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Topology optimization has seen increased interest with the rise of additive manufacturing (AM) as a fabrication
method, because of its ability to exploit the geometric complexity that AM offers. However, AM still imposes
some geometric restrictions on the design, most notably on minimum feature size, overhang angles, and
enclosed voids. Enclosed voids are problematic because for many AM methods it is impossible to remove
supports, unmelted powder or uncured liquid from them. This paper introduces a filter based on a cumulative

sum flood fill algorithm to alleviate this issue in a flexible manner. This filter produces a density field where
every enclosed void element is rendered solid. It successfully eliminates enclosed voids in both 2D and 3D
problems, with low computational cost due to its geometric nature. In addition we demonstrate direct control
over the location, amount, and size of powder removal features by varying boundary conditions for the filter,
running additional flood fills, and adding morphology operators, respectively.

1. Introduction

Topology optimization (TO) is a computational design technique
which aims to find the optimal material distribution for a given struc-
tural problem without requiring a predetermined design concept. En-
suring TO inherently conforms to the shape and feature restrictions that
a chosen manufacturing technique entails is an active area of research,
as this eliminates the need for an additional post-processing step to
make the generated designs manufacturable. This post-processing step
requires additional effort once the part has been made, and typically
also reduces performance of optimized designs. Numerous contribu-
tions have already been made for traditional manufacturing techniques,
e.g. casting and milling, to ensure castability e.g. [1-3] and machinabil-
ity e.g. [4-7], but these are too restrictive when applied to additive
manufacturing (AM). TO has seen increased interest in recent years
with the rise of AM as a viable manufacturing technique. This is mainly
due to the ability of TO to exploit the increased geometric complexity
that AM offers, where the notable remaining geometric manufacturing
constraints concern overhanging features, minimum size of features
and enclosed voids. The former of these constraints have already been
studied extensively, therefore the focus of this paper is on the latter.

Enclosed voids prevent access to sacrificial support structures, mak-
ing it impossible to remove them. In powder- or liquid-based AM,
enclosed voids will trap unmelted powder or uncured liquid even when
the part is fully self-supporting. Unreachable supports or trapped matter
add unnecessary mass, e.g. Reddy et al. [8] found that 82 cm? of loose
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powder was trapped in a topology optimized part of 175 cm?, which
negatively influences the performance of the part. Another example
is the optimized part by Delissen et al. [9] given in Fig. 1. In this
design the large enclosed void marked with green was made accessible
by inclusion of evacuation channels, while the smaller blue enclosed
voids were filled. Workarounds such as adding evacuation channels add
additional design modification and post-processing steps, therefore a
method to suppress enclosed voids during the TO process is desired.
Various studies have already targeted this problem in TO. These can
be subdivided into physics-based, geometrical and overhang avoidance
categories. From physics-based methods the earliest contribution is the
virtual temperature method proposed by Liu et al. [10]. This method
replaces any voids with a virtual heat source of high conductivity, while
solids are replaced with virtual thermally insulating material. These
new material properties are in turn combined with heat dissipation
boundaries at the edge and a maximum temperature constraint, which
can then only be satisfied by eliminating the enclosed voids or creating
channels of void material between the enclosed voids and the dissipa-
tion boundaries. The virtual temperature method has been extended
further by Li et al. [11] with the addition of different heat dissipation
boundaries and additional 3D problems. Luo et al. [12] changed the for-
mulation of the virtual temperature method by making the virtual heat
source temperature dependent to better predict the resulting maximum
virtual temperature. Wang et al. [13] utilized a similar strategy, based
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(a) Top view. (b) Cross section, with enclosed voids

marked by green and blue.

Fig. 1. Optimized part with enclosed voids.
Source: Image taken from [9].

on an electrostatic model rather than heat conduction. Yamada and
Noguchi [14] applied a virtual temperature enclosed void constraint
to level-set based topology optimization. A diffusion physics approach
is taken by Sabiston and Kim [15], where a constraint is formulated
based on the time a virtual particle takes to reach the domain boundary.
Finally, in the approach proposed by Donoso et al. [16] an eigenvalue
problem is solved to ensure that all voids are connected to each other,
which was expanded further in [17]. Physics-based approaches allow
for the control over whether or not enclosed voids are allowed to exist,
but offer less explicit control over the amount and size of these void
features, so parameters need to be chosen carefully or there is a risk
of heavily restricting the possible geometry. They also require solving
an additional physical field, adding significantly to the computational
effort required.

A geometrical approach is taken by Zhou et al. [18] in the side
constraint method, in which the optimization is carried out by changing
the size and shape of predetermined void features. These void features
have their midpoint restricted to the outside boundary, ensuring that
any void is always accessible from this boundary. Gaynor et al. [19] use
a similar approach in the void projection method, which also changes
the design problem so that the optimization is carried out on where
the voids exist and subsequently restricting these to nucleate from a
predetermined surface. The structural connectivity control approach
proposed by Xiong et al. [20] is based on dividing void elements
into different sets and using a shortest path algorithm to ensure all
void sets are connected to the boundary. Liu et al. [21] employ a
similar approach combined with a genetic algorithm to find the op-
timal path between voids. Some geometrical approaches encounter the
same disadvantage as physics-based approaches, in that the geome-
try can be unnecessarily restricted by the imposed connectivity con-
straint. Other geometrical approaches utilize fully non-differentiable
operations, which are more applicable as a post processing step.

The third category consists of overhang avoidance methods, which
focus on ensuring that any enclosed void is self-supporting so that
there is no unreachable support material left in enclosed voids. Luo
et al. [12] used their altered virtual temperature method to generate
self-supporting structures in an enclosed void, which was further ex-
panded by Luo et al. [22] to generate porous support material in any
enclosed void. Wang [23] also applied a virtual temperature scheme,
while simultaneously optimizing for the optimal build orientation. Van
de Ven et al. [24] applied a method based on multiple overhang
filtering steps in order to ensure self-supporting enclosed voids. These
methods successfully alleviate the issue of support structures stuck in
enclosed voids, but are only suitable for AM methods where no leftover
powder or liquid remains in enclosed voids, e.g. for fused filament
fabrication.

In this paper a new geometric method to eliminate enclosed voids is
proposed for a density-based TO setting, which is less restrictive on the
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geometry than current geometric solutions. It is defined as a filter based
on a flood fill algorithm combined with the cumulative sum approach
used previously in a multi-axis machining filter by Langelaar [6]. It
uses the current density field as input and produces a density field
where all unreachable void elements are converted to solid. The filter
is a purely geometrical operation, for which no auxiliary PDEs are
solved. It therefore requires very little additional computational effort
to determine the new density field. It is possible to achieve direct
control over powder removal features through a combination with the
morphology operators proposed by Sigmund [25], as these can be used
to impose a minimum feature size on void regions. The operation of the
filter is semi-differentiable, but this is shown to not have a significant
impact on the final topology or convergence. The method is illustrated
here using structured meshes, but the formulation is general and can
be applied to an unstructured mesh as well.

While a flood fill algorithm has not been used in topology optimiza-
tion before, it is well established in drawing programs [26-28]. Its most
famous use is the bucket fill tool, where it works through a queue of
pixels with an initial colour, and changes them to a different specified
colour. Anytime a pixel is processed from the queue its neighbours with
the same initial colour are added to it. This allows any connected area
of pixels with the same colour to be changed to a different colour.

This paper is organized as follows: Firstly in Section 2, the flood
fill algorithm is presented, including sensitivity analysis and implemen-
tation aspects. In Section 3 the optimization formulations, problems
and settings are introduced, after which the proposed enclosed void
prevention filter and the effect of its parameters is studied in Section 4.
The paper ends with a discussion in Section 5, followed by conclusions
in Section 6.

2. Cumulative sum flood fill algorithm
2.1. Working principle

The purpose of the proposed filter is to change any enclosed void
to solid, thus forcing the optimizer to either change the shape to be
without enclosed voids, or to generate a path towards the enclosed void
if it is deemed too important to remove. This is achieved by utilizing
a cumulative sum flood fill algorithm shown in Algorithm 1 that loops
over all elements.

input : p Unflooded density field
output: ¢ Cumulatively summed density field

1initialize Q with boundary elements ; // Q = Queue
2¢ =p; foriin Q
3P=Q;

awhile Q # {} do

5 | Find element i = argmin({¢ Vi€ Q})

// P =Processed elements

6 | A = elements adjacent to i and not in P for j in A do
7 Ei=p;+¢&
8 add j to Q and P
9 | end
10 | remove i from Q
11 end

Algorithm 1: Pseudo-code of the cumulative sum flood fill
method

The algorithm works by considering a queue of elements Q, from
which it always processes the lowest density element first. The queue
is initialized with a prescribed set of elements, which in this paper
are all elements reachable from outside the design space. Whenever
an element is processed all adjacent unprocessed elements A are added
to the queue, with their density increased through summation with the
density of the element currently being processed. Adjacent elements
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Fig. 2. Initial conditions used in the visualization of the flood fill method.

are defined as sharing an edge in 2D or a face in 3D. The list P tracks
which elements have already been in the queue, so that any element
in P cannot be added another time. The result of this is that any void
element requires a path of void elements towards it from the prescribed
boundaries to remain void in the flooded density field. If this path does
not exist the density of the void element is increased by the amount of
solid or intermediate density elements that were processed on the way.
For the given input design and element numbering shown in Figs. 2,
3 shows several steps of the cumulative sum portion of this algorithm,
for a sample with both an accessible and an enclosed void.

This algorithm does result in a density field with values above one,
which is fixed by performing a smooth minimum projection on the
cumulatively summed density field:

¢i=(§i‘q+1)’3 Vie{l,...,N}. (€Y

Here ¢; denotes a flooded element density and N is the total amount
of elements. The steepness of the smooth minimum function can be
scaled with the parameter ¢, as shown in its plot given in Fig. 4. It
shows that for ¢ = 1 we expect intermediate densities, but also retain
sensitivity information for many elements into the cumulative sum.
Higher values of ¢ will trade this sensitivity information for fewer
intermediate densities.

Applying the smooth minimum function finally achieves the desired
flooded density field. Fig. 5 shows how the two main steps of this filter
influence a given input density field.

2.2. Sensitivity analysis

Sensitivities for this method can be incorporated into any existing
gradient based optimization formulation with objective f by applying
the chain rule:

7} of o

9f _ 9/ 9% @
dp d¢ dp

Here the term % needs to be determined for this method, which can
be done by investigating the steps in Algorithm 1. Using the chain rule
once again, the sensitivities to be determined can be separated into the
sensitivities for the cumulative sum and the smooth minimum portions
of the algorithm.
¢ _ ¢ 9§

dp  oEap’
The value of the cumulatively summed densities is determined when-
ever an element is added to the queue. This value then only depends
on the element currently being processed and its own density. How-
ever, since the value of the element currently being processed also

3
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(a) Outer boundary added to queue Q.

171 (111|011

1701 (1(01]02]1

I1{1|11]1]1]1

(b) Result of the first flood fill step,
where {i, j} = {20, 13}.
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(c) Result of the second flood fill step,
where {i,j} = {13,12}.
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(d) Result of the third flood fill step,
where {i,j} = {12,11}.
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(e) Result of the fourth flood fill step,
where {i} = {1}, which did not have
any adjacent untouched elements. For
this step all lowest density elements
in the queue had a density value of
1, so this and the following steps
were chosen based on lowest element
number.

{11 |1]1]01]1
1{1|1|13]03]|02] 1

1|11 (1 1)|1]1

(H) Result of the fifth flood fill step,
where {i,j} = {2,9}.

11| 1(1f1]01]1

1(1|2/(13]03]|02] 1

111|111 1f1

(8) Result of the sixth flood fill step,
where {i,j} = {3,10}.

Fig. 3. Visual representation of the flood fill method, where each element is filled
according to their status in the floodfill algorithm. Here a blue fill denotes untouched
elements, a yellow fill denotes already modified elements still in the processing queue
Q, and a green fill denotes fully processed elements no longer in the processing queue
Q. Bold numbers indicate elements that changed status.
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(b) Density field after cumulative sum flood fill
algorithm é&.
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(c) Density field after smooth minimum projec-
tion ¢.

Fig. 5. Visual representation of the two main steps in the flood fill filter, where grey
and white denote solid and void elements, and blue denotes void elements of the
original design that have been changed to solid due to the filter.

depends on all the elements that were processed leading up to it, these
sensitivities also have to carry over to the newly added element. The
sensitivities of any new element then become a list of ones and zeroes,
where the ones correspond with all elements that were processed
leading up to it. Using the same notation as in Algorithm 1 and with k
denoting any element the cumulative sum sensitivities become:

1 if k=
9¢;
=L =) e @
apy. i otherwise.
9py

The fact that all sensitivities of the previously processed elements
are also included does mean that % becomes a large sparse matrix.

Note that between iterations the order in which elements are processed
can change, as it depends on the densities of all elements. These
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changes in order are not taken into account when calculating the
sensitivities, which means that the method is semi-differentiable. The
consequence of this is investigated in Section 5.2.

The smooth minimum projection is an element wise operation so the
sensitivities can be determined similarly using regular differentiation
methods. This gives:
0p; 1

e A e ] —é—
rea R CRES VI )

2.3. Control over access channel properties

For any void region to exist after the filter an access channel is
required of at least one element wide. Depending on the mesh size one
element could be too small to be able to remove trapped powder or
liquid, in that case control over the minimum size of the void area is
necessary. Morphology operators by Sigmund [25] can be used for this
purpose by first performing a dilation, shown in Eq. (6), of the solid
domain before the floodfill. This step ensures any void smaller than the
specified morphology operator radius is changed to solid. Afterwards
the erosion step, shown in Eq. (7), is performed on the flooded density
field.

. Yien, e

(T ) ©
B ZieNe eP(1=r1)

pezl—ll’l ﬁ /ﬂ (7)

These two equations are a smooth maximum and minimum operator
within a certain prescribed neighbourhood N,. The g parameter con-
trols the steepness of this smooth approximation. Continuation on £ is
performed to improve convergence and results in this paper will follow
a similar continuation strategy as described by Sigmund [25], with an
initial p value of 0.2, which gradually increases until a value of 200. In
this work the value is increased by 3% every iteration, as opposed to
doubling it every 50 iterations.

3. Problem definition
3.1. Optimization formulation

The flood fill algorithm is defined as a filter, which presents multiple
ways to implement the method. In this paper three different options
will be considered: only using it as a filter, only using flooded densities
in the volume constraint and applying a geometric constraint to limit
the difference between the flooded and regular densities. These im-
plementations will be applied to well-known compliance minimization
topology optimization problems.

Throughout the optimization simplified isotropic material interpo-
lation with penalization (SIMP) is used to suppress the use of inter-
mediate densities. In this paper the lower bound to avoid a singular
stiffness matrix is incorporated within the SIMP formulation, as pro-
posed by Sigmund [25]. Eq. (8) shows the SIMP implementation to
obtain element Young’s modulus E,, where the input value s can denote
either the flooded or unflooded element density, depending on what
implementation method is chosen. E is the material Young’s modulus
and p is the penalization parameter.

E,(s) = Eqjn + (E - Emin) sP

with 0<s<l. ®

The density filtering method as proposed by Bruns and Tortorelli
[29] is also used in this paper, which maps the design variables x to
the filtered design variables p.

When the algorithm is used purely as a filter then the flooded
densities in each element e are used for determining both the stiffness
matrix K and the volume V with its maximum allowed value of V..
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The stiffness matrix is in turn used to determine the displacements u
from the applied loads f.

Il’;il’l fTu
s.t.  K(p((p)u=fFf -
rew |, (P1)
Vmax
0<x,<1

When the flooded densities are used for the stiffness matrix any
filled up enclosed void still adds stiffness to the overall structure,
therefore the second approach, shown in Eq. (P2) is only using flooded
densities for the volume constraint. This causes any enclosed void filled
up by the flood fill to only add unnecessary mass to the result, while
offering nothing in terms of stiffness. The intermediate densities in the
flood filled density field caused by lower values of ¢ can cause the
true volume V, of the unflooded density field to exceed the required
maximum. For instance, when the cumulatively summed density (&,)
of an element is equal to 1, then its flooded counterpart (¢,) will be
equal to 0.5 for ¢ = 1, as shown in Fig. 4. Therefore, the true volume
value will be reported for any results using this problem formulation.
This problem formulation also only works when adding more mass
always results in a better objective, which is the case with compliance
minimization.

min  fTu
X
s.t. K(pu=f
14 P2
@@ | o (P2)
Vmax
0<x,<1.

Finally, in the geometric constraint formulation a constraint be-
tween the flooded and regular densities is added, which works by
imposing a maximum total amount of elements that the regular and
flooded density field are allowed to differ. Since the density difference
between a flooded and unflooded element can take any sign due
the smooth minimum, the difference for each individual element is
squared. This function can then be used to describe the full geometric
constraint:

N ( b, — 2
e = Pe)
— -y <0. 9
2~ x < ©
e=1

Here y denotes the chosen constraint value and N the total amount of

elements. The optimization problem reads:

min fTu

X

st. K(pu=f
V(p)
Tax_ISO (P3)

N (¢e _pe)z

pI —~ 7 <0
0<x,<1.

3.2. Optimization problem description

The first problem used to study the flood fill method is a 2D
cantilever case as shown in Fig. 6, which is discretized in a mesh of
150 x 50 elements. In general applying an enclosed void constraint on
a 2D case is very restrictive on the geometry, as there are no pathways
to make towards a void without severely impacting the stiffness. This
makes this 2D case an academic stress test for the algorithm, with the
added advantage that results are easier to visualize than 3D designs.

The real application for enclosed void prevention for AM concerns
3D structures. Fig. 7(a) shows the problem description of a 3D torsion
beam, which is discretized in a mesh of 60 x 20 x 20 elements.
The non-design domain is two elements thick and the torsion load
is applied as shown in Fig. 7(b). This specific case and discretization
is commonly used in the literature to study enclosed void prevention
methods [10,16,18,19]. In the torsion beam case the optimizer pushes
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Fig. 6. Problem description of the cantilever beam.
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(b) Side view.

Fig. 7. Problem description of the torsion beam.

all material to the edge of the design space to withstand the torsion
load. This in turn causes a single large enclosed void in the centre,
therefore this problem serves as a good benchmark for the enclosed
void prevention algorithm.

3.3. Optimization settings

The optimization algorithm used in this work is the method of
moving asymptotes by Svanberg [30], with a move limit of 0.1 and
a convergence criteria based on the average design variable change
between iterations:

% i <|xe - x‘e’ld)) <r. 10)
e=1

Throughout the optimization specific parameters are used, given in
Table 1. Each optimization is performed using a uniform initial density
distribution equal to the specified volume constraint.
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Fig. 8. Free form optimized result for cantilever problem with a reference compliance
of CC =100%, V, = 50% and in 167 iterations.

Cref

Table 1

Optimization settings used in numerical examples.
Symbol Description Value
r Radius of density filter 2 elements
p SIMP penalization parameter 3
E Ti-4V-6Al Young’s modulus 113.9 GPa
v Ti-4V-6Al Poisson’s ratio 0.342
E i lower bound SIMP formulation 113.9 kPa
Top stopping criterion 2D problems 107#
T3p stopping criterion 3D problems 5-10™*
V, Volume constraint 50%

4. Numerical examples
4.1. 2D cantilever beam

4.1.1. Comparison of problem formulations

First we consider the 2D cantilever problem, for which the free-form
solution is given in Fig. 8. This case allows for a visual comparison
of the different problem formulations and parameter settings of the
flood fill algorithm. The density field used for visualization in all results
is what density field is used to determine K. In the filter problem
formulation results this is the flooded density field (¢), in all other
formulations this is the unflooded density field (p).

The results when using the filter implementation (P1) are given in
Fig. 9 for different values of ¢q used in the smooth minimum projection.
These results show how the optimization process uses a large internal
area of intermediate densities in order to place more material near the
top and bottom of the design space, to increase the moment of inertia.
In the filter implementation these intermediate densities still offer some
stiffness to the overall structure. This solution can therefore be seen as
equivalent to an I-beam, where two stiff flanges are connected by a thin
web. Unfortunately, these intermediate densities are often not desired
from a manufacturing standpoint, which leads to the conclusion that
the filter implementation by itself is not a sufficient solution to prevent
enclosed voids.

The volume constraint problem formulation (P2) can remedy the
issues observed for the filter formulation. The large area of interme-
diate densities in the previous result would add limited stiffness to
the structure, whilst costing a significant amount of material through
the flood-filled volume constraint. To increase the efficiency of ma-
terial usage, the optimization process would have to add material in
the unflooded density field. Results for this problem formulation are
given in Fig. 10 for different values of ¢, showing that the optimiza-
tion process converges to a sideways arch solution which could be
considered optimal. This design has also been found in studies on
milling constraints in topology optimization [6,7] and previous work
on enclosed voids in topology optimization [18]. Another observation
is that choosing the value of ¢ represents a trade-off between faster
convergence and reduced amount of overshoot of the true volume for
lower and higher values of ¢, respectively. Especially in the results for
g = 1 the amount of intermediate densities in the flooded density field
allow the optimization process to use much more material than the
volume constraint originally is supposed to allow, which in turn causes
the compliance to be significantly reduced. For additional clarity as to

(@) g =1, &= =205.6%, 232 iterations.

(b) g =2, == =142.2%, 164 terations.

ref

(©) ¢ =3, = =130.8%, 173 iterations.
ref

Fig. 9. Cantilever problem optimized using the filter formulation.

(@ q=1, ;= = 103.5%, V, = 61%, 137 iterations.
ref

) g=2, CL =125.2%, V, = 51%, 201 iterations.

(©) ¢ =3, == = 1304%, V, = 50%, 286 iterations.

Fig. 10. Cantilever problem optimized using the volume constraint formulation.

(a) Unflooded density field (b) Flooded density field

Fig. 11. Unflooded density field used in stiffness matrix and flooded density field used
for volume constraint using g = 1.
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(@ q=1, = =103.5%, V; = 61%, 137 iterations.
ref

() ¢=2, = =1252%, V, = 51%, 201 iterations.

5
Crer

Fig. 12. Cantilever problem optimized using the geometric constraint formulation with
y =107,

400
| — Volume formulation, q = 2 4
i — Geometric formulation, q = 2
300 |
E 2
= e mimm 3 S e e m oo =
<7200 0 4
o] -
2 5
9100 ©
—4
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Iterations

Fig. 13. Convergence plots of representative 2D results, where the solid line denotes
the objective and the dashed line denotes the flooded volume constraint or the
geometric constraint.

why this occurs, the unflooded and flooded density field are given side
by side in Fig. 11.

While the volume constraint problem formulation prevents enclosed
voids, it does so by relying on the property that adding material always
leads to a better objective. This is a trait of compliance minimization,
but is not generally applicable to any topology optimization problem.
For alternative problems the geometric constraint problem formulation
could be used to prevent enclosed voids. Results using the geometric
constraint are given in Fig. 12. The geometric constraint also prevents
enclosed voids, but the convergence is negatively impacted by its
introduction, as evidenced by the significantly increased number of
iterations. This is caused by the geometric constraint severely lim-
iting the possible design changes, which in turn is caused by the
reduced amount of sensitivity information available due to the smooth
minimum projection.

Iteration histories of the volume and geometric constraint formula-
tion are given in Fig. 13. These show that in the volume constraint
formulation the objective initially sharply increases, as the volume
constraint is violated due to the large amount of additional material
that the flooded density field adds. After this initial sharp increase
the objective history shows little to no irregularities. However, this
cannot be said for the convergence plot of the geometric constraint,
which shows more undesired behaviour. As noted before, this can be
explained by the severely limited design changes possible when the
geometric constraint is introduced.
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Fig. 14. Cantilever problem optimized using the volume constraint formulation with
continuation on g, LL =130.5%, V, = 50%, 146 iterations.
et

(a) Continuation on g, Ci = 130.5%, 511 iterations.
ref

(b) Continuation on g, CL = 133.8%, 308 iterations.

(c) Continuation on both ¢ and y, Ci = 130.0%, 257
ref

iterations.

Fig. 15. Cantilever problem optimized using the geometric constraint formulation with
continuation.

4.1.2. Continuation

Continuation can be a viable strategy to benefit from the faster con-
vergence of low values of ¢ while reducing the amount of intermediate
densities it causes in later iterations. The continuation strategy used
here for the volume constraint problem formulation is to start at a value
of ¢ = 1 and increase this value by 1% every iteration, until the value
of ¢ = 3 is reached. The result when applying continuation is given
in Fig. 14, which shows that it works well to reduce the amount of
iterations until convergence while also reducing intermediate densities.

Convergence for the geometric constraint case in Fig. 12 was very
slow due to its limitation on the possible design changes. Using con-
tinuation can be very beneficial to remove this limitation, as it will
allow larger design changes in early iterations. Continuation could
only be applied to ¢ as in the volume constraint formulation, but the
geometric constraint formulation allows for continuation on y as well.
For y the applied strategy is to start at a value of 0.1 and to linearly
reduce this by 10~3 until it reaches a value of 10~3. This continuation
strategy is chosen to allow for some freedom in the initial iterations
of the optimization. For ¢ we use the same procedure as described
above. Geometric constraint implementation results when applying
continuation are given in Fig. 15. These show that the continuation
indeed improves convergence speed, where applying it to both the
constraint value y and the projection parameter ¢ shows the largest
improvement.
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Fig. 16. Convergence plots of 2D results using continuation, where the solid line
denotes the objective and the dashed line denotes the flooded volume constraint or
the geometric constraint.

Fig. 17. Free form optimized result for torsion beam problem with a reference
compliance of Ci = 100%, V, = 50%, converged in 110 iterations.
et

Iteration histories of 2D results using continuation are given in
Fig. 16. They show how the same sharp initial increase of the objective
for the volume constraint result still occurs with continuation, as our
volume constraint is still violated in early iterations. However, the
applied continuation on the geometric constraint greatly improved the
convergence behaviour.

4.2. 3D torsion beam

4.2.1. Volume constraint formulation

Next we consider the 3D torsion beam problem, which is used to
demonstrate that the method can also handle 3D cases. As noted in
literature [19] this is easier compared to the 2D cases, as there are
more directions in which to create powder removal pathways without
drastically impacting the geometry and its performance. This study
will therefore focus more on being able to control the access channel
properties, for which we use the volume constraint formulation, as
it performed the best in the 2D study. The free-form solution to the
torsion beam problem is given in Fig. 17. The goal of the enclosed
void prevention method for this case is to ensure that the single large
enclosed void in the centre of the beam is accessible. All 3D results
are displayed with a smoothed density field and with densities below
a value of 0.5 removed.

We first present results obtained using only the volume constraint
problem formulation (P2). Fig. 18 shows the optimized torsion beam
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Fig. 18. Optimized results for the torsion beam problem using the volume constraint
problem formulation. The interior of designs (a) and (b) are similar to Fig. 17 and a
cross-section view is therefore omitted. The interior of (c) is fully solid.

results for different values of ¢q. The resulting designs show that the
method successfully makes the enclosed void accessible. When g = 1
and ¢ = 1.5 are used in the smooth minimum projection the method
results in a small access channel towards the large enclosed void in
the centre. This single access channel has significantly less impact
on compliance when compared to previous work [10,16,18], where
the final design had multiple access channels for the single void in
the centre. The amount of material used significantly exceeds the
volume constraint, which in turn results in a significant reduction in
compliance. When ¢ = 2 is used, the method pushes all material to
the middle of the design space. While this does successfully eliminate
enclosed voids, it is also a sub-optimal design. It is suspected that this
is related to the reduced amount of sensitivity information available for
higher values of ¢. The initial value for ¢ should therefore not be too
large when using this method and all remaining results will use a value
ofg=1.

Iteration histories of 3D results using the volume constraint formu-
lation are given in Fig. 19. Once again, these show how the objective
initially sharply increases due to the violated volume constraint. Af-
ter this initial sharp increase the objective history again shows no
irregularities.

4.2.2. Continuation and additional constraints
The volume constraint results show that it is beneficial for conver-
gence to use ¢ = 1, but as observed in the 2D cantilever cases the
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Fig. 19. Convergence plots of 3D results, where the solid line denotes the objective
and the dashed line denotes the flooded volume constraint.

Fig. 20. Torsion beam problem optimized using the volume constraint formulation
with continuation on g, ci = 98.1%, V, = 55%, 282 iterations. The interior of this

ot
design is similar to Fig. 17 and a cross-section view is therefore omitted.

large amount of intermediate densities then allows for more material
usage than the volume constraint specifies. To maintain the faster
convergence while still only using the specified amount of volume
two strategies are considered. The first strategy is continuation on
g, in which ¢ is increased by 1% every iteration until a value of 2.
Fig. 20 shows the torsion beam result using continuation on g. This
result required less iterations to converge to an optimal design than
the case with a larger value of ¢ shown in Fig. 18(b). It also reduced
the overshoot of the true volume value, but did not entirely eliminate
it.

The second strategy is adding an additional volume constraint on
the unflooded density field to the volume constraint problem for-
mulation (P2). This additional constraint would ensure that only the
specified amount of volume is used:

w—1<0‘ an

max

The result for this strategy is shown in Fig. 21, which required a number
of iterations comparable to only applying a flooded volume constraint
with ¢ = 1, while not exceeding the total allowed amount of material.
This result shows that adding a second volume constraint is an effective
strategy to enforce the intended material usage, while still preventing
enclosed voids through the floodfill method. All remaining results will
therefore use this strategy in order to make them easier to compare
with the reference case in Fig. 17 and with each other.

Iteration histories of 3D results using the volume constraint formu-
lation with continuation and additional constraints are given in Fig. 22.
They again show similar behaviour to the previous iteration histories
using the volume constraint formulation.

4.2.3. Control of amount of access channels
For practical purposes it is beneficial to be able to control the
amount of access channels, e.g. so that powder can be removed by
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Fig. 21. Torsion beam problem optimized using the volume constraint formulation

with an additional volume constraint on p, CL = 100.9%, V, = 50%, 183 iterations.
ot

The interior of this design is similar to Fig. 17 and a cross-section view is therefore

omitted.
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Fig. 22. Convergence plots of 3D results using continuation and an additional con-
straint, where the solid line denotes the objective and the dashed line denotes the
flooded volume constraint.

flowing gas or liquid. The floodfill method can achieve control over
the amount of channels through applying multiple independent floodfill
steps on the initial unflooded density field. Each of these steps then has
their own associated initial boundary elements and volume constraint.
For example, if we were to enforce a minimum of two access channels
on a design, then we employ three total volume constraints: one on the
unflooded density field, one on the first flooded density field with initial
boundary A, and finally one on the second flooded density field with
initial boundary B. It is important to note that some care is necessary in
picking the initial boundary, as allowing them to overlap would allow
the optimization process to satisfy both flooded volume constraints
using only one access channel.

In the result given in Fig. 23 we enforce a minimum of four access
channels. Each of the large rectangular domain boundaries was used
as initial flood fill boundary, excluding the elements at the edges such
that no elements were present in multiple initial boundaries. The result
shows that the flood fill method can achieve control over the minimum
amount of access channels.

4.2.4. Control of access channel size

Depending on the mesh size it is possible that an access channel of
one element wide is not enough to expel all powder or liquid. For this
reason accurate control over the size of the access channel is necessary,
which can be achieved through morphology operators as described in
Section 2.3. Results using these are given in Fig. 24 for different radii.
The results all contain one singular access channel, but as expected its
size increases as the radius of the morphology operators increases.
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]|

Fig. 23. Optimized results for the torsion beam problem using the modified flood fill

algorithm, while enforcing a minimum of four access channels £ =100.6%, V, =50%,

4 Clei
107 iterations.

[

(a) Radius = 1, == = 101.1%, ¥, = 50%, 184 iterations.
ref

[

(b) Radius = 2, = =101.3%, ¥, = 50%, 153 iterations.
ref

(c) Radius = 3, Ci =100.8%, V, = 50%, 114 iterations.
ref

Fig. 24. Torsion beam problem optimized using the volume constraint formulation with
morphology operators of different radii to control access channel size. The interior of
these designs is similar to Fig. 17 and a cross-section view is therefore omitted.
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Fig. 25. Measured computational effort of the flood fill algorithm.

5. Discussion
5.1. Computational effort

The computational effort of the method is investigated by taking the
average of 5 optimization loops of 10 iterations. These were performed
with a laptop using a single core of an Intel Core i7-11850H processor.
The algorithm was written in Python using the PyMoto [31] topology
optimization framework. A cube of varying size is used as test case, to
which two alternatives are applied: Optimization with and without the
flood fill. The resulting computational effort is given in Fig. 25, where
the dots represent the acquired data. The figure shows that running
the optimization with the floodfill algorithm does add some additional
computational effort, which scales similarly to the linear solve used in
both cases.

It should also be noted that no special measures were taken to
optimize the code of the floodfill procedures, and that it was written in
an interpreted coding language. Because the method relies on looping
over all elements, it will have a significantly reduced computational
effort when implemented in a compiled language. The cost of sensitivity
analysis can further be reduced by implementing an adjoint sensitivity
analysis approach as described in [32].

5.2. Semi-differentiability

As noted in Section 2.2, the order in which elements are processed
depends on the element densities of that specific iteration. This part of
the algorithm is non-differentiable, which could lead to stability issues
during the optimization. We aim to investigate the impact of the semi-
differentiability of the algorithm by studying the results of the volume
constraint formulations in 2D and 3D. This is done by comparing when
any element is added to the queue between iterations. In particular
we register whether any element is added to the queue by a different
element than in the previous iteration, as this would mean that the
dependencies have changed and the sensitivities for that element are
no longer correct.

Fig. 26 shows what percentage of elements may have had faulty
sensitivity information because of this changed dependency for the 2D
results given in Fig. 10. It shows that for different values of ¢ the
percentage of elements with faulty sensitivities never surpasses 6%. The
plot for the 3D results of Fig. 18 is given in Fig. 27 and it shows a similar
error percentage. Furthermore, as the design stabilizes throughout the
topology optimization process, the occurrence of these dependency
changes quickly diminishes to levels well below 1%. Also considering
the regular appearance of the results obtained, it seems that the semi-
differentiable nature of the floodfill process has no strong detrimental
effect on the optimization process.
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Fig. 27. Fraction of elements with faulty sensitivities in 3D volume constraint results.

5.3. Influence of element numbering

The torsion beam results all had a similar location for their access
channel, which begs the question whether or not this is an optimal
location for this channel or if this is caused by the initial dependency of
the flood fill algorithm on element numbering. We performed two tests
to investigate which of these influenced the access channel location.
The first test is to apply a predetermined void non-design domain at
different locations along the beam, to force the optimizer to utilize that
location for its access channel. The results for this test are given in
Fig. 28. The compliance of the design in Fig. 21 is slightly higher than
the results presented in Fig. 28. However, this was found to be due to
the higher number of iterations that resulted in a slightly better 0-1
design. When running the case in Fig. 21 for 230 and 286 iterations,
similar to the results in Fig. 28, the design remains the same, however
the compliance ratio reduces to 100.7% and 100.4%, respectively.

The second test is to randomize the order in which the boundary
elements are added to the initial queue, therefore slightly changing
some dependencies. The resulting design when randomizing the order
of boundary elements is given in Fig. 29, where the optimizer opts to
place the access channel in the same x-location close to the boundary as
in the previous results. Different randomizations did result in a different
side, i.e. its y, z-coordinates, being chosen for the access channel, due
to the problem being symmetric in the y — z plane.

From these tests we can conclude that for this problem, the design
is primarily driven by structural reasons instead of any potential bias
induced by the floodfill algorithm. The access channels are created near
the base as this has minimal impact on structural performance.

11
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(a) Access channel forced to be halfway along the beam,
= = 1004%, V, = 50%, 286 iterations.

ref.

(b) Access channel forced to be three-quarters along the
€ =100.7%, V, = 50%, 230 iterations.

beam, e

ref

Fig. 28. Optimized results for the torsion beam problem when enforcing different
access channel locations. The interior of these designs is similar to Fig. 17 and a
cross-section view is therefore omitted.

Fig. 29. Torsion beam result when randomizing the order of the boundary elements,

CL =100.9%, V, = 50%, 184 iterations. The interior of this design is similar to Fig. 17
f

»
and a cross-section view is therefore omitted.

6. Conclusions

In this paper a new filter to eliminate enclosed voids in density-
based topology optimization is proposed. It does not rely on additional
physical analyses but on a simple flood fill process. The filter fills
up any void that cannot be reached from a prescribed boundary,
thus forcing a pathway towards these voids when they are deemed
important for the objective, or alternatively elimination of voids by
filling them with solid material. The filter is applicable in different
problem formulations, of which the volume constraint and geometric
constraint problem formulations are found to perform better than the
direct filter application.

The method involves a smooth minimum projection with a param-
eter ¢ that can be used to control the steepness of the projection.
Choosing the value of this parameter was found to be a trade-off
between intermediate densities present in the design and convergence
speed. Lower values of ¢ also allow for more material usage than the
volume constraint specifies in the volume constraint problem formu-
lation, which can be remedied by an additional volume constraint.
Continuation was found to be an effective measure to improve both
convergence speed and result definition.
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In 3D the method can be used to control the location, amount
and size of the void access channels. Their location can be controlled
by choosing a different initial described boundary in the algorithm,
while their amount can be controlled through running additional flood
fills with different prescribed initial boundaries. The size of the access
channels can be controlled through any means of enforcing a minimum
feature size on the void phase, which was done through morphology
operators.

The method has a relatively small impact on the computational
effort when compared to the linear solve required for the FEM anal-
ysis. The introduction of a semi-differentiable algorithm into gradient
based optimization could negatively impact the convergence of the
optimization. However, investigation of the number of elements with
faulty sensitivities revealed that this affects only a small fraction of the
elements, which quickly diminishes during the optimization process.

Currently this method allows for control over the location, size and
amount of access channels, but their maximum length or straightness
cannot be enforced. Imposing a maximum access channel length could
be used to ensure all powder can be removed through it. Another
possible extension is to ensure that two access channels to any void
are on opposite sides of that void, so that pressurized air or liquid can
be efficiently used to expel any leftover powder. The combination of
this method with existing additive manufacturing filters or constraints
for overhanging features is another important topic for future studies.

Another direction for future research is an alternative use of the
flood fill process. Undesirable disconnected solid parts can form in
certain topology optimization problems, e.g. in eigenfrequency maxi-
mization. These can be detected and eliminated in a similar manner as
the enclosed void prevention in the present paper.
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