
 
 

Delft University of Technology

An improved ghost-cell sharp interface immersed boundary method with direct forcing for
particle laden flows

Maitri, R.V.; Das, S.; Kuipers, J.A.M.; Padding, Johan; Peters, E.A.J.F.

DOI
10.1016/j.compfluid.2018.08.018
Publication date
2018
Document Version
Accepted author manuscript
Published in
Computers & Fluids

Citation (APA)
Maitri, R. V., Das, S., Kuipers, J. A. M., Padding, J., & Peters, E. A. J. F. (2018). An improved ghost-cell
sharp interface immersed boundary method with direct forcing for particle laden flows. Computers & Fluids,
175, 111-128. https://doi.org/10.1016/j.compfluid.2018.08.018

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.compfluid.2018.08.018
https://doi.org/10.1016/j.compfluid.2018.08.018


An improved ghost-cell sharp interface immersed

boundary method with direct forcing for particle laden

flows

R. V. Maitria, S. Dasa, J. A. M. Kuipersa, J. T. Paddinga,b, E. A. J. F.
Petersa,∗

aMultiphase Reactors Group, Department of Chemical Engineering and Chemistry,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The

Netherlands
bIntensified Reaction and Separation Systems, Department of Process and Energy, Delft

University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands

Abstract

In this paper, an accurate and stable sharp interface immersed bound-

ary method(IBM) is presented for the direct numerical simulation of particle

laden flows. The current IBM method is based on the direct-forcing method

by incorporating the ghost-cell approach implicitly. An important feature of

this IBM is the sharp representation of the solid surface, contrary to other

variants of IBM for freely moving particles in which the solid surface is dif-

fuse. Moreover, a correction of the diameter is not necessary for obtaining

accurate results. The current ghost-cell IBM is stable because spurious os-

cillations incurred due to discontinuity in the pressure and velocity field in

moving particle simulations is avoided. An algorithm for accurate torque

computation is developed. The proposed algorithm is verified by comparison

to an analytical expression and is shown to give a substantial improvement
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over the existing method. Finally, the present IBM is validated for various

test cases of single and multi-particle systems and is shown to be accurate

and robust for a wide range of flow conditions.

Keywords: Immersed boundary method, Ghost cell approach, Particle

laden flow, Projected area, Torque computation, Spurious oscillations

1. Introduction

The numerical simulation of fluid-particle flows is important for many

engineering applications as well as for the fundamental understanding of

particle-laden flows. Applications include fluidized beds in the chemical pro-

cess industry, oil and gas extraction processes like hydraulic fracturing, bi-

ological and environmental flows, and many more. The simulation of such

systems requires a robust, efficient and accurate numerical model.

Traditionally, numerical methods with a body-fitted mesh are used to

obtain a higher accuracy. However, this approach is computationally expen-

sive in case a large number of moving particles is present since it requires

generation of the grid after every few time steps. An efficient alternative to

simulate systems involving a large number of moving particles is to use a

fixed Cartesian grid embedding the I(mmersed) B(oundary) M(ethod). IBM

was initially proposed by Peskin [1] to simulate blood flow in heart valves.

Since then it has been adopted for a wider range of applications by improv-

ing the model. The advancements in the immersed boundary approaches are

summarized in several review papers [2, 3, 4, 5].
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The essence of the IBM is that the momentum equation for the fluid

phase is modified to impose the no-slip boundary condition on the surface of

the solid particle. This requires a forcing term to be added to the momen-

tum equation for the fluid phase. Originally, Peskin [1] proposed a feedback

forcing for this purpose. This approach was later used for non-deformable

solid objects by Goldstein et al. [6] and Saiki and Biringen [7]. The major

drawback of this method is that it contains free parameters which must be

tuned according to the flow under consideration. Moreover, this approach

poses a severe restriction on the time step size to avoid spurious oscillations

in unsteady flows.

To work around this problem, Mohd-Yusof [8] proposed a direct forcing

approach which does not require free constants. Mohd-Yusof [8] used this ap-

proach in a spectral code by applying a forcing on the solid boundary or inside

the solid. The method is classified as direct forcing because the magnitude

of the forcing term is based on the difference between the interpolated fluid

velocity at the particle’s surface and the desired velocity to be imposed at the

same location. Fadlun et al. [9] implemented the direct forcing approach in

a fully three-dimensional finite-difference framework and demonstrated that

the direct forcing is more efficient than the feedback forcing. Fadlun et al. [9]

used a forcing on the first fluid node next to the solid surface. The velocity at

the immediate fluid node is obtained by linear interpolation of the velocity at

the solid surface and the second fluid node from the solid surface. Since the

velocity at the second fluid node is unknown, it is obtained by directly solving
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the Navier-Stokes equation. The direct forcing approach of Mohd-Yusof [8]

was later used by Kim et al. [10] in a finite-volume framework by improving

mass conservation on the solid boundaries. An alternative sub-method of

direct forcing, named ghost-cell immersed boundary method, is also used by

some researchers [11, 12] for complex geometries. In this method, the ghost

cell (solid node which has at least one neighbouring fluid node) is given a

velocity such that the interpolated velocity at the solid surface is equal to

the desired velocity to be imposed. This approach has been used to model

solid objects in multiphase flows [13, 14, 15] as well as for moving boundary

problems [16, 17, 18].

All the methods listed above are for static objects or moving objects

whose motion is predefined and does not evolve based on the fluid forces

acting on them. The seminal paper by Uhlmann [19] proposed a new IBM

for moving particles which combines the direct forcing approach with the

interpolation of forcing term from the Lagrangian marker points on a solid

surface to Eulerian fluid nodes using a regularized delta function. This ap-

proach replaces the sharp interface of a particle by a porous shell of a width

equivalent to the implemented delta function. As the Lagrangian marker

points are located on the particle surface, half the width of the delta func-

tion lies outside the particle surface, thereby increasing the effective diameter

of the particle and leading to an increase in the drag experienced by the par-

ticle. However, it was shown by Uhlmann [19] that the increased width of

the delta function reduces oscillations and increases the stability. Another

drawback of this method is its instability for applications where the parti-
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cle density is close to the fluid density. The method of Uhlmann [19] has

been improved by Kempe and Fröhlich [20] by avoiding a problematic factor

1/(ρp − ρf ) through numerical integration of a volume integral instead of

a rigid body assumption in solving the particle’s equation of motion. This

approach allows to simulate systems with density ratio ρp/ρf ≥ 0.3, which

removes the instability associated with neutrally buoyant particles. Later,

Schwarz et al. [21] and Tschisgale et al. [22] further improved the immersed

boundary method to simulated even lower density ratios. Breugem [23] ex-

tended the IBM of Uhlmann [19] by implementing the approach of Yu and

Shao [24] for retracting the location of the Lagrangian marker points on the

particle surface to increase the accuracy of the method. A generalized ap-

proach, which uses a calibration of the retraction distance as a function of

local Reynolds number and solids volume fraction, was developed by Tang

et al. [25] and accurate results were obtained for the flow in monodisperse

arrays of spheres. Breugem [23] also implemented the multidirect forcing

scheme of Luo et al. [26] and Kriebitzsch et al. [27] to improve enforcement

of the no-slip boundary condition on the particle surface.

An alternative methods without the need of a calibration of a particle

diameter have been proposed [18, 28]. It can be expected that a sharp repre-

sentation of a particle alleviates the problem of a diffuse interface. However,

the major challenge associated with sharp interface methods is the spurious

oscillations near the solid surface, especially for moving boundaries. Dif-

ferent reasons are reported in literature for the cause of these oscillations.

Lee et al. [29] reported two main reasons: One is associated with the spa-
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tial discontinuity in the pressure field for freshly cleared cells (solid cells

becoming fluid cells) whereas the second reason is related to the temporal

discontinuity in the velocity field for the case of freshly occupied cells (fluid

cells becoming solid cells). Moreover, Seo and Mittal [30] emphasized that

the local mass conservation error near the immersed boundary is the main

source of these oscillations. There have been efforts to mitigate these draw-

backs by using a field extension method [31, 32] to obtain a physical value

of flow variables at freshly cleared cells, applying local mass source and sink

terms [33] or using a cut cell method [30] for better mass conservation. Al-

though these methods have been successfully applied for complex moving

boundaries, particulate flows with freely moving particles, where the par-

ticles’ motion is determined by the flow field around them, is not widely

simulated using sharp interface IBMs. Uhlmann [19] commented that sharp

interface methods lead to force oscillations due to lack of smoothing and are

undesirable for moving particle simulations. Kempe and Fröhlich [20] also

support the claims of [19] and mention that there is a need of at least two

or more orders of magnitude of grid cells across the particle diameter to ob-

tain accurate results. However, Deen et al. [18] used a ghost cell method

by implementing the sharp-interface approach and validated the model with

the resolution of Dp/h = 15 for hydrodynamic test cases where the Reynolds

number was below 40. Later, this model [18] was used to simulate a liquid

fluidized bed. Ghost cell method of Deen et al. [18] is similar to the basic

idea presented by Tseng and Ferziger [12] but [12] uses a boundary forcing

term for ghost cells whereas Deen et al. [18] modifies the discretized fluid

momentum equation and does not include any explicit forcing term. Mittal
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et al. [17] also uses the approach of modifying discretized momentum equa-

tion based on the multidimensional interpolation by considering the image

point in the normal direction of the surface. However, Deen et al. [18] uses

one-directional extrapolation to maintain a compact structure of the stencil

for a momentum equation. The issue of spurious oscillations is not investi-

gated by Deen et al. [18]. In the current paper, the ghost cell method of Deen

et al. [18] is modified to increase its accuracy and stability. Investigation of

spurious oscillations is performed using modified method for moving particle

case. Finally, this improved model is verified and validated for various test

cases to prove its wide range of applicability without severe restrictions on

time step or grid resolution.

2. Governing equations

In two phase particle-laden flows, the fluid phase is described by the

Navier-Stokes equations along with the continuity equation, whereas the solid

phase is described with the Newton-Euler equations.

2.1. Fluid phase:

The governing equations for incompressible Newtonian fluid flow are:

∇ · u = 0 (1)

ρf

(
∂u

∂t
+∇ · uu

)
= −∇pa −∇p+ µf∇2u (2)
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Here: u = (u1, u2, u3) represents the velocity vector along the (x, y, z)

coordinates, respectively. ∇pa represents the constant pressure gradient ap-

plied to drive the flow; the dynamic pressure p = (ptotal− pa− phydrostatic). ρf

and µf are the density and dynamic viscosity of the fluid, respectively.

2.2. Solid phase:

The surface velocity (Up) at a given location is obtained from particle’s

translational and rotational velocities:

Up = up +ωωωp × r (3)

The position vector (r) points from the particle centre-of-mass to the

given location (x) on the particle’s surface:

r = x− xp (4)

xp, ωωωp and up are centre-of-mass location, angular velocity and transla-

tional velocity of the particle, respectively. The time evolution of up, xp and

ωp is given by the following equations:

ρpVp
dup

dt
= −

∮
dS

τττ · n dA−
∮
dS

pn dA− Vp∇pa + (ρp − ρf )Vp g + Fs→p (5)

dxp

dt
= up (6)

Ip
dωp

dt
= −

∮
dS

r× (τττ · n) dA+ Ts→p (7)
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In these equations, Fs→p and Ts→p are the force and torque exerted on a

particle by another particle or the wall in the form of (sub-grid scale) lubri-

cation or collision mechanisms. The immersed boundary method is used for

fluid equations in the vicinity of the solid surface. The current IBM imposes

the no slip boundary condition on the particle surface by modifying the dis-

cretized form of the momentum equation.

3. Numerical method

3.1. Fluid phase

In this section, the implemented immersed boundary method is explained

in detail. The current IBM does not use a forcing term in the Navier-Stokes

equation but the coefficient matrix of velocities that arises from discretizing

the NS equation is modified for grid cells near solid surfaces. The given

equations are discretized on a uniform, staggered Cartesian grid using the

finite-volume method. The temporal discretization of the convection and

diffusion terms is carried out by a second order accurate Adams-Bashforth

and Crank-Nicolson method, respectively. The spatial derivatives are treated

with the central-difference scheme.

un+1 = un +
∆t

ρf

[
−∇pn+1 −∇pa −

(
3

2
Cn − 1

2
Cn−1

)
+

1

2

(
Dn + Dn+1

)]
(8)

where C = ρf∇ · uu and D = µf∇2u. The solution for the un+1 is

obtained in two steps. First, a predicted velocity u∗ is obtained using the

pressure field (pn) at the old time step, as shown in Eq. 9, and then the final
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velocity (un+1) is computed by including the corrected pressure (Eq. 10)

which is obtained by solving the Poisson equation (Eq. 11).

u∗ = un +
∆t

ρf

[
−∇pn −∇pa −

(
3

2
Cn − 1

2
Cn−1

)
+

1

2
(Dn + D∗)

]
(9)

un+1 = u∗ − ∆t

ρf
∇p̃ (10)

∇2p̃ =
ρf
∆t
∇ · u∗ (11)

pn+1 = pn + p̃ (12)

Figure 1: Representation of the stencil in 2D.

The algebraic representation of Eq. 9 is:

acui,c +
∑
nb

anbui,nb = bc + bdiff (13)

ac represents the coefficient of the velocity (ui) at the central node (‘c’)

for which the algebraic equation is formed. i = (1, 2, 3) represents the direc-

tion of velocity along the (x, y, z) direction, respectively. anb (nb = w, e, s, n
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in 2D) are coefficients for the velocities at neighbouring nodes of the central

node. The schematic is shown in Fig. 1 for a 2D case. The right hand side of

Eq. 13 is the summation of all explicit terms shown in Eq. 9. The separate

representation of the contribution of the diffusion terms and the remaining

terms is for the implementation of the Crank-Nicolson scheme in the current

immersed boundary method (hence the usage of D∗ in Eq. 9). The essence

of the current IBM is based on the modification of Eq. 13 considering the

presence of a nearby solid particle or not. In the whole flow domain, there

will be three different cases, as discussed below.

Case 1 - Fluid node not in the vicinity of a solid particle:

Since there is no solid node near these nodes, we have a standard equation

as in the single phase flow solver. The coefficients and the explicit terms are

given by the following equations:

anb = − ∆t

2∆x2
j

µf ac = ρf −
∑
nb

anb (14)

where ∆xj depends on the direction in which the given neighbouring node

resides.

bc = ρfui
n −∆t

[
∂pn

∂xi
+
∂pna
∂xi

+

(
3

2
Ci

n − 1

2
Ci

n−1

)]
(15)

bdiff =
∆t

2
µf∇2ui

n (16)

Case 2: Fluid node in the vicinity of a solid particle
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Figure 2: Representation of the fluid node neighbouring a single solid node.

In this case, the central node is still in the fluid but there exists at least

one neighbouring node residing in the solid particle, as shown in Fig. 2. The

basic idea of the current method is to represent the velocity at the solid node,

i.e. (ui,w) by second order extrapolation based on the velocity at the particle’s

surface (Up(x1)), central node velocity (ui,c) and the velocity of the following

fluid node in the same direction (ui,e). However, the velocity at ‘c’ and ‘e’ still

needs to be solved. Therefore, the extrapolated value of ui,w as represented

in Eq. 18 is put in Eq. 13. Now, the ui,w is eliminated from Eq. 13 and

its contribution is reflected by modification of coefficients for ui,c, ui,e as well

as the explicit terms. Eq. 17 shows the modified equation and the underly-

ing mathematics for the modified terms is given in Eqs. 19 - 21. It should

be noted that the modification of the coefficients changes the contribution

of the diffusion terms which has to be modified also for the explicit part of

the diffusion to maintain the accuracy of the Crank-Nicolson scheme (Eq 21).
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a∗cui,c +
∑
nb

a∗nbui,nb = b∗c + b∗diff (17)

case A: Only one neighbour in the solid particle

ui,w = − 2ξ1

1− ξ1

ui,c +
ξ1

2− ξ1

ui,e +
2

(1− ξ1)(2− ξ1)
Up,i(x1) (18)

a∗c = ac − aw
2ξ1

1− ξ1

; a∗e = ae + aw
ξ1

2− ξ1

; a∗w = 0 (19)

b∗c = bc − aw
2

(1− ξ1)(2− ξ1)
Up,i(x1) (20)

b∗diff = −

(∑
j 6=w

a∗ju
old
i,j − ρfuoldi,c

)
− aw

2

(1− ξ1)(2− ξ1)
Up,i(x1) (21)

case B: Two neighbours in the solid particle

In this case, there are two neighbouring solid nodes - one in each di-

rection, as shown in Fig. 3a. The extrapolation used in the current IBM

is unidirectional, hence it allows us to modify the coefficient separately for

each direction for this specific case. The coefficient and explicit terms are

modified as shown in the Eqs. 22 - 25. The expressions for ui,w, a∗e and a∗w

are exactly same as for case A.

ui,s = − 2ξ2

1− ξ2

ui,c +
ξ2

2− ξ2

ui,n +
2

(1− ξ2)(2− ξ2)
Up,i(x2) (22)
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a∗c = ac − aw
2ξ1

1− ξ1

− as
2ξ2

1− ξ2

; a∗n = an + as
ξ2

2− ξ2

; a∗s = 0 (23)

b∗c = bc − aw
2

(1− ξ1)(2− ξ2)
Up,i(x1)− as

2

(1− ξ2)(2− ξ2)
Up,i(x2) (24)

b∗diff = −

(∑
j 6=w,s

a∗ju
old
i,j − ρfuoldi,c

)
− aw

2

(1− ξ)(2− ξ)
Up,i(x1)− as

2

(1− ξ)(2− ξ)
Up,i(x2)

(25)

(a) One in each coordinate direction

(b) Both in same coordinate direction

Figure 3: Representation of the fluid node neighbouring two solid nodes.

In case of a multi-particle system, there will be cases where both solid

nodes are in the same coordinate direction (i.e. w& e or n& s), one in each

particle as shown in Fig. 3b. In these cases, we do not have two fluid nodes

for the second order extrapolation. Hence, linear extrapolation is used based
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on the ui,c and Up,i(x1) for ui,w, and ui,c and Up,i(x2) for ui,e.

It should also be noted that the range of non-dimensional intersection dis-

tance (i.e. ξ) is {0,1}. Hence, terms like (1− ξ) in the denominator will give

large numbers as ξ → 1 and make the simulations unstable causing spurious

oscillations. To make the method more stable, the second order extrapolation

is changed to first order whenever ξ > ξcutoff . The choice of ξcutoff depends

on the trade-off between stability and accuracy. However, it was found that

the stability of the method is maintained even when ξcutoff = 0.999.

Case 3: Solid node:

Having dealt with all the fluid nodes, it leaves us with nodes residing

in the solid particle. In a moving particle system, a given node can be

interchanged between a solid and a fluid for every time step according to

the particles’ location. It is important for these nodes to have a continuous

history, without sudden jumps in the velocity and pressure. For this purpose,

a continuous grid is used without any gaps in the solid region. The velocity

at the nodes residing in the solid phase, including ghost nodes, is imposed

with the velocity of the solid particle at that location (ui,c = Up,i(xc)). The

configuration is shown in Fig. 4. The following equations show the modified

coefficients and explicit terms:

a∗c = 1 , a∗nb = 0 , b∗c = Up,i(xc) , b
∗
diff = 0 (26)

where Up(xc) = up +ωωω × (xc − xp).
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Figure 4: Representation of the solid node.

The described IBM algorithm is programmed in C with parallelization

using the message-passing interface (MPI) for distributed computing on mul-

tiple processors. For the parallelization of the fluid part, a standard domain

decomposition approach is used. The system of linear equations for veloc-

ity and pressure is solved using the Bi-CGSTAB solver for the asymmetric

matrices with PFMG as a pre-conditioner using the hypre library [34].

3.2. Solid phase:

After solving the fluid flow from time step nf to nf + 1, the motion of

solid particles is obtained by solving the Newton-Euler equations. The fluid

forces (viscous and pressure) on a particle are computed at the start of the

time step (F
nf

f→s) and after solving the flow field (F
nf+1

f→s ).

Ff→p =

[
F
nf

vis + F
nf+1
vis

2
+

F
nf
pres + F

nf+1
pres

2

]
(27)
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Tf→p =

[
T
nf

vis + T
nf+1
vis

2

]
(28)

where the subscripts vis and pres refer to viscous and pressure forces,

respectively. These will be dealt with in more detail in the next subsec-

tion. For the cases where sub-grid scale lubrication and collision forces are

acting, a finer time step (∆tdem) is used compared to the fluid time step

(∆tf = n∆tdem) for updating the particle location as well as linear and an-

gular velocities. For all the DEM time steps within a single fluid time step,

the average of the pressure and viscous forces (Eq. 27) and the torque (Eq. 28)

is kept constant. The integration is carried out based on the velocity Verlet

method as follows:

for i = 1:n

up,t
i+1

2

= up,ti +
1

mp

[
Ff→p + Fi

lub + Fi
col + Fbody

] ∆tdem
2

(29)

ωωωp,t
i+1

2

= ωωωp,ti +
1

Ip

[
Tf→p + Ti

col

] ∆tdem
2

(30)

xp,ti+1
= xp,ti + ∆tdem up,t

i+1
2

(31)

ωωωp,ti+1
= ωωωp,t

i+1
2

+
1

Ip

[
Tf→p + Ti+1

col

] ∆tdem
2

(32)

up,ti+1
= up,t

i+1
2

+
1

mp

[
Ff→p + Fi+1

lub + Fi+1
col + Fbody

] ∆tdem
2

(33)

end
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For any variable changing with the DEM step,

(
φn+1

)
nf

=
(
φ1
)
nf+1

(34)

3.2.1. Computation of the drag force on a particle

The drag force and torque on a solid element dS of a sphere with local

(outward pointing) normal n is:

dF = −τττ · n dS︸ ︷︷ ︸
dFvis

− pndS︸ ︷︷ ︸
dFpres

(35)

dT = r× dF = −r× (τττ · n) dS −����
���:

0
(r× n) p dS (36)

Figure 5: Calculation of a fluid force on a solid surface.

For a Newtonian fluid:

τττ = −µf (∇u +∇uT ) (37)

Integrating the force equation for viscous drag on a closed solid surface:

18



Fvis = −
∮
S

τττ · n dS = µf

∮
S

(∇u + ∇uT) · n dS (38)

By applying Gauss’s theorem, the transpose term in Eq. 38 cancels due

to the continuity equation.

Fvis = µf

∮
S

(∇u + ��
�*0

∇uT) · n dS = µf

∮
S

n · ∇u dS (39)

The final expression for the force in the i -direction is:

Fi =

∮
S

dFi =

∮
S

[
µf

(
∂ui
∂x1

n1 +
∂ui
∂x2

n2 +
∂ui
∂x3

n3

)
− pni

]
dS (40)

Original approach:

In the original method of Deen et al. [18], numerical integration of each

term of Eq. 40 is carried out with the following steps:

1. All the fluid nodes are identified which have a neighbouring solid node

in the i -direction.

2. The shear stress at the intersection is computed based on a second

order fit for velocity and extrapolation for pressure in the i th direction,

as shown in Fig. 6. If the distance between x1 and c (i.e. (1−ξ)∆xi) is

close to 0, then the second order fit can give a singularity (ξ = 1). Since,

the particle movement is based on the drag force, an abrupt increase

in the force can cause instability in the code. Therefore, the shear rate

at the particle surface is calculated with a linear fit for ξ > ξcutoff (Eq.

41).
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(a) Shear rate at the surface (b) Pressure at the surface

Figure 6: Interpolation/extrapolation to obtain pressure and shear rate at the solid surface.

∂ui
∂x

(x1) =


1

∆x

(
2−ξ
1−ξui,c −

1−ξ
2−ξui,e −

3−2ξ
(1−ξ)(2−ξ)Up,i(x1)

)
ξ < ξcutoff

1
∆x

(ui,e − ui,c) ξ > ξcutoff

(41)

px1 = (2− ξ) pc − (1− ξ) pe (42)

3. The term ‘ni dS’ is the projected area in the i -direction and it is taken

as ∆Vcell/∆xi.

Improved method :

In the original method, the obtained force values at each fluid cell neigh-

bouring a solid surface were also used for the torque computation. However,

it should be noted that the cancelled term in Eq. 39 will have a contribution

to the torque computed in each cell neighbouring a solid. This term will not

cancel when integrated over a whole surface. Moreover, the contribution of

the fluid force on a solid particle in the highlighted cells as shown in Fig. 10
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Figure 7: Intersection of the Eulerian cell with a spherical particle.

(referred to as missed cells hereafter) is not considered in the original scheme.

First, the inclusion of the transpose term ∇uT in force and torque compu-

tation is explained, followed by the description of a method for considering

the contribution of missed cells.

The viscous force on a particle on a given surface area in the x -direction

with the inclusion of transpose terms is:

dF1,vis = µf

[
2
∂u1

∂x1

n1 dS +

(
∂u1

∂x2

+
∂u2

∂x1

)
n2 dS +

(
∂u1

∂x3

+
∂u3

∂x1

)
n3 dS

]
(43)

The integration of all terms except the underlined in Eq. 43 can be

worked out using the original approach. However, the original approach uses

the complete projected areas even in the case where all fluid edges don’t

intersect the spheres. Moreover, the computation of the underlined terms

involves the computation of projected areas perpendicular to the direction

of traversal, i.e. the x-direction for this example. The projected areas are
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computed through the following steps:

(a) Projected area in y-z plane

(b) Projected area in x-z plane (c) Projected area in x-y plane

Figure 8: Projected geometry on all the planes of a quadrilateral formed by the intersection

points on a sphere.

1. The edges of the neighbouring fluid cells parallel to the x -axis are used

to compute the points of intersection with the sphere (Fig. 7). If all

the four edges intersect with the sphere, projected geometries of these

intersection points in all the planes will be as shown in the Fig. 8

2. The projected area formed by the intersection points (if joined by

straight lines) is denoted by As and is computed using Eq. 44. The
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derivation of this equation is given in Appendix A.

As =
1

2

n∑
i=1

(ri × ri+1) (44)

Here, rn+1 = r1. As = {A1, A2, A3} where Ai is the projected area in

the i -direction.

3. The projected areas can be computed even more accurately by cor-

recting for the curvature and the expression for the modified projected

area, Ac, is given by the following equation as per the derivation in

Appendix A.

Ac = As +
1

2

n∑
i=1

(Mi − 1) [(ri − rc)× (ri+1 − rc)] (45)

Mi =

 1 straight edges

θ
sin(θ)

curved edges

4. The cases where not all four edges intersect with the sphere are shown

in Fig. 9. In these figures, the intersection positions rcut1 and rcut2 can

be obtained analytically since these points lie on the circle formed by

the intersection of a sphere with the plane passing through it’s centre

and perpendicular to the intersecting edges. It should be noted that

in the original method of Deen et al. [18], the complete projected cell

area (i.e.∆y∆z for this case) is considered, which overestimates the real

projected area.

5. In the previous steps, the drag force is calculated for pairs of fluid and

neighbouring solid nodes which confirms the presence of the interface

on the line connecting these nodes. Fig. 10 shows such combinations (•
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(a) 2-edges intersecting (b) 3-edges intersecting

Figure 9: Projected areas in the traversal direction for cases where all the 4 edges don’t

intersect with sphere.

Figure 10: Representation of the the missed cells and the shear rate computation in those

cells.

- fluid, × - solid). However, it should be noted that the highlighted cells

(missed cells) are near a solid particle yet are not accounted for in the
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previous studies. In this case, the projected areas are calculated cumu-

latively for the parts on each side of the centre plane passing through

the sphere. The approximate representation of this case is shown in

Fig. 11. Since we don’t have the intersection points connecting the

node centres for this case, the shear rate is calculated at the same x-

location(xp) as that of the sphere centre (xp) and the y and z-location

same as that of the neighbouring nodes, as shown in Fig. 10. The shear

rate is calculated based on a quadratic fit between the velocity values

whose choice is based on the direction (Fig. 10). With the combination

of the projected area and shear rate, force values can be obtained for

all similar cells.

Figure 11: Projected area in the traversal direction for the missed cells.

6. There is another special case which occurs quite rarely but is still prob-

able. Fig. 12 shows an accurate representation of such a case. Such

type of cells are also ignored in the original method of Deen et al. [18].

The shear rate is calculated for such cells on the nearest intersection

point. Again, the projected areas can be found with the algorithm out-

lined above.

7. This approach is repeated for velocity in each direction with the exten-

sion of traversal direction in y and z direction to compute the d()/dy
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Figure 12: Representation of a case where the particle is present between two fluid nodes.

and d()/dz terms, respectively. These shear rates are then multiplied

with the respective projected areas to get the value of the force and

torque.

The particle-particle and particle-wall collision force and torque values are

computed using the a soft-sphere model of Cundall and Strack [35]. Un-

resolved (sub-grid scale) hydrodynamic lubrication forces are modeled by

following an approach similar to Breugem [36]. In the current approach, the

lubrication force is activated when a particle-wall gap width is closer than

2∆ and a particle-particle gap width is closer than ∆, whereas Breugem [36]

used the activation distance based on the particle size instead of the grid size.

The original method of [18] with extrapolated pressure force computation

in dense system of particles gave instability. Therefore volumetric pressure

force approach was used which uses the pressure value at a neighbouring

fluid cell instead of the pressure at particles’ surface. In current method,

contribution of a pressure force is ignored when an extrapolation involves

pressure inside a solid object and the lubrication model takes care of the

unresolved force. For remaining cases, linear extrapolation is used to get
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the pressure value at the surface of a particle. This approach gives a better

stability and accuracy for multiparticle simulations.

4. Results

In this section, the accuracy of the present IBM is demonstrated for fixed

as well as freely moving particles. Since there is no forcing term associated

with the particle grid in the current IBM, the force and torque have to be

computed on the particle based on the available flow field. The accuracy of

the present model is first verified for a torque computation where the flow

field is prescribed. Later, different test cases are used for the validation of

the complete IBM implementation by solving the flow field and equation of

motion for the particles.

4.1. Verification

In particle laden flows, the particles are always in translational as well

as rotational motion. The force computation by the original IBM of Deen

et al. [18] was validated for the translational motion indicating acceptable

accuracy of the force computation. The original approach works quite well

for the force computation since the contribution of the transpose terms of

Eq. 39 is zero. Moreover, the neglected missed cells have a very small contri-

bution due to their small projected area. However, the IBM method also has

to be verified for the torque computation. The original IBM [18] is improved

in this paper by including the transpose terms and performing accurate com-

putation of the projection areas and consequently, the torque. The following
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test case verifies the accuracy of the improved algorithm.

4.1.1. Torque on a rotating sphere

In this test case, the torque on a sphere which is slowly rotating in a

quiescent fluid (in the Stokes regime) is computed. The analytical expression

of the fluid velocity profile is given by Eq. 46 and the computed torque is

compared with the analytical expression of the torque (Eq. 47) [37] (p. 96).

Pressure does not contribute to the torque since pressure forces are always

directed radially inwards. This test case has been simulated previously by

researchers to test the accuracy of fixed as well as body fitted approaches for

fluid-solid simulations [38, 39].

v = (ωωω × r)

(
Rp

r

)3

(46)

Tp = −8πµR3
pωωω (47)

In this test case, we used: µ = 2 kg/ms , ωωω = (0, 0, 10−3)s−1, Rp = 0.1 m

which gives rise to a torque of 50.265µNm. Table 1 summarises the torque

values obtained using the original method [18] and the improved IBM. It can

be clearly observed that the error in torque value is high for the original IBM,

because the ignored transposed terms contribute 1/3 of the total analytical

torque value. Baltussen [38] extended the original IBM [18] by including

these transpose terms and using the approach that the projected areas scale

proportionately to the magnitude of a normal vector in that specific direc-

tion. However, the contribution of missed cells was not considered in that
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approach. The errors associated with the torque computation of [38] shows

inconsistent convergence behaviour with the grid size. It is also reported that

the error values are above 1% for a relatively fine resolution(Rp/h = 100).

The present algorithm is found to improve the results of torque computations

significantly over both previous approaches. The projected areas calculated

by using the curved edges further improves the results. At a relatively coarse

grid resolution of Rp/h = 5, the error values are only around 3%. These

results fall below 2% when the grid is refined by a factor of two. Since the

present IBM is developed with the aim of simulation of a system with mul-

tiple particles, it is important to have a reasonable accuracy even on coarser

grids. The presented results show that the current approach does not have a

severe restriction on the grid size for obtaining accurate results for the case

of rotating particles.

Table 1: Results for torque on a rotating sphere.

Deen et al. [18] Present (straight edges) Present (curved edges)

Rp/h Torque (µNm) %Error Torque ((µNm) %Error (µNm) %Error

5 34.0 34.34 % 48.0 4.54 % 48.7 3.06 %

10 33.7 33.04 % 49.4 1.78 % 49.7 1.21 %

20 33.5 33.24 % 49.9 0.68 % 50.0 0.46 %

40 33.5 33.32 % 50.1 0.26 % 50.2 0.17 %

4.2. Validation

In this section, more test cases are presented to validate the present IBM

for a wide range of flow regimes.
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4.2.1. Flow through periodic array of spheres

Flow through periodic array of spheres can be simulated using only one

sphere in a cubic box with the periodic boundary condition in all directions.

This assumption holds true as long as the flow is laminar. The simulation

conditions used are similar to the one used by Breugem [23]. The diam-

eter of a sphere is half the length of the cubical domain, corresponding

to a solids volume fraction, εs = π
6

(
1
2

)3 ≈ 0.065. The pressure gradient,

dp/dx = −0.233µfνf/D
3
p, is used to drive a flow. The Reynolds number

based on the average bulk velocity(Ub) is less than 0.1. All the simulations

in this paper, unless specified otherwise, are performed with ξcutoff = 0.95.

Figure 13: Cross-section of a laminar flow through a periodic array of spheres at a grid

resolution of Dp/h = 16.

The simulations are performed for Dp/h = 8, 16, 32, 64. For the compar-
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Table 2: Darcy number and non-dimensional drag force in the system of periodic array of

spheres

Dp/h Da F̄ ∆Da/Da64 (%) ∆F̄ /F̄64 (%)

8 0.29943 2.7141 0.2845 -0.537

16 0.29859 2.7303 0.0014 0.054

32 0.29856 2.7295 -0.0063 0.024

64 0.29858 2.7288 0.0 0.0

ison of results at different grid resolutions, the Darcy number, Da (Eq. 48)

is used.

Da =
µfUb

(−dp/dx)D2
p

(48)

It can be observed from the expression for Darcy number that µf , dp/dx

& Dp are constants for all the simulations. Hence, the variation of Darcy

number eventually represents variation in the bulk velocity, Ub. The flow

profile at a cross-section for Dp/h = 16 is shown in Fig. 13. The results for

Darcy number, non-dimensional drag force and their respective errors are

presented in the Table 2. The associated errors are computed in comparison

with the values obtained at the finest grid (Dp/h = 64). Non-dimensional

drag force is defined as:

F̄ =
Ff→s

3πµDpUb
(49)

Present IBM predicts the results within 1% accuracy even at a grid res-

olution of Dp/h = 8 compared to the grid converged results. Breugem [23],

however, showed that the grid resolution of Dp/h ∼ 20 is required to get

the results below 1 % accuracy. This test case demonstrates an accuracy
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of the present IBM with the sharp representation of a solid surface without

the need of an effective diameter. The simulation of flow through periodic

array of spheres is repeated for the grid resolution of Dp/h = 5 at solids

volume fraction, εs = 0.065, 0.128, 0.303 and the non-dimensional drag force

is compared with the results of Zick and Homsy [40]. Obtained results show

an error between 10 - 15 %. The deviation is in acceptable range and this

resolution is later used for the simulation of a fluidized bed (section 4.2.9).

4.2.2. Sphere in a linear shear flow

In this problem, the lift on a sphere which is kept at a fixed location is

compared with the results of IBM simulations of Kempe and Fröhlich [20]

and the pseudo-spectral code of Bagchi and Balachandar [41]. The simula-

tions are performed for two cases: (i) non-rotating sphere (ii) freely-rotating

sphere.

ux = Sy (50)

Rep =
ρfucDp

µf
(51)

G =
SDp

uc
(52)

Here, S (= 1 s−1) is the shear rate of the flow, G (= 0.2) is the shear param-

eter and Rep is the Reynolds number based on the relative velocity uc of the

fluid at the particle centre. The spherical particle is resolved with Dp/h = 20

and h is 0.01 m. The computational domain is of size 25Dp × 10Dp × 10Dp

with the spherical particle fixed at (10Dp, 5Dp, 5Dp). Free-slip boundary
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conditions are applied on the side walls.

CL =
Fy

1
2
ρfu2

cAc
(53)

The obtained lift coefficients (Eq. 53) for the simulated cases are shown

in Table 3 and compared with literature data. This study uses the lowest

and highest Reynolds number considered by [41] for the comparison. Al-

though results show small deviations, an acceptable agreement is found when

compared with the reference data. Lift coefficient results found in literature

using different numerical techniques generally have more scatter compared to

drag coefficient data and it is important to note that our results fall within

an acceptable range of values. For the freely rotating sphere case, the an-

gular velocity of the sphere normalized with the rotation rate of the fluid

(S/2) is also in an acceptable match with the literature data, as shown in

Table 4. Moreover, the drag force on a particle is computed for the non-

rotating case and the results match quite well with the predictions of [41]

(not shown here). Bagchi and Balachandar [41] simulated another test case

where the torque-free rotation rate obtained from the simulations is imposed

on a particle in a uniform flow of inlet velocity uc and the lift coefficient

is computed. A similar simulation is repeated with the present IBM and

the lift coefficient obtained for Rep = 20 is 0.35. This is in excellent agree-

ment with the value of 0.36 predicted by [41]. These validations establish

the accuracy of the present IBM for rotating as well as non-rotating particles.
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Table 3: Lift coefficient on a sphere in a linear shear flow.

Rep CL,non−rotating CL,rotating

Present Bagchi [41] Kempe [20] Present Bagchi [41] Kempe [20]

20 0.010 0.011 0.012 0.042 0.047 0.053

200 -0.063 -0.058 -0.048 -0.054 -0.047 -0.039

Table 4: Torque-free rotation rate of sphere in a linear shear flow.

Rep ωp/ ωf

Present Bagchi [41] Kempe [20]

20 0.674 0.695 0.694

200 0.154 0.170 0.161

4.2.3. Torque on a rotating sphere

This test case is same as the rotating sphere case in section 4.1 except

that the flow field is solved with the imposed sphere rotation rate(ω) of 10−3

s−1. The simulations are carried out for three different grid resolutions of

Dp/h = 10, 20, 40 with Dp = 0.2 m. The computational domain is of size

8Dp×8Dp×8Dp with the spherical particle fixed at the centre of the domain

- (4Dp, 4Dp, 4Dp). No-slip boundary condition is applied on all walls and

ζcutoff is 0.99. For this test case,

Rer =
ωR2

p

νf
= 0.005 (54)

The comparison of the obtained torque results with the analytical torque

value in the case of infinite domain is presented in the Table 5. The results

are in acceptable agreement for Dp/h = 10 and are in excellent agreement for
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the finer grids. The error associated with Dp/h = 20 is smaller than the finer

grid results of Dp/h = 40. This might be due to a fortunate cancellation of

errors with the torque computation, similar to the observation of Vreman [39].

Table 5: Results for the torque computation for the rotating sphere.

Dp/h 10 20 40

|Tsim−Texact|
|Texact| × 100 5.16 % 0.52 % 1.31 %

10-1 100 101 102 103

Rer

10-1

100

101

102

103

2T
p
/ρ

f
R

5 p
ω
2

Figure 14: Results of non-dimensional hydrodynamic torque as a function of Rer: Eq. 55

(—); Rp/h = 10 (×); Rp/h = 20 (◦).

For the torque on a sphere at higher Reynolds number, Sawatzki [42] per-

formed experimental measurements. Dennis et al. [43] obtained an empirical
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correlation which matches very well with the experiments of Sawatzki [42] in

the range of rotation Reynolds number 20 to 1000. The expression for the

non-dimensional torque, K ( 2Tp
ρfR5

pω
2 ) is:

(Rer < 1) K =
16π

Rer

(20 < Rer < 1000) K =
6.45√
Rer

+
32.1

Rer

(55)

The numerical results obtained with the current IBM are compared in

Fig. 14 with the expression presented in Eq. 55. The comparison shows an

excellent match with the reference data, except for Rer = 1000. This dis-

crepancy is caused by a thinner boundary layer associated with an increasing

Reynolds number. Therefore, a finer grid is required to accurately capture

the velocity gradients in the boundary layer around a sphere which directly

influences the torque computation.

4.2.4. Drag on an oscillating sphere

For sharp interface IBM approaches, it is a challenge to achieve smooth-

ness of the pressure force in case of moving particles. Mittal et al. [17] showed

that their ghost cell approach leads to spurious oscillations for the pressure

force, which is caused by a local error in mass conservation. This problem

was remedied using the cut-cell approach by Seo and Mittal [30]. Lee et

al. [29] also reported the issue of spurious oscillations related to the spatial

and temporal discontinuity in the flow variables in case of freshly cleared or

dead cells. In the current IBM, the pressure equation is solved in the whole

computational domain, including the cells inside the solid phase. No special
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treatment is performed for the cells near the solid surface while solving the

pressure Poisson equation. No boundary condition for pressure is applied on

the solid surface and mass conservation is achieved in the whole computa-

tional domain at each time step. Hence, the converged solution for pressure

gives a continuous distribution in time and space for these variables in case

of moving particles as well. To verify the smoothness of the pressure force,

a test case of an oscillating sphere is simulated. The simulation parameters

are the same as chosen by Seo and Mittal [30].

xc(t) = xc(0) +X0 [1− cos(2πft)] ; uc(t) = U0 sin(2πft) (56)

The sphere is resolved with 16 grid cells (Dp/h = 16) and the domain

is of size (4Dp)
3. The position and velocity of the particle is governed by

Eq. 56. The amplitude of oscillation is X0 = Dp/8 and the frequency is

f = 1 s−1. The period of an oscillation is resolved with 100 time steps

which corresponds to CFL = 0.125. The Reynolds number, Re = U0Dp/νf is

78.54 and the Strouhal number, St = fDp/U0 is 1.2732. Free-slip boundary

conditions are applied on x-walls and no-slip condition is applied for all the

remaining walls. Neumann boundary condition for pressure is used on all

the confining walls.

The time series data of a pressure-drag coefficient is plotted in Fig. 15. It

can be observed that the drag coefficient profile is much smoother compared

to the profile of Mittal et al. [17] and comparable to the results of Seo and

Mittal [30]. It is important to note that the current IBM does not have spu-

rious oscillations and maintains the simplicity and efficiency of the method

due to continuity in pressure and velocity. This feature of the method will be
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Figure 15: Variation of the pressure drag coefficient with time: Mittal et al. [17] (—); Seo

and Mittal [30] (· · ·); Current IBM (- - -).

computationally advantageous in case of a multiparticle system. Moreover,

the stability of the method for a coarse grid will enable us to simulate larger

domains while saving computational costs.

4.2.5. Sedimentation of a buoyant particle (Rep < 35)

Hereafter, test cases with freely moving particles are simulated. In this

first test case, the sedimentation of a single buoyant particle in a closed con-

tainer is simulated. The simulation parameters are same as the experiments

of Ten Cate et al. [44]. This test case has been simulated by many researchers

to check the accuracy of numerical codes [44, 45, 18, 20]. The simulation pa-

rameters are presented in Table 6 along with the Reynolds numbers reported

in experiments[44]. The particle diameter(Dp) is 15 mm with a density (ρp)
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of 1120 kg/m3. The particle is resolved with Dp/h = 15. All walls of the

domain are treated as no-slip boundaries. The CFL used for all the cases is

around 0.4.

Table 6: Simulation parameters for a single sedimenting sphere (Rep < 35).

Parameter Case 1 Case 2 Case 3 Case 4

ρf 970 965 962 960

µf 0.373 0.212 0.113 0.058

xp (2.67Dp, 3.33Dp, 3.33Dp)

Ω 10.67Dp × 6.67Dp × 6.67Dp

g (9.81, 0, 0)

Rep 1.5 4.1 11.6 31.9

The time series data of particle location and velocity obtained by the

simulations is compared with the experimental results of [44] as shown in

Fig. 16. The simulation data show a very good match with the experimental

data for both position and velocity. It should be emphasized that the present

IBM does not require any calibration of a diameter like in [44], nor any special

treatment because the density ratio is close to one like in [20]. Moreover,

the grid resolution required for the present IBM (Dp/h = 15) is much lower

than the one used by [20] (Dp/h ≈ 40).

4.2.6. Sedimentation of a buoyant particle (Rep > 35)

This test case is similar to the previous one except that the Reynolds

number is higher. It should be noted that the accuracy of the sharp-interface
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Figure 16: Particle location(a) and velocity (b) for sedimenting buoyant sphere compared

with the experimental data of Ten Cate et al. [44].

40



IBM for freely moving particles at higher Reynolds number has not been

tested in previous studies. The simulation results obtained with the present

IBM are compared with the experimental data of Mordant and Pinton [46].

The simulation parameters are chosen to have the same non-dimensional

numbers (Fr, ρp/ρf , Rep) as the experiments [46]. This approach is similar

to the work of [19, 20].

Rep =
upDp

νf
(57)

Fr =
up√
|g|Dp

(58)

The simulation parameters for three different cases is presented in Table

7. The dimensions of the container for Case 1 and 3 are 11.0 m × 1.28 m

× 1.28 m whereas for Case 2 it is 22.0 m × 1.28 m × 1.28 m. The walls of

the container are treated with free-slip boundary conditions. A particle of

diameter (Dp = 0.167 m) is released from rest at t = 0 with the gravitation

acceleration of 9.81 m/s2 in the x-direction. The particle is resolved with

Dp/h = 16.7. The density of the fluid is 1000 kg/m3 and the variable fluid

and particle properties are given in Table 7.

It is observed that for the higher Reynolds number cases (Case 2 and 3),

the higher order interpolation (like QUICK, min-mod etc.) for convection

terms cause the oscillations in the particle motion and significant drifting of

a particle to the one side of the wall. The oscillations in the force values are

not observed for the test cases with the static rotating/non-rotating particle.
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Although the higher order convection interpolation is stable for low Reynolds

number case (Case 1), first order upwind scheme is used in the present IBM

for all the moving particle simulations for the stability purpose. The reason

for the oscillations could be because of not using the interpolation near the

solid particle for convection terms. However, the detailed investigation of

this issue is left as a future extension of this method.

Table 7: Simulation parameters for a single sedimenting sphere (Rep > 35).

Parameter Case 1 Case 2 Case 3

νf 0.00543 0.00268 0.00104

ρp/ρf 2.56 7.71 2.56

g (9.81, 0, 0)

A comparison of our numerical results with the experimental results of

Mordant and Pinton [46] shows an excellent agreement (Fig. 17) for all cases.

The presented plots are for CFL = 0.05. However, Table 8 shows that ac-

ceptable results can be found also for higher CFL values. The deviation in

the numerical results for lower and higher CFL is within 2% whereas the

maximum error compared to the experiments is 3%. Moreover, the simula-

tion with the refined grid (Dp/h = 25.05) is performed for Case 3 and the

deviation in terminal velocity with the coarse grid is within 2%. This test

case confirms that the present IBM is able to predict the dynamic behaviour

of freely moving particles quite well for a wide range of Reynolds numbers.

Moreover, it is important to note that accurate results can be obtained with

a coarse grid and relatively high CFL values for higher Reynolds numbers as
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well.

Table 8: Results for dimensionless terminal velocity (Fr) for different CFL values compared

to experiments.

Case # CFL = 0.05 CFL = 0.1 CFL = 0.2 CFL = 0.4 Experiments [46]

1 1.06 1.05 1.06 1.08 1.06 ± 0.01

2 3.53 3.47 3.46 3.48 3.56 ± 0.03

3 1.79
1.76 (Dp/h = 16.7)

1.78 (Dp/h = 25.05)
1.76 1.76 1.80 ± 0.01

To test the suitability of the current method for lighter than fluid parti-

cles, simulation of the rise of light particles in a viscous fluid is performed.

The fluid properties and particle size are kept the same as for case 1 of the val-

idation with Mordant and Pinton [46]. The results are presented in Fig. 18.

It can be observed that the simulations are stable down to ρp/ρf = 0.3. Be-

low this value oscillations in the velocity field are observed. These oscillations

arise due to the explicit coupling of the fluid and solid phase. Although the

current method does not suffer from the strict restrictions on the density ra-

tio (ρp/ρf ) as observed in the method of Uhlmann [19], a limit of ρp/ρf ≈ 0.3

exists which is comparable to the limit reported by an improved version of

Uhlmann’s method [23].

4.2.7. Sedimentation of two equal particles

In this test case, two equal spheres are freely falling under gravity in

a closed box filled with the viscous fluid. This problem is a test case for

checking the stability and accuracy of a numerical method in case of inter-
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Figure 17: Comparison of a dimensionless velocity of sedimenting buoyant sphere with

experiments [46] (tref =
√

(D/|g|)).
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Figure 18: Rise velocity of light particles in a viscous fluid.

acting particles. This test case has been simulated previously by several

researchers [23, 47, 48] to validate their numerical models. The simulation

parameters used in this study are similar as in the previous studies and are

presented below.

The container is of size 0.04 m × 0.01 m × 0.01 m. The gravitational

acceleration is 9.81 m/s2 in the x-direction. The fluid density (ρf ) is 1000

kg/m3 and dynamic viscosity (µf ) is 10−3 kg/ms. The density of spherical

particles (ρp) is 1140 kg/m3 and the diameter (Dp) is 0.00167 m. Initially,

the particles are at rest at a location xc,1 = 0.005 m and xc,2 = 0.0084 m

whereas yc,1 = zc,1 = 0.00503 m; yc,2 = zc,2 = 0.00497 m. The slight offset

in the y and z location of particles is introduced to instigate the drafting-

kissing-tumbling phenomenon [49]. The time step is chosen such that the
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Figure 19: (a) Particle distance from the bottom wall and (b)velocity for sedimentation

of two equal buoyant spheres case: - - Dp/h = 16.7; — Dp/h ≈ 56; �,◦Breugem [23].
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CFL is 0.4 for the simulations performed in this section. The walls of the

container are treated as no-slip boundaries.

In the simulations, the soft-sphere collision model of Cundall and Strack [35]

is used with the input of collision time (tcol) = 8∆tf and dry restitution of

coefficient (edry) = 0.98. Similar to Breugem [23], the torque encountered due

to collision (Tcol) is ignored in this test case. As mentioned earlier, when two

particles approach each other with only one fluid grid cell in between, ex-

trapolation/interpolation based on the two grid points is not possible for the

drag calculation. For all such cells, no viscous or pressure drag is computed,

but the sub-grid lubrication model is invoked to model the enhanced drag

force in case of close approach of two particles or particle-wall.

Fig. 19 shows the evolution of position and velocity of the particles as a

function of time in comparison with the results of Breugem [23]. The com-

parison shows a very good quantitative and qualitative agreement before the

kissing phase (where particles touch each other). The results are qualitatively

similar after the kissing phase but quantitative differences appear. This could

be because of differences in the collision models used in the present study and

that by Breugem [23]. Breugem [23] uses a collision model of Glowinski et

al. [47] in which the collision force is active even before the particles actually

touch each other. The results obtained with the simulations performed on

two different grids (Dp/h = 16.7 Dp/h ≈ 56) are also presented in Fig. 19

and do not show significant differences. This test case, furthermore, confirms

the effectiveness of the present IBM on a coarser grid.
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4.2.8. Sedimentation of 1232 spheres

In this section, sedimentation of 1232 identical spherical particles in a

narrow box is simulated using the current IBM. The fluid properties, parti-

cle size and initial particle arrangement is the same as that used by Feng and

Michaelides [50]. The particles are arranged in 28 horizontal rows with each

row consisting of 44 particles. The diameter of a particle is 0.625 mm and is

resolved with 8 grid cells. The computational domain consists of a uniform

Cartesian grid with 400×400×12 grid cells. The fluid density is 1000 kg/m3

and the viscosity is 0.001 kg/ms. The particle to fluid density ratio is 1.01.

No-slip boundary conditions are used on all container walls. The difference

compared to [50] is in the collision model and lubrication model used. We

have implemented the soft-sphere collision model whereas [50] uses the im-

proved version of a repulsive potential model. The collision parameters used

here are: normal and tangential coefficient of restitution is 0.97 and 0.33,

respectively, and the friction coefficient is 0.1 for particle-particle collisions

and 0.2 for particle-wall collisions.

Initially, particles on the side of the container are found to settle faster,

as observed in Fig. 20a. Later, a Rayleigh-Taylor type instability is observed

which is in accordance with the literature [50, 47]. The effect is however

found to be less prominent compared to the 2D simulation of Feng and

Michaelides [51] where two eddies are formed in the lower part of the do-

main. In the current simulation, as observed in Fig. 20b, the rising fluid

is observed to break through the particle array separating the neighbouring

particle columns. Particles take around 60 seconds to sediment completely
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(a) t = 7 s (b) t = 17 s

Figure 20: Particle positions and fluid velocity magnitude (m/s) during sedimentation

process.

compared to around 55 seconds observed by [50]. This test case demonstrates

that the current IBM performs quite well for multiparticle systems as well.

4.2.9. Fluidization in a pseudo-2D bed

In this section, a pseudo-2D gas-solid fluidized bed is simulated using the

current IBM and results are compared with the experimental and numerical

results of Tang et al. [52]. Tang et al. [52] used a diffuse interface IBM with a

diameter calibration. In this test case, the superficial inlet gas velocity is ug

= 2.6 m/s, which corresponds to 1.95 times umf , the minimum fluidization

velocity. 5000 spherical particles are used with a normal coefficient of resti-

tution en = 0.97 and a tangential coefficient of restitution et = 0.33. The

friction coefficient is 0.1 for particle-particle collisions and 0.2 for particle-

wall collisions. The remaining parameters used for the simulations and for

the experiments are given in Table 9. We use identical simulation parameters
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to that of Tang et al. [52].

Figure 21: Snapshots of the fluidized bed obtained with an interval of 0.05 s.

It is important to mention that an imaginary wall is used for particle-wall

collisions, located one particle diameter above the inlet wall. The reason is

that at the inlet boundary a velocity is imposed and when a particle would

collide with the inlet wall, the difference between particle and inlet velocities

causes problems in obtaining a divergence-free flow field.

To quantify solids volumetric flux (φ), whole computational domain is

divided into finite parts (32×80×4) and Eq. 59 is used to get the value of φ

at a given location and time. np,cell is total number of particles in a selected

cell, Vp is volume of a particle, Vcell is a volume of the cell. Eq. 60 is used to

get the time averaged solids volumetric flux (〈φ〉).

φ(x, t) =

np,cell∑
i=1

Vpup

Vcell
(59)
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〈φ〉 (x) =

∫ t2
t1
φ(x, t)dt

t2 − t1
(60)

Table 9: Parameters used for experiments [52] and the IBM simulation of fluidized bed.

Parameters Experiments Simulation

Domain size 100× 1000× 15 mm3 100× 250× 15 mm3

ρf air 1.2 kg/m3

µf air 1.8 ×10−5 kg/m.s

Inlet velocity, ug 2.6 m/s 2.6 m/s

Dp 2.5 mm 2.5 mm

ρp 2526 kg/m3 2526 kg/m3

∆ - 0.5 mm

Snapshots of the fluidized bed with an equal interval of 0.05 seconds are

shown in Fig. 21. The simulations show that, initially, bubbles are created at

the bottom of the bed and reach the top wall carrying particles with them.

Once bubbles exit the bed, particles come down along the side walls. Af-

ter the initial few bubble eruptions, the bed reaches a periodic state with

a constant bed expansion height for each period. The average volumetric

solids flux obtained from the simulations after reaching a quasi-steady state

is compared with the numerical and experimental results [52] in Fig. 22. It

shows the first 200 mm measured from the bottom of the bed. The existence

of the two vortices is well predicted using the IBM simulations. However,

the symmetry is not as pronounced as observed in the experimental results.

This could be due to the smaller simulation time of around 4 s, compared to

the 40 s of experiments. The location of the vortices is a bit higher in our
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simulations than observed in the experiments but still in reasonable agree-

ment whereas the location of vortices is a bit lower in the simulation results

of Tang et al. [52].

(a) Current IBM (b) Experiment [52] (c) IBM [52]

Figure 22: Time-averaged solids volumetric flux at a central plane.

Lateral profiles of the average volumetric solids flux at different heights is

compared in Fig. 23. Results for profile at y = 0.085 m match quite well with

the experiments and provide a better prediction compared to the results of

Tang et al. [52] in near wall region. For y = 0.055 m, results are quite accurate

for the left half of the bed. However, a peak is observed in the simulations on

the right side of the bed which is absent in the experiments. This could again

be caused by insufficient time of averaging for the simulations since in the

experiments the location of eruption of the bubble shifts from right to left and

vice versa in consecutive cycles and is averaged over sufficiently many cycles.
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Figure 23: Profiles of axial volumetric solids flux at different bed heights

Moreover, the numerical value of 〈φ〉 averaged over a cross-section plane at a

given y-position is very close to zero indicating an overall balance of a particle

motion. The results of Tang et al. [52] at y = 0.055 match well in the bulk

region however big discrepancy is observed in the near wall region indicating

a less circulation compared to experiments. Mohaghegh and Udaykumar [53]

reported that the the diffuse interface IBM gives accurate results compared
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to sharp interface IBM at a coarse grid resolution. This test case emphasizes

that our sharp interface IBM with accurate force and torque computation

based on a proposed projected area computation gives comparable results to

that of diffuse interface IBM involving diameter calibration. More detailed

analysis of the fluidized bed can be performed, however, the aim of the current

test case is to demonstrate that reasonable accuracy can be achieved by the

current IBM in reproducing important characteristics of the fluidized bed,

even for a coarse resolution of Dp/∆ = 5.

5. Conclusion

In the present work, the sharp-interface IBM based on a ghost cell ap-

proach of Deen et al. [5] is improved by increasing the stability and numerical

accuracy of the method. The developed IBM has been verified and tested

for wide range of flow problems with static as well as freely moving particle

simulations. Along with single particle cases, multiple particle sedimentation

and fluidization simulations are also performed confirming the robustness of

the current method for multiparticle system. Another important aspect of

the current method is that accurate results can be obtained with a coarse

grid resolution, which is important for the efficient simulation of multiparti-

cle systems that have large domain sizes.

As reported in literature, the reason for spurious oscillations in sharp

interface methods has its origins in the spatial and temporal discontinuity

of the flow variables and mass conservation errors. In the current method,

pressure and velocity are solved over the whole domain including solid nodes.
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This approach leads to spatial as well temporal continuity for the flow vari-

ables. Mass conservation automatically follows for each cell, including the

cells near solid surfaces which generally are the cells where highest mass con-

servation problems are encountered. This approach is quite straightforward

since no special treatment of a cut-cell approach or field extension approach

is required. The effectiveness of the method is verified with the oscillating

sphere problem where a smooth time-dependent drag force is observed.

In this work, an approach to accurately compute torques and forces on

particles is presented. As a first step, projected areas are computed nu-

merically by considering the missed cells and an excellent match is found.

Next, the torque on a rotating sphere in the Stokes regime is computed and

compared with its analytical solution. The original approach of Deen et

al. [18] ignores the contribution of transpose terms of the velocity gradient

field, which leads to a big discrepancy with the exact solution. The modified

approach is found to give accurate results even for a coarse grid resolution.

The results are successfully validated with the experimental results of rotat-

ing sphere case at higher Reynolds number.

Another advantage of the current method is the sharp representation of

the particle surface, which avoids the requirement of any calibration based

on the volume fraction and Reynolds number. Moreover, the current method

works very well for lower density ratios down to ρp/ρf ∼ 0.3 without needing

any extra steps in the algorithm. Moreover, it is straightforward to imple-

ment collision models in the current IBM compared to the Uhlmann type
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of methods in which the overlapping Lagrangian marker points between two

particle have to be modified during collision [20]. This paper includes multi-

particle simulations of Drafting-Kissing-Tumbling phenomenon, sedimenta-

tion of multiple spheres showing Rayleigh-Taylor instability and behaviour

of fluidized bed. The results are found to give satisfactory match with the

experimental and/or previous simulation results.

Last, we want to point out that the current method can easily be extended

to include non-Newtonian fluids, polydisperse system of particles and/or non-

spherical particles.
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Appendix A. Computation of projected area formed by connect-

ing n points in 3D space

Figure A.1: Representation of a triangle.

The area vector of a triangle formed by the points (~r1, ~r2, ~r3) as shown

in Fig. A.1 is given as:

~A =
1

2
(~r2 − ~r1)× (~r3 − ~r1) (A.1)

~A =
1

2
(~r1 × ~r2 + ~r2 × ~r3 + ~r3 × ~r1) (A.2)

~A =
1

2

3∑
i=1

(~ri × ~ri+1) (A.3)

If ~r0 is a vector representation of a random point in the space then the

area of a triangle can also be computed by the summation of the triangles

which has ~r0 as a common vertex (Eq. A.4).

~A =
1

2

3∑
i=1

[(~ri − ~r0)× (~ri+1 − ~r0)] (A.4)

Similarly, the area of a polygon with n vertices can also be computed as

an addition of the areas of all triangles (Fig. A.2).

~A =
1

2

n∑
i=1

[(~ri − ~rc)× (~ri+1 − ~rc)] (A.5)
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Figure A.2: Representation of a n-sided polygon.

~A =
1

2

n∑
i=1

[(~ri × ~ri+1)− ~rc × (~ri+1 − ~ri)] (A.6)

~A =
1

2

n∑
i=1

(~ri × ~ri+1)− 1

2
~rc ×

�
��

�
��

��*
0

n∑
i=1

(~ri+1 − ~ri) (A.7)

~A =
1

2

n∑
i=1

(~ri × ~ri+1) (A.8)

These equations are valid for a polygon connected by straight lines. If

two points are connected by curved edges, a correction term has to be added.

In this derivation, it is assumed that the equation of a circle of which the

given curved edge is part of, is known.

~Ac = ~As + ~Acorr (A.9)

The corrected area as per the Fig A.3:

~Acorr = ~Asector − ~A∆(~rc, ~r1, ~r2) (A.10)
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∣∣∣ ~Asector∣∣∣ =
1

2
R2θ (A.11)

∣∣∣ ~A∆(~rc, ~r1, ~r2)

∣∣∣ =
1

2
R2sin(θ) (A.12)

The meaning of θ is shown in Fig. A.3. Finally, we have the expression:

~Acorr = ~A∆(~rc, ~r1, ~r2)

(
θ

sin(θ)
− 1

)
(A.13)

Therefore,

~Ac = ~As + ~A∆(~rc, ~r1, ~r2) (M − 1) (A.14)

Here, M = θ/sin(θ)

Figure A.3: Representation of a triangle with one curved side.

The general expression for the n-sided polygon with the curved edges

being part of the circle with the centre ~rc is:

~Ac =
1

2

n∑
i=1

[(~ri − ~rc)× (~ri+1 − ~rc)] +
1

2

n∑
i=1

(Mi − 1) [(~ri − ~rc)× (~ri+1 − ~rc)]

(A.15)
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~Ac =
1

2

n∑
i=1

(~ri × ~ri+1) +
1

2

n∑
i=1

(Mi − 1) [(~ri − ~rc)× (~ri+1 − ~rc)] (A.16)

~Ac = ~As +
1

2

n∑
i=1

(Mi − 1) [(~ri − ~rc)× (~ri+1 − ~rc)] (A.17)

Mi =

 1 straight edges

θ
sin(θ)

curved edges

Appendix B. Computational details

In our code, compute intensive part is the solution of the implicit part

of the momentum equation and of the pressure Poisson equation. Assuming

that the domain is cubical and N is the number of fluid cells in one direction,

number of operations involved in solving fluid part will scale as O(N3) since

we use a linearly scalable multigrid preconditioner. For the particle phase,

the drag force is computed by computing pressure and shear rate at the

intersection point on the solid surface. Intersection points are obtained by

traversing from a fluid node neighbouring a solid surface in a given spatial

dimension. Number of intersection points(Ni) will be same as neighbouring

fluid cells, Ni ∼ O((D/h)2). Solving particle phase for Np particles would

require O(NpNi) operations. It can be easily shown that even for a fully

packed system, the fluid phase would dominate the time spent in a simulation.

It should be noted that the scaling of operations required for the current

method is same as that reported by Uhlmann[19].

To measure the simulation time of current method, problem of sedimen-

tation of multiple spheres is considered. Table B.1 shows the comparison of

time taken by one simulation time step for our method in comparison with
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Table B.1: Simulation time for one time step for current method on 2.6 GHz Intel Xeon

Processor E5-2690 v3 CPUs

Case # Nx ×Ny ×Nz Np nproc tfluid, s (%) tsolid, s (%) ttotal, s t∗, s[19]

1 512× 512× 512 1024 64 34.85 (90.63 %) 3.60 (9.37 %) 38.45 48.65

2 512× 1024× 512 1024 128 37.14 (90.98 %) 3.68 (9.02 %) 40.82 61.30

3 512× 1024× 512 2048 128 38.80 (91.15 %) 3.77 (8.85 %) 42.57 62.36

Nx×Ny×Nz: number of fluid cells, Np: number of particles, nproc: number of processors,

tfluid: time spent in solving fluid phase, tsolid: time taken in solving particle phase, ttotal:

total time spent in one time step, t∗: time reported by Uhlmann[19] with scaling factor

(=1.1/2.6) based on a difference in a clock frequency of processors

the method of Uhlmann[19]. We scaled the times reported by [19] based on

the difference in our hardware. Although this is not really a direct compari-

son of methods since times will be dependent on the optimization of a code,

tolerance used for solving linear system of equations and divergence criteria

etc., it gives an idea of time taken by these methods on modern hardware.

In the code, fluid phase is solved in parallel using domain decomposition

method. Comparison between case 1 and 2 indicates a very good weak-

scaling for MPI-parallelized fluid part. Force computation on particles and

solid phase flag assignment on fluid nodes is also carried out in parallel.

However,particle-particle interaction is executed serially on a root processor.

From Table B.1, it can be observed that the time increase in a simulation

from case 2 → 3 due to increased number of particles is not significant.

However, serially solved particle-particle part will limit the scalability of the

current code significantly according to Amdahl’s law if even more number of

particles are used in the simulation.
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