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Abstract
Atrial fibrillation is a clinical arrhythmia with multifactorial mechanisms still unresolved. Time-
frequency analysis of epicardial electrograms has been investigated to study atrial fibrillation. How-
ever, deeper understanding can be achieved by incorporating the spatial dimension. Unfortunately,
the physical models describing the spatial relations of atrial fibrillation signals are complex and non-
linear; hence, conventional signal processing techniques to study electrograms in the joint space, time,
and frequency domain are less suitable. In this study, we wish to put forward a radically different ap-
proach to analyze atrial fibrillation with a higher-level model. This approach relies on graph signal
processing to represent the spatial relations between epicardial electrograms. To capture the frequency
content along both the time and graph domain, we propose the joint graph and short-time Fourier trans-
form. The latter allows us to analyze the spatial variability of the electrogram temporal frequencies.
With this technique, we found the spatial variation of the atrial electrograms decreases during atrial
fibrillation since the high temporal frequencies of the atrial waves reduce. The proposed analysis fur-
ther confirms that the ventricular activity is smoother over the atrial area compared with the atrial
activity. Besides using the proposed graph-time analysis to conduct a first study on atrial fibrillation,
we demonstrate its potential by applying it to the cancellation of ventricular activity from the atrial
electrograms. Experimental results on simulated and real data further corroborate our findings in this
atrial fibrillation study.

1. Introduction
Atrial fibrillation is a cardiac arrhythmia characterized

by rapid and irregular atrial beating and it is correlated with
stroke and sudden death [1–3]. Yet, the mechanisms under-
lying atrial fibrillation remain unresolved and challenging to
model. To analyze the disease, different signal processing
methods have been applied to the non-invasive body surface
electrocardiograms (ECGs), or to the invasive epicardial or
endocardial electrograms [4–8]. The epicardial electrogram
(EGM) is measured on the heart’s surface through multiple
electrodes and has a higher spatial resolution compared with
ECGs. This improved resolution makes EGMs appealing to
analyze atrial fibrillation over both space (heart surface) and
time. The methods proposed in the current work concern
EGM data.

Although different studies have analyzed electrograms
data in time and frequency domain [9–13], there remainmany
open questions that require alternative and novel tools to in-
vestigate atrial fibrillation. Experience in signal process-
ing suggests that incorporating the spatial dimension into
the time-frequency analysis may yield improved insights on
the atrial activity. However, the physical models for spatial
propagation are relatively complex and non-linear; hence,
rendering conventional signal processing methods are less
suitable for a joint space, time, and frequency domain anal-
ysis [14, 15]. It is also difficult to use physical models for
extracting useful information, e.g., activation time or con-
ductivity [16].

In this work, we wish to suggest a novel approach to
model epicardial electrograms at a higher abstraction level.
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This approach represents the spatial relation of different epi-
cardial electrograms through a graph and relies on graph sig-
nal processing to investigate electrograms in the joint space,
time, and frequency domain. We conduct a first study with
the proposed framework to identify spectral differences be-
tween sinus rhythm (normal heart rhythm) and atrial fibril-
lation, and between atrial and ventricular activities. We also
leveraged the proposed graph model to remove ventricular
components from the raw EGM measurements.

Graph-time signal processing: Graphs are natural tools
to model data living in high-dimensional and irregular do-
mains [17]. Graph signal processing provides a harmonic
analysis for signals residing on the graph vertices and has
been applied to brain signal analysis, Alzheimer classifica-
tion, and body motion [18–24]. However, despite show-
ing promise, graph signal processing is still unexplored for
heart-related problems. The EGM signals considered in this
work are (spatially) high-dimensional measurements taken
from epicardial sites of the atria during open-heart surgery
[25]. Graph signal processing poses itself then as a valid
candidate to account for the underlying mechanisms for an-
alyzing atrial fibrillation. The atrial activity during atrial
fibrillation is a complicated process for which it is hard to
find a good and tractable mathematical model. Graph signal
processing can tackle this issue by formulating a high-level
model for the atrial activity; hence, taking a step further to-
wards exploring the atrial fibrillation behavior. The use of
graphs to understand atrial fibrillation has also been consid-
ered in [26]. This work explored the association between dif-
ferent atrial regions through basic graph theory (e.g., graph
topology, density, average degree), yet left unexplored the
processing of signals on top of this graph. Instead, we here
investigate EGMs through graph signal processing.



The predominant tool in graph signal processing is the
graph Fourier transform; a generalization of the temporal
Fourier transform that provides a frequency interpretation
for graph data. Similar to the time domain, the graph fre-
quency components characterize the signal variation, now,
over the graph and have shown to be useful to study biologi-
cal activities [18–20]. However, since the EGM varies with
time, it is insufficient to consider the graph Fourier transform
alone as it analyzes the spatial variability for a fixed time in-
stant. To account for the temporal variability and capture
the interaction between space and time, we can consider the
so-called product graphs [27]. A conceptual simpler alter-
native is to apply the graph Fourier transform on the data
after applying the temporal Fourier transform (which tends
to decorrelate the time-domain data). Since the electrogram
is non-stationary, we use a joint graph and short-time Fourier
transform to investigate the spatial properties of the temporal
frequency content in a short-time period. Comparedwith the
product graph method, working on the joint graph-time do-
main is simpler, and the analysis can be done independently
per temporal frequency.

Spectral EGM analysis: We apply the graph-time spec-
tral analysis to characterize the spectral properties of the EGMs
in the graph and time domain. We first evaluate the spatial
variation of the EGMs at different temporal frequencies dur-
ing sinus rhythm and atrial fibrillation. During atrial fibril-
lation, we show the high temporal frequencies of the atrial
activity reduce, leading to a decrease of the spatial variation.
We also observed the spatial variation of the atrial activity
is higher than the spatial variation of the ventricular activ-
ity. We used this difference in behavior to extract the atrial
activity from the mixed EGM measurement.

Atrial activity extraction: Electrograms measured on the
atrial sites are naturally corrupted by the ventricular activ-
ity. The capability of a method to extract the atrial activity
is fundamental to promote it for atrial fibrillation studies. A
common technique to extract the atrial activity is template
matching such as average beat subtraction [28]. However,
this simple method does not adapt to changes in the EGM
morphology caused by the variations in the heart activities.
To deal with this shortcoming, adaptive ventricular cancel-
lation [29] has been proposed to extract the atrial activity.
Nevertheless, its performance is unstable as it relies on the
reference signal, often obtained with a reference lead. An-
other class of techniques using multi-lead information are
the signal separation algorithms such as principal compo-
nent analysis [30] and independent component analysis [31].
Results of these methods are compared in [32]. However, it
is questionable whether the statistical assumptions made by
these methods for ECGs (e.g. on the distribution and inde-
pendence of components) still hold for epicardial data. Mo-
tivated by our spectral analysis of the ventricular activity, we
proposed amore effective algorithm for atrial activity extrac-
tion based on graph signal smoothness. Ourmethod captures
the morphology in the heart activities and does not require
uncorrelated or independent assumption between leads. Our
numerical results on both synthetic and real data confirm
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Figure 1: Mapping array and its placement on the Bachmann’s
bundle area of the atria [25]. RAA: right atrial appendage;
LAA: left atrial appendage; VCS: vena cava superior; RSPV:
right superior pulmonary vein.

the potential of graph-based atrial extraction algorithm over
comparative alternatives. The latter corroborate the graph-
time spectral insights for atrial fibrillation.

Contribution and organization: Altogether, this paper
puts forward a radically different approach to analyze the
epicardial electrograms from a higher abstraction level. This
approach relies on graph signal processing and reveals fea-
tures of biological and engineering interest. It also shows
promise to remove interference from the atrial electrogram.
More concretely, the contributions of this paper are: (i) To
propose a high-level graph signal processing model for an-
alyzing the epicardial electrogram; (ii) To evaluate the tem-
poral and spatial variation of epicardial electrograms with a
graph-time spectral analysis framework. This helps to: (ii-
a) recognize atrial fibrillation impact on the atrial activity;
(ii-b) identify differences between the atrial and ventricular
activities; (iii) To propose a novel and effective atrial activ-
ity extraction algorithm based on the graph-time variations
of the atrial and ventricular activities.

The rest of this paper is organized as follows. Section 2
describes the data used in this work. Section 3 introduces the
basic notions of graph signal processing and the joint graph
and short-time Fourier transform. Section 4 performs the
graph-time spectral analysis under sinus rhythm and atrial
fibrillation. Section 5 introduces the graph-based atrial ac-
tivity extraction algorithm and Section 6 evaluates its per-
formance on synthetic and real data. We discuss the paper
contributions and future directions in Section 7 and draw the
conclusions in Section 8.

2. Database
We used the epicardial electrogram data measured on

human atria during open-heart surgery as reported in [25].
Ten patients (aged 64±16; 20% female) are analyzed in this
study. Three patients underwent surgery due to aorta ascen-
dens dilatation and the remaining seven due to aortic valve
and coronary artery disease; all patients did not have a re-
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Figure 2: Examples of the body surface electrocardiogram
(ECG) and epicardial electrogram (EGM) across time at one
electrode during (a) sinus rhythm and (b) atrial fibrillation.
AA: atrial activity; VA: ventricular activity. Top: ECG; middle
and bottom: EGMs at different electrodes. The red circles
mark the peak of the ventricular activity determined by the
ECG measurements.

ported history of atrial fibrillation. The atrial fibrillation was
induced manually by rapid pacing in the right atrial free wall
with the procedure detailed in the original publication [25].
We remark that induced atrial fibrillation has also been used
to investigate the disease in [26] and [9]. For each patient,
both sinus rhythm and atrial fibrillation data are recorded.

Previous research has suggested the Bachmann’s bundle
area is related to the pathophysiology of atrial fibrillation
[33]. However, this area is still one of the less understood.
Because of the connection with atrial fibrillation and the in-
teresting research aspects, we will hereinafter focus on the
EGMs measured on the Bachmann’s bundle.

Amapping array of 8×24 electrodeswith an inter-electrode
distance of 2mm is used to collect data. During themeasure-
ment phase, 188 electrodes record the EGMs; these are the
electrodes in the red box in Figure 1. Three of the remaining
electrodes record the body surface ECG signal, the reference
signal, and the calibration signal, respectively; the last elec-
trode is not used. The electrogram comprises five seconds of
recordings during sinus rhythm and ten seconds during atrial
fibrillation with a sampling rate of 1 kHz. All measurements
were taken in the ErasmusMedical Center, The Netherlands,
during 2014-2016 with procedures approved by the Medi-
cal Ethical Committee (MEC 2010-054 & MEC 2014-393)
[34, 35]. Further details about the data acquisition system
are reported in [25].

Figure 2 illustrates the ECGs and the EGMs during si-
nus rhythm and atrial fibrillation for one patient. In the ECG
(top plots in Figures 2(a) and 2(b)), the high peaks indi-
cate the ventricular activity, while the lower peaks before
them indicate the atrial activity. The atrial activity appears

weak compared with the ventricular activity. In the EGM
measurements (middle and bottom plots in Figures 2(a) and
2(b)), the atrial activity is more pronounced, albeit short in
duration. This difference is due to spatial averaging occur-
ring when measuring the atrial signal on the body surface,
compared with when measuring it on the epicardium.

FromFigure 2(b), we see that during atrial fibrillation the
atrial and the ventricular activities are difficult to distinguish
since they appear irregular and overlap. In other words, the
ventricular activity affects the analysis on the atrial activity;
hence, extracting the atrial activity from the measurement is
critical for atrial fibrillation research.

The EGMs measured by the different electrodes (mid-
dle and bottom plots in Figure 2) show a time delay when
measuring the atrial activity in different positions. However,
they do not show any obvious time delay when measuring
the ventricular activity. This is because the mapping array
is close to the atria and far from the ventricle. Also, the am-
plitudes of the ventricular activity are different at different
electrodes due to the propagation attenuation.

The above discussion highlights the limitations of the
body surface ECG–the atrial activity in there is weak and
gets easily corrupted by noise; hence, rendering the time-
frequency analysis unreliable. Although proposed invasive
methods measured a stronger atrial activity, they used low-
resolution mapping arrays and analyzed the data only in time
or temporal frequency domain [4–7]. Differently, we con-
sider high-resolution epicardial measurements and analyze
the data in the joint space, time, and frequency domain.

3. Theory
In this section, we recall the basic concepts on graph sig-

nal processing and introduce the joint graph and short-time
Fourier transform.
3.1. Graph signal processing

Graphs and graph signals: Consider a network repre-
sented by an undirected graph  = ( ,  ,W), where  =
(v1,⋯ , vK ) is the set ofK vertices,  is the set of edges, and
W is the graph adjacencymatrix with entriesW(i, j) = Wi,j .Here, Wi,j ≥ 0 represents the edge weight connecting ver-
tices vi and vj andWi,j = 0 indicates no connection betweenvertices. The neighbor set of vertex vi is denoted asi. Thegraph Laplacian matrix is L = D −W, where D is the diag-
onal degree matrix with Di,i =

∑K
j=1Wi,j .A graph signal is a set of values over the vertices, i.e.,

it is a mapping from the vertex set to the set of real num-
bers, y ∶  → ℝ. The epicardial electrograms recorded
by all electrodes in the mapping array is an example of a
graph signal. Let yi(t) be the signal of vertex vi at time
t for i = 1,… , K and t = 0,… , T − 1. The graph sig-
nal at time t is compactly represented by the K × 1 vector
y(t) = [y1(t), y2(t),… , yK (t)]T .The electrical activities recorded by the electrodes are
related to each other and form an electrical network. We
constructed a graph by considering each electrode as a ver-
tex. There are two ways to build the edges in the graph: (i)
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Figure 3: Different graph Laplacian eigenvectors of the graph.
(a) u0 = 1∕

√

K1 is the constant eigenvector shown by the
same color over all vertices; (b) u1 is a slow-varying eigenvector
shown by a smooth color transition from the top vertices to
the bottom ones; (c) u9 is a faster-varying eigenvector over
the graph shown by the multiple color variations in adjacent
vertices.

based on the data structure, e.g., correlation; (ii) based on
physical properties, e.g., distance.

To compare the sinus rhythm signal with the atrial fibril-
lation signal, we consider a fixed graph structure for both sit-
uations. With the illustration in Figure 3(a), the edges are de-
termined by the electrodes position; each vertex is connected
with its eight nearest neighbors. This expresses that an elec-
trode (vertex) has strong similarities with the surrounding
electrodes. In other words, this graph is built with the prior
knowledge that under healthy conditions neighboring ver-
tices record a similar signal. The edge weights are based on
the distance between two vertices. This is a common ap-
proach in graph signal processing when there is little prior
knowledge about the signal. The weight of edgeWi,j is

Wi,j =
(di,j
�

)−1

(1)

where di,j is the distance between two connected vertices
and � is a scaling parameter. We chose � as the smallest dis-
tance between two vertices to normalize the largest weight
to one.

Graph Fourier transform and smoothness: The graph
Laplacian matrix is symmetric, positive semidefinite, and
accepts the eigenvalue decomposition

L = U�UH (2)
whereU = [u0,u1,⋯ ,uK−1] is the set of orthonormal eigen-
vectors, � is the diagonal matrix of eigenvalues, and (⋅)H is
the Hermitian operator. The eigenvalues are sorted in in-
creasing order 0 = �0 < �1 ≤⋯ ≤ �K−1.The graph Fourier transform (GFT) of signal y(t) with
respect to Laplacian L is

ỹ(t) = UHy(t) (3)
where ỹ(t) = [ỹ(0, t), ỹ(1, t),… , ỹ(K − 1, t)]H contains the
GFT coefficients ỹ(k, t) for graph frequency index k of time

t. The inverse GFT is
y(t) = Uỹ(t). (4)

The GFT generalizes the temporal Fourier transform: for the
graph being a cycle that represents the temporal axis of a
periodic signal, the GFT matches the discrete Fourier trans-
form [27]. The GFT analyzes the signal variation over the
graph for a fixed time instant. Since the transform (eigenvec-
tor) matrix U depends on the graph structure, it gives a har-
monic decomposition for signals living in irregular domains
where the traditional discrete Fourier transform cannot be
applied. For readers familiar with spectral network theory,
the GFT can also be seen as the signal projection onto the
Laplacian eigenspace.

The GFT coefficients ỹ(k, t) for lower values of k in-
dicate how much the slower varying eigenvectors over the
graph contribute to y(t). For larger values of k, these coef-
ficients indicate how much the faster varying eigenvectors
over the graph contribute to y(t). The coefficient ỹ(0, t) in-
dicates the contribution of the constant component (equal
to 1∕√K at each vertex) on y(t) [36]. Therefore, index k
is called the graph frequency index. Figure 3 depicts three
eigenvectors of the considered graph: the eigenvector ukchanges more rapidly over adjacent vertices for larger k.

Just like temporal bandlimited signals, we can define ban-
dlimited graph signals. In many practical cases, the coeffi-
cients ỹ(k, t) have only a few non-zero entries. A bandlim-
ited graph signal y(t) is therefore defined as a graph signal
with GFT coefficients [36]

ỹ(k, t) = 0, for k > K0 ∈ {0,⋯ , K − 1} (5)
implying the signal has no content outside the graph fre-
quency band of {0, K0}. In this study, we will often see thatEGM signals exhibit a bandlimited behavior over the graph.

To measure the signal variation over the graph, the graph
Laplacian quadratic form of y(t) is defined as [36]

V (y(t)) = y(t)HLy(t)

=
∑

i∈

∑

j∈i

Wi,j (y(i, t) − y(j, t))
2. (6)

This quadratic form shows the variation of signal y(t) over
the vertices for a fixed t is a weighted sum of the difference
between any two connected vertices. The edge weight indi-
cates the contribution of a connection to the overall varia-
tion. If V (y(t)) is small, the signal is smooth, i.e., it has
similar values in adjacent vertices. If V is large, the signal
changes faster over the graph, i.e., it has different values in
adjacent vertices. For the three eigenvector signals in Figure
3, we have 0 = V(u0) < V(u1) < V(u9).
3.2. Joint STFT and GFT

Graph signal processing considers only a single time in-
stant and does not capture the correlation across time. Since
the signals we study are time-varying and non-stationary, the



joint graph and short-time Fourier transform is defined next
to exploit signal dependencies across both graph and time.
In simple words, the short-time Fourier transform (STFT) is
applied first to transform the signal per vertex to the temporal
frequency domain; this approximately decorrelates the data
per vertex. Subsequently, the GFT is applied to each tem-
poral frequency to treat each frequency as an independent
graph signal.

Let us split the signal intoM temporal frames of length
TM and let y(�, t) ∈ ℝK×1 be the graph signal in frame
� ∈ {0,… ,M − 1} at time instant t, i.e., the signal of all
electrodes at one time instant. We collect all signals recorded
in frame � in the matrix

Y(�) = [y(�, �TM ),y(�, �TM + 1),⋯ ,

y(�, (� + 1)TM − 1)] ∈ ℝK×TM
(7)

where the ith row of Y(�) corresponds to the time-varying
signal measured by the ith electrode in frame �.

For the STFT transform, we consider F temporal fre-
quency bins and apply a temporal window followed the dis-
crete temporal Fourier transform to each row of Y(�). The
STFT coefficient matrix of (7) at frame � over the F tempo-
ral frequencies is

Ŷ(�) = [ŷ(�, 0), ŷ (�, 1) ,… , ŷ (�, F − 1)] ∈ ℂK×F (8)
The f th column of Ŷ(�) with f ∈ {0, ..., F − 1} represents
the temporal frequency components of all vertices in frame
� and frequency bin f and is given by
ŷ (�, f ) =

[

Ŷ1 (�, f ) , Ŷ2 (�, f ) ,⋯ , ŶK (�, f )
]H ∈ ℂK . (9)

The GFT is then applied to each column ŷ (�, f ) of Ŷ(�) sep-
arately to achieve the joint STFT and GFT matrix

Ỹ (�) = UH Ŷ (�) (10)
with ỹ (�, t) being the GFT of the temporal frequency sig-
nal ŷ (�, f ); the kth element ỹ (k, �, f ) corresponds to the
graph frequency index k. For a low value of k, this coeffi-
cient indicates how much the slowly varying graph compo-
nent contributes to the temporal frequency f in time frame �.
Therefore, the joint coefficient quantifies the variation over
the graph of a temporal frequency in a short-time period. In
other words, each coefficient indicates the EGM variation
over space and time. These values will be different when
analyzed, for instance, during sinus rhythm compared with
atrial fibrillation and they will reveal patterns of space-time
variability about the disease.

To obtain again the time-vertex signalY(�) [cf. (7)] from
the joint transform representations, we first apply the inverse
GFT to Ỹ (�) as

Ŷ (�) = UỸ (�) (11)
to get the STFT matrix Ŷ(�). Then, we apply the inverse
STFT with overlap-adding to reconstruct the entire time do-
main signal from the segmented frames.

Similar to (6), the variation of the temporal frequency
components ŷ (�, f ) over the graph can be quantified by the
Laplacian quadratic form

V(ŷ (�, f )) = ŷ (�, f )H Lŷ (�, f )

=
∑

i∈

∑

j∈i

Wi,j(Ŷi(�, f ) − Ŷj(�, f ))2. (12)

The measure in (12) quantifies the graph variation of each
temporal frequency f in time frame �. Since the variation
differs in different temporal frequencies, we consider the nor-
malized variation

V,n(ŷ (�, f )) =
ŷ (�, f )H Lŷ (�, f )
ŷ (�, f )H ŷ (�, f )

. (13)

We will in the sequel use this joint transform to analyze
the EGMs in three domains: the time domain, the temporal
frequency domain, and the graph frequency domain.

4. Graph-time spectral analysis
In this section, we perform a spectral analysis on the

EGMs during both sinus rhythm and atrial fibrillation. We
first conduct a separate analysis on the short-time Fourier
transform and a separate analysis on the graph Fourier trans-
form. Next, in Section 4.2, we conduct a joint transform
analysis. As the individual STFT analysis and GFT analy-
sis are of less importance for the remainder of this paper,
we only present the main results of the individual STFT and
GFT analyses. More details can be found in the supplemen-
tary materials.
4.1. STFT analysis & GFT analysis

For the STFT analysis, we analyzed the distribution of
the signal energy across both time and temporal frequencies.
We observed the atrial activity has wider frequency band-
width than the ventricular activity. This implies the atrial
activity varies faster across time than the ventricular activ-
ity. We also found the atrial activity during sinus rhythm
has more energy in higher temporal frequencies than during
atrial fibrillation. This suggests atrial fibrillation reduces the
high temporal frequencies of the atrial waves.

In the GFT analysis, we found the atrial activity varies
faster over the graph than the ventricular activity. We also
observed the EGM has a larger graph bandwidth during si-
nus rhythm than during atrial fibrillation. That is, the signal
changes faster across the graph (hence epicardium) during
sinus rhythm than during atrial fibrillation.

However, we may expect a higher spatial variation of
the atrial activity during atrial fibrillation than during sinus
rhythm. This is because the signal changes more frequently
across time during atrial fibrillation. To explain this counter-
intuitive result in the GFT analysis, we need to exploit the as-
sociation between the temporal and spatial variations. Since
the temporal frequencies provide additional insights on the
EGMs and since the GFT alone does not capture them, we
analyze next the EGMs with the joint STFT and GFT to ad-
dress the latter.



(a)

(b)
Figure 4: Normalized energy in dB in the joint graph and
short-time Fourier transform domain. (a) sinus rhythm; (b)
atrial fibrillation. The scalar k represents the graph frequency
index, t(s) the time in seconds, and f the temporal frequency.
Each plot shows the spatial distribution of the signal energy as
a function of time; different plots refer to different temporal
frequencies. The red circles mark the peak of the ventricular
activity.

4.2. Joint STFT and GFT analysis
In the joint analysis, we analyzed the normalized signal

energy in the joint short-time Fourier transform and graph
Fourier transform domain. Figures 4(a) and 4(b) depict the
results during sinus rhythm and atrial fibrillation for one pa-
tient. To improve visualization, we focus on the temporal
frequencies 20 Hz, 40 Hz, 60 Hz, and 80 Hz. Overall, the
temporal frequency components change slowly over the graph;
this is reflected by the energy concentration in the low graph
frequencies. However, we also observed that higher tempo-
ral frequencies change faster over the graph compared with
the lower ones; this is reflected by the higher energy concen-
tration in the high graph frequencies for f = 60 Hz, and 80
Hz.

To quantify the graph spatial variations of the low (0 Hz
to 100 Hz) and high (100 Hz to 500 Hz) temporal frequen-
cies, we calculated the average variation following (13). Due
to space limitation, we show in Figure 5 the results for four
representative patients. We can see the high temporal fre-
quencies have a larger graph variation compared to the lower
temporal frequencies. This explains the result in the GFT
analysis, i.e., the atrial activity has a higher spatial variation
during sinus rhythm than during atrial fibrillation. Because
from the STFT analysis, the atrial activity has more energy
in the high temporal frequencies during sinus rhythm than
during atrial fibrillation. This also suggests that the spatial
variation is correlated to the temporal variation. If a signal
changes rapidly across time, it will have higher energy in the
high temporal frequencies. This high variation across time
translates then into a higher variation over the graph.

During sinus rhythm, the spatial variation decreases to a
small value when the ventricular activity appears. That is,
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Figure 5: Smoothness measure over time of the low and high
temporal frequencies in the joint graph and short-time Fourier
transform domain. (a) sinus rhythm; (b) atrial fibrillation. The
red and blue lines indicate the mean smoothness of the low and
high temporal frequencies, respectively. The red circles mark
the peak of the ventricular activity.

the temporal frequencies change slower over the atria dur-
ing the ventricular activity than during the atrial activity. But
during atrial fibrillation, the spatial variation during the ven-
tricular rhythm is higher because of the coupling between the
atrial and ventricular activities.

The above analysis shows that it is possible to separate
the atrial and ventricular activities based on their spatial vari-
ations. This separation is infeasible by the STFT alone (which
ignores correlation across space) or by the GFT alone (which
ignores correlation across time). Since the joint transform
analyzes the graph signal in short-time periods, it improves
separation of the two activities in the joint domain. In the
next section, we will leverage these observations to extract
the atrial activity in the joint domain.

5. Graph-Based Atrial Activity Extraction
Recall the atrial activitymeasurements are often corrupted

by ventricular activity. In the sequel, we propose an algo-
rithm to extract the atrial activity from the mixed measure-
ments based on the joint graph-time variation.

The graph-time analysis in Section 4.2 showed the ven-
tricular activity is smoother over the graph than the atrial
activity. We, therefore, exploit the difference in smoothness
to estimate the ventricular activity from the noisy epicardial
measurement. The atrial activity can be then obtained by
subtracting the estimated ventricular activity from the EGM.

By considering the EGM as a linear combination of the
atrial and the ventricular activities [29], we can write the
mixed signal y(t) over the K electrodes at time t as

y(t) = a(t) + v(t) (14)
where a(t) indicates the atrial signal and v(t) the ventricular
signals. By segmenting the signal into overlapping frames,



we represent the signal at frame � in the matrix form as
Y(�) = A(�) + V(�) (15)

where Y(�), A(�), and V(�) are K × TM matrices following
from (7). Then, from the joint STFT and GFT transform we
get the joint spectral representation

Ỹ(�) = Ã(�) + Ṽ(�) (16)
where Ỹ(�), Ã(�), and Ṽ(�) are the joint transforms of the
mixed EGM signal, atrial activity, and ventricular activity,
respectively. The respective columns are ỹ(�, f ), ã(�, f ),
and ṽ(�, f ).

Since the ventricular activity ṽ(�, f ) is smoother over the
graph than the atrial activity ã(�, f ), we estimate ṽ(�, f ) as
a smooth graph signal reconstruction with minimum distor-
tion from the mixed EGM ỹ(�, f ). This consists of solving
the problem

minimize
ṽ(�, f )

||ỹ(�, f ) − ṽ(�, f )||22

subject to
ṽH (�, f )�ṽ(�, f )
ṽH (�, f )ṽ(�, f )

⩽ c.
(17)

where the cost function seeks for finding a ventricular signal
ṽ(�, f ) that is close to the EGMmeasurement ỹ(�, f ), while
the constraint imposes the maximum normalized variation
to be at most c for all frames � and temporal frequencies f
[cf. (13)].

The ventricular activity estimated from (17) is given by
the closed-form expression

ṽ(�, f ) = [(1 − �c)I + ��]−1ỹ(�, f ) (18)
where � is the so-called Lagrangian multiplier (see supple-
mentarymaterials). After estimating the ventricular activity,
we can recover the atrial activity by

ãest (�, f ) = ỹ (�, f ) − ṽ (�, f ) . (19)
Finally, we obtain the time domain signals through the in-
verse transforms.

The proposed algorithm relies on the presence of the
ventricular activity. Since the ventricular activity has most
of its energy in the zero graph frequency (see Figure 4), we
can detect it by thresholding the signal energy in the joint
STFT and GFT domain. If the energy in the zero graph fre-
quency index (k = 0) exceeds this threshold, it indicates
the presence of the ventricular activity. We can see that the
graph-time spectral analysis provides us new insights into
the atrial and the ventricular activities, which help to detect
and cancel the ventricular activity from measurements.

6. Evaluation of Atrial Activity Extraction
To evaluate the performance of the proposed graph-based

atrial activity extraction (GAE) algorithm, we need the ground
truth pure atrial activity. However, this is unknown for real
measurements; hence, we first evaluate the GAE algorithm

with synthetic signals and then perform additional experi-
ments with real EGMs. We compared the GAE algorithm
with three popular alternatives: average beat subtraction (ABS)
[28]; adaptive ventricular cancellation (AVC) [29]; and in-
dependent component analysis (ICA) [29].
6.1. Synthetic data generation

There exists several methods to simulate the atrial activ-
ity, see e.g., [37–40]. These algorithms simulate well the
electrogram during sinus rhythm, but face difficulties dur-
ing atrial fibrillation. This is because of the overlap between
the atrial and the ventricular activities. Also, these methods
are more suitable to generate body surface ECGs rather than
EGMs. The work in [41] generates atrial EGMs by simulat-
ing the activation of the atrial fibers from the movement of a
single dipole, which is less realistic. In this work, we focus
on the atrial cell level to model the action potential during
atrial fibrillation and extend it to the two-dimensional mon-
odomain tissue. The atrial fibrillation is driven by the so-
called ectopic foci sources that are located in various points
of the tissue. This is one of the standard atrial fibrillation
mechanisms in advanced research [42, 43].

The cell action potential follows the Courtemanchemodel
of human atrial cells [44]. To simulate the atrial activity
during atrial fibrillation, we reduced the ionic conductance
of Ito to 50%, IKur to 50% and ICaL to 30% [45]. This is
based on the experimental study of chronic atrial fibrillation
in [45]. After generating the signal at the cell level, we used
the reaction-diffusion equation to simulate the propagation
of the action potential along the tissue [46]. The diffusion
equation is given by

Cm
)Vm
)t

= Itm + Istim − Iion (20)

where Vm is the transmembrane potential, Cm = 100 pF is
the transmembrane capacitance, Iion is the total ionic currentcalculated from the Courtemanche model, Istim is the stimu-
lus current, and Itm is the transmembrane current. The latter
is calculated as

Itm =
1
Sv
∇ ⋅ (D∇Vm) (21)

where Sv is the surface-to-volume ratio, ∇(⋅) is the partial
derivative operator, and D is the conductivity tensor.

We considered a two-dimensional tissue of 200 × 200
cells with a cell radius of 5 �m. The longitudinal conductiv-
ity is 1.1 mS cm−1. The transversal to longitudinal conduc-
tivity ratio is one-to-two. We discretized the model through
finite differences with 0.01 cm spatial resolution and solved
the reaction-diffusion equation [cf. (20)] with the Eulermethod
with a time step of 0.05 ms. Five ectopic foci sources drove
the irregular atrial activity as illustrated in Figure 6. We ap-
plied stimuli of 50ms in length on these positions. Two atrial
cycle length of 160ms and 180ms were used to simulate dif-
ferent degrees of atrial fibrillation. For each type, we gener-
ated six segments of 10s each.
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Figure 6: Simulation set up and synthetic signals during atrial fibrillation. Left: simulated two-dimensional tissue with 8 × 8
electrodes on top of it. Five foci sources s1 to s5 initiate the atrial fibrillation. Right: An example of synthetic atrial activity
(AA), ventricular activity (VA), and mixed epicardial electrogram (EGM) with an atrial cycle length of 160 ms.

After generating the atrial activity, the next step was to
generate the ventricular activity. The ventricular morphol-
ogy was obtained by cutting out the ventricular segment in a
heart beat during real sinus rhythm [40]. We inserted local
variations in the amplitude and width of the different ven-
tricular segments. Finally, we added the ventricular activity
to the synthetic atrial activity to generate the mixed EGM.

Given the high computational complexity of these simu-
lations, we considered an array of only 8×8 electrodes with
the same inter-electrode spacing as themapping array in Fig-
ure 1. The array is put on the tissue to measure the atrial
EGM. The atrial EGM Φ(z, t) measured by the electrode at
location z at time t is calculated by [47]

Φ(z, t) = 1
4��e ∫

Itm
||z − x||

dx (22)

where z and x represent the location vectors of the electrode
and the cell, respectively, and �e is the extra-cellular con-
ductivity.
6.2. Performance metrics

In the synthetic data scenario, we compared the estimated
atrial activity with the pure atrial activity in terms of the nor-
malizedmean square error (NMSE) and the cross-correlation
coefficient (CC). The NMSE is defined as

NMSE = 1
K

K
∑

i=1

(

∑T−1
t=0 (ai(t) − a

′
i(t))

2

∑T−1
t=0 (ai(t))2

)

(23)

where T is the length of the estimated atrial signal in the
time domain, ai(t) and a′i(t) are the pure and the estimated
atrial signals of the ith electrode at time t, respectively. The
NMSEmeasures the normalized difference between the pure
and the estimated atrial signals averaged over K electrodes:
a lower value indicates a better estimation.

The cross-correlation coefficient is defined as

CC = 1
K

K
∑

i=1

⎛

⎜

⎜

⎜

⎝

∑T−1
t=0

(

ai(t) − āi
) (

a′i(t) − ā
′
i

)

√

∑T−1
t=0

(

ai(t) − āi
)2
√

∑T−1
t=0

(

a′i(t) − ā
′
i

)2

⎞

⎟

⎟

⎟

⎠

(24)

where āi and ā′i are the mean of the true atrial signals and the
mean of the estimated atrial signals of the ith electrode, re-
spectively. The CCmeasures the similarity between the pure
and the estimated atrial signals averaged over K electrodes:
it is close to one if the pure and estimated atrial activities are
correlated, and it is close to zero otherwise.

When using real data, it is impossible to use intrusive
measures and quantify the performance through NMSE and
CC since the ground truth is unknown. Hence, we use two
non-intrusive metrics, namely: the ventricular depolariza-
tion reduction (VDR) [29], which measures the amplitude
reduction of the R-peak; and the ventricular residue (VR)
similar to [48], which considers both the area and the ampli-
tude of the QRS1 interval in the atrial activity.

For an EGM containingQ ventricular segments, the am-
plitude reduction of the R-peaks averaged overK electrodes
is

VDR = 1
K

K
∑

i=1

(

1
Q

Q
∑

q=1
10log

(

Rm
i,q

R′i,q

))

(25)

where Rm
i,q is the qth R-peak amplitude of the mixed EGM

(in the time domain) of the ith electrode, and R′i,q is the am-
plitude of the respective residue. A higher value of VDR
indicates more reduction of the ventricular activity.

For an EGM containingQ ventricular activity segments,
the averaged VR is

VR = 1
K

K
∑

i=1

⎛

⎜

⎜

⎜

⎜

⎝

1
Q

Q
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q=1

⎛

⎜

⎜

⎜

⎜

⎝

Ai,q

√

∑ei,q
t=bi,q

(

a′i(t)
)2

√

1
T
∑T
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(

ai(t)
)2

⎞

⎟

⎟

⎟

⎟

⎠

⎞
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⎟

⎟

⎟
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(26)

where [bi,q , ei,q] is the qth QRS interval in the estimated atrial
activity of the ith electrode, and Ai,q is the maximum ampli-
tude in this interval. A lower value of VR indicates a better
extracted atrial activity.

1QRS is the combination of three graphical deflections (Q wave, R
wave, and S wave) on a typical electrocardiogram.
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Figure 7: Boxplot performance on synthetic data of the average beat subtraction (ABS) [28], adaptive ventricular cancellation
(AVC) [29], independent component analysis (ICA) [29], and the proposed graph-based atrial activity extraction (GAE) method.
Two atrial cycle length (ACL) of 160 ms and 180 ms are considered. The proposed GAE method achieves the lowest normalized
mean square error (NMSE) and ventricular residue (VR), and highest correlation coefficient (CC) and depolarization reduction
(VDR) in both cases. The boxplots of NMSE, CC, and VR for the GAE method are comparatively short, which suggest that the
GAE performance is more stable. Similar condensed boxplots are also observed for the ABS, but it presents outliers in the plots
of NMSE and CC.
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Figure 8: Illustrative example of the synthetic epicardial elec-
trogram (EGM), synthetic pure atrial activity (AA) and the
estimated atrial activity by the different algorithms. The left
plot shows the synthetic EGM (blue) and the synthetic atrial
activity (red). The other plots show the synthetic EGM (blue)
and the estimated atrial activity (red) with different algorithms:
average beat subtraction (ABS) [28]; adaptive ventricular can-
cellation (AVC) [29]; independent component analysis (ICA)
[29]; proposed graph-based atrial activity extraction (GAE).
The red circles mark the peak of the ventricular activity deter-
mined by the ECG measurements.

6.3. Results
Results on synthetic data: We evaluated the performance

on the six segments for different degrees of atrial fibrilla-
tion. Figure 7 compares the proposed GAE algorithm with
the reference methods. The performance of the GAE algo-
rithm [cf. (18)] depends on the parameters c and �. These
parameters are chosen based on a grid search by minimizing
the NMSE and are set to c = 0.14 and � = 2. We ob-
serve the proposed GAE method outperforms the other al-
ternatives by achieving the smallest NMSE and VR, and the
largest CC and VDR for both degrees of atrial fibrillation.
The ABS performs worse since it cannot adapt to changes
in the EGM morphology caused by the heart activity vari-
ations. The performance of the AVC is unstable because
it relies on the reference signal. The ICA performs poorly
on this data since the independence assumption between the
atrial and ventricular activities might not always hold in the
EGM data.

To further illustrate the differences of these methods, we

Table 1
Comparison of different algorithms for different patients during
atrial fibrillation

Patient No. Metrics ABS AVC ICA GAE

P1 VDR 11.06 (3.31) 7.99 (4.87) 5.68 (5.39) 17.15 (6.31)
VR 3.66 (2.08) 7.86 (2.89) 10.24 (1.84) 1.47 (0.50)

P2 VDR 10.09 (3.43) 7.96 (2.76) 6.37 (4.85) 16.98 (4.40)
VR 2.93 (0.80) 8.16 (1.66) 6.60 (2.58) 1.19 (0.31)

P3 VDR 11.41 (4.26) 7.80 (3.67) 8.55 (4.42) 15.68 (4.34)
VR 3.17 (0.74) 7.08 (1.42) 6.71 (1.65) 1.64 (0.58)

P4 VDR 15.02 (4.12) 9.55 (4.27) 7.42 (4.06) 16.85 (3.43)
VR 4.20 (0.50) 9.40 (2.21) 6.69 (1.35) 1.80 (0.46)

P5 VDR 7.80 (3.26) 8.73 (4.76) 6.59 (4.26) 14.51 (3.57)
VR 5.07 (0.67) 8.94 (3.28) 10.20 (1.98) 2.65 (0.46)

P6 VDR 9.84 (2.97) 8.39 (4.20) 5.84 (1.67) 16.57 (4.39)
VR 6.74 (1.14) 12.37 (2.88) 7.30 (1.67) 2.43 (0.53)

P7 VDR 10.39 (4.21) 6.86 (5.33) 4.34 (1.63) 12.18 (4.64)
VR 3.03 (0.79) 9.43 (1.99) 12.44 (2.16) 2.39 (0.68)

P8 VDR 5.72 (3.91) 5.27 (3.55) 5.94 (2.46) 11.95 (2.94)
VR 4.36 (0.57) 8.59 (1.81) 12.40 (1.53) 2.60 (0.66)

P9 VDR 14.59 (4.62) 7.71 (4.35) 4.53 (3.79) 17.13 (5.54)
VR 2.18 (0.74) 12.70 (1.76) 13.21 (4.53) 2.62 (0.76)

P10 VDR 9.52 (4.57) 8.69 (5.05) 8.45 (4.25) 14.93 (5.01)
VR 5.49 (0.74) 8.83 (3.33) 6.18 (2.09) 2.14 (0.94)

Mean VDR 10.55 (4.85) 7.90 (5.01) 6.30 (4.26) 15.39 (4.92)
VR 4.08 (1.63) 9.34 (2.54) 9.20 (1.12) 2.09 (0.79)

show in Figure 8 an arbitrary example of the synthetic EGM,
the ground truth atrial activity, and the estimated atrial ac-
tivity. We see the signal extracted by the GAE method ap-
proximates the ground truth better than the comparative al-
gorithms. The ABS algorithm performs also well, but leaves
more ventricular components compared to the GAEmethod.
Also, the AVC and the ICA algorithms face difficulties in an-
nihilating the ventricular component.

Results on real data: We move now on to the results
on the clinical EGMs. We evaluated the performance only
through the non-intrusive metrics VDR [cf. (25)] and VR
[cf. (26)]. Table 1 groups the results for the ten patients.
For each patient, it reports the averaged performance over
all electrodes and the respective standard deviation (in brack-
ets). We see an improved performance of the proposed GAE
algorithm further corroborated with the real data.
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Figure 9: Illustrative example of the clinical epicardial elec-
trogram (EGM) (blue) and the extracted atrial activity (red)
by different algorithms: average beat subtraction (ABS) [28];
adaptive ventricular cancellation (AVC) [29]; independent com-
ponent analysis (ICA) [29]; proposed graph-based atrial activ-
ity extraction (GAE). The proposed GAE method has less fluc-
tuations and distortions and removes more ventricular activity.

Figure 9 shows a random example of the measured EGM
and the extracted atrial activity by the different algorithms.
The proposed GAE method extracts a smoother signal and
has less ventricular component left. The extracted signal by
ABS presents more fluctuations since ABS uses a fixed tem-
plate to subtract the ventricular activity. The AVC shows a
slightly better result than ABS, but it has more ventricular
components left. The ICA can remove the ventricular activ-
ity well but fails in preserving the atrial activity.
6.4. Computational complexity & Implementation

The computational complexity of the GAE algorithm de-
pends on the matrix inversion in (18). In each time frame
and temporal frequency, the complexity is (K3), where K
is the number of vertices (electrodes). For a signal with
M time frames and TM temporal frequencies, the compu-
tational complexity is (M ×TM ×K3). This complexity is
governed by the number of electrodesK in the array. For an
array with large number of electrodes, the matrix inversion
can be solved with the efficient conjugate gradient method
to reduce the costs [49, 50].

For experiments, we implemented the GAE algorithm
with MATLAB in an office laptop with 2.9 GHz Intel Core
i5 processor and 8 GB RAMmemory. The average run time
for a segment of 10 s of data is around 1 s. The code for GAE
algorithm is available at https://github.com/MiaoSGit/GAE.
We remark that for the computation, improvements can be
achieved with a coding in C, but this goes beyond the scope
of this work.

7. Discussion and Future Recommendations
We proposed an approach based on graph signal process-

ing to analyze atrial fibrillation. This method combines the
graph Fourier transform with the short-time Fourier trans-
form to analyze multi-electrode epicardial electrograms in a
joint space, time, and frequency domain. By working with
a higher-level model, we tackled the difficulties of analyz-
ing the disease through complicated physical models. We
found a strong link between the spatial and temporal vari-
ation of the atrial signal; and the atrial fibrillation reduces
the signal spatial variation. We also characterized the space-
time-frequency differences of the atrial and ventricular activ-
ities and developed a graph-based algorithm to estimate the
atrial signal from the mixed measurements. The proposed
algorithm corroborates our theory by showcasing improved
performance with respect to other state-of-the-art methods.

The proposed framework has also limitations. An initial
difficulty we faced is how to construct the most representa-
tive graph. While we relied on a Euclidean-based nearest
neighbor approach, it remains still an open question whether
it is possible to find a more meaningful structure through
graph learning techniques [51]. The graph is, in fact, crucial
since it gives the Fourier basis to capture the spatial vari-
ability. We believe the performance of the graph-based ex-
traction algorithm can be improved substantially if smooth-
based graphs are learned [52, 53]. Among the same lines,
it remains unanswered whether directed graphs and other
graph representation matrices (e.g., normalized or random
walk Laplacian) can yield different insights on atrial fibril-
lation.

It did not escape our notice that the graph-based extrac-
tion algorithm imposes a tradeoff between the preservation
of the atrial activity and the reduction of the ventricular ac-
tivity. The latter is heavily influenced by the smoothness
upper-bound in (19). This parameter along with the La-
grange penalty term has been selected using a grid search.
However, it deserves further investigation to check if con-
stant values for different patients are a good choice or if we
need to adjust the values for each separate case. We also
believe that other graph- and graph-time priors such as dif-
fusion or bandlimitedness can impose a better tradeoff for
atrial activity extraction [54, 55].

Another direction worth taking in the near future is to
corroborate our findings on a larger dataset, with induced
and spontaneous atrial fibrillation, and to characterize the
graph-time spectral behavior of the disease levels. In this
direction, we also aim to adopt graph-based techniques to
detect atrial fibrillation triggers from electrogram measure-
ments.

Altogether, our aim is to raise attention to explore spatial-
temporal spectral properties of electrocardiograms to move
forward the research of atrial fibrillation.

8. Conclusions
We suggested a new approach to study the epicardial

electrograms for atrial fibrillation. This approach relies on



graph signal processing–a recent research area in the signal
processing community–to model electrograms during atrial
fibrillation with a higher level model. We conducted a novel
graph-time spectral analysis study to analyze the epicardial
electrograms in the joint space, time, and frequency domains.
We found the spatial variation is related to the high tempo-
ral variation; precisely, a faster temporal variation induces
a high spatial variation. We also found that the atrial fib-
rillation reduces the high temporal frequencies of the atrial
electrogram. Together, these observations suggest that atrial
fibrillation decreases the spatial variation of the atrial activ-
ity. We also observed the ventricular activity is smoother
over the graph compared with the atrial activity. In this re-
spect, we designed a graph-based atrial activity extraction
algorithm that leverages the smoothness prior to estimate the
atrial activity. Our experimental results with synthetic data
and real electrocardiograms showed the proposemethod out-
performs reference methods based on average beat subtrac-
tion, adaptive ventricular cancellation and independent com-
ponent analysis. These findings shed light to newways to ap-
proach the disease and may be of help to further understand
its mechanisms.
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