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This paper is concerned with deriving a new test on
a covariance matrix which is based on its nonlin-
ear shrinkage estimator. The distribution of the test
statistic is deduced under the null hypothesis in the
large-dimensional setting, that is, when p∕n → c ∈
(0,+∞) with p variables and n samples both tending to
infinity. The theoretical results are illustrated by means
of an extensive simulation study where the new non-
linear shrinkage-based test is compared with existing
approaches, in particular with the commonly used cor-
rected likelihood ratio test, the corrected John test, and
the test based on the linear shrinkage approach. It is
demonstrated that the new nonlinear shrinkage test
possesses better power properties under heteroscedastic
alternative.
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1 INTRODUCTION

Testing the structure of a covariance matrix is an important problem in multivariate statistics with
many applications across different fields of science such as finance, environmetrics, signal pro-
cessing, and wireless communications, among others (see, e.g., Anderson, 1984; Cai & Jiang, 2011;
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Gupta & Bodnar, 2014; John, 1971; Gupta & Xu, 2006; Nagao, 1973). The topic becomes very
challenging under the large-dimensional setting when the dimension of the data-generating
model is comparable to the sample size or even it is larger than the sample size. This is because
fixed-dimension assumptions do not yield proper approximations of asymptotic distributions,
which are better deduced when considering dimensions that grow with the sample size. This led
to a new area in asymptotic statistics, the so-called large-dimensional asymptotic regime (see, Bai
& Silverstein, 2010). Although several approaches have been suggested, the derivation of tests on
a large-dimensional covariance matrix is still a hot topic in statistical literature with plenty of
posvsible applications (cf. Bodnar, Dette, & Parolya, 2019; Chen, Zhang, & Zhong, 2010; Fisher,
Sun, & Gallagher, 2010; Ledoit & Wolf, 2002; Srivastava, 2005; Wang & Yao, 2013). Recently,
several large-dimensional asymptotic tests on functions of the elements of a large-dimensional
covariance matrix were developed which have a direct application in portfolio theory (see, e.g.,
Bodnar, Dmytriv, Parolya, & Schmid, 2019; Bodnar, Dmytriv, Okhrin, Parolya, & Schmid, 2021).

Shrinkage estimation of the mean vector and covariance matrix presents another rapidly
growing line of research in statistics with many applications. While Stein (1956), James and
Stein (1961), Berger, Bock, Brown, Casella, and Gleser (1977), Gleser (1986), Chételat and
Wells (2012), Wang, Tong, Cao, and Miao (2014), Bodnar, Okhrin, and Parolya (2019) proposed
shrinkage-based estimators for the mean vector, Dey and Srinivasan (1985), Kubokawa and Sri-
vastava (2008), Ledoit and Wolf (2012), Bodnar, Gupta, and Parolya (2014, 2016) developed several
shrinkage estimators for the covariance matrix. The shrinkage estimators and their asymptotic
properties under the large-dimensional asymptotic regime for the functions involving both the
mean vector and covariance matrix were derived in Bodnar, Parolya, and Schmid (2018), Bodnar,
Okhrin, and Parolya (2023) and implemented to the optimal portfolio choice problems. The recent
developments in the field are reviewed in Bodnar, Bodnar, and Parolya (2022) among others.

While Bodnar, Dmytriv, et al. (2019), Bodnar et al. (2021) constructed a test for the weights
of large-dimensional optimal portfolio by using the shrinkage approaches, Versteegh (2020),
Nilsson (2021), Bodnar, Parolya, and Veldman (2024) derived tests on the large-dimensional
covariance matrix using its linear shrinkage estimator. In particular, it was shown that the test
statistic of the linear shrinkage test on the large-dimensional covariance matrix is a function of
the large-dimensional John test (see, e.g., Bodnar et al., 2024) and, consequently, it possesses the
optimality properties of the latter test.

Ledoit and Wolf (2012) proposed the application of the nonlinear shrinkage estimator of the
covariance matrix as a generalization of its linear shrinkage estimator. Moreover, the properties of
the nonlinear estimators of the covariance matrix were established in Dey and Srinivasan (1985),
Ledoit and Wolf (2012), among others and it was argued that it possesses better asymptotic
distributional properties in comparison to the linear shrinkage estimator, especially due to its
generality.

In this paper, we contribute to the existent literature by deriving a new test on the
large-dimensional covariance matrix which is based on the nonlinear shrinkage approach. The
new test, based on the generality of the nonlinear shrinkage estimator of the covariance matrix,
will feature a closed-form expression for the test statistic, with its large-dimensional asymptotic
distribution deduced under the null hypothesis. Within an extensive simulation study, we will
compare the new approach with the existing tests, namely with the test based on the linear
shrinkage method, the corrected John (CJ) test, and the likelihood ratio test.

The rest of the paper is organized in the following way. In Section 2, the set of assumptions
is discussed that will be maintained throughout this paper as well as some of the relevant results
from random matrix theory in the large-dimensional asymptotic framework are reviewed. In
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Section 3, a new test on a large-dimensional covariance matrix is introduced, which is based on
the nonlinear shrinkage estimator, and its limiting distribution is derived, which is the main the-
oretical contribution of the paper. Final remarks are provided in Section 4, while the proofs of
theoretical results are postponed to the Appendix. The finite-sample performance of the derived
theoretical results is investigated through an extensive simulation study in Appendix A, where the
new test is compared with the test based on the linear shrinkage approach as well as with the cor-
rected likelihood ratio (CLRT) test and the CJ test, both derived by Wang and Yao (2013). The com-
parison of the tests is performed in terms of the empirical rejection rate and the empirical power.

2 PRELIMINARY RESULTS

Let y1, … , yn be a sample from a p-dimensional distribution and let Yn = (y1, y2, … , yn) denote
the observation matrix which is assumed to follow the stochastic model given by

Yn = 𝚺1∕2
n Xn, (1)

where 𝚺n is the p × p dimensional population covariance matrix. Throughout the paper, we work
in the large-dimensional setting, that is, when p

n
→ c ∈ (0,+∞) as n → ∞, and the following

assumptions are imposed on the data-generating model (1):

• (A1) The population covariance matrix 𝚺n is a nonrandom positive definite matrix.
• (A2) The matrix Xn consists of independent and identically distributed (i.i.d.) random variables

with mean zero, unit variance, and finite fourth moment equal to E[|xi,j|
4] = 𝛽 + 1 + 𝜅 < ∞,

where 𝜅 = 2 in the case of real variables and 𝜅 = 1 in the case of complex variables. Thus, 𝛽
plays the role of the excess kurtosis, for example, the fourth moment minus three in the case
of real variables. Also, it holds that E[x2

i,j] = 0 in the case of complex variables.

We note that Yn is only observable, while the aim is to derive a large-dimensional test on
the structure of the population covariance matrix 𝚺n. Assumptions (A1) and (A2) are needed for
derivation of the asymptotic distribution under the null hypothesis, that is, 𝚺n = 𝚺0,n. Note that
they are not sufficient for analysis under the alternative since one has to put some conditions
on the spectra of 𝚺n. Nevertheless, they do not impose any specific distributional assumption on
the data-generating model. Only the existence of the fourth moments is required. Furthermore,
it is assumed that the columns of the data matrix Yn are independent, while the dependence
between its rows is captured by 𝚺n. Finally, we establish the theoretical results in the case of real
variables, that is, when 𝜅 = 2. However, to keep the results as general as possible we derive them
as a function of 𝜅.

The eigenvalues of the sample covariance matrix are the central object in large-dimensional
statistics. Let {𝜆n,1, … , 𝜆n,p} be the set of eigenvalues corresponding to the set of eigenvectors
{un,1, · · · ,un,p} of the sample covariance matrix defined by1

Sn =
1
n

YnYT
n .

1The findings discussed in this paper remain valid even when dealing with a non-zero mean vector. The only adjustment
necessary is to use the centered version of the sample covariance matrix, which is obtained by subtracting the sample
mean from each observation before calculating the covariance, and replacing n by n − 1 in the expression of asymptotic
mean and variance due to the “substitution principle” presented in Zheng, Bai, and Yao (2015).
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For the sake of notation simplicity, the first subscript n in the set of eigenvalues and eigenvectors
will be omitted. The empirical spectral distribution (ESD) of the sample eigenvalues is defined as

Fn(𝜆) =
1
p

p∑

i=1
1[𝜆i,+∞)(𝜆), 𝜆 ∈ R,

where 1(.) is the indicator function of set.
Consider a sequence of empirical spectral distributions of sample covariance matrices, that is,

{Fn(𝜆)}n≥1. If this sequence converges to a measure F(𝜆), then F(𝜆) is called its limiting spectral
distribution (LSD) which characterizes the asymptotic behavior of the eigenvalues of the sample
covariance matrix. One of the main results in large-dimensional statistics states that the LSD of
the sample eigenvalues converges to the standard Marchenko–Pastur distribution (Marchenko
& Pastur, 1967). Marchenko and Pastur were the first to discover this property, which has later
been extended in several directions such as Theorem 2.9 in Yao, Zheng, and Bai (2015). This
theorem states that if 𝚺n is the identity matrix and the entries {xi,j} of Xn are i.i.d. complex
random variables with mean zero and variance one, then almost surely Fn converges to the stan-
dard Marchenko–Pastur distribution Fc (standard M-P law) as p

n
→ c ∈ (0,+∞) for n →∞. The

standard Marchenko-Pastur distribution Fc with index c has the density expressed as

pc(x) =

{
1

2𝜋cx

√
(b − x)(x − a) a ≤ x ≤ b

0 otherwise,

with an additional point mass of value (1 − 1
c
) at the origin if c > 1, where a = (1 −

√
c)2 and

b = (1 +
√

c)2.
Linear spectral statistic (LSS) is another important object in large-dimensional statistics

widely used in the hypothesis test. For a specific function 𝜑, it is given by

Tn =
1
p

p∑

i=1
𝜑(𝜆i) =

∫
𝜑(𝜆i)dFn(x) =∶ Fn(𝜑),

where the specific choice of the function 𝜑 depends on the testing problem to be studied. Note
that by Theorem 2.9 in Yao et al. (2015), Fn → Fc almost surely. As such, one may expect that the
random process Gn(x) = an(Fn(x) − Fc(x)) converges to some limiting process for an appropriate
normalizing sequence an. Unfortunately, that is not generally possible, as discussed in Bai and
Silverstein (2004). However, it may still be possible that for an = p the sequence of random vari-
ables Zn = p ∫ 𝜑(𝜆i)d(Fn(x) − Fc(x))may converge to some limit law for a suitable regular class of
functions 𝜑. The random variables Zn can also be written as,

Zn = p
∫

𝜑(x)(dFn(x) − dFc(x)) = p
{

∫
𝜑(x)dFn(x) −

∫
𝜑(x)dFc(x)

}

= p

{

1
p

p∑

i=1
𝜑(𝜆i) −

∫
𝜑(x)dFc(x)

}

.

Thus, to find the distribution of a LSS for a particular class of functions 𝜑, the fluctuations of the
LSS around its limit under the null hypothesis need to be investigated. Fortunately, the central
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BODNAR et al. 5 of 30

limit theorem (CLT) for LSSs offers a solution. A convenient expression can be found in Theorem
3.4 from Yao et al. (2015). This theorem states that for a specific class of function the fluctuations
of a LSS around its limit can be described by a normal distribution. This is one of the main tools
used to construct a statistical test in the large-dimensional setting.

Even though the eigenvalues of a matrix are continuous functions of its entries, when the
dimension of a matrix is larger than four, these functions have no closed-form expressions any-
more. To study their properties, the Stieltjes transform method can be used. For a finite measure
𝜇, it is defined by

m
𝜇
(z) =

∫

1
x − z

𝜇(dx), ∀z ∈ C
+ = {z ∈ C ∶ ℑ(z) > 0}.

One of the main properties of the Stieltjes transform is that it characterizes the vague conver-
gence of finite measures. This is a key tool in studying empirical spectral distributions of random
matrices. It is also summarized in Theorem 2.7 from Yao et al. (2015) which states that a sequence
of probability measures {𝜇n} converges vaguely to some positive measure 𝜇 if and only if the
sequence of their Stieltjes transforms {m

𝜇n} converges to m
𝜇

on C+. Moreover, it can be shown
that the Stieltjes transform of the empirical spectral distribution of the sample covariance matrix
Sn is equal to

mFn (z) =
1
p

p∑

i=1

1
𝜆i − z

= 1
p

tr[(Sn − zI)−1], ∀z ∈ C
+
.

From Theorem 2.9 in Yao et al. (2015), it is known that the sequence of the ESDs Fn(𝜆) of the sam-
ple covariance matrix converges almost surely to a nonrandom limit F(𝜆). As such, the sequence
of the Stieltjes transforms of the ESDs of the sample covariance matrix should also converge by
Theorem 2.7 in Yao et al. (2015). This is one of the main results of Marchenko and Pastur (1967).
The most convenient expression for this limit is found in (Silverstein & Choi, 1995), which is
given by

mF(z) =
∫

+∞

−∞

1
𝜏[1 − c − czmF(z)] − z

dH(𝜏), z ∈ C
+
, (2)

where H(𝜏) is the LSDs of the population eigenvalues. Moreover, Silverstein and Choi (1995)
showed that for all z ∈ C+ the following limit exists

lim
z→𝜆

mF(z) = m̆F(𝜆), ∀𝜆 ∈ R ⧵ {0}. (3)

The above two results are the main reasons, why the Stieltjes transform is very important in
statistics. Equation (3) appears in the nonlinear shrinkage estimator and Equation (2) is needed
to investigate if it is possible to construct a statistical test by using a nonlinear shrinkage estimator
of the population covariance matrix.

3 CLT FOR THE NONLINEAR SHRINKAGE ESTIMATOR

The main idea of introducing the nonlinear shrinkage method is to improve the linear shrinkage
estimator by tackling the higher-order effects. The simplicity of the linear shrinkage approach,
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6 of 30 BODNAR et al.

which only takes the first-order effect into account, may result in ignoring important informa-
tion present in the higher moments. As such, a nonlinear shrinkage estimation of the covariance
matrix was introduced in the statistical literature by Dey and Srinivasan (1985) and Ledoit and
Wolf (2012).

Under the absence of specific information about the population covariance matrix, it is rea-
sonable to consider those estimators, which are invariant under rotations of the observed data.
In Perlman (2007), the rotation-invariant estimator UnTnUT

n for 𝚺n was considered where Tn =
diag(𝜏1, … , 𝜏p) is a diagonal matrix with true population eigenvalues and Un is the matrix whose
ith column is the sample eigenvector ui. This class of estimators is employed in constructing a
nonlinear shrinkage estimator.

The objective is to find the estimator of 𝚺n closest to the population covariance matrix. To
quantify the word “closest,” the quadratic Frobenius norm is used defined by ||A||2F = tr(AAT)
for a matrix A. To find the estimator closest to the population covariance matrix𝚺n, the following
minimization problem needs to be solved

min
Dn

||UnDnUT
n − 𝚺n||

2
F , (4)

where the minimum in (4) is taken over all diagonal matrices Dn = diag(d1, … , dp). Elementary
matrix algebra shows that the optimal solution of (4) is given by

̃Dn = diag( ̃d1, … ,
̃dp) with ̃di = uT

i 𝚺nui for all i ∈ {1, … p}. (5)

The interpretation of ̃di is that it catches how the ith sample eigenvector ui relates to the
population covariance matrix 𝚺n. As a result, the finite-sample optimal estimator is given by
𝚺∗n = UñDnUT

n where ̃Dn is given in (5). However, it is not possible to calculate ̃di, i ∈ {1, … , p}
explicitly because it depends on the nonobservable population covariance matrix 𝚺n. There-
fore, it is important to get as close to 𝚺∗ as possible by characterizing the asymptotic behavior
of ̃di, i ∈ {1, … , p}. To do this Ledoit and Péché (2011) introduced a nondecreasing function
defined by

Δp(𝜆) =
1
p

p∑

i=1

̃di1[𝜆i,+∞)(𝜆) for 𝜆 ∈ R. (6)

Moreover, it was shown thatΔp(𝜆) converges almost surely to a nonrandom quantity expressed as

𝛿(𝜆) = 𝜆

|1 − c − c𝜆m̆F(𝜆)|2
, (7)

where m̆F(𝜆) is given in (3).
Using this result, Ledoit and Wolf (2012) showed that the asymptotic quantity correspond-

ing to ̃di is 𝛿(𝜆i). This result leads to the introduction of a nonlinear shrinkage estimator of 𝚺n
given by

̂𝚺n = Un̂DnUT
n with ̂Dn = Diag(𝛿(𝜆1), … , 𝛿(𝜆p)), (8)

where 𝜆i, i ∈ {1, … , p}, are the eigenvalues of the sample covariance matrix Sn and Un is the
matrix whose ith column is the sample eigenvector ui corresponding to the eigenvalue 𝜆i. Note
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BODNAR et al. 7 of 30

that ̂𝚺n is a nonlinear shrinkage estimator because the eigenvalues of ̂Dn are obtained by apply-
ing the nonlinear shrinking function 𝛿(𝜆) form (7) to every sample eigenvalue 𝜆i. The obtained
nonlinear shrinkage estimator is a so-called oracle estimator since it depends on the limiting
distribution of the sample eigenvalues and not on the observed one.

One could wonder why a test on the structure of a covariance matrix should be based on a
(non)linear shrinkage estimator of the covariance matrix rather than on the sample covariance
matrix, which is a problem that has extensively been studied before. The motivation behind the
application of a shrinkage approach is to construct a statistical test with better finite-sample per-
formance in terms of (i) controlling the size of the test (or the null-rejection probability) and (ii)
achieving higher power.

Next, we investigate which function 𝜑 should be used in the definition of LSS, when a test on
a covariance matrix is derived by using a nonlinear shrinkage estimator. The testing hypotheses
are given by

H0 ∶ 𝚺n = 𝚺0,n against H1 ∶ 𝚺n ≠ 𝚺0,n, (9)

for a positive definite matrix𝚺0,n. For the derivation of 𝜑, the expression of 𝛿(𝜆) is utilized as given
in (7).

Since the target covariance matrix 𝚺0,n is the true covariance matrix of yi under the null
hypothesis in (9), we normalize the original data matrix and define ̃Yn = 𝚺−1∕2

0,n Yn, using which the
sample estimator for the covariance matrix is constructed. Furthermore, testing the null hypoth-
esis in (9) is equivalent to verify whether the population covariance matrix of the normalized
sample is the identity matrix under the null hypothesis. This allows us, without loss of generality,
to apply the presented previously results with𝚺n replaced by the identity matrix and note that the
original data matrix is normalized as in the definition of ̃Yn. The testing problem (9) in the case
of ̃Yn is given by

H0 ∶ 𝚺n;̃Yn
= I against H1 ∶ 𝚺n;̃Yn

≠ I, (10)

where I is the identity matrix and 𝚺n;̃Yn
denotes the population covariance matrix in the

case of ̃Yn.
Therefore, for the normalized sample, the underlying distribution of the population eigen-

values H(𝜏) jumps to 1 at 𝜏 = 1. Hence, under the null hypothesis mF(z) satisfies the following
equation

mF(z) =
∫

+∞

−∞

1
𝜏[1 − c − czmF(z)] − z

dH(𝜏) = 1
1 − c − czmF(z) − z

, z ∈ C
+
,

or, equivalently,

mF(z)2cz +mF(z)(c + z − 1) + 1 = 0.

Applying the quadratic formula gives the following solutions for mF(z) for all z ∈ C+

mF(z) =
1 − c − z ±

√
(b − z)(a − z)

2cz
, (11)
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where a = (1 −
√

c)2 and b = (1 +
√

c)2 are the boundaries of the support of the sample
eigenvalues.

Since z ∈ C+ is a complex number, a branch cut for the square root has to be chosen. Without
loss of generality, it is possible to take the principal branch. Moreover, since the Stieltjes transform
is defined on the upper half complex plane its imaginary part should stay positive as well, which
is only possible if one takes a “+” in formula (11), see Lemma 3.3.1 in Bai and Silverstein (2004)
for details. Hence, the square root is continuous and it is possible to take the limit z → 𝜆:

m̆F(𝜆) = lim
z→𝜆

mF(z) = lim
z→𝜆

1 − c − z +
√
(b − z)(a − z)

2cz

=
1 − c − 𝜆 +

√
(b − 𝜆)(a − 𝜆)

2c𝜆
=

1 − c − 𝜆 +
√
(𝜆 − 1 − c)2 − 4c
2c𝜆

.

Substituting the above expression for m̆F(𝜆) into (7), the following function is obtained

𝜑(𝜆) = 4𝜆
|c − 1 − 𝜆 +

√
(𝜆 − 1 − c)2 − 4c|2

. (12)

Note that the function 𝜑(⋅) is just a simplified version of the function 𝛿(⋅) from (7) under the
null hypothesis and thus can be used in the construction of LSS. Moreover, by closer look at (12)
the function 𝜑(𝜆) is not defined at point zero for c < 1 but 𝜑(0) = 0 if c > 1. Thus, the domain of
𝜑(⋅) can be chosen as R ⧵ {0} for c < 1 and the whole R in case c > 1. In Theorem 1 we present
some properties of𝜑(𝜆) in case c < 1 but note that very similar formula is true for c > 1 by a simple
modification at point zero.

Theorem 1. Let 𝜑 ∶ R ⧵ {0}→ R be defined as in (12) and let f ∶ (a, b) → R be a lin-
ear function with (a, b) = ((1 −

√
c)2, (1 +

√
c)2), the support of the Marchenko–Pastur

distribution, and let c < 1. Then, under the null hypothesis in (10), it holds that

𝜑(f (𝜆i)) =
⎧
⎪
⎨
⎪
⎩

1 f (𝜆i) ∈ (a, b)
4f (𝜆i)

(c−1−f (𝜆i)+
√
(f (𝜆i)−1−c)2−4c)2

else
,

where 𝜆i are the eigenvalues of the sample covariance matrix.

The results of the theorem state that choosing the identity transformation f (x) = x would lead
to a degenerate statistic. Therefore, the definition of 𝜑(𝜆) in (12) should be adjusted in such a way,
that the resulting test statistic will have a nondegenerate asymptotic distribution. This leads to
the definition of a modification of 𝜑(𝜆) expressed as

𝜑
𝜀
(𝜆) = 4𝜆

|(c − 1 − 𝜆) + 1
2

√
(𝜆 − 1 − c)2 − 4c|2 + 4𝜀

= 𝜆

𝜆 + 𝜀

, (13)

where the last equality follows from the proof of Theorem 1.
The application of the transformation (13), which is obtained by utilizing the properties of the

nonlinear shrinkage estimator for the covariance matrix, the following LSS is obtained
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BODNAR et al. 9 of 30

T
𝜀
=

p∑

i=1
𝜑
𝜀
(𝜆i) =

p∑

i=1

𝜆i

𝜆i + 𝜀

. (14)

This is an LSS with a nondegenerate asymptotic distribution since 𝜑1(𝜆) has only one singularity
at 𝜆 = −𝜀 and it is analytic on the support of the Marchenko–Pastur distribution of 𝜆. Therefore, it
is possible to apply the CLT for LSS to T

𝜀
. It should be noted that for 𝜀 = 1 the statistic T

𝜀
is similar

to the Bartlett-Nanda-Pillai (BNP) trace test statistic proposed by Pillai (1955), whose asymptotic
distribution for a large-dimensional Fisher matrix is derived by Bodnar, Dette, and Parolya (2019).
As such, the LSS in (14) generalizes the BNP trace test statistic.

The CLT for LSSs (see, Theorem 3.4 in Yao et al., 2015) states that the fluctuation of corrected
T
𝜀

around its limit is normally distributed with a specific mean 𝜇 and variance 𝜎

2. In Theorem 2
the analytical expressions of the correction term, the mean, and the variance are present.

Theorem 2. Assume that conditions (A1) and (A2) hold and let 𝜀 > 0 be arbitrary.
Then, under the null hypothesis in (10), it holds that

W =
p∑

i=1

𝜆i

𝜆i + 𝜀

+ p A
√

c

D
−−→N(𝜇, 𝜎2),

for p∕n → c > 0 as n →∞ where

𝜇 = −(𝜅 − 1) 𝜀

√
c(A − B)(B2 − 1)

− 𝛽

𝜀A3
√

c(A2 − 1)
, 𝜎

2 = 𝜅

𝜀

2

c(A − B)4
+ 𝛽

𝜀

2A4

c(A2 − 1)2
,

(15)
and

A =
−c − 𝜀 − 1 +

√
(c + 𝜀 + 1)2 − 4c

2
√

c
,B =

−c − 𝜀 − 1 −
√
(c + 𝜀 + 1)2 − 4c

2
√

c
.

From the definition of A and B, we directly get that AB = 1. Moreover, A ≠ B, since
(c + 𝜀 + 1)2 − 4c = (c − 1)2 + 𝜀

2 + 2𝜀(1 + c) > 0 for 𝜀 > 0. Finally, it holds that B < −1 < A < 0.
To study the finite sample performance of the asymptotic results derived in Theorem 2, we

consider the normalized version of T
𝜀

statistics expressed as

Z = W − 𝜇

√
𝜎

2
,

where𝜇 and 𝜎

2 are given in (15). Then, by Theorem 2, Z → N(0, 1) in distribution. Figure 1 depicts
the histograms of the random variable Z calculated with p = 128, n = 256, and 𝜀 = 1 when the
observation matrix is obtained by generating random variables from the standard normal distri-
bution (left-hand side plot) and from the Gamma(4, 2) − 2 distribution (right-hand side plot). For
the second figure Gamma(4, 2) − 2 distributed data are chosen because this gives 𝛽 = 3∕2 instead
of 𝛽 = 0, corresponding to the standard normal distribution. Moreover, it still has zero mean and
unit variance. The results in the two plots are obtained for 100.000 independent replications.

Note that both empirical distribution functions in Figure 1 are well approximated by the stan-
dard normal distribution. This result holds for the moderate sample size n = 256. Moreover, the
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F I G U R E 1 Empirical distribution functions for centralized random variable W calculated with p = 128,
n = 256, 𝜀 = 1 and based on the standard normal distribution (left) and the Gamma(4, 2) − 2 distribution (right).

random variable W is a ready-to-use statistic in the large-dimensional case, based on the non-
linear shrinkage estimator. We refer to the new test based on the statistic W as the nonlinear
shrinkage test or for short the NLS-𝜀 test. In Appendix A the new test will be compared with
existing benchmark approaches within an extensive simulation study. Finally, we note that 𝜀 = 1
was chosen arbitrarily in Figure 1. However, in the general case, 𝜀 needs to be chosen such that
the power of the test is maximal. Determining the appropriate value of 𝜀 for different scenarios is
challenging because it largely depends on the specific alternative hypothesis being considered. In
future research, we will address this question by investigating the asymptotic power of the NLS
test under various conditions.

4 SUMMARY

Testing the structure of the covariance matrix is a challenging statistical problem with many
potential applications in different fields of science, such as finance, economics, environmetrics,
medical imaging analysis, signal processing, and wireless communications. The problem becomes
even more difficult when the dimension of the covariance matrix is large, that is, when one should
opt for the large-dimensional setting in the derivation of the asymptotic distribution of the test
statistic. Even though several large-dimensional tests exist in the statistical literature, the research
in this direction is still ongoing.

We contribute to the existing literature by extending the large-dimensional test based on the
shrinkage approach to the test deduced from the nonlinear shrinkage estimator of the covari-
ance matrix. The asymptotic distribution of the test statistic is derived under the null hypothesis
by applying the theory developed for LSSs. The properties of the new approach are investigated
within an extensive simulation study. It is concluded that the suggested test based on the non-
linear shrinkage approach outperforms the benchmark testing strategies for some alternative
hypotheses, while the large-dimensional John test and the test derived from the linear shrinkage
approach perform better for other alternative hypotheses.

DATA AVAILABILITY STATEMENT
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APPENDIX A. SIMULATION STUDY

In this section, the nonlinear shrinkage test (NLS-𝜀) is compared with other tests in the
large-dimensional framework. The considered benchmark approaches are the CLRT, the CJ test,
both derived by Wang and Yao (2013), and the linear shrinkage (LS) test introduced in Bodnar
et al. (2024). The CLRT and the CJ approaches present one-sided tests, while the NLS-𝜀 and the
LS methods are two-sided tests. Note that a one-sided test can be adapted to a two-sided test by
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reallocating the significance level equally across both tails of the distribution. This transforma-
tion will also be applied in this simulation to ensure all tests are compared on the same basis.
Moreover, note that the CJ and the LS test statistics have the same limiting distribution and that
the limiting distributions of the CLRT and the NLS-𝜀 test statistics depend on c. In particular, the
CLRT depends on the log(1 − c). Therefore, this test breaks down when c increases to 1 and will
not work when c > 1.

The null hypothesis that will be tested is given in (10) and we will work with the transformed
sample in this section. During the comparison, we also look for which 𝜀 the NLS-𝜀 test has the
highest power using grid search for 𝜀. The comparison is performed in terms of the empirical
null-rejection probabilities and the empirical power.

A.1 Empirical rejection rates comparison
Before the tests are compared using their powers, their empirical rejection probabilities are com-
pared. If a test statistic’s exact distribution closely approximates its limiting distribution, then the
empirical rejection rates should align closely with the desired significance level, 𝛼. Therefore, the
closer the empirical rejection rate is to a fixed significance level 𝛼, the better approximation is.
Also to make a fair comparison later on with the empirical powers, the empirical rejection rates
of the tests should all be close to the significance level.

Without loss of generality, we set 𝛼 = 0.05 as the desired significance level and calculate the
empirical rejection rates of the tests by using 10,000 independent repetitions with the results
depicted in Tables A1 and A2. The empirical rejection rates in Table A1 are computed by draw-
ing samples from the standard normal distribution, while the values in Table A2 are obtained
by generating the elements of the observation matrix from the Gamma(4, 2) − 2 distribution as
described in Section 3.

T A B L E A1 Empirical rejection rates at 5% significance level when the elements of the observation matrix
are drawn from the standard normal distribution.

(p,n) CLRT CJ LS NLS-10 NLS-1.5 NLS-1 NLS-0.5 NLS-0.1

(8,128) 0.0565 0.0581 0.0661 0.0480 0.0487 0.0495 0.0496 0.0523

(16,128) 0.0539 0.0552 0.0479 0.0451 0.0460 0.0463 0.0452 0.0475

(32,128) 0.0518 0.0525 0.0432 0.0458 0.0460 0.0469 0.0484 0.0512

(64,128) 0.0536 0.0538 0.0479 0.0503 0.0491 0.0483 0.0504 0.0520

(96,128) 0.0547 0.0540 0.0484 0.0440 0.0502 0.0500 0.0513 0.0527

(112,128) 0.0538 0.0553 0.0516 0.0556 0.0539 0.0531 0.0514 0.0499

(120,128) 0.0522 0.0524 0.0485 0.0477 0.0484 0.0479 0.0482 0.0478

(16,256) 0.0544 0.0531 0.0473 0.0449 0.0452 0.0458 0.0463 0.0477

(32,256) 0.0519 0.0502 0.0433 0.0512 0.0516 0.0517 0.0496 0.0492

(64,256) 0.0499 0.0499 0.0437 0.0500 0.0502 0.0492 0.0499 0.0498

(128,256) 0.0516 0.0541 0.0504 0.0514 0.0517 0.0509 0.0511 0.0498

(192,256) 0.0542 0.0503 0.0488 0.0535 0.0519 0.0505 0.0509 0.0496

(224,256) 0.0505 0.0512 0.0495 0.0503 0.0495 0.0502 0.0519 0.0511

(240,256) 0.0517 0.0513 0.0480 0.0460 0.0469 0.0472 0.0488 0.0499

Abbreviations: CJ, corrected John test; CLRT, corrected likelihood ratio test.
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T A B L E A2 Empirical rejection rates at 5% significance level when the elements of the observation matrix
are drawn from the Gamma(4, 2) − 2 distribution.

(p,n) CLRT CJ LS NLS-10 NLS-1.5 NLS-1 NLS-0.5 NLS-0.1

(8,128) 0.2518 0.1178 0.0808 0.0480 0.0463 0.0460 0.0456 0.0479

(16,128) 0.2619 0.0911 0.0513 0.0469 0.0438 0.0436 0.0440 0.0485

(32,128) 0.2588 0.0750 0.0468 0.0498 0.0472 0.0460 0.0466 0.0496

(64,128) 0.2197 0.0645 0.0460 0.0485 0.0458 0.0470 0.0459 0.0492

(96,128) 0.1643 0.0537 0.0423 0.0489 0.0474 0.0459 0.0456 0.0464

(112,128) 0.1329 0.0601 0.0514 0.0511 0.0451 0.0444 0.0454 0.0452

(120,128) 0.1105 0.0598 0.0515 0.0482 0.0462 0.0462 0.0466 0.0489

(16,256) 0.2777 0.0861 0.0531 0.0495 0.0468 0.0470 0.0472 0.0488

(32,256) 0.2849 0.0723 0.0471 0.0485 0.0471 0.0471 0.0479 0.0499

(64,256) 0.2654 0.0625 0.0467 0.0488 0.0489 0.0499 0.0511 0.0514

(128,256) 0.2252 0.0591 0.0513 0.0532 0.0509 0.0521 0.0519 0.0511

(192,256) 0.1695 0.0572 0.0513 0.0508 0.0489 0.0485 0.0477 0.0500

(224,256) 0.1384 0.0554 0.0510 0.0519 0.0510 0.0503 0.0532 0.0537

(240,256) 0.1164 0.0547 0.0490 0.0505 0.0503 0.0489 0.0499 0.0502

Abbreviations: CJ, corrected John test; CLRT, corrected likelihood ratio test.

It can be seen in Table A1 that all the empirical rejection rates based on data generated from the
standard normal distribution are close to the target significance level 𝛼 = 0.05. This means that
the exact distributions of the test statistics are well approximated by their limiting distributions
derived in the large-dimensional setting. Unfortunately, this is not the case when the empirical
rejection rates are computed using data generated from the Gamma(4, 2) − 2 distribution.

In Table A2, we observe that the empirical rejection rates of the NLS-𝜀 and LS tests behave
quite well. For lower combinations of (p,n) the empirical rejection rates of the NLS-𝜀 test seem a
little low but overall they are close to the target significance level 𝛼. As such, it can be concluded
that for these combinations of (p,n), the exact distributions of the test statistics of the NLS-𝜀 and
the LS tests are close to their large-dimensional asymptotic distributions when the data are drawn
from the Gamma(4, 2) − 2 distribution. However, for the CJ test, this only holds when both p and n
are relatively large. It looks like the empirical rejection rates of the CJ test approach 𝛼 from above.
This means that if p and n are relatively low, then the exact distribution has heavier tails than it
should be. However, when p and n increase, then the sampling distribution of the CJ test statistic
is getting closer to its limiting distribution. Thus, the CJ test relies more on the limiting aspect in
this case. The empirical rejection rates for the CLRT behave quite poor for every combination of
(p,n). They are approximately two times as large as they should be when p and n are large and the
results are even worse for smaller values of p and n. From this observation, it can be concluded that
when the data are generated from the Gamma(4, 2) − 2 distribution, then the exact distribution of
the CLRT test statistic is not close to its limiting distribution. Therefore, it will be difficult to make
a fair comparison based on the empirical power for the Gamma(4, 2) − 2 distribution, because not
all tests will have the same starting point. So, the empirical power comparison will only be based
on the data generated from the standard normal distribution.
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BODNAR et al. 15 of 30

A.2 Empirical power comparison
In this subsection, the empirical powers for all tests will be compared, including the NLS-𝜀 test
for different values of 𝜀. The comparison will be based on the data drawn from the standard nor-
mal distribution. In this simulation study, the comparison is based on the increasing distance
between the null hypothesis and a particular alternative hypothesis. Three alternative hypotheses
are considered

1. H1: Compound symmetry relation,
2. H1: Autoregressive relation,
3. H1: Heteroscedasticity.

The dimensions that will be used in the comparison are (p,n) = (32,128), (p,n) = (64,128),
(p,n) = (96,128) and (p,n) = (120,128). This results in c = 1∕4, c = 1∕2, c = 3∕4 and c = 15∕16,
repressively. The calculation of the empirical powers is based on 1,000 independent repetitions.

A.2.1 Compound symmetry relation
The first alternative hypothesis that will be used to make a power comparison is the compound
symmetry relation. In this case, the covariance matrix under the alternative hypothesis is given by

𝚺n,𝜌 = (1 − 𝜌)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0
0 1 ⋮

⋮ ⋱

0 · · · 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 𝜌

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
1 1 ⋮

⋮ ⋱

1 · · · 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 𝜌 · · · 𝜌

𝜌 1 ⋮

⋮ ⋱

𝜌 · · · 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The coefficient 𝜌 runs from 0 to 1 in the simulation study. When 𝜌 = 0, the 𝚺n,𝜌 is the identity
matrix and the null hypothesis is true. As 𝜌 increases, the covariance matrix 𝚺n,𝜌 becomes less
like the identity matrix, that is, the distance from the null hypothesis to the alternative hypothesis
increases. After some investigations, it seems like the most important 𝜀’s under the compound
symmetry alternative for the NLS-𝜀 test are 𝜀 = 1.5, 𝜀 = 1 and 𝜀 = 0.5. We use these values in the
comparison study.

In Figure A1, it can be seen how the tests perform in terms of the empirical power for different
combinations of p

n
. For 𝜌 > 0.15, all tests have power 1 and, as expected, the CJ and the LS tests

behave nearly the same. Most noticeable in Figure A1 is the observation that when p increases,
then the NLS-𝜀 performs better and the CLRT becomes worse. For (p,n) = (120,128) the NLS-𝜀
test outperforms the CLRT test. Also, the CLRT test breaks down when p is getting closer to n.
Overall, the CJ and the LS tests perform best because they are the first to reach a power of 1 for
every combination of (p,n).

Now focusing only on the NLS-𝜀 test, it can be seen in Figure A1 that when p increases the
performance of the NLS-𝜀 test changes as well. For small p it seems that the NLS-0.5 performs
best but when p = 96 and p = 120 the NLS-1 test performs best with minimum difference. There-
fore, the optimal 𝜀 for the NLS-𝜀 test depends on the combination of (p,n) under the compound
symmetry alternative.

A.2.1 Autoregressive relation
The second alternative hypothesis is the autoregressive relation, based on an autoregressive
model. The autoregressive model states that the output variable depends linearly on its previous
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16 of 30 BODNAR et al.

F I G U R E A1 Empirical powers under alternative hypothesis 1 for 𝜌 ∈ (0, 1).

values and an error term. In the autoregressive alternative hypothesis, the entries of the matrix
𝚺n,Δ also depend recursively on each other. For Δ ∈ R, the entry on the ith row and the jth col-
umn of the alternative hypothesis matrix is Δ|i−j|. The autoregressive alternative hypothesis is
then given by

𝚺n,Δ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 Δ Δ2 · · · Δp−1

Δ 1 Δ · · · Δp−2

Δ2 Δ Δ ⋮

⋮ ⋱ Δ
Δp−1 Δp−2 · · · Δ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the simulation study,Δ ∈ (−1, 1) is chosen, because this corresponds to a stationary autore-
gressive model. The simulation goes in the same way as for the previous alternative hypothesis.
As Δ goes away from 0 in both directions, this could be seen as moving away from the null
hypothesis in (10) because the covariance matrix becomes less like the identity matrix. After some
pre-analysis the most important 𝜀’s to consider for NLS-𝜀 test are 𝜀 = 1, 𝜀 = 0.5, and 𝜀 = 0.1. Note
that not all of these 𝜀’s are the same as in the simulation for the first alternative hypothesis.

It can be seen in Figure A2 that for p = 32 and p = 64 the CJ, LS, and CLRT tests perform
quite the same. Still the CJ test performs best but the other two are not far behind. The NLS-𝜀 test
performs the worst for p small. Then, when p gets bigger the CJ and LS tests are still performing
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BODNAR et al. 17 of 30

F I G U R E A2 Empirical powers under alternative hypothesis 2 for Δ ∈ (−1, 1).

best, but the CLRT test is performing worse and worse. For p = 120 the NLS-𝜀 test outperforms
the CLRT test when 𝜀 = 0.5. This is in line with the observation from the previous simulation for
the compound symmetry alternative, only now with different 𝜀.

Focusing on the NLS-𝜀 test, it can be seen in Figure A2 that for p = 32 and p = 64, the NLS-0.1
test performs best. When p gets larger, the NLS-0.5 test takes the lead. Again the the optimal 𝜀
varies with different values of p compared to n and it is in line with the observation from the
simulation study performed under the compound symmetry alternative.

A.2.2 Heteroscedasticity
The third alternative hypothesis that will be considered is the alternative hypothesis where a fixed
ratio r of the variables has a variance not equal to 1, but equal to 1 + 𝛾 . In econometrics, this is
also called a heteroscedasticity alternative. For any r ∈ (0, 1) and 𝛾 ∈ R, the covariance matrix
under the third alternative hypothesis is defined as

𝚺n,r,𝛾 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0
0 ⋱ ⋮

1 + 𝛾

⋮ ⋱

0 · · · 1 + 𝛾

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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18 of 30 BODNAR et al.

If r = 1∕2, then half of the variables have variances equal to 1 + 𝛾 . If r ⋅ p is not a whole number,
it will be rounded down. In the same way, as in the previous simulation, 𝛾 will run from −1 to
1. This can again be seen as departing from the null hypothesis in (10) when 𝛾 goes away from 0
in both directions because the covariance matrix 𝚺n,r,𝛾 under the alternative hypothesis becomes
less like the identity matrix. After some pre-analysis of the NLS-𝜀 test under the third alternative
hypothesis, we find that the most important 𝜀’s to consider are 𝜀 = 10, 𝜀 = 1 and 𝜀 = 0.1.

Figure A3 shows that the NLS-𝜀 test performs by far the best. The NLS-𝜀 test reaches the power
of 1 much faster than the other competitors. For low c the CJ, LS, and CLRT tests are again quite
comparable. However, when p increases the CLRT is getting worse and worse for the same reason
as in the previous simulations. As a result, it can be concluded that the NLS-𝜀 test performs best.
Furthermore, it can be seen that the NLS-𝜀 tests are symmetric around zero but the other tests
are not because the powers of the other tests increase much faster for negative values of 𝛾 than
for positive values.

In Figures A4 and A5, it can be seen that the NLS-𝜀 test works better when r increases from 0
to 1. The other tests only perform better when r increases to 1∕2 only because when r > 1∕2 the
power decreases again, especially when 𝛾 is positive. This behavior is explained by the fact that
the distributions of the test statistics of the CJ, LS, and CLRT tests remain the same when the
covariance matrix is multiplied by a constant. This means that for r = 1∕2 the alternative hypoth-
esis is furthest away from the null hypothesis and should give the highest powers. Therefore, it
can be concluded that the CJ, LS, and CLRT tests are invariant under multiples of the identity

F I G U R E A3 Empirical powers under alternative hypothesis 3 for 𝛾 ∈ (−1, 1) and r = 1∕2.

 14679574, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12348 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [13/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BODNAR et al. 19 of 30

F I G U R E A4 Empirical powers under alternative hypothesis 3 for 𝛾 ∈ (−1, 1) and r = 1∕4.

matrix which was already expected. In contrast, the NLS-𝜀 is not invariant under the multiplica-
tion of the identity matrix by a constant, and thus the test gets more powerful when r increases
from 0 to 1.

Finally, it can be seen in Figures A3–A5 that for all p’s the NLS-10 test performs best and
NLS-0.1 the worst. This is not in line with the findings from the previous alternative hypotheses
where the optimal 𝜀 depends on p.

A.3 Combining compound symmetry and heteroscedasticity
It is observed in the previous subsections that the CJ and LS tests are the best-performing tests
under the compound symmetry alternative. However, the NLS-𝜀 test outperforms the others
under the heteroscedasticity alternative. This makes it interesting to combine the two alternative
hypotheses, and to examine which combinations of the variables (𝜌, 𝛾)will lead to the best test. It
is expected that the performance of the tests depends on the tradeoff between the two variables,
since for (𝜌, 0) the CJ and LS tests perform better and for (0, 𝛾) the NLS-𝜀 test is the best approach.
For any r ∈ (0, 1), 𝜌 ∈ (0, 1) and 𝛾 ∈ (−1, 1), the covariance matrix under the fourth alternative
hypothesis is defined as

𝚺n,𝜌,𝛾,r = 𝚺1∕2
n,𝛾,r ⋅ 𝚺n,𝜌 ⋅ 𝚺1∕2

n,𝛾,r.
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20 of 30 BODNAR et al.

F I G U R E A5 Empirical powers under alternative hypothesis 3 for 𝛾 ∈ (−1, 1) and r = 3∕4.

The fourth alternative hypothesis means that for 𝜌 ≠ 0 there is a positive correlation between
the variables and a fixed ratio r of these variables have variance other than one, namely 1 + 𝛾 .
The fourth alternative depends now on three parameters, 𝜌, r, and 𝛾 . Therefore, as in the previous
simulations, 𝜌 will run from 0 to 1, 𝛾 from −1 to 1, and r = 1∕2 is taken arbitrarily. This can again
be seen as departing from the null hypothesis when 𝜌 increases from 0 and 𝛾 moving away from
0 in both directions. This is because the covariance matrix 𝚺n,𝜌,𝛾,r becomes less like the identity
matrix under the alternative hypothesis. The simulation will give different empirical powers for
each combination of (𝜌, 𝛾). Plotting 𝜌 and 𝛾 against the obtained empirical powers will then result
in a three-dimensional power plot to compare the tests. The NLS-𝜀 test that will be chosen is the
NLS-1 test because it performs over both alternative hypotheses on average the best. Differently
from the previous simulations, this simulation will only be performed for p = 64.

In Figure A6, the empirical powers under the fourth alternative hypothesis are plotted. It can
be noted that the NLS-1 test does not seem to gain any power when 𝛾 is close to zero and 𝜌 runs
from 0 to 1. Moreover, from this figure, it is not immediately clear whether the empirical powers
behave just as in Figure A1 and Figure A3, that is, when one of the variables 𝜌 or 𝛾 is close to zero.
Therefore, in Figure A7a the empirical powers are plotted for 𝛾 ∈ (0, 0.01) and in Figure A7b for
𝜌 ∈ (0, 0.01), that is, for 𝛾 and 𝜌 small. It can be seen in these figures that the tests behave just as
expected. The only difference is that the lines are changed for planes.

Next, we investigate what happens when the variables 𝜌 and 𝛾 are not close to zero, that is,
when the deviation from the null hypothesis increases in both directions. The empirical powers

 14679574, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12348 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [13/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BODNAR et al. 21 of 30

Gamma

F I G U R E A6 Empirical powers under alternative hypothesis 4 for p = 64, 𝜌 ∈ (0, 1), 𝛾 ∈ (−1, 1) and r = 1∕2.

of the CJ, LS, and CLRT tests increase, as expected, following the results presented in Figures A1
and A3. However, the NLS-1 test shows strange behavior. The power does not increase in the 𝜌

direction when 𝛾 moves away from zero. Therefore, we focus on this property of the NLS-1 test in
the following.

In Figure A8 the empirical power of the NLS-1 test is plotted for both 𝜌 and 𝛾 small. From this
figure, it can be concluded that when 𝜌 or 𝛾 is equal to zero the test behaves as expected. However,
when 𝜌 and 𝛾 are lying in a particular region, the empirical power is very low. From Figure A8 it
can be deduced that if 𝛾 is approximately equal to 3

2
⋅ 𝜌, the NLS-1 test will not increase in power.

APPENDIX B. AUXILIARY RESULTS

The following auxiliary results are Theorem 3.4, Proposition 3.6, and Proposition 2.10 from Yao
et al. (2015). Theorem 3.4 is the CLT for LSSs. This theorem states that the fluctuations of a LSS
around its limit are normally distributed under some conditions and for a specific class of func-
tions. Proposition 3.6 helps reduce the difficulty of the calculations, while Proposition 2.10 gives
a way to calculate the limit of a LSS. The three results are summarized below.

Lemma 1. (CLT for LSSs) Let f1, … , fk be functions analytic on an open region con-
taining the support of Fc. Then under Assumptions (A1) and (A2) the random vector
{Xn(f1), … ,Xn(fk)} where

Xn(f ) = p{FSn(f ) − Fcn (f )},

converges weakly for p∕n → c > 0 as n →∞ to a Gaussian vector {X(f1), … ,X(fk)}
with mean function and covariance function expressed as

E[Xf ] = (𝜅 − 1)I1(f ) + 𝛽I2(f ), cov(Xf ,Xg) = 𝜅J1(f , g) + 𝛽J2(f , g),
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22 of 30 BODNAR et al.

F I G U R E A7 Empirical powers under alternative hypothesis 4 for p = 64, r = 1∕2, 𝜌 ∈ (0, 0.1) and
𝛾 ∈ (0, 0.01) (upper plot) and 𝜌 ∈ (0, 0.01) and 𝛾 ∈ (−0.6, 0.8) (lower plot).

where

I1(f ) =
1

2𝜋i ∮
c{s∕(1 + s)}3(z)f (z)
[1 − c{s∕(1 + s)}2]2

dz, I2(f ) =
1

2𝜋i ∮
c{s∕(1 + s)}3(z)f (z)

1 − c{s∕(1 + s)}2 dz,

J1(f , g) = 1
4𝜋2 ∮ ∮

f (z1)g(z2)
(m(z1) −m(z2))2

m′(z1)m′(z2)dz1dz2,

J2(f , g) = −1
4𝜋2 ∮

f (z1)
𝜕

𝜕z1

{ s
1 + s

(z1)
}

dz1 ⋅
∮

g(z2)
𝜕

𝜕z2

{ s
1 + s

(z2)
}

dz2,
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BODNAR et al. 23 of 30

F I G U R E A8 Empirical power of the NLS-1 test under alternative hypothesis 4 for p = 64 and r = 1∕2.

the integrals are taken along contours (nonoverlapping in J1) enclosing the support of Fc
and s satisfies the equation

z = −1
s
+ c

1 + s
, z ∈ C+

.

As can be seen above, calculations of difficult line integrals are needed in the CLT. Fortunately,
these calculations can significantly be simplified using the following results.

Lemma 2. Let 𝛾 ∶= {z ∈ C ∶ |z| = 1}, 𝛾1 ∶= {z1 ∈ C ∶ |z1| = 1}, and 𝛾2 ∶= {z2 ∈
C ∶ |z2| = 1}. Then, the limiting parameters in Lemma 1 are expressed as follows

I1(f ) = lim
r↓1

I1(f , r), I2(f ) =
1

2𝜋i ∮
𝛾

f (|1 + hz|2) 1
z3 dz,

J1(f , g) = lim
r↓1

J1(f , g, r), J2(f , g) = − 1
4𝜋2 ∮

𝛾

f (|1 + hz1|
2)

z2
1

dz1 ⋅
∮
𝛾

g(|1 + hz2|
2)

z2
2

dz2,

with

I1(f , r) = 1
2𝜋i ∮

𝛾

f (|1 + hz|2)
[

z
z2 − r−2 −

1
z

]

dz,

J1(f , g, r) = − 1
4𝜋2 ∮

𝛾1
∮
𝛾2

f (|1 + hz1|
2)g(|1 + hz2|

2)
(z1 − rz2)2

dz1dz2,

where h =
√

c.

To calculate the limit of a LSS, the following result is useful:
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24 of 30 BODNAR et al.

Lemma 3. Let 𝛾 ∶= {z ∈ C ∶ |z| = 1}. For the standard Marchenko–Pastur distribu-
tion Fc with index c > 0 and 𝜎

2 = 1 and for all functions f analytic on a domain
containing the support interval [a, b] = [(1 −

√
c)2, (1 +

√
c)2], it holds that

∫
f (x)dFc(x) = −

1
4𝜋i ∮

𝛾

f (|1 +
√

cz|2)(1 − z2)2

z2(1 +
√

cz)(z +
√

c)
dz.

APPENDIX C. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. Let f ∶ (a, b) → R be a linear function with (a, b) =
((1 −

√
c)2, (1 +

√
c)2), the support of the Marchenko–Pastur distribution, and let

f (𝜆i) ∈ (a, b). Equation (12) can be written as

𝜑(𝜆i) =
4𝜆i

|c − 1 − 𝜆i +
√
(𝜆i − 1 − c)2 − 4c|2

= 4𝜆i

|c − 1 − 𝜆i +
√
(a − 𝜆i)(b − 𝜆i)|2

.

Then,

(𝜑◦f )(𝜆i) = 𝜑(f (𝜆i)) =
4f (𝜆i)

|c − 1 − f (𝜆i) +
√
(a − f (𝜆i))(b − f (𝜆i))|2

.

Now since a < f (𝜆i) < b, the expression in the square root is negative and real.
Therefore, it is possible to write this as

√
(b − f (𝜆i)(a − f (𝜆i) = i

√
(b − f (𝜆i)(f (𝜆i) − a),

where the principal branch for the square root is used. Hence,

𝜑(f (𝜆i)) =
4f (𝜆i)

|c − 1 − f (𝜆i) + i
√
(b − f (𝜆i)(f (𝜆i) − a)|2

.

Let z = c − 1 − f (𝜆i) + i
√
(b − f (𝜆i)(f (𝜆i) − a). Then

Re(z)2 = (c − 1 − f (𝜆i))2 = c2 − 2cf (𝜆i) + f (𝜆i)2 − 2c + 2f (𝜆i) + 1,

Im(z)2 =
(√

(b − f (𝜆i)(f (𝜆i − a)
)2
=
(√

(−1)((f (𝜆i) − 1 − c)2 − 4c)
)2

= −c2 + 2cf (𝜆i) − f (𝜆i)2 + 2c + 2f (𝜆i) − 1.

As such, |z|2 = Re(z)2 + Im(z)2 = 4f (𝜆i) and, consequently,

𝜑(f (𝜆i)) =
4f (𝜆i)

|c − 1 − f (𝜆i) +
√
(f (𝜆i) − 1 − c)2 − 4c|2

=
4f (𝜆i)
4f (𝜆i)

= 1.

Now, let f (𝜆i) ∉ (a, b), i.e., f (𝜆i) < a or f (𝜆i) > b. Then,
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BODNAR et al. 25 of 30

(𝜑◦f )(𝜆i) = 𝜑(f (𝜆i)) =
4f (𝜆i)

|c − 1 − f (𝜆i) +
√
(a − f (𝜆i))(b − f (𝜆i))|2

.

Since f (𝜆i) < a or f (𝜆i) > b, then the expression in the square root is always posi-
tive. Combining the result with the previous finding, we get the statement of the
theorem. ▪

Proof of Theorem 2. Consider the LSS T
𝜀
=
∑p

i=1
𝜆i

𝜆i+𝜀
for 𝜀 > 0 with 𝜑(𝜆) = 𝜆

𝜆+𝜀
. By

Lemma 1, we get under H0 ∶ Σn = I that

p{FSn(𝜑) − Fcn(𝜑)},

converges weakly to a Gaussian distribution with mean and variance given by

𝜇 = (𝜅 − 1)I1(𝜑) + 𝛽I2(𝜑), 𝜎

2 = 𝜅J1(𝜑,𝜑) + 𝛽J2(𝜑,𝜑), (C1)

where the closed-form expressions of the mean 𝜇, the variance 𝜎

2 and the correction
factor Fcn(𝜑) are given below in Lemmas 4,5, and 6, respectively. ▪

Before starting the proofs of the lemmas, we note that

|1 + hz|2 = (1 + hz)(1 + hz) = (1 + hz)(1 + h
z
) = 1

z
(z + h)(1 + zh),

where z ∈ C runs over the unit circle with complex conjugate z = 1
z
.

Lemma 4. Under the statement of Theorem 2, it holds that

𝜇 = −(𝜅 − 1) 𝜀

√
c(A − B)(B2 − 1)

− 𝛽

𝜀A3
√

c(A2 − 1)
.

Proof. By Lemma 1, it holds that 𝜇 = (𝜅 − 1)I1(𝜑) + 𝛽I2(𝜑). Next, we use Lemma 2 to
compute I1(𝜑) and I2(𝜑). Let 𝛾 ∶= {z ∈ C ∶ |z| = 1}. By Lemma 2 we get that

I1(𝜑) = lim
r↓1

1
2𝜋i ∮

𝛾

|1 + hz|2

|1 + hz|2 + 𝜀

[
z

z2 − r−2 −
1
z

]

dz

= lim
r↓1

1
2𝜋i ∮

𝛾

1
z
(z + h)(1 + zh)

1
z
(z + h)(1 + zh) + 𝜀

r−2

z(z2 − r−2)
dz

= lim
r↓1

1
hr2

1
2𝜋i ∮

𝛾

(z + h)(1 + zh)
(z − A)(z − B)(z − 1

r
)(z + 1

r
)z

dz,

where

A
−h2 − 𝜀 − 1 +

√
(h2 + 𝜀 + 1)2 − 4h2

2h
,B
−h2 − 𝜀 − 1 −

√
(h2 + 𝜀 + 1)2 − 4h2

2h
.

For notation reasons the above defined A and B as a function of h =
√

c will be used
throughout the appendix. Moreover, from the definition of A and B, we get that AB = 1
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26 of 30 BODNAR et al.

and B < −1 < A < 0. As such, A lies inside 𝛾 and B lies outside 𝛾 . Moreover, since
r > 1 we have that ± 1

r
lie inside 𝛾 . Therefore, the function inside the contour integral

has four simple poles inside 𝛾 , z = 0, z = 1
r
, − 1

r
and z = A. To evaluate the contour

integral we need to calculate the residues of these poles. It holds that

Res(0) = lim
z→ 1

r

z (z + h)(1 + zh)
z(z − A)(z − B)(z − 1

r
)(z + 1

r
)
= −hr2

AB
= −hr2

,

Res(1∕r) = lim
z→ 1

r

(z − 1
r
) (z + h)(1 + zh)

z(z − A)(z − B)(z − 1
r
)(z + 1

r
)
= r2(hr + 1)(r + h)

2(Ar − 1)(Br − 1)
,

Res(−1∕r) = lim
z→− 1

r

(z + 1
r
) (z + h)(1 + zh)

z(z − A)(z − B)(z − 1
r
)(z + 1

r
)
= r2(hr − 1)(r − h)

2(Ar + 1)(Br + 1)
,

Res(A) = lim
z→A

(z − A) (z + h)(1 + zh)
z(z − A)(z − B)(z − 1

r
)(z + 1

r
)
= r2(A + h)(1 + Ah)

A(A − B)(r2A2 − 1)
.

Using Cauchy’s Residue Theorem and the facts that AB = 1 and

(A + h)(1 + Ah) = A + h + A2h + Ah2 = A(1 + h2 + (A + B)h) = −𝜀A,

we find that

I1(𝜑) = lim
r↓1

1
2𝜋i

[
2𝜋i(Res(A) + Res(1∕r) + Res(−1∕r) + Res(0))

]

= lim
r↓1

[
−𝜀

h(A − B)(r2A2 − 1)
+ (hr + 1)(r + h)

2h(Ar − 1)(Br − 1)
+ (hr − 1)(r − h)

2h(Ar + 1)(Br + 1)
− 1

]

= lim
r↓1

[
−𝜀

h(A − B)(r2A2 − 1)
− 𝜀r2(A + B)

h(r2A2 − 1)(r2B2 − 1)

]

= −𝜀
h(A − B)(B2 − 1)

.

Next, we will calculate I2(𝜑). By Lemma 2 it holds that

I2(𝜑) =
1

2𝜋i ∮
𝛾

|1 + hz|2

|1 + hz|2 + 𝜀

1
z3 dz = 1

2h𝜋i ∮
𝛾

(z + h)(1 + zh)
(z − A)(z − B)z3 dz.

The function inside the contour integral has one simple pole z = A and one pole z = 0
of order 3. The residues of these poles are given by

Res(A) = lim
z→A

(z − A) (z + h)(1 + zh)
(z − A)(z − B)z3 =

(A + h)(1 + Ah)
A2(A2 − 1)

= −𝜀
A(A2 − 1)

,

and

Res(0) = 1
2

lim
z→0

d2

dz2 (z − 0)3 (z + h)(1 + zh)
(z − A)(z − B)z3 =

1
2

lim
z→0

d2

dz2
(z + h)(1 + zh)
(z − A)(z − B)

= h
AB

+ (1 + h2)
( 1

A2B
+ 1

AB2

)

+ h
( 1

A3B
+ 1

A2B2 +
1

AB3

)

= h + (1 + h2)(A + B) + h(A2 + B2 + 1) = (A + B)(1 + h2 + h(A + B)) = −𝜀(A + B).

Therefore, by Cauchy’s Residue Theorem it holds that
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BODNAR et al. 27 of 30

I2(𝜑) = lim
r↓1

1
2h𝜋i

[2𝜋i(Res(A) + Res(0))] = −𝜀
h

(

A + B + 1
A(A2 − 1)

)

= −𝜀A3

h(A2 − 1)
.

Combining I1(𝜑) and I2(𝜑) and using h =
√

c, we get the statement of the lemma. ▪

Lemma 5. Under the statement of Theorem 2, it holds that

𝜎

2 = 𝜅

𝜀

2

c(A − B)4
+ 𝛽

𝜀

2A4

c(A2 − 1)2
.

Proof. By Lemma 1 it holds that 𝜎2 = 𝜅J1(𝜑,𝜑) + 𝛽J2(𝜑,𝜑), where Lemma 2 is used
to derive J1(𝜑,𝜑) and J2(𝜑,𝜑).

Let 𝛾1 ∶= {z1 ∈ C ∶ |z1| = 1} and 𝛾2 ∶= {z2 ∈ C ∶ |z2| = 1}. Then by Lemma 2 we
have that

J1(𝜑,𝜑) = lim
r↓1

J1(𝜑,𝜑, r) = lim
r↓1

− 1
4𝜋2 ∮

𝛾1
∮
𝛾2

𝜑(|1 + hz1|
2)𝜑(|1 + hz2|

2)
(z1 − rz2)2

dz2dz1

= lim
r↓1

1
2𝜋i ∮

𝛾1

𝜑(|1 + hz1|
2) 1

2𝜋i ∮
𝛾2

|1 + hz2|
2

|1 + hz2|2 + 𝜀

1
(z1 − rz2)2

dz2dz1

= lim
r↓1

1
2𝜋i ∮

𝛾1

𝜑(|1 + hz1|
2) 1

2𝜋i ∮
𝛾2

(z2 + h)(1 + z2h)
h(z2 − A)(z2 − B)(z1 − rz2)2

dz2dz1.

The inner contour integral has two poles inside 𝛾2, a simple pole z2 = A and a pole
z2 =

z1
r

of order 2, since z1
r

lies inside 𝛾2 for fixed z1 such that |z1| = 1 and r > 1. To
calculate the inner contour integral, we compute the residues of the poles expressed
as

Res(A) = lim
z2→A

(z2 − A) (z2 + h)(1 + z2h)
h(z2 − A)(z2 − B)(z1 − rz2)2

= A(A + h)(1 + Ah)
h(A2 − 1)(z1 − rA)2

,

and

Res(z1∕r) = lim
z2→

z1
r

d
dz2

(z1 − rz2)2
(z2 + h)(1 + z2h)

h(z2 − A)(z2 − B)(z1 − rz2)2
= lim

z2→
z1
r

d
dz2

(z2 + h)(1 + z2h)
h(z2 − A)(z2 − B)

= lim
z2→

z1
r

(z2 − A)(z2 − B)(h2 + 1 + 2hz2) − (z2 + h)(1 + z2h)(2z2 − A − B)
h(z2 − A)2(z2 − B)2

= r(z1 − Ar)(z1 − Br)(h2r + r + 2hz1) − r(hr + z1)(r + hz1)(2z1 − Br − Ar)
h(z1 − rA)2(z1 − rB)2

=
−r((A + B)h + 1 + h2)(z2

1 − r2)
h(z1 − rA)2(z1 − rB)2

=
𝜀r(z2

1 − r2)
h(z1 − rA)2(z1 − rB)2

,

where we use that (A + B)h + 1 + h2 = −𝜀. By Cauchy’s Residue Theorem we get that

J1(𝜑,𝜑) = lim
r↓1

1
2𝜋i ∮

𝛾1

𝜑(|1 + hz1|
2) 1

2𝜋i
[2𝜋i ⋅ (Res(A) + Res(z1∕r)]dz1

= lim
r↓1

1
2𝜋i ∮

𝛾1

(z1 + h)(1 + z1h)
h(z1 − A)(z1 − B)

[
A(A + h)(1 + Ah)

h(A2 − 1)(z1 − rA)2
+

𝜀r(z2
1 − r2)

h(z1 − rA)2(z1 − rB)2

]

dz1
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28 of 30 BODNAR et al.

= lim
r↓1
[ −𝜀A2

h2(A2 − 1)
1

2𝜋i ∮
𝛾1

(z1 + h)(1 + z1h)
(z1 − A)(z1 − B)(z1 − rA)2

dz1

+ 𝜀r
h2

1
2𝜋i ∮

𝛾1

(z1 + h)(1 + z1h)(z2
1 − r2)

(z1 − A)(z1 − B)(z1 − rA)2(z1 − rB)2
dz1] = lim

r↓1

[
−𝜀A2

h2(A2 − 1)
F + 𝜀r

h2 W
]

.

The function inside the contour integral F has two poles inside {z ∈ C ∶ |z1| = 1}, a
simple pole z1 = A and a pole of order 2, z1 = rA. It holds that

Res(A) = lim
z1→A

(z1 − A) (z1 + h)(1 + z1h)
(z1 − A)(z1 − B)(z1 − rA)2

= lim
z1→A

(z1 + h)(1 + z1h)
(z1 − B)(z1 − rA)2

= A(A + h)(1 + Ah)
(A2 − 1)(A − rA)2

= −𝜀A2

(A2 − 1)(A − rA)2
,

Res(rA) = lim
z1→rA

d
dz1

(z1 − rA)2 (z1 + h)(1 + z1h)
(z1 − A)(z1 − B)(z1 − rA)2

= lim
z1→rA

d
dz1

(z1 + h)(1 + z1h)
(z1 − A)(z1 − B)

= lim
z1→rA

(z1 − A)(z1 − B)(h2 + 1 + 2hz1) − (z1 + h)(1 + z1h)(2z1 − A − B)
(z1 − A)2(z1 − B)2

= (rA − A)(rA − B)(h2 + 1 + 2hrA) − (rA + h)(1 + rAh)(2rA − A − B)
(rA − A)2(rA − B)2

= −A(1 + hA)(h + A)(r2A2 − 1)
(rA − A)2(rA2 − 1)2

= 𝜀A2(r2A2 − 1)
(rA − A)2(rA2 − 1)2

,

where we use that (A + h)(1 + Ah) = −𝜀A. Then, by Cauchy’s Residue Theorem the
first integral is equal to

F = 1
2𝜋i

[2𝜋i(Res(A) + Res(Ar))] = − 𝜀A2

(A2 − 1)(A − rA)2
+ 𝜀A2(r2A2 − 1)
(rA − A)2(rA2 − 1)2

= −𝜀A2

(A2 − 1)(rA2 − 1)2
.

Next, we compute the second integral W . The function inside the integral has two
poles inside {z ∈ C ∶ |z1| = 1}, a simple pole z1 = A and a pole z1 = rA of order 2. It
holds that

Res(A) = lim
z1→A

(z1 − A)
(z1 + h)(1 + z1h)(z2

1 − r2)
(z1 − A)(z1 − B)(z1 − rA)2(z1 − rB)2

= (A + h)(1 + Ah)(A2 − r2)
(A − B)(A − rA)2(A − rB)2

= −𝜀A2(A2 − r2)
(A2 − 1)(1 − r)2(A2 − r)2

,

Res(rA) = lim
z1→rA

d
dz1

(z1 + h)(1 + z1h)(z2
1 − r2)

(z1 − A)(z1 − B)(z1 − rB)2

= (1 + hrA)(r2A2 − r2) + h(rA + h)(r2A2 − r2) + 2rA(rA + h)(1 + hrA)
(rA − A)(rA − B)(rA − rB)2

− (rA + h)(1 + hrA)(r2A2 − r2)
(rA − A)2(rA − B)(rA − rB)2

− (rA + h)(1 + hrA)(r2A2 − r2)
(rA − A)(rA − B)2(rA − rB)2

− 2(rA + h)(1 + hrA)(r2A2 − r2)
(rA − A)(rA − B)(rA − rB)3

,
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BODNAR et al. 29 of 30

= −(A + h)(1 + hrA)(r2A2 − r2)
(rA − A)2(rA − B)(rA − rB)2

− (A + h)(rA + h)(r2A2 − r2)
A(rA − A)(rA − B)2(rA − rB)2

= −(A + h)(r2A2 − r2)(1 + Ah)(r2A2 − 1)
A(rA − A)2(rA − B)2(rA − rB)2

= 𝜀A2(r2A2 − 1)
(r − 1)2(rA2 − 1)2(A2 − 1)

.

Then by Cauchy’s Residue Theorem the second integral is equal to

W = 1
2𝜋i

[2𝜋i(Res(A) + Res(Ar))] = −𝜀A2(A2 − r2)
(A2 − 1)(1 − r)2(A2 − r)2

+ 𝜀A2(r2A2 − 1)
(r − 1)2(rA2 − 1)2(A2 − 1)

= 𝜀A4(A2 + 1)(r2 − 1)
(A2 − r)2(rA2 − 1)2(A2 − 1)

.

Hence, combining the two integrals we find J1(𝜑,𝜑) = limr↓1 J1(𝜑,𝜑, r) = 𝜀

2

h2(A−B)4
.

Finally, we evaluate J2(𝜑,𝜑). By Lemma 2, with 𝛾1 ∶= {z1 ∈ C ∶ |z1| = 1} and 𝛾2 ∶=
{z2 ∈ C ∶ |z2| = 1}, we get

J2(𝜑,𝜑) =
1

2𝜋i ∮
𝛾1

f (|1 + hz1|
2)

z2
1

dz1 ⋅
1

2𝜋i ∮
𝛾2

g(|1 + hz2|
2)

z2
2

dz2

= 1
2𝜋i ∮

𝛾1

(z1 + h)(1 + z1h)
((z1 + h)(1 + z1h) + z1𝜀)z2

1
dz1 ⋅

1
2𝜋i ∮

𝛾2

(z2 + h)(1 + z2h)
((z2 + h)(1 + z2h) + z2𝜀)z2

2
dz2

=

(

1
2𝜋i ∮

𝛾1

(z1 + h)(1 + z1h)
h(z1 − A)(z1 − B)z2

1
dz1

)2

=̃W2
.

The function inside the contour integral ̃W has two poles inside 𝛾1, one simple pole
z1 = A and one pole z1 = 0 of order two. We get

Res(A) = lim
z1→A

(z1 − A) (z1 + h)(1 + z1h)
h(z1 − A)(z1 − B)z2

1
= lim

z1→A

(z1 + h)(1 + z1h)
h(z1 − B)z2

1

= (A + h)(1 + Ah)
h(A − B)A2 = (A + h)(1 + Ah)

h(A2 − 1)A
= −𝜀

h(A2 − 1)
,

Res(0) = lim
z1→0

d
dz1

(z1 − 0)2 (z1 + h)(1 + z1h)
h(z1 − A)(z1 − B)z2

1
= lim

z1→0

d
dz1

(z1 + h)(1 + z1h)
h(z1 − A)(z1 − B)

= lim
z1→0

(z1 − A)(z1 − B)(h2 + 1 + 2hz1) − (z1 + h)(1 + z1h)(2z1 − A − B)
h(z1 − A)2(z1 − B)2

= h2 + 1 + h(A + B)
h

= − 𝜀

h
.

Hence, Cauchy’s Residue Theorem yields J2(𝜑,𝜑) = 𝜀

2A4

h2(A2−1)2
. Combining the limit-

ing parameters J1(𝜑,𝜑) and J2(𝜑,𝜑) and using h =
√

c, we get the statement of the
lemma. ▪

Lemma 6. Under the statement of Theorem 2, it holds that U = −A
h
.
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30 of 30 BODNAR et al.

Proof. To compute the centering factor Fc(𝜑) Lemma 3 is used. Let 𝛾 ∶= {z ∈ C ∶
|z| = 1}. Then,

U = − 1
4𝜋i ∮

𝛾

(
|1 + hz|2

|1 + hz|2 + 𝜀

)
(1 − z2)2

z2(1 + hz)(z + h)
dz

= − 1
4𝜋i ∮

𝛾

(z + h)(1 + zh)(1 − z2)2

((z + h)(1 + zh) + z𝜀)z2(1 + hz)(z + h)
dz

= − 1
4𝜋i ∮

𝛾

(1 − z2)2

((z + h)(1 + zh) + z𝜀)z2 dz = − 1
4𝜋i ∮

𝛾

(1 − z2)2

h(z − A)(z − B)z2 dz.

The function inside the contour integral has two poles inside 𝛾 ∶= {z ∈ C ∶ |z| = 1},
a simple pole z = A and a pole z = 0 of order 2. To calculate the integral we need to
calculate the residues of these poles, expressed as

Res(0) = lim
z→0

d
dz
(z2 − 0) (1 − z2)2

h(z − A)(z − B)z2 = lim
z→0

d
dz

(1 − z2)2

h(z − A)(z − B)

= lim
z→0

(z2 − 1)(4ABz − 3Az2 − 3Bz2 + 2z3 − A − B + z)
h(A − z)2(B − z)2

= A + B
hA2B2 =

A2 + 1
hA

,

Res(A) = lim
z→A

(z − A) (1 − z2)2

h(z − A)(z − B)z2 =
(A2 − 1)2

h(A2 − 1)A
= A2 − 1

hA
.

Then, by Cauchy’s Residue Theorem and the equality h =
√

c, we get the statement
of the lemma. ▪
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