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a b s t r a c t

This work studies logic-based distributed switching control for nonlinear agents in power-chained
form, where logic-based (switching) control arises from the online estimation of the control directions
assumed to be unknown for all agents. Compared to the state-of-the-art logic-based mechanisms,
the challenge of power-chained dynamics is that in general asymptotic tracking cannot be obtained,
even for a single agent. To address this challenge, a new logic-based mechanism is proposed, which
is orchestrated by a dynamic boundary function. The boundary function is decreasing in-between
switching instants and monotonically increasing at the switching instants, depending on the jumps of
an appropriately designed Lyapunov-like function. To remove chattering (i.e. two or more switching
instants occurring consecutively with zero dwell time), a dynamic threshold is proposed, based on
selecting the maximum values of the Lyapunov-like function before and after switching.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent years have witnessed a tremendous progress in the
ield of distributed control of nonlinear multi-agent systems
Ding, 2015; Fan, Yang, Jagannathan, & Sun, 2019; Wang, 0000a;
ang, Wen, & Huang, 2017; Wang, Wen, Huang, & Zhou, 0000b;
oo, 2018). Such results can be categorized according to two
arge families of nonlinear dynamics: strict-feedback (Chen, Li,
en, & Wen, 2014; Chen et al., 2017; Ding, 2015; Wang, 0000a;
ang et al., 2017, 0000b) and pure-feedback (Fan et al., 2019;
ang & Song, 2017; Yoo, 2018) dynamics. At the same time,

nother family of dynamics, namely power-chained form, has been
ttracting great attention. The reason is twofold: first, power-
hained dynamics are a generalization of strict-feedback and
ure-feedback dynamics since they include more general integra-
ors (with positive odd-integer-powers) (Lin & Pongvuthithum,
003; Lin, Pongvuthithum, & Qian, 2002; Qian & Lin, 2002);

✩ This research was partly supported by Double Innovation Plan grant
4207012004, Natural Science Foundation of China grant 62073074 and Special
Funding for Overseas grant 6207011901. The material in this paper was not
presented at any conference. This paper was recommended for publication in
revised form by Associate Editor Warren E. Dixon under the direction of Editor
Daniel Liberzon.
∗ Corresponding author at: School of Mathematics, Southeast University,
anjing, 210096, China.

E-mail addresses: M.Lyu@tudelft.nl (M. Lv), B.deschutter@tudelft.nl
B. De Schutter), shichao0311@sina.com (C. Shi), s.baldi@tudelft.nl (S. Baldi).
ttps://doi.org/10.1016/j.automatica.2021.110143
005-1098/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
second, dynamics in power-chained form can describe relevant
classes of practical systems such as dynamical boiler-turbine
units (Chen & Chen, 2020), or hydraulic dynamics (Manring &
Fales, 2019). Besides, Lin and Pongvuthithum (2003), Lin et al.
(2002) and Qian and Lin (2002) have shown that some classes of
under-actuated, weakly coupled mechanical systems with cubic
force–deformation relations (nonlinear spring forces) can also be
captured by power-chained form. It was shown that, even for
a single agent, asymptotic tracking for this class of dynamics
is structurally impossible, even locally, because the linearized
dynamics contain uncontrollable modes whose eigenvalues are
on the right half plane (Lin & Pongvuthithum, 2003). In fact,
the results in the literature for power-chained dynamics achieve
practical or semiglobal (Lin & Pongvuthithum, 2003; Lin et al.,
2002; Lv, Yu, Cao, & Baldi, 0000a; Qian & Lin, 2002; Shi, Liu,
Dong, & Chen, 2018; Zhao, Shi, Zheng, & Zhang, 2016; Zhao,
Wang, Zong, & Zheng, 2017) stability, in place of asymptotic
stability. This implies that distributed asymptotic tracking for
power-chained dynamics, is also structurally impossible in gen-
eral. Furthermore, state-of-the-art results (Lv et al., 0000a; Shi
et al., 2018) for power-chained dynamics rely on the assumption
that the agents’ control directions (i.e. the signs of the control
gain functions) are known a priori. When such a priori knowledge
is not available (Wang, 0000a), a popular approach to tackle
this challenge is continuous parameter adaptation via Nussbaum
functions (Chen, 2019; Ding & Ye, 2002; Huang, Wang, Wen,
& Zhou, 2018; Lv, Yu, Cao, & Baldi, 0000b; Nussbaum, 1983;
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ang, 0000a; Ye & Jiang, 1998), which has been used also for
istributed control of strict-feedback or pure-feedback dynam-
cs (Chen et al., 2014, 2017; Ding, 2015; Fan et al., 2019; Wang,
000a). At the same time, because it is well-recognized that
ussbaum-based methods require additional complexity in the
ontrol design and continuous parameter adaptation may lead to
arge learning transients, several researchers have been engaged
n the problem of overcoming continuous parameter adapta-
ion by means of logic-based control (Hespanha, Liberzon, &
orse, 2003; Liberzon, 2003). Notable settings where logic-based
daptation was employed include overcoming conventional con-
inuous tuning of control parameters (Angeli & Mosca, 2004;
e, 2003, 2005) and overcoming the conventional Nussbaum
pproach for strict-feedback dynamics (Huang & Yu, 2018; Wu,
hen, & Li, 2016).
It is crucial to notice that the state-of-the-art logic-based

echanisms in Huang and Yu (2018) and Wu et al. (2016) for
trict-feedback systems rely on monitor functions that moni-
or whether asymptotic tracking can be achieved (resulting in
ounded energy of the tracking error) (Huang & Yu, 2018) or
hether finite-time stabilization can be achieved (i.e. the tracking
rror converges to zero in finite time) (Wu et al., 2016). Un-
ortunately, the same mechanism and monitor functions cannot
e adopted for agents in power-chained form due to the afore-
entioned structural difficulty in achieving asymptotic tracking,
ee also Qian and Lin (2002, Examples 2.1 and 2.2). Therefore, a
ifferent logic-based mechanism must be sought for distributed
ontrol of power-chained dynamics. This motivates the research
uestion in this work: is it possible to design a new logic-based
echanism for multi-agent systems in power-chained form with
ultiple unknown control directions even when asymptotic tracking
annot be structurally obtained?
This paper provides a positive answer to this question with

he following contributions:
(i) To overcome the challenge that the exact value of the

yapunov function is unavailable for logic-based adaptation, we
ropose a new Lyapunov-like function (cf. the discussion in Re-
ark 3).
(ii) We formally exclude any chattering phenomena by propos-

ng a new dynamic threshold condition at the switching instants
f the logic-based adaptation. It is worth noticing that state-of-
he-art switching mechanisms cannot formally exclude chattering
cf. the discussion in Remark 4);

(iii) To overcome the difficulty that no asymptotic tracking
an be achieved for the power-chained form, we propose a
ew dynamic boundary function, which is decreasing in-between
witching instants and possibly increasing at the switching in-
tants of the logic-based adaptation (cf. Fig. 1 and the discussion
n Remark 5);

Notations: The sets R and Rn stand for the set of real num-
ers and the n-dimensional Euclidean space, respectively; Nodd
enotes the set of positive odd integers; ∥ · ∥ refers to either
he Euclidean vector norm or the induced matrix 2-norm. Vectors
re denoted in bold script, such as χi,m W i,m, ϕi,m, Z i,m, d i,σ ,
nd hi(·). For compactness and whenever unambiguous, some
ariable dependencies might be dropped throughout this paper,
.g. ι, ψi,m, si,m, ri,m can be used to represent ι(x1, x2), ψi,m(χi,m),
i,m(ϑi,m, αi,m−1), ri,m(ϑi,m, αi,m−1), respectively.

. Problem formulation and preliminaries

Let us first give some preliminaries on graph theory. The
ommunication topology among agents is described by a directed
raph G ≜ (V , E ), with V ≜ {0, 1, . . . ,N} the set of nodes (agents)
nd with E ⊆ V × V the set of directed edges between two
istinct agents. A directed edge (j, i) ∈ E represents that agent
 i

2

Fig. 1. The sketch of the proposed switching mechanism.

i can obtain information from agent j. The neighbor set of agent i
is denoted by Ni = {j|(j, i) ∈ E }. Because agent 0 plays a special
role (leader), let us consider the subgraph defined by G ≜

(
V , E

)
with V ≜ {1, 2 . . . ,N} the set of follower agents and E defined
accordingly. For this subgraph, let us define the adjacency matrix
A = [aij] ∈ RN×N as follows: if (j, i) ∈ E , then aij = 1, otherwise
aij = 0. The Laplacian matrix L associated with G is defined

as L =

[
0 01×N
−b L +B

]
with B = diag[b1, . . . , bN ], where

bi = 1 if the leader 0 ∈ Ni, and bi = 0 otherwise. Moreover,
b = [b1, . . . , bN ]T and L = D − A is the Laplacian matrix related
to G with D = diag[d1, . . . , dN ], where di =

∑
j∈Ni

aij.
Consider a multi-agent system whose agents have the follow-

ing nonlinear dynamics⎧⎪⎨⎪⎩
χ̇i,m = φi,m(χi,m)+ ψi,m(χi,m)χ

pi,m
i,m+1,

χ̇i,ni = φi,ni (χi,ni )+ ψi,ni (χi,ni )u
pi,ni
i ,

yi = χi,1,

(1)

for i = 1, . . . ,N , m = 1, . . . , ni − 1, where ni is the dimension
of system state χi,ni = [χi,1, . . . , χi,ni ]

T
∈ Rni and χi,m =

χi,1, . . . , χi,m]
T
∈ Rm. In (1), pi,m ∈ Nodd are positive odd powers,

nd ui ∈ R is the agent control input to be designed. The func-
ions φi,m(·) and ψi,m(·) are unknown locally Lipschitz continuous
onlinearities. The following assumptions are considered.

ssumption 1. For each follower i, the signs of ψi,m(·), called the
ontrol directions, are unknown and there exist known positive
onstants ψ i,m and ψ

i,m
such that

ψ
i,m
≤ |ψi,m(·)| ≤ ψ i,m (2)

for i = 1, . . . ,N , m = 1, . . . , ni.

Assumption 2 (Wang et al., 2017). The leader agent 0 is repre-
sented by a leader output signal yr, which is continuous, bounded
and with bounded derivative; yr is available only to the subset
of follower agents i such that agent 0 ∈ Ni, i.e. to those agents
directly connected to the leader according to directed graph G .

Assumption 3 (Wang et al., 2017). The directed graph G contains
at least one directed spanning tree with the leader as the root.
This implies that L +B is nonsingular.

emark 1. The bounds in (2) are standardly assumed to ensure
ontrollability of the system (Qian & Lin, 2002; Shi et al., 2018;
hao et al., 2016, 2017); Assumptions 2–3 are also standard
n literature. The peculiar characteristic (and challenge) of (1)
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s compared to other multi-agent system models proposed in
he literature, are the unknown multiple control directions in
ssumption 1. Although some works have addressed multi-agent
ystems with unknown control directions (Chen et al., 2014,
017; Ding, 2015; Fan et al., 2019; Wang, 0000a), the dynamics
herein are in the form of strict-feedback systems.

Define the consensus tracking error for the ith follower as

i,1 =
∑
j∈Ni

aij(yi − yj)+ bi(yi − yr), (3)

for i = 1, . . . ,N . After collecting ξ1 = [ξ1,1, . . . , ξN,1]
T
∈ RN , one

as ξ1 = (L + B)ω, where ω = y − yr with y = [y1, . . . , yN ]T
nd yr = [yr, . . . , yr]T . Due to the nonsingularity of L + B,
t holds that ∥ω∥ ≤ ∥ξ1∥

σmin(L+B)
, where σmin(L + B) is the

inimum singular value of L + B. We impose a prescribed
erformance (Bechlioulis & Rovithakis, 2014) on the consensus
racking error ξi,1 as ξ

i,1
(t) ≤ ξi,1(t) ≤ ξ i,1(t) for t ≥ 0,

where ξ i,1(t) = (ρ i,1 − ρi,∞) exp(−li,1t) + ρi,∞ and ξ
i,1
(t) =

ρ
i,1
+ ρi,∞) exp(−li,1t) − ρi,∞ are the so-called performance

unctions (Bechlioulis & Rovithakis, 2014), where li,1 > 0 and
i,1 > 0 denote the minimum admissible convergence rates,
ρi,∞ > 0 is the maximum allowable tracking error at steady state,
ρ i,1 > ρi,∞ > 0 and ρ

i,1
< −ρi,∞ < 0 respectively represent

the maximum and minimum bounds for ξi,1(0). The following
transformed consensus tracking error is then used for feedback:

ϑi,1(t) = ln

(
ξi,1(t)− ξ i,1(t)

ξ i,1(t)− ξi,1(t)

)
. (4)

Note that ϑi,1 is monotonically increasing w.r.t. ξi,1 and that (4)
mplies that the consensus tracking error ξi,1 is within its imposed
ounds provided ϑi,1 is bounded (Bechlioulis & Rovithakis, 2014).
Consensus tracking problem: Under dynamics (1) and As-

umptions 1–3, the goal is to design ui such that all closed-loop
ignals are semi-globally ultimately uniformly bounded, and the
utput of each follower agent i can follow the leader agent’s signal
r in spite of completely multiple unknown control directions.
Practical tracking (Qian & Lin, 2002, eq. (2.10)) (i.e. the tracking

rror converges to a residual set) will be sought, due to the fact
hat asymptotic tracking cannot be realized in general for dynam-
cs (1) (Qian & Lin, 2002). The following lemmas are instrumental
n solving the practical tracking problem.

emma 1 (Lin & Pongvuthithum, 2003). For any x1, x2 ∈ R, given
positive integers r1, r2 and any real-valued function ι(·, ·) > 0, it
holds that

|x1|r1 |x2|r2 ≤
r2

r1 + r2
ι(x1, x2)

−
r1
r2 |x2|r1+r2

+
r1

r1 + r2
ι(x1, x2)|x1|r1+r2 . (5)

Lemma 2 (Lv et al., 0000a). For any x1, x2 ∈ R, and positive odd
nteger p ∈ Nodd, it holds that

x1 + x2)p = r(x1, x2)x
p
1 + s(x1, x2)x

p
2 (6)

where r(x1, x2) ∈
[
r, r
]
with r = 1 − δ and r = 1 + δ, and

=
∑p

k=1
p!

k!(p−k)!
p−k
p l

p
p−k is a constant taking value in (0, 1) for

some appropriately small constant l, and where |s(x1, x2)| ≤ s(δ)
with s(δ) =

∑p
k=1

p!
k!(p−k)!

k
p l
−

p
k a positive constant for a given l.

. Adaptive switching consensus protocol

The control design solving the consensus tracking problem
omprises a continuous input (i.e. acting in-between two consec-
3

utive switching instants) and a switching mechanism (acting at
the switching instants) to tune online some parameters of the
continuous input. In this section, we focus on the continuous
input, the design of which is well-established in literature under
the assumption that the control directions are known (Shi et al.,
2018).

After defining ϑi,1 as in (4), and state errors

ϑi,m = χi,m − αi,m−1, m = 2, . . . , ni, (7)

the continuous control input comprises the so-called virtual laws
αi,m and the actual control ui, designed as

αi,1 = −hi,1ℑ

1
pi,1
i,1

(
ki,1 + ϵ

pi,1
i,1 Θ̂i,1Γ

pi,1
i,1 + ϱ

pi,1
i,1

) 1
pi,1 (8)

ℑi,1 = ϑ
pi,1
i,1

[
ℓi,1ψ i,1

(di + bi)(1− δi,1)
]−1
,

αi,m = −hi,mℑ

1
pi,m
i,m

(
ki,m + ϵ

pi,m
i,m Θ̂i,mΓ

pi,m
i,m + ϱ

pi,m
i,m

) 1
pi,m (9)

ℑi,m = ϑ
pi,m
i,m

[
ψ

i,m
(1− δi,m)

]−1
, (m = 1, . . . , ni)

ui = αi,ni , δi,ni = 0, (10)
˙̂Θ i,m = γi,m

[
ϵ
pi,m
i,m ϑ

pi+3
i,m Γ

pi,m
i,m − βi,mΘ̂i,m

]
. (11)

with pi,m =
pi+3

pi−pi,m+3
, p

i,m
=

pi+3
pi,m

, pi = maxm=1,...,ni{pi,m}, and
where 0 < δi,m < 1, ϱi,m > 0, ϵi,m > 0, γi,m > 0 and βi,m >
, (m = 1, . . . , ni) are design parameters. In (11), Θ̂i,m is the
stimate of Θi,m = ∥W ∗i,m∥pi,m and Γi,m = ∥ϕi,m∥, which comes

from appropriately designed function approximators (as detailed
later on). Notice that the control design (8)–(11) is not complete,
since the terms ki,m and hi,m are to be designed: these terms
are necessary to tackle the multiple unknown control directions,
and their design will be addressed in Section 4 via a switching
mechanism. The rationale for the design (8)–(11) is given in the
following steps.
Step i, 1 (i = 1, . . . ,N): The time derivative of ϑi,1 along (1), (3),
and (4) is

ϑ̇i,1 = li,1ξ̇i,1 + Hi,1 = li,1(di + bi)ψi,1χ
pi,1
i,2 + Ei,1, (12)

where li,1 = ∂ϑi,1/∂ξi,1 > 0, Hi,1 =
(
∂ϑi,1/∂ξ i,1

)
˙ξ i,1 +

∂ϑi,1/∂ξ i,1

)
ξ̇
i,1
, and Ei,1 = li,1(di+ bi)φi,1− li,1

∑
j∈Ni

aij ×(φi,1+

ψi,1χ
pi,1
i,2 )−biẏr+Hi,1. Along the same veins as Yoo (2013b), there

exist some optimal weights W ∗i,1, and a linear-in-the-parameter
approximator W ∗i,1ϕi,1(Z i,1) for |Ei,1| such that

ϑ
pi−pi,1+3
i,1 Ei,1 ≤

⏐⏐⏐ϑpi−pi,1+3
i,1

⏐⏐⏐[W ∗i,1ϕi,1(Z i,1)+ εi,1(Z i,1)
]

≤ ϑ
pi+3
i,1

(
ϱ
pi,1
i,1 + ϵ

pi,1
i,1 Θi,1Γ

pi,1
i,1

)
+ µi,1,

where the last inequality uses Lemma 1. Furthermore, µi,1 =
−pi,1
i,1 + ϱ

−pi,1
i,1 ε

pi,1
i,1 with ϵi,1 > 0 and ϱi,1 > 0 being design con-

stants, εi,1(Z i,1) is the approximation error satisfying
⏐⏐εi,1(Z i,1)

⏐⏐ ≤
εi,1 on a compact set Ωi,1, Z i,1 =

[
χi,1, χj,1,j∈Ni , χj,2,j∈Ni , biyr,

biẏr
]

T
∈ Ωi,1, and εi,1 > 0 a constant.

Remark 2. The continuous function |Ei,1| in (12) embeds the ef-
fect of graph connectivity, since |Ei,1| depends on the connectivity
matrix aij and bi. Note that, because the activation function ϕi,1(·)
of the linear-in-the-parameter approximation relies on the neigh-
boring states, standard universal approximation results (Ferik,
Qureshi, & Lewis, 2014) of linear-in-the-parameter approxima-
tion still hold. Similar approximation ideas also can be found
in Ferik et al. (2014), Yoo (2013a) and Yoo (2018). Simulation
results in this paper also validate this point (cf. Figs. 7 and 8).
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Consider the Lyapunov function candidate

Vi,1 =
ϑ

pi−pi,1+4
i,1

pi − pi,1 + 4
+

1
2γi,1

Θ̃2
i,1 (13)

where Θ̃i,1 = Θi,1 − Θ̂i,1. According to Lemmas 1 and 2, it holds
that

ϑ
pi−pi,1+3
i,1 χ

pi,1
i,2 = si,1ϑ

pi−pi,1+3
i,1 ϑ

pi,1
i,2 + ri,1ϑ

pi−pi,1+3
i,1 α

pi,1
i,1

< |si,1|
(
ϑ

pi+3
i,1 + ϑ

pi+3
i,2

)
+ ri,1ϑ

pi−pi,1+3
i,1 α

pi,1
i,1 . (14)

Then, it follows from (12), (13), and (14) that the derivative of
Vi,1 with respect to time is

V̇i,1 <li,1(di + bi)ϑ
pi−pi,1+3
i,1 α

pi,1
i,1 hi,1ri,1|ψi,1| −

Θ̃i,1
˙̂Θ i,1

γi,1

+ ϑ
pi+3
i,1

(
ϱ
pi,1
i,1 + ϵ

pi,1
i,1 Θi,1Γ

pi,1
i,1

)
+∆i,1 + µi,1

+ ϖi,1
(
ϑ

pi+3
i,1 + ϑ

pi+3
i,2

)
, (15)

where ∆i,1 = li,1(di + bi)ri,1ϑ
pi−pi,1+3
i,1 α

pi,1
i,1 (sign(ψi,1) − hi,1)|ψi,1|,

i,1 = (di + bi)li,1ψ i,1si,1, and we used the fact that ψi,1 =

ign(ψi,1)|ψi,1|. Substituting the virtual control αi,1 (8) into (15)
ives

˙i,1 <− (ki,1 −ϖi,1)ϑ
pi+3
i,1 + ϑ

pi+3
i,1 ϵ

pi,1
i,1 Θ̃i,1Γ

pi,1
i,1

−
Θ̃i,1
˙̂Θ i,1

γi,1
+ϖi,1ϑ

pi+3
i,2 +∆i,1 + µi,1. (16)

Substituting the adaptive law ˙̂Θ i,1 (11) into (16) yields

˙i,1 < −ci,1ϑ
pi+3
i,1 +ϖi,1ϑ

pi+3
i,2 − βi,1Θ̃i,1Θ̂i,1 +∆i,1 + µi,1,

here ci,1 = ki,1 −ϖi,1.
tep i,m (i = 1, . . . ,N, m = 2, . . . , ni − 1): It follows from (1),
7), and (9) that the derivative of ϑi,m is

˙ i,m = ψi,mχ
pi,m
i,m+1 + Ei,m, (17)

here Ei,m = φi,m −
∑m−1

q=1
∂αi,m−1
∂χi,q

(
φi,q + ψi,qχ

pi,q
i,q+1

)
−

∂αi,m−1
∂yr

ẏr −
m−1
q=1

∂αi,m−1
∂Θ̂i,q

˙̂Θ i,q −
∑

j∈Ni
aij

∂αi,m−1
∂χj,1

(
φj,1 +ψj,2χ

pj,1
j,2

)
. Referring to

tep i, 1, there exist some optimal weights W ∗i,m, and a linear-in-
he-parameter approximator W ∗i,mϕi,m(Z i,m) for |Ei,m| such that

ϑ
pi−pi,m+3
i,m Ei,m

≤

⏐⏐⏐ϑpi−pi,m+3
i,m

⏐⏐⏐[W ∗i,mϕi,m(Z i,m)+ εi,m(Z i,m)
]

ϑ
pi+3
i,m

(
ϱ
pi,m
i,m + ϵ

pi,m
i,m Θi,mΓ

pi,m
i,m

)
+ µi,m,

here µi,m = ϵ
−pi,m
i,m + ϱ

−pi,m
i,m ε

pi,m
i,m with ϵi,m > 0 and ϱi,m >

design constants, εi,m(Z i,m) is the approximation error satis-
ying

⏐⏐εi,m(Z i,m)
⏐⏐ ≤ εi,m on a compact set Ωi,m, with Z i,m =

χi,m,χj,m,
∂αi,m−1
∂χj,1

,
∂αi,m−1
∂χi,1

, . . . ,
∂αi,m−1
∂χi,m−1

,
∂αi,m−1
∂Θ̂i,1

, . . . ,
∂αi,m−1
∂Θ̂i,m−1

, Θ̂i,1,

. . . , Θ̂i,m−1,
∂αi,m−1
∂yr

, biyr
]T
j∈Ni

∈ Ωi,m and εi,m > 0 a constant.

Consider the Lyapunov function candidate

Vi,m = Vi,m−1 +
ϑ

pi−pi,m+4
i,m

pi − pi,m + 4
+

1
2γi,m

Θ̃2
i,m, (18)

here Θ̃i,m = Θi,m−Θ̂i,m. Following similar derivations as in Step
, 1, the derivative of Vi,m with respect to time is

˙i,m <−

m∑
ci,qϑ

pi+3
i,q +ϖi,mϑ

pi+3
i,m+1 +

m∑
∆i,q
q=1 q=1

4

+

m∑
q=1

(βi,q

2

(
Θ2

i,q − Θ̃
2
i,q

)
+ µi,q

)
, (19)

where ci,m = ki,m − ϖi,m − ϖi,m−1, ϖi,m = ψ i,msi,m, and ∆i,m =
pi−pi,m+3
i,m α

pi,m
i,m (sign(ψi,m)− hi,m)ri,m|ψi,m|, (m = 2, . . . , ni − 1).

Step i, ni(i = 1, . . . ,N): For the last step, consider the Lyapunov
function candidate

Vi,ni = Vi,ni−1 +
ϑ

pi−pi,ni+4
i,ni

pi − pi,ni + 4
+

1
2γi,ni

Θ̃2
i,ni , (20)

where Θ̃i,ni = Θi,ni − Θ̂i,ni . Along similar lines as the previous
steps, it is possible to conclude that

V̇i,ni <−

ni∑
q=1

ci,qϑ
pi+3
i,q +

ni∑
q=1

(
βi,q

2

(
Θ2

i,q − Θ̃
2
i,q

))

+

ni∑
q=1

µi,q +

ni∑
q=1

∆i,q, (21)

with ci,ni = ki,ni−ϖi,ni−1 and∆i,ni = ϑ
pi−pi,ni+3
i,ni

u
pi,ni
i ×(sign(ψi,ni )−

hi,ni )|ψi,ni |. For any constant ηi > 0, in light of Lemma 1, we have

ηi + ϑ
pi+3
i,q ≥ η

pi,q−1
pi+3

i ϑ
pi−pi,q+4
i,q .

Thus, (21) can be upper bounded as

V̇i,ni < −ςiVi,ni +Ξi +

ni∑
q=1

∆i,q, (22)

where ςi = min
{
γi,qβi,q, (pi−pi,q+4)ci,qη

pi,q−1
pi+3

i , i = 1, . . . ,N, q =
1, . . . , ni

}
, Ξi =

∑ni
q=1(ci,qηi + µi,q)+

∑ni
q=1

1
2βi,qΘ

2
i,q.

The remaining problem is now the one of handling the term∑ni
q=1∆i,q in (22) containing the signs of the control directions,

which are unknown in view of Assumption 1. To tackle this
term, a logic-based switching mechanism is proposed in the next
section to adapt online the estimates hi,m of the multiple control
directions.

4. Proposed logic-based design

Logic-based adaptation has been proposed in the literature
for different classes of systems (Huang & Yu, 2018; Oliveria,
Peixoto, & Liu, 2010; Wu et al., 2016). Because logic-based loops
are switched systems (Branicky, 1998; Liberzon, 2003; Zhang,
Branicky, & Phillips, 2001), the concept of solution is intended
in the sense of Carathéodory (Liberzon, 2003, Sect. 1.2.1). Also,
the subsequent switching mechanism is designed in such a way
that chattering is avoided and the switching stops in finite time.
Therefore, phenomena such as sliding mode or Zeno behavior,
which are often a concern in switched systems, are avoided.

4.1. Switching mechanism

We adopt a similar notation to Huang and Yu (2018), where
the vectors d i,σ ∈ Rni , whose elements are either 1 or −1,
are used to represent all possible combinations of ni control
directions for each agent i. Accordingly, the switching sequence
σ (·), taking values in 0, 1, . . . , 2ni − 1, is a piecewise right-
continuous function (Liberzon, 2003, Chap.1), and goes through
all such possible combinations. For example, if ni = 2, we have
four possible combinations: d i,0 = [−1,−1]T , d i,1 = [−1, 1]T ,
d i,2 = [1, 1]T , d i,3 = [1,−1]T . The order according to which
the combinations are listed can be arbitrary, provided that all
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Algorithm 1 Logic-Based Distributed Switching Control Mecha-
nism for the ith Follower Agent
1: Initialize: Set t0 ← 0, σ ← 0, hi(t0) ← d i,0, V i(t0) ≥ ℓi,∞(t0) > 0

and V i(t0) ≥ V̂i,ni (t0). Select positive design parameters ζℓi,∞ and
ζki,m , i = 1, . . . ,N , m = 1, . . . , ni.

2: For every time t , for every agent i, calculate V̂i,ni (t), ℓi(tσ , t), V i(t),
Li(tσ , t), and Mi(tσ , t).

3: while
(

Mi(tσ , t) ≥ 0
)
, do

4: Implement virtual control law (9), actual control
5: law (10), and parameter adaptation law (11).
6: hi(t)← d i,σ ;
7: ℓi,∞(t)← ℓi,∞(tσ );
8: ki,m(t)← ki,m(tσ );
9: else
10: σ ← σ + 1;
11: if σ is equal to 2ni ;
12: then σ ← 0;
13: end if
14: tσ ← t;
15: V i(tσ )← max

{
V̂i,ni (t

−
σ ), V̂i,ni (tσ )

}
;

16: hi(t)← d i,σ ;
17: ℓi,∞(tσ )← ℓi,∞(tσ−1)+ ζℓi,∞ ;
18: ℓi,∞(t)← ℓi,∞(tσ );
19: ki,m(tσ )← ki,m(tσ−1)+ ζki,m ;
20: ki,m(t)← ki,m(tσ ).
21: end while

combinations are listed without repetitions. The reader can refer
to Huang and Yu (2018) for more details on d i,σ . Please notice that
ach agent can exhibit its own switching sequence σi(·): however,

in the following we will simply use σ (·) to avoid complicating
the notation. Define hi(t) = [hi,1, . . . , hi,ni ]

T with hi,m ∈ {−1, 1},
m = 1, . . . , ni. Let us now define

V i(t) = max
{
ℓi(tσ , t), V̂i,ni (t)

}
, (23)

Li(tσ , t) = ℓi(tσ , t)− V i(t), (24)

ith

i,ni =

ni∑
m=1

{
ϑ

pi−pi,m+4
i,m

pi − pi,m + 4
+

1
2γi,m

Θ̂2
i,m

}
(25)

and ℓi(tσ , t) being a dynamic boundary function designed as

ℓi(tσ , t) =
(
V i(tσ )− ℓi,∞(tσ )

)
exp

(
−θi(t − tσ )

)
+ ℓi,∞(tσ ),

where θi > 0 is a design parameter. Let

Mi(tσ , t) = Li(tσ , t)+ κi (26)

here κi > 0 is a preselected constant.
We are now in a position to present the logic-based mecha-

nism for updating hi(t), σ (t), ki,m(t), m = 1, . . . , ni, and ℓi,∞(t).
After an initialization phase, the mechanism comprises a hold
phase (i.e. σ is kept constant) and an update phase (i.e. σ is
switched to a new value).

Initialization: t0 ← 0, σ ← 0, hi(t0) ← d i,0, V i(t0) ≥
i,∞(t0) > 0 and V i(t0) ≥ V̂i,ni (t0).
Hold phase: Phase in-between consecutive switching instants:

while Mi(tσ , t) ≥ 0, (27)

do hi(t)← d i,σ ; (28)

ℓi,∞(t)← ℓi,∞(tσ ); (29)

ki,m(t)← ki,m(tσ ); (30)
nd while
5

at the same time, implement virtual control law (9), actual
control law (10), and parameter adaptation law (11).

Update phase: Phase at the switching instant:

if Mi(tσ , t) < 0, (31)

then σ ← σ + 1; (32)
if σ is equal to 2ni ,

then σ ← 0; (33)
end if

tσ ← t; (34)

V i(tσ )← max
{
V̂i,ni (t

−

σ ), V̂i,ni (tσ )
}
; (35)

hi(t)← d i,σ ; (36)

ℓi,∞(tσ )← ℓi,∞(tσ−1)+ ζℓi,∞; (37)

ℓi,∞(t)← ℓi,∞(tσ ); (38)

ki,m(tσ )← ki,m(tσ−1)+ ζki,m; (39)

ki,m(t)← ki,m(tσ ); (40)
end if

ith ζℓi,∞ > 0 and ζki,m > 0 being design constants, m =
, . . . , ni, σ = 1, 2, . . ., and where t−σ denotes the value of tσ
hen (31) is satisfied but hi(tσ ), ℓi,∞(tσ ), and ki,m(tσ ) have not
een updated yet, and tσ represents the time instant when (31)
olds, and in the meantime, hi(tσ ), ℓi,∞(tσ ), and ki,m(tσ ) also have
een updated according to (36)–(40).
The rationale for the proposed mechanism is as follows: the

witching instants tσ , σ = 0, 1, . . ., occur whenever condition
31) is satisfied. The reset condition in (33) is necessary when all
ombinations in d i,σ have been visited and thus it is necessary to
tart from the first one. The logic condition (35) circumvents the
hattering phenomena at the switching instants tσ , as elaborated
n Remark 4.

The unique challenges of using logic-based mechanisms to
andle multiple unknown control directions for power-chained
orm are elaborated in the following remarks:

emark 3. A crucial challenge of the proposed logic-based
witching is that the exact value of the Lyapunov function Vi,m
18) is unavailable (as it contains the unknown constants Θi,m in
ĩ,m = Θi,m−Θ̂i,m). Therefore, the unavailable Lyapunov function

must be replaced by some estimate. To pursue this, the Lyapunov-
like function V̂i,ni (25) is proposed and designed in such a way
as to establish the boundedness of the closed-loop signals (cf.
appendix).

Remark 4. State-of-the-art logic-based mechanisms (Cui, Huang,
& Gao, 2020; Huang & Yu, 2018; Wu et al., 2016) cannot for-
mally exclude chattering phenomena since they adopt ℓi(tσ , tσ ) =
V i(tσ ) = V̂i,ni (tσ ) = V̂i,ni (t

−
σ ). More precisely, the update phase

of Cui et al. (2020), Huang and Yu (2018) and Wu et al. (2016) is
designed as

if Mi(tσ , t) < 0,
then tσ ← t;

V i(tσ )← V̂i,ni (t
−

σ );
hi(t)← d i,σ ;

ki,m(tσ )← ki,m(tσ−1)+ ζki,m;
end if

n view of the discussions in Ye (2005, Remark 2 and the analysis
fter Eq. (35)), it is theoretically possible for such mechanisms
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o yield an increase V i(tσ ) = V̂i,ni (tσ ) > V̂i,ni (t
−
σ ) + κi =

ℓi(tσ , tσ ) + κi, which indicates that Mi(tσ , t) < 0, leading to a
new switching instant immediately after the previous one. This
is because updating hi(t) and ki,m may result in instantaneous
changes in the tracking errors ϑi,m, according to (7)–(10), which
may lead to an increase of the value of the Lyapunov functions
(13), (18), and (20). This could make the inequality (31) hold
once more immediately after the previous time instant. To solve
such issue, we exclude chattering phenomena by proposing a new
dynamic threshold condition (35) at the switching instants, based
on selecting the maximum values of the Lyapunov-like function
before and after switching.

Remark 5. State-of-the-art logic-based designs for strict-
feedback systems (Cui et al., 2020; Huang & Yu, 2018; Wu et al.,
2016) rely on the fact that asymptotic tracking can be obtained
for this class of systems: there exists at least one d i,σ , σ ∈
{0, 1, . . . , 2ni − 1}, that leads to a vanishing tracking error. Un-
fortunately, it is well known in the literature that asymptotic
tracking is impossible in general for the class of nonlinear systems
(1) (Qian & Lin, 2002). Therefore, the switching logic cannot rely
on vanishing tracking errors. To overcome the above difficulty,
we propose a new monitor function ℓi(·), which is decreasing in-
between switching instants and possibly increasing at switching
instants. The role of ℓi(·) is crucial to closed-loop stability through
(23): ℓi(·) is used to monitor the upper bound of the designed
Lyapunov-like function V̂i,ni as shown in Fig. 1. The distinguishing
feature of ℓi(·) is to allow V̂i,ni to increase by a constant at
every switching instant. Notice that the finite-switching mech-
anism guarantees that ℓi(·) does not grow to infinity and thus
closed-loop stability can be obtained.

4.2. Main stability result

To analyze the stability of the closed-loop system, we consider
the global Lyapunov function

V =
N∑
i=1

Vi,ni , and V̂ =
N∑
i=1

V̂i,ni (41)

Theorem 1. Under Assumptions 1–3, consider the closed-loop sys-
tem consisting of the nonlinear multi-agent dynamics (1) in power-
chained form and the logic-based switching control mechanism in
Algorithm 1. Then, there exist positive design parameters ϱi,m, ϵi,m,
γi,m, βi,m, ηi,m, and ki,m such that:

• All closed-loop signals are semi-globally ultimately uniformly
bounded and the prescribed performances of ξi,1(t) are ensured,
i.e., the inequality ξ

i,1
(t) ≤ ξi,1(t) ≤ ξ i,1(t), i = 1, . . . ,N,

holds.
• Switching stops in finite time and ω(t) converges to the com-

pact set

Ω⋆
=

{
ω(t)

⏐⏐⏐∥ω(t)∥t→+∞ ≤√ (N2 + N − 1)2
∑N

i=1
ρ2i,∞[(exp(ϑ i,1)−1)]2

[1+exp(ϑ i,1)]2

N1−N (N − 1)N−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where ϑ i,1 =

[(
pi − pi,1 + 4)(ℓi,∞(tσs )+ κi

)] 1
pi−pi,1+4 with σs

being a sufficiently large integer.

Proof. See the Appendix.
6

Fig. 2. Two different communication topologies.

5. Simulation results

To validate the effectiveness of the proposed control method,
two different communication topologies with one leader (labeled
by 0) and three follower agents are considered as represented by
the directed graph of Fig. 2. From Fig. 2-(a) and -(b), it can be
seen that the signal of the leader is only accessible to follower
1 and follower 2, respectively. The following parameter settings
are kept the same for both topologies. The leader output is yr =
sin(0.5t)+ 6 sin(t) and the three follower agents are described

by the following dynamics:

Agent 1

{
χ̇1,1 = 1.5 cos(χ1,1)χ1,1 + 0.8χ3

1,2,

χ̇1,2 = χ1,1 sin(χ1,2)+
(
tanh(χ1,1)+ 1.2

)
u5
1.

Agent 2

{
χ̇2,1 = 1.25χ2,1 + 0.5χ3

2,1 + 1.5χ3
2,2,

χ̇2,2 = 0.75χ2,2χ
2
2,1 +

(
sin(χ2,1)2 + 0.75

)
u5
2.

Agent 3

{
χ̇3,1 = 0.5

(
cos(χ3,1)+ χ2

3,1

)
+ 1.2χ3

3,2,

χ̇3,2 = χ3,1 sin(χ3,2)+
(
| cos(χ3,1)| + 0.2

)
u5
3.

In our simulation, RBF NNs are used as linear-in-the-parameter
approximators to approximate |Ei,j(Z i,j)|, i = 1, 2, 3, j = 1, 2,
employing 64 nodes with centers evenly spaced in [−1.5, 1.5] ×
[−1.5, 1.5]×[−1.5, 1.5]×[−1.5, 1.5]×[−1.5, 1.5]×[−1.5, 1.5]×
[−1.5, 1.5]×[−1.5, 1.5]×[−1.5, 1.5] and widths equal to 2. The
initial conditions are selected as: χ1,1(0) = 0.75, χ1,2(0) = −1.75,
χ2,1(0) = 1.5, χ2,2(0) = −1.5, χ3,1(0) = 1.75, χ3,2(0) = −1.2,
Θ̂1,1(0) = 6.5, Θ̂1,2(0) = 7.5, Θ̂2,1(0) = 4, Θ̂2,2(0) = 3, Θ̂3,1(0) =
6.5, Θ̂3,2(0) = 4.75, ℓ1,∞(0) = ℓ2,∞(0) = ℓ3,∞(0) = 0.5, k1,1(0) =
k2,1(0) = k3,1(0) = 6, k1,2(0) = k2,2(0) = k3,2(0) = 8. The design
parameters are chosen as: ζk1,1 = ζk1,2 = 1, ζk2,1 = ζk2,2 = ζk3,1 =
ζk3,2 = 1.5, ϵ1,1 = ϵ1,2 = ϵ2,1 = ϵ2,2 = ϵ3,1 = ϵ3,2 = 1, ϱ1,1 =
ϱ1,2 = ϱ2,1 = ϱ2,2 = ϱ3,1 = ϱ3,2 = 1, γ1,1 = γ2,1 = γ3,1 = 1,
γ1,2 = γ2,2 = γ3,2 = 0.4, β1,1 = β2,1 = β3,1 = 0.8, β1,2 = β2,2 =

β3,2 = 6.25, δ1,1 = δ2,1 = δ3,1 = 0.25, κ1 = κ2 = κ3 = 0.3,
θ1 = 1.8, θ2 = 1.25, θ3 = 0.75, ζℓ1,∞ = ζℓ2,∞ = ζℓ3,∞ = 0.5,
ρ
1,1
= ρ

2,1
= ρ

3,1
= −6, ρ1,1 = ρ2,1 = ρ3,1 = 8, l1,1 = l2,1 =

3,1 = 3, l1,1 = l2,1 = l3,1 = 4, and ρ1,∞ = ρ2,∞ = ρ3,∞ = 0.95.
The simulation results are shown in Figs. 3–8. Figs. 3-(a) and

5-(a) reveal that the tracking errors ξi,1, i = 1, 2, 3, under the two
topologies evolve within their respective bounds. Figs. 3-(b)–(c)
and 5-(b)–(c) show that the functions V̂i,ni , i = 1, 2, 3, under both
topologies are upper bounded by ℓi, i = 1, 2, 3, respectively. It can
be seen from Figs. 4 and 6 that switching for both topologies stops
in finite time and that the parameters ki,j, i = 1, 2, 3, j = 1, 2, are
updated synchronously with the control directions hi,j, i = 1, 2, 3,
j = 1, 2. Figs. 7 and 8 show that the NN approximators can
achieve satisfactory approximation (see Fig. 3).

6. Conclusions

This work has proposed a logic-based switching mechanism
for distributed switching tracking control of nonlinear multi-
agent systems in power-chained form and with multiple un-

known control directions. A novel dynamic boundary function



M. Lv, B. De Schutter, C. Shi et al. Automatica 137 (2022) 110143

t

t

Fig. 3. Topology in Fig. 2-(a): (a) trajectories of the consensus tracking errors ξ1,1 , ξ2,1 , and ξ3,1; (b) trajectories of V̂1,2 and ℓ1; (c) trajectories of V̂2,2 and ℓ2; (d)
rajectories of V̂3,2 and ℓ3 .
Fig. 4. Topology in Fig. 2-(a): (a) evolution of h1,1 , h1,2 , k1,1 and k1,2; (b) evolution of h2,1 , h2,2 , k2,1 and k2,2; (c) evolution of h3,1 , h3,2 , k3,1 and k3,2 .
Fig. 5. Topology in Fig. 2-(b): (a) trajectories of the consensus tracking errors ξ1,1 , ξ2,1 , and ξ3,1; (b) trajectories of V̂1,2 and ℓ1; (c) trajectories of V̂2,2 and ℓ2; (d)
rajectories of V̂3,2 and ℓ3 .
Fig. 6. Topology in Fig. 2-(b): (a) evolution of h1,1 , h1,2 , k1,1 and k1,2 (a); (b) evolution of h2,1 , h2,2 , k2,1 and k2,2; (c) evolution of h3,1 , h3,2 , k3,1 and k3,2 .
Fig. 7. Topology in Fig. 2-(a): evolution of |E1,1|, |E1,2|, |E2,1|, |E2,2|, |E3,1|, |E3,2|, and their NN approximations |̂E1,1|, |̂E1,2|, |̂E2,1|, |̂E2,2|, |̂E3,1|, |̂E3,2|.
7



M. Lv, B. De Schutter, C. Shi et al. Automatica 137 (2022) 110143

t
i
e
l
u

A

P
A
g
s
i
S
t
t
(
s
t
i

V̂

T
a
i
1
1
Θ

f
A
e
c
t

1

Fig. 8. Topology in Fig. 2-(b): evolution of |E1,1|, |E1,2|, |E2,1|, |E2,2|, |E3,1|, |E3,2|, and their NN approximations |̂E1,1|, |̂E1,2|, |̂E2,1|, |̂E2,2|, |̂E3,1|, |̂E3,2|.
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hat is decreasing in-between switching instants and possibly
ncreasing at the switching instants has been devised. An inter-
sting problem to be investigated in the future is to combine
ogic-based update of the control directions with logic-based
pdate of the parameters.

ppendix

roof of Theorem 1. We provide the proof through two stages.
t stage 1, we show that the control goals of Theorem 1 are
uaranteed on the interval [0,+∞) provided that the switching
tops in finite time. At stage 2, we show by contradiction that
ndeed the switching stops in finite time.
tage 1: Let [0, ts) be the maximum interval of the existence of
he closed-loop solution, σs be the final switching index, and tσs <
s be the time instant when the final switching occurs. Combining
23), (26), (27), and the fact that there is only a finite number of
witchings, one can conclude that after the final switching (i.e. for
> tσs ), it holds that Li(tσs , t) + κi ≥ 0, t ∈ [tσs , ts), which

ndicates that

i,ni (t) ≤ ℓi(tσs , t)+ κi, t ∈ [tσs , ts). (42)

hus, V̂i,ni (·), ϑi,m and Θ̂i,m(·), i = 1, . . . ,N , m = 1, . . . , ni,
re bounded due to the boundedness of ℓi(·) and κi on the
nterval [tσs , ts). Furthermore, the virtual control laws αi,m, m =
, . . . , ni − 1, i = 1, . . . ,N and the actual control law ui, i =
, . . . ,N are bounded on [tσs , ts) according to (8)–(10). Thus, χi,m,
ĩ,m, m = 1, . . . , ni, i = 1, . . . ,N , are bounded on [tσs , ts) arising

rom the fact that yr(·), Θi,m, and Θ̂i,m(·) are bounded on [tσs , ts).
ccording to Sontag (1998, Theorem 54, page. 476), no finite-time
scape phenomena occurs, and thus ts = +∞. As a result, one
oncludes that all closed-loop signals are bounded on the entire
ime interval [0,+∞). Then, invoking (25) yields

lim
t→+∞

|ϑi,1| ≤
[(
pi − pi,1 + 4)(ℓi,∞(tσs )+ κi

)] 1
pi−pi,1+4

≜ ϑ i,1

which, in combination with the definition of ϑi,1, gives

lim
t→+∞

ξi,1(t) ≤
ρi,∞ exp(ϑ i,1)− ρi,∞

1+ exp(ϑ i,1)

After using a lower bound N̄
N2+N−1

(Hong & Pan, 1992) with

N̄ =
(N−1

N

) N−1
2 for σmin

(
L +B

)
, it follows that

lim
t→+∞

∥ω(t)∥ ≤

√ (N2 + N − 1)2
∑N

i=1
ρ2i,∞[(exp(ϑ i,1)−1)]2

[1+exp(ϑ i,1)]2

N1−N (N − 1)N−1
.

We are now in a position to discuss the existence of a compact
set that makes the universal approximation ability valid, provided
that the switching stops in finite time.

Consider the initial conditions χi,m(0) and Θ̂i,m(0) ≥ 0, for i =
, . . . ,N , m = 1, . . . , n , satisfying V̂

(
χ (0), Θ̂ (0)

)
< Υ with
i i,m i,m 0

8

Υ0 =
∑N

i=1 h̄i with h̄i ≜ maxσ∈{0,1,...,σs} ℓi(tσ , tσ ) and consider the
compact set

Ω0 =

{(
χi,m(t), Θ̂i,m(t)

)⏐⏐⏐V̂ (χi,m, Θ̂i,m
)
≤ Υ , t ≥ 0

}
(43)

here Υ = Υ0+
∑N

i=1 κi. According to Algorithm 1, (41), and (42),
¯ i is bounded provided that the switching stops in finite time, and
hat the inequality(

χi,m(t), Θ̂i,m(t)
)
< Υ , (44)

holds true for all t ≥ 0 provided that V̂
(
χi,m(0), Θ̂i,m(0)

)
<

0 holds true. Therefore, the existence of the compact set Ω0
akes the universal approximation ability of the linear-in-the-
arameter approximation valid since all state variables involved
re retained in Ω0 all the time.
tage 2: At this stage, by seeking a contradiction, we prove
hat there indeed exist a finite number of switchings. Let us
irst suppose that there exist an infinite number of switchings.
herefore, there surely exists a sufficiently large tσs such that

i,qβi,q ≤ (pi − pi,q + 4)ci,qη
pi,q−1
pi+3

i , i = 1, . . . ,N, q = 1, . . . , ni,
and such that

hi(t) = d i,σs = [sign(ψi,1), . . . , sign(ψi,ni )]
T (45)

on [tσs , tσs+1). Thus, ςi = γi,qβi,q, q = 1, . . . , ni, i = 1, . . . ,N . It
follows from (43) that (22) becomes

V̇i,ni < −ςiVi,ni +Ξi as
ni∑

q=1

∆i,q = 0, (46)

which, combined with (20) and the Gronwall inequality (Qian &
Lin, 2002), implies that

ϑ
pi+3
i,m <

[
(pi − pi,m + 4)

(
Vi,ni (0)+Ξi/ςi

)] pi+3
pi−pi,m+4 ≜ Ψi,m

⏐⏐Θ̂i,m
⏐⏐ < √2γi,m

(
Vi,ni (0)+Ξi/ςi

)
+Θi,m ≜ Λ̄i,m (47)

holds on [tσs , tσs+1) for i = 1, . . . ,N , m = 1, . . . , ni. Thus, it
follows from (11) that⏐⏐ ˙̂Θ i,m

⏐⏐ < γi,mϵ
pi,m
i,m Ψi,mΓ i,m + γi,mβi,mΛ̄i,m ≜ Υi,m (48)

holds on [tσs , tσs+1), where Γ i,m is the upper bound of Γ
pi,m
i,m

ccording to Zhao et al. (2016, Lemma 2), for i = 1, . . . ,N ,
= 1, . . . , ni.
Recalling (20), (25), (46)–(48), we can obtain that

˙
i,ni (t) < −ςiVi,ni +Ξi +

ni∑
m=1

Θi,m
˙̂Θ i,m

γi,m

< −ςiV̂i,ni +Ξi +

ni∑
m=1

Θi,m
˙̂Θ i,m

γi,m
−

ni∑
m=1

ςiΘ
2
i,m

2γi,m

+

ni∑
m=1

ςiΘi,mΘ̂i,m

γi,m
< −ςiV̂i,ni + Ξ̂i, (49)
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here Ξ̂i = Ξi +
∑ni

m=1
Θi,mΥi,m
γi,m

+
∑ni

m=1
ςiΘi,mΛ̄i,m

γi,m
is a positive

onstant. Hence, we have V̂i,ni (t) ≤
Ξ̂i
ςi
, on [t∗, tσs+1), where t∗

is the first time instant satisfying V̂i,ni (t
∗) = Ξ̂i

ςi
. Then, ˙̂V i,ni < 0

holds when V̂i,ni ≥
Ξ̂i
ςi
. The fact that V̂i,ni (·) strictly decreases on

the time interval [tσs , t
∗) implies that no new switching occurs

on [tσs , t
∗) and that t∗ < tσs+1.

When t ∈ [tσs , t
∗), we can guarantee 0 < θi ≤ ςi by choosing

proper γi,q, and βi,q, q = 1, . . . , ni, according to ςi = γi,qβi,q, q =
1, . . . , ni, i = 1, . . . ,N , which implies that V̂i,ni (t) ≤ ℓi(t), on
[tσs , t

∗). When t ∈ [t∗, tσs+1), the condition ℓi,∞(t) ≥ Ξ̂i
ςi

can be

atisfied via a sufficiently large σs in view of (29) and (30). Hence,
t holds that V̂i,ni (t) ≤ ℓi(tσs , t), ∀t ∈

[
t∗, tσs+1

)
.

To summarize, we have that V̂i,ni (t) < ℓi(tσs , t) < ℓi(tσs , t)+κi,
n [tσs , tσs+1), which means that switching condition (31) can
ever be satisfied on the time interval [tσs , tσs+1). This contradicts

the assumption made in the beginning of stage 2. Thus, the proof
is completed. ■
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