

Delft University of Technology

Interval Markov Decision Processes with Continuous Action-Spaces

Delimpaltadakis, Giannis; Lahijanian, Morteza; Mazo, Manuel; Laurenti, Luca

DOI
10.1145/3575870.3587117
Publication date
2023
Document Version
Final published version
Published in
HSCC 2023 - Proceedings of the 26th ACM International Conference on Hybrid Systems

Citation (APA)
Delimpaltadakis, G., Lahijanian, M., Mazo, M., & Laurenti, L. (2023). Interval Markov Decision Processes
with Continuous Action-Spaces. In HSCC 2023 - Proceedings of the 26th ACM International Conference on
Hybrid Systems: Computation and Control, Part of CPS-IoT Week Article 12 Association for Computing
Machinery (ACM). https://doi.org/10.1145/3575870.3587117
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3575870.3587117
https://doi.org/10.1145/3575870.3587117

Interval Markov Decision Processes with Continuous
Action-Spaces

Giannis Delimpaltadakis
i.delimpaltadakis@tue.nl

Control Systems Technology Group
Mechanical Engineering

Eindhoven University of Technology
Eindhoven, Netherlands

Morteza Lahijanian
morteza.lahijanian@colorado.edu
Aerospace Engineering Sciences

Computer Science
University of Colorado Boulder

Boulder, Colorado, U.S.A.

Manuel Mazo Jr.
m.mazo@tudelft.nl

Delft Center for Systems and Control
Mechanical Engineering

Delft University of Technology
Delft, Netherlands

Luca Laurenti
l.laurenti@tudelft.nl

Delft Center for Systems and Control
Mechanical Engineering

Delft University of Technology
Delft, Netherlands

ABSTRACT

Interval Markov Decision Processes (IMDPs) are finite-state un-
certain Markov models, where the transition probabilities belong
to intervals. Recently, there has been a surge of research on em-
ploying IMDPs as abstractions of stochastic systems for control
synthesis. However, due to the absence of algorithms for synthesis
over IMDPs with continuous action-spaces, the action-space is as-
sumed discrete a-priori, which is a restrictive assumption for many
applications. Motivated by this, we introduce continuous-action
IMDPs (caIMDPs), where the bounds on transition probabilities
are functions of the action variables, and study value iteration for
maximizing expected cumulative rewards. Specifically, we decom-
pose the max-min problem associated to value iteration to |Q| max
problems, where |Q| is the number of states of the caIMDP. Then,
exploiting the simple form of these max problems, we identify cases
where value iteration over caIMDPs can be solved efficiently (e.g.,
with linear or convex programming). We also gain other interesting
insights: e.g., in certain cases where the action set A is a polytope,
synthesis over a discrete-action IMDP, where the actions are the
vertices of A, is sufficient for optimality. We demonstrate our re-
sults on a numerical example. Finally, we include a short discussion
on employing caIMDPs as abstractions for control synthesis.

CCS CONCEPTS

•Mathematics of computing→Markov processes; Stochastic
control and optimization; • Computing methodologies →
Planning under uncertainty; Computational control theory.

This work is licensed under a Creative Commons Attribution International
4.0 License.

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0033-0/23/05.
https://doi.org/10.1145/3575870.3587117

KEYWORDS

uncertain Markov decision processes; bounded-parameter Markov
decision processes; value iteration; planning under uncertainty;
control synthesis

ACM Reference Format:

Giannis Delimpaltadakis, Morteza Lahijanian, Manuel Mazo Jr., and Luca
Laurenti. 2023. Interval Markov Decision Processes with Continuous Action-
Spaces. In Proceedings of the 26th ACM International Conference on Hybrid
Systems: Computation and Control (HSCC ’23), May 09–12, 2023, San Anto-
nio, TX, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3575870.3587117

1 INTRODUCTION

1.1 Motivation and Contributions

Interval Markov Decision Processes (IMDPs; alternatively called
bounded-parameter Markov decision processes) are a class of un-
certain finite-state Markov Decision Processes (MDPs), where tran-
sition probabilities between states are only known to belong to
intervals [8]. Due to their modelling flexibility and the availability
of efficient planning algorithms [8], IMDPs have recently gained
popularity in the control and computer-science communities for
verification of and control-synthesis for uncertain systems (see, e.g.,
[4, 5, 12, 14, 15]). However, due to the absence of computational
algorithms for IMDPs with continuous action-spaces, the action
set is, generally, assumed discrete [12, 14]. This is a restrictive as-
sumption as many realistic control applications involve continuous
underlying action-spaces. Furthermore, with the current available
algorithms, the only way to address continuous action-spaces is
either a) to discretize the action-space and deal with discrete-action
IMDPs, or b) solve the optimization problems associated to control
synthesis using heuristics, as recently proposed in [5]. Nonethe-
less, a) scales exponentially with the dimension of the action space,
rendering high-dimensional problems intractable. Moreover, b) -
and a), when the discretization is carried out blindly - results into
suboptimal solutions without suboptimality bounds.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3575870.3587117
https://doi.org/10.1145/3575870.3587117
https://doi.org/10.1145/3575870.3587117
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575870.3587117&domain=pdf&date_stamp=2023-05-09

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Giannis Delimpaltadakis, Morteza Lahijanian, Manuel Mazo Jr., and Luca Laurenti

Motivated by the above, we introduce continuous-action Interval
Markov Decision Processes (caIMDPs), where the transition proba-
bility intervals are functions of the action variables. We study value
iteration over caIMDPs for synthesizing policies that maximize
finite-horizon pessimistic expected cumulative rewards (which is
referred to as the robust control problem), and identify cases where
value iteration can be solved efficiently. Specifically, we show that
the max-min optimization problem associated to value iteration
is equivalent to solving |Q| maximization problems, where |Q| is
the number of states of the caIMDP. Then, exploiting the simple
form of these maximization problems, we distinguish the follow-
ing tractable cases: 1) linear (on the action variable) bounds on
transition probabilities and polytopic action set A, where the max-
imization problems are linear programs, 2) concave and convex,
respectively, transition bounds and convex A, where we have con-
vex programs, and 3) convex and concave, respectively, transition
bounds and polytopic A, which amounts to convex maximization
over polytopes. As a result, in these cases, control synthesis over
caIMDPs, via value iteration, comes with guaranteed optimality and
fast computation.Moreover, we gain further interesting insights. For
example, in cases 1 and 3, synthesizing over discrete-action IMDPs,
where the action set consists of the vertices of A, is sufficient for
optimality. Overall, these results provide the necessary theory to
synthesize optimal policies efficiently over caIMDPs.

We showcase our results on a numerical example, which demon-
strates that synthesizing over a caIMDP is not only the only way to
optimality, but it is also computationally efficient, even when com-
pared to synthesizing over discrete-action IMDPs. Finally, we briefly
discuss about using caIMDP-abstractions for control synthesis for
stochastic systems, touching upon constructing the abstraction and
obtaining suboptimality1 bounds on the obtained policy.

1.2 Related work

While several existing works have focused on developing control
and verification algorithms for finite-state and finite-action IMDPs
[8, 11, 16], efficient algorithms for control of IMDPs with continu-
ous action-spaces are missing. A first attempt to close this gap has
been proposed in [5], where the authors present an algorithm to
synthesize policies that maximize a reachability probability based
on suboptimal heuristics and non-convex optimization. In con-
trast, here we derive an exact reformulation of value iteration for
caIMDPs, which leads to tractable solutions based on linear or
convex programming, in many cases of interest. caIMDPs are also
closely related to parametric MDPs, which are Markov decision
processes with finite state-/action-spaces, but where the transition
probabilities may depend on some parameters [3, 9, 13]. However,
a key difference is that, in parametric MDPs, the problem is to find
parameter values that are fixed and independent of the state of
the system. Instead, in caIMDPs we seek feedback control policies
that depend on both time and state, thus requiring substantially
different approaches.

1The policy computed over the (ca)IMDP-abstraction, even if optimal for the ab-
straction, will generally be suboptimal for the original system. That is because the
continuous state-space has been partitioned to a finite number of subsets, which
represent the (ca)IMDP’s states.

1.3 Notation

R (resp.,R≥0) stands for the set of real numbers (resp., non-negative
reals). Given a polytope A ⊂ R𝑛 , its set of vertices is denoted by
ver(A). Given a discrete set Q, we denote its cardinality by |Q|. By
1 we denote vectors, of appropriate dimension, of which all entries
are equal to 1. For a vector 𝑥 ∈ R𝑛 , 𝑥 ⪰ 0 (𝑥 ⪯ 0) denotes that all
its components are non-negative (non-positive, resp.).

2 CONTINUOUS-ACTION INTERVAL MARKOV

DECISION PROCESSES (CAIMDPS)

2.1 The basic elements of a caIMDP

Continuous-action interval Markov decision processes (caIMDPs)
generalize finite-state MDPs with interval-valued transition proba-
bilities and continuous action-spaces.

Definition 2.1 (caIMDP). A continuous-action interval Markov
decision process (caIMDP) is a tuple I = (Q,A, 𝑃, 𝑃, 𝑅), where
• Q is the finite set of states,

• A ⊂ R𝑛A is the set of actions,

• 𝑃 : Q × A × Q → [0, 1], where 𝑃 (𝑞, 𝑎, 𝑞′) is the lower bound
on the transition probability from state 𝑞 ∈ Q to state 𝑞′ ∈ Q
under action 𝑎 ∈ A,

• 𝑃 : Q × A × Q → [0, 1], where 𝑃 (𝑞, 𝑎, 𝑞′) is the upper bound
on the transition probability from state 𝑞 ∈ Q to state 𝑞′ ∈ Q
under action 𝑎 ∈ A,

• 𝑅 : Q → R≥0 is a bounded state-dependent reward function.

For all 𝑞, 𝑞′ ∈ Q and 𝑎 ∈ A, it holds that 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 𝑃 (𝑞, 𝑎, 𝑞′)
and

∑
𝑞′∈Q 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 1 ≤ ∑

𝑞′∈Q 𝑃 (𝑞, 𝑎, 𝑞′). Given a state 𝑞 ∈ Q
and an action 𝑎 ∈ A, a transition probability distribution 𝑝𝑞,𝑎 :
Q → [0, 1] is called feasible if 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 𝑝𝑞,𝑎 (𝑞′) ≤ 𝑃 (𝑞, 𝑎, 𝑞′)
for all𝑞′ ∈ Q. The set of all feasible distributions for the state-action
pair (𝑞, 𝑎) is denoted by Γ𝑞,𝑎 . We define Γ = {Γ𝑞,𝑎 : (𝑞, 𝑎) ∈ Q ×A}
to be the set of all feasible distributions for all state-action pairs.

A path of a caIMDP is a sequence of states and actions 𝜔 =

(𝑞0, 𝑎0), (𝑞1, 𝑎1), . . . , where (𝑞𝑖 , 𝑎𝑖) ∈ Q×A, and we denote𝜔 (𝑘) =
(𝑞𝑘 , 𝑎𝑘) and 𝜔𝑞 (𝑘) = 𝑞𝑘 , for 𝑘 = 0, 1, . . . We denote the set of all
finite paths by Pathsfin. For a path 𝜔 ∈ Pathsfin, we denote its
last element by 𝜔 (𝑒𝑛𝑑) (i.e., for an (𝑁 + 1)-length path 𝜔 (𝑒𝑛𝑑) =
𝜔 (𝑁) = (𝑞𝑁 , 𝑎𝑁)).

To describe the evolution of a caIMDP-path, we also need to
introduce the notions of policy and adversary.

Definition 2.2 (policy). For a caIMDP, a policy 𝝅 : Pathsfin ×
Q → A is a function that, given a finite path 𝜔 ∈ Pathsfin and a
state 𝑞 ∈ Q, returns an action. The set of all policies is denoted by Π.
A policy is Markov, if the choice of action depends only on 𝑞 and on
the path’s length.

Definition 2.3 (Adversary). For a caIMDP, an adversary is a
function 𝝃 : Pathsfin → Γ. Given a finite path𝜔 ∈ Pathsfin, it returns
a feasible distribution 𝑝𝑞,𝑎 ∈ Γ𝑞,𝑎 , where (𝑞, 𝑎) = 𝜔 (𝑒𝑛𝑑). The set of
all adversaries is denoted byΞ. An adversary is Markov, if the choice of
a feasible distribution depends only on 𝜔 (𝑒𝑛𝑑) and the path’s length.

Given a policy 𝝅 and an adversary 𝝃 , a caIMDP-path evolves as
follows. At time 𝑖 , given the finite path (𝑞0, 𝑎0), . . . , (𝑞𝑖−1, 𝑎𝑖−1) and

Interval Markov Decision Processes with Continuous Action-Spaces HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

the current state 𝑞𝑖 , the policy 𝝅 chooses the action 𝑎𝑖 . Then, the
adversary 𝝃 , given the path (𝑞0, 𝑎0), . . . (𝑞𝑖 , 𝑎𝑖), chooses a feasible
distribution 𝑝𝑞𝑖 ,𝑎𝑖 ∈ Γ𝑞𝑖 ,𝑎𝑖 . The next state of the path𝑞𝑖+1 is sampled
randomly from 𝑝𝑞𝑖 ,𝑎𝑖 .

In words, a policy is a control strategy, that, at each time, decides
the control action based on the history of the path. The adversary
represents the environment: once the control action is taken, the
adversary resolves the uncertainty stemming from the transition
probability intervals, thus fixing the -still stochastic- environment
for the current time step. Notice that, given a specific policy 𝝅 and
adversary 𝝃 , the caIMDP collapses to a time-varying Markov chain.
Thus, given 𝝅 , 𝝃 , an initial state 𝑞0, and a horizon 𝑁 , a probability
measure is uniquely defined over (𝑁 + 1)-length paths 𝜔 ∈ Pathsfin

[1].

Remark 1. For ease of presentation, we constrain the definitions
of policy and adversary to deterministic ones. In fact, they can be
random, but, as Proposition 2.4 shows, the optimal rewards that we
study are achieved by deterministic, Markov policies and adversaries;
thus, it suffices to consider only deterministic ones.

2.2 Optimal policies, optimal rewards and value

iteration

In what follows, we implicitly assume that all mentioned max min
quantities (e.g., the ones in (1) and (3b)) are well-defined. Numer-
ous sets of assumption can be employed to impose this: e.g., as a
consequence of Proposition 2.4 below, it suffices that A is compact
and 𝑃, 𝑃 are continuous functions of the action variables 𝑎.

Given 𝝅 , 𝝃 , 𝑁 , an initial state 𝑞0 ∈ Q, and a factor 𝛾 ≥ 0, we
define the so-called expected cumulative reward:

R𝑁𝝅 ,𝝃 (𝑞0) = E𝑞0

[
𝑁∑︁
𝑖=0

𝛾𝑖𝑅(𝜔𝑞 (𝑖)) | 𝝅 , 𝝃
]

where the expectation is taken w.r.t. the probability measure over
(𝑁 + 1)-length paths in Pathsfin starting from state 𝑞0. Notice that
𝑅, as defined in Definition 2.1, depends only on states, not actions.

In this work, as done commonly in the literature [8], we con-
sider the robust control problem: finding a policy that maximizes the
expected cumulative reward generated by the worst possible adver-
sary (and the policy itself). In other words, we study the following
max-min problem2:

Problem (Robust Control). Given a caIMDP I, a factor 𝛾 ≥ 0,
a horizon 𝑁 , and an initial state 𝑞0, solve:

R𝑁★ (𝑞0) ≡ max
𝝅 ∈Π

min
𝝃 ∈Ξ
R𝑁𝝅 ,𝝃 (𝑞0) . (1)

A policy 𝝅★ that solves (1), i.e.,

𝝅★ ∈ arg max
𝝅 ∈Π

min
𝝃 ∈Ξ
R𝑁𝝅 ,𝝃 (𝑞0),

is called a (pessimistically)3 optimal policy. The optimal valueR𝑁★ (𝑞0)
of (1) is called (pessimistic) optimal (expected cumulative) reward.

2While this work focuses on the max-min problem, max-max, min-max, and min-min
problems can be addressed similarly.
3"Pessimistically", as it optimizes the reward generated by the worst adversary. If we
considered the best adversary instead, which would amount to a max-max problem,
the policy would be called optimistically optimal.

Solving (1) is computing an optimal policy 𝝅★ and the optimal
reward.

For MDPs and for IMDPs with discrete action-spaces, it is well-
known that (1) can be solved by an iterative scheme called value
iteration. The following proposition extends this to caIMDPs as
well:

Proposition 2.4. Consider a caIMDP I. For any 𝑗 = 0, . . . , 𝑁 ,
the following holds:

R 𝑗
★(𝑞0) = 𝑉𝑁− 𝑗 (𝑞0) (2)

where 𝑉𝑁− 𝑗 (𝑞) is defined, for any 𝑞 ∈ Q, through the following
iteration:

𝑉𝑁 (𝑞) = 𝑅(𝑞) (3a)

𝑉𝑘−1 (𝑞) = 𝑅(𝑞) + 𝛾 max
𝑎∈A

min
𝑝∈Γ𝑞,𝑎

∑︁
𝑞′∈Q

𝑝 (𝑞′)𝑉𝑘 (𝑞′) (3b)

for 𝑘 = 𝑁, . . . , 1.

Proof. See Section 7.1. □

The process of solving (3) for all iterations is called value iteration
and the obtained function 𝑉0 (·) is called value function. A direct
corollary of Proposition 2.4, is that there exist Markov policies (and
adversaries) achieving the optimal reward, defined as follows:

Corollary 2.5 (to Proposition (2.4)). Any Markov policy satis-
fying:

𝝅★(𝑞, 𝑁 − 𝑘 − 1) ∈ arg max
𝑎∈A

min
𝑝∈Γ𝑞,𝑎

∑︁
𝑞′∈Q

𝑝 (𝑞′)𝑉𝑘 (𝑞′)

is optimal, where 𝝅★(𝑞, 𝑖) denotes the action taken if the current state
is 𝑞 and the current time is 𝑖 .

Remark 2. Note that, while in this work we only consider cumu-
lative rewards, similarly to IMDPs with discrete action-spaces, our
results can easily be extended to more general properties, such as
bounded-time fragments of PCTL [12] or LTL [10]. Infinite-horizon
(unbounded-time) extensions are also possible, but particular care is
needed to guarantee convergence of the value iteration of Proposition
2.4 due to the non-finiteness of A.

3 EFFICIENT FORMULATIONS OF VALUE

ITERATION OVER CAIMDPS

By Proposition 2.4 and Corollary 2.5, we see that to compute the
optimal reward and an optimal policy it suffices to solve (3) for
all iterations 𝑘 = 𝑁, . . . , 1. However, solving (3b) is not straight-
forward, as it includes solving (for each 𝑞) the max-min optimiza-
tion problem max𝑎∈𝐴 min𝑝∈Γ𝑞,𝑎 𝑝

𝑇𝑉𝑘 , where we, abusively, denote
𝑉𝑘 =

[
𝑉𝑘 (𝑞1) . . . 𝑉𝑘 (𝑞 | Q |)

]⊤, 𝑝 =
[
𝑝 (𝑞1) . . . 𝑝 (𝑞 | Q |)

]⊤.
This max-min problem can be written as:

max
𝑎∈A

min
𝑝∈R|Q|

𝑝⊤𝑉𝑘

s.t. : 𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝑝𝑖 ≤ 0, 𝑖 = 1, 2, . . . , |Q|,
− 𝑃 (𝑞, 𝑎, 𝑞𝑖) + 𝑝𝑖 ≤ 0, 𝑖 = 1, 2, . . . , |Q|,
| Q |∑︁
𝑖=1

𝑝𝑖 − 1 = 0

(Mm)

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Giannis Delimpaltadakis, Morteza Lahijanian, Manuel Mazo Jr., and Luca Laurenti

where 𝑝𝑖 denotes the 𝑖-th component of vector 𝑝 , and the constraints
guarantee that 𝑝 is a probability distribution (equality constraint)
and belongs in Γ𝑞,𝑎 (inequality constraints).

In this section, we decompose problem (Mm) to a number of
simpler problems, and identify special cases of A, 𝑃 (·, 𝑎, ·) and
𝑃 (·, 𝑎, ·) in which problem (Mm) can be solved efficiently. First,
we state and prove this paper’s main result (Theorem 3.2): that
problem (Mm) is equivalent to solving the |Q| simpler maximization
problems in (MP). This gives rise to Algorithm 1, which performs
value iteration over caIMDPs, where, instead of solving (Mm), it
solves (MP). Then, the simple form of the maximization problems
in (MP) allows us to identify special cases in which they, and thus
value iteration, are tractable. Furthermore, we show that whenA is
polytopic and 𝑃 (·, 𝑎, ·) and 𝑃 (·, 𝑎, ·) are either linear or convex and
concave, respectively, performing synthesis over a discrete-action
IMDP with its action set being ver(A) is sufficient for optimality.

3.1 Decomposing the max-min problem to |Q|
max problems

To prove the main result, first we transform the original max-min
problem (Mm) to a maximization problem, by employing duality:

Proposition 3.1. Consider the optimization problem:

max
𝑎,𝜆𝐿,𝜆𝑈 ,𝜈

| Q |∑︁
𝑖=1

𝜆𝐿𝑖𝑃 (𝑞, 𝑎, 𝑞𝑖) −
| Q |∑︁
𝑖=1

𝜆𝑈𝑖
𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝜈

s.t. : 𝑎 ∈ A, 𝜆𝐿 ⪰ 0, 𝜆𝑈 ⪰ 0
𝑉𝑘 − 𝜆𝐿 + 𝜆𝑈 + 𝜈1 = 0

(4)

where 𝜆𝐿 ∈ R | Q | , 𝜆𝑈 ∈ R | Q | , 𝜈 ∈ R and 𝜆𝐿𝑖 , 𝜆𝑈𝑖
denote the 𝑖-th

component of 𝜆𝐿 and 𝜆𝑈 , respectively. If (𝑎★, 𝜆𝐿★, 𝜆𝑈★
, 𝜈★) solves (4),

then it also solves (Mm). Moreover, the optimal values of (Mm) and
(4) coincide.

Proof. See Section 7.2. □

The variables 𝜆𝐿 , 𝜆𝑈 and 𝜈 are the so-called Lagrange multipliers.
Generally, even though just a max problem instead of a max-min
problem, optimization problem (4) is not easy to work with directly.
That is because of the product terms 𝜆𝐿𝑖𝑃 (𝑞, 𝑎, 𝑞𝑖) and 𝜆𝑈𝑖

𝑃 (𝑞, 𝑎, 𝑞𝑖)
(e.g., even when 𝑃 (·, 𝑎, ·) and 𝑃 (·, 𝑎, ·) are linear on 𝑎, problem (4) is,
generally, nonconvex). Nonetheless, by working around its special
structure, we are able to dissect it into |Q| simpler max problems,
which constitutes this work’s main result:

Theorem 3.2. Assume, without loss of generality, that 𝑉𝑘 (𝑞𝑖) ≥
𝑉𝑘 (𝑞𝑖+1) for all 𝑖 = 1, 2, . . . , |Q| −1, i.e., that𝑉𝑘 is in descending order.
Consider the following optimization problem:

max
𝑗=1,2,..., | Q |

max
𝑎

𝑗−1∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖)

+
| Q |∑︁

𝑖=𝑗+1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞 𝑗)

s.t. : 𝑎 ∈ A
(MP)

If 𝑎★ solves (MP), then it solves (Mm). Moreover, the optimal values
of (MP) and (Mm) coincide.

Proof. See Section 7.3. □

By employing Theorem 3.2, we can devise an algorithm (Algo-
rithm 1) to solve value iteration over caIMDPs, where, instead of
solving the stringent (Mm), we solve (MP), which can be solved effi-
ciently in many cases of interest, as it is revealed in the next section.
Observe how in each iteration of value iteration, we sort the value-
function vector in decreasing order, thus imposing the assumption
of Theorem 3.2 (hence why it is written that the assumption is
without loss of generality).

Algorithm 1 Value Iteration on caIMDPs

1: for 𝑞 ∈ Q do

2: 𝑉𝑁 (𝑞) ← 𝑅(𝑞)
3: end for

4: for 𝑘 = 𝑁, . . . , 1 do

5: [𝑉𝑠𝑜𝑟𝑡𝑒𝑑 , 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑠𝑜𝑟𝑡𝑒𝑑] = 𝑠𝑜𝑟𝑡 (𝑉𝑘) ⊲sorts 𝑉𝑘 in descend-
ing order and stores it in 𝑉𝑠𝑜𝑟𝑡𝑒𝑑 . 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑠𝑜𝑟𝑡𝑒𝑑 describes
the arrangement of the elements of 𝑉𝑘 into 𝑉𝑠𝑜𝑟𝑡𝑒𝑑 , i.e.
𝑉𝑘 = 𝑉𝑠𝑜𝑟𝑡𝑒𝑑 (𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑠𝑜𝑟𝑡𝑒𝑑).

6: for 𝑞 in 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑠𝑜𝑟𝑡𝑒𝑑 do

7: 𝑉𝑘−1 (𝑞) = 𝑅(𝑞) + 𝛾*Solve(MP) ⊲where in (MP) we re-
place 𝑉𝑘 with 𝑉𝑠𝑜𝑟𝑡𝑒𝑑 .

8: end for

9: end for

It remains to deduce when is it easy to perform line 7 of Algo-
rithm 1, i.e. to solve (MP). Notice how (MP) is in a much simpler
form to analyze than the primal max-min problem (Mm): a) they
are just max problems, b) their only decision variable is the action
𝑎 and the constraint set is A, and c) the functions 𝑃 (𝑞, 𝑎, 𝑞𝑖) and
𝑃 (𝑞, 𝑎, 𝑞𝑖) appear linearly, which facilitates convexity arguments.
It is this simple form that allows us to deduce when they can be
solved efficiently, in the following section.

Remark 3. Notice that the derived maximization problems (MP)
and value-iteration algorithm share similarities with the algorithm
proposed in [8] to solve value iteration over discrete-action IMDPs.
First, they both sort the value-function vector in each iteration. Fur-
thermore, in both algorithms, given a specific action 𝑎, a combination
of additions of lower and upper bounds on transition probabilities is
found, which is optimal w.r.t. the ordered value-function vector. The
number of possible such combinations is |Q| in both cases. Neverthe-
less, contrary to here, in [8] there is a stopping criterion, based on
which the algorithm may terminate before computing all |Q| com-
binations. The existence of such a stopping criterion for problems
(MP) (i.e., for the continuous-action case) is an open question, and a
potential affirmative answer would significantly reduce computations.

3.2 When can value iteration for caIMDPs be

solved efficiently?

By inspecting (MP), we are able to identify cases where value itera-
tion for caIMDPs can be solved efficiently.

The linear case. In the case of polytopic A, and linear 𝑃 (·, 𝑎, ·),
𝑃 (·, 𝑎, ·), solving problem (MP) amounts to solving |Q| linear pro-
grams (LPs):

Interval Markov Decision Processes with Continuous Action-Spaces HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

Corollary 3.3 (to Theorem 3.2). If A is a polytope and both
𝑃 (·, 𝑎, ·) and 𝑃 (·, 𝑎, ·) are linear on 𝑎, then the maximization problems
in (MP) are LPs.

Moreover, notice that an optimal 𝑎★ lies on the vertices of A,
since the problems in (MP) are LPs with A as the constraint set.
Thus, another corollary of Theorem 3.2 is that, instead of solving
(MP) in line 7 of Algorithm 1, we could solve the original max-
min problem (Mm) only for 𝑎 ∈ ver(𝐴), which amounts to solving
|ver(A)| LPs:

Corollary 3.4 (to Theorem 3.2). If A is a polytope and both
𝑃 (·, 𝑎, ·) and 𝑃 (·, 𝑎, ·) are linear on 𝑎, solving the max-min problem
(Mm) amounts to solving the following |ver(A)| minimization LPs:

max
𝑎∈ver(A)

min
𝑝∈R|Q|

𝑝⊤𝑉𝑘

s.t. : 𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝑝𝑖 ≤ 0, 𝑖 = 1, 2, . . . , |Q|,
− 𝑃 (𝑞, 𝑎, 𝑞𝑖) + 𝑝𝑖 ≤ 0, 𝑖 = 1, 2, . . . , |Q|,
| Q |∑︁
𝑖=1

𝑝𝑖 − 1 = 0

(5)

Remark 4. Equivalently, Corollary 3.4 guarantees that it is suffi-
cient to construct a discrete-action IMDP with its action set being
ver(A), and solve the synthesis problem over the discrete-action
IMDP.

Corollary 3.3 amounts to |Q| LPs with 𝑛A decision variables and
A as a constraint set. On the other hand, the approach of Corol-
lary 3.4 (or Remark 4) amounts to |ver(A)| LPs with |Q| decision
variables. Note, however, that to solve the LPs of Corollary 3.4,
one can employ the algorithm proposed in [8], which has been
shown to be very efficient (see also Remark 3). Intuitively, when
|ver(A)| >> |Q|, then the approach of Corollary 3.3 might be pre-
ferred against the one of Corollary 3.4, and vice-versa. Nevertheless,
a thorough experimental study has to be conducted, to decide when
to use each.

Remark 5. Max-min problems with linear objective functions and
constraints, in their general form, are studied in [6]. It is therein where
it is proven that an optimal solution is attained at the vertices of the
constraint set. Moreover, an algorithm is proposed that decomposes
the original max-min problem to a number of LPs, which in our case
would be 𝑂 (|Q|2) LPs. Here, we are able to derive more computa-
tionally efficient results, because we exploit our specific problem’s
special structure (e.g, the knowledge that 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 𝑃 (𝑞, 𝑎, 𝑞′) and∑
𝑞′∈Q 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 1 ≤ ∑

𝑞′∈Q 𝑃 (𝑞, 𝑎, 𝑞′)).

The concave/convex case. When A is convex, 𝑃 (·, 𝑎, ·) is con-
cave and 𝑃 (·, 𝑎, ·) is convex on 𝑎, then the maximization problems
in (MP) are convex programs (CPs):

Corollary 3.5 (to Theorem 3.2). If A is convex, 𝑃 (·, 𝑎, ·) is
concave on 𝑎 and 𝑃 (·, 𝑎, ·) is convex on 𝑎, then the maximization
problems in (MP) are convex programs (CPs).

In such case, standard convex optimization algorithms (see [2])
can be employed to solve (MP) and perform value iteration over
the given caIMDP.

The convex/concave case. When A is a polytope, 𝑃 (·, 𝑎, ·) is
convex and 𝑃 (·, 𝑎, ·) is concave on 𝑎, we have the following:

Corollary 3.6 (to Theorem 3.2). If A is a polytope, 𝑃 (·, 𝑎, ·)
is convex on 𝑎 and 𝑃 (·, 𝑎, ·) is concave on 𝑎, then the maximization
problems in (MP) amount to maximizing a convex function over a
polytope. Thus, an optimal solution lies at the constraint set’s vertices.

Proof of Corollary 3.6. The fact that maximizing a convex
function over a polytope attains a solution at the vertices is well-
known; e.g., see [18, Theorem 32.2]. □

In this case, we can either solve all |Q| problems in (MP), by
evaluating the objective function on the vertices of A, or we can
solve the |ver(A)| LPs (5), which, again, is equivalent to building a
discrete-action IMDP, as explained in Remark 4. Either way, when
|ver(A)| is small, value iteration can be solved quickly.

4 NUMERICAL EXAMPLE

Here, we demonstrate this work’s theoretical results on a numer-
ical example. We consider the concave/convex case and we com-
pare the results obtained by synthesizing over a caIMDP with
the ones obtained by discrete-action IMDPs (discretized versions
of the caIMDP). We constructed a randomly generated caIMDP
I = (Q,A, 𝑃, 𝑃, 𝑅) with |Q| = 25 states, concave/convex transition
bounds and a 3-dimensional action space (𝑛A = 3). The action set
is the following cylinder:

A = {𝑎 ∈ R3 : (𝑎1 − 0.5)2 + (𝑎2 − 0.5)2 ≤ 0.2, 𝑎3 ∈ [0, 1]}
The horizon 𝑁 = 10 and 𝛾 = 1.

We computed the robust optimal policy and expected cumulative
rewardR★(𝑞) (for all 𝑞) over the caIMDP, via convex programming,
as instructed by Corollary 3.5. Moreover, we obtained policies and
the corresponding rewards R𝑠 (𝑞) (for all 𝑞) by performing syn-
thesis over discrete-action IMDPs, which are discretized versions
of the original caIMDP: a discrete-action IMDP is constructed as
I𝑠
𝑑𝑖𝑠𝑐𝑟

= (Q, Â𝑠 , 𝑃, 𝑃, 𝑅), where Â𝑠 ⊆ A is a finite set of 𝑠 ac-
tions randomly sampled from the continuous action set A; that
is, |Â𝑠 | = 𝑠 . Specifically, we computed R𝑠 (𝑞) for different values
of 𝑠 . Note that, since randomness is involved in the experiments4,
we performed them multiple times5. Moreover, to perform synthe-
sis over the discrete-action IMDPs (i.e. to solve the 𝑠 associated
LPs), we used the algorithm of [8]. Finally, optimality tolerance for
convex programming was set to 10−4.

Figure 1 depicts the optimal reward R★(𝑞) obtained from the
caIMDP and rewards R𝑠 (𝑞) obtained from some of the discrete-
action IMDPs, for different values of 𝑠 . As expected, in all cases
R★(𝑞) ≥ R𝑠 (𝑞), since R★(𝑞) is the optimal reward, whereas R𝑠 (𝑞)
is suboptimal. Moreover, Table 1 shows the average percentage of
suboptimality of R𝑠 (𝑞), i.e. the quantity:

100 ·max
𝑞

R★ (𝑞)−R𝑠 (𝑞)
R★ (𝑞) %,

for all different values of 𝑠 . Furthermore, it shows the average com-
putation time for each experiment. We observe that performing

4In the case of value iteration over the caIMDP with convex programming, the initial
condition for the optimization is picked randomly, which affects the total computa-
tion time. In the case of discrete-action IMDPs, the sampled actions affect both the
computation time and, especially, the reward R𝑠 (𝑞) .
5Value iteration over the caIMDP has been performed 3 times. The experiments on
discrete-action IMDPs for 𝑠 = 1, 8, 27, 64, 125 have been performed [20, 11, 9, 6, 3]
times, respectively.

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Giannis Delimpaltadakis, Morteza Lahijanian, Manuel Mazo Jr., and Luca Laurenti

Figure 1: The optimal reward R★(𝑞) (solid line) obtained from

the caIMDP, and rewards R𝑠 (𝑞) (dashed lines) obtained from

discrete-action IMDPs.

Table 1: The first five lines report average cpu times and

average suboptimality percentages for value iteration over

discrete-action IMDPs obtained by randomly sampling 𝑠 ac-

tions from the continuous action-space. The last line re-

ports the corresponding results for value iteration over the

caIMDP.

#samples 𝑠 CPU Time (s) 100 ·max𝒒
R★ (𝒒)−R𝒔 (𝒒)

R★ (𝒒) %
1 88 16.51%
8 668 7.86%
27 2170 5.17%
64 6225 4.59%
125 9736 4.32%

caIMDP 2212 0%

synthesis on the caIMDP is approximately as expensive as syn-
thesizing over a discrete-action IMDP with only 27 actions (only 3
points per dimension of the action space). That is while R27 (𝑞) is
significantly suboptimal with an average suboptimality of 5.17%. In
fact, even with 125 sampled actions (5 points per dimension), the
suboptimality percentage is considerable. From this experiment,
we deduce that synthesizing over a caIMDP is not only the way to
optimality, but also it is computationally efficient even compared to
discrete-action IMDPs. In fact, for even higher-dimensional action
spaces, it is expected that it is the only tractable choice.

5 DISCUSSION: CAIMDPS FOR CONTROL

SYNTHESIS FOR STOCHASTIC SYSTEMS

We now, briefly, describe how this paper’s results can be employed
for control synthesis for stochastic systems.

5.1 Abstracting stochastic systems via caIMDPs

Consider the controlled stochastic system:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑎𝑘 ,𝑤𝑘) (6)

where 𝑥𝑘 ∈ 𝑋 is the state of the system at time 𝑘 , 𝑎𝑘 ∈ A is
the action at time 𝑘 and 𝑤𝑘 ∈ R𝑛𝑤 are i.i.d random variables
with a known probability distribution 𝑝𝑤 . The paths of the sys-
tem are again sequences 𝜔 = (𝑥1, 𝑎1), (𝑥2, 𝑎2), . . . , and we de-
note the system’s set of finite paths by Pathsfin

sys. Assume a state-
dependent reward 𝑅𝑠𝑦𝑠 : 𝑋 → R≥0. Given a specific control policy
𝜒 : Pathsfin

sys × 𝑋 → A, a horizon 𝑁 , an initial condition 𝑥0 ∈ R𝑛𝑥
and a factor 𝛾 ≥ 0, the expected cumulative reward over the sys-
tem’s trajectories is defined as:

E𝑥0
P𝑤

[
𝑁∑︁
𝑖=0

𝛾𝑖𝑅𝑠𝑦𝑠 (𝜔𝑞 (𝑖)) | 𝜒
]

where P𝑤 is a probability measure over the system’s paths induced
by 𝑝𝑤 and the initial condition 𝑥0. This expected reward constitutes
a metric describing the system’s behaviors under policy 𝜒 (e.g., a
reachability or safety property, a quantitative measure such as
convergence speed, etc.). The objective is to synthesize a policy 𝜒★
that maximizes the expected reward.

In the literature of IMDP-abstractions for control synthesis for
stochastic systems [5, 12, 14], the above problem is solved by ab-
stracting the system via an appropriate IMDP, finding an optimal
policy over the constructed IMDP and mapping this policy back
to the original system. Nevertheless, as already mentioned in the
introduction section, the action set A is, generally, assumed dis-
crete a-priori. To the best of our knowledge, the only exception
is [5], which keeps the action-space continuous, but the max-min
problem of value iteration is solved using heuristics.

With the results derived in this work, we can avoid unnecessary
discretizations of the action set or heuristics with no formal guaran-
tees. To abstract a system (6) by a caIMDP, the state space 𝑋 is par-
titioned into |Q| sets 𝑞𝑖 ⊆ 𝑋 , which represent the caIMDP’s states,
and the transition bounds are defined as follows for all 𝑞𝑖 , 𝑞 𝑗 ∈ Q:

𝑃 (𝑞𝑖 , 𝑎, 𝑞 𝑗) ≤ inf
𝑥∈𝑞𝑖
P𝑤 (𝑓 (𝑥, 𝑎,𝑤) ∈ 𝑞 𝑗), (7)

𝑃 (𝑞𝑖 , 𝑎, 𝑞 𝑗) ≥ sup
𝑥∈𝑞𝑖
P𝑤 (𝑓 (𝑥, 𝑎,𝑤) ∈ 𝑞 𝑗) (8)

The caIMDP-reward is defined by 𝑅(𝑞) = inf𝑥∈𝑞 𝑅𝑠𝑦𝑠 (𝑞). By ex-
tending [4, Theorem 4.1] to caIMDPs, we can show that the optimal
expected cumulative caIMDP-reward lower-bounds the optimal
expected cumulative reward over the system’s trajectories:

max
𝝅

min
𝝃
R𝑁𝝅 ,𝝃 (𝑞0) ≤ max

𝜒
E𝑥0
P𝑤

[
𝑁∑︁
𝑖=0

𝛾𝑖𝑅𝑠𝑦𝑠 (𝜔𝑞 (𝑖)) | 𝜒
]

(9)

where 𝑥0 ∈ 𝑞0. Furthermore, the optimal reward obtained via the
caIMDP is larger than or equal to an optimal reward obtained via
a discrete-action IMDP, as its action set is a subset of the caIMDP’s
action set.

In order to enable the results presented in Section 3.2 and ren-
der value iteration easy-to-solve, the bounds 𝑃 (·, 𝑎, ·) and 𝑃 (·, 𝑎, ·)
have to be (piecewise) linear or concave/convex or convex/concave
on the action variables. For instance, this is the case for a large
class of switching diffusion models where the continuous action

Interval Markov Decision Processes with Continuous Action-Spaces HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

controls the probability of switching between different modes of
the system [19]. In more general cases, the functions inf𝑥∈𝑞𝑖 and
sup𝑥∈𝑞𝑖 P𝑤 (𝑓 (𝑥, 𝑎,𝑤) ∈ 𝑞 𝑗) may need to be lower-/upper-bounded
via (piecewise) linear, convex or concave functions.

5.2 Suboptimality bounds

A policy derived through a caIMDP-abstraction is generally sub-
optimal for system (6), even though the algorithms presented here
do compute a policy that is optimal w.r.t. the given caIMDP. That
is because the caIMDP is an abstraction of the original stochastic
system in (6), and not an equivalent representation. Nevertheless,
caIMDPs can be used to obtain so-called suboptimality bounds:
bounds on the difference between the optimal reward computed
via the caIMDP and the true optimal reward:

max
𝜒

E𝑥0
P𝑤

[
𝑁∑︁
𝑖=0

𝛾𝑖𝑅𝑠𝑦𝑠 (𝜔𝑞 (𝑖)) | 𝜒
]
−max

𝝅
min
𝝃
R𝑁𝝅 ,𝝃 (𝑞0)

This quantifies how suboptimal a policy obtained via a caIMDP is; if
the obtained result is not satisfactory, then the caIMDP-abstraction
has to be refined with a finer partition of the state-space 𝑋 or with
tighter transition bounds.

Again, by extending [4, Theorem 4.1] to caIMDPs, it can be
shown that, if we define the reward function of the caIMDP as
𝑅′ (𝑞) = sup𝑥∈𝑞 𝑅𝑠𝑦𝑠 (𝑞) (previously, we used inf), the optimistically
optimal caIMDP reward upper bounds the true optimal one:

max
𝜒

E𝑥0
P𝑤

[
𝑁∑︁
𝑖=0

𝛾𝑖𝑅𝑠𝑦𝑠 (𝜔𝑞 (𝑖)) | 𝜒
]
≤ max

𝝅 ,𝝃
R′𝑁𝝅 ,𝝃 (𝑞0)

where R′𝑁𝝅 ,𝝃 (𝑞0) = E𝑞0
[∑𝑁

𝑖=0 𝛾
𝑖𝑅′ (𝜔𝑞 (𝑖)) | 𝝅 , 𝝃

]
, and the expecta-

tion is w.r.t. the ptobability measure over the paths of the caIMDP.
Thus, max𝝅 ,𝝃 R′𝑁𝝅 ,𝝃 (𝑞0) −max𝝅 min𝝃 R𝑁𝝅 ,𝝃 (𝑞0) provides a subop-
timality bound.

The above requires solving max𝝅 ,𝝃 R𝑁𝝅 ,𝝃 (𝑞0), which amounts
to a value iteration, in which, instead of a max-min problem, the
following max problem needs to be solved:

max
𝑎∈A,𝑝∈R|Q|

𝑝⊤𝑉𝑘

s.t. : 𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝑝𝑖 ≤ 0, 𝑖 = 1, 2, . . . , |Q|,
− 𝑃 (𝑞, 𝑎, 𝑞𝑖) + 𝑝𝑖 ≤ 0, 𝑖 = 1, 2, . . . , |Q|,
| Q |∑︁
𝑖=1

𝑝𝑖 − 1 = 0

(10)

Referring to the three cases distinguished in Section 3.2, problem
(10): a) in the linear case, is also an LP, b) in the convex/concave
case, is a CP, but c) in the concave/convex case, its constraint set is
nonconvex: the intersection of sub-level sets of convex and concave
functions. Hence, in the linear and the convex/concave case, prob-
lem (10) can be solved efficiently, to generate a tight suboptimality
bound. In the concave/convex case, we could derive an upper bound
on the optimal value of problem (10), e.g., by using an SMT solver
[7].

6 CONLUSION

We have introduced continuous-action interval Markov decision
processes (caIMDPs), and studied value iteration for optimizing pes-
simistic expected cumulative rewards. Specifically, we have shown
that the max-min problem associated to value iteration can be de-
composed to |Q| maximization problems. The simple form of these
max problems allowed us to distinguish cases where they, and thus
value iteration, can be solved efficiently. It also provided us with
further interesting insights, such as cases where synthesis over
discrete-action and continuous-action IMDPs is equivalent. These
results have been demonstrated on a numerical example.

Furthermore, we have, briefly, discussed how caIMDPs can
be employed for control synthesis for stochastic systems. Specifi-
cally, we have given guidelines on how to construct the caIMDP-
abstraction such that it falls in one of the aforementioned easy-
to-solve cases. We have, also, shown how to obtain suboptimality
bounds on the policy generated by the caIMDP-abstraction.

Future work includes: i) studying convergence of the value itera-
tion for infinite horizons, ii) addressing rewards that depend both
on the state and the action, iii) investigating if the |Q| maximization
problems can be simplified even further, and iv) a thorough study
on caIMDP-abstractions and on obtaining suboptimality bounds.

7 TECHNICAL PROOFS

7.1 Proof of Proposition 2.4

Sketch of Proof of Proposition 2.4. By the transformation
presented in [16, Appendix A] for finite-action IMDPs, the robust
control problem can be equivalently transformed into a turn-based
zero-sum game. Consequently, similarly to [16], we can employ the
same reasoning as in the proof of [17, Theorem 1], to show that:

R 𝑗
★(𝑞0) = 𝑉𝑁− 𝑗 (𝑞0)

where 𝑉𝑁− 𝑗 comes from the following Bellman recursion:

𝑉𝑁 (𝑞) = 𝑅(𝑞)

𝑉𝑘−1 (𝑞) = 𝑅(𝑞) + 𝛾 max
𝜇∈𝑀

∫
A

min
𝑝∈Γ𝑞,𝑎

∑︁
𝑞′∈Q

𝑝 (𝑞′)𝑉𝑘 (𝑞′)𝜇 (𝑎)𝑑𝑎(𝑞′)

where 𝑀 is the set of probability distributions6 over A. We now
notice that for any 𝜇 ∈ 𝑀 :∫
A

min
𝑝∈Γ𝑞,𝑎

∑︁
𝑞′∈Q

𝑝 (𝑞′)𝑉𝑘 (𝑞′)𝜇 (𝑎)𝑑𝑎 ≤ max
𝑎∈A

min
𝑝∈Γ𝑞,𝑎

∑︁
𝑞′∈Q

𝑝 (𝑞′)𝑉𝑘 (𝑞′)

This implies that the optimal choice is a Dirac distribution cen-
tered in any 𝑎 ∈ arg max𝑎∈A min𝑝∈Γ𝑞,𝑎

∑
𝑞′∈Q 𝑝 (𝑞′)𝑉𝑘 (𝑞′). Conse-

quently, we can replace the maximization over𝑀 with a maximiza-
tion over A, i.e.:

max
𝜇∈𝑀

∫
A

min
𝑝∈Γ𝑞,𝑎

∑︁
𝑞′∈Q

𝑝 (𝑞′)𝑉𝑘 (𝑞′)𝜇 (𝑎)𝑑𝑎 =

max
𝑎∈A

min
𝑝∈Γ𝑞,𝑎

∑︁
𝑞′∈Q

𝑝 (𝑞′)𝑉𝑘 (𝑞′)

□

6Maximization takes place over the set𝑀 of probability distributions on A, because,
as mentioned in Remark 1, policies can be probabilistic. Nonetheless, it is shown that
optimal policies are deterministic (or, in other words, Dirac distributions).

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Giannis Delimpaltadakis, Morteza Lahijanian, Manuel Mazo Jr., and Luca Laurenti

7.2 Proof of Proposition 3.1

First, let us prove the following lemma:

Lemma 7.1. Consider the following max-min problem:

max
𝑎∈A

min
𝑝∈𝑃,𝑓 (𝑎,𝑝)≤0

𝑐⊤𝑝

Assume that it is feasible and bounded, and that strong duality holds
for the inner minimization problem and its Lagrangian dual (see, e.g.,
[2]):

∀𝑎 ∈ A : min
𝑝∈𝑃,𝑓 (𝑎,𝑝)≤0

𝑐⊤𝑝 = max
𝜆⪰0,𝜈

𝑔(𝑎, 𝜆, 𝜈) (11)

Then max
𝑎∈A

min
𝑝∈𝑃,𝑓 (𝑎,𝑝)≤0

𝑐⊤𝑝 = max
𝑎∈A,𝜆⪰0,𝜈

𝑔(𝑎, 𝜆, 𝜈). Moreover:

(𝑎★, 𝜆★, 𝜈★) ∈ arg max
𝑎∈A,𝜆⪰0,𝜈

𝑔(𝑎, 𝜆, 𝜈) =⇒ 𝑎★∈ arg max
𝑎∈A

min
𝑝∈𝑃,𝑓 (𝑎,𝑝)≤0

𝑐⊤𝑝

Proof of Lemma 7.1. We have that:

∀𝑎 ∈ A : 𝑔(𝑎★, 𝜆★, 𝜈★) ≥ max
𝜆⪰0,𝜈

𝑔(𝑎, 𝜆, 𝜈) = min
𝑝∈𝑃,𝑓 (𝑎,𝑝)≤0

𝑐⊤𝑝

(12)
where, for the inequality we used the definition of (𝑎★, 𝜆★, 𝜈★) and
for the equality we used (11). Moreover, we have:

𝑔(𝑎★, 𝜆★, 𝜈★) = max
𝜆⪰0,𝜈

𝑔(𝑎★, 𝜆, 𝜈) = min
𝑝∈𝑃,𝑓 (𝑎★,𝑝)≤0

𝑐⊤𝑝 (13)

where for the first equality we used the definition of (𝑎★, 𝜆★, 𝜈★)
and for the second one we used (11). Replacing (13) into (12) we
get:

∀𝑎 ∈ A : min
𝑝∈𝑃,𝑓 (𝑎★,𝑝)≤0

𝑐⊤𝑝 ≥ min
𝑝∈𝑃,𝑓 (𝑎,𝑝)≤0

𝑐⊤𝑝

Since the above holds for all 𝑎 ∈ A and since 𝑎★ ∈ A, then:

min
𝑝∈𝑃,𝑓 (𝑎★,𝑝)≤0

𝑐⊤𝑝 = max
𝑎∈A

min
𝑝∈𝑃,𝑓 (𝑎,𝑝)≤0

𝑐⊤𝑝

which, since the left-hand side is equal to 𝑔(𝑎★, 𝜆★, 𝜈★), proves that
max
𝑎∈𝐴

min
𝑝∈𝑃,𝑓 (𝑎,𝑝)≤0

𝑐⊤𝑝 = max
𝑎∈A,𝜆⪰0,𝜈

𝑔(𝑎, 𝜆, 𝜈). Moreover, it implies

that 𝑎★ ∈ arg max
𝑎∈A

min
𝑝∈𝑃,𝑓 (𝑎,𝑝)≤0

𝑐⊤𝑝 . The proof is complete. □

Now, we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. The Lagrange dual function that cor-
responds to the inner minimization problem of (Mm) is:

𝑔(𝑎, 𝜆𝐿, 𝜆𝑈 , 𝜈) = inf
𝑝∈R|Q|

[
𝑝⊤𝑉𝑘 +

| Q |∑︁
𝑖=1

𝜆𝐿𝑖

(
𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝑝𝑖

)
+

+
| Q |∑︁
𝑖=1

𝜆𝑈𝑖

(
− 𝑃 (𝑞, 𝑎, 𝑞𝑖) + 𝑝𝑖

)
+ 𝜈
| Q |∑︁
𝑖=1

𝑝𝑖 − 𝜈
]

=

| Q |∑︁
𝑖=1

𝜆𝐿𝑖𝑃 (𝑞, 𝑎, 𝑞𝑖) −
| Q |∑︁
𝑖=1

𝜆𝑈𝑖
𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝜈

+ inf
𝑝∈R|Q|

[
𝑝𝑇 (𝑉𝑘 − 𝜆𝐿 + 𝜆𝑈 + 𝜈1)

]
For any 𝑎 ∈ A, the Lagrangian dual problem of the minimization
problem in (Mm) is (see [2]):

max
𝜆𝐿,𝜆𝑈 ,𝜈

𝑔(𝑎, 𝜆𝐿, 𝜆𝑈 , 𝜈)

s.t. : 𝜆𝐿 ⪰ 0, 𝜆𝑈 ⪰ 0, 𝜈 ∈ R
(14)

As done in [2], tomaximize𝑔(𝑎, 𝜆𝐿, 𝜆𝑈 , 𝜈), we have tomake𝑉𝑘−𝜆𝐿+
𝜆𝑈 +𝜈1 = 0, or otherwise the term inf𝑝∈R|Q|

[
𝑝𝑇 (𝑉𝑘−𝜆𝐿+𝜆𝑈 +𝜈1)

]
will always be −∞. Thus, (14) becomes:

max
𝜆𝐿,𝜆𝑈 ,𝜈

| Q |∑︁
𝑖=1

𝜆𝐿𝑖𝑃 (𝑞, 𝑎, 𝑞𝑖) −
| Q |∑︁
𝑖=1

𝜆𝑈𝑖
𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝜈

s.t. : 𝜆𝐿 ⪰ 0, 𝜆𝑈 ⪰ 0, 𝜈 ∈ R, 𝑉𝑘 − 𝜆𝐿 + 𝜆𝑈 + 𝜈1 = 0

(15)

As the inner minimization problem of (Mm) is an LP, strong duality
holds between the minimization problem of (Mm) and (15). Thus,
we can apply Lemma (7.1), and the proof is completed. □

7.3 Proof of Theorem 3.2

Proof of Theorem 3.2. From Proposition 3.1, we only need to
solve (4), in order to calculate the optimal value of (Mm) and to
find an optimal action 𝑎★ that solves (Mm). Thus, for the following,
we focus on (4).

Eliminating the 𝜆-variables. First, we eliminate the equality con-
straint, and thus the variable 𝜆𝐿 , by replacing 𝜆𝐿 = 𝑉𝑘 + 𝜆𝑈 + 𝜈1 in
the objective function and all other constraints:

max
𝑎,𝜆𝑈 ,𝜈

| Q |∑︁
𝑖=1
(𝑉𝑘 (𝑞𝑖) + 𝜆𝑈𝑖

+ 𝜈)𝑃 (𝑞, 𝑎, 𝑞𝑖) −
| Q |∑︁
𝑖=1

𝜆𝑈𝑖
𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝜈 =

max
𝑎,𝜆𝑈 ,𝜈

| Q |∑︁
𝑖=1

𝑉𝑘 (𝑞𝑖)𝑃 (𝑞, 𝑎, 𝑞𝑖) +
| Q |∑︁
𝑖=1

𝜆𝑈𝑖
(𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝑃 (𝑞, 𝑎, 𝑞𝑖))︸ ︷︷ ︸

≤0

+ 𝜈 (
| Q |∑︁
𝑖=1

𝑃 (𝑞, 𝑎, 𝑞𝑖) − 1)︸ ︷︷ ︸
≤0

s.t. : 𝑎 ∈ A, 𝜆𝑈 ⪰ 0, 𝜈 ∈ R, 𝑉𝑘 + 𝜆𝑈 + 𝜈1 ⪰ 0
(16)

For any given𝑎 and𝜈 , since (𝑃 (𝑞, 𝑎, 𝑞𝑖)−𝑃 (𝑞, 𝑎, 𝑞𝑖)) ≤ 0 and 𝜆𝑈 ⪰ 0,
the variables 𝜆𝑈𝑖

have to be made as small as possible, in order to
maximize the objective function. Due to the two constraints 𝜆𝑈 ⪰ 0
and𝑉𝑘 +𝜆𝑈 +𝜈1 ⪰ 0, this is encoded as 𝜆𝑈𝑖

= max
(
0,−𝑉𝑘 (𝑞𝑖) −𝜈

)
.

Thus, optimization problem (16) becomes:

max
𝑎,𝜈

| Q |∑︁
𝑖=1

𝑉𝑘 (𝑞𝑖)𝑃 (𝑞, 𝑎, 𝑞𝑖)

+
| Q |∑︁
𝑖=1

[
max

(
0,−𝑉𝑘 (𝑞𝑖) − 𝜈

)
(𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝑃 (𝑞, 𝑎, 𝑞𝑖))︸ ︷︷ ︸

≤0

]

+ 𝜈 (
| Q |∑︁
𝑖=1

𝑃 (𝑞, 𝑎, 𝑞𝑖) − 1)︸ ︷︷ ︸
≤0

s.t. : 𝑎 ∈ A, 𝜈 ∈ R
(17)

where both constraints 𝜆𝑈 ⪰ 0 and 𝑉𝑘 + 𝜆𝑈 + 𝜈1 ⪰ 0 have been
by-construction eliminated by fixing 𝜆𝑈𝑖

= max
(
0,−𝑉𝑘 (𝑞𝑖) − 𝜈

)
.

We are now left only with the optimization variables 𝑎 and 𝜈 .

Interval Markov Decision Processes with Continuous Action-Spaces HSCC ’23, May 09–12, 2023, San Antonio, TX, USA

Deriving |Q| simpler max problems from (17). Problem (17) con-
tains the productmax

(
0,−𝑉𝑘 (𝑞𝑖)−𝜈

)
(𝑃 (𝑞, 𝑎, 𝑞𝑖)−𝑃 (𝑞, 𝑎, 𝑞𝑖)), which

is hard to analyze directly. Let us further simplify it. Since 𝑉𝑘 is in
descending order, optimization problem (17) can be broken down
to |Q| + 1 simpler problems, as follows:

(1) The 1st optimization problem is the same with (17), but 𝜈 is
restricted by the inequality constraint 𝜈 ≤ −𝑉𝑘 (𝑞1).

(2) The (|Q| + 1)-th optimization problem is the same with
(17), but 𝜈 is restricted by the inequality constraint 𝜈 ≥
−𝑉𝑘 (𝑞 | Q |).

(3) For 𝑗 ∈ {2, . . . , |Q|}, the 𝑗-th optimization problem is the
same with (17), but 𝜈 is restricted by the inequality con-
straints −𝑉𝑘 (𝑞 𝑗−1) ≤ 𝜈 ≤ −𝑉𝑘 (𝑞 𝑗).

Let us examine each case separately.
Case 1: Since 𝜈 ≤ −𝑉𝑘 (𝑞1), then 𝜈 ≤ −𝑉𝑘 (𝑞𝑖) for all 𝑖 =

1, 2, . . . , |Q|. Thus, max
(
0,−𝑉𝑘 (𝑞𝑖) − 𝜈

)
= −𝑉𝑘 (𝑞𝑖) − 𝜈 for all 𝑖 .

Hence, optimization problem (17) becomes:

max
𝑎,𝜈

��
���

���| Q |∑︁
𝑖=1

𝑉𝑘 (𝑞𝑖)𝑃 (𝑞, 𝑎, 𝑞𝑖)

+
| Q |∑︁
𝑖=1

[(
−𝑉𝑘 (𝑞𝑖) − 𝜈

)
(����𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝑃 (𝑞, 𝑎, 𝑞𝑖))

]
+ 𝜈 (

�
�
�
�
��| Q |∑︁

𝑖=1
𝑃 (𝑞, 𝑎, 𝑞𝑖) − 1) =

max
𝑎,𝜈

| Q |∑︁
𝑖=1

𝑉𝑘 (𝑞𝑖)𝑃 (𝑞, 𝑎, 𝑞𝑖) + 𝜈 (
| Q |∑︁
𝑖=1

𝑃 (𝑞, 𝑎, 𝑞𝑖) − 1)︸ ︷︷ ︸
≥0

s.t. : 𝑎 ∈ A, 𝜈 ≤ −𝑉𝑘 (𝑞1)

Now, to maximize the objective function, given any 𝑎, 𝜈 has to be
made as big as possible, i.e. 𝜈 = −𝑉𝑘 (𝑞1). Hence, the optimization
problem transforms to the following:

max
𝑎

| Q |∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞1)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞1) =

max
𝑎

| Q |∑︁
𝑖=2

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞1)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞1)

s.t. : 𝑎 ∈ A

(18)

Case 2: Since 𝜈 ≥ −𝑉𝑘 (𝑞 | Q |), then 𝜈 ≥ −𝑉𝑘 (𝑞𝑖) for all 𝑖 =

1, 2, . . . , |Q|. Thus, max
(
0,−𝑉𝑘 (𝑞𝑖) − 𝜈

)
= 0 for all 𝑖 . Hence, opti-

mization problem (17) becomes:

max
𝑎,𝜈

| Q |∑︁
𝑖=1

𝑉𝑘 (𝑞𝑖)𝑃 (𝑞, 𝑎, 𝑞𝑖) + 𝜈 (
| Q |∑︁
𝑖=1

𝑃 (𝑞, 𝑎, 𝑞𝑖) − 1)︸ ︷︷ ︸
≤0

s.t. : 𝑎 ∈ A, 𝜈 ≥ −𝑉𝑘 (𝑞 | Q |)

To maximize the objective function, given any 𝑎, 𝜈 has to be made
as small as possible, i.e. 𝜈 = −𝑉𝑘 (𝑞 | Q |). Hence, the optimization

problem transforms to the following:

max
𝑎

| Q |∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 | Q |)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞 | Q |) =

max
𝑎

| Q |−1∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 | Q |)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞 | Q |) =

s.t. : 𝑎 ∈ A

(19)

Case 3: In this case, we have that:

max
(
0,−𝑉𝑘 (𝑞𝑖) − 𝜈

)
=

{ 0, 𝑖 = 1, 2, . . . , 𝑗 − 1
−𝑉𝑘 (𝑞𝑖) − 𝜈, 𝑖 = 𝑗, . . . , |Q|

Then, optimization problem (17) becomes:

max
𝑎,𝜈

| Q |∑︁
𝑖=1

𝑉𝑘 (𝑞𝑖)𝑃 (𝑞, 𝑎, 𝑞𝑖)

+
| Q |∑︁
𝑖=𝑗

[(
−𝑉𝑘 (𝑞𝑖) − 𝜈

)
(𝑃 (𝑞, 𝑎, 𝑞𝑖) − 𝑃 (𝑞, 𝑎, 𝑞𝑖))

]
+ 𝜈 (

| Q |∑︁
𝑖=1

𝑃 (𝑞, 𝑎, 𝑞𝑖) − 1) =

max
𝑎,𝜈

𝑗−1∑︁
𝑖=1

𝑉𝑘 (𝑞𝑖)𝑃 (𝑞, 𝑎, 𝑞𝑖) +
| Q |∑︁
𝑖=𝑗

𝑉𝑘 (𝑞𝑖)𝑃 (𝑞, 𝑎, 𝑞𝑖)

+ 𝜈
(𝑗−1∑︁
𝑖=1

𝑃 (𝑞, 𝑎, 𝑞𝑖) +
| Q |∑︁
𝑖=𝑗

𝑃 (𝑞, 𝑎, 𝑞𝑖) − 1
)

s.t. : 𝑎 ∈ A, −𝑉𝑘 (𝑞 𝑗−1) ≤ 𝜈 ≤ −𝑉𝑘 (𝑞 𝑗)

Now, for any given 𝑎, the term
∑𝑗−1
𝑖=1 𝑃 (𝑞, 𝑎, 𝑞𝑖) +

∑ | Q |
𝑖=𝑗

𝑃 (𝑞, 𝑎, 𝑞𝑖) −1
is either negative or positive. In the first case, we would have to
make 𝜈 as small as possible, i.e. 𝜈 = −𝑉𝑘 (𝑞 𝑗−1). In the second case,
we would have to make 𝜈 as big as possible, i.e. 𝜈 = −𝑉𝑘 (𝑞 𝑗). Thus,
we can break down the above optimization problem to the two
following problems (20) and (21):

max
𝑎

𝑗−1∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗−1)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖)

+
| Q |∑︁
𝑖=𝑗

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗−1)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞 𝑗−1) =

max
𝑎

𝑗−2∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗−1)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖)

+
| Q |∑︁
𝑖=𝑗

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗−1)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞 𝑗−1)

s.t. : 𝑎 ∈ A

(20)

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA Giannis Delimpaltadakis, Morteza Lahijanian, Manuel Mazo Jr., and Luca Laurenti

max
𝑎

𝑗−1∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖)

+
| Q |∑︁
𝑖=𝑗

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞 𝑗) =

max
𝑎

𝑗−1∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖)

+
| Q |∑︁

𝑖=𝑗+1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞 𝑗)

s.t. : 𝑎 ∈ A

(21)

Thus far, we have that (4), and thus the primal problem (Mm),
has been broken down to the combination of problem (18), problem
(19) and |Q|−1 instances of problems (20) and (21). However, taking
a closer look, we see that (21) with 𝑗 =𝑚 is identical to (20) with
𝑗 = 𝑚 + 1 (their objective functions are identical, as well as their
constraint sets)7. Moreover, (19) is identical to (21) with 𝑗 = |Q|.
Finally, (18) is the same problem as (20) with 𝑗 = 2, which can also
be written in the form of (21) if we put 𝑗 = 1. In other words, it
suffices to only consider (21) for 𝑗 = 1, . . . , |Q|. To conclude, solving
(4) is equivalent to solving the following optimization problems for
𝑗 = 1, . . . , |Q|:

max
𝑎

𝑗−1∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖)

+
| Q |∑︁

𝑖=𝑗+1

(
𝑉𝑘 (𝑞𝑖) −𝑉𝑘 (𝑞 𝑗)

)
𝑃 (𝑞, 𝑎, 𝑞𝑖) +𝑉𝑘 (𝑞 𝑗)

s.t. : 𝑎 ∈ A
□

ACKNOWLEDGMENTS

The authors would like to thank Dr. Sergio Grammatico, Dr. Amin
Sharifi Kolarijani, and Dr. Gabriel de Albuquerque Gleizer for their
helpful comments.

This work was supported in part by the European Research
Council through the SENTIENT project, Grant No. ERC-2017-STG
#755953 (https://cordis.europa.eu/project/id/755953), and National
Science Foundation (NSF) award 2039062.
7Denote by 𝑓𝑗 (𝑎) the objective function of (21) and by 𝑔𝑗 (𝑎) the objective function
of (20). Then, we have:

𝑓𝑚 (𝑎) − 𝑔𝑚+1 (𝑎) =

=

𝑚−1∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) − 𝑉𝑘 (𝑞𝑚)

)
𝑃 (𝑞, 𝑎,𝑞𝑖) −

𝑚−1∑︁
𝑖=1

(
𝑉𝑘 (𝑞𝑖) − 𝑉𝑘 (𝑞𝑚)

)
𝑃 (𝑞, 𝑎,𝑞𝑖)

+
|Q|∑︁

𝑖=𝑚+1

(
𝑉𝑘 (𝑞𝑖) − 𝑉𝑘 (𝑞𝑚)

)
𝑃 (𝑞, 𝑎,𝑞𝑖) −

|Q|∑︁
𝑖=𝑚+1

(
𝑉𝑘 (𝑞𝑖) − 𝑉𝑘 (𝑞𝑚)

)
𝑃 (𝑞, 𝑎,𝑞𝑖)

+𝑉𝑘 (𝑞𝑚) − 𝑉𝑘 (𝑞𝑚)
= 0

REFERENCES

[1] Dimitri P Bertsekas and Steven Shreve. 2004. Stochastic optimal control: the
discrete-time case.

[2] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge
university press.

[3] Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen, and Ufuk
Topcu. 2021. Convex Optimization for Parameter Synthesis in MDPs. IEEE Trans.
Automat. Control (2021).

[4] Giannis Delimpaltadakis, Luca Laurenti, and Manuel Mazo Jr. 2022. Formal
Analysis of the Sampling Behaviour of Stochastic Event-Triggered Control. arXiv
preprint arXiv:2202.10178 (2022).

[5] Maxence Dutreix, Jeongmin Huh, and Samuel Coogan. 2022. Abstraction-based
synthesis for stochastic systems with omega-regular objectives. Nonlinear Anal-
ysis: Hybrid Systems 45 (2022), 101204.

[6] James E Falk. 1973. A linear max—min problem. Mathematical Programming 5, 1
(1973), 169–188.

[7] Sicun Gao, Soonho Kong, and Edmund M Clarke. 2013. dReal: An SMT solver
for nonlinear theories over the reals. In International conference on automated
deduction. Springer, 208–214.

[8] Robert Givan, Sonia Leach, and Thomas Dean. 2000. Bounded-parameter Markov
decision processes. Artificial Intelligence 122, 1-2 (2000), 71–109.

[9] Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. 2011. Probabilistic
reachability for parametric Markov models. International Journal on Software
Tools for Technology Transfer 13, 1 (2011), 3–19.

[10] John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian. 2021. Strategy
synthesis for partially-known switched stochastic systems. In Proceedings of the
24th International Conference on Hybrid Systems: Computation and Control. 1–11.

[11] Xenofon Koutsoukos and Derek Riley. 2006. Computational methods for reacha-
bility analysis of stochastic hybrid systems. In International Workshop on Hybrid
Systems: Computation and Control. Springer, 377–391.

[12] Morteza Lahijanian, Sean B Andersson, and Calin Belta. 2015. Formal verification
and synthesis for discrete-time stochastic systems. IEEE Trans. Automat. Control
60, 8 (2015), 2031–2045.

[13] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. 2007. Para-
metric probabilistic transition systems for system design and analysis. Formal
Aspects of Computing 19, 1 (2007), 93–109.

[14] Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Luca Cardelli, and Marta
Kwiatkowska. 2020. Formal and efficient synthesis for continuous-time linear
stochastic hybrid processes. IEEE Trans. Automat. Control 66, 1 (2020), 17–32.

[15] Abolfazl Lavaei, Sadegh Soudjani, Alessandro Abate, and Majid Zamani. 2022.
Automated verification and synthesis of stochastic hybrid systems: A survey.
Automatica 146 (2022), 110617.

[16] Arnab Nilim and Laurent El Ghaoui. 2005. Robust control of Markov decision
processes with uncertain transition matrices. Operations Research 53, 5 (2005),
780–798.

[17] Andrzej S Nowak. 1984. On zero-sum stochastic games with general state space
I. Probability and Mathematical Statistics 4, 1 (1984), 13–32.

[18] R Tyrrell Rockafellar. 1970. Convex analysis. Vol. 18. Princeton university press.
[19] G George Yin and Chao Zhu. 2009. Hybrid switching diffusions: properties and

applications. Vol. 63. Springer Science & Business Media.

https://cordis.europa.eu/project/id/755953

	Abstract
	1 Introduction
	1.1 Motivation and Contributions
	1.2 Related work
	1.3 Notation

	2 Continuous-Action Interval Markov Decision Processes (caIMDPs)
	2.1 The basic elements of a caIMDP
	2.2 Optimal policies, optimal rewards and value iteration

	3 Efficient formulations of value iteration over caIMDPs
	3.1 Decomposing the max-min problem to |Q| max problems
	3.2 When can value iteration for caIMDPs be solved efficiently?

	4 Numerical Example
	5 Discussion: caIMDPs for control synthesis for stochastic systems
	5.1 Abstracting stochastic systems via caIMDPs
	5.2 Suboptimality bounds

	6 Conlusion
	7 Technical proofs
	7.1 Proof of Proposition 2.4
	7.2 Proof of Proposition 3.1
	7.3 Proof of Theorem 3.2

	Acknowledgments
	References

