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We experimentally and numerically study the dynamics of a liquid jet issued from a
rotating orifice, whose breakup is regulated by a vibrating piezo element. The helical
trajectory of the spiralling jet yields fictitious forces varying along the jet whose
longitudinal projections stretch and thin the jet, affecting the growth of perturbations.
We show that by quantifying these fictitious forces, one can estimate the jet intact length
and size distribution of drops formed at jet breakup. The presence of the locally varying
fictitious forces may render high-frequency perturbations, that would otherwise be stable
in the abscence of stretching, unstable, as observed similarly in the case of straight
jets stretching under gravity. The perturbation amplitude then dictates how strong the
perturbation is coupled to the jet compared with random noise that is inherently present
in any experimental set-up. In the present study we exploit the slenderness of the jet to
separate the calculation of the base flow and the growth of perturbations. The fictitious
forces calculated from the base flow trajectory are then used in a nonlinear slender-jet
model, which treats the spiralling jet as a quasi-straight jet with locally varying body
forces. We show both experimentally and numerically that jet breakup characteristics
(e.g. intact length and drop size distribution) can be controlled by finite-amplitude
perturbations created by mechanically induced pressure modulations. Finally, we revisit
the integrated net gain approach developed for straight jets under gravity and we provide
simple analogous relations for spiralling jets.
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1. Introduction

Liquid jets with non-straight trajectories appear in many industrial applications, including
fibre spinning (Mellado et al. 2011), centrifugal hydrogel synthesis (Eral et al. 2016)
and homogenization (Singh et al. 2019), spinning disc atomization (Li, Sisoev &
Shikhmurzaev 2018; Keshavarz et al. 2020) and prilling (Decent, King & Wallwork 2002;
Saleh et al. 2015). In spinning disc atomization and prilling, the product yields are the
droplets/prills formed under inertio-capillary breakup of a spiralling jet, mainly due to a
Rayleigh–Plateau instability. To better control the breakup and drop formation process of a
spiralling jet, one needs a thorough understanding of the jet flow along a helical trajectory,
i.e. how an instability evolves downstream and leads to breakup, as well as experimental
validation of the proposed theories and results. The rotating nature of the spiralling
jet makes it rather challanging to design set-ups where the experimental conditions are
precisely controlled. Wong et al. (2004) studied spiralling jets experimentally, where the
jet was issued from an orifice on a rotating bucket that is drained by hydrostatic pressure
due to gravity and rotation. They discuss the combined effect of gravity and rotation
on the exit velocity and provided observations on the breakup modes corresponding to
different non-dimensional numbers. In a follow-up study, Partridge et al. (2005) studied
spiralling jets on a bigger set-up and highlighted that, for a larger set-up, it is harder to
predict the breakup characteristics as mechanical vibrations and air resistance plays a
much bigger role. In addition to experimental approaches, analytical models were also
developed. Wallwork et al. (2002) studied spiralling jets extensively in the inviscid limit,
providing temporal and spatial linear stability analyses along with it. This was later
extended to include viscous effects (Părău et al. 2007; Decent et al. 2009; Marheineke
& Wegener 2009), non-Newtonian fluid behaviour (Uddin, Decent & Simmons 2006;
Alsharif, Uddin & Afzaal 2015) and Marangoni effects from surfactants (Alsharif & Uddin
2015). In an extensive mathematical study, Shikhmurzaev & Sisoev (2017) pointed out
how a priori assumptions in the definition of the jet specific coordinate frame lead to an
erroneous derivation of the base jet trajectory equations and they laid out a curvilinear
local coordinate framework without any assumptions. This approach was later applied by
Li, Sisoev & Shikhmurzaev (2019) and Noroozi et al. (2020) to study the trajectory and
the base flow of a spiralling jet.

Comparison of the predictions from linear stability analyses with experiments revealed
their lack of ability to predict the jet behaviour at later stages of instability and the
subsequent drop formation, stressing the necessity of a nonlinear modelling approach.
However, full three-dimensional (3-D) simulations of the breakup of a spiralling jet would
be computationally very expensive and is not feasible yet. Li et al. (2019) have used an
arbitrary Lagrangian–Eulerian based ‘end code’ where the prescribed base flow trajectory
(and, thus, the locally varying body forces in a curvilinear system describing the jet)
are used to simulate the nonlinear stages of the growth of perturbations. By exploiting
the typically slender nature of the spiralling jets, the nonlinear growth can be accurately
simulated with a one-dimensional (1-D) slender-jet model (Eggers & Dupont 1994) in
which the spiralling jet is basically treated as a quasi-straight jet with locally varying body
forces. The strength of the slender-jet approach has been showcased in several studies on
nozzle driven jets; Driessen et al. (2014) showed droplet regime control using multimode
perturbations and McIlroy & Harlen (2019) studied the effects of finite perturbation
amplitude on breakup characteristics. The method proved useful also in non-isothermal
cases with the additional presence of thermo-capillary (Marangoni) effects (Pillai et al.
2012; Kamis, Eral & Breugem 2021).
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Controlling the breakup of spiralling jets

The case of a spiralling jet bears many analogies to straight jets under a non-negligible
gravity force, since the fictitious forces that dictate the trajectory of the jet have finite
longitudinal projections that stretch the jet along the flow direction. It is well known
that the Rayleigh–Plateau instability is significantly altered by the presence of stretching
(Tomotika 1936). In the context of gravity-driven jets, the regimes are studied in both
the viscous (Sauter & Buggisch 2005; Javadi et al. 2013) and the inviscid limit (Le
Dizès & Villermaux 2017). On the one hand, stretching tends to damp the perturbations
when the time scale related to stretching is much faster than that of the inertio-capillary
growth (Eggers & Villermaux 2008). On the other hand, stretching tends also to
enhance perturbations through thinning of the jet and the associated reduction of the
inertio-capillary time scale along the jet.

Previous studies on the effect of stretching in gravity-driven and spiralling jets have
mainly been on the linear stability analyses under infinitesimally small perturbations.
A full overview on the process from initial perturbation till jet breakup and beyond,
including further breakup or coalescence of detached drops, is missing. Here we
present results from a comprehensive study on the breakup of spiralling jets based on
experiments, nonlinear slender-jet simulations and linear stability analysis. Our prime
interest is in accurate estimation of the breakup of a spiralling jet and resultant drop
size distribution and to provide physical insights for practical applications of this complex
problem.

In § 2 we provide details on the experimental set-up used. In § 3 we present the nonlinear
slender-jet model, including details of the underlying mathematical framework and a
derivation of the base flow equations. Results for the jet breakup from the experiments
and the slender-jet model are discussed in § 4. In the next section we demonstrate the
analogy between a spiralling jet in the presence of fictitious forces and a straight jet
subject to gravity. This is used then in a linear stability analysis with an integrated gain
approach (Javadi et al. 2013; Le Dizès & Villermaux 2017). Furthermore, in analogy with
a gravity-driven straight jet, we show the existence of similarity solutions. Finally, in § 6
we draw the main conclusions.

2. Experimental set-up

The computer-aided design (CAD) model and the schematic of the experimental set-up
are shown in figure 1. A fluid reservoir with a nearly constant pressure head delivers the
fluid to the rotating nozzle via an intermediate chamber. A rotary swivel joint is used to
connect the stationary fluid chamber to the rotating nozzle. The swivel joint is spun with a
stepper motor through a timing belt at the desired speed. A circular plate connected to the
piezo actuator is embedded in the fluid chamber for a well-controlled periodic perturbation
of the nozzle exit velocity at a desired frequency. The jet is visualised with the help of a
high-speed camera that is fixed in the lab frame of reference. The camera records at a
frequency of 2500 frames per second to capture consecutive breakup events. The pixel
size of the sensor is 11 × 11 μm2 and the scale factor was found to be of 53 μm px−1,
which corresponds to a magnification of 0.207. The exposure time of the camera is set to
75 μs, which limits the blurring of the jet to around 1.6 px. Since the Rossby number is
close to unity, the blurring due to streamwise motion and the rotation of the jet is similar.
Completely eliminating blurring was not possible so a compromise was made between
blurring and good contrast. The jet is illuminated from the back by a LED panel. The
velocity of the jet is determined at an estimated accuracy of 2 % from the drop in liquid
level of the fluid reservoir. Properties of the working fluid are given in table 1.
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Figure 1. Experimental set-up. (a) Schematic of the set-up. (b) A CAD drawing of the piezo actuator and
plate, fluid discharge tank and the rotary elbow. (c) Photo of the parts given in (b).

Experimental parameters

Rotating arm, L 7.48 cm
Nozzle radius, R0 400 μm
Nozzle exit velocity, U0 1.85 ± 0.2 m s−1

Rotational speed, Ω 250 rpm (26.2 rad s−1)
Density, ρ 997 kg m−3

Dynamic viscosity, η 0.9 mPa s
Surface tension, γ 72 mN m−1

Piezoplate frequency 520–740 Hz
Piezoplate supply voltage 75–150 V
Piezoplate displacement 4.5–9 μm

Non-dimensional parameters used in the simulations

Jet slenderness, ε = R0/L 5.4 × 10−3

Weber, We = ρU2
0R0/γ 18.3

Ohnesorge, Oh = η/
√

ρR0γ 6 × 10−3

Reynolds, Re = ρU0L/η 1.5 × 105

Rossby, Rb = U0/(ΩL) 0.94
Froude, Fr = U0/

√
gL 2.13

Table 1. Experimental parameters and corresponding non-dimensional numbers used in the simulations.

3. Computational model

We performed a numerical study of the same flow geometry as considered in the
experiments. The flow within the jet is decomposed into two components, namely, a
stationary base state and perturbation. The perturbations are imposed at the nozzle and
they evolve downstream along the jet. The jet trajectory and base flow are coupled
with each other and, hence, must be solved simultaneously. Using the knowledge of
the trajectory and how the jet velocity evolves downstream, we can then consider the
perturbations on the jet. In what follows, we first present the mathematical framework in
which we derive the governing equations in a moving frame of reference using curvilinear
coordinates. Assuming a slender jet, we then derive the equations for the base flow and
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Controlling the breakup of spiralling jets

compute from this the fictitious forces acting on the flow along the jet trajectory. Finally,
we derive the slender-jet model for the flow perturbations.

3.1. Mathematical framework
In a frame of reference co-rotating with the nozzle at an angular velocity Ω = (0, 0, −Ω),
the non-dimensional Navier–Stokes equations for the Newtonian liquid flow in the jet read

∇ · u = 0, (3.1a)

Du
Dt

= −∇p + 1
Re

∇ · (2D) − 1
Rb2 Ω × (Ω × d) − 2

Rb
Ω × u + 1

Fr2 g, (3.1b)

where g = (0, 0, −g) and D = (∇u + ∇uT)/2 is the rate-of-strain tensor and d is the
distance vector with respect to the rotating axis. The definitions and values of the
non-dimensional numbers are provided in table 1. The mathematical framework we use is
very similar to what is described in detail in Shikhmurzaev & Sisoev (2017) and Noroozi
et al. (2020), but briefly revisited here for completeness. Figure 2 shows a schematic of
a curved jet. We start by describing a baseline (Shikhmurzaev & Sisoev 2017), which is
a spline that goes along the jet and remains inside it, using Cartesian basis vectors on a
frame rotating with Ω (see figure 2a),

D(s) = X(s)x̂ + Y(s)ŷ + Z(s)ẑ, (3.2)

where s is the arclength. From (3.2) the Frenet basis can be defined, i.e. a local orthogonal
basis defined at every point on the baseline,

T (s) = dD
ds

= X′(s)x̂ + Y ′(s)ŷ + Z′(s)ẑ
(

X′2 + Y ′2 + Z′2 = 1
)

, (3.3a)

N(s) = dT
ds

∣∣∣∣dT
ds

∣∣∣∣−1

= X′′x̂ + Y ′′ŷ + Z′′ẑ√
X′′2 + Y ′′2 + Z′′2 , (3.3b)

B(s) = T × N, (3.3c)

where a prime denotes derivative with respect to s. The derivatives of the Frenet base
vectors are related to each other by the Frenet formulas

d
ds

⎡
⎣T

N
B

⎤
⎦ =

⎡
⎣ 0 κ 0

−κ 0 τ

0 −τ 0

⎤
⎦
⎡
⎣T

N
B

⎤
⎦ . (3.4)

Here κ(s) and τ(s) are, respectively, the local curvature and the local torsion of the
baseline, given by

κ(s) =
√

X′′2 + Y ′′2 + Z′′2, (3.5a)

τ(s) = X′(Y ′′Z′′′ − Z′′Y ′′′) + Y ′(Z′′X′′′ − X′′Z′′′) + Z′(X′′Y ′′′ − Y ′′X′′′)
(Y ′Z′′ − Z′Y ′′)2 + (Z′X′′ − X′Z′′)2 + (X′Y ′′ − Y ′X′′)2 . (3.5b)

Let us now define the curvilinear coordinate variables, (s, r, φ), where s is again the arc
length variable, and (r, φ) are the polar radius and angle, respectively, on the plane that is
normal to the baseline at D(s). Note from the definition of the Frenet basis (3.3) that this is
also the plane where N(s) and B(s) lie. So we can define an arbitrary point in the jet with
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Figure 2. (a) Schematic of the top view of the set-up. (b) Close-up view of a section in the jet showing the
different coordinate frames.

a position vector measured from the origin in the Cartesian and curvilinear coordinates as
follows:

d(x, y, z) = xx̂ + yŷ + zẑ, (3.6a)

d(s, r, φ) = D(s) + r cos φN(s) + r sin φB(s). (3.6b)

The free surface can be parametrically described as r = R(s, φ), with which the position
vector to the free surface takes the form

d(s, R(s, φ), φ) = D(s) + R(s, φ) cos φN(s) + R(s, φ) sin φB(s). (3.7)

On the free surface one has the balance of stresses in the normal and tangential directions,

n ·
(

−p + 1
Re

2D

)
· n = − 1

We
κfs, (3.8a)

ti ·
(

−p + 1
Re

2D

)
· n = 0, i = s, φ, (3.8b)

where κfs is the curvature of the free surface. Here, the ambient phase is assumed to be
dynamically inert and the effect of air drag is neglected.

We will use the notation (s1, s2, s3) = (s, r, φ) to define the base vectors of the
curvilinear coordinate frame as

ei = ∂d
∂si (i = 1, 2, 3). (3.9)

Using (3.9), we can now express curvilinear base vectors in terms of the Frenet frame
as follows: ⎡

⎣e1
e2
e3

⎤
⎦ =

⎡
⎣1 − rκ cos φ −rτ sin φ rτ cos φ

0 cos φ sin φ

0 −r sin φ r cos φ

⎤
⎦
⎡
⎣T

N
B

⎤
⎦ . (3.10)

The metric of this basis, g, defined as gij = ei · ej, is given by

g =
⎡
⎣(1 − rκ cos φ)2 + (rτ)2 0 r2τ

0 1 0
r2τ 0 r2

⎤
⎦ . (3.11)
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Controlling the breakup of spiralling jets

Note that the coordinate frame defined by (3.9) is not orthogonal as g13 and g31 are
not zero in the presence of torsion or outside the baseline (r /= 0). Another aspect of the
curvilinear base is that two base vectors, namely e1 and e3, are not unit vectors since
g11 /= 1 and g33 /= 1. As a consequence, there is a change in magnitude when a vector
v = (v1, v2, v3) is projected onto the curvilinear base. For instance, the projection of
the velocity vector u on the curvilinear base is represented by v1e1 + v2e2 + v3e3 =
use1/|e1| + ure2/|e2| + uφe3/|e3|, where us, ur and uφ are the physical components of
the velocity using the normalized base vectors.

The inverse metric tensor (gij) is defined by gikgkj = δi
j , where δi

j is Kronecker delta, and
is given by

g−1 = 1
Δ

⎡
⎣ r2 0 −r2τ

0 Δ 0
−r2τ 0 (1 − rκ cos φ)2 + (rτ)2

⎤
⎦ , (3.12)

with Δ = det(gij) = r2(rκ(s) cos (φ) − 1)2 the determinant of the metric tensor.
Using the metric and its inverse, we can express the gradient operator as (Wesseling

2009)

∇ = gijej
∂

∂si =
(

1
e2

1T

∂

∂s
− τ

e2
1T

∂

∂φ

)
e1 + ∂

∂r
e2 +

(
g11

r2e2
1T

− τ

e2
1T

)
e3, (3.13)

with g11 = (1 − rκ cos φ)2 + (rτ)2 being the first element of the metric tensor given in
(3.11) and e1T = 1 − rκ cos φ is the tangential component of the local base vector in the s
direction, namely the first element of the transformation matrix given in (3.10).

Finally, the coefficients to connect the variations of the base state vectors (also known as
the Christoffel symbols of the second kind Γ k

ij , such that ∂ei/∂s j = Γ k
ij ek) can be written

as

Γ k
ij = gkl

2

(
∂glj

∂si + ∂gli

∂s j − ∂gij

∂sl

)
. (3.14)

The full expressions of each Christoffel symbol are provided in Appendix C. From
here onwards, it is tedious book keeping to determine the terms in (3.1a) and (3.1b)
in curvilinear coordinates. This was achieved by the help of the symbolic mathematics
module SymPy (Meurer et al. 2017). Some of the terms in the conservation equations in
general curvilinear coordinates are provided in Appendix C.

To pave the way for the slender-jet approximation, one needs to acknowledge the
existence of two disparate length scales existing in the problem. These are namely the
rotating arm, L, and the orifice radius, R0. We scale s with L and r with R0. The velocity
at the orifice, U0, is used for scaling the velocity in the s direction, so the advective time
scale becomes tadv = L/U0. Finally, the pressure is scaled with ρU2

0.

3.2. Jet trajectory and base flow
To obtain the leading order steady state equations for the spiralling jet trajectory, one
needs to consider the limit where the jet slenderness ε tends to zero, i.e. R0/L → 0. The
steady state jet base flow equations, namely, the mass conservation, the projections of the
momentum conservation in tangential, normal and binormal directions and the arc length
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condition have the following form:

d
ds

(
UR2

)
= 0, (3.15)

U
dU
ds

= − 1
We

d
ds

(
1
R

)
+ 3

R2Re
d
ds

(
R2 dU

ds

)
− Z′

Fr2︸ ︷︷ ︸
fgravity

+ XX′ + YY ′

Rb2︸ ︷︷ ︸
fcentrifugal

, (3.16)

(
U2 − 1

RWe
− 3

Re
dU
ds

)(
X′′2 + Y ′′2 + Z′′2

)
= XX′′ + YY ′′

Rb2

−2U
(
X′Y ′′ − Y ′X′′)

Rb
− Z′′

Fr2 , (3.17)

0 = X
(
Y ′Z′′ − Z′Y ′′) + Y

(
Z′X′′ − X′Z′′)

Rb2 − X′Y ′′ − Y ′X′′

Fr2 + 2UZ′′

Rb
, (3.18)

X′2 + Y ′2 + Z′2 = 1. (3.19)

These equations form a closed system for X(s), Y(s), Z(s), the Cartesian coordinates of
the baseline of the jet, and R(s), U(s), which express the local velocity and jet thickness.
The factor 3 in front of the second term on the right-hand side of (3.16) is the Trouton
number that represents the ratio of extensional to shear viscosity. It appears naturally in
the asympotic expansion of the governing equations. In the inviscid limit (Re � 1), which
approximately hold for our experiments, (3.16) can be combined in a single integrand and
readily integrated as

U2 + 2U1/2

We
√

C1
+ 2

Fr2 Z − 1
Rb2

(
X2 + Y2

)
+ C2 = 0, (3.20)

where we used UR2 = C1 from (3.15), and C1 and C2 are integration constants. Note that
viscous resistances to bending and twisting are also neglected in this case.

The rotation path of the orifice lies on the XY plane, as shown in figure 2(a). We define
X(0) = 1, Y(0) = 0, Z(0) = 0, X′(0) = 1, Y ′(0) = 0 and finally Z′(0) from (3.19), i.e. the
jet is issued in the X direction. The nozzle velocity U0 and the radius R0, which have been
used for non-dimensionalization, set the base flow boundary conditions as U(0) = R(0) =
1 and, hence, C1 = 1. Combining all the prescribed boundary conditions in (3.20) yields
C2 = 1/Rb2 − 2/We − 1.

We solve the system (3.15), (3.17)–(3.20), also known as the ‘string’ equations, with the
prescribed boundary conditions and the non-dimensional numbers given in table 1 using
a fourth-order Runge–Kutta method. The results are summarized in figure 3. The base
jet trajectory is in great agreement with the experiments, so it enables the quantification
of the projections of the body forces along the trajectory, namely, the centrifugal force,
fcentrifugal(s), and gravity force, fgravity(s), whose expressions are given on the right-hand
side of (3.16). Figure 3 depicts the results from the base flow calculations. It is apparent
that with the parameters in our experiment, the gravity force is about an order of magnitude
smaller than the centrifugal force, which suggests that the torsion along the arc length and
distance travelled by the jet in the Z direction are negligibly small, allowing us to study
the dynamics from two-dimensional projections onto the XY plane.
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Figure 3. Results from the base flow computation. (a) Comparison of calculated jet trajectory (red line) with
a snapshot from an unperturbed jet experiment. (b) The variation of the base state velocity, U(s), and jet
radius, R(s), along the jet. (c) The variation of the body forces acting along the jet due to rotation fcentrifugal =
(XX′ + YY ′)/Rb2 and gravity fgravity = −Z′/Fr2.

3.3. Nonlinear slender-jet model
To be able to capture the dynamics close to breakup, e.g. the formation of main and
satellite droplets, nonlinear simulations are necessary. Once the longitudinal projections
of the centrifugal and the gravity forces are accounted for, one can approximate the
nonlinear dynamics of the jet along the flow direction with an error of O(ε), provided
that the full free surface curvature is accounted for (Li et al. 2019). In other words, the
3-D spiralling trajectory of the jet can be represented as a quasi-straight jet with locally
varying body forces. This also amounts to the implicit assumption that the wavenumber of
the perturbations k (scales with R−1

0 ) is much larger than the curvature κ and the torsion
τ of the base jet trajectory (both scale with L−1) that is valid in the limit ε → 0. To this
end, we implemented a slender-jet approximation, detailed in Eggers & Dupont (1994) and
Kamis et al. (2021), which yields the following unsteady 1-D equations for the jet flow:

∂A
∂t

+ ∂

∂s
(uA) = 0, (3.21a)

∂ (uA)

∂t
+ ∂

∂s

(
u2A

)
= ∂

∂s

[
A
(

K
We

+ 3ε

Re
∂u
∂s

)]
+ A

[
ε
(

fcentrifugal + fgravity
)]

, (3.21b)

K = 2√
4A + A2

s
+ 4AAss − 2A2

s(
4A + A2

s
)3/2 . (3.21c)

Here A = R2 is the normalized local jet cross-sectional area. Note that the full expression
for the curvature is used (i.e. both radii of curvature instead of only the leading order one
in the expansion). This is key to the success of the slender-jet framework (Entov & Yarin
1984; Ambravaneswaran, Wilkes & Basaran 2002).

Note the inclusion of the ε parameter in front of the centrifugal and gravity force in
(3.21b) as they have been taken from (3.16) and are hence normalised with L instead
of R0. Equations (3.21) form a closed system for the jet cross-sectional area A(s, t)
and jet velocity u(s, t). The initial conditions are implemented as A(s, 0) = R(s)2 and
u(s, 0) = U(s) from the base flow computations detailed in § 3.2. At the nozzle, we input
the velocity fluctuations as u(0, t) = 1 + εv cos (ωt) on top of the Gaussian white noise
that is mentioned in § 4. A regularized capillary pressure is implemented to carry the
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Simulation Experiment

Breakup length, Lb 98.0 ± 6.0 95.4 ± 7.8
Drop projected area, Ap 6.7 ± 3.8 8.3 ± 5.4

Table 2. Mean and standard deviation of the breakup properties of natural (actuation-free) breakup cases. The
breakup length is expressed in terms of the nozzle radius R0 and the drop projected area is represented in terms
of R2

0.

simulations beyond the pinch-off point (Driessen & Jeurissen 2011). A finite difference
scheme on a staggered grid is used for solving the system given in (3.21). The time
integration is done explicitly by using a three-step Runge–Kutta scheme with an adaptive
time stepping. Except for velocities, a central differencing scheme is used for evaluating
the variables at their half-step neighbours. For velocities, a higher-order total variation
diminishing van Leer scheme is used. More details of the numerical method and validation
can be found in Kamis et al. (2021).

Mechanical vibrations are naturally present in industrial applications of spiralling jets
such as in prilling, where the typical size of the rotating perforated bucket is of the order
of 50 cm. Even in small-scale laboratory experiments, one can never get fully rid of such
vibrations, and they might have a significant effect on the jet breakup. The time series
of such noisy perturbations are rather difficult to quantify, however, a good proxy is to
represent the vibrations by white noise and to characterize the noise strength in terms of
the natural (actuation-free) jet breakup length or breakup time (Pimbley & Lee 1977).

To simulate the natural breakup in the slender-jet framework, we add Gaussian white
noise to the nozzle velocity as follows:

u(0, t) = 1 + εv cos (ωt)︸ ︷︷ ︸
perturbation

+ W(�t)︸ ︷︷ ︸
white noise

. (3.22)

The white noise is generated using standard random number generators in Matlab
and its standard deviation scales as S�t, where S is a strength parameter and �t is
the computational time step. This ensures that the forcing due to the white noise is
uncorrelated with the time step (Kamis et al. 2021). The strength parameter S is then
calibrated using the observed experimental natural (i.e. εv = 0) breakup length. In the
present study we subsequently used S = 300 in all simulations and the non-dimensional
time step �t is adjusted dynamically considering the stability restrictions based on the
effects of advection, diffusion and surface tension (Brackbill, Kothe & Zemach 1992;
Wesseling 2009).

The comparison of the simulation and experiments for the parameters listed in table 1
and in the presence of only background noise, is summarized in table 2.

4. Comparison of simulations with experiments for jet breakup

Simulations and experiments have been conducted for the parameter settings listed in
table 1 and for three different actuation frequencies (ω). The strength of perturbations
was varied by varying the velocity perturbation amplitude (εv) in the simulations and the
oscillation amplitude of the piezo actuator (�hpiezo) in the experiments. The simulation
results from the slender-jet model for the jet interface have been projected from the
curvilinear to the Cartesian frame using 3.7. Figure 4(a) shows the comparison of a
slender-jet simulation and an experiment at ω = 0.7 and in figure 4(b) we show the
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Figure 4. (a) Comparison of the jet interfaces obtained from simulation (shown in red) and from experiment
at a perturbation frequency ω = 0.7. The piezoplate displacement is 6μm and the velocity amplitude in the
simulation is 0.5 %. (b) Mean and standard deviation of the jet intact length as a function of piezoplate
displacement in the experiments and velocity perturbation amplitude in the simulations.

change in the mean intact length with respect to the perturbation amplitude at different
frequencies. Note that in figure 4(b) we shifted the axes for �hpiezo and εv as to give a
best match between simulations and experiments. The simulations and experiments agree
well in terms of trajectory and the jet shape. The presence of the background noise brings
in a threshold for the finite-amplitude perturbations to overcome the noise and control the
breakup of the spiralling jet, which can be observed in figure 4(b). The errorbars show the
standard deviation around the mean for the time series of the jet intact length, defined as
the distance in s from the nozzle exit till the location at which pinch-off takes place. This
indicates how much the perturbations are coupled to the system, namely, the less the intact
length fluctuates, the more the finite-amplitude perturbations are coupled to the jet, hence
better control.

To make the comparisons between simulations and experiments conveniently, we show
the spiralling jet in a space time plot in figure 5 (without actuation) and figure 6 (with
actuation) by stitching consecutive time images together. This also allows us to inspect
the motion of the droplets after the pinch-off event, such as capillary oscillations and
rotation. The time difference between instants is �t = 0.8 ms, during which the orifice
rotates π/150 rad. By comparing figures 5 and 6 it is clear that jet actuation helps in
achieving a regular jet breakup and reduces the fluctuation in the jet intact length. Also,
the comparison of the drop size distributions in figures 5(c) and 6(c) reveal a narrower
distribution around the mean projected drop area when the jet is actuated. Overall the
agreement between the experiments and simulations is good. Figures 5 and 6 also allow
for a qualitative comparison in terms of the late jet dynamics, formation of satellite drops
and droplet motion after pinch-off.

For the unperturbed jets, the intact length of the jet fluctuates at a higher standard
deviation than their perturbed counterpart. The jets often emit filaments that are a few
wavelengths long that fragment into droplets after separating from the main jet. Due to
the thinning and stretching of the jet, the high-frequency perturbations that are initially
stable and damped, may become unstable downstream. Therefore, a larger window of
wavelengths is involved in the instability process as compared with the Rayleigh window
for straight jets in the absence of external forces.
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Figure 5. Comparison between experiment and simulation for the natural (actuation-free) breakup case.
(a) Experiment. (b) Simulation. (c) Comparison of the drop projected area normalized by the mean.

In the presence of jet actuation, the jet intact length fluctuations are suppressed and
the jet regularly emits a filament that breaks up either at the forward/downstream end
or the rear/upstream end. For straight jets, it is known that the location of the breakup
within a single filament depends both on perturbation frequency and amplitude (Pimbley
& Lee 1977). If the breakup occurs at the forward end, the satellite drop merges with
the main drop that is following it, within a distance of a few wavelengths. Within a
narrow window of amplitudes at a given frequency, the breakup location shifts from the
downstream end to the rear end, which is the desired regime for applications such as
continuous ink jet printing as the satellite drop merges with the leading main drop (McIlroy
& Harlen 2019). The main mechanism of merging is the momentum transfer during
the finite time between the two successive pinch-off events, also known as the satellite
interaction time (Pimbley & Lee 1977). In our simulations and experiments, the typical
merging length relative to jet pinch-off in all cases is approximately 2–3 wavelengths. The
proportion of the main and satellite droplet volumes are given in figure 7. The volumes
are normalized with the jet volume over one perturbation wavelength at the nozzle exit,
which is conserved under wavelength stretching downstream due to mass conservation. At
a given frequency, the perturbation amplitude determines where the droplets are formed,
i.e. lower amplitudes result in droplets formed further downstream. The proportion of the
volumes of the main and satellite droplets converge as they are formed further downstream.
For a nozzle frequency of ω = 1.2, which is initially outside of the Rayleigh window,
one can see a larger variation in the drop volume and location. This is attributed to the
fact that the unstable frequencies of the white noise gain enough to interfere with the
imposed finite-amplitude perturbation. Therefore, the jet volume enclosed by the imposed
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(a) Experiments with a piezoplate displacement of 6 μm. (b) Simulations with a velocity amplitude 0.5 %.
(c) Comparison of the drop projected area normalized by the mean.
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Figure 7. Volumes of the main and satellite droplets obtained from the simulations as a function of their
location of first appearance. For each frequency, three points are shown corresponding to different perturbation
amplitudes (drops are formed further downstream for smaller amplitudes).

perturbation wavelength at nozzle exit becomes irrelevant and one can see the droplet
volumes are exceeding the volume expected from the imposed perturbation.

The fact that the droplets stay in the base jet trajectory in the experiments (see figure 6)
verifies that it is a good approximation to assume that the jet trajectory is steady in the
rotating frame and to separate the calculation of the base flow and the drop formation.
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Figure 8. Comparison of the linear and nonlinear evolution of the velocity perturbations for ω = 0.9 at
different velocity perturbation amplitudes at the nozzle, with decreasing strength from top to the bottom. Here
tb refers to the instant of jet breakup. The dotted lines represent the envelope of the velocity perturbations
computed from the linear model detailed in § 5.

After the pinch-off, the droplets travel in a straight line with respect to the stationary
frame, preserving their linear momentum.

The satellite interaction time leads to another phenomenon in the context of spiralling
jets. With straight jets, the momentum transfer is always in the direction of the flow and
the satellite drop is either sped up or slowed down depending on the location of the first
pinch-off (forward or rear). When the spiralling jets are captured in the stationary frame
(figure 6), one can observe that the capillary oscillation of the droplets is superposed with
a rotation around the principal axis. The curved nature of the trajectory results in slight
variation of the tangential and the normal vectors from the front end to the rear end of
the droplets, which leads to a moment around the principal axis and breaks the symmetry
of the detached drop around the tangential direction. The locality of the forces along the
flow direction imposes a moment during the satellite interaction time, causing the drop
oscillations to be 3-D in nature.

As the perturbations grow and the amplitude becomes finite, the shape deformations of
the jet are sufficiently large where the dynamics enter a nonlinear regime. The formation
of the main and satellite droplets is a nonlinear phenomenon by nature. The evolution of
the velocity perturbations deviates from its linear counterpart (i.e. normal mode), shown
in figure 8 for ω = 0.9, as the satellite droplets begin to form. It manifests itself as the
fluctuations take the form of triangular waves starting from the sinusoidal. On the other
hand the nonlinear growth rate is in agreement with the linear estimation until very close
to the breakup, which is partly due to the fact that the studied case is close to the inviscid
limit, where the time scale for axial momentum diffusion is large compared with the
inertio-capillary time scale during the early stage of the growth. In other words, the jet
is sufficiently deformed only very close to the breakup for viscosity to play a role.

5. Analogy with gravity-driven straight jets: approximate base flow solutions, linear
stability and self-similarity

The agreement between the experiments and simulations demonstrates the validity of
modelling spiralling jets as quasi-straight and slender jets with locally varying pseudo
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forces provided that epsilon is sufficiently small. These forces, and the variation thereof,
can be computed from the base trajectory of the jet as discussed in § 3.2. Once the base
flow of the jet and the variation of the body forces have been accounted for, one can use
these to study the stability of this flow to perturbations. In this section we will linearize the
slender-jet model for a linear spatial stability analysis of the flow to infinitesimally small
perturbations imposed at the nozzle exit. We will show that this analysis provides insight
in the dynamics underlying jet breakup and in the scaling behaviour for the spatial growth
rate and jet breakup.

To study how perturbations evolve along the jet, one needs to pay attention to the
disparate length scales present in this problem. In § 3.2 where the base flow and the
trajectory was calculated in the limit ε → 0, all lengths are expressed in terms of the
rotating arm L and the base flow equations represent the jet as a ‘string’ whose thickness
is O(εL). When we consider capillary waves along the jet, their wavelengths are of the
same order as the jet radius so their growth should be expressed along s/(εL), i.e. in units
of jet radius instead of the rotating arm. Similarly, while the advective scale of the base
flow is tadv = L/U0, the relevant advective time for the perturbations is R0/U0 = tadv/ε.
In what follows, we will express all the lengths in terms of the nozzle radius and the length
of the rotating arm L will only appear in the expression of the body forces. Furthermore,
we introduce an effective gravity ge ∼ O(Ω2L + g) that measures the combined effect of
rotational and gravitational forces. Using this, we define the effective capillary length as
lc = √

γ /ρge and an effective Bond number Boe = (R0/lc)2 = ρgeR2
0/γ . In terms of (We,

Rb, Fr) given in table 1, the latter can be expressed as

Boe(We, Fr, Rb) = We
(

ε

Rb2 + ε

Fr2

)
. (5.1)

Using (5.1), one could follow the same line of gain analysis developed for straight jets in
Le Dizès & Villermaux (2017). For the given experimental case with the non-dimensional
numbers presented in table 1, the variation of the body forces along the jet is minor;
see figure 3(c). The centrifugal forces are very close to their nozzle value throughout
the entire jet and gravitational forces, which would make the jet travel in the Z direction
and cause torsion, are an order of magnitude smaller than the centrifugal forces. In this
case, the spiralling jet thus behaves like a gravity-driven straight jet with the gravitational
acceleration replaced by the initial centrifugal acceleration at the nozzle exit, namely,
U(dU/ds) = Boe/We, as the viscous and curvature effects decay rapidly after the nozzle
exit. One thus has

U(s) =
√

2Boe

We
s + 1, (5.2a)

R(s) =
(

2Boe

We
s + 1

)−1/4

. (5.2b)

A comparison between the ‘free-fall’ solution (5.2) and the solution of the base flow
equations (3.20) is given in figure 9.

This assumption can be made a priori if We � Boe for We large enough to stay in the
jetting regime (Clanet & Lasheras 1999). The arc length s can be recast as a slowly varying
dimension

ξ = s
s0

+ 1, s0 dξ = ds, (5.3a,b)
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Figure 9. The comparison between the base flow solutions from (3.15), (3.17)–(3.20) and the approximate
‘free-fall’ solutions given in (5.2).

for large s0, where s0 = We/2Boe is the variation scale (Le Dizès & Villermaux 2017;
Eggers & Villermaux 2008), such that (5.2) becomes

U(ξ) =
√

ξ, (5.4a)

R(ξ) = ξ−1/4, (5.4b)

respectively.
We now consider perturbations to the base flow of the following form:

(ũ, R̃) = (u(ξ), r(ξ)) exp
(

i
(

s0

∫ ξ

1
k(ξ ′) dξ ′ − ωt

))
. (5.5)

Here k = kr + iki is the complex wavenumber, kr = 2π/λ is the real wavenumber with λ
the perturbation wavelength (normalised with R0), −ki is the spatial growth rate and ω

is the real perturbation frequency imposed at the nozzle. Plugging U + ũ and R + R̃ into
(3.21a)–(3.21c) and considering the terms linear in (ũ, R̃) up to O(1/s0) yields

(kU − ω) r(ξ) + kR
2

u(ξ) = O
(

1
s0

)
, (5.6a)

(
kU − ω − 3ik2

Re

)
u(ξ) + k

R2We

(
k2R2 − 1

)
r(ξ) = O

(
1
s0

)
, (5.6b)

which is analogous to equation (2.16) in Le Dizès & Villermaux (2017). This approach
is also known as the WKBJ (Wentzel–Kramers–Brillouin–Jeffreys) method (Bender &
Orszag 1978), a perturbation method using expansions over the small parameter 1/s0 in
this case. This approach is well utilized and tested in Javadi et al. (2013) and Le Dizès &
Villermaux (2017). The variations of the amplitudes (u(ξ), r(ξ)) and the base states only
show up at higher orders, which means for large s0 (i.e. We � Boe), the length scale of
base flow variations are small compared with the perturbation wavelength. The dispersion
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Figure 10. The local wavenumber (krR0) and spatial growth rate (−kiR0) along the jet. The dotted line
indicates the upper boundary of the local Rayleigh window of unstable perturbations.

relation is found from the non-trivial solution of (5.6),

k2

2RWe

(
k2R2 − 1

)
− (kU − ω)2 + 3ik2

Re
(kU − ω) = 0. (5.7)

This equation governs the convective instability of a jet to infinitesimally small
perturbations at the nozzle exit at a given frequency ω. Note that the dispersion relation
(5.7) is identical to that for a straight jet in the absence of body forces, except that here U
and R are the local values instead of the nozzle values.

The solution to the dispersion relation given in (5.7) is shown in figure 10. The local
wavenumber, kr, is the real part of the solution to the complex equation and it is decreasing
from its nozzle value due to the thinning of the jet, also known as wavelength stretching
(Eggers & Villermaux 2008). Based on the nozzle values, the frequency that has the
maximum growth rate at the nozzle is ωini ≈ 0.718. But as the body forces stretch the
perturbed filaments, their growth rate also changes locally which leads to different gains
along the jet, shown in figure 11(a). So a net gain approach is preferable to study the most
unstable frequencies (Javadi et al. 2013; Le Dizès & Villermaux 2017). The local gain
along the jet is then expressed as

G(ξ) = eS(ξ), S(ξ) = s0

∫ ξ

1
−ki(ξ

′) dξ ′, (5.8a,b)

where s0 = We/2Boe ∼ 0.5| dU/ds|−1
0 /(R0/U0) can be interpreted as the ratio of the

initial stretching time to the initial advective time.
Figure 11(a) shows the gain along the jet at different frequencies and for infinitesimal

amplitude, based on (5.8a,b). The disturbances start to gain only when their local
wavelength enters the Rayleigh window, which is indicated by the dotted line in figure 10.
Quantification of the infinitesimal disturbances is a difficult practice both experimentally
and numerically. When the gain reaches a sufficiently high value, which is assumed to be
G ≈ e7 in Le Dizès & Villermaux (2017), the transition to breakup occurs. The location
of the transition ξt for different values of threshold gain is given in figure 11(b). For our
experimental case with the parameters given in table 1, the assumed transition gain of
St ≈ 7 agrees well with the average natural breakup length for the unperturbed case of our
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Figure 11. (a) Integrated gain for different frequencies of perturbation at the nozzle. The dashed vertical line
indicates the location ξ = 2.35 that corresponds to the location of the mean jet intact length obtained from the
experiments in the absence of imposed perturbations, also given in table 2. (b) The location to reach the gain
necessary for breakup versus the frequency of perturbation at the nozzle.
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Figure 12. (a) Rescaled curves of the solution to the dispersion relation given in (5.7). (b) The gain
associated with the rescaled curve.

experiments that is around 95 times the radius of the jet; see table 2. For the choice of
St ≈ 7, the frequency that gains the fastest is around ω ≈ 0.9.

Furthermore, self-similarity can be deduced from the dispersion relation. We will first
decompose the solution of the complex equation (5.7) as

krR(ξ) = ωR
U

= ωξ−3/4, (5.9a)

−kiR(ξ) = q (krR, Oh) We−1/2
l = q

(
ωξ−3/4, Oh

)
We−1/2ξ−3/8, (5.9b)

where q is a non-dimensional function of the local wavenumber, the perturbation
frequency and the Ohnesorge number, and Wel = Weξ3/4 is the local Weber number
obtained by using the base flow solutions (5.4). Looking into the convective behaviour of
the perturbations of ω > 1, one can see that the initial wavelength of these perturbations
are shorter than the lower boundary of the Rayleigh window (i.e. kr(ξ)R ≤ 1 as shown
with a dashed curve in figure 10), so these perturbations do not gain (or even damped with
higher viscosity) until the wavelength is stretched enough to enter the Rayleigh window.
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Figure 13. (a) The rescaled distance for transition to breakup, θt, based on (5.12) as a function of frequency.
(b) Transition distance, ξt, based on (5.8a,b) and the wavelength at the transition distance as a function of
frequency calculated as λ = 2π/kr(ξt).

This motivates us to do another rescaling on the flow direction, ξ , as

θ = ξω−4/3, (5.10)

such that krR(θ) = θ and instabilities grow for θ > 1. From here, we can express (5.9)
explicitly in terms of θ using the base flow solutions (5.4),

krω
−1/3 = θ−1/2, (5.11a)

−kiω
1/6We1/2 = q

(
θ−3/4, Oh

)
θ−1/8 = p(θ, Oh), (5.11b)

where kr and ki are now scaled with parameters defined at the nozzle exit. Using these
rescaled solutions, we can collapse the curves given in figure 10 onto a single curve, which
is shown in figure 12(a). We can also write the integral for the gain S(ξ) given in (5.8a,b)
in terms of an integral over the similarity variable θ using (5.11b),

S(θ) = s0ω
7/6

√
We

∫ θ

1
p(θ ′, Oh) dθ ′. (5.12)

This is plotted in figure 12(b) for different values of ω. For a threshold gain of St ≈ 7,
we can then deduce the rescaled threshold distance for jet breakup, θt, numerically from
(5.12). This is shown in figure 13(a). In figure 13(b) the threshold distance, ξt = θtω

4/3,
and the wavelength at breakup calculated as λ(ξt) = (2π/ω)ξ

1/2
t are shown. The prefactor

s0/
√

We ∼ 0.5| dU/ds|−1
0 /

√
ρR3

0/γ in (5.12) can be interpreted as the ratio of the initial
stretching time to the initial inertio-capillary time.

As nonlinear effects present in the experiments are a priori excluded from the linear
stability analysis, a direct quantitative comparison between the linear stability predictions
and the experiments or the nonlinear slender-jet model would be flawed. Nevertheless, we
made a quantitative comparison of the linear and nonlinear predictions for the evolution
of the perturbations for the non-dimensional numbers given in table 1. To that end, we
performed a small study where we compare the results from linear stability analysis with
the nonlinear slender-jet model for two different perturbation amplitudes and a range of
frequencies.
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Figure 14. Comparison of the breakup length from linear stability theory and from nonlinear simulations for
two different velocity fluctuation amplitudes, εv , as a function of the imposed perturbation frequency. To ease
the comparison, the breakup length has been normalised with the minimum breakup length at the most unstable
frequency. Values for Lb,min are 91R0 from the linear stability, and 90.6R0 and 52.7R0 from the nonlinear
simulations for εv = 0.1 % and εv = 1 %, respectively.

Results for the jet breakup length are given in figure 14 where the breakup length Lb is
normalized by the minimum breakup length, Lb,min. One can see that although the value
of the most unstable wavelength does agree between the linear and nonlinear predictions,
the behaviour at other wavelengths differs significantly. At high frequencies (i.e. short
wavelengths) and εv = 1 %, the nonlinear prediction for the jet breakup length does
follow the ω4/3 scaling, though slightly underestimating the breakup length. However,
at low frequencies (i.e. long wavelengths) there is a significant overestimation of the
breakup length by the linear analysis, as for ω → 0, the perturbation wavelengths become
eventually large enough to be comparable to the streamwise variation scale of the base
flow. To correct for this, it would be necessary to include higher-order terms in (5.6),
starting with terms up to O(1/s2

0) and increasing the order for smaller ω. In our study
the focus is on the frequencies that are in the vicinity of the most unstable frequencies,
corresponding to the larger frequencies and smaller perturbation wavelengths for which
the local plane-wave approximation underlying (5.6) is valid.

6. Conclusion

We studied the breakup of a spiralling jet using experiments, simulations based on a
slender-jet model and a spatial linear stability analysis. The good agreement between
the experiments and simulations validates our ansatz that the spiralling jets can be
approximated as quasi-straight jets with locally varying body forces given that the
cross-sectional scale of the jet (of the order of the jet radius, R0) is much smaller than
the longitudinal scale at which the base flow varies (of the order of L). The locally varying
body forces are the longitudinal projections of the centrifugal and gravity forces along
the jet. For the given set of non-dimensional parameters studied in our experiments,
these longitudinal projections can be approximated by a constant effective gravity, and
the base flow solution can be treated as a freely falling jet by defining an effective
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Figure 15. Frequency spectrum of the nozzle velocity u(0, t) with respect to different amplitudes for the
harmonic component and the noise component. The frequency of the harmonic component is ω = 0.9.

Bond number. The effect of the wavelength stretching manifests itself as a reduction
in the inertio-capillary time scale along the jet due to thinning by the action of the
effective gravity (i.e. the longitudinal projections of the centrifugal and gravity forces).
Self-similar solutions for the convective linear stability have also been derived, from which
a simple approximation can be derived for the jet breakup length. Despite the number of
assumptions needed to proceed with this simplified approach, they are valid and relevant
in many processes, such as prilling of fertilizers, where the working liquids (e.g. molten
urea) have low viscosities.
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Appendix A. Relative effects of the white noise and harmonic components of velocity
perturbation

In this appendix we assess the effect of varying the strength of the imposed white noise
perturbations at the nozzle exit on jet breakup. In figure 15 the Fourier transforms of
the nozzle exit velocity are given. One can see that for amplitudes greater than 0.1 %,
the harmonic component is the main perturbation mechanism. The other frequency
components imposed by the white noise would influence the time series of the
instantaneous jet intact length.

Figure 16 shows the mean jet intact length with respect to the amplitude of the imposed
harmonic component at different levels of white noise intensity. In the absence of the
harmonic component, one can see that the fluctuations of the intact length are much
stronger. This is partly due to the fact that there is a wider window of unstable wavelengths
because of the streamwise component of the body force. The wavelengths that are initially
not long enough and, thus, stable will eventually get stretched and fall into the instability
window. When the amplitude of the harmonic component is weak, the frequencies within
the white noise have more time to be stretched and interfere with the instability. When
the amplitude of the harmonic component is strong, harmonic perturbation will dominate
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Figure 16. Variation of the jet intact length with respect to different strengths of harmonic and the white noise
components. Here, the frequency of the harmonic component is ω = 0.9 and �t is the adaptive computational
time step. The errorbars are one standard deviation of the intact length.

–2

0

2

–2

0

2

–2

0

2

20 30 40 50

s/R0 s/R0

–2

0

2

–2

0

2

–2

0

2

–2

0

2

20 30 40 50

–2

0

2

(e)

(g)

(h)

(b)

(a)

(c)

(d )

( f )

Figure 17. Jet shapes from our slender-jet model for the parameters We = 10, Fr = 5, Rb = 1, Re = 50 and
ε = 0.0172, for one droplet generation cycle. Plots (a − d) correspond to t = 0, 1.9, 3.9, 5.8; (e − h) correspond
to t = 7.6, 7.9, 8.1, 8.5, where t is measured from the beginning of the cycle. The frequency and the amplitude of
the radius perturbation are ω = 0.736 and εR = 0.04. The results are in agreement with the results of Li et al.
(2019), figure 3.

the dynamics, which can also be seen by narrowing of the errorbars at high amplitudes in
figure 16.

Appendix B. Obtaining p(θ)

We use the fact that the convective growth rate can be expressed in terms of temporal
growth rate given that we are above the critical wavenumber, i.e.

ki(ξ) = ωi,temp(ξ)

tIC(ξ)U(ξ)
. (B1)
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The temporal growth rate can be deduced from the classical Rayleigh–Plateau instability
as

ωi,temp(ξ) = k√
2

√
1 − k2 + 9Oh2k2

2
− 3Ohk2

2
, (B2)

where k is the local real wavenumber. The local values of k, Oh, tIC and U are as follows:

k(ξ) = ωξ−3/4, (B3a)

Ohl(ξ) = Ohξ1/8, (B3b)

tIC(ξ) =
√

Weξ−3/8, (B3c)

U(ξ) = ξ−1/2. (B3d)

When we substitute these into (B2) and use (B1) to evaluate ki(ξ), we end up with

ki(ξ) = ω√
2We

ξ−7/8

⎛
⎝
√

1 − ω2ξ−3/2 + 9Oh2ω2

2
ξ−5/4 − 3Ohω√

2
ξ−5/8

⎞
⎠ . (B4)

Using the transformations given in (5.10) and (5.11b), we finally obtain p(θ) explicitly
as

p(θ) =
√

1 − θ−3/2

2
+ 9Oh2ω1/3

4
θ−5/4 − 3Ohω1/6

2
θ−5/8. (B5)

When p(θ) can be explicitly integrated, (5.12) would then give an explicit equation to
solve for θt,

St = s0ω
7/6

√
We

[P(θt) − P(1)] , (B6)

where St ≈ 7 and P(θ) = ∫
p(θ) dθ .

Appendix C. Christoffel symbols, expressions in local and Frenet frames

Here we provide the intermediate expressions to define the local coordinate system and
the terms in the governing equations.

Using (3.9), one can represent the local base vectors in terms of the Frenet frame as
follows:

⎡
⎣T

N
B

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

1
1 − rκ cos φ

0
−τ

1 − rκ cos φ

0 cos φ −sin φ

r
0 sin φ

cos φ

r

⎤
⎥⎥⎥⎥⎦
⎡
⎣e1

e2
e3

⎤
⎦ . (C1)

As mentioned in § 3.1 and seen in (3.11), the local base vectors are not necessarily unit.
The magnitudes of the local base vectors should be used in order to express the physical
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velocity u = (us, ur, uφ) vector from the contravariant vector v = (v1, v2, v3) as follows:

us = v1|e1| = v1
√

(1 − rκ cos φ)2 + (rτ)2, ur = v2|e2| = v2, uφ = v3|e3| = v3r.
(C2a–c)

The Christoffel symbols of the second kind, whose compact form is given in (3.14), can
be written explicitly as follows:

Γ 1
11 = r

1 − rκ cos φ

(
κτ sin φ − cos φ

dκ

ds

)
,

Γ 2
11 = (1 − rκ cos φ) κ cos φ − rτ 2,

Γ 3
11 = rτ

1 − rκ cos φ

(
cos φ

dκ

ds
− κτ sin φ

)
− (1 − rκ cos φ)

κ sin φ

r
+ dτ

ds
,

Γ 1
22 = Γ 2

22 = Γ 3
22 = 0, Γ 1

23 = Γ 1
32 = 0, Γ 2

23 = Γ 2
32 = 0,

Γ 1
33 = Γ 3

33 = 0, Γ 2
33 = −r, Γ 3

23 = Γ 3
32 = 1

r
,

Γ 1
12 = Γ 1

21 = − κ cos φ

1 − rκ cos φ
, Γ 1

13 = Γ 1
31 = rκ sin φ

1 − rκ cos φ
,

Γ 2
12 = Γ 2

21 = 0, Γ 2
13 = Γ 2

31 = −rτ,

Γ 3
12 = Γ 3

21 = κτ cos φ

1 − rκ cos φ
+ τ

r
, Γ 3

13 = Γ 3
31 = − rκτ sin φ

1 − rκ cos φ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C3)

The covariant terms in the conservation equations can be written in the general
coordinates as follows:

Dv

Dt
=

(
∂vi

∂t
+ v j

(
∂vi

∂s j + vkΓ i
jk

))
ei, (C4a)

−∇p = gij ∂p
∂s j ei, (C4b)

(2D)ij = gkj
(

∂vi

∂sk + Γ i
klv

l
)

+ gki
(

∂v j

∂sk + Γ
j

klv
l
)

, (C4c)

1
Re

∇ · (2D) = 1
Re

(
1√
Δ

∂

∂s j

(√
Δ(2D)ij

)
+ Γ i

jk (2D)ij
)

ei. (C4d)

One can then use the metric tensor (and its inverse) and the Christoffel symbols listed
in (3.11), (3.12) and (C3) to compute the terms given above in ((C4a)–(C4d)). To compute
the projections in the Frenet frame one can use the transformation given in (C1).

Appendix D. Benchmark for the slender-jet simulation

We validate our slender-jet model that includes the longitudinal projections of the
computed body forces with the results of the arbitrary Lagrangian–Eulerian simulation
presented in Li et al. (2019). Their approach considers a boundary (a free parameter)
between linear–nonlinear evolution of the perturbation and this boundary is validated by
convergence of the breakup length over different choices of the linear–nonlinear boundary.
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Controlling the breakup of spiralling jets

In figure 17, we show the case where this boundary is directly set at the nozzle exit,
corresponding to the results shown in figure 3 of Li et al. (2019).

The pinch-off location of the main drop in both our simulations and in Li et al. (2019) is
46–48 times the radius of the jet and the period of the drop generation cycle is 8.5 in units
of R0/U0, which corresponds to the period of the nozzle excitation 2π/ω.
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theoretical description of the break-up of curved liquid jets in the prilling process. Chem. Engng Res. Des.
83 (11), 1267–1275.

PILLAI, D.S., NARAYANAN, P., PUSHPAVANAM, S., SUNDARARAJAN, T., JASMIN SUDHA, A. &
CHELLAPANDI, P. 2012 A nonlinear analysis of the effect of heat transfer on capillary jet instability. Phys.
Fluids 24 (12), 124106.

PIMBLEY, W.T. & LEE, H.C. 1977 Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21 (1), 21–30.
SALEH, S.N., AHMED, S.M., AL-MOSULI, D. & BARGHI, S. 2015 Basic design methodology for a prilling

tower. Can. J. Chem. Engng 93 (8), 1403–1409.
SAUTER, U.S. & BUGGISCH, H.W. 2005 Stability of initially slow viscous jets driven by gravity. J. Fluid

Mech. 533, 237–257.
SHIKHMURZAEV, Y.D. & SISOEV, G.M. 2017 Spiralling liquid jets: verifiable mathematical framework,

trajectories and peristaltic waves. J. Fluid Mech. 819, 352–400.
SINGH, K., GUPTA, A., BUCHNER, A.-J., IBIS, F., PRONK, J.W., TAM, D. & ERAL, H.B. 2019 Analysis

of centrifugal homogenization and its applications for emulsification & mechanical cell lysis. J. Colloid
Interface Sci. 547, 127–135.

TOMOTIKA, S. 1936 Breaking up of a drop of viscous liquid immersed in another viscous fluid which is
extending at a uniform rate. Proc. R. Soc. Lond. A 153 (879), 302–318.

UDDIN, J., DECENT, S.P. & SIMMONS, M.J.H. 2006 The instability of shear thinning and shear thickening
spiralling liquid jets: linear theory. Trans. ASME J. Fluids Engng 128 (5), 968–975.

WALLWORK, I.M., DECENT, S.P., KING, A.C. & SCHULKES, R.M.S.M. 2002 The trajectory and stability
of a spiralling liquid jet. Part 1. Inviscid theory. J. Fluid Mech. 459, 43–65.

WESSELING, P. 2009 Principles of Computational Fluid Dynamics. Springer.
WONG, D.C.Y., SIMMONS, M.J.H., DECENT, S.P., PĂRĂU, E.I. & KING, A.C. 2004 Break-up dynamics
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