𝐷,1 is shown. This is a level1 network,
after suppressing indegree1 outdegree1 vertices in the graph in Figure 7.3b which has two nontrivial
biconnected components, and they turn out to be useless (Nipius, 2020) to determine the side of a leaf
in 𝑁′, so we do not consider level1 trinets.

Figure 7.4a shows 𝑇𝐷,2, the trinet on {𝑑, 𝑘,𝑚} exhibited by 𝑁. The generator of this level2 trinet is
generator 2𝑐 from Figure 7.2. We see some disadvantage, namely the occurrence of symmetry in this
generator, while the level3 generator has no symmetry. Therefore, since 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′), leaf 𝑑 is on
side 𝐷 or 𝐸 in 𝑁′. Figure 7.4b shows 𝑇𝐷,3, the trinet on {𝑑, 𝑙, 𝑚} exhibited by 𝑁. The generator of this
level2 trinet is generator 2𝑏 from Figure 7.2. This generator has no symmetry, but sides 𝐴, 𝐶 and 𝐷 in
the level3 generator are merged to one arc to obtain generator 2𝑏. Therefore, since 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′),
leaf 𝑑 is on side 𝐴, 𝐶 or 𝐷 in 𝑁′. In Section 7.1.2, we will analyse the process of obtaining a lower level
generator from a level3 generator.

We have considered 𝑇𝐷,1, 𝑇𝐷,2 and 𝑇𝐷,3. 𝑇𝐷,2 and 𝑇𝐷,3 give us that leaf 𝑑 is on side 𝐷 or 𝐸 in 𝑁′, but
also on side 𝐴, 𝐶 or 𝐷 in 𝑁′. We see that there is one side in common, namely side 𝐷. Therefore, we
can conclude that leaf 𝑑 is on side 𝐷 in 𝑁′. Repeating this process for each noncrucial side containing
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(a) A level3 generator 𝐺𝑁.
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(b) The trinet on {𝑑, 𝑘, 𝑙} before suppressing
indegree1 outdegree1 vertices.

l

d

k

(c) The level1 trinet after suppressing
indegree1 outdegree1 vertices.

Figure 7.3: A generator 𝐺𝑁 and the construction of a trinet on {𝑑, 𝑘, 𝑙} exhibited by 𝑁.

d k

m
(a) The trinet on {𝑑, 𝑘,𝑚} exhibited by 𝑁.

d

l m

(b) The trinet on {𝑑, 𝑙,𝑚} exhibited by 𝑁.

Figure 7.4: Two trinets exhibited by 𝑁, where 𝑁 is the network as described in Section 7.1.1 with the underlying generator as in
Figure 7.3a.

a leaf, will lead to the possibilities of the sides for all leaves in 𝑁. We don’t consider leaves on crucial
sides in this way, because the sides can be determined by considering a crucial trinet on three crucial
leaves.

Nipius presents all possibilities for a side of a leaf for each noncrucial side in Nipius, 2020 for
the three different trinets 𝑇𝑆,1, 𝑇𝑆,2 and 𝑇𝑆,3, where each trinet is on exactly two crucial sides. A table
displaying these possibilities for networks with a generator as in Figure 7.3a is presented in Table 7.1.
We see that all leaves on noncrucial sides are on the same side in 𝑁′ as in 𝑁. Furthermore, Nipius
proved this for leaves on crucial sides, too. Thereafter, it is concluded that if 𝑁 has this generator, then
𝑁 = 𝑁′.

7.1.2. Constructing level2 from level3 generators
In Gambette et al., 2009, an algorithm for generating level𝑘 generators from level(𝑘 − 1) generators
is given. In this section, we will explain how a level2 generator is constructed by deleting a crucial side
from a level3 generator. We do this because level2 trinets exhibited by a simple level3 network are
considered in Nipius, 2020. Furthermore, it will be useful to determine the sides for a leaf, as in the
previous section.

In Figure 7.5a, a level3 generator 𝐺𝑁 is given. It contains three outdegree0 vertices. Let leaf 𝑠 be
on noncrucial side 𝑆 of 𝐺𝑁. If we want to determine the side of 𝑠 in𝑁′ as in the previous section, we have
to construct a level2 trinet. Suppose that we indeed obtain a level2 trinet 𝑇 on 𝑠 and on two crucial
leaves of 𝑁. We will now consider the outdegree0 vertex, say side 𝑃, of 𝐺𝑁 that is not contained in
the level2 generator 𝐺𝑇. After deleting 𝑃 and suppressing indegree1 outdegree1 vertices, five sides
of 𝐺𝑁 (the red arcs in Figure 7.5a) are merged into one side in 𝐺𝑇. This is the case when the parents
of 𝑃 in 𝐺𝑁 form an arc. Then, if 𝑆 is one of the red sides, 𝑠 is on one of the red sides in 𝑁′ since
𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′). If 𝑆 is one of the black arcs, then 𝑠 is on the same side in 𝑁′ since 𝐺𝑇 is generator 2𝑏
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Leaf on side
𝑆 in 𝑁 Trinet 𝑇𝑆,1

Trinet 𝑇𝑆,2
Generator 2𝑐

Trinet 𝑇𝑆,3
Generator 2𝑏

Result
for 𝑁′

𝐴 𝐴 ∨ 𝐵 𝐴 ∨ 𝐶 ∨ 𝐷 𝐴
𝐵 𝐴 ∨ 𝐵 𝐵 ∨ 𝐸 ∨ 𝐹 𝐵
𝐶 𝐶 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻 ∨ 𝐼 ∨ 𝐽 𝐴 ∨ 𝐶 ∨ 𝐷 𝐶
𝐷 𝐷 ∨ 𝐸 𝐴 ∨ 𝐶 ∨ 𝐷 𝐷
𝐸 𝐷 ∨ 𝐸 𝐵 ∨ 𝐸 ∨ 𝐹 𝐸
𝐹 𝐶 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻 ∨ 𝐼 ∨ 𝐽 𝐵 ∨ 𝐸 ∨ 𝐹 𝐹
𝐺 𝐶 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻 ∨ 𝐼 ∨ 𝐽 G 𝐺
𝐻 𝐶 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻 ∨ 𝐼 ∨ 𝐽 H 𝐻
𝐼 𝐶 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻 ∨ 𝐼 ∨ 𝐽 I 𝐼
𝐽 𝐶 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻 ∨ 𝐼 ∨ 𝐽 J 𝐽

Table 7.1: Possibilities for a side in 𝑁′ for a leaf in 𝑁, where 𝐺𝑁 is the generator in Figure 7.3a.

and has no symmetry.
Let 𝐺𝑁 be the generator in Figure 7.5b. After constructing a level2 trinet 𝑇 that is not on the crucial

leaf on side 𝑃, the three red arcs are merged into one arc and the three blue arcs are merged into one
arc to obtain 𝐺𝑇 from 𝐺𝑁. If leaf 𝑠 is on side 𝑆 in 𝑁, and 𝑆 is one of the blue arcs, then 𝑠 is on one of
the blue sides in 𝑁′ since 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′). The same holds for the red sides. This is the case when
the parents of 𝑃 in 𝐺𝑁 do not form an arc, and none of the parents is the root. Note that the level3
generators, as the level2 generators after deleting 𝑃 in Figure 7.5a and 7.5b, do not have symmetry
since level2 generator 2𝑏 occurs.

P

(a) The red arcs will be merged into
one arc after deleting 𝑃.

P

(b) The red arcs will be merged into
one arc, as the blue arcs do, after
deleting 𝑃.
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(c) The blue arcs will be merged
into one arc after deleting 𝐼1 or 𝐼2.

P

(d) The red arcs will be merged into
one arc, as the blue arcs do, after
deleting 𝑃.

Figure 7.5: Generators showing how possibilities for sides in 𝑁′ occur.

Suppose that 𝑁 is a network with a generator as in Figure 7.5c. This network contains a pair of parallel
arcs. Let 𝑠 be on noncrucial side 𝑆 ∈ {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐼1, 𝐼2} in 𝑁. Consider a trinet 𝑇 on {𝑠, ℎ, 𝑗},
where ℎ and 𝑗 are on sides 𝐻 and 𝐽 in 𝑁. The generator of the level2 trinet is generator 2𝑐, which has
symmetry. The parallel arcs are deleted and the blue arcs are merged into one arc. We see that if 𝑆 is
for example side 𝐹, then 𝑠 is on side 𝐸, 𝐹, 𝐼1, 𝐼2 or 𝐺 in 𝑁′ since 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′).

The fourth example is the generator in Figure 7.5d. In the same way as in the previous examples,
if 𝑠 is on side 𝑆 in 𝑁 and 𝑆 is one of the red arcs of 𝐺𝑁, then 𝑠 is on one of the red arcs in 𝑁′. The same
holds for the blue arcs. Indeed, the blue arcs will be merged after deleting 𝑃 in the same way as the
example in Figure 7.5b. The red arcs will not be merged if 𝑠 is on one of the red arcs in 𝑁, but they are
deleted if the considered trinet is not on a leaf on one of the red sides. We will see this in the algorithm
in the next section.

Before we present the algorithm giving the possible sides for a leaf in 𝑁′, we observe some useful
properties of the sides in level3 generators. First, in Table 7.1, the sets of possible sides for a leaf in
𝑁′ occur in disjoint sets for each trinet. Furthermore, for each trinet, these sets form a partition of the
sides of 𝐺𝑁′ . This will always be the case, because such set of sides is obtained in one of the following
ways.
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• Given a level3 generator with a set of crucial sides of size three, and a level2 generator obtained
from the level3 generator by deleting one outdegree0 vertex or a pair of parallel arcs, and sup
pressing indegree1 outdegree1 vertices. If the level2 generator has no symmetry, then the sets
of sides that are merged into one side and the individual arcs that are not merged form disjoint
sets. This can be seen in Table 7.1, where trinet 𝑇𝑆,3 has generator 2𝑏 as underlying generator.

• Given a level3 generator with a set of crucial sides of size three, and a level2 generator obtained
from the level3 generator by deleting one outdegree0 vertex or a pair of parallel arcs, and sup
pressing indegree1 outdegree1 vertices. If the level2 generator has symmetry, then the sets
of sides that are merged into one side, together with its symmetric side in the level2 generator,
and the sets of symmetric sides with sides that are not merged form sets of disjoint sides. This
can be seen in Table 7.1, where trinet 𝑇𝑆,2 has generator 2𝑐 as underlying generator.

• Let 𝑁 be a simple level3 network. If the trinet on two crucial leaves and one noncrucial leaf of
𝑁 is not simple, and the parent of one leaf is the root, then the two outgoing arcs of the root of
𝐺𝑁 form a set of possible sides in 𝑁′. The other sets are formed in the same way as described
before. For example, this is the case when one leaf on the red arcs in Figure 7.5d is considered,
as in Figure 7.6. The red arcs in Figure 7.5d form a set of possible sides.

Lastly, we observe that after the deletion of an outdegree0 vertex, say 𝑃, from a level3 generator 𝐺𝑁
and after suppressing the indegree1 outdegree1 vertices to obtain a level2 generator, the adjacent
arcs of the two parents of 𝑃 form a disjoint set of sides if the parents of 𝑃 form an arc in the level3
generator. For example, the red sides in Figure 7.5a form such a set. If the parents of 𝑃 do not form
an arc in 𝐺𝑁, then the adjacent arcs of each individual parent form a set of possibilities, as in Figure
7.5b happens. If an arc 𝑎 in a pair of parallel arcs is deleted from 𝐺𝑁, then the adjacent arcs of 𝑎 and
𝑎 itself form a set of possibilities. These are for example the blue arcs in Figure 7.5c.

7.1.3. Algorithm for level3 networks
We will now give Algorithm 1 which has as input a level3 generator 𝐺𝑁, the underlying generator of
network 𝑁, having a set of crucial sides of size three, its set of noncrucial sides, leaf 𝑠𝑚 on noncrucial
side 𝑆𝑚 and a set of crucial sides of which each side contains a leaf in 𝑁. Level1 trinets are not
considered, as for trinet 𝑇𝑆,1 in Table 7.1 happens.
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Algorithm 1 DeterminingSides determines all possible sides to be on for a leaf in 𝑁′, given the side in
𝑁, for all trinets on the leaf and two crucial leaves, where 𝑁 and 𝑁′ are binary, simple level3 networks
with isomorphic generators and 𝑇𝑛(𝑁) = 𝑇𝑛(𝑁′).
1: procedure DeterminingSides(𝐺𝑁)
2: Result: 𝑆, the set of sides where a leaf can be on in 𝑁′.
3: Initialisation: Let 𝐺𝑁 be a level3 generator with a set of crucial sides of size three. Let 𝑥1, 𝑥2, 𝑥3 be

the leaves in 𝑁 on sides 𝑋1, 𝑋2, 𝑋3, respectively, where {𝑋1, 𝑋2, 𝑋3} form a set of crucial sides in 𝐺𝑁.
Let 𝑆1, ... , 𝑆𝑛 be the noncrucial sides of 𝐺𝑁 and let 𝑠𝑚 be a leaf on side 𝑆𝑚 where 𝑚 ∈ {1, ... , 𝑛}.

4: for 𝑚 = 1 to 𝑛 do
5: for all 𝑥𝑖 , 𝑥𝑗 in combinations of two elements of 𝑥1, 𝑥2, 𝑥3 do Let 𝑇 be the trinet on {𝑠𝑚 , 𝑥𝑖 , 𝑥𝑗}

and 𝐺𝑇 the underlying generator of 𝑇 constructed from 𝐺𝑁 by deleting one crucial side of {𝑋1, 𝑋2, 𝑋3}
and suppressing indegree1 outdegree1 vertices and deleting indegree0 outdegree1 vertices.
Call the deleted crucial side 𝑋.

6: 𝑆 ← ∅
7: while 𝐺𝑇 is level2 do
8: if 𝐺𝑇 has no symmetry then
9: if 𝑋 is a vertex and its parents are adjacent then Let 𝑃1 be the set of sides which

are arcs incident to one of the parents of 𝑋 in 𝐺𝑁
10: if 𝑆𝑚 ∈ 𝑃1 then 𝑆 ← 𝑆 ∪ 𝑃1
11: else 𝑆 ← 𝑆 ∪ 𝑆𝑚
12: end if
13: else if 𝑋 is a vertex and its parents are not adjacent then Let 𝑃1 be the set of

sides in 𝐺𝑁 that are arcs incident to the same parent of 𝑋. Let 𝑃2 the set of sides in 𝐺𝑁 that are arcs
incident to the other parent of 𝑋.

14: if 𝑆𝑚 ∈ 𝑃𝑖 for 𝑖 ∈ {1, 2} then
15: for 𝑖 = 1 to 2 do
16: if 𝑆𝑚 ∈ 𝑃𝑖 then 𝑆 ← 𝑆 ∪ 𝑃𝑖
17: else 𝑆 ← 𝑆
18: end if
19: end for
20: else 𝑆 ← 𝑆 ∪ 𝑆𝑚
21: end if
22: else Let 𝑃1 be the set of sides in 𝐺𝑁 containing 𝑋 and its adjacent arcs.
23: if 𝑆𝑚 ∈ 𝑃1 then 𝑆 ← 𝑆 ∪ 𝑃1
24: else 𝑆 ← 𝑆 ∪ 𝑆𝑚
25: end if
26: end if
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27: else Let 𝐴 be the set of sides of 𝐺𝑇 and let 𝑓 ∶ 𝐴 → 𝐴 be a relabelling giving an

isomorphic generator such that 𝑓(𝑋𝑖) = 𝑋𝑖 and 𝑓(𝑋𝑗) = 𝑋𝑗.
28: if 𝑋 is a vertex and its parents are adjacent then Let 𝑃 be the set of sides which

are arcs incident to one of the parents of 𝑋 in 𝐺𝑁. Let 𝑃′ ∈ 𝐺𝑇 be the side which is obtained by
suppression of the parents of 𝑋 in 𝐺𝑁.

29: 𝑌 ← 𝑓(𝑃′)
30: 𝑃1 ← 𝑃 ∪ 𝑌
31: Let 𝑃2 and 𝑃3 be sets of sides in 𝐺𝑁 such that they are images of each other under 𝑓 in 𝐺𝑇.
32: for 𝑖 = 1 to 3 do
33: if 𝑆𝑚 ∈ 𝑃𝑖 then 𝑆 ← 𝑆 ∪ 𝑃𝑖
34: else 𝑆 ← 𝑆
35: end if
36: end for
37: else if 𝑋 is a vertex and its parents are not adjacent then Let 𝑢 and 𝑣 be the

parents of 𝑋. Let 𝑃 and 𝑄 be the sets of sides which are arcs incident to 𝑢 and 𝑣, respectively, and
let 𝑃′ and 𝑄′ be the sides in 𝐺𝑇 obtained by suppression of 𝑢 and 𝑣, respectively.

38: if 𝑓(𝑃′) = 𝑄′ then 𝑃1 ← 𝑃∪𝑄 and let 𝑃2 and 𝑃3 be sets of sides in 𝐺𝑁 such that
they are images of each other under 𝑓 in 𝐺𝑇 such that 𝑃𝑖 ∩ 𝑃𝑗 = ∅ for 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗.

39: else 𝑌 ← 𝑓(𝑃′)
40: 𝑍 ← 𝑓(𝑄′)
41: 𝑃1 ← 𝑃 ∪ 𝑌
42: 𝑃2 ← 𝑄 ∪ 𝑍
43: Let 𝑃3 be set of sides in 𝐺𝑁 such that they are images of each other under 𝑓 in 𝐺𝑇 such that 𝑃𝑖∩𝑃𝑗 = ∅

for 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗.
44: end if
45: for 𝑖 = 1 to 3 do
46: if 𝑆𝑚 ∈ 𝑃𝑖 then 𝑆 ← 𝑆 ∪ 𝑃𝑖
47: else 𝑆 ← 𝑆
48: end if
49: end for
50: else Let 𝑃 be the set of sides in 𝐺𝑁 containing 𝑋 and its adjacent arcs. Let 𝑃′ ∈ 𝐺𝑇

be the side which is obtained by suppression of the vertices above and below 𝑋 in 𝐺𝑁.
51: 𝑌 ← 𝑓(𝑃′)
52: 𝑃1 ← 𝑃 ∪ 𝑌
53: Let 𝑃2 and 𝑃3 be sets of sides in 𝐺𝑁 such that they are images of each other under 𝑓 in 𝐺𝑇 such that

𝑃𝑖 ∩ 𝑃𝑗 = ∅ for 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗.
54: for 𝑖 = 1 to 3 do
55: if 𝑆𝑚 ∈ 𝑃𝑖 then 𝑆 ← 𝑆 ∩ 𝑃𝑖
56: else 𝑆 ← 𝑆
57: end if
58: end for
59: end if
60: end if
61: end while
62: return 𝑆
63: end for
64: end for
65: end procedure
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7.2. Towards encoding level𝑘 networks with 𝑘nets
Algorithm 1 helps to find the possible sides of leaves in simple level3 networks. In this section, we
present a generalisation of this algorithm. By Theorem 4, every binary, simple level𝑘 network 𝑁 on
𝑋 with |𝑋| ≥ 𝑘 + 1 and without symmetry besides parallel arcs in its underlying generator is encoded
by its set of (𝑘 + 1)nets for 𝑘 ≥ 2. To know whether certain simple level𝑘 networks are (weakly)
encoded by their 𝑘nets, a generalisation of Algorithm 1 can be useful. In general, the class of binary,
simple level𝑘 networks with at least 𝑘 leaves is not weakly encoded by 𝑘nets for 𝑘 ≥ 2. Indeed, we
presented a counterexample for 𝑘 = 3 in Section 7.1, but we do not know yet whether the statement is
true for 𝑘 ≥ 4. We conjecture that, for some 𝑘 ≥ 4, most simple level𝑘 networks are weakly encoded
by their 𝑘nets.

To prove the statement for certain networks, we can, for the sake of contradiction, consider two
binary, simple level𝑘 networks𝑁 and𝑁′ such that𝑁 ≠ 𝑁′, with isomorphic generators and with 𝑆𝑘(𝑁) =
𝑆𝑘(𝑁′). Then, we have to prove 𝑁 = 𝑁′ and as part of that, prove that we can assume that all leaves
are on the same sides in 𝑁′ as in 𝑁. For this part, we will give the generalisation of Algorithm 1, giving
for a leaf on noncrucial side 𝑆 ∈ 𝐸(𝐺𝑁) the set of possible sides on which it can be on in 𝑁′. The
algorithm does this with a level𝑘 generator with a set of crucial sides of size 𝑘 as input, supposing that
each side contains a leaf in 𝑁 and it gives the possible sides for a leaf for different 𝑘nets. Moreover,
for each such generator, 𝑘 different 𝑘nets exhibited by networks with such a generator are considered,
each on the leaf on the considered side and on 𝑘−1 crucial leaves. There are 𝑘 choices of 𝑘−1 sides
out of a set of 𝑘 crucial sides. Note that in Algorithm 1 three different trinets are considered for each
level3 generator with a set of crucial sides of size three.

We present Algorithm 2 which actually works in the same way. Indeed, we consider only simple
level(𝑘−1) 𝑘nets with a level(𝑘−1) underlying generator. For example, let 𝐺𝐾 be such a level(𝑘−1)
generator, the underlying generator of 𝐾, a level(𝑘 − 1) 𝑘net on a noncrucial leaf and 𝑘 − 1 crucial
leaves. We choose the 𝑘 − 1 crucial leaves such that these leaves are on 𝑘 − 1 different sides in 𝐺𝑁,
the given level𝑘 generator. Then, 𝐺𝐾 can be obtained from 𝐺𝑁 by deleting a crucial side of 𝐺𝑁 and
suppressing all indegree1 outdegree1 and indegree0 outdegree1 vertices.

Note that we call 𝐺𝐾 the underlying generator of 𝐾. There is one possibility for 𝐾 for which its
underlying generator is not defined according to Definition 2.23. This is when 𝐾 is not simple, as in the
trinet on {𝑠, 𝑘, 𝑙} in Figure 7.6. For this trinet, the level3 generator 𝐺𝑁 is the generator in Figure 7.5d
and we see that its blue arcs are merged and the red arcs are not. In this case, the two outgoing arcs of
the root of 𝐺𝑁 form a set of possible sides and 𝐺𝐾 is generator 2𝑏, because the indegree0 outdegree1
vertices are deleted from 𝐺𝑁 after deleting a crucial side.

s
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Figure 7.6: A nonsimple trinet.
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Algorithm 2 DeterminingSides determines all possible sides to be on for a leaf in 𝑁′, given the side
in 𝑁, for all 𝑘nets on the considered leaf and 𝑘 − 1 crucial leaves, where 𝑁 and 𝑁′ are binary, simple
level𝑘 networks with isomorphic generators and 𝑆𝑘(𝑁) = 𝑆𝑘(𝑁′).
1: procedure DeterminingSides(𝐺𝑁)
2: Result: 𝑆, the set of sides where a leaf can be on in 𝑁′.
3: Initialisation: Let 𝐺𝑁 be a level𝑘 generator with a set of crucial sides of size 𝑘. Let 𝑥1, 𝑥2, ... , 𝑥𝑘

be the leaves in 𝑁 on sides 𝑋1, 𝑋2, ... , 𝑋𝑘, respectively, where {𝑋1, 𝑋2, ... , 𝑋𝑘} forms a set of crucial
sides in 𝐺𝑁. Let 𝑆1, ... , 𝑆𝑛 be the noncrucial sides of 𝐺𝑁 and let 𝑠𝑚 be a leaf on side 𝑆𝑚 where
𝑚 ∈ {1, ... , 𝑛}.

4: for 𝑚 = 1 to 𝑛 do
5: for all 𝑖 ∈ {1, ... , 𝑘} do Let 𝐾 be the 𝑘net on {𝑥1, ... , 𝑥𝑖−1, 𝑥𝑖+1, ... , 𝑥𝑘 , 𝑠𝑚} and let 𝐺𝐾 be

the underlying generator of 𝐾 constructed from 𝐺𝑁 by deleting crucial side 𝑋𝑖 and suppressing
indegree1 outdegree1 vertices and deleting indegree0 outdegree1 vertices.

6: 𝑆 ← ∅
7: while 𝐺𝐾 is level(𝑘 − 1) do
8: if 𝐺𝐾 has no symmetry other than parallel arcs then
9: if 𝑋𝑖 is a vertex and its parents are adjacent then Let 𝑃1 be the set of sides which

are arcs incident to one of the parents of 𝑋𝑖 in 𝐺𝑁.
10: if 𝑆𝑚 ∈ 𝑃1 then 𝑆 ← 𝑆 ∪ 𝑃1
11: else 𝑆 ← 𝑆 ∪ 𝑆𝑚
12: end if
13: else if 𝑋𝑖 is a vertex and its parents are not adjacent then Let 𝑃1 be the set of

sides in 𝐺𝑁 that are arcs incident to the same parent of 𝑋. Let 𝑃2 the set of sides in 𝐺𝑁 that are arcs
incident to the other parent of 𝑋.

14: if 𝑆𝑚 ∈ 𝑃𝑖 for 𝑖 ∈ {1, 2} then
15: for 𝑖 = 1 to 2 do
16: if 𝑆𝑚 ∈ 𝑃𝑖 then 𝑆 ← 𝑆 ∪ 𝑃𝑖
17: else 𝑆 ← 𝑆
18: end if
19: end for
20: else 𝑆 ← 𝑆 ∪ 𝑆𝑚
21: end if
22: else Let 𝑃 be the set of sides in 𝐺𝑁 containing 𝑋𝑖 and its adjacent arcs.
23: if 𝑆𝑚 ∈ 𝑃1 then 𝑆 ← 𝑆 ∪ 𝑃1
24: else 𝑆 ← 𝑆 ∪ 𝑆𝑚
25: end if
26: end if
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27: else Let 𝐴 be the set of sides of 𝐺𝐾 and let 𝑓1, ... , 𝑓𝑛 be all relabellings of sides in 𝐴

where 𝑓𝑖 ∶ 𝐴 → 𝐴 ∀𝑖 ∈ {1, ... , 𝑛} giving an isomorphic generator.
28: if 𝑋𝑖 is a vertex and its parents are adjacent then Let 𝑃 be the set of sides which

are arcs incident to one of the parents of 𝑋𝑖 in 𝐺𝑁. Let 𝑃′ ∈ 𝐺𝐾 be the side which is obtained by
suppression of the parents of 𝑋𝑖 in 𝐺𝑁.

29: Let 𝑌1, ... , 𝑌𝑛 be the images of 𝑃′ under relabellings 𝑓1, ... 𝑓𝑛, respectively, and let 𝑌′ =
𝑛
⋃
𝑖=1
𝑌𝑖.

30: 𝑃1 ← 𝑃 ∪ 𝑌′
31: Let 𝑃2, ... , 𝑃𝑞 be sets of sides in 𝐺𝑁 such that |𝑃𝑗| ≥ 2 ∀𝑗 ∈ {2, ... , 𝑞} and ∀𝑍 ∈ 𝑃𝑗 ∃𝑓𝑖 for some

𝑖 ∈ {1, ... , 𝑛} such that 𝑓𝑖(𝑍) ≠ 𝑍 and 𝑓𝑖(𝑍) ∈ 𝑃𝑗.
32: for 𝑖 = 1 to 𝑞 do
33: if 𝑆𝑚 ∈ 𝑃𝑖 then 𝑆 ← 𝑆 ∪ 𝑃𝑖
34: else 𝑆 ← 𝑆
35: end if
36: end for
37: else if 𝑋𝑖 is a vertex and its parents are not adjacent then Let 𝑢 and 𝑣 be the

parents of 𝑋. Let 𝑃 and 𝑄 be the sets of sides which are arcs incident to 𝑢 and 𝑣, respectively, and
let 𝑃′ and 𝑄′ be the sides in 𝐺𝑇 obtained by suppression of 𝑢 and 𝑣, respectively.

38: if 𝑓(𝑃′) = 𝑄′ then 𝑃1 ← 𝑃∪𝑄 and let 𝑃2 and 𝑃3 be sets of sides in 𝐺𝑁 such that
they are images of each other under 𝑓 in 𝐺𝑇 such that 𝑃𝑖 ∩ 𝑃𝑗 = ∅ for 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗.

39: else 𝑌 ← 𝑓(𝑃′)
40: 𝑍 ← 𝑓(𝑄′)
41: 𝑃1 ← 𝑃 ∪ 𝑌
42: 𝑃2 ← 𝑄 ∪ 𝑍
43: Let 𝑃3 be set of sides in 𝐺𝑁 such that they are images of each other under 𝑓 in 𝐺𝑇 such that 𝑃𝑖∩𝑃𝑗 = ∅

for 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗.
44: end if
45: for 𝑖 = 1 to 3 do
46: if 𝑆𝑚 ∈ 𝑃𝑖 then 𝑆 ← 𝑆 ∪ 𝑃𝑖
47: else 𝑆 ← 𝑆
48: end if
49: end for
50: else Let 𝑃 be the set of sides in 𝐺𝑁 containing 𝑋 and its adjacent arcs. Let 𝑃′ ∈ 𝐺𝑇

be the side which is obtained by suppression of the vertices above and below 𝑋 in 𝐺𝑁.
51: 𝑌 ← 𝑓(𝑃′)
52: 𝑃1 ← 𝑃 ∪ 𝑌
53: Let 𝑃2 and 𝑃3 be sets of sides in 𝐺𝑁 such that they are images of each other under 𝑓 in 𝐺𝑇 such that

𝑃𝑖 ∩ 𝑃𝑗 = ∅ for 𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗.
54: for 𝑖 = 1 to 3 do
55: if 𝑆𝑚 ∈ 𝑃𝑖 then 𝑆 ← 𝑆 ∩ 𝑃𝑖
56: else 𝑆 ← 𝑆
57: end if
58: end for
59: end if
60: end if
61: end while
62: return 𝑆
63: end for
64: end for
65: end procedure
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We will give an example of how the algorithm works for a level4 generator. Let 𝐺𝑁 be the level4 gener
ator in Figure 7.7a. It contains a pair of parallel arcs, and the relabelling of sides 𝐻, 𝑃, 𝐿 with 𝐽, 𝑄, 𝐿 gives
an isomorphic generator. Let 𝑁 be a binary, simple level4 network having 𝐺𝑁 as underlying generator.
Let 𝑎, ... , 𝑗, 𝑙, 𝑚1, 𝑚2, 𝑜, 𝑝, 𝑞 be arbitrary leaves in 𝑁 on sides 𝐴, ... , 𝐽, 𝐿,𝑀1, 𝑀2, 𝑂, 𝑃, 𝑄, respectively. We
consider 4nets 𝑇𝑆,1 on {𝑠,𝑚2, 𝑜, 𝑝}, 𝑇𝑆,2 on {𝑠,𝑚2, 𝑜, 𝑞}, 𝑇𝑆,3 on {𝑠,𝑚2, 𝑝, 𝑞} and 𝑇𝑆,1 on {𝑠, 𝑜, 𝑝, 𝑞} where
𝑠 is a leaf on some noncrucial side 𝑆 of 𝐺𝑁. Note that 𝑜,𝑚2, 𝑝 and 𝑞 are crucial leaves. We have given
two examples of 𝑇𝑆,3, namely the 4net on {𝑔,𝑚2, 𝑝, 𝑞} and the 4net on {𝑏,𝑚2, 𝑝, 𝑞} to see that if a 4net
contains a leaf that is on a side which is an outgoing arc of the root of 𝐺𝑁, it is possible that the 4net
is not simple. All these 4nets are given in Figure 7.7. The results for all different sides and different
4nets are shown in Table 7.2. The overlapping sides are the possible sides for a leaf in 𝑁′.
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(d) 𝑇𝑆,3 where 𝑆 is side 𝐺.
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(e) The nonsimple 4net 𝑇𝑆,3 where 𝑆 is side
𝐵.

o g

p

q

(f) 𝑇𝑆,4 where 𝑆 is side 𝐺.

Figure 7.7: An example of a level4 generator with four different 4nets on three crucial leaves and one noncrucial leaf exhibited
by 𝑁.

In this thesis we prove encoding results by contradiction. We conjecture that, in general, most simple
level𝑘 networks are weakly encoded by their 𝑘nets. To prove which level𝑘 networks are encoded
by their 𝑘nets for some 𝑘, Algorithm 2 can be used. Implementing the algorithm helps for the most
complicated part of the proof, if a proof by contradiction is used, in the same way as the proofs of the
other encoding results in this thesis. We conjecture that, as in Nipius, 2020 is done, generators with
a certain level have to be considered piece by piece if it has to be proved that all leaves are on the
same sides in 𝑁 and 𝑁′. Indeed, if unequal binary, simple level𝑘 networks 𝑁 and 𝑁′ are given, then we
have proved in Section 4.1.4 that the generators are isomorphic if 𝒮𝑘(𝑁) = 𝒮𝑘(𝑁′). If all leaves are on
the same sides in 𝑁 and 𝑁′, then by Lemma 11, the order of the leaves on each side is the same. So
proving that leaves are on the same sides in 𝑁 and 𝑁′ is the part for which we presented this algorithm.

If a certain level𝑘 generator is given as input, Algorithm 2 gives for leaves on each side the possible
sides that the leaves can be on in 𝑁′, for each 𝑘net as described. The ‘overlapping’ sides, for example
the last column in Table 7.2, is not given by Algorithm 2, so this has to be added in the implementation.
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Leaf on side
𝑆 in 𝑁 Trinet 𝑇𝑆,1 Trinet 𝑇𝑆,2 Trinet 𝑇𝑆,3 Trinet 𝑇𝑆,4

Result
for 𝑁′

𝐴 𝐴 𝐴 𝐴 ∨ 𝐵 𝐴 𝐴
𝐵 𝐵 𝐵 𝐴 ∨ 𝐵 𝐵 𝐵
𝐶 𝐶 𝐶 𝐶 ∨ 𝐸 ∨ 𝐹 𝐶 𝐶
𝐷 𝐷 𝐷 𝐷 𝐷 ∨𝑀1 ∨ 𝑀2 ∨ 𝐺 𝐷
𝐸 𝐸 𝐸 𝐶 ∨ 𝐸 ∨ 𝐹 𝐸 𝐸
𝐹 𝐹 ∨ 𝐻 ∨ 𝐽 𝐹 ∨ 𝐻 ∨ 𝐽 𝐶 ∨ 𝐸 ∨ 𝐹 𝐹 𝐹
𝐺 𝐺 ∨ 𝐼 ∨ 𝐿 𝐺 ∨ 𝐼 ∨ 𝐿 𝐺 𝐷 ∨ 𝑀1 ∨ 𝑀2 ∨ 𝐺 𝐺
𝐻 𝐹 ∨ 𝐻 ∨ 𝐽 𝐹 ∨ 𝐻 ∨ 𝐽 𝐻 𝐻 𝐻
𝐼 𝐺 ∨ 𝐼 ∨ 𝐿 𝐺 ∨ 𝐼 ∨ 𝐿 𝐼 𝐼 𝐼
𝐽 𝐹 ∨ 𝐻 ∨ 𝐽 𝐹 ∨ 𝐻 ∨ 𝐽 𝐽 𝐽 𝐽
𝐿 𝐺 ∨ 𝐼 ∨ 𝐿 𝐺 ∨ 𝐼 ∨ 𝐿 𝐿 𝐿 𝐿

Table 7.2: Possibilities for a side in 𝑁′ for a leaf in 𝑁, where 𝐺𝑁 is the generator in Figure 7.7a.

If the results are all single sides, as in Table 7.2 is the case, then it is proved that if the underlying
generator of 𝑁 is the generator in the input, then all leaves in 𝑁 are on the same sides in 𝑁′. If the
results are not all single leaves, then it has still to be proved that for leaves on certain sides that they
are on just one and the same side in 𝑁′, after possibly relabelling sides of 𝐺𝑁′ . We conjecture that this
is not possible for every generator, because we conjecture that there are level𝑘 networks that are not
encoded by their 𝑘nets for choices of 𝑘 > 3.
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Conclusion and further research

directions
We conjectured that level𝑘 phylogenetic networks are encoded by (𝑘 + 1)nets. We aimed to prove
as strong as possible encoding results that support this conjecture. It turns out that recoverable level𝑘
networks without symmetry besides parallel arcs in the underlying generator of the restriction to any
nontrivial biconnected component are encoded by (𝑘 + 1)nets. A network is recoverable if it contains
no biconnected components with one outgoing arc (𝑢, 𝑣) and all leaves are below 𝑣 and a generator
has symmetry if it contains a pair of parallel arcs, or if there exists a graph automorphism on its vertices
such that at least one vertex is not mapped to itself. This supports our hypothesis for a large set of
networks. It generalises the results in Van Iersel and Moulton, 2012 and Nipius, 2020 for cases without
such symmetry and builds further on the research on encoding networks having a certain number of
reticulations. If some algorithm can build a level𝑘 network without this symmetry in its biconnected
components from a set of given (𝑘 + 1)nets for some 𝑘 ≥ 2, we proved that if only the crucial (𝑘 + 1)
nets are known, then this is enough to build the network that represents the complete evolutionary
history. The crucial (𝑘+1)nets are subnets on 𝑘+1 leaves such that they are simple and also level𝑘.

In Chapter 4, we have also proved that the class of binary, recoverable level𝑘 networks without
symmetry besides parallel arcs in the underlying generator of the restriction to any nontrivial bicon
nected component, with at least 𝑐 + 1 leaves and with a set of crucial sides of size at most 𝑐 in any
biconnected component is weakly encoded by 𝑐 +1 nets. A set of crucial sides contains all indegree2
outdegree0 vertices together with at least one arc of each pair of parallel arcs of a generator. This
means that if some algorithm can build a level𝑘 phylogenetic network without this symmetry from a set
of given 𝑐 + 1nets for some 𝑐 ≥ 2, then the network on all species that can be build is unique in that
class. In this case, if only crucial 𝑐 + 1nets are given as input, there is enough information to build the
network.

The results in Chapter 4 do not hold in general for level𝑘 networks having symmetry in their underly
ing generators. We did not find a counterexample for networks having symmetry, so we still conjecture
that all level𝑘 networks are encoded by (𝑘 + 1)nets. This is an open problem. We have proved other
encoding results for networks containing such symmetry. In Chapter 5, we proved that the class of
binary, recoverable level𝑘 networks on at least 𝑝 leaves, such that for all networks 𝑁 in this class the
restriction of𝑁 to any biconnected component has leaves on at most 𝑝 sides of its underlying generator,
is weakly encoded by 𝑝nets for all 𝑝 > 2. This means that if there is an algorithm that can build the
phylogenetic network on all leaves from subnets on 𝑝 leaves, then the network is unique in the defined
class. We actually proved that crucial 𝑝nets are enough to give a unique network, and we did this for
all results in Chapter 5. The advantage of the results from this chapter is that they hold for networks
with symmetry. Also, if 𝑝 ≤ 𝑘 + 1, we see that the defined class of level𝑘 networks is weakly encoded
by 𝑝nets and therefore weakly encoded by (𝑘+1)nets. This is a result that builds further on the theory
and meets our expectations. If 𝑝 > 𝑘 + 1, the results do not imply that level𝑘 networks are encoded
by (𝑘 + 1)nets.
We proved that level4 phylogenetic networks are encoded by 6nets. This meets our expectations,
because if level4 networks are encoded by 5nets, then they are encoded by 6nets. We actually
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proved that level4 networks are encoded by crucial 6nets, since the crucial 6nets were always enough
to determine the networks. In Nipius, 2020, it is proved that the class of most binary recoverable level3
networks are weakly encoded by trinets by considering groups of generators with different properties.
In the proof of our result, we analyse groups of generators, too, especially their symmetries. We prove
our result again by contradiction, and the most laborious part is to prove for two binary, simple level4
networks with the same generator and the same set of 6nets that the same leaves are on the same
sides in both networks. First, we proved for level4 generators that if there is a symmetry that is an
automorphism mapping vertices in a cycle of at least three vertices, then this must be a 4cycle and
there are only two different level4 generators with this property. For simple networks with one of
these generators as underlying generator, we proved that they are encoded by 6nets. Second, we
proved that we may assume that the same leaves are on the same sides if there exists a set of crucial
sides in the underlying generator of size at least three. A set of symmetric sides is a set of sides
of a generator with symmetry, such that all sides in this set can be mapped to each other, giving an
isomorphic generator, and there is no bigger set with this property. We saw that these generators must
contain a certain subnetwork. Lastly, we proved that we may assume that the same leaves are on
the same sides if there exists a set of crucial sides in the underlying generator of size at most two.
Combining the results, together with the result that the order of the leaves on each side is the same,
gives that all binary, simple level4 networks are encoded by 6nets. As a corollary, this holds for all
binary recoverable level4 networks. The way of analysing the symmetries, that is, looking for cycles
and trying to find subnetworks, can help to strengthen this result to 5nets or extend this result to higher
level networks, although the higher the level of generators, the more generators there are (Gambette
et al., 2009).

Algorithm 2 can be used to attempt to prove which level𝑘 networks are encoded by their 𝑘nets for
some 𝑘. If certain level𝑘 networks are encoded by their 𝑘nets instead of (𝑘 + 1)nets, it is a stronger
result. This is still an open problem. We conjecture that not all level𝑘 networks are encoded by their
𝑘nets for each 𝑘 > 3, but the level3 counterexample cannot be generalised easily. It can be useful to
know whether some level𝑘 phylogenetic network (after building it with some algorithm) is encoded by
its 𝑘nets. It is therefore useful to have a tool for proving this. Algorithm 2 is such a tool. It determines
the possible sides of a leaf in 𝑁′ if the side in 𝑁 is given, but it does not ensure that a leaf is on a unique
side in 𝑁′. An additional proof has to be given if more than one possible side is given by the algorithm.
The algorithm works for 𝑘nets, but not for subnets lower than 𝑘 because it constructs 𝑘nets on 𝑘 − 1
crucial leaves, and not less than 𝑘 −1. Extending the algorithm to smaller subnets would make it even
stronger.

We will now give some recommendations for further research. We showed that the method of proving
that level𝑘 networks are encoded by (𝑘+1)nets for 𝑘 = 2 and 𝑘 = 3 in Nipius, 2020 and Van Iersel and
Moulton, 2012 does also work in this thesis for some general cases. Therefore, we can recommend
this method for proving that level𝑘 phylogenetic networks are encoded by 𝑝nets for some 𝑘 ≥ 4 and
𝑝 ∈ ℕ. An open problem is to prove the conjecture that level𝑘 networks are encoded by (𝑘 + 1)nets.
A different open problem is finding which level𝑘 networks are encoded by 𝑘nets. The bigger the set
of networks that are encoded by 𝑘nets, the more useful the result. A related open problem is to find a
counterexample showing that not all level𝑘 networks are encoded by 𝑘nets for some 𝑘 > 3.

For proving that leaves are on the same sides in two binary, simple level𝑘 networks with the same
generator and the same set of (𝑘 + 1)nets, an algorithm has to be used. A method that does not con
sider each generator separately may be used instead. Finding such an algorithm is an open problem.

Algorithms TriLoNet (Oldman et al., 2016) and TriL2Net (Kole, 2020) construct level1 phyloge
netic networks from smaller level1 networks and construct level2 networks from level2 trinets. Our
encoding result for level4 networks makes the development of an algorithm that constructs level4 phy
logenetic networks from its set of 6nets an open problem. Indeed, because of our encoding results,
such an algorithm would give the unique and correct network that represents the complete evolutionary
history by a level4 network. A more general open problem is to develop an algorithm that constructs
level𝑘 networks from a set of (𝑘 + 1)nets or 𝑘nets.

We recommend to implement Algorithm 2. It is a first step to determine whether simple level𝑘
networks with generators with and without symmetry are encoded by their 𝑘nets. In Gambette et al.,
2009, an algorithm to construct all level𝑘 generators is presented and can be used. It is an open
problem to extend this algorithm to 𝑝nets for 𝑝 < 𝑘. In that case, the algorithm has to be extended to
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the deletion of more than one crucial side from a set of crucial sides.
In applications, nonbinary phylogenetic networks exist (Marcussen et al., 2012, Brassac and Blat

tner, 2015). Therefore it can be useful to extend the results of this thesis to nonbinary phylogenetic
networks. An open problem is therefore proving that (nonbinary) level𝑘 phylogenetic networks are
encoded by their (𝑘 + 1)nets for 𝑘 ≥ 2.
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