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Estimating Single-Epoch Integrated Atmospheric
Refractivity From InSAR for Assimilation in

Numerical Weather Models
Gert Mulder , Freek J. van Leijen , Member, IEEE, Jan Barkmeijer, Siebren de Haan,

and Ramon F. Hanssen , Senior Member, IEEE

Abstract— Numerical weather prediction (NWP) models are
used to predict the weather based on current observations in
combination with physical and mathematical models. Yet, they
are limited by the spatial density and the accuracy of the available
observations. Satellite radar interferometry (InSAR) is known to
be extremely sensitive to the 3-D atmospheric refractivity distri-
bution and has a high spatial resolution, providing information
that can be used for assimilation in NWP models. However, due
to the inherent superposition of two or more atmospheric states,
only biased and temporally differenced signals can be retrieved,
which can also be contaminated by deformation signals and
decorrelation. Here, we present a method to estimate single-epoch
absolute atmospheric delays by combining InSAR time series
with prior NWP model prediction time series, using a constrained
least-squares estimation. We show that this leads to a solution
that reliably extracts the single-epoch relative delays from InSAR
data and uses prior NWP model data to find the absolute
reference for these delays while mitigating long-term deformation
and decorrelation signal. This approach leads to repetitive delay
updates with a spatial resolution of 500 m, which can be directly
assimilated into numerical weather models.

Index Terms— Atmospheric delay, InSAR, numerical weather
prediction (NWP) model, single epoch.

I. INTRODUCTION

OPERATIONAL numerical weather prediction (NWP)
models have evolved over the years to deliver predictions

with improving accuracy, reliability, and resolution [1]. How-
ever, high-resolution models also need reliable high-resolution
inputs [2]. The integration of spaceborne InSAR measurements
can significantly improve the quality of short-term predictions
[3], [4]. While atmospheric measurements from InSAR have
been a very promising data source to improve weather models
for a long time [3], [5]–[7], they lacked the continuity and tem-
poral sampling to have an impact in operational weather model
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predictions. This changed with the launch of the Sentinel-1
satellites in 2014 and 2016, providing a near-daily revisit
potential over mid-latitudes [8], to be only further improved
by current and planned X-, C-, or L-band missions.

Unfortunately, InSAR results are always relative—
differenced in time and space—which causes a superposition
of atmospheric states and introduces an unknown bias. Due
to the time difference between subsequent acquisitions, the
InSAR data may also be affected by nuisance signals such
as surface deformation and decorrelation [9], while we
assume that the topographic phase and the phase contribution
due to the ionosphere are known or can be estimated
independently [10].

To prevent most decorrelation and deformation issues, we
can use single short-temporal baseline interferograms in com-
bination with a weather model or GNSS result during one
of the two acquisitions to estimate the atmospheric delay in
the other acquisition [4], [11], [12]. However, this approach
relies entirely on the external weather model or GNSS
information to disentangle the mixed atmospheric states,
instead of using the potential to do so from the InSAR data
itself.

Here, we propose a new method, using a regularized
least-squares solution combining the time series of InSAR
observations and time series of previous NWP model predic-
tions, to estimate the most recent single-epoch delay signal.
The method deploys NWP time series, up to (i.e., not includ-
ing) the time of the latest SAR acquisition. For operational
NWP applications, this ensures that the results of the InSAR
estimation update are independent of the current NWP real-
ization. This allows us to disentangle the individual phase
components, without using any additional assumptions. The
model creates an absolute reference for the InSAR atmospheric
delays using the NWP model data, with a minimal influence
on the estimated variable delays. Finally, due to the addition
of NWP data, we ensure a robust model solution, as it can
provide an estimate even in the case of intermittent coherence
loss and mitigate long-term deformations. Fig. 1 shows an
overview of the proposed method. The resulting single-epoch
delay product can directly be used by assimilation techniques
such as 3-D variational (3-D-VAR) [13] and 4-D variational
(4-D-VAR) [14], such as in [15], and explicit translation of
delay values in precipitable water vapor (PWV) [12], [16],
[17], which is therefore not needed.
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Fig. 1. Main steps to estimate absolute single-epoch delays. The inputs of
the procedure are: 1) a set of interferometric combinations and associated
coherences and 2) a stack of atmospheric delays based on NWP model
realizations. Before the constrained least-squares estimation, the single biases
per interferogram and the NWP model uncertainty are estimated. Both
estimation methods use a combination of unwrapped interferograms and NWP
model delays. After the biases and NWP model uncertainty are obtained, the
absolute single-epoch delays can be estimated using the bias-corrected InSAR
interferograms, the predicted NWP data, and the uncertainty estimations of
both datasets.

In Section II, we describe how we derive absolute
single-epoch delays using a time series of InSAR delays
and former numerical weather model states, followed by a
demonstration of the method in Section III. In Section IV,
we draw general conclusions on its merits and applicability.

II. METHODS

To isolate the delay values of individual (single-epoch)
acquisitions from the differential InSAR data, three chal-
lenges should be tackled. First, as the observed differential
atmospheric delay δ

ti ,t j
p at position p in an interferogram

spanning, (ti , t j ) is the difference between two unknown
single atmospheric delays, δti

p and δ
t j
p , and the superposed

atmospheric signals should be disentangled. Second, the sub-
traction of the two atmospheric states eliminates the common
mode, δcm,p, i.e., the spatially variable but time-invariant part
of the delay signal. The common mode is often related to the
topography of the area as the total delay declines with eleva-
tion [18]. Third, due to the double-differenced and wrapped
nature of the interferometric phase, all SAR acquisitions have
an unknown bias, δti

bias, which is the delay of the selected
reference point q , which is constant for the entire scene.
Hence, the single-epoch atmospheric delay signal δti

p that we
wish to retrieve is

δti
p = δti

var,p,q + δcm,p + δti
bias (1)

where δti
var,p,q = δti

var,p − δti
bias is the spatially variable part of

the delay signal, which is zero at the reference point q . Con-
sequently, the atmospheric contribution in an interferogram
between ti and t j at position p is

δ
ti ,t j
p = δti

p − δ
t j
p ,

= δti
var,p,q − δ

t j
var,p,q + δti

bias − δ
t j

bias

= δti
var,p,q − δ

t j
var,p,q + δ

ti ,t j

bias . (2)

Since the interferogram is a double-difference phase between
two points

φ
ti ,t j
p,q = φ

ti ,t j
p − φ

ti ,t j
q (3)

with φ
ti ,t j
p = (4π/λ)δ

ti ,t j
p , the expectation of the interferometric

phase then relates to the delay signals as

E
�
φ

ti ,t j
p,q

�
= 4π

λ

�
δ

ti ,t j
p − δ

ti ,t j

bias

�
= 4π

λ

�
δti

var,p,q − δ
t j
var,p,q

�
(4)

where φ
ti ,t j
p is the observed unwrapped atmospheric phase and

the bias δ
ti ,t j

bias is the differential delay value at reference point q .
Since we wish to retrieve δti

p and δ
t j
p from (1) and the

InSAR data is only sensitive to δti
var,p,q and δ

t j
var,p,q , as shown

in (4), it is not possible to derive δcm,p and δ
ti ,t j

bias without
external information. Yet, it is possible to estimate δti

var,p,q
in (4) for every acquisition using combinations of interfer-
ograms. For example, Liu [19] and Leijen and Hanssen [20]
estimated the single-epoch atmospheric phase screen (APS)
using techniques such as small-baseline subset (SBAS) [21]
or phase linking [22] on a series of interferograms, while
Hooper et al. [23], Ferretti et al. [24], [25], and Leijen [26]
developed techniques to find the APS based on PSI techniques.
However, these solutions do not consider the time-invariant
part of the delay signal, δcm,p. An alternative to estimate δti

bias
is by using additional data sources, such as GNSS-derived
tropospheric delays [27], [28] or MERIS water vapor esti-
mates [29], [30], but GNSS data have a much lower spatial
coverage than InSAR and MERIS could only be used under
cloudless conditions for the ENVISAT satellite mission.

Assuming that the influence of topography and ionospheric
signal can be mitigated effectively using a digital elevation
model and an ionospheric model, respectively (see [18], [31]),
the influence of decorrelation noise and surface deformation
needs to be accounted for.

Decorrelation noise can often be mitigated by spatial filter-
ing or by using alternative interferometric combinations [22].
Disturbances due to deformations are more difficult to detect.
In this study, we assume that strong deformations due to
earthquakes, landslides, or volcanic activity did not occur
during the study period, but other small deformation signals
may still contaminate the results.

Although such deformations may typically be small com-
pared to the total atmospheric signal in two subsequent SAR
acquisitions, they can accumulate over longer time spans when
using methods such as SBASs [21] or phase linking [22].

A. Setup Constrained Least Squares

To estimate the APS in the most recent radar acquisition,
a constrained least-squares estimation is used [32], on a time
series of n SAR acquisitions [see Fig. 2(a)] and their corre-
sponding NWP model realizations, up to acquisition n−1. The
InSAR data contain unwrapped interferograms in a “network
approach,” i.e., limited to the interferometric combinations
within a maximum time window of �tmax = 60 days (see
Fig. 2), yielding a subset of n SAR acquisitions.

This network approach is required to mitigate the influence
of reversible short-term decorrelation, such as snow, on the
delay estimate in the short term and irreversible temporal
decorrelation in the long term. Figs. 2(a)–(c) shows that to
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Fig. 2. Computational approach for n SAR acquisitions, where n is increasing
in time. (a) Lower triangular matrix showing all possible interferometric
combinations in gray, the NWP model realizations in black, and the new
atmospheric delay estimate hatched. (b) For growing time series, a maximum
temporal baseline of 60 days is used, leading to (c) bandwidth of interfero-
metric combinations.

subsequently estimate the APS of the most recent acquisition,
we apply a band-limited set of acquisitions.

From the NWP model, a time series of single-epoch
atmospheric delays δti

NWP,p is computed by integration of
the refractivity over the slant signal path [33], [34], see
Section II-C. This serves as an absolute reference and a filter
for long-term deformations (see Fig. 1) and the black boxes
in Fig. 2. In this way, we use both the higher accuracy of the
InSAR measurements for single epoch and the reliability of
the long-term average of the NWP model. The network for
the constrained least-squares estimation is now modeled as

E
�

y
� = Ax; D

�
y
� = Qy (5)

where x is the n × 1 vector with the absolute APS for individ-
ual epochs δti

p , of which the last epoch, n, has our main interest.
The expectation and dispersion operators are indicated by E{}
and D{}, respectively. The underlined stochastic observation
vector y is a combination of the phase values of the network
of interferograms and predicted NWP model phases

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
4π

φt1,t2
p,q

− δ̂
t1,t2
bias

λ
4π

φt1,t3
p,q

− δ̂
t2,t3
bias

...
λ

4π
φtn−1,tn

p,q
− δ̂

tn−1,tn
bias

δt1
NWP,p

δt2
NWP,p

...

δ
tn−1
NWP,p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where φti ,t j

p,q
is the unwrapped InSAR phase of a specific

pixel p = {1, . . . , P} from the interferogram with master
image i = {1, . . . , n − 1} and slave image j = {2, . . . , n}
(see Section II-C). The total length of vector y is the total
number of interferograms plus the total number of epochs.
The estimated interferogram bias value, δ̂

ti ,t j

bias , is constant for
the entire interferogram and will be discussed in Section II-D.
δti

NWP,p is the predicted single-epoch phase from the weather
model at time i for pixel p. The acquisition times start at t1
and run until tn , while for the NWP model data, the most
recent acquisition, tn , is not used, as we base our solution
on historical NWP time series only. Matrix A relates the

observations and single-epoch absolute delays and can be
written as

A =
�

Aφ

Aδ

�
(7)

where the p × n design matrix Aφ = [AT
n−1 · · · AT

1 ]T , with
elements Ai = [Oi,n−1−i Ji,1 − Ii ] of the size i ×n. Here, Oi, j

is the i× j zero matrix, Ji,1 is the i×1 ones vector, Ii is the i×i
identity matrix, and p = n(n − 1)/2 and Aδ = [In−1 On−1,1].
Thus, every line in Aφ represents one of the interferometric
combinations given in Fig. 2 and every line in Aδ represents
a predicted delay derived from the NWP, with the exception
of the last epoch.

The system described in (5) is in our case a redundant
system of equations, for which we can derive the best linear
unbiased estimate (BLUE) [32], representing the absolute
single-epoch atmospheric delays x̂

x̂ =
�
δ̂t1

p , δ̂t2
p , · · · δ̂tn

p

�T
. (8)

The cost function is defined as follows:

min

������δ̂ti
p − δ̂

t j
p − δ̂

ti ,t j

bias

�
− λ

4π
φ

ti ,t j
p,q

����
Qφ

+
����δ̂ti

p − δti
NWP,p

����
Qδ

�

(9)

where δ̂ti is the previously estimated single-epoch absolute
delay, δ̂

ti ,t j

bias is the estimated image-wide bias, φ
ti ,t j
p,q is the

unwrapped interferometric phase, and δti
NWP,p is the calculated

delay from the weather model. The covariance matrix of the
InSAR data is Qφ , see Section II-C, and the covariance matrix
of the NWP model realizations is Qδ , see Section II-F.

B. Interferometric Combinations

We use a maximum time window of �tmax = 60 days for
the interferometric combinations. All the interferograms are
coregistered and resampled based on the Sentinel-1 precise
orbits, corrected for the topographic phase based on the STRM
DEM, and georeferenced. In geographic coordinates, we define
square grid cells of 500 m, for which the complex average
is computed, and subsequently, this set is unwrapped using
Snaphu [35]. If ionospheric trends are detected based on burst
or swath discontinuities, they are removed from the stack.

C. Calculation APS From NWP Model

The predicted delays δti
NWP from the NWP model are

calculated by integrating the refractivity N along the radar
signal path [34]. To compute the refractivity along the path,
we apply [36]

N = k1
Pd

T
+ k2

e

T
+ k3

e

T 2
+ k4

ne

f 2
+ k5W (10)

where T is temperature in kelvin, e is the partial pressure
of water vapor, Pd is the partial pressure of dry air, L is
the liquid water content, ne is the electron density per cubic
meter, f is the radar frequency, and W is the liquid water
content. The values of the constants are k1 = 77.6, k2 = 71.6,
k3 = 3.75 × 105 [37], [38], k4 = −4.028 × 107 m−3, and
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k5 = 1.4 m3g−1. The last two terms represent the ionospheric
refractivity and the refractivity due to liquid water in the
atmosphere. However, the ionospheric term can be estimated
independently of models [39], GNSS networks, or the SAR
data [10] and the liquid water has a nonsignificant influence
on the final solution [18], [31]. The total delay is calculated by
integrating the refractivity over the slant signal path through
the atmosphere. By ray tracing the slant InSAR radar path
using the topographic heights from the SRTM DEM, we can
account for the topographic effect in the weather model
and create a smooth transition from the lower resolution
NWP model to the 500-m geographical grid used for InSAR
processing.

D. Bias Correction InSAR Differential APS

Assuming that the deformation in interferograms with
�tmax = 60 days is negligible, we can obtain the absolute dif-
ferential atmospheric delay, δ̂

ti ,t j

ifg,p, by subtracting an unknown
constant delay bias from the unwrapped observations

δ̂
ti ,t j

ifg,p = λ

4π
φ

ti ,t j
p,q − δ̂

ti ,t j

bias . (11)

In conventional InSAR processing where the aim is to estimate
deformation, the bias is introduced via a reference point or
reference region, where deformation is assumed to be zero.
However, this approach still disregards the atmospheric offset,
which is of vital importance for our application. We estimate
the bias δ̂

ti ,t j

bias using the image-wide difference between the
unwrapped interferogram and a synthetic interferogram based
on two single-epoch NWP model delay estimates for grid
cell p

�δ
ti ,t j
p = λ

4π
φ

ti ,t j
p,q −

�
δti

NWP,p − δ
t j

NWP,p

�
(12)

where δti
NWP is the delay for scene i derived from NWP

data at time ti and φti ,t j is the interferogram between time
i and j (see Fig. 3 for a visualization of this procedure). To
estimate the bias from the differential interferogram �δ

ti ,t j
p ,

averaging would be the easiest approach, but due to strong
anomalies in either the model or InSAR data, this method is
unreliable. For example, strong atmospheric disturbances due
to thunderstorms have a strong influence on the final mean,
while the size and locations of these disturbances generally
differ significantly between the NWP model and InSAR data
and should be disregarded. Therefore, we use the mode of the
distribution f�δ of differences as an estimate of the bias (see
Fig. 3)

δ̂
ti ,t j

bias = arg max
�δ

f�δ

�
�δti ,t j

�
. (13)

The estimated offsets for the different interferometric com-
binations are adjusted using a nonweighted least-squares
solution to ensure that for every triplet of interferometric
combinations, it holds

δ̂ti ,tk
bias + δ̂

tk ,t j

bias + δ̂
t j ,ti
bias = 0. (14)

This solution is then fed into the constrained least squares
as given in (5). Here, the found biases are used as part of the

Fig. 3. Estimating bias per interferogram. The difference between the
InSAR interferograms and the differenced NWP model delays is derived. The
distribution of the resulting difference map is used to estimate the offset, from
the mode of this distribution. This is equivalent to the largest area with similar
patterns in the differential NWP model delays and InSAR interferogram.

observation matrix y, assuming that they have minimal impact
on the InSAR accuracies. Ideally, the biases would be included
as unknowns in (5). However, this is not possible because the
bias estimation is performed for the full interferogram, while
the single-epoch absolute delay estimations are performed on
a pixel-by-pixel basis.

E. Error Estimate InSAR Data

To estimate the precision of the InSAR data, i.e., Qφ in (9),
we estimate the coherence using a window of 500 × 500 m
under the assumption of ergodicity [40], to derive the phase
precision [18]. The equivalent multilooking window of 500 ×
500 m may still result in temporal measurement gaps due to
low coherence, e.g., due to snow. However, due to the inclusion
of NWP model predictions, we can still connect the periods
before and after these gaps and retrieve reliable estimates for
all nonaffected interferograms.

F. Error Estimate Weather Model Data

A reliable estimate of the uncertainty in the NWP model
delays, via covariance matrix Qδ , is crucial for a correct
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weighting of the NWP model data in our constrained least-
squares solution. Therefore, we estimate these uncertainties
based on a combination of InSAR interferograms and differ-
ential NWP model delays. To estimate Qδ , we can use the a
priori knowledge that the precision of the delay measurements
from InSAR is much higher than that of the NWP model
delays. If we can assume that the InSAR errors are negligible,
the error of differential NWP model delays can be derived by
subtracting the differential NWP delays from the InSAR data.
Therefore,

e
ti ,t j

NWP,p ≈ e
ti ,t j

NWP,ifg,p = δ̂
ti ,t j

ifg,p −
�
δti

NWP,p − δ
t j

NWP,p

�
(15)

given that

e
ti ,t j

ifg,p � e
ti ,t j

NWP,p. (16)

Here, eNWP is the error in the synthetic NWP model interfero-
grams, eifg the error in the InSAR interferograms, δ̂

ti ,t j

ifg,p is the
bias corrected InSAR interferogram, and δti

NWP,p is the NWP
model delay value for individual scenes. The retrieved NWP
model error from (15) is used to estimate the local variance
by squaring and applying a spatial averaging kernel

σ 2
δ,ti ,t j ,p = G

�
e

ti ,t j

NWP,p

�
(17)

where σ 2
δ,ti ,t j ,p is the variance of the differential NWP model

delays for a specific pixel and G(x, y) is a Gaussian averaging
kernel of 10 km, which is the effective resolution of the NWP
model. This variance can be described as the sum of the
variances of the two NWP scenes

σ 2
δ,ti ,t j

= σ 2
δ,ti + σ 2

δ,t j
(18)

where σ 2
δ,ti ,t j

is the variance of the differential NWP model
delays and σ 2

δ,ti is the variance of an individual NWP model
scene. An illustration of the full method is given in Fig. 4.
From these added variances, we then estimate the variances
of the individual scenes using a set of equations modeled as

E
�

y
� = Aφx (19)

where y is the vector with the derived variances σ 2
δ,i, j for

all the interferograms, x is the vector with the variances for
the individual scenes σ 2

δ,i , and matrix Aφ is the system of
equations that relates the used interferometric combinations
with the single-epoch values, as given in (7), but here with
only positive values representing an addition in contrast with
the subtraction for the intereformetric phase. The observation
vector y is given by

y =

⎡
⎢⎢⎢⎢⎢⎣

σ 2
δ,t1,t2

σ 2
δ,t2,t3
...

σ 2
δ,tn−1,tn

⎤
⎥⎥⎥⎥⎥⎦ (20)

where σ 2
δ,i, j are the estimated variances for the differential

NWP model delays. The total length of vector y is the total
number of interferograms. The used cost function is

min
�
�σ̂ 2

δ,ti ,t j
− σ 2

δ,ti ,t j
�
�

(21)

Fig. 4. Estimating the error in the NWP model. The difference between the
InSAR interferogram and the differenced NWP model delays is squared and
smoothed in space to get an approximation of the variance of the differenced
NWP model delays. Subsequently, the variance of single NWP model delays
is estimated using a least-squares solution.

where σ 2
δ,i, j are the variances of the differential NWP model

delays and σ̂ 2
δ,i, j are the estimated variances based on the
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Fig. 5. Coverage of Harmonie model (red box) and Sentinel-1 track 37
(purple) over The Netherlands. Water areas are masked out.

solution for the individual scenes x̂ . After solving for x , this
gives us the estimated NWP model delay variances σ̂ 2

δ,ti , which
form the diagonal elements in the covariance matrix

Qδ =

⎡
⎢⎢⎢⎣

σ̂ 2
δ,t1 0 · · · 0
0 σ̂ 2

δ,t2 · · · 0
...

...
. . .

...
0 0 · · · σ̂ 2

δ,tn

⎤
⎥⎥⎥⎦. (22)

This approach may sometimes result in near-zero or even
slightly negative variance estimates, but because our main
focus is the scenes with large errors, we can safely apply a
minimum error of a few millimeters for these scenes.

III. RESULTS AND DISCUSSION

A. Model Inputs and Study Area

Time series of Sentinel-1 track 37 SAR data and NWP
model data over The Netherlands between 2016 and 2018 are
used (see Fig. 5). The SAR time series includes more than
120 VV-polarized SLC images with an original resolution of
approximately 3 m × 20 m and yields a stack of geocoded
C-band interferograms with a 500-m resolution after process-
ing as described in II-B. We use the Harmonie NWP model—
the operational model for The Netherlands—which is based on
AROME [41]. The horizontal resolution is about 2.5 km and
it consists of 65 vertical model levels. The spatial coverage of
the model realizations for this study is about 2000×2000 km2

centered at The Netherlands and nested within the opera-
tional European Centre for Medium-Range Weather Forecasts
(ECWMF) global model [42].

B. Estimated Single-Epoch Atmospheric Delay Time Series

Fig. 6 presents five representative single-epoch atmospheric
delay estimates, showing the NWP-derived delays, the esti-
mated atmospheric delays, and the difference between both in
the first, second, and third columns. The fourth column shows

the distribution of the latter. Because the absolute slant delay
images would be dominated by range effects—with a longer
propagation path for far range pixels—for visualization, the
slant delays, δ̂ti

p , are mapped to the zenith δ̂t1
zenith,p based on

the incidence angle θp per pixel, using the mapping function
δ̂ti

zenith,p = δ̂ti
p cos θp.

Likewise, topographic elevation causes a significant shorten-
ing of the total propagation path, an effect that is automatically
differenced out in interferograms. This is a dominant effect in a
linear scaling factor, κ , and implements an artificial correction
for the topography, with

δ̂ti
zenith,h,p = κ h p + δ̂ti

zenith,p (23)

where δ̂ti
zenith,h,p is the delay corrected for the topography, h p is

the height per pixel, and κ is the fit scaling factor of ∼1 mm/m.
Fig. 7 shows the changes of single-epoch zenith delays due
to this topographical correction. This linear model is only
valid from sea level until 300 m height, which is the height
range over The Netherlands. For larger height differences,
an exponential model will be needed, as the refractivity N
varies exponentially over height.

Evaluating 120 topography-adjusted single-epoch zenith
delays as a function of time shows a clear seasonal variability,
see Fig. 8, with greater delays in summer, when the warmer
air can contain more water vapor, compared with winter. The
variability of the delays over the scene is also greater in sum-
mer, as indicated by the ranges in the boxplots. Similar trends
can be observed in the differences between the estimated
single-epoch delays and the predicted NWP model delays (see
Fig. 9). The average values are close to zero, as expected, but
the range of variation within the image is larger during the
summer period. Especially with strong convective events like
thunderstorms these differences are large.

C. Residuals of Estimated Delay and InSAR or NWP Model

To verify whether the results of the original unwrapped
interferograms are sustained in the final delay estimate,
we compare the residuals of the InSAR interferograms for
subsequent dates with the difference of the single-epoch delay
estimates, which corresponds to the first part of the cost
function of (9), i.e.,

σ 2
ifg(ti ) = 1

P

P�
p=1

||
�
δ̂ti

p − δ̂
t j
p − δ̂

ti ,t j

bias

�
− λ

4π
φ

ti ,t j
p,q || (24)

where σ 2
ifg(ti) is the standard deviation per interferogram

and P is the number of pixels in the image. The daisy-
chain choice for this evaluation mitigates the influence of
potential deformation and decorrelation. Fig. 10 shows these
average absolute residuals per interferogram, indicated in blue,
which are in the order of few millimeters at most. Similarly,
a comparison can be made between the NWP realizations and
single-epoch estimates, which corresponds with the second
part of the cost function in (9). To compare these values with
the InSAR residuals, we combine the residuals for both time
steps of the interferogram as

σ 2
NWP(ti ) = 1

P

P�
p=1

�����δ̂ti
p − δti

NWP,p

�− �δ̂ti+1
p − δ

ti+1
NWP,p

����� (25)
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Fig. 6. Comparison between estimated single-epoch atmospheric delays and NWP model derived delays during five satellite overpasses over The Netherlands.
Column 1: NWP model delays δ

ti
NWP. Column 2: final estimated single-epoch delays δ̂ti . Column 3: difference map. Column 4: distribution of the differences.

Columns 1 and 2 share the same color bar. These images capture strong convective events (rows 1 and 4) and frontal movements (row 2), but also large
regions with different delays (rows 3 and 5).

where σ 2
NWP(ti ) is the standard deviation for the same (vir-

tual) daisy-chain interferometric combinations and P is the
number of pixels in the image. Fig. 10 shows that these

absolute residuals, in orange, are about ten times greater than
the absolute residuals with the interferograms, i.e., 10 mm
(orange dots), and 1 mm (blue crosses). These values also
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Fig. 7. Single-epoch delay δ̂
ti
h,p as a function of elevation, in blue.

By applying a linear scaling factor of 1 mm/m, we artificially “correct” for
topography, δ̂

ti
zenith,h,p , in red. The shaded area is the one standard deviation

interval of these height bins.

give an indication for the maximum deformation within one
six-day interval, which will show up in the residuals of the
interferograms. As long as the mean residuals between the
NWP and InSAR data are an order of magnitude larger than
the deformation within one epoch, the deformation values will
be of marginal influence on the final estimate NWP estimate,
allowing for a mean deformation of some mm in our case. Part
of the difference between the NWP model and the estimated
delay is caused by resolution differences between the NWP
and InSAR data, which can also be seen from the results
shown in Fig 6, where the patterns in the first column are
smoother than in the second column as a result of a lower
input resolution. Therefore, a downsampled version of the
500-m estimated delay should be used for direct assimilation
in the NWP model, although the high-resolution InSAR data
can still be used for parameterization of small-scale processes
in the model. Delay differences also have a strong spatial
correlation and increase over larger distances, so the effect
of local variations on a smaller scale than the NWP model
resolution stays within a few millimeters.

D. Mitigation of Nonatmospheric Delays Using NWP Model
Data

The use of NWP delay measurements for every time step
prevents our solution to drift over time due to nonatmospheric
effects, such as deformation and decorrelation. For deforma-
tion, this is caused by the “leaking” of deformation signal into
the delay estimation. Decorrelation, on the other hand, initiates
a random walk process of the solution over time due to higher
uncertainties, as shown in Fig. 11. Using the NWP-derived
delays as a constraint for the final solution mitigates these
drifts. Note that methods that apply a free network, such as
SBAS [21] or phase linking [22], would cause the solution
to drift for our application. Fig. 11 shows this drift as a
function of time from the last NWP model reference, both
for cells with a high coherence (γ > 0.5, in red) as well as
for cells with a low coherence (γ < 0.2, in blue). Clearly,
a lower coherence induces a higher likelihood of drift. The

Fig. 8. Estimated topography-adjusted single-epoch zenith delay values
δ̂

ti
zenith,h,p as a function of time. The delays are given as box plots for every

individual epoch. This shows a seasonal trend in delays, which is due to
temperature and moisture changes, as the variation in total air pressure can
only explain a minor change in total delay.

Fig. 9. Spread of difference between NWP model delays δ
ti
NWP,zenith,p and

estimated single-epoch delays δ̂
ti
zenith,p per acquisition. The delay differences

are given as box plots for every individual epoch. This shows that the
differences in the summer tends to be larger than in winter.

bandwidths cover a 95% interval of the datasets, and the solid
lines show the average drift. The used network for SBAS
and our method uses the same interferometric combinations
based on a maximum temporal baseline of 60 days. Although
the use of NWP model data can filter out InSAR errors
due to deformation and decorrelation, the final delay estimate
becomes vulnerable to long-term or systematic errors in the
NWP model. To ensure the reliability of NWP models for
interseasonal or climatological changes, it is therefore not
possible to rely on InSAR measurements only.

E. Estimation Accuracy of Common Mode

Without an external data source, it is not possible to find
the common mode δcm,p [see (1)]. In our case, this is done by
using the NWP model data, which gives a reference value for
all individual pixels in the image, but there are also alternatives
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Fig. 10. Standard deviation of the residuals of: 1) daisy-chain interferograms
and the difference of the single-epoch solutions (blue) and 2) difference NWP
realizations and the difference of the single-epoch solutions (orange). This
shows that almost all interferometric atmospheric information is sustained
in the final atmospheric delay estimation (blue). The difference between the
NWP model and the InSAR data (orange) is about ten times larger than the
difference of the single-epoch estimates with the InSAR data.

Fig. 11. Solution drift if a nonconstrained model such as SBAS would be used
to derive atmospheric delays. To compare our single-epoch delay estimation
with an SBAS solution, we take the first date of the time series as a reference
and subtract our single-epoch solution from the SBAS solution for the other
dates. The red line shows the average drift for high-coherent points, which
may also be a consequence of a deformation signal in the SBAS solution.
The blue line gives the average drift of the low-coherent points. The shaded
area gives the 95% interval for both datasets.

where only partial coverage, e.g. MERIS, or a number of
reference points, e.g. GNSS, are used. Some methods also try
to replace this common mode by introducing a time series
average, assuming that the mean delays of all pixels will
become the same after enough averaging [19]. An important
assumption for the use of these methods is that the available
data on the common mode can be interpolated in space and
possible errors will average out over time. However, averag-
ing in space will cause problems in the case of significant
topography or climatological differences. Fig. 7 shows that
there is a strong dependence on topography, which can only

Fig. 12. Comparison of expected standard deviation of the mean atmospheric
delay using the final values mapped to the zenith. The dashed lines show the
behavior if the data are Gaussian and the other lines show the actual standard
deviation of the mean for all values mapped to the zenith, δ̂

ti
zenith,p . The dotted

lines give expected standard deviation if the dataset would be Gaussian for an
average error of 5, 10, 15, and 20 mm. This shows that the mean deviation
decreases much slower for a larger number of epochs than one would expect
with a Gaussian process and indicates that InSAR atmospheric delays are
likely non-Gaussian.

partly be incorporated in the interpolation process. Moreover,
the variation in atmospheric delays between two reference
points in space can be highly irregular and does not behave
Gaussian. Fig. 12 shows that the averaging of InSAR APS
measurements in time averages out slower than the assumed
1/(n)1/2 in case of a Gaussian process, where n is the total
number of images. Therefore, one should be cautious to use
external data with a low coverage in time and space to find
the common mode δcm,p. In our method, the common mode
is estimated using NWP data. Although the common-mode
estimation in this method does not need spatial averaging and
is therefore much less affected by spatial variability, it does
depend on the time series length. In this case, we are not just
averaging the InSAR measurements over time, but the InSAR
minus the NWP measurements to find the common mode. This
will eliminate most topography and climatological errors but
still depends on averaging out the error between NWP and
InSAR data. Based on the residuals between the estimated
delays and NWP data, these values will be about 2 mm (see
Fig. 12).

F. Sensitivity of Delay Estimate to Chosen Maximum
Temporal Baseline

The selected maximum temporal baseline is a tradeoff
between an increasing number of interferograms used, and
therefore better use of interferometric information, at the
expense of potentially higher temporal decorrelation and larger
surface deformation, degrading the estimated delay and accu-
racies. InSAR accuracy due to temporal decorrelation can
be estimated based on coherence, but the time scale of this
decorrelation process varies from pixel to pixel. However,
deformation signals are not related to coherence and increase
over time for the whole study area. Also, low coherence
values are biased and have low accuracy and the associated
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Fig. 13. Difference in result for final atmospheric delay estimation for
a different number of acquisitions (epochs), relative to the reference case
with 128 images. The box plots express the expected error in the estimated
atmospheric delay δ̂ti due to the use of less acquisitions. Solutions show an
average error of less than 1 mm for 40 epochs when we use a 500-m InSAR
grid and temporal baseline of 60 days.

interferograms should be excluded from the estimation process
when possible. Based on these considerations and estimated
coherence, a temporal baseline of 60 days is used in this study.

G. Sensitivity of Delay Estimate to Time Series Length

An important factor to consider when applying this method
is the minimum number of acquisitions to produce a reliable
result. We produced constrained least-squares solutions for
different numbers of acquisitions and compared the corre-
sponding atmospheric delay estimates δ̂ti with the longest time
series solution of 128 acquisitions (see Fig. 13). The results
indicate that the uncertainties become on average less than
1 mm for time series length of 40 acquisitions or more when
we use a 500 InSAR grid. For Sentinel-1, this corresponds
to eight-month consecutive acquisitions. Fig. 13 also shows
the expected errors if we only use one interferogram, i.e., two
epochs, to find a solution.

H. Sensitivity of Delay Estimate to NWP Model Accuracy

As described in Section II-F, the spatially smoothed dif-
ference between the InSAR and predicted NWP data is used
as a proxy for the NWP model quality, expressed in Qδ [see
(22)]. The inverse of Qδ acts as a weighting factor for the
influence of the NWP model on the final solution. Because
the NWP model weights are an order of magnitude smaller
than the InSAR weights, this solution stays relatively close to
the InSAR results. In Fig. 14, we demonstrate the impact of an
increased (or decreased) weight of the NWP on the solution.
This shows that both increasing and decreasing the weight
lead to differences with the reference solution, here indicated
with unit weight. Decreasing the weight leads to differences
of a couple of millimeters relative to the reference solution,
up to the limit where changes in NWP model weight have no
practical influence on the solution anymore, as the box plots
remain nearly identical. In that case, the NWP only functions
to find the common mode δcm,p (see Section I). Increasing the

Fig. 14. Effect of the weight of the influence of the NWP-derived delay
on the solution. Decreasing or increasing the weight of the NWP leads to
differences with the reference solution, indicated with unit weight. This shows
that the current solution is relatively stable but does change using different
weights. With very low weights, the model will only act as a reference to
derive the common mode, δcm,p , while with higher weights, the model will
start smoothing out the InSAR variance in the final estimate.

weights leads to constantly increasing differences, up to the
level where the InSAR data become irrelevant and the final
solution is the NWP model itself.

I. Possible Improvement of InSAR and NWP Model Accuracy
Estimates

A reliable error estimation for InSAR and NWP model data
is an important component in our methodology, especially as
the accuracy of NWP model data was not available beforehand.
For InSAR data, we now used the coherence values, but noise
signals could also be estimated using a local variance factor,
which uses arcs with neighboring pixels [26]. This allows us
to remove most of the spatially correlated atmospheric signals
to estimate InSAR noise and local deformation. However, this
method should include additional averaging in time or space,
which makes the error estimate less specific. To improve the
coherence estimate, a selection of areas with homogeneous
scattering characteristics could be applied [43], [44]. Assum-
ing linear deformation, we could also decrease the estimated
accuracy of the InSAR signal with larger temporal baselines.
Finally, the derived InSAR accuracies can be used to improve
the estimated variance of the NWP model data given in
(20), but this becomes only relevant with decreasing InSAR
accuracies.

IV. CONCLUSION

Based on a constrained least-squares estimation using
InSAR and NWP model realizations, we demonstrate a robust
and accurate estimation method for absolute single-epoch
atmospheric delays, with a deviation from the original InSAR
data of only 1-mm delay. This deviation is consistent
over almost all epochs and shows a seasonal trend (see
Section III-C). As the NWP model accuracy was unknown,
we developed a new method to estimate NWP model accuracy
(see Section II-F), which is used in the constrained least
squares to give an absolute reference to the InSAR estimates.
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This method enables the weather modeling community
to obtain absolute atmospheric delays with a high resolu-
tion of 500 m and unprecedented accuracy of about 1-mm
delay, which are ready for assimilation in operational weather
models. Observed mean differences of 10 mm between the
estimated delays and NWP models suggest a large potential
for NWP model improvement. The method does not require
external data sources such as GNSS or MERIS, is able to over-
come potential observation gaps due to surface decorrelation,
and minimizes the effect of long-term deformation patterns.
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