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Abstract
In the Internet of Things era, the Internet 

demands extremely high-speed communication 
and data transformation. To this end, the tactile 
Internet has been proposed as a medium that pro-
vides the sense of touch ability, facilitating data 
transferability with extra-low latency in various 
applications ranging from industry, robotics, and 
healthcare to road traffic, education, and culture. 
Here, programmable networks are role players 
in approaching the tactile Internet’s low latency 
(≈ 1ms) pillar. Several functionalities – including 
security – are offloaded onto the network core 
employing programmable in-network pipelines. 
From the security perspective, Artificial Intelli-
gence (AI) is another role player that enables the 
line-rate inference on the core network without 
involving the control plane. However, integrat-
ing AI-based security solutions in programmable 
devices is challenging mainly because of their 
constrained anatomy. Furthermore, such solutions 
inherit well-known adversarial AI vulnerabilities, 
representing an additional threat to program-
mable networks. Considering the above, this 
article discusses AI-based security solutions in pro-
grammable networks, focusing on the explored 
modalities of integrating AI models in program-
mable constrained network devices. Moreover, 
we elaborate on the challenges and risks of rely-
ing on AI for such mechanisms. Lastly, the article 
brings a visionary glimpse for future trends in this 
regard, raising some essential questions on the 
indispensability of AI for security functionalities 
and providing some alternative solutions.

Introduction
Tactile Internet is an evolutionary perception of 
communication networks that enables the real-
time interaction between human beings and 
cyber-physical systems – i.e., autonomous auto-
mobiles, augmented reality, smart grids, industrial 
control, robotics, and healthcare – as if they were 
near. With the tactile Internet, humans and things 
can exchange voluminous triple-play data – i.e., 
audio, video, and text – as well as haptic control 
messages that enable the sense of touch commu-
nication. For example, consider a teleoperation 
application where a surgeon located far from the 
patient operates following not only the perception 
received from video and audio but also enrich-
ing the touching sense experience. Extremely 

low latency and high availability, reliability, and 
security are among the pillars expected to build 
the tactile Internet infrastructure. Conversely from 
today’s systems, securing the communication for 
the tactile Internet systems requires additional 
effort to provide securely transmitted data with 
very low end-to-end latency. Therefore, security 
mechanisms against attackers should be carefully 
designed in the underlying network devices rather 
than at higher protocol layers.

Satisfying the requirements mentioned above 
is challenging for the underlying networks, which: 
(i) are designed to support fixed operations given 
their rigid framework, (ii) use high bandwidth by 
leveraging larger buffing queues for the packets, 
and (iii) mainly accommodate latency-tolerant 
applications. To tackle such fundamental commu-
nication and computation challenges, the research 
community recently leverages novel emerging yet 
mature technologies, including Software Defined 
Networking (SDN) and stateful programmable 
data planes. SDN decouples the control from the 
data plane for a more dynamic and less costly 
network structure, enabling the network operator 
to flexibly configure, manage, and control the net-
work through application programming interfaces. 
Here, the control plane ensures the appropriate 
decisions to handle the traffic, while the data 
plane forwards the traffic following the rules indi-
cated by the former. To avoid the frequent and 
unnecessary interactions between the controller 
and the data plane, the SDN paradigm evolved 
towards the stateful programmable data planes. 
Here, states and operation logic are offloaded 
from the controller to the data plane, acceler-
ating the packet processing and, thus, avoiding 
added overhead into the network [1]. Given the 
flexibility, reduced latency, and fast reaction time, 
stateful data planes have been leveraged in recent 
years to enable the sense of touch for communi-
cation among different cyber-physical systems [2].

Artificial Intelligence (AI) is another promoter 
of tactile communication in the programmable 
data planes. Here, the application of AI enables 
intelligent mechanisms for flexible and accurate 
network management, including resource alloca-
tion, congestion control, routing, load balancing, 
fault detection, Quality of Service (QoS), and 
Quality of Experience (QoE). Additionally, AI is 
leveraged to improve network security, ranging in 
different applications of intrusion detection and 
traffic classification mechanisms on real-time at 
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line rate for fast detection and mitigation of secu-
rity threats [3], [4], [5], [6], [7], [8].

Despite the benefits of engaging AI for 
in-network security solutions in programmable 
networks, various questions regarding its feasi-
bility and advantages are raised. Foremost, the 
application of AI to such networks is bounded to 
the network devices’ – i.e., switches and Network 
Interface Card (NIC) – available computation 
and memory resources that limit the means for 
embedding the algorithms into such devices. 
Alternatively, dedicated hardware – e.g., Field 
Programmable

Gate Array (FPGA) – in a collection device – 
e.g., border routers – is used to deploy in-network 
AI algorithms. Although more effective and robust, 
introducing dedicated hardware to the network 
devices leads to added computation overhead 
while increasing communication latency. Addition-
ally, wisely selecting the critical collection devices 
that provide more complex computations, thus 
where the AI algorithm resides, introduces the 
single point of failure issue. Lastly, although mas-
sively used in heterogeneous domains, AI-based 
mechanisms are known to have critical unsolved 
issues that perturb their behavior and expose the 
networks to new threats. Among these, poisoning 
and evasion attacks weaken the model perfor-
mance by modifying the data or its labels during 
the training and testing phase. Furthermore, the 
AI-based security tools are exploited to launch 
privacy attacks. Here, the adversary probes the 
model to learn more about the training data 
and gain information that could compromise the 
users’ privacy.

This article elaborates on the various meth-
ods the research community explores to enable 
the deployment of AI models in programmable 
devices. Additionally, we discuss potential chal-
lenges posed for the practical deployment of 
AI-based security solutions on programmable net-
works while shedding light on the security risks 
that AI exposes the networks to. Lastly, we take a 
further step ahead by analyzing and envisioning 
whether the programmable networks truly need 
AI solutions. To this end, we propose a lightweight 
solution based on symbolic knowledge extraction 
from state-of-the-art AI models, depending on 
the indispensability of using AI. Lastly, we prelim-
inary evaluate our vision accuracy compared to 
underlying baselines. The remainder of this article 
is organized as follows. In the section “AI-Based 
Security for Programmable Networks,” we broadly 
describe the classes of state-of-the-art AI-based 
security solutions in programmable networks. After 
that, in the section “AI Solutions in Programmable 
Networks: Challenges and Security Risks,” we elab-
orate on the challenges of deploying AI solutions in 
programmable network devices – i.e., switches and 
NIC – while listing the security risks due to such 
deployment. Lastly, we provide an overall discus-
sion and our vision in the section “Our Vision” and 
conclude in the section “Conclusion.”

AI-Based Security for Programmable 
Networks

Programmable network devices have been the 
breakthrough for making network operators less 
dependent on device vendors. Here, the flexible 

programming network devices allow the network 
operator to delegate the packet processing and 
forwarding logic to the network devices on the 
data plane while being able to promptly and 
regularly reconfigure them. In the following, we 
briefly describe the programmability of network 
devices in the section “Programmable Network 
Devices” and after that elaborate on the AI-based 
in-network security mechanisms in the section 
“AI-Based In-Network Security Mechanisms.”

Programmable Network Devices
In the latest years, the Software Defined Net-
working (SDN) paradigm has changed the way of 
networking by decoupling the control plane from 
the data plane. Here, a centralized controller in 
the control plane is in charge of determining the 
packet processing policies—e.g., forwarding rules, 
packet dropping, header rewriting, and device 
operation. In turn, the data plane devices exe-
cute the injected policies from the control plane, 
thus satisfying the high-performance requirements 
for the network. However, the breakthrough 
brought by SDN pushed the demand for a more 
flexible and dynamic data plane rather than rely-
ing on fixed-operation devices that depend on 
the underlying hardware and software. The pro-
grammable data plane concept is introduced to 
overcome such an issue. Here, a programmable 
data plane refers to the network devices that 
enable programmable, flexible, dynamic, and 
quick reconfiguration for the packet processing 
functionalities from the network control plane. In 
the class of programmable devices, programma-
ble switches and Network Interface Card (NIC) 
[1] are the essential components.

Among the basic functional operations, packet 
processing encompasses parsing, classification, 
modification, deparsing, and forwarding. The cur-
rent programmable network device architectures 
originated from Protocol-Independent Switch 
Architecture (PISA) and their pipeline is devel-
oped based on the Reconfigurable Match-action 
Tables (RMT) model. A single pipeline encom-
passes three building blocks – i.e., parser, 
deparser, and match-action pipeline – as shown 
in Figure 1. PISA is the build base for a consid-
erable amount of open-source and commercial 
implementations, such as Intel Flexpipe, Barefoot 
Tofino, v1model, Programmable NIC Architecture 
(PNA) Portable Switch Architecture (PSA) and 
SimpleSumeSwitch. Here, most of the switches’ 
architectures include two main pipelines—i.e., 
ingress and egress pipelines. Generally, the packet 
initially enters a programmable parser that dissects 
the packet into a sequence of fields—i.e., Packet 
Header Vector (PHV). After that, the matching 
stages match the extracted packet headers while 
the action stages engage Arithmetic Logical Units 
(ALU) for applying actions – e.g., modifications 
and calculations – on the headers. Lastly, the 
deparser recomposes the packet by serializing the 
PHV with packet payload and sends the packet 
towards another pipeline or an interface.

Despite the benefits of engaging AI for in-network security solutions in programmable networks, 
various questions regarding its feasibility and advantages are raised.
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Although offering several benefits for line-
rate packet processing, programmable network 
devices are bound to memory and computing 
limitations. From the memory perspective, such 
devices are equipped with small-sized and very-
fast memory – i.e., Ternary Content-Addressable 
Memory (TCAM) or Static Random Access Mem-
ory (SRAM) – that enables high-speed packet 
processing. However, the restriction in the mem-
ory size narrows the number of applications 
that can be implemented in the data plane. For 
example, security and load balancing applications 
ask for memory-based network traffic diagnosis 
actions, including per-flow or per-packet parsing, 
monitoring, and state maintenance. Therefore, 
such applications must trade-off between mem-
ory requirements and performance. Solutions 
that increase the memory size or add an exter-
nal memory have been proposed to overcome 
the memory limitation. Although valid, the for-
mer increases the consumption of the chip area, 
which in turn affects the packet processing speed. 
Instead, the latter introduces extra latency and, 
thus, makes the programmable data planes unsuit-
able for tactile applications. Lastly, the computing 
limitations of state-of-the-art devices – e.g., 12 
stages per pipeline and two to four pipelines 
per device in Barefoot Tofino switches – restrict 
the implementation of network functionalities in 
the data plane. Furthermore, the programmable 
devices are bound to basic operations – e.g., 
addition and subtraction – limiting the type of 
data plane applications and their extent. Apply-
ing AI-based security mechanisms that require 
complex operations – e.g., multiplication, division 
– becomes challenging and bound to the devices’ 
hardware design.

AI-Based In-Network Security Mechanisms
In the last decade, Machine Learning (ML) and, 
more generally, Artificial Intelligence (AI) algo-
rithms have been widely explored for network 

security tasks. Here, AI facilitates the construc-
tion of security systems by increasing resilience 
and the ability to detect multiple vulnerabili-
ties. Additionally, intelligent security systems are 
easily adaptable to the environment and vulner-
ability pattern changes. Only recently, academia 
and industry are investigating security solutions 
that engage AI algorithms in the programmable 
devices – i.e., switches and smartNICs – located 
on the data plane.

To date, AI in the programmable data planes 
covers various security tasks, including traffic and 
node classification, intrusion and anomaly detec-
tion, and Denial of Service (DoS) and Distributed 
Denial of Service (DDoS) attack detection. As 
shown in Figure 2, the programmable data planes 
can be leveraged to execute different stages of 
the AI-based security mechanisms—i.e., fea-
ture extraction and processing, model training 
and deployment, results and the corresponding 
response. In particular, the feature extraction and 
processing stage extracts relevant features from 
incoming packets. Generally, such features are 
mainly collected on a per-packet basis—e.g., the 
protocol type, the packet length, or port num-
ber. Conversely, there exist also a class of features 
that can be extracted on a per-flow basis. That is, 
data from a set of packets on a communication 
flow are examined for calculating the desired fea-
tures—e.g., number of packets, the variance of 
packet length, or flow duration [3]. In a program-
mable device, the per-packet feature extraction 
process is accommodated in the parser module 
of the ingress pipeline, which extracts the features 
from the packet headers. Instead, per-flow fea-
tures that correspond to an aggregation operation 
– e.g., count – can be represented via predeter-
mine update rules on match-action tables, while 
summary operations – e.g., maximum, minimum, 
variance – are more complex and still achievable 
in the programmable devices pipeline [3]. Instead, 
the model training stage is primarily integrated 
into a central node in the control plane since it 
requires more resources to train complex models. 
In general, deploying the trained models in the 
network is bound to the availability of the under-
lying hardware architecture—e.g., type of tables 
or memory resources. To this end, an additional 
external device or the default match-action tables 

FIGURE 1. The workflow for an RMT-switching architecture comprises the ingress and egress pipelines. Each packet flowing on the pipe-
lines traverses a parser, match-action stages, and a deparser.

To date, AI in the programmable data planes covers various security tasks, including traffic and node 
classification, intrusion and anomaly detection, and Denial of Service (DoS) and Distributed Denial of 

Service (DDoS) attack detection.
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on the switch accommodate the trained model. 
Lastly, upon an inference on the incoming packet, 
a response is activated accordingly. In program-
mable network devices, such stage corresponds 
to the switch port assignment—i.e., if the packet is 
malicious, it is dropped. Otherwise, it is forwarded 
to the assigned port.

The AI algorithms for security mechanisms 
can be deployed in the programmable data 
planes following one of the three fashions: (i) 
leveraging available resources → commonly, the 
switch lookup match-action tables or registers, 
(ii) memory saving → lightweight algorithm or 
alternative memory saving data structures, and 
(iii) changing the hardware design → add sup-
plementary hardware or change the underlying 
hardware design. Table 1 summarizes the state-
of-the-art AI-based security mechanisms for 
three security tasks—i.e., DDoS detection, traffic 
classification, and anomaly detection. For the 
straightforward (i) technique, the ML and AI 
algorithms are mainly represented as match-ac-
tion tables [3], [4], [5], [6], where each table 
performs a simple operation while complex 
operations are usually distributed into multiple 
steps. In this fashion, some solutions also use 
the registers to count and store statistical feature 
values that are eventually adopted for detec-
tion and defense mechanisms [7]. Nevertheless, 
such a technique presents limitations regard-
ing the type of operations and their respective 
complexity, mainly due to the required memory 
consumption. Instead, the (ii) technique mainly 
compresses the underlying algorithms to make 
them suitable for constrained programmable 
devices. The Binary Neural Networks (BNNs) 
are mainly used since they are proposed for 
the constrained battery-powered edge devices 
[8]. Another explored method encompasses the 
Neural Network (NN) into the programmable 
devices following a distributed fashion [9]. In 
particular, the neurons of the NN layers are allo-
cated in multiple devices and coordinated for 
a complete operation. Additionally, to ease NN 
deployment, some proposals engage new data 

structures – e.g., flow accumulator [10] or count 
sketch – to optimize the memory allocation. All 
the above attempts yield scarce performance 
compared to (i) technique since the models are 
simplified and, thus, lose accuracy. Lastly, the (iii) 
technique bypasses the limitations introduced by 
the programmable devices by equipping them 
with additional hardware [11] – e.g., accelerators 
– that enable the use of complex AI algorithms 
for security tasks. Alternatively, new hardware 
is added in the device pipeline where the AI 
algorithms [12] are offloaded. Although valid, 
adding accelerated devices in the network infra-
structure introduces a relevant deployment and 
maintenance cost for the network operator as it 
requires specialized skills and vendor assistance. 
Since the goal of this article is to investigate the 
feasibility of AI in non-accelerated programmable 

Security Task Reference AI model Deployment Approach AI Model

DDoS Detection

[5] (i) Available Resources Match-action Tables RF, SVM, KNN, RNN

[6] (i) Available Resources Match-action Tables RF, KNN, SVM, NN

[7] (i) Available Resources Count-sketch data structure Entropy

Traffic 
Classification

[4] (i) Available Resources Match-action Tables DT, SVM, NB, K-Means

[3] (i) Available Resources Match-action Tables DT, RF

[10] (ii) Memory Saving
Flow Marker Accumulator data 
structure

MNB, XGBoost, RF

Anomaly 
Detection

[8] (ii) Memory Saving
Lightweight BNN with bitwise 
logic functions

Binary NN

[9] (ii) Memory Saving Distribute NN neurons NN

[11] (iii) New Hardware Design Attach an accelerator NB, NVB

[12] (iii) New Hardware Design
Complex operations with 
map-reduce

SVM, DT, RF, NN, K-Means

TABLE 1. AI-based Security Mechanisms. Legend: RF-Random Forests, 
DT-Decision Tree, KNN-K Nearest Neighbors, SVM-Support Vector 
Machine, NN-Neural Network, RNN-Recurrent Neural Network, NB-Naive 
Bayes, MNB-Multinomial Naive Bayes, and NVB-Naive Variational Bayes.

FIGURE 2. Generally, an intelligent security mechanism encompasses four stages: feature extraction and processing, model training, 
model deployment, and response stage. Programmable network devices can be leveraged to support these stages – e.g., the 
parser and match-action tables for the former stage; the computation power and resource availability of the controller can be lever-
aged to train the AI model; powerful external devices or the switches tables can enable the model deployment; and lastly, after the 
model inference, the switch follows the decision rules rather forward or drop the packet.
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network devices, we consider only commod-
ity ASIC switches and smartNICs for further 
investigation.

AI Solutions in Programmable Networks: 
Challenges and Security Risks

The most significant challenges identified for 
deploying AI-based security mechanisms in 
programmable data plane devices include the 
quarrel between the AI models’ complexity and 
the constrained nature of such devices. Here, 
we emphasize that our analysis takes into consid-
eration two prototypes of network devices—i.e., 
Barefoot Tofino switches and Netronme smart-
NICs. Indeed, these two prototypes represent 
the mostly explored network devices for in-net-
work AI deployment, since they are fundamental 
components in the network that perform packet 
processing and recently, are increasingly embody-
ing multiple programmable features. Therefore, 
we here investigate if and to what extent these 
network devices can perform as an accelerator. 
While most of the ML and AI models require 
complex operations and considerable memory 
resources, the above-mentioned programmable 
devices only support simple arithmetic operations 
– e.g., addition, subtraction, shift – and logical 
or relational operations in few operation steps. 
Instead, in terms of memory the smartNIC Netro-
nome NFP4000 offers a 4MB SRAM for the 
Internal Memory Unit (IMU) while the Barefoot 
Tofino switch enables a 100MB SRAM.

On the other hand, deploying the primarily 
used algorithms for inference – i.e., Decision Tree 
(DT), Support Vector Machine (SVM) and NN – 
demands floating-point support, while for some of 
them – i.e., SVM and NN – requires multiplication, 
division and matrix operations [1]. Generally, the 
need for more support for such operations lim-
its the type of algorithms and their application 
scenarios in the considered data plane devices. 
Furthermore, such limitation is commonly trans-
lated into a trade-off situation—i.e., the accuracy 
and performance are sacrificed to adapt AI 
models on the data plane devices. From the AI 
perspective, the feature extraction phase requires 
per-packet or per-flow examination at line rate for 
obtaining the required traffic features. Addition-
ally, the feature processing engages additional 
operations on the obtained features. For exam-
ple, calculating the per-flow packet distribution 
requires calculations on the data observed in the 
specified time window. All the operations men-
tioned above require state preservation on the 
underlying programmable data plane devices, 
translating into additional overhead and increasing 
communication and processing latency. Addition-
ally, the memory size affects the number of states 
and flows that can be stored and processed in the 
data plane devices.

From the security and privacy perspective, 
using the AI models for network security tasks 
presents several peculiarities. Generally, delegat-
ing the detection and prevention security tasks to 
the switching devices opens the door for flooding 
attacks where the switches are overloaded with 
invalid requests and, thus, unable to provide the 
detection process. In addition to such issues, using 
AI algorithms to design data-driven mechanisms 

exposes the network to other issues, mainly mali-
cious activities that compromise the model’s 
integrity, user privacy, and system performance. 
One of the demonstrated shortcomings for the 
AI-based mechanisms relates to the model infer-
ence perturbations triggered by slightly modified 
input data. For example, the Generative Adversar-
ial Networks (GAN) are broadly used to generate 
malicious samples that lead to classification errors 
by the attack detection mechanism, thus modi-
fying the model’s integrity. Such an adversarial 
activity leads to an incorrect network state that 
tricks reliability and availability. Another demon-
stration of the issues presented by the AI-based 
mechanisms concerns the implementation and 
deployment of the AI models in the considered 
programmable devices, commonly using the 
high-level language—i.e., Programming Protocol-in-
dependent Packet Processors (P4). Indeed, P 4 
has diminished the complexity of designing and 
implementing the desired network applications 
compared to the hardware-specific languages that 
tend to be more prone to the error. However, 
being a high-level programming language, P 4 is 
still exposed to code-oriented vulnerabilities that 
the adversarial might exploit. Instead, from the 
training perspective, the adversaries can manip-
ulate the AI models by leveraging the so-called 
backdoors, influencing the training process, and 
implanting the adversarial samples.

Our Vision
The constrained nature of programmable 
devices can be bypassed by delegating the train-
ing process of AI models in the control plane. 
Indeed, existing state-of-the-art solutions that 

ML Algorithm Score
Rule Extraction 
Algorithm

Score

MLP Classifier 75% CART 72.3%

RuleCOSIClassifier 98% RuleCOSI+ 95%

FCNetForHypinv 75.5% HYPINV 63.2%

DeepRedFCNet 77.2% DeepRED 70.2%

Decision Tree Classifier 72.6% REfT 72%

Gradient Boosting Classifier 98% TE2Rules 98%

TABLE 3. ML baseline VS Rule extraction algorithm 
for the CTU-2013 dataset.

ML Algorithm Score
Rule Extraction 
Algorithm

Score

MLP Classifier 84% GridEx 80.5%

MLP Classifier 84% CART 80.4%

RuleCOSIClassifier 98% RuleCOSI+ 97%

FCNetForHypinv 88.4% HYPINV 71.4%

DeepRedFCNet 87% DeepRED 78.8%

Decision Tree Classifier 90% REfT 79.4%

Gradient Boosting Classifier 98% TE2Rules 97.5%

TABLE 2. ML Baseline VS Rule extraction algorithm 
for the CSE-CIC-IDS2018 dataset.
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overcome the computational limitations offload 
the heavy calculation burden to the control 
plane or an external CPU. Although valid, the 
proposed scheme only scales in large scenarios 
with many devices that require updates from 
the control plane, thus adding communication 
latency. Similarly, large extensions of SRAM or 
TCAM can be considered for the memory con-
straints, which comes at a high cost for gaining 
some flexibility and scalability. Nevertheless, 
such a solution should be adequately designed 
to minimize the scheduling from and to the 
extended memory.

Given the current advancements in the inte-
gration of AI-based security mechanisms in the 
programmable network devices, we raised a 
fundamental question: Is AI always preferred for 
securing the networks? The answer to the above 
question can be positive and negative depend-
ing on the nature of the task to be solved, the 
dimension of the underlying network, and various 
constraints. Arguably, AI-based mechanisms are 
best conceptualized for complex tasks – e.g., image 
processing, text processing – where automating is 
paramount. Instead, for most network security 
tasks, AI can be used alternatively. However, that 
is not always the case. For example, consider an 
industrial cyber-physical system composed of 
many devices – e.g., IoT sensors – deployed in a 
distributed fashion. In such a scenario, following a 
data-driven approach to building a security mecha-
nism – e.g., an anomaly detection system – would 
be reasonable since its primary purpose is to scale 
the detection in all the networks composed of 
distributed devices. In the context of accommo-
dating the AI-based security mechanisms in the 
programmable network devices – e.g., switches 
and smartNICs –, the answer for most of the cases 
is: programmable devices do not really dream of 
AI [4]. And, to make matters worse, reaching 
the 1 ms round-trip-time communication latency 
requirement for tactile Internet leveraging the pro-
grammable network devices becomes beyond 
the bounds of possibility. Recall the previous 
example of the industrial cyber-physical system. 
According to [13], running the AlexNet model for 
inference requires an overall time of 96ms on the 
single sample, which is beyond the tactile Internet 
latency requirements. In a more real implemen-
tation on a smartNIC, [8] reports the feature 
extraction and inference for running a three layer 
BNN requires 50μs. Therefore, using AI models in 
such a scenario would reach the 1ms latency in 
less than 20 communication hops. Additionally, 
such a latency number is achieved thanks to the 
use of BNN models, that sacrifice the accuracy – 
i.e., 80% in a binary classification task – for making 
the model more lightweight. In this perspective, 
another question is: Is it needed to deploy the AI 
model in each hop on the network? To provide an 
answer, more research should be placed to study 
where to place the AI-based security mechanism 
in order to reduce the network latency.

Given the considerations mentioned above, 
our vision for the future of the integration of AI 
in the programmable devices for network security 
tasks branches in two directions:
•	 Is AI an Indispensable Tool? → Make it sim-

ple! To deal with the constraints regarding 
the supported computational operations and 

memory, the programmable devices would 
better prefer more lightweight solutions 
while also providing good performance and 
low overhead. To this end, we envision the 
adoption of explainable AI (xAI) techniques 
to interpret the model’s rules correctly. In 
particular, the symbolic and sub-symbolic 
knowledge extraction from the trained AI 
models [14] enables the rule extraction that 
can be combined with expert knowledge 
for providing a more robust security mech-
anism. Here, the extracted information from 
the models is mainly expressed as logic rules 
that can be represented as a concatenation 
of feature conditions in the pipeline of the 
programmable devices. Such simple logic 
rules cannot capture the complexity of the 
original model and provide the same accu-
racy. However, representing such simple 
rules requires less computation and mem-
ory overhead than the required complexity 
to represent the model itself. For a better 
understanding, consider a Random Forest 
(RF) model, with N trees trained using M 
features for a DDoS detection mechanism 
using the detection dataset. Most state-of-
the-art techniques represent such a model 
by creating M match-action tables and N 
processing pipelines on the switch. Con-
versely, using the symbolic rule extractor on 
the trained model would yield logic rules of 
the following form: dataset(PacketLength, 
SrcIP, TCPSrcPort, TCPDstPort, UDPSrcPort, 
UDPDstPort, ATTACK):- PacketLength > 1.5, 
SrcIP in [192.168.1.103 - 192.168.4.118], 
TCPSrcPort in [17, 25], which are indeed 
simpler to be transferred to the network 
devices. Without loss of generality, the use 
of rules enables the common ML models 
and NN to be still used for security tasks, 
making them simple and suitable for pro-
grammable devices. To show to what extent 
these rules represent the baseline ML mod-
els, we first select a group of state-of-the-art 
rule extraction algorithms and two datasets 
containing per-packet and per-flow features, 
respectively. Then, we compare the accu-
racy of ML baselines and the set of rules 
extracted using the underlying extraction 
algorithms. Tables 2 and 3 depict the results. 
As expected, there is some acceptable accu-
racy drop when the symbolic rules are used 
instead of the ML classifier. Interestingly, 
some of the algorithms – e.g., RuleCOSI+ 
and TE2Rules – can maintain the same accu-
racy as the baselines, confirming our vision.

•	 Is AI a Preferable but Not an Indispensable 
Tool? → Keep things simple! On the other 
hand, if AI is not an indispensable tool to 
enable network security mechanisms, then 
simpler techniques should be used. Wolsing 
et al. [15] argue that industrial intrusion detec-
tion systems can perform proportionately to 
state-of-the-art, i.e., sufficient, independent, 
meaningful, portable, local, and efficient AI 

In particular, we envision the use of explainable AI techniques whenever the AI-based security 
mechanisms are indispensable or simpler non-AI mechanisms otherwise.
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based systems. All the more so, such reflec-
tion must be adopted for programmable net-
work devices where simplicity is appreciated.

Conclusion
This article presents the security mechanisms in 
the programmable network devices that leverage 
the ML and AI algorithms. The article argues that 
the ML and AI pipelines suit the programmable 
device’s pipeline. However, such devices have 
limited computation and memory resources, mak-
ing the deployment of the learning-based models 
cumbersome. While presenting the intrinsic issues 
for adopting AI for security in programmable 
devices, the paper looks ahead by furnishing a 
novel vision of how to deal with these issues. 
In particular, we envision the use of explainable 
AI techniques whenever the AI-based security 
mechanisms are indispensable or simpler non-AI 
mechanisms otherwise. Lastly, we preliminary 
evaluate the proposed vision over state-of-the-art 
network security datasets and extraction algo-
rithms, confirming its validity.
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