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Summary

Radiation pattern measurements is a critical step in characterizing antennas before they are used in
any system for a specific application. To identify any defects or to acquire the true radiation character-
istics of the antenna under test, densely sampledmeasurements are desired. However, this results in a
time and cost expensive measurement process. Compressed sensing allows accurate reconstruction
of radiation patterns using a reduced number of measurements. To ensure exact recovery, it is neces-
sary to select an optimal sampling strategy as well as an effective reconstruction method.

In this thesis, the discrete Fourier transform (DFT) and spherical harmonic expansion of the electric
field are used to obtain a sparse representation of the radiation pattern. As a variation from the basis
pursuit optimization problemwhich iswidely used in compressed sensing for antennameasurements, a
sparsity enhancing weighted l1-normminimization problem is considered. The weights are determined
from prior information on the antenna from electromagnetic simulations. The proposed method, after
investigation with various antennas and comparison with the existing benchmark results in a further
reduction of the number of required measurements. A near-optimal sampling technique is adopted to
acquire measurement in an incoherent manner for exact recovery of the pattern. The performance of
the method has been evaluated using error metrics specific to important parameters of the radiation
pattern such as the gain, peak side lobe level and half power beam width. Radiation patterns with
non-idealities and distortions have also been recovered with high accuracy from a small number of
measurements using the proposed method.
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1
Introduction

1.1. Motivation
Antennas play a crucial role as transducers, facilitating the conversion between guided waves and free
space wave propagation in the field of electromagnetics. They are essential components in various
wireless communications and sensing systems, includingmobile communication, deep space commu-
nications, radar technology, radio astronomy, and many more. Often these applications use different
antennas designed to satisfy specific requirements (in terms of radiation characteristics) [1][2]. But
in certain cases, the design and deployment of the antenna system can lead to imperfections and
undesirable deviations from the expected radiation pattern [1].A fundamental and crucial property of
any antenna is its radiation pattern, which gives information on the strength of the field radiated by
an antenna in a particular direction. For each direction in space, the radiation pattern is characterized
by amplitude, phase and polarization. From the measurement of these parameters, the gain, directiv-
ity, radiation efficiency and other parameters that affect the system performance can be determined
[3]. The monitoring and recording of electromagnetic fields has become increasingly important for as-
sessing the system performance.This makes it essential for testing of the designed antennas before
deployment for the corresponding application to ensure optimal performance. Radiation pattern mea-
surement is also necessary in testing of antennas with complex radiating structures which cannot be
assessed using simulation tools. This becomes particularly challenging in millimetre(mm) wave appli-
cations wherein, for reliable measurements, very stringent conditions imposed on the data acquisition
technology in terms of positional accuracy, mechanical tolerances and so on [4]. This property makes
antenna radiation pattern measurement a critical step in satisfying the increasing demands from elec-
tromagnetic compatibility testing as well as wireless communication technology [5].

In general, radiation pattern measurement procedure required to reconstruct the field and obtain
the parameters of interest is a time consuming process [6]. The time complexity increases further de-
pending on the measurement setup considered, antenna bandwidth, type of measurement (near-field
(NF) or far-field (FF)) and various other factors. The time of measurement of radiation patterns, as-
suming a given measurement setup, depends on the number of samples to be measured that enables
accurate reconstruction of the field pattern and the acquisition strategy which decides how the data
points are acquired [6]. The acquisition strategy greatly depends on the range setup and related me-
chanical constraints that need to be considered for measurements. The measurement setup/antenna
test range can either be indoor or outdoor. In indoor setups, in most cases the pattern measurements
take place in an anechoic chamber which is a Faraday cage that greatly reduces the interference from
outside sources and reflection of the radiated waves within the chamber thereby allowing accurate as-
sessment of the characteristics of antenna systems. Anechoic chambers may be used for near-field
or far-field measurements and typically, the near-field is measured over a dense sampling grid in order

1
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(a) Anechoic chamber measurement setup (b) Embedded element pattern measurement [12]

Figure 1.1: Examples of antenna measurement setups

to enable accurate estimation of the far-field from transformation techniques [3]. This increases the
number of measurements and consequentially the measurement time. In terms of measurements in
the far-field, the sampling step and measurements required depends on the size of the measurement
sphere (which depends on the far-field distance from the antenna under test). Measurement of radi-
ation patterns in anechoic chambers is an expensive process where the cost is directly related to the
measurement time. For this reason, it will benefit from an economic point of view for industries to use
faster measurement technology to achieve the expected accuracy in the reconstructed pattern.

However, depending on the antenna to be tested and the requirement of characterization, the use
of anechoic chambers is limited. If the size of the antenna is large, achieving the far-field criteria is
not possible in anechoic chambers, which motivates the need for other measurement strategies. For
characterization of low frequency, electrically large antennas and arrays for applications in radio astron-
omy, measurements are performed outdoor using an unmanned aerial vehicle (UAV) [7]. An example
of where this is of great relevance is the characterization of arrays and sub-arrays of radio telescope an-
tennas such as the Low Frequency Array (LOFAR) and the square kilometre array (SKA) [8][9]. In these
outdoor measurements (especially pertaining to radio telescopes pattern measurement), typically the
far-field pattern is estimated using interpolation from a series of pattern cuts with either varying el-
evation or azimuth [10] whereas in current era of astronomy where various configurations of arrays
designed to achieve specific radiation characteristics require three-dimensional radiation pattern mea-
surements which are typically done with flight paths designed for drones in planes at multiple heights
[11]. However, the measurement process is limited due to the flying time of drones/UAVs which makes
it necessary to find a sampling technique that has lesser sampling locations and fitting the points using
a minimum distance path for the UAV to fly in, while still considering positional errors [11].

Another situation which requires fastermeasurement technology is the requirement tomeasure em-
bedded element patterns (EEP) of the elements in a phased array which are important to understand
the coupling effects that take place in the array due to its topology and influence on the overall radiated
field [12]. In 5G millimetre wave (mm-Wave) applications, over-the-air measurements of radiation pat-
tern are very useful to evaluate the performance of both the antenna arrays and the sub-arrays. Arrays
with large number of elementsmandates themeasurement of large number of EEPs, which when a con-
ventional sampling strategy is used for consumes long characterization times. Hence it is desirable to
reduce the time of measurement for each EEP which consequentially reduces the overall time required.

Another motivation for developing a sparse sampling technology is for faster array diagnosis where
the measured pattern is used to identify errors in the excitation or failure of array elements which lead
to undesirable distortions in the resulting array pattern [13] [14]. Faster sampling of the field enables
faster and fairly continuous diagnosis of critical systems.

To reduce the measurement time, a faster scanning strategy and a reduced number of measure-
ment samples is required. The technique of compressed sensing can be used in this regard as it is an
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effective tool in recovering a signal form greatly under sampled set of measurements [15][16]. This re-
quires the radiation pattern (signal) to be sparse. The antenna radiation pattern however is not sparse
directly in the spatial domain in most cases, hence, sparse recovery cannot be directly applied in this
case. The pattern can be represented using a sparsifying basis in a different domain (transform do-
main) where the signal/coefficients exhibit sparsity, which enables the reconstruction of the original
signal data using optimization techniques. This reduces the number of measurements greatly com-
pared to the conventional field sampling criteria that have been established in practice. The idea of
using CS can be very useful in scenarios where the measurement surface is large requiring many sam-
ples and also in near-field measurements which require dense sampling of the NF radiated by the AUT
on a spherical surface.

This chapter further explores the state-of-the-art literature on reducing the number of samples re-
quired in antenna pattern measurements followed by the identification of certain gaps in the existing
work done. Based on the literature review, the research questions of the thesis are formulated.

1.2. Problem Formulation
The main research problem considered in this thesis is to reduce the number of samples/measure-
ments required to characterize the radiation pattern of any given AUT as it is a crucial step before the
deployment of an antenna in the wireless system. Reducing the number of samples required to recover
the pattern in a given grid will reduce the time required for characterization. The extent to which the
number of samples/fieldmeasurements required to reconstruct the pattern depends on various factors.
A few of them are,

1. Sparsity in the signal (radiation pattern)
2. Choice of transformation basis
3. Sampling strategy
4. Reconstruction method

In the basis pursuit optimization problem, a weighted l1-norm of the sparse coefficients can be used
as an alternative cost function with the motivation of enhancing sparsity in the signal. It is also critical
to evaluate the performance of the sparse sampling algorithm to make sure that the recovered pattern
is as close as possible to the radiated field at that location in space. The method needs to be verified
for a set of AUTs to ensure it is not subjective to a specific type of antenna.

(a) Scanning plane (b) Trajectory of the UAV

Figure 1.2: UAV-based antenna pattern measurement [11]
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1.3. Scope of Research
It is understood from existing research that in order to reduce the overall measurement time, it includes
both reducing the number of samples to be acquired as well as to find an optimal path for probe (range
antenna) movement while acquiring the data. The probe movement is constrained by the type of mea-
surement/characterization attempted as well as themechanical positioning system [17]. The optimiza-
tion while considering probe movement would involve designing sampling matrices/scan strategies
that require less time to acquire data while still providing guarantee of recovery by means of its mutual
coherence properties [18][19].

In the work done in this thesis, the probemovement path has not been considered during the design
of the sampling technique and the focus is more on finding the optimal (and sparse) set of measure-
ments required to recover a pattern given a specific accuracy. Reducing the number of measurements
has an effect on the measurement time as in many cases such as wide band characterization of the
AUT, the probe requires a sweep duration to acquire the measurement at a given spatial position before
moving to the next sampling location. By reducing the number of samples required, it would scale down
the required characterization time. And the problem of finding aminimumdistance/time scanning path
can be investigated from the reduced set of measurements

The thesis mainly considers electric far-field radiation data (in θ, ϕ) represented in terms of spher-
ical coordinates and the fields are defined on a measurement sphere (surface). However, this can be
extended to planar field measurements as well as near-field measurements.

1.4. Literature review
This section contains a brief summary of the state-of-art work done in the area of fast sampling tech-
nology for antenna radiation pattern measurements and the research gaps identified in the literature
pertaining to the improvement in characterization time of radiation patterns.

1.4.1. State-of-the-art
The radiation pattern of the AUT can either be measured in the far-field where it is straight forward to
perform amplitude-only measurements for obtaining the magnitude. But depending on the frequency
of operation, physical size and type of antenna,the far-field can be at a far away distance from the an-
tenna which makes 3D characterization a challenging task as specialized measurement environments
like anechoic chambers become hard to realize. . To overcome the range issue, it is possible to acquire
measurements in the near-field and perform a near-field to far-field transformation (NFFFT) [20]. The
drawback is the required number of measurements in the near field to enable the NFFFT and the re-
quirement of both the amplitude and phase of the field at those locations to estimate the far-field from
the near-field data. Phase measurements are prone to probe positioning errors in the measurement
system which makes phase measurements in the near-field a challenging task [21]. In both cases (NF
and FF), a reduction in the number of samples required to find the radiation pattern would reduce the
measurement time [22].

Compressed sensing (CS) theory is a way of sparse signal processing that introduces a revolution-
ary sensing/sampling paradigm which challenges conventional knowledge on data acquisition. Ac-
cording to CS theory, it is possible to recover signals and images that contain a sparse representation
using reduced number of samples than traditional methods. Sparsity enables effective fundamental
signal processing, such as precise statistical estimation and classification and effective data compres-
sion which make it an essential tool for modeling [23]. Compressed sensing has been used in signal
processing for various problems such as medical imaging and other sensing applications but recently
for over a decade, its potential has also been explored and used in electromagnetic problems such as
radar imaging, array diagnosis, antenna measurements and field strength prediction as well [24][25].
Some of the proposed methods to increase the speed of acquisition include sparse sampling of the
measurement using ”quadrature analog-to-information conversion (QAIC)” technology [26]. But this
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Figure 1.3: Workflow of Compressed sensing based measurements [22]

approach is more at the processing level rather than in the spatial sampling domain.

A better way of reducing the overall measurement time is to reduce the number of samples/mea-
surements over the measurement surface and accurately recover the field from the sparse measure-
ments. Inmost cases, compressed sensing is applied for the spatial distribution of the electromagnetic
field. In certain cases, the radiation pattern of the AUT exhibits sparsity when the discrete Fourier trans-
form (DFT), discrete cosine transform (DCT) or wavelet transform is used as the sparsifying basis [22],
[27], [28], [6]. According to work done in [22], DFT matrix based CS provided a better reconstruction
of the radiation pattern when compared to DCT matrix. Using DFT as the basis, the radiation pattern
was recovered with 20 to 44 % of the total points on the dense sampling grid following dense sam-
pling of ∆θ = ∆ϕ = 1o. Another way of representing the antenna electric field is using the spherical
harmonic expansion of the field which is based on the theory of acquiring measurements within a sam-
pling sphere [29]. The spherical wave coefficients of the electric field of an antenna would typically
have only few non-zero coefficients which makes it a good sparse representation for the 3D radiation
pattern. Spherical harmonics have been used in the context of antenna field measurements and recon-
struction both in the near-field [30] and in the far-field [29] , [31].

While undersampling the data, it is important to ensure the effect of aliasing artifacts needs to be
minimized as much as possible. It is evident that if a uniform/equispaced undersampling of the signal
leads to grating lobes in the Fourier transform of the sampling function. The resulting reconstruction of
the signal (radiation pattern) exhibits coherent aliasing of the signal components which is undesirable.
It is not possible to distinguish between the original signal and its replica [32]. From a compressed
sensing point of view, improving the accuracy of recovery means the sensing and sampling basis need
to be maximally incoherent with each other [15]. Incoherence can be introduced during sampling by
acquiring data in a uniform randommanner. This incoherent sampling exhibits interference properties
close to that of pure random undersampling wherein the side lobe levels of the response are relatively
lowwhich leads to reduced artifacts in the reconstruction. Ameasure of themutual coherence between
the sensing and sampling bases is the transform point spread function (TPSF). The TPSF is a measure
of influence of a single transform coefficient on the other transform coefficients. The sidelobes of the
TPSF give an idea of the incoherence present in the selected sampling scheme/trajectory [32].

In case of the acquisition of samples, in literature on using DFT as the sparsity transform, the sam-
ples are chosen uniformly at random from the available set of points (with equi-angular separation). The
sampling grid considered is a sphere but it can also be a plane or of a different geometry like cylindrical
[22]. There are certain sparse sampling schemes suggested while using spherical harmonics as the
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basis [29]. The Igloo sampling or Bucci sampling techniques reduces the redundancy in data present
in the Hansen/equiangular sampling of the sphere. The samples are selected in random from the grid
of measurements according to the decided sampling technique and the selected measurements are
used to recover the far-field pattern by solving the basis pursuit problem (l1 norm minimization).

Adaptive sampling techniques based on the level of variations in the electromagnetic field strength
is also discussed in literature. One such approach used to reduce the number of samples required for
reconstruction is to use total variation compressed sensing (TV-CS) which aims at minimizing the sup-
port of the total variation (gradient) of the signal/underlying function instead of the coefficient vector
itself [33]. This is applicable for gradient sparse signals and images. In electromagnetic applications,
TV-CS has been used for the electric field strength prediction from less number ofmeasurements by us-
ing an adaptive field sampling strategy (sequential experimental design) and using the chosen samples
in the TV-CS algorithm [34] [35]. The sequential experiment design is amethod tomodel the number and
values of inputs from its domain for simulations of systems to use the set of outputs/measurements
to predict the underlying function. Given a function f(x,y), it depends on sampling the field/ function (i.e.
finding (x,y)) such that it maintains a balance between exploration and exploitation using a hybrid cost
function. The most commonly used algorithm to design this sampling strategy is the LOLA-Voronoi
algorithm [36]. Voronoi tessellation is used to explore the function space by acquiring samples from
least explored regions and the local linear approximation algorithm is used to estimate the gradient of
the function and identify the highly non-linear regions based on the provided sampling locations.

The hybrid cost function is given by

H (pi) = V (pi) +
E (pi)∑n
j=1 E (pj)

(1.1)

where V (pi) is the Voronoi cell size/volume decided by the number of closest neighbours to the
selected sample and E (pj) is the non-linearity measure computed assigned for each selected point
pi. If f is the field data, y is the measurements vector and Φ is the MxN observation operator whose
(m,n)th entry is set to Φmn=1 if the field is probed at the location m.

f̂ = arg{min
f

∥∇f∥1} (1.2)

This adaptive sampling strategy is well suited for TV-CS as it performs better than random acqui-
sition of field measurements but it depends on the gradient sparsity of the field rather than transform
sparsity.

(a) Example of spherical measurement array (b) Example of planar measurement array

Figure 1.4: Fixed measurement setup [37]

Another measure of the incoherence would be the Gram matrix, whose first row gives the point
spread function for a selected sampling scheme. The entries of Gram matrix can be selected for op-
timizing the point spread function and consequentially optimizing the sampling vector which dictates
how the samples are acquired [38]. The optimization is done with respect to the sampling matrix as
the sparsifying basis is chosen beforehand, the maximum off-diagonal entry in the Gram matrix is the
cost function in this case, and this can also be represented as minimizing the norm difference between
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Gram matrix and the identity matrix [39]. The difference between the work done in [39] and its exten-
sion to the antenna radiation pattern measurement problem is that the measurement vector is a binary
vector where 1 denotes if a measurement is acquired and 0 if the sampling point is not considered.

From most existing literature, it is noted that sampling matrices with random entries (based on
Gaussian/Bernoulli distribution) are known to satisfy the restricted isometry property (RIP) with very
high property hence allowing accurate recovery of the underlying radiation pattern data. If the field
is sampled along a sphere, a visualization of equiangular sampling and random sampling over the
radiation sphere is shown in the below figure.

(a) Equi-angular sampling over a sphere
(b) Cosine weighted random
undersampling over a sphere

Figure 1.5: Scan methods to acquire samples over a sphere [17]

In [17], it is mentioned that in order to reduce the probe movement time while scanning for mea-
surements along a sphere, fixed sampling schemes are used to compute the mutual coherence with
the sparsifying basis (which is the spherical harmonic expansion). If they are incoherent, the resulting
compressed sensing matrix would ensure accurate recovery provided the number of measurements
obey the theory of compressed sensing, which will be explained in the next chapter.

Currently themost commonly usedmethods to solve the CS recovery problem is either to use greedy
algorithms such as orthogonal matching pursuit (OMP), CoSAMP etc. to solve the l0 minimization
problem or to formulate l1 minimization as a basis pursuit problem [15] [23]. Another approach from
literature to enhance the sparsity is by using weighted l1 minimization compared to the basis pursuit
formulation which uses l1 norm of the coefficients as the cost/objective function [40]. To explain in a
simple manner, in l1 minimization the large coefficients are penalized more heavily than smaller coef-
ficients which tends to regulate the values of large coefficients. In weighted l1 minimization, typically
the weights chosen are inversely related to the underlying coefficients in the data, which gives lesser
weights to higher value coefficients. It provides a sort of regularization to the objective function[41].

1.4.2. Gaps in literature
From the literature review on the work done on faster measurements for antenna radiation pattern
characterization, it is emphasized that reducing the number of samples and optimizing the sampling
strategy for obtaining sparse measurements to recover the pattern is a key aspect of reducing time
of characterization. In previous work, the best sampling strategy or the optimal number of measure-
ments to achieve a desired accuracy in measurements are decided based on recovery criteria estab-
lished by compressed sensing theory [16]. This includes near-optimal sensingmatrices that satisfy the
restricted isometry property with high probability or computing the mutual coherence of the CS matrix
for a given/selected sampling matrix [42][43]. However, to the best of my knowledge, current exist-
ing work done in literature does not make use of the simulated radiation pattern information which is
available prior to measurement in most relevant scenarios. The ideal pattern which is expected from a
designed antenna under test (AUT) can be determined through electromagnetic simulations, provided
the design fits to the requirements of electromagnetic solvers. Current fast sampling/measurement
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techniques only assume sparsity in the pattern and do not use any other prior information on the AUT
to further optimize the measurement method. Most of the available research on antenna measure-
ments using compressed sensing have made use of sampling of the electric near field of the antenna
and used the spherical wave expansion as the transform basis as the number of mode coefficients
required to represent an electromagnetic field is usually sparse. The discrete Fourier transform has
also been used as a sparsifying representation basis for far-field patterns but it has not been explored
or evaluated in detail for different types of antenna patterns. Another key aspect that has not been
explored in literature is the recovery of the sparse coefficients of a given radiation pattern using spar-
sity enhancing compressed sensing techniques such as having the weighted l1-norm as the objective
function of the optimization problem rather than the conventionally used l1-norm.

To summarize, the gaps identified in existing literature are listed below

1. Prior information on the AUT from electromagnetic simulations have not been used in optimizing
the measurements

2. The use of sparsity enhancing recovery methods in CS have not been explored in the context of
radiation pattern measurements

3. Most recovery methods are evaluated only using the mean squared error metric and no other
specific parameters of the radiation pattern are focused on during performance evaluation.

4. An evaluation of performance of the CS basedmeasurement strategies have not been performed
for non-ideal radiation patterns (with errors and distortions).

1.5. Research objectives
Deriving from the problem formulation and literature review, it is essential to establish the research
objectives of thesis. From the state-of-the-art work done on radiation pattern measurements using
compressed sensing, the spherical harmonics and DFT have been identified as good sparsifying bases
for the pattern. Hence, both sparsifying basis functions are used to perform compressed sampling
and reconstruction of the antenna pattern from sparse measurements. Since the weighted l1-norm
minimization based recovery that enhances sparsity in the data has not been applied in the context
of CS for electromagnetic applications, it is decided to investigate the new method to understand its
performance in reducing the number of measurement.

1. Find a well-suited sparse basis representation for far-field antenna patterns
2. Identify the near-optimal sampling scheme to acquire measurements
3. Use prior information of antenna to investigate the use ofweighted l1 normminimization for better

recovery of radiation pattern
4. Compute variation of different aspects of the radiation pattern by comparing specific parameters

of the ground truth and the reconstructed pattern.
5. Test the robustness of the method to measurement noise and other effects on the pattern.

1.6. Novelties in the thesis
The novelties explored in this thesis to obtain faster measurements is listed below.

1. Prior information on the antenna is used with a weighted l1-norm as objective function in the CS
recovery problem for the first time in the context of antenna radiation pattern measurements.

2. A systematic study of the DFT as a sparsifying basis has been performed for the first time.
3. A comparison between compressed sensing using DFT and spherical harmonics is investigated.
4. The performance of algorithms has been evaluated using a customized set of error metrics in

addition to the widely used comparison metric, the mean squared error (MSE).
5. Various distortions are introduced to the antenna radiation pattern and the performance of the

algorithms on the distorted patterns are studied.
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1.7. Thesis structure
The thesis has started with the introduction and the state-of-the-art work done on the problem state-
ment considered. The novelties have been decided based on the identification of research gaps in
existing literature. Chapter 2 provides the necessary theoretical background on antenna pattern mea-
surements and compressed sensing techniques. Chapter 3 explains the signal model adopted for the
CS problem, the recovery methods considered, construction of the sampling matrices. Chapter 4 is
about sparse recovery of patterns by solving the l1 (benchmark) and weighted l1 (new method) min-
imization problem for both the DFT as well as spherical harmonic basis. Furthermore, non-idealities
have been introduced in the radiation pattern to test the method’s performance on distorted antenna
patterns. Finally, error metrics specific to certain aspects of the radiation pattern (gain, HPBW, PSLL).
The sampling strategy can be further optimized based on the selecting the strategy that gives the min-
imum error in one of the quantities. Along with the results of reconstruction, the various error metrics
that have been introduced to assess the performance of recovery have also been discussed and their
results presented thereby. To do this, both antenna radiation patterns simulated using MATLAB and
data measured from tests on an AUT performed at the Microwave Sensing Signals and systems (MS3)
group are used.



2
Theoretical Background

This chapter will provide the necessary background theoretical information on the concepts and tech-
niques involvedwith the thesis. The chapter has been organized into two sections. Section 2.1 gives an
overview of antenna measurement techniques, radiation patterns and the parameters of importance.
A brief introduction to the theory of compressed sensing, the algorithms and methods well suited for
sparse recovery of the signal and the information on the transform basis functions used are discussed
in section 2.2.4

2.1. Antenna measurements
Measurement of the transmit and receive mode properties of antennas is a critical step before they are
put to use in any application. The standard test practices for antenna measurement assume the AUT
is a passive, linear and reciprocal device. Due to the property of reciprocity, the transmit and receive
characteristics of the AUT are similar, thus enabling measurements in either mode. It is also crucial to
decide on the range setup

2.1.1. Measurement techniques and setups
Antenna ranges are developed formeasuring radiation patterns of antennas and contains the necessary
instrumentation and physical space required for the measurement process. The basic categories of
types of ranges are

• Free-space ranges
• Ground reflection ranges
• Near-field ranges

Typical ranges come under the free-space range and are classified as: the elevated range, the com-
pact range, and most anechoic chambers. Ideally the measurements are done with both the AUT and
range antenna in the far-field of the other antenna. In certain cases when the AUT is electrically large,
the far-field condition (R > 2D2/λ) cannot be achieved in the free-space range setup and in that case,
near-field measurements are a better suited option and the far-field pattern can later be obtained by
performing a near-field to far-field transform (NFFFT).

A range antenna and an AUT are shown in the diagram. The positioning subsystem directs the
movement of the antennas. The transmit subsystem generates the desired test frequency, while the
receive subsystem detects the AUT response at various aspect angles. The workstation manages the
entire data collecting process and reports back to the operator. Themeasurement systems of antennas
use scalar or vector devices in the instrumentation

10
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Figure 2.1: Block diagram of a typical antenna-measurement system [3]

2.1.2. Radiation pattern and its characteristics
The radiation pattern is a fundamental property of an antenna/array that describes the spatial distribu-
tion of the electromagnetic field and exists over a full radiation sphere surrounding the antenna. The
most common type is the normalized gain or directivity pattern plotted on a decibel (dB) scale versus
angle. Recent advances in antenna and array design technologies for various applications such as 5G
base stations, radio telescopes etc. make use of antenna radiation with bean scanning, beam squint
and irregular radiation patterns to achieve desired performance metrics. In most cases, the radiation
pattern represents the gain or directivity or electric field defined over a sphere. It varies as a function
of azimuth (ϕ) and elevation (θ) angles.

(a) Radiation pattern and lobes (b) Linear plot of power pattern

Figure 2.2: Antenna radiation pattern parameters [1]

The electric far-field E⃗ at any observation point in space is defined as

E⃗(r⃗) =
e−jkr

r
F⃗ (âr) (2.1)
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where r⃗ is the position vector of the point in free space where the field is defined at, k is the wave
number, and F⃗ is the far-field pattern function which depends only on the direction of the observation
point (âr).

Other quantities of interest from the radiation pattern are the gain, half power beamwidth, peak side
lobe level and the average side lobe levels.

2.2. Compressed sensing
If themajority of the components of a signal are zero, it is said to be sparse. Many real-world signals, as
objectively recorded, are compressible in the sense that they are well approximated by sparse signals—
often after a suitable change of basis. JPEG, for example, depends on image sparsity in the discrete
cosine or wavelet basis to achieve compression by saving only the largest discrete cosine or wavelet
coefficients. The remaining coefficients are all set to zero.

2.2.1. Introduction
Looking more closely at the basic compressed sensing problem of reconstructing a sparse vector x ∈
CN from under determined data y = Ax ∈ Cm×N , two questions emerge:

• How should the linear measurement procedure be designed? In other words, which matrices A
CmN are appropriate?

• How does one deduce x from y = Ax? To put it another way, what are efficient reconstruction
algorithms?

These two questions are not fully independent, because the reconstructionmethodmust take A into
consideration, but we will demonstrate that the study of the matrix A may frequently be separated from
the analysis of the algorithm.

The observed data y ∈ CM is mathematically related to the signal x ∈ CN of interest by Ax = y. The
linear measurement (information) process is represented by the matrix A ∈ Cm×N . Then, by solving
the above linear system, one attempts to recover the vector x ∈ CN . According to conventional knowl-
edge, the number m of measurements, or the amount of measured data, must be at least as large as
the signal length N (the number of x components).

This idea underpins the majority of modern technology, including analog-to-digital conversion, med-
ical imaging, radar, and mobile communication. Indeed, if m < N, classical linear algebra implies that
the linear system (1.1) is under determined and that there are an unlimited number of solutions (as-
suming, of course, that at least one exists). In other words, in this scenario, it is impossible to extract
x from y without further information. This fact is also related to the Shannon sampling theorem, which
stipulates that the sampling rate of a continuous-time signal must be twice its highest frequency in
order for reconstruction to be possible.

This problem of finding a solution for an under determined system of equations can be solved using
the theory of compressed sensing which makes use of the underlying sparsity in the signal

2.2.2. Mathematical formulation of compressed sensing
The sparse/compressed sensing problem of recovering a sparse vector x ∈ Cn from a set of linear
measurements defined by y = Ax ∈ Cm where the number of measurements m<N, can be solved by
solving the optimization problem in

x̂ = min
x∈CN

∥x∥0 s.t. y = Ax (2.2)

But the ||.||l0 minimizing optimization problem is an NP hard problem due to its non convexity thus
allowing only the use of greedy algorithms like orthogonal matching pursuit (OMP), CoSAMP, etc. Luck-
ily, a convex relaxation of the objective function f0(x) = ||(x)||0 can be performed to replace it by the
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function f0(x) = ||(x)||l where 0 ≤ l ≤ 1. When l = 1, the objective becomes a convex function (as l1
norm is convex) and the problem can be reformulated as

x̂ = min
x∈CN

∥x∥1 s.t. y = Ax (2.3)

The new problem formulation is known as Basis pursuit and can be solved using currently available
solvers or convex optimization such as CVX, YalMIP, SPGL1 etc. The problem in 2.3 guarantees accu-
rate recovery of the sparse signal provided the null space property, which is a necessary and sufficient
condition for exact recovery is satisfied. We designate by vS the vector inCS that is the limitation of v to
the indices in set S ⊂ [N ], or the vector in CN that coincides with v on the indices in S and is extended
to zero outside S, for a vector v and a set S.

A matrix A ∈ Km×N is said to satisfy the null space property relative to a set S ⊂ [N ] if

∥vS∥1 < ∥vS∥1for all v ∈ kerA \ {0} (2.4)

The restricted isometry property is another type of property that assures reliable recovery of the
sparse signal. The restricted isometry property, also known as the uniform uncertainty principle, is
a tighter measure of analyzing the quality of a measurement matrix to provide a more comprehensive
analysis for varied sparsity levels. The sth restricted isometry constant δs = δs(A)of amatrixA ∈ Cm×N

is the smallest δ ≥ 0 such that

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)||x||22 (2.5)

for all s-sparse vectors x ∈ CN . Its equivalent expression is provided below.

δs = max
S⊂[N ],card(S)≤s

∥A∗
SAS − Id∥2→2 (2.6)

The measurement matrix A satisfies the restricted isometry property with isometry constant δs, if
δs us small for reasonable large sparsity levels s [16]. But verifying both these properties is a computa-
tionally complex problem for each measurement matrix generated. For this reason, the coherence of
the measurement matrix is considered as a metric to ensure signal recovery using matching pursuit,
basis pursuit and thresholding algorithms.

The goal for good recovery using compressed sensing is that the columns of the measurement
matrix must be maximally incoherent with each other. Mathematically, the coherence µ = µ(A) of a
matrix A is given by

µ := max
1≤i ̸=j≤N

|⟨ai, aj⟩| (2.7)

where a1, a2, ......, aN are the l2-normalized columns of the matrix A ∈ Cm×N , i.e. ∥ai∥2 = 1 for all
i ∈ [N ]

The maximum value coherence of A can take is µ = 1. The minimum value of µ is termed Welch
bound. The lower bound for coherence is given as

µ ≥

√
N −m

m(N − 1)
(2.8)

The Welch bound is achieved under the condition that the columns of A i.e. a1, a2, ...., aN form an
equiangular tight frame. The Gram matrix given by G = A∗A ∈ KN×N

2.2.3. Weighted l1-norm minimization
Another method to further enhance the sparsity present in data is to use a weighted/re-weighted l1-
norm minimization which considers a weighted l1 norm as the cost/objective function.

Letwbe the set ofweights used in the optimization problem, where each entry of the vectorw1,w2,....,wN

are positive entries.
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min
x∈Rn

∑
i=1

wi |xi| subject to y = Φx (2.9)

If the weights are chosen as the inverse of the sparse signal or coefficients x to be recovered, it
provides the most efficient recovery and also reasonably rectifies a key difference between the l0 and
l1 norm which arises due to the convex relaxation. In the l0-norm, only the sparsity of the signal is
considered a cost, whereas in the l1-norm, the cost value depends directly on the magnitude of the
signal/coefficient value which is not the best objective function possible.

Figure 2.3: Weighted l1 minimization improving sparse signal recovery - geometric interpretation [40]

Fig. 2.3 shows a visualization of the feasible set and the l1-normball, whose intersections contribute
to a solution. It shows that weighted l1-normallows for finding a unique solution by solving themodified
optimization problem (provided the recovery criteria according to CS hold good).

2.2.4. Basis functions for sparse representation
Compressed sensing is applicable to various electromagnetic problems such as antenna array diag-
nosis, and antenna pattern measurements. This is from exploiting the underlying sparsity present in
the radiation pattern data in the suitable transform basis. Sparsity in the transform coefficients of the
pattern enable use of compressed sensing to reduce the number of samples required by employing
incoherent measurement strategy.

A few of the basis dictionaries that can be useful for antenna measurements is explained in this
subsection.

Discrete Fourier Transform
The discrete Fourier transform (DFT) provides a translation of a given signal to the frequency domain.
In other words, it expresses a given signal as a linear combination of complex sinusoids of different
frequencies. The DFT of a finite discrete signal x[n] is given by

X(K) =

N−1∑
n=0

x[n]e−j2πft (2.10)

where X(k) represents the DFT coefficients of the signal. The N-point DFT of a signal can be ex-
pressed as X = Wx where X is the DFT coefficients. x is the signal samples and W is the NxN square
DFT matrix given by

Ψ = WN =


1 1 1 · · · 1

1 WN W 2
N · · · WN−1

N

W 2
N W 4

N · · · W
2(N−1)
N

...
...

... · · · :
...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)(N−1)
N

 (2.11)
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whereWN = ej2πN and N is the total length of the signal.
The DFT matrix Ψ = WN satisfies the required properties of unitary matrix with each column or-

thogonal to the other (orthonormal basis).

Spherical Harmonics expansion
The radiation pattern is usually defined on a spherical surface in most cases, thereby enabling the field
can be represented as a linear combination of spherical harmonics (illustrated in Fig. 2.4. According
to theory, most electromagnetic fields exhibit sparsity in their spherical wave coefficients which makes
this well suited for compressed sensing in antenna pattern measurements [44][29].

E(θ, φ) =

∞∑
l=0

l∑
m=−l

clmY m
l (θ, φ) (2.12)

where clm are the spherical wave coefficients of degree l and order m, Ym
l (θ, ϕ) is the value of the

spherical harmonic corresponding to the value of l and m, computed at the position (θ, ϕ).
The spherical harmonics can be computed using the expression

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos θ)eImφ (2.13)

where Pm
l represents associated Legendre polynomials. The spherical harmonic functions for neg-

ative order (m<0) are computed using the conjugate property of spherical harmonic functions.

Y−m
l (θ, ϕ) = (−1)mYm∗

l (θ, ϕ) (2.14)

In practice, since an infinite summation is computationally complex, a truncation order for the value
of L is defined as L = (2π/λ)a where λ is the wavelength of the electromagnetic wave generated, a is
the radius of the smallest sphere enclosing the radiating structure of the AUT.

(a) Spherical Harmonic of degree l=2, order m = -1 (b) Spherical Harmonic of degree l=2, order m = -1

Figure 2.4: Spherical harmonic functions visualization



3
Simulation Setup

This chapter will give a brief overview about the way in which the simulation was carried out, the as-
sumptions made and how the data model, error parameters to evaluate performance and the optimiza-
tion methods are explained. The sparse representation of the radiation patterns is obtained using the
DFT and spherical harmonic expansion of the electric field data. The measurements acquired are used
in the optimization problem to find the sparse coefficient vector minimizing the cost of the objective
function. Based on the objective function the quality of recovery can cary. In the work presented, the
l1-norm and weighted l1-norm of the coefficient vector is chosen as the weight and their performances
are compared. The mathematical formulation of the signal model, sampling technique and optimiza-
tion problem are explained in this chapter elaborately.

3.1. Signal Model
The antenna radiation pattern is considered as a signal varying as a function of space, depending on
the coordinate system considered. LetE(θ, ϕ) be the electric field pattern represented as a matrix with
rows representing variation in elevation (θ) and columns representing variation in azimuth (ϕ) angles.
Consider the pattern to be vectorized as a signal vector of the form f(θ, ϕ). The signal is assumed to
have a sparse representation in a particular transform domain corresponding to a sparsifying basis Ψ.
In the work done in this thesis, the Discrete Fourier transform (DFT) and spherical harmonic functions
are chosen as the sparsifying transform basis.

The signal measurements can be denoted as

y(θ, ϕ) = y = PΩ(f(θ, ϕ)) = Φf (3.1)

wherePΩ represents the sub-sampling operator andΦ is the sampling ormeasurementmatrixwhich
dictates how many samples are measured/considered to recover the field data.

The radiation pattern is not sparse in its signal domain (function of space) whereas many antenna
patterns exhibit sparsity once transformed to a different domain.

The far-field can be expressed as a linear combination of the basis functions given by

f(θ, ϕ) = f = Ψx (3.2)

For the DFT as transform basis, the DFT matrixW is the basis matrix �. When the spherical harmon-
ics are used, the measurement matrix A for the desired specified directions (θi, ϕi), ∀i ∈ M is given
as

16
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A = [Y0
0(θ, ϕ) Y−1

1 (θ, ϕ) Y0
1(θ, ϕ) Y1

1(θ, ϕ)......Y
−L
L (θ, ϕ).....YL

L(θ, ϕ)] (3.3)

where Ym
l (θ, ϕ) represents the vector spherical harmonic of degree l, order m computed at the loca-

tions defined by θ and ϕ.
The inverse relation gives the required coefficients which exhibit sparsity (||x||0 = s << N )

x = Ψ−1f (3.4)

If we consider the sparse representation of the signal in the measurement model, the resulting
expression is

y = ΦΨx+ n = Ax+ n (3.5)

where A is known as the compressed sensing matrix (order M x N).

A flowchart representing the signal processing pipeline is shown in Fig. 3.1.

Figure 3.1: Data processing pipeline shown as a flow chart

If the measurement matrixΦ performs subsampling on the data, the matrix has exactly M ones and
rest of the entries are zero. Each row must contain 1 at the index where the field is sampled at. The
requirement for compressed sensing to give an accurate reconstruction of the field pattern (signal) is
that the matrix A must follow restricted isometry property with a small value for the RIP constant [15].
But in a practical scenario, verifying the restricted isometry property is a very hard problem. Instead,
it is shown in articles that random partial Fourier matrices obey RIP with a high probability and act as
effective CSmatrices. A random partial Fourier matrix (RPFM) corresponds to selecting a specific num-
ber of rows (M rows) of the DFT matrix, which indirectly implies selecting samples at random (using a
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certain distribution) from the far-field pattern/signal.

Using basis pursuit to recover the sparse coefficients of the signal is the current benchmark for
using compressed sensing in antenna pattern measurements and the recovery problem is formulated
as shown in 3.6

x̂ = min
x

∥x∥1 s.t. ∥y− Ax∥2 ≤ ε (3.6)

where x̂ is the estimated signal coefficients from the field measurements y. ϵ is the maximum toler-
able error between themeasurements and the recovered signal estimate. In a noiseless reconstruction
scenario ϵ = 0.

In order to improve the enhance the usage of sparsity in the recovery process, weighted l1 norm
minimization procedure is employed where the weighted l1 norm is the objective function in the opti-
mization problem, formulated as

x̂ = min
x

∥Wx∥1 s.t. ∥y−WAx∥2 ≤ ε (3.7)

where the diagonal weight matrix W = diag(w) is obtained from the weights assigned to each coef-
ficient. In most cases, there is not a lot of information about the signal to be measured and recovered.
But in terms of antenna radiation pattern measurements, the expected radiation pattern for a given
AUT is available through electromagnetic simulations from 3.4. The coefficients from the simulated
radiation pattern can be used to construct the weights to apply in the modified recovery problem.

The weights considered for this problem are of the form as shown in 3.8

wi =

{
1

|x0,i|+ϵ , x0,i ̸= 0

∞, x0,i = 0
(3.8)

where x0 is the coefficients of the ideal/simulated pattern and ϵ is a tolerance parameter to allow
the possibility for non-zero coefficients apart from the support of x0 in the event of measurement errors
in the AUT.

Another method that does not assume the availability of prior information about the coefficients is
the re-weighted l1 norm minimization problem.

The re-weighted l1 normminimization does not require any prior information from the AUT. Instead,
it enhances the sparsity present in the data through means of the modified optimization problem (with
the weighted l1 norm as the objective function) where the weights are calculated iteratively from the
estimate of coefficients at each iteration. The algorithm can be explained as follows.

1. Set the initial weights (at iteration i=1) w(l) = 1 and W = diag(w).
2. Solve the optimization problem given by eqn. 3.7
3. The estimated coefficients x(l) are used to update the weights vector as w(i+1) = 1

|x(l)
i |+ϵ

, where
i=1,....,N

4. The iterative procedure is terminated after a pre-determined number of iterations lmax.

The parameter ϵ > 0 ensures that theweight function still allows the recovery of coefficients beyond
the support of the coefficients. This is done as to accomodate the occurrence of changes in the sparse
coefficients that may be a consequence of changes in the antenna radiation pattern (in this context)
which is the signal/quantity to be measured.

In order to evaluate the performance of the method, the sampling and recovery technique has been
applied to simulated and archival data from measurements. Most of the antenna radiation patterns
used have been designed and simulated using Antenna Toolbox in MATLAB.
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The Antenna toolbox is used to create a required antenna object corresponding to a specific type
of antenna (dipole, patch, dielectric resonator antenna, linear and planar arrays etc.) and the desired
parameters. Some of the important design parameters in MATLAB for an antenna are

1. Operating Frequency
2. Physical Dimensions
3. Material Properties
4. Feed Type
5. Element spacing (arrays)
6. Number of elements (arrays)

The electric and magnetic fields of the designed antenna can be computed using their correspond-
ing function in MATLAB. An example of the radiation pattern of a pyramidal horn that was simulated as
part of the work and used in further stages to evaluate the method, is shown in the figure below.

Figure 3.2: 3D radiation pattern of a pyramidal horn antenna operating at 7.87GHz designed using MATLAB

In a similar manner few more antenna patterns have been obtained and used to validate the results
of the sampling and recovery method. In the shown radiation pattern, the measurements are field
samples acquired at specific field locations in azimuth and elevation in spherical coordinates (θ, ϕ).

3.2. Field sampling strategy
One of the key considerations in optimizing the antenna measurements is to design the sampling strat-
egy which dictates at which spatial positions to measure the field strength for successful reconstruc-
tion of the radiation pattern. This mathematically translates to the problem of designing an M × N
matrix where M is the number of measurements, N is the number of samples. Usually in compressed
sensing, the practice is to acquire holographic measurements which is a linear combination of the co-
efficients. In this case, this is done by selecting specific rows (M rows) from the DFT matrix as the
compressed sensing matrix.

Since compressed sensing is inherently different from interpolation technique it is ensure that the
samples selected are well suited for recovering the signal. In other words, mathematically, the sam-
pling matrix and the signal basis matrix must be maximally incoherent (mutual coherence of the CS
matrix A must tend to the Welch bound). The performance of reconstruction depends on the mutual
coherence properties of the CS matrix which in turn depends on the sensing/measurement matrix for
a given sparsifying basis (chosen to represent the radiation pattern).
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The first step to designing the sensing matrix Φ is to construct an Nx1 binary vector b which has 1
at positions where the field is sampled and 0 otherwise. This can be mathematically described as

N∑
i=1

Φj,i = 1; ∀j ∈ [1,M ] (3.9)

One way of assessing the viability of a chosen sampling scheme is to compute the point spread
function (PSF) of a given sampling vector/matrix is a useful measure of the mutual coherence present
in the sequence and also gives information about the extent of aliasing or interference present in the
recovered signal. Given a sampling vector, the PSF is given by 3.10.

PSF =
1√
N

Ψb (3.10)

where Ψ = UN which is the unitary DFT matrix (used as the transform basis in this work).
Ideally when the full grid of points is sampled according to Nyquist criterion, the PSF has a maximum
at the first index and zero elsewhere. But since compressed sensing requires lesser measurements
than Nyquist, the characteristics of the PSF depends on how the samples are acquired (grid sampling
strategy).

When DFT is used as the transformation basis, an equispaced under sampling of the signal/field
pattern will give rise to grating lobes in the PSFwhich will give rise to aliasing when the radiation pattern
is recovered. This is due to the fact that the mutual coherence between the columns of A is high in
the case of equiangular undersampling. Hence when DFT is used as the transform basis, a random
selection of samples from the conventional sampling grid of the field results in a good reconstruction
of the signal as it results in an RPFMwith near-optimal recovery guarantees. An example of equiangular
and random under sampling are provided through simulations in the Fig. 3.3, 3.4.

(a) Equiangular undersampled measurements (b) Random undersampled measurements

Figure 3.3: Demonstration of presence and absence of aliasing in recovered signal for uniform and random undersampling of
the pattern
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(a) Equiangular undersampled measurements (b) Random undersampled measurements

Figure 3.4: Demonstration of presence and absence of aliasing in recovered signal for uniform and random undersampling of
the pattern

Figure 3.3 shows the grating lobes in the point spread function due equiangular measurements and
the presence of the noise/interference floor in the presence of grating lobes. Its effects on the recon-
struction of the 3D far-field radiation pattern of a pyramidal horn antenna is shown in Fig. 3.4.

However this is not the same case when the spherical harmonics are use to provide a sparse rep-
resentation of the electric field. When spherical harmonic functions are used to compute the sparse
coefficients to represent the radiation pattern, a minimum redundancy sampling technique can be fol-
lowed. Certain optimal sampling methods have been proposed in literature in the context of spherical
measurements. One of them that has been used in the work done in this thesis is the igloo sampling
scheme which adaptively changes the sampling interval in the azimuth for a given elevation angular
step. Say if ∆θ is the sampling step in the elevation direction, the step size in the azimuth direction is
given by

∆ϕ =
∆θ

cosθ
(3.11)

This reduces the number of samples compared to an equiangular grid yet still results in oversam-
pling in the regions near the poles. Samples can be chosen in random from the grid of samples for
a given ∆θ in the igloo sampling method to estimate the underlying spherical wave coefficients and
consequentially reconstruct the radiation pattern.

3.3. Performance metrics for evaluation
The standard performancemetric used for the evaluation of the reconstructed signal in a compresseed
sensing framework is the mean squared error (MSE) or the root-mean squared error (RMSE).

Given a far-field pattern/data fn which is the field data to bemeasured (ground truth) and a recovered
pattern f̂n, the RMSE between them is

RMSE =

√√√√ 1

N

N∑
n=1

(
fn − f̂n

)2

(3.12)

Another potential error is the fractional error between the patterns and is defined as

f(L) =

√∑
r̂ |Er,L(̂r)− E(̂r)|2∑

r̂ |E(̂r)|2
(3.13)

There are several other metrics of error in literature as well which provide information about error
in specific aspects of the radiation pattern [45].

Few of the metrics are the linear difference 3.14, weighted linear difference 3.15, logarithmic differ-
ence 3.16 and the weighted logarithmic difference 3.17.
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∆lin(θ, ϕ) = f1(θ, ϕ)− f2(θ, ϕ) (3.14)

∆w,lin(θ, ϕ) = Wlin∆lin(θ, ϕ) (3.15)

∆log(θ, ϕ) = 20 log10 f1(θ, ϕ)− 20 log10 f2(θ, ϕ) (3.16)

∆w,log(θ, ϕ) = Wlog∆log(θ, ϕ) (3.17)

where the weights can be formulated as Wlog = (f1(θ, ϕ))
β where β can be chosen freely to an

extent. This metric of error shows an increase in the relative level of error in the main lobe region which
may be a useful performance metric when the goal is to ensure accuracy in the main lobe region rather
than other aspects of the radiation pattern such as accuracy in side lobes or null depth.

In order to demonstrate the error parameters, the azimuth pattern of a horn antenna simulated using
MATLAB is considered. The plot shows the simuated field pattern, the samples chosen as measure-
ments and the recovered pattern. It can be observed from 3.5 that there are certain deviations between
the simulated and recovered pattern have a considerable deviation at certain angular positions in the
main lobe region (eg. difference at -24o). Certain deviations are also observed in the side lobe region
(eg. difference at 136o as shown in 3.5).

Figure 3.5: E-field patterns to be compared

A fewother errormetricswere defined in 2.2.4which emphasize on different aspects of the radiation
pattern.

The introduced error metrics are computed for the simulated and recovered antenna patterns and
the results are shown in 3.6. Inferring from the results, it can be noted that weighted logarithmic differ-
ence emphasizes difference in the high power/main lobe region of the antenna radiation pattern giving
less weights to the sidelobe regions. Linear difference (point wise) also provides a similar plot with
higher variations in the main lobe region. From Fig.3.6, weighted linear difference (bottom left) and
logarithmic difference (top right) shows variation in side-lobe regions where the power is comparitively
lesser with more emphasis than themain lobe region. This demonstrates the use of different functions
to compare the simulated and recovered pattern based on the required characteristic of the radiation
pattern.

The mean and standard deviations of the differences between the ground truth and recovered pat-
terns (linear or logarithmic) are useful error metrics. In addition to this, the errors can also be estab-
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(a) Linear difference (b) Weighted linear difference

(c) Logarithmic difference (d) Weighted logarithmic difference

Figure 3.6: Various error metrics to compare radiation patterns

lished in terms of the simulated pattern which is expected according to the design and the recovered
pattern by extracting specific parameters from them. In this work, the error in the following parameters
are of concern:

1. Maximum Gain (G0) or Directivity (D0)
2. Half-power beamwidth (HPBW)
3. Peak sidelobe level (PSLL)
4. Average sidelobe level (ASLL)

3.4. Modeling non-idealities in antenna radiation patterns
Fabrication and operation error modeling: The weighted l1 minimization procedure uses prior informa-
tion from electromagnetic simulation of the AUT to find the underlying coefficients according to the
sparsity transform and use the obtained coefficients to formulate the weights for the algorithm. But
it is critical to ensure that the assignment of weights from prior information does not result in loss
of information of the ground truth (true radiation characteristics of the AUT). It is important to ensure
the same as we need to be able to measure the deviations of the measured pattern from the ideal to
understand whether there are manufacturing discrepancies or unknown effects in the design causing
deviation of the pattern from the expected simulation results. For this reason, in this work, errors have
been introduced to distort the ideal radiation pattern in simulations to compare the recovered pattern
with both the simulated and distorted pattern. This is used to know if the reconstruction is closer to
the measured pattern or the simulated pattern and if the recovery performs well, the result must have
a smaller value of error in comparison with the measured pattern.

In single element antennas, the errors may arise due to manufacturing defects and errors in dimen-
sions of the radiating structure etc. In terms of antenna arrays, there is a wider range of possible errors
[46]. Mutual coupling arises due to the coupling between the array elements and it creates undesirable
distortions in the pattern which result in variation in the sidelobe levels of the resulting array patterns.
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Due to the presence of mutual coupling, the embedded element patterns of each element in the array
may vary significantly [12]. Errors in element positions, amplitude and phase excitations are also very
much possible and it is necessary to be able to measure these effects during the CS based sampling
and recovery. Apart from errors in the pattern, the methods must also work in scenarios where the
main beam of an array is scanned to a specific direction and measure the true radiation pattern of the
AUT for these scenarios.

For the work done in this thesis, to verify the performance of the recovery methods on patterns with
measurement noise, Some of the effects considered during testing of the pattern reconstruction in the
work done are

1. Scanning main beam to target direction
2. Mutual coupling effects (in arrays)
3. Reduced beam width

3.5. Conclusions
This chapter discussed the signal model that dictates the application of compressed sensing to reduc-
ing the number of samples for antenna pattern measurements. The benchmark method (l1-norm), new
method (weighted l1-norm minimization) and another method of using re-weighted l1-norm minimiza-
tion. The workflow of the pipeline is explained. The section on field sampling strategy discusses the
properties of CS that must satisfied to enable exact recovery of the signal (pattern in this case).



4
Sparse recovery using compressed

sensing

4.1. Sparsity in radiation patterns

4.1.1. Transform basis: DFT

In order to recover the pattern from a sparse set of measurements using compressed sensing, it is
necessary to first demonstrate the sparsity of antenna radiation patterns in the Fourier domain (DFT)
cite equation. In order to compute an approximate value of the sparsity, the signal coefficients xsim
which cross a threshold have been considered and the support of the result is taken as the sparsity
present in the signal. The comparison of the number of samples and the support of the coefficients
vector (sparse) is shown in the table 4.1 for both 2D pattern cuts and 3D radiation data.

Table 4.1: Sparsity levels of different radiation patterns

Antenna Pattern type Number of grid
points (N)

Number of sparse
coefficients(K)

Sparsity
(K/N)

Pyramidal Horn 1D (E-plane) 361 37 10.2%
4-element patch ar-
ray 1D (H-plane) 361 75 20.78%

Pyramidal Horn 3D 65534 5534 8.5%
Cassegrain an-
tenna 3D 16471 513 4%

Dipole 3D 16471 160 1%
Helix antenna 3D 16471 310 2%
Vivaldi 3D 16471 1523 9.25%

It can be inferred from the above table that a wide range of antenna patterns provide a sparse rep-
resentation in transform domain using the DFT basis. The sparsity in the radiation patterns enables
the use of compressive sampling and reconstruction from reduced number of measurements, which
is related to the sparsity/compressibility of the signal. If the sparsity value K is less, the pattern can be
recovered using lesser measurements and this relation is demonstrated in the following sections.
Another visualization of the sparseDFTcoefficients for the azimuth pattern cut and the three-dimensional
radiation pattern data of a pyramidal horn antenna operating at 7.67GHz is shown in the figure 4.1.

25
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(a) Coefficients of Azimuth pattern (2D) (b) Coefficients of 3D pattern

Figure 4.1: DFT coefficients for pattern of a pyramidal horn antenna

4.1.2. Transform basis: Spherical harmonics

The electric field radiation pattern of any AUT can be expressed in terms of a linear combination of
spherical harmonics of degree l, order m (Eqn. 2.12). During the computation, the infinite summation
is reduced to a finite sum by a truncation order L which depends on the frequency of operation and the
maximum dimension of the antenna. The spherical wave coefficients that are used in the expansion
to represent the electric field is sparse for most antennas considered. This motivates the use of a re-
dundant sampling scheme and compressed sensing techniques to recover the field pattern from lesser
number of measurements. In this chapter, first the sparse nature of the spherical wave coefficients is
demonstrated for the radiation patterns considered using the spherical mode spectrum of the radiated
fields. Later, the igloo sampling scheme is used to select redundant number of samples for recovery
using l1 norm minimization. Further, a subset of samples from the igloo sampling grid are chosen and
used for recovery of the radiation pattern and in this, the performance of both l1 as well as weighted l1
norm minimization techniques are compared to select the best recovery algorithm.

An overview of the antennas considered during simulations as well as its maximum dimensions,
corresponding truncation order L and number of samples used to recover the field pattern with good
accuracy are shown in the table 4.2. As mentioned in chapter 2, the truncation order is computed as
[ 2πaλ ]+n1 where n1 = 10 typically. L is dependent on the frequency of operation as well as the physical
size of the radiating structure.

Table 4.2: Sparsity levels of different radiation patterns

Antenna Frequency
(GHz)

2πa
λ L N = (L+ 1)2 Migloo

Vivaldi antenna 3.5 18 30 961 961
Pyramidal horn 7.87 17 30 961 961
Sparse array (64 el-
ements) 25.75 32 50 2601 2594

Patch array (4 ele-
ments) 5 28 50 2601 2594

Given a truncation order L, there are N = (L + 1)2 spherical wave coefficients to represent the
electric field and for accurate estimation of the coefficients, conventionally M ≈ N measurements
are required. For good recovery, the M measurements are selected from the redundant igloo sampling
scheme where the angular step in the elevation (∆θ) is fixed and the step in azimuth (∆ϕ) is computed
at each θ. If the recommended sampling grid has an equiangular step size of 1o, the field over the dense
grid can be estimated from estimate of the coefficients using compressed sensing and retrieving the
field with the known spherical harmonic functions.
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4.2. Reconstruction using l1 and weighted l1-norm minimization

4.2.1. Transform basis: DFT

Currently employed methods for antenna measurements using compressed sensing use l1-norm mini-
mization as the method to estimate the underlying sparse coefficients of the field and consequentially
the radiation pattern data is recovered. Hence, the conventional basis pursuit is chosen as the bench-
mark for comparing the proposed recovery method and the weighted l1 method is compared with it.

In this work, the idea is to use prior information available on the AUT from simulations to optimize
the measurements. This can be done by designing weighting functions using the available knowledge
of the sparse coefficients from electromagnetic simulations of the antenna’s radiation characteristics.
The computed weights for a given set of simulated coefficients from the azimuth pattern (θ = 0) of
a pyramidal horn antenna is given in the figure 4.2. The designed weight function can be used in the
modified optimization problem (thereby enhancing sparsity in the data). The major advantage of using
weighted l1 norm minimization is the significant reduction in the required number of measurements
as compared to the l1 norm based approach for a desired accuracy. Reducing the number of measure-
ments enables faster characterization of the AUTwhich is desired in antennameasurements. However,
to use themethod with certainty, it is also critical to investigate the estimation of coefficients in regions
outside the support of the simulated coefficients. In order to compare the performance, both l1 and
weighted l1 minimization based recovery is performed on various antenna patterns.

In the first case, a standard pyramidal horn antenna (operating at a frequency of 7.87GHz) is sim-
ulated using the Antenna Toolbox in MATLAB. The azimuth pattern of the antenna is chosen with a
sampling of∆θ = 1o .

Figure 4.2: Weight function computed as the inverse of coefficients obtained from simulated pattern

Figure 4.2 gives an idea of the magnitude of weights (inverse of coefficients) provided in the cost
function of the optimization problem. The value of weights is higher for coefficients with small am-
plitude and vice versa for larger magnitude coefficients. The performance of recovery from 30 (out of
360) measurements, using l1-norm and weighted l1-normminimization problems are shown in Fig. 4.3.
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Figure 4.3: Comparing recovery of l1 to weighted l1 norm minimization (M = N/12)

The estimated coefficients using both algorithms which then undergo the transform to give the
estimates of the field patterns are shown in the Fig. 4.4.

Figure 4.4: Coefficients estimated from l1 and weighted l1 minimization

It can be seen from fig. 4.3 that the weighted l1 minimization provides a much better recovery of
the underlying sparse DFT coefficients of the radiation pattern compared to the l1 minimization used
in basis pursuit compressed sensing. This is due to the high value of weights (shown in Fig. 4.2 as-
signed to low valued coefficients in the sparse vector which brings the minimization closer to l0 norm
minimization that is ideally required to estimate the coefficients.

The performanceof the recovery is assessed by computing the rootmean squared error between the
simulated and recovered patterns. It can be inferred from fig.4.5 that weighted l1 algorithm performs
much better for less number ofmeasurements and the idea is that if a RMSEof 3 (V /m)2 is the accuracy
required for faithful reconstruction, this can be achieved using just 15% of the total number of samples
as opposed to 30% measurements required using l1 based recovery.



4.2. Reconstruction using l1 and weighted l1-norm minimization 29

Figure 4.5: RMSE as a function of number of measurements for azimuth pattern form pyramidal horn antenna

The below set of figures demonstrate the recovery of a 3D antenna radiation pattern shown as an
equirectangular projection. The far-field radiation pattern of a Vivaldi antenna operating at 3.5GHz has
been simulated and it is shown in fig.4.6a.

(a) 3D radiation pattern
(b) Recovery using l1 , weighted l1 and re-weighted l1

minimization

Figure 4.6: Compressed sensing based sampling and reconstruction of Vivaldi antenna paatterns

(a) Recovery using l1 minimization (b) Recovery using weighted l1 minimization

Figure 4.7: Compressed sensing based sampling and reconstruction of Vivaldi antenna patterns (M = 13000)

Fig. 4.6 shows the RMSE vs M plot for all three reconstruction methods mentioned in the signal
model and the weighted l1-based recovery is much better than both re-weighted l1 or l1- norm mini-
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mization. For this reason, all analysis and discussions that follow further in the report, are comparing
l1 with weighted l1-minimization based results.

Figure 4.8: Recovery using l1 minimization

The patterns are recovered using both algorithms from M = 13000 measurements (M/N=20%) and
the results are shown in fig. 4.7. It is evident from comparing the recoveries that weighted l1 norm
recovery performs much better than the benchmark as the recovery using l1 minimization has a lot of
gaps in the data reconstructing which manifest as undesirable artifacts in the radiation pattern which
distort the resulting pattern. The M samples used to reconstruct the field pattern are chosen uniformly
at random from the regular grid of field points as this results in less coherence of the measurement
matrix A.

4.2.2. Transform basis: Spherical Harmonics

In this section, the results from reconstruction of radiation pattern of three antennas from a reduced set
of samples using compressed sensing methods is presented. The antennas considered are a sparse
2D array of patch elements, a 4 element patch array and Vivaldi antenna. The results corresponding to
each antenna are presented as follows:

Vivaldi antenna
To provide a fair comparison between recovery while using both the bases functions, the Vivaldi an-
tenna (operating at 3.5GHz) data that has been used previously in the DFT basis has been used to
recover the data. The spherical mode expansion of the electric field (fig. 4.6a) of the Vivaldi element is
shown in Fig. 4.9a. It can be observed that since the sparsity is high in the spherical wave coefficients,
i.e. there are only very few non-zero coefficients, there is not a very significant improvement in using
weighted l1-method over the l1 method in terms of the reduction in number of field samples required.
The RMSE plot is obtained by performing a Monte Carlo analysis of 10 iterations, since samples are
chosen at random from the igloo sampling grid. The number of samples/measurements vary from 100
to 2000.
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(a) Spherical mode coefficients (b) RMSE vs number of measurements plot

Figure 4.9: Vivaldi antenna

Patch array
Another example demonstrating the effectiveness of spherical harmonic expansion in recovering the
field and the capability of weighted l1-norm minimization to provide better accuracy for lesser number
of samples is shown. The data from simulations of a 4-element patch array (operating at 5GHz) has
been used for analysis. Fig. 4.10 shows the simulated pattern and the pattern when reconstructed
using the benchmark l1-minimization from 2594 samples in the Igloo sampling grid. The performance
of both methods (l1 and weighted l1) is shown in Fig. 4.11 along with its spherical mode coefficients.

(a) Simulated patch array pattern (b) Pattern recovery from 2594 samples from Igloo grid

Figure 4.10: Compressed sensing based sampling and reconstruction of the 3D patterns of pyramidal horn

(a) Spherical mode coefficients (b) RMSE vs number of measurements plot

Figure 4.11: Patch array with 4 radiating elements
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Sparse 2D array
In this section, a 2D sparse array (of patch elements) operating at 25.75GHz frequency, designed and
tested at the Microwave Sensing, Signals and Systems (MS3) group at TU Delft has been considered.
The array consists of 64 patch antennas and its radiation pattern (equirectangular) and spherical wave
coefficients are shown in Fig. 4.12.

(a) Equi rectangular pattern of the AUT considered (b) N spherical wave coefficients of the radiation pattern

Figure 4.12: Radiation pattern of NXP sparse array measured at DUCAT (MS3)

The spherical wave coefficients clm can also be grouped based on their degree and order to repre-
sent the mode spectrum of the field which gives insights into the most prominent modes of spherical
harmonics that contribute to the radiated field. The mode spectrum of the sparse array considered
is shown in Fig. 4.14a. It can be observed that of the 2601 coefficients computed (for L=50), only a
small fraction of coefficients (having lower degree) are significant, thereby demonstrating the underly-
ing sparsity in the data.

Figure 4.13: Pattern recovered using weighted l1 minimization with the entire igloo sampling grid

Once again, as discussed in the case of the DFT based reconstruction, the recovery has been at-
tempted for various number of measurements by solving both the l1 and weighted l1 norm minimiza-
tion problems in order to analyze which performs better. The number of samples measured/chosen
for reconstruction (denoted by M) is varied from 100 samples upto 2000 samples and the root mean
squared error between the ground truth and the reconstructed pattern is used as a performancemetric.
The field measurements are chosen in random from the igloo sampling grid as random sampling has
near-optimal recovery guarantees in compressed sensing using spherical harmonics. The weights for
the weighted l1-norm minimization are constructed using the prior knowledge of the field from simula-
tions. An example of the recovered pattern using all the grid points in the igloo sampling grid has been
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shown in Fig. 4.13

(a) Spherical mode coefficients (b) RMSE vs number of measurements plot

Figure 4.14: Results for the compressed sensing for sparse array pattern recovery

The RMSE plotted for each number ofmeasurements considered (M) is the average error value from
10 different set of samples chosen at random. The RMSE curve for recovery using weighted l1-norm
minimization lies below the curve corresponding to l1-norm minimization (chosen benchmark) which
demonstrates that there is an evident reduction in the number of samples required to reconstruct the
radiation pattern for a specified RMSE value. For example, it is possible to achieve an RMSE error as
low as 22.7 mV/m with 520 samples using the new method as opposed to the existing benchmark
recovery which required 840 samples.

4.2.3. Comparing basis functions
During the course of this thesis, the methods were investigated by representing antenna patterns us-
ing both DFT and spherical harmonic functions. Let us consider the weighted l1-norm minimization
which is proven to be a better recovery technique in the context of antenna measurements from earlier
presented results. For a simple demonstration of both the sparsifying bases, the radiation patterns
of Vivaldi and pyramidal horn antenna are reconstructed by representing the fields through both basis
functions and the results are tabulated in the table 4.3.

Table 4.3: Sparsity levels of different radiation patterns

Antenna Nfield MDFT MSHE RMSEDFT RMSESHE

Vivaldi antenna 65341 13069 936 2× 10−4 2× 10−4

Vivaldi antenna 65341 3269 156 6× 10−4 6× 10−4

Pyramidal horn 65341 13069 832 2.66×10−4 2× 10−4

From the table 4.3, we can conclude that the spherical harmonics can recover the pattern with far
lesser number of samples than compared to the DFT as the transform basis.

4.3. Reconstruction of non-ideal radiation patterns
Due to the design of theweights applied to the coefficients based on prior information fromsimulations,
it is essential to validate the proper functioning of the proposed method (weighted l1-norm minimiza-
tion) on patterns that contain distortions andmeasurement noise. Themethodmust also provide good
reconstruction of the ground truth (field radiated by the AUT during measurement process) rather than
creating bias. In simpler words, the recovered pattern must be close to the ground truth than to the sim-
ulated pattern. To ensure this fact, the weights are constructed by introducing a tolerance parameter ϵ
which allows estimation of coefficients beyond the support of simulations.
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The working of the proposed method on patterns with distortions or varying characteristics are
demonstrated using the simulation of a 9-element half-wave dipole uniform linear array (ULA) designed
using the antenna toolbox inMATLAB. The elements operate at their resonant frequency of 1.8GHz and
the spacing between consecutive elements is 0.49λ in order to avoid effects of mutual coupling.

Two types of variations are introduced to the patterns in this work. The first one is scanning of the
main beam to an angle of ϕs = 120o from its initial design at ϕ = 90o. This is done by providing a
progressive phase shift of β = 124.7 to the elements in the ULA. A drop in the peak of the main beam
is observed according to cosine law. The pattern without the phase shifts is considered as the prior
information available and it is required to measure the scanned beam pattern. Both the methods (l1
and weighted l1 minimization) are applied on 120 pattern samples (M=120, N=717) chosen in random
to recover the azimuth pattern.

(a) Caption (b) Caption

Figure 4.15: Re-weighted l1-norm recovery - reconstructed pattern and residuals plot

(a) Caption (b) Caption

Figure 4.16: Pattern distorted due to spacing between elements - recovery with (M=120, N=717)

Observing figures 4.15,4.16, the recovered pattern from both methods match more with the mea-
surement (ground truth) thanwith the simulated prior information as expected. And it can also be noted
that the magnitude of residual with measured pattern is less for the proposed method than with the
benchmark.

The second variation considered is the reduction of beamwidth of themain lobe of the radiation pat-
tern. This significantly distorts the antenna pattern and the distorted pattern is considered the ground
truth to be reconstructed. It follows a similar inference as with the previous case, with weighted l1
minimization performing better (lesser error in the residual).
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(a) Caption (b) Caption

Figure 4.17: Pattern distorted due to spacing between elements - recovery with (M=120, N=717)

(a) Caption (b) Caption

Figure 4.18: Pattern distorted due to spacing between elements - recovery with (M=120, N=717)

4.3.1. Results from measurement data: Patch array of 4 elements

To further validate the applicability of the reconstruction method, the method has been tested on az-
imuth cut pattern data of a patch array operating at a frequency of 5GHz. The data used for testing the
method was measured at the DUCAT chamber in the microwave sensing, signals and systems (MS3)
group at TU Delft1. The expected radiation pattern is obtained using CST simulations of the patch array
and is used as prior information to construct the weights and samples are chosen at random from the
measured data. The simulated and measured patterns are shown in Fig. 4.19. It can be observed that
the mutual coupling in the array and other measurement noise produce error in the side lobe regions
of the pattern.

Fig. 4.20,4.21 show the recovered pattern (from 73 samples) using both l1 and weighted l1-norm
minimization and their corresponding residualswith both the simulated andmeasured pattern. It can be
observed that in both cases, the residual between recovered and measured patterns is lower than that
between recovered and simulated, which is desired. It can further be noted that themagnitude of error is
much higher in the pattern reconstructed fromweighted l1 minimization rather than the l1 minimization
which demonstrates its better performance compared to the existing benchmark technique.
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Figure 4.19: Simulated and measured patch array H-plane pattern

Figure 4.20: Recovered pattern using l1 minimization and error when compared with simulated and measured pattern

Figure 4.21: Recovered pattern using weighted l1 minimization and error when compared with simulated and measured pattern
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4.4. Conclusions

From the results in this chapter, the spherical harmonic basis provides a sparse representation of the
radiation pattern allowing the electric field to be represented with few non-zero coefficients. This en-
ables a great reduction in the number of samples required to recover the pattern information when
compared to using the DFT as the transform basis. The difference observed between the two is that,
spherical harmonics requires selection of measurements in random from the set of sampling locations
in an igloo field sampling grid. Whereas, in case of the DFT, the selection of sampling locations is com-
pletely random to reduce themutual coherence between DFT basismatrix and the sub-samplingmatrix.
The random partial Fourier matrices constructed in this manner are near-optimal CS matrices.

For both the set of basis functions, the patterns have been recovered by solving both the l1 and
weighted l1-norm minimization problems and it can be concluded that the new method (weighted l1)
provides better results (reduced number of samples for given accuracy) but the extent to which the
method performs better than the existing benchmark depends on the sparsity levels of the considered
radiation pattern.

Various non-idealities in the radiation pattern was studied to make sure the new method is able to
recover the distorted patterns with good accuracy.



5
Performance of recovery under

different error metrics

5.1. Error metrics comparison
For the pyramidal horn antenna (azimuth pattern), the error parameters (defined in previous section)
are computed as a group of box plots for given number of samples. Each box plot contains about 1000
error values from a Monte Carlo analysis.The box plots give a graphical demonstration of the spread
of numeric data by splitting the data points based on their values into quartiles. The size of the box
plot represent the distribution/dispersion of the values of data points considered. In this case, the box
plots represent the various error parameters that are computed between the simulated radiation pat-
tern which is used as the reference and the recovered pattern using compressed sensing.

The analysis has been done for different error parameters by considering 1000 random sampling
configurations to acquire data for a given number of samplesM. The sampling ratio (M/N) is considered
to vary from 10% to 90% in steps of 10% to perform the analysis.

M/N = [10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%]

(a) Recovery using l1 minimization (b) Recovery using weighted l1 minimization

Figure 5.1: Box plots showing error in Gain

It can be observed that the size of the box plots and the number of outliers beyond the whiskers of
each box plot reduces with increasing number of measurements. This validates the logic that the prob-
ability of exact recovery increases with increasing number of measurements of the field. It is also to

38
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be noted that despite the number of measurements, certain sampling vectors (configurations) provide
a better recovery corresponding to the considered error pattern.

But the most important implication from this type of analysis is that when the number of radiation
pattern samples are in the lower end (10-40%), it can be clearly observed that the errors in patterns
recovered using weighted l1-norm minimization is much smaller when compared to the recovery us-
ing the benchmark.When considering gain, the peak error for patterns recovered using 10% samples in
l1-minimization is almost 7dB whereas that corresponding to weighted l1-minimization is only 0.3dB
which is a significant improvement in recovery.

(a) Recovery using l1 minimization (b) Recovery using weighted l1 minimization

Figure 5.2: Box plots showing error in peak side lobe level (PSLL)

(a) Recovery using l1 minimization (b) Recovery using weighted l1 minimization

Figure 5.3: Box plots showing error in half power beamwidth (HPBW)

(a) Recovery using l1 minimization (b) Recovery using weighted l1 minimization

Figure 5.4: Box plots showing error in average side lobe level (ASLL)
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5.2. Selection of sub-optimal sampling grids
Despite the fact that a minimum number of samples guarantees a high probability of exact recovery, it
can be observed from the boxplots that there are certain random sampling vectors that provide near-
optimal recovery of the considered error quantity. There are certain error values on the lower bound
of the box plots that a minimum value of the error quantity considered can be achieved by a specific
ideal configuration of samples which results in a sub optimal sampling strategy for a given number of
samples to measure.

The simulation has been performed on the azimuth pattern of a Vivaldi antenna (consisting of 361
samples) operating at 5GHz. The set of samples that result in minimum error in gain, half power beam
width and peak side lobe level have been identified from a Monte Carlo simulation of 1000 iterations
and each of the error metric has been computed for the sampling scheme.

(a) Error in Gain (dB) (b) Error in HPBW (c) Error in PSLL (dB)

Figure 5.5: Sampling vector resulting in minimum error in Gain chosen for each number of measurements M

(a) Error in Gain (dB) (b) Error in HPBW (c) Error in PSLL (dB)

Figure 5.6: Sampling vector resulting in minimum error in HPBW chosen for each number of measurements M

(a) Error in Gain (dB) (b) Error in HPBW (c) Error in PSLL (dB)

Figure 5.7: Sampling vector resulting in minimum error in PSLL chosen for each number of measurements M

Fig. 5.5 shows the boxplots for error in gain, HPBW and PSLL for the 1000 iterations performed
and it also shows the errors over different parameters corresponding to the sampling configuration
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that results in the minimum gain. It can be inferred from the figure that the configuration that led to
the minimum error in gain does not necessarily give the minimum error in the other quantities as the
solution is sub optimal. But if a particular application requires high accuracy in characterization of one
of the parameters and can tolerate errors in the other quantities, the corresponding sampling vector
can be chosen. This can be done adaptively based on requirements of the system.

A similar analysis (selecting sampling configurations) resulting in minimum error in half power
beamwidth and peak side lobe level is done and the results are shown in Fig. 5.6,5.7.

5.3. Conclusions
Customized error metrics pertaining to accuracy in recovery of the gain, half power beamwidth and
peak sidelobe level is done in this report and the sampling setup that results in the minimum error in a
specific parameter/aspect of the radiation pattern, it is chosen as a sub-optimal sampling vector.



6
Conclusions and recommendations

6.1. Conclusions
The primary objective of the thesis is to find an optimally sparse and adaptive far-field sampling tech-
nique and to reconstruct the radiation pattern from an under sampled set measurements. To achieve
the same, first the sparsity of the radiation patterns in the transform domain is investigated with DFT
and spherical harmonic expansion. A proper comparison of both the sparsifying basis has not been
done in literature before. From the comparison, the spherical harmonics provide a much sparser repre-
sentation for radiation patterns which greatly reduces the number of samples required for reconstruc-
tion. For a given accuracy, CS methods using spherical harmonics typically require only 10% of the
samples required by the same method using the DFT as sparsity transform.

To find an optimal sampling strategy, the performance of random sample acquisition from regular
grid of samples to construct the measurement matrix for the CS problem was investigated. Randomly
sampled field measurements from a dense grid of samples is observed to provide near-optimal recov-
ery guarantees for the radiation pattern with high probability for number of measurements M > 2K. A
sub-optimal sampling matrix has been arrived at, further improving the minimization in number of sam-
ples, from Monte Carlo simulation of upto 1000 runs to choose the sampling scheme with the least
error metric.

One of the major novelties in this work is that prior information on the AUT from EM simulations
was used to further reduce the number of measurements required to reconstruct the radiation pattern.
In this regard, weighted l1-norm minimization was considered as a better recovery method to reduce
the measurements by designing weights using a-priori information on the AUT. From the comparison
between basis pursuit and the proposed method, I conclude that the new recovery method provides
very significant reduction in the number of samples to be measured while assuring a level of accuracy
as decided for the considered requirement. In certain cases, the weighted l1 minimization required only
65% of the samples as required by recovery using l1 minimization. Hence the newmethod offers a 35%
reduction in the number of samples as opposed to the benchmark

To further understand the performance of radiation pattern measurement technique and the recov-
ery method, various global and local error metrics were investigated and computed for varying number
ofmeasurements. This led to better understanding of the significance of each error quantity to aspects
of the radiation pattern, such as the gain, HPBW, PSLL etc.

In order to ensure that the proposed method works when the pattern of the AUT varies with time
(due to beam steering, beam forming etc.) or the pattern os distorted due to measurement errors, non-
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idealities are introduced to radiation patterns using simulations and the proposed method was able to
recover the pattern with non idealities from information on the ideal pattern.

6.2. Recommendations for future work
In the work done in this thesis, the major focus was given to the usage of weighted l1 minimization for
the sparse recovery of the signal. The sampling techniques used are the existing near optimal random
selection of samples from a dense equi angular grid of points. However, in order to optimize the over-
all measurement process, thereby reducing the measurement time, it could be possible to take into
account the mechanical constraints and considerations while designing a sensing matrix which has
low mutual coherence with the sparsifying basis matrix, or in other words the resulting CS matrix must
have low value of mutual coherence with its columns.

One possible direction that was explored during this work was an attempt to optimize the sampling
vector using prior information on the AUT.

min ∥x∼ ⊗ PSF − xsim∥2 s.t.


∑

t=1 bΩ(t) = M

bΩ(i) ∈ ZM (6.1)

where xsim is the coefficients obtained from simulations, PSF is the point spread function and b is
the sampling vector. Let M be the number of measurements. The reason to formulate this problem is
from the fact that if the measurements satisfy maximal incoherence, then the Gram matrix G = I [39].
This idea of using incoherence measures has also further been explored in the context of MRI in [32].
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