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Summary

Dynamical systems theory can significantly contribute to the understanding and
control of fluid flows. Fluid dynamical systems are governed by the Navier-Stokes
equations, which are continuous in both time and space, resulting in a state space
of infinite dimension. To incorporate tools from systems theory it has become com-
mon practise to approximate the infinite-dimensional system by a finite-dimensional
lumped system. Current techniques for this reduction step are data driven and pro-
duce models which are sensitive to the simulation/experimental conditions. This
dissertation proposes a rigorous and practical methodology for the derivation of ac-
curate finite-dimensional approximations and output feedback controllers directly
from the governing equations. The approach combines state-space discretisation of
the linearised Navier-Stokes equations with balanced truncation to design experi-
mentally feasible low-order controllers. The approximation techniques can be used
to design any suitable linear controller. In this study the reduced-order controllers
are designed within an H2 optimal control framework to account for external dis-
turbances and measurement noise. Application is focused on control of laminar
wall-bounded shear flows to delay the classical transition process initially governed
by two-dimensional convective perturbations, to extend laminar flow and reduce
skin friction drag. The effectiveness and practical feasibility is demonstrated in
both simulation and experiment. The research performed in this dissertation can
be divided in three main parts respectively dealing with finite-dimensional approx-
imation, modelling & control design and experimental validation.

The first part is concerned with the development of mathematical tools and
procedures to derive finite-dimensional state-space descriptions from the governing
equations. A new methodology is presented to derive state-space systems for a class
of linear parabolic partial differential equations (PDEs). Multivariate splines of
arbitrary degree and arbitrary smoothness are used in combination with Galerkin’s
method to spatially discretise the system. A novel null-space projection method is
proposed to incorporate the smoothness conditions and boundary conditions and to
transform the discrete system of equations to state-space format. This projection
also reduces the order of the system and naturally produces a system that is free of
non-physical spurious eigenmodes. The method can be applied to general geometries
and any actuator/sensor configuration. The effectiveness is demonstrated for two
benchmark PDE control problems, a one-dimensional unstable reaction-diffusion
equation and a two-dimensional unstable reaction-convection-diffusion equation. It
is shown that the models quickly converge for increasing mesh resolution and degree
of splines. Furthermore, it is shown that the order of the model only has to be
sufficiently large to achieve an effective feedback stabilisation.

In the second part, the developed tools are applied for modelling and control of
convective perturbations in two-dimensional wall-bounded shear flows. The velocity-
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x Summary

pressure form of the linearised incompressible Navier-Stokes equations is used to
derive the state-space system. To avoid singularities, the pressure is eliminated
from the governing equations by using a space of velocity fields that is divergence
free and a suitable choice of the Galerkin variational formulation of the equations.
This also gives a significant model-order reduction as the divergence-free constraint
space of functions is much smaller than the unconstrained space. Wall-bounded
flows dominated by convective processes are highly sensitive to external upstream
disturbances. Accurately modelling the influence of external disturbances is crucial
as it forms the basis for the measured unsteadiness. A new perturbation modelling
approach is proposed that effectively balances spatio-temporal resolution with re-
spect to the external disturbances and the order of the system. Very large systems
are avoided by synthesising the controller within a localised computational domain
that encapsulates the actuators/sensors. The modelling is combined with balanced
truncation to reduce the order of the controller and the truncated dynamics is taken
into account in the order selection and in the control design. A fast convergence
of the H2 closed-loop system norms, which characterise the control performance, is
demonstrated. It is shown that between one and two orders of magnitude amplitude
reduction of the perturbations can be achieved with low-order controllers, also in
the case of unmodelled disturbances and sensor inaccuracies.

The third and final part involves the experimental implementation of the con-
troller. Motivated by their practical advantages, a plasma actuator and a micro-
phone that measures the pressure fluctuations at the wall are used as actuator/sensor
pair to control the flow. The chosen control objective is the suppression of natural
two-dimensional convective perturbations in a boundary layer flow over a flat plate
under an externally imposed adverse pressure gradient. New output operators are
derived that relate the flow perturbations with the pressure fluctuations at the wall
and an experimentally derived body force model of the actuator is integrated in the
control design. The estimates obtained from the Kalman filter, which is part of the
optimal controller, are compared with the experimental data obtained from PIV.
The results show that the Kalman filter is able to filter the measurements and to
estimate the spatio-temporal behaviour of naturally occurring perturbations in the
presence of unknown external disturbances. The nominal performance as well as the
robust performance in off-design conditions of the controller is evaluated in compar-
ison with open-loop continuous forcing. In nominal designed conditions a maximum
additional reduction of 60% in the r.m.s. of the pressure fluctuations is measured
9 cm downstream of the plasma actuator, which corresponds to approximately four
times the wavelength of the dominant perturbations. A reduction between 30-60%
is measured for a range of off-design conditions.

The main advantages of the proposed approach are low costs for obtaining the
model, fast convergence of the model and the availability of a high fidelity truth
model. The truth model can be used to assure that the reduced-order controllers
are naturally robust to the truncated dynamics. The main limitation of the proposed
approach is that it is currently practically limited to two-dimensional linear flow con-
figurations. As the matrices are explicitly formed, this approach may be closely tied
to the available computational resources for more complex and three-dimensional
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flow configurations. The main open problem is guaranteeing both robust stability
and robust performance in the presence of model uncertainties. Several possible
directions of research are proposed that extend the results in this dissertation and
address the open problems.





Samenvatting

Systeem theoretische regeltechnieken kunnen aanzienlijk bijdragen aan zowel het
begrijpen en het besturen van luchtstromingen. Aerodynamische systemen worden
beschreven door de Navier-Stokes vergelijkingen welk continu zijn in zowel de tijd
als ruimte wat resulteert in systemen met een oneindige dimensie. Voor het toe-
passen van regeltechniek is het de gewoonte om de oneindige dimensie te benaderen
wat resulteert in een eindig systeem. Huidige technieken voor deze reductie-stap
zijn empirisch wat resulteert in modellen die gevoelig zijn voor de experimentele
of simulatie condities. Dit proefschrift presenteert een nieuw raamwerk voor zo-
wel de eindige benadering en de besturing van aerodynamische systemen op basis
van alleen de vergelijkingen. De aanpak bestaat uit spatiale discretisatie van de
vergelijkingen met balanced truncation voor het ontwerpen van lage orde regelaars
die gebruikt kunnen worden in experimenten. De benaderingstechnieken kunnen
worden gebruikt om elke geschikte lineaire regelaar te ontwerpen. In deze studie
zijn de regelaars ontworpen met behulp van H2 optimale regeltechnieken om reke-
ning te houden met externe verstoringen en meetruis. Het raamwerk is toegepast
op gelaagde stromingen over vlakke platen om transitie naar turbulente stroming
te vertragen en de weerstand te verlagen. De prestaties van het regelsysteem zijn
geëvalueerd in zowel simulaties als experimenten. Het werk in dit proefschrift kan
verdeeld worden in drie aspecten: eindige benadering, modeleren & het ontwerp van
regelaars en het implementeren van regelaars in experimenten.

Het eerste deel van dit werk betreft de ontwikkeling van nieuwe technieken voor
het afleiden van eindige state-space systemen die gebruikt kunnen voor het ontwer-
pen van regelaars. Een nieuwe methode is gepresenteerd voor een generieke klasse
van parabolische systemen die worden beschreven door partiële differentiaalverge-
lijkingen. Multivariate splines van arbitraire orde en arbitraire gladheid worden
gebruikt in combinatie met Galerkin’s methode voor de spatiale discretisatie van
het systeem. Een nieuwe nul ruimte projectie is voorgesteld voor het inbrengen van
de randvoorwaardes en continuiteits condities en het transformeren van het discrete
systeem naar state-space formaat. Deze projectie reduceert ook de orde van het
discrete systeem en produceert een systeem dat de stabiliteitseigenschappen van
het oneindige systeem behoudt. De methode kan worden toegepast op generieke
geometrieën en elke actuator/sensor configuratie. De methode is toegepast op twee
bekende onstabiele regelproblemen. Een snelle convergentie van het model wordt
aangetoond. Het wordt ook aangetoond dat voor een effectieve besturing de orde
van het model en de regelaar laag kan zijn.

In het tweede deel van dit werk worden de nieuwe technieken toegepast voor het
modelleren en besturen van verstoringen in luchtstromingen rondom vlakke platen.
De vectoriële snelheid-druk formulering van de Navier-Stokes vergelijking is gebruikt
voor het afleiden van het state-space systeem. Om singulariteiten te voorkomen is

xiii
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de druk geëlimineerd van de vergelijking door het gebruiken van een ruimte waar
het snelheidsveld divergentie vrij is en een geschikte keuze van de Galerkin variatie
formulering van de vergelijkingen. Deze eliminatie geeft ook een significante orde
verlaging omdat de divergentie-vrije beperkte ruimte een stuk kleiner is dan de niet
beperkte ruimte. Stromingen rond vlakke platen zijn heel gevoelig voor verstorin-
gen van buitenaf. Het accuraat modeleren van het effect van deze verstoringen is
cruciaal, omdat het de basis vormt van de gemeten verstoringen met de sensors.
Een nieuw model is voorgesteld dat effectief balanceert tussen spatiale en tempo-
rale resolutie van de verstoringen en de orde van het model. Hele grote systemen
worden voorkomen door de regelaars te synthetiseren in een gelokaliseerd domain
dat de actuatoren en sensoren inkapselt. De methodologie is gecombineerd met
balanced truncation om de orde van de regelaar verder te reduceren en de verwaar-
loosde dynamica wordt meegenomen in het ontwerp. Een snelle convergentie van de
H2 systeem normen die de besturingsprestaties karakteriseren wordt aangetoond.
Een amplitude reductie van een a twee orders in magnitude van de verstoringen
wordt gedemonstreert, ook in het geval van niet gemodelleerde externe verstoring
en gevoeligheden in de sensoren.

Het derde en laatste deel betreft de experimentele implementatie van de rege-
laar. Gemotiveerd door hun praktische voordelen wordt een plasma actuator en een
microfoon die de drukschommeling meet aan de wand gebruikt als actuator/sensor
paar om de luchtstroming te regelen. Het gekozen besturingsdoel is het onderdruk-
ken van convectieve verstoringen in een grenslaag stroming over een vlakke plaat.
Nieuwe operatoren zijn afgeleid die de verstoringen relateren aan de druk fluctuaties
aan de wand en een experimenteel afgeleid krachtmodel van de actuator is geïnte-
greerd in het ontwerp van de controller. De schattingen die zijn verkregen met het
Kalman-filter, die deel uitmaakt van de optimale controller, zijn vergeleken met
experimentele meting gemaakt aan de hand van PIV. De resultaten laten zien dat
het Kalman-filter de metingen kan filteren op basis van het model en het spatiale-
temporale gedrag van het natuurlijke verstoringsveld kan schatten in de aanwezig-
heid van onbekende externe verstoringen. De nominale prestaties en de robuuste
prestaties in buiten ontwerp omstandigheden van de regelaar zijn geëvalueerd in
vergelijking met continue open-lus besturing. In nominale ontwerp omstandigheden
is een maximale extra reducering van 60% in de r.m.s van de drukfluctuaties geme-
ten 9 cm stroomafwaarts van de plasma actuator. Een reducering tussen 30-60% is
gemeten voor een reeks van of-ontwerp condities

De belangrijkste voordelen van het voorgestelde raamwerk zijn lage kosten voor
het verkrijgen van het model, snelle convergentie van het model en de beschikbaar-
heid van een hoge orde kwaliteitsmodel. Het hoge orde model kan gebruikt worden
om te verzekeren dat de regelaars van gereduceerde orde van nature robuust zijn
voor de verwaarloosde dynamica. De voornaamste beperking van de voorgestelde
raamwerk is dat deze momenteel praktisch beperkt is tot tweedimensionale geline-
ariseerde luchtstromingen. Omdat de matrices expliciet worden gevormd, kan het
raamwerk nauw verbonden zijn met het beschikbare computer vermogen voor meer
complexere en driedimensionale luchtstromingen. Het belangrijkste open probleem
is het garanderen van zowel robuuste stabiliteit als robuuste prestaties in de aanwe-
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zigheid van modelonzekerheden. Verschillende mogelijke richtingen van onderzoek
worden voorgesteld die de resultaten in dit proefschrift uitbreiden en de open pro-
blemen mogelijk kunnen oplossen.





1
Introduction

Currently, active flow control (AFC) is considered a viable route to further push
the performance boundaries of aerodynamic bodies such of transport aircraft and
ground vehicles. A recent demonstration of AFC technologies and concepts is the
joint NASA/Boeing effort to enhance the aerodynamic efficiency of the vertical
tail of a Boeing 757 ecoDemonstrator [1]. The vertical tail was equipped with 31
sweeping jet actuators to increase the effective side-force generated by the rudder.
They achieved to maintain an attached flow and to delay flow separation on a highly
deflected rudder. This increased the effective side force and may enable a smaller
vertical tail to provide the required control authority. This study indicated that
the AFC-enhanced vertical tail could lead to an overall drag reduction of 1%, which
in turn could save billions when applied worldwide. This example illustrates how
the delay of separation can lead to an increased control effectiveness and eventually
overall drag reduction. Common control objectives in AFC are

• Delaying/preventing separation

• Delaying/preventing transition from laminar to turbulent flow

• Suppressing turbulence and flow relaminarisation

• Suppressing vortex shedding

• Suppressing cavity induced oscillations

The benefits that can be gained from these objectives include drag reduction, lift
enhancement, noise suppression and reducing structural vibrations. For example,
bluff body flows, such as flow past cars or aircraft, are characterised by a recir-
culating flow behind the body, called the wake. When the flow is unstable the
phenomenon of vortex shedding occurs in the wake causing structural vibrations,
acoustic noise and an increase in the mean drag. The application of flow control is
aimed at modifying the flow behaviour around the structure such that vortex shed-
ding is suppressed [2, 3]. Another example is a flow over a cavity, such as flow over

1
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wheel wells, weapons bays and junctions on aircraft wings, which results in pressure
induced oscillations inside the cavity. These oscillations produce strong resonant
tones which can reach 170 dB sound pressure level and quickly lead to structural
fatigue issues inside aircraft. The cavity drag is significantly higher under resonant
conditions and controlling acoustic tones is also coupled with the safe departure and
accurate delivery of stores (store separation) from internal weapon bays [4, 5].

Aircraft drag reduction is one of the main motivators of AFC. A primary source
of aircraft drag is surface skin friction. The effect of skin friction on the flow is
limited to a thin adjacent region to the body surface called the boundary layer.
Within this boundary layer the velocity is dominated by viscous effects and varies
from zero at the surface to the external freestream velocity. On an aircraft wing
profile, the boundary layer close to the leading edge is usually laminar. Laminar
boundary layers are characterised by parallel shear layers moving in a smooth, reg-
ular and deterministic way. Laminar flows are usually unstable and highly receptive
to perturbations, e.g. generated by wall surface roughness. These perturbations,
will unless controlled, evolve into turbulent flow. Turbulent boundary layers are
characterised by small scale velocity components with a chaotic, non-deterministic
behaviour and have a considerable higher skin friction drag. A control system that
delays/prevents transition or relaminarises the flow in the turbulent regime can
therefore significantly reduce the skin friction drag [6–8]. Laminar boundary layer
transition delay is the main objective considered in the present work.

These examples illustrate the benefits of applying flow control. Flow control
technologies have been extensively studied the past decades and the concepts of
flow control come with a wide variety of technical and theoretical disciplines. The
ecoDemonstrator concept is an example of open-loop active control in which the ac-
tuator settings have been determined a priori and do not depend on measurements.
Open-loop AFC dates back to the discovery of the boundary layer by Prandtl, who
used steady suction flow control to remove the boundary layer on the walls, enhanc-
ing their stability. Open-loop control involves changing the mean flow conditions to
achieve stabilisation of the flow. Closed-loop control strategies on the other hand
aim at targeting the inherent instability mechanism by means of unsteady actua-
tion, without changing the mean flow properties. Such systems use real-time sensor
information to devise controls that alter the flow in its desired state. The benefit
of closed-loop control is the ability to achieve large scale changes in flow behaviour
with low levels of energy input, resulting in an improved performance and lower
power consumption.

The present study focusses on a more narrow definition of AFC that has attracted
much attention from both the control community and fluid dynamic community:
the application of systems and control theory to fluid dynamical systems. Such
model-based techniques provide important insights into the instability mechanisms
that have to be addressed and potentially lead to the best possible performance
with stability guarantees. Systems and control theory is an established field dealing
with the analysis and control of continuous-time dynamical systems. However, the
Navier-Stokes equations, which govern the dynamics of fluid dynamical systems, are
continuous in both space and time, giving rise to infinite dimensional systems. This
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dissertation proposes a practical methodology for the derivation of finite-dimensional
approximations and controllers for fluid dynamical systems. Before giving the re-
search motivation and objectives of the present work, first an introduction is given
to the integrated discipline.

1.1. Flow instability and control
Control strategies are structured around the understanding of the flow instabilities
and their role in the physical phenomena (transition, wakes, etc.) to be controlled.
The main hypothesis in the present work is that these flow phenomena can be
properly described and controlled within a linearised framework. There is now a vast
amount of literature on flow stability theory and control supporting this hypothesis.
The interested reader is referenced to excellent reviews in this field recently published
in [7–9]. Clearly linear models do not capture the nonlinear couplings of instability
modes that support turbulence with multi-scale characteristics. Therefore, linear
control is often referred to as laminar flow control and focusses on the stabilisation of
equilibrium points existing in laminar transitional flows. This section introduces the
governing equations, the instability mechanisms commonly addressed using control
theory and the control design problem.

1.1.1. Stability equations
The starting point in both hydrodynamic stability theory and linear control design is
to linearise the incompressible Navier-Stokes equations around the steady laminar
solution. The viscous incompressible Navier-Stokes are given by the momentum
equations

∂U

∂t
= − (U · ∇) U +

1
Re

∆U − ∇P, (1.1)

and the incompressibility constraint

∇ · U = 0, (1.2)

which describe the evolution of the three components of velocity field U(x, t) =
(U, V,W ), and the pressure field P (x, t) in space x = (x, y, z) and time t. To have
a mathematically well posed solution and to solve the system, the equations have
to be complemented with boundary conditions depending on the physical domain
and initial conditions. The equations are non-dimensionalised with a velocity scale
U∗ and a length scale L∗. The reference variables are lumped in the Reynolds
number Re = L∗U∗ρ/µ where ρ is the density and µ the dynamic viscosity of
the fluid. The non-dimensional form is more convenient for analysis, since any
flow with the same Reynolds number are identical once scaled properly. Stability
theory is concerned with the dynamics of small amplitude perturbations u(x, t) to
an equilibrium solution U0(x) for (1.1) called the base flow. The base flow can
be obtained either as a steady (numerical) solution to (1.1) or as a time-averaged
solution obtained from a snapshot ensemble of the flow field under the assumption
that Reynolds stresses are negligible. An example of a base flow over a cylinder and
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Figure 1.1: Base flow U0 for a flow over circular cylinder for ReD = 100 (a) and for a Blasius flow
over a flat plate for ReL = 513 × 103 (b) visualised by the contours of the streamwise velocity

over a flat plate (Blasius flow) is shown figure 1.1. Let U = U0 + u and P = P0 + p
be the velocity field and pressure field of a slightly perturbed flow. Inserting these
expressions in (1.1), subtracting the steady equations and neglecting the nonlinear
term gives the linearised Navier-Stokes equations (LNSE)

∂u

∂t
= − (U0 · ∇) u − (u · ∇) U0 +

1
Re

∆u − ∇p, ∇ · u = 0. (1.3)

For incompressible flows the pressure is instantaneously determined by the velocity
field due to the divergence-free constraint, resulting in a singular system of equa-
tions. To avoid singularities, (1.3) is commonly formulated in a divergence-free
basis, thereby eliminating the pressure from the equations. For example, using the
streamfunction formulation, or the wall-normal velocity-vorticity formulation of the
equations [10]. This can be viewed more abstractly as the projection of (1.3) on a
divergence-free subspace resulting in the following initial value problem

∂tu = Au, u(0) = u0. (1.4)

The linear operator A is called the linearised Navier-Stokes evolution operator
around the base flow U0. The calligraphic notation is used to denote a spatial
differential operator, rather than a matrix. Equation (1.4) describes the evolution
of initial small amplitude perturbations to the base flow U0. It is the starting point
for studying the spatio-temporal behaviour of the instabilities and the onset of the
physical phenomena to be controlled. In turn, controllers which stabilise (1.4), sta-
bilise the original system (1.1) around the base flow. The term instability refers
to a single fundamental eigensolution or mode to (1.4) and a perturbation refers
to a full solution, which can be decomposed into a range of instabilities. From a
physical point of view we have to distinguish between global instabilities and con-
vective instabilities according to their role as transition is approached [11]. These
two instability mechanisms also have different implications for the control design [9].

1.1.2. Global instabilities and limit cycle oscillations
Open shear flows or free shear layer flows such as open cavity flows and bluff body
flows behave as oscillators displaying characteristics of resonant systems. These flows
are commonly referred to as oscillator flows and are characterised by a large-scale
energetic structure that oscillates at a particular frequency. The spatial structure,
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oscillation frequency and the initial growth of the perturbation can be contributed
by the presence of linear global instabilities, called the global modes. If the flow is
unstable, the global modes amplify in time and for a sufficiently large amplitude,
the global modes will eventually saturate into limit cycle oscillations. This nonlinear
saturation results in a periodic flow pattern around the base flow. For example, for
a flow past a 2-D circular cylinder, which is commonly considered as benchmark for
studying vortex shedding, vortices are shed from the upper and lower sides of the
cylinder, subjecting the cylinder to periodic forcing. This periodic forcing leads in
turn to structural vibrations and acoustic noise.

Characterising the properties of global modes requires a global linear stability
analysis [12]. The term global refers to the instability of the entire flow field and
finding the complete eigenspectrum of A. This is to find fundamental solutions for
the global modes of the form

u = ũe−iωt. (1.5)

The spatial structure of the global modes is characterised by the eigenvector ũ and
the temporal behaviour by the eigenvalue ω = ωr + iωi. Here ωi is the exponen-
tial amplification rate and ωr the frequency of the oscillation. Substituting the
fundamental solution in (1.4) transforms the initial value problem to an eigenvalue
problem

Aũ = −iωũ. (1.6)

Equation (1.6) is also known as the spatial differential operator eigenvalue problem,
which can be solved numerically for the eigenvectors ũ and eigenvalues λ. Equa-
tion (1.6) is a large scale eigenvalue problem. In fact, an infinite number of eigenso-
lutions exist and to resolve a large window of the eigenspectrum for complex flows,
requires subspace iterations and massive parallelisation [13]. Fortunately, nature is
forgiving and only a few (commonly one complex pair at low Re) result in unsta-
ble dynamics. The dominant eigensolutions are the physical global modes which
are observed in practical applications. It has therefore become common practice to
only extract the physically important modes. For example by obtaining converged
solutions for the unstable modes using (1.6) or by means of a modal decomposition
of an experimental or numerical dataset of the flow field [14]. As an example, the
unstable global mode for the cylinder flow at ReD = 100 is shown in figure 1.2.
Vortices of alternating sign can be observed in the wake and are advected down-
stream. An effective control system targets the global modes, while accounting for
the nonlinear saturation of the modes. A pertinent example showing the potential
of linear control theory is the wake stabilisation recently achieved by Flinois and
Morgans [15]. They designed robust linear controllers, which were robust enough
to stabilise the wake behind a bluff body, even from the nonlinear vortex shedding
state at off-design Reynolds numbers.

In this work, a class of linear parabolic PDEs will be used as benchmark for
globally unstable systems, for the development of tools to find a finite-dimensional
representation of the operator A that can be used for control design. The eigen-
spectrum of the spatial differential operator A for globally unstable flows shows a
clear separation between the finite-dimensional slow/unstable part and an infinite-
dimensional stable complement. This is a typical property of parabolic PDE systems
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Figure 1.2: The dominant global mode for a flow around a circular cylinder characterised by
shedding frequency ω = 0.72. Shown is the real part of the streamwise perturbation component
(a) and the wall-normal perturbation component (b). (axis not to scale)

which will be extensively treated in chapter 2. The global mode in figure 1.2 is also
obtained using the methods presented in chapter 2.

1.1.3. Convective instabilities and transition
Wall-bounded shear flows or boundary layer flows such as flows over a flat plate,
aerofoils and channel flows behave as amplifiers of external disturbances. These
flows are commonly referred to as amplifier flows and support convective instabil-
ities in a frequency broadband that amplify in both space and time as they prop-
agate downstream. These instabilities are driven by non-deterministic (unknown)
upstream disturbance sources, such as freesteam turbulence, and are the precur-
sor of laminar boundary layer transition. Different transition scenarios may occur
depending on the intensity of the external disturbances acting on the flow [16]. Dis-
turbances in the freestream, such as sound or vorticity, enter the boundary layer via
receptivity mechanisms as unsteady fluctuations around the base flow. In case of
weak levels of freestream turbulence (<1%) linear instabilities are triggered, called
Tollmien-Schlichting (TS) waves, in the form of nearly two-dimensional wavepack-
ets that propagate downstream. The initial streamwise growth of the TS waves is
exponential. As the amplitude of the wavepacket grows above a critical level, three-
dimensional and nonlinear interactions occur. In this stage the instabilities grow
rapidly, break down to smaller length scales and a transition to turbulence occurs.
This is referred to as the classical route, or weak route, to turbulence [17]. TS waves
are the main reason for transition on unswept wings or moderate swept wings in low
freestream turbulence conditions, as for example encountered in clean cruise flight
conditions.

In case of higher levels of freestream turbulence, the perturbations can experience
a large transient energy growth bypassing the exponential growth of the TS waves.
This can be contributed to the non-normality of the linearised operator, that is
the eigenmodes of the operator are not mutually orthogonal and their influence
on each other may result in a large amplification of the disturbance [18]. In case
of boundary layers this results in three-dimensional lift-up of streamwise aligned
vortices, creating elongated regions of alternating accelerated and decelerated flow,
called streaks [19, 20]. After the primary energy growth due to the lift-up effect, the
flow is in a more complex nonlinear state and eventually breaks down to turbulence.
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Figure 1.3: Spatial-temporal neutral stability curve for a Blasius boundary layer for Ue = 15 m/s.
(a) Frequency bandwidth which gives spatial growth. (b) Spatial wavelengths which results in
temporal growth. Gray region indicates unstable TS waves.

This is referred to as streak breakdown or bypass transition since the transition
occurs bypassing the exponential growth of the TS waves.

This work particularly focusses on the weak turbulence scenario, where the TS
waves can initially be described by the two-dimensional linearised equations. The
properties of TS waves can be analysed by means of a local linear stability analy-
sis [21]. The term local refers to the stability properties of a local velocity profile by
making the assumption of a locally parallel flow. This assumption is valid in fully
developed flows where the base flow does not significantly varies in the streamwise
direction (e.g. channel flows) and is approximately valid in spatially developing
boundary layers. This assumption permits a Fourier decomposition in both time
and the streamwise coordinate resulting in fundamental solutions of the form

u = ũ(y)ei(αx−ωt). (1.7)

This transforms the initial value problem (1.4) into a spatio-temporal eigenvalue
problem

− iωũ(y) = A(α)ũ(y), (1.8)

with α the spatial eigenvalue that appears nonlinearly. Equation (1.8) is known as
the Orr-Sommerfeld equation, which can be solved numerically for the temporal and
spatial eigenvalues [22, 23]. There are an infinite number of eigenvalues satisfying
(1.8). Fortunately, TS waves are only unstable in a limited frequency band in
both space and time depending on the Reynolds number of the flow. The stability
characteristics can be investigated by means of the exponential growth rate of the
modes and the base flow is subsequently labelled unstable if an unstable eigenmode
is found. In this way the locus can be computed, called the neutral stability curve,
which separates the stable frequency region from the unstable frequency band. As
an example, figure 1.3 shows the stability curve for a Blasius boundary layer flow
computed using (1.8) and figure 1.4 shows a fully developed single frequency (f =
200 Hz) TS-wave computed as numerical solution to the LNSE. Figure 1.3(a) shows
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Figure 1.4: A snapshot of a fully developed single frequency f = 200 Hz Tollmien-Schlichting wave
for the Blasius boundary layer flow over a flat plate with freestream velocity Ue = 15 m/s.

the temporal frequencies which result in spatial amplification. Similarly figure 1.3(b)
shows the spatial wavelengths of the TS waves which result in temporal amplification
as they convect downstream. For example, the single frequency (200 Hz) TS-wave in
figure 1.4 has a wavelength of approximately 25 mm and amplifies after x = 200 mm,
which matches the predictions in figure 1.3.

As a final observation, note that boundary layers are frequency selective and
behave as spatio-temporal bandpass filters of upstream perturbations; the spectrum
at some given downstream location reflects the broadband noise present in the up-
stream flow. This observation will form the basis for efficiently modelling the effect
of the upstream disturbance environment and capturing the relevant flow physics in
chapter 3 and chapter 4.

1.1.4. The flow control problem
The instability mechanisms described in the previous two sections form the basis
for the design of controllers using linear systems theory. The control design not
only includes choosing the control strategy, but also includes choosing suitable ac-
tuators/sensors, placement of the actuators/sensors and modelling of the external
noise environment. This section formulates the control problem typically considered
for flow control applications.

Actuators and sensors
Linear systems theory provides a natural extension of stability theory by includ-
ing actuators and sensors in equation (1.4). The input-output dynamics can be
described by a linear state-space system as

∂tu = Au + Bφ,

y = Cu + Dφ,
(1.9)

where B models the influence of the actuator input φ on the flow and with C the
output operator that relates the flow perturbation field to the measured quantities y .
In some cases the control input may affect the measured output instantly modelled
by the feedtrough D. Actuators used for flow control include plasma actuators
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[24], fluidic actuators such as synthetic jets and moving surfaces such as morphing
surfaces. The reader is referred to Cattafesta III and Sheplak [25] for a detailed
review on actuators for flow control. The most common sensors for flow control are
velocity measurements using hot-wires, shear stress (∂u/∂y) measurements using
hot-film sensors and pressure measurements using microphones. The choice and
number of actuators and sensors has a decisive effect on the maximum attainable
performance. The actuator must be chosen such that it has sufficient bandwidth in
both space and time to effectively control the instabilities; it should comply with the
time and length scales of the instabilities. Similarly, the sensor must have a sufficient
signal to noise ratio in order to detect the instabilities. While the actuator/sensor
location can in some cases be optimised [26], the placement is often based on the
state-space properties [27, 28] and physical insight. For example, for control of
global instabilities that never leave the laboratory frame, the sensor is commonly
placed where the instability (global mode) is largest and the actuator is placed
where the sensitivity of the instability is largest, e.g. at the separation point of the
free shear layer. For control of convectively unstable flows on the other hand there
exist only a small window in time to cancel the incoming perturbations. Therefore,
a feedforward actuator/sensor configuration is commonly considered in which the
sensor is placed upstream of the actuator. In this case the sensor can detect the
incoming perturbations as soon as possible. The actuator should in turn be placed
close to the sensor to limit the effect of time delays and increase the robustness in
case of model uncertainties [27].

The compensator
The state-space representation of the flow is the starting point for modern con-
trol design. The two most used theories for flow control design are the state-space
H2/LQG and H∞ optimal control theories [29]. These techniques automatically
handle multivariable inputs/outputs and allow to rigorously account for modelling
uncertainties, external environment noise and measurement noise in the control de-
sign. Optimal control refers to the synthesis of controllers by minimising a predefined
cost function describing the desired features to be controlled. The control design can
thus be viewed as the formulation and solution of an optimisation problem. If the
state-space model of the flow is available then the optimal controller can be derived
by simple state-space formulas [30]. First the structure of the optimal controller is
discussed. The formulation of the optimisation problem will follow thereafter.

The optimal controller can be decomposed in a dynamic state estimator/observer
for the perturbations and a static feedback control law and can be expressed in the
so-called observer form

∂tû = Aû + Bφ + L (y − Cû) ,

φ = −Fû.
(1.10)

Equation (1.10) is commonly referred to as a dynamic compensator. The idea is to
design the compensator using the state-space model and to apply the result to the
original flow. The complete compensated system, which includes the compensator
in closed-loop with the system is shown in figure 1.5. The dynamic estimator con-
tains a copy of the state-space system with an additional output injection term to
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account for disturbance uncertainties. In practice, the flow is driven by (unknown)
external disturbances such as sound and vorticity in the freestream. Furthermore,
measurements are non-ideal (noisy) and available only in a small portion of the sys-
tem, i.e the information is incomplete. In addition, the initial condition is generally
unknown/uncertain due to the external perturbations. The estimator problem is
to compute the gain L such that the injecting term forces the estimated state û

to converge to the true state u in (1.9) in the presence of these aforementioned
uncertainties. The estimator filters the available information using the governing
equations itself to extract the signal ŷ = Cû and to reconstruct the state û of the
system in the process. The estimated state is subsequently used for feedback con-
trol of the perturbations. The state feedback control problem is subsequently to
compute the gain F to stabilise the estimated state, i.e. forces the state towards
zero.

Formulation of the control problem
The control design can be viewed as the formulation and solution of an optimisation
problem. The formulation involves the modelling of the external disturbances and
formulating the control objective. If this information is added to equation (1.9) the
latter results in the so-called generalised plant

∂tu = Au + B1w + B2φ,

z = C1u + D12φ,

y = C2u + D21w,

(1.11)

with w = (wd,wn) the combined vector of state disturbances wd and measurement
noise wn and z the vector of control objectives to be minimised. The output C1u

should describe the desired features of the flow to be controlled, e.g. the wall shear
stress (skin-fiction drag) in wall-bounded flows or the structure of the global mode
in open flows. The objective z also contains a penalty on the control input given
by D12φ to have a desirable trade-off between performance and control effort. The
input operator B1 models how the external disturbances such as sound and vorticity
enter the boundary layer and is used to account for uncertainties in the control
design. Globally unstable flows are rather insensitive to upstream disturbances due
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to the dominance of the global mode; the instability is always there even if the flow
is unforced by external disturbances. Issues related to disturbance uncertainties
therefore play a subordinate role in the control design [3, 9]. However, convectively
unstable flows are highly receptive to external disturbances and there exists only a
small window in time to suppress convective instabilities. This poses great challenges
for control design and accurately modelling the influence of upstream disturbances
is crucial as it forms the basis for the measured unsteadiness. This will be treated
in detail in chapter 3 of the present work.

Both the H2 and H∞ optimal control problems involve the minimisation of
the effect of the external disturbances on the performance objective z. The main
difference is in the assumption on the external disturbances/noise. H2 control as-
sumes white noise external disturbances, i.e. equal excitation over all frequencies.
In contrast H∞ control assumes worst case disturbances that give the maximum
amplification of the performance measure z. Mathematically this corresponds to
minimising the H2 system norm ‖Tzw‖2 and the H∞ system norm ‖T zw‖∞ of the
closed-loop map T zw. This work focusses on white stochastic external disturbances.
Note that this is physically relevant since Navier-Stokes systems are inherently fre-
quency selective depending on the Reynolds number of the flow. The time domain
interpretation of the H2 cost function is given by

‖T zw‖2=

√

E

{∫ ∞

0

zT z dt
}

. (1.12)

In other words, the control objective is to reduce the expected root mean square
value of the output z when w is unit variance white Gaussian noise. The synthesis
problem is respectively to find a controller of the form (1.10) that minimises (1.12)
subject to the system dynamics (1.11). The uniqueness conditions and the state-
space formulas of the optimal solution as well as the frequency domain interpretation
of the cost function are given in appendix B.

1.2. Research motivation and objectives
This work investigates a less explored approach to design and synthesise controllers
(1.10) for fluid dynamical systems and is based on state-space discretisations of the
governing equations. To place this approach in the context of the current practices
and literature Wiener’s modelling classification [31] is used. This classification was
recently reviewed rigorously and extended to the framework of flow control by Brun-
ton and Noack [8]. The model classification from Brunton and Noack [8] is shown
in figure 1.6. This diagram is extended to include the route considered in this work,
which is indicated in blue. Rather than giving a complete literature overview, this
section discusses the motivation of this route and how it complements current prac-
tices. The purpose of this section is to clearly introduce the overall idea and to
formulate the objectives, which formed the initial point of departure and the basis
for the individual chapters. A more complete literature review will be given in the
individual dissertation chapters.
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1.2.1. Motivation
The Navier-Stokes equations are continuous in both time and space, resulting in
a state space of infinite dimension. Regardless of the control strategy employed, a
finite-dimensional state-space representation is required in order to apply linear con-
trol theoretical tools. This is often considered the main challenge in the application
of linear control theory [7, 9]; To find a practical mathematical model representing
the flow dynamics from all the inputs (disturbance and control) to all the outputs
(sensors and objectives).

Fluid dynamical systems are complex and display a wide range of temporal
and spatial features. Modern computational fluid dynamics (CFD) techniques and
experimental techniques can represent the detailed dynamics using a large number of
degrees of freedom (i.e. 106 or more). For the analysis and control of fluid dynamical
systems it has become common practice to use the data from CFD simulations and
experiments, to extract the physically important features/modes and represent them
in a simpler reduced-order model (ROM). The interested reader is referred to Rowley
and Dawson [32] and Taira et al. [14] for recent reviews on empirical model reduction
methods and modal analysis for fluid flows. Rowley and Dawson [32] also provide
a complete list of successful control applications of various methods up to the year
2017. In the case of white/gray-box approaches, the governing equations are taken
into account to derive the control model. This starts with a modal decomposition of
the data to construct a reduced-order spatial basis that uses snapshots of the flow,
for example a POD basis, describing the desirable and physically relevant features
to be controlled. The governing equations are subsequently projected on this basis
using Galerkin’s method to obtain a so-called gray-box ROM, or empirical Galerkin
model that can be used for control design.

Reduced-order models based on data from DNS or experiments provide real-time
capable models. However, these models are expensive and difficult to create. They
rely on the availability of a linearised solver or prior experimental data, which may
not always be available. It also requires an adjoint linearised solver in order to
construct the dynamically important modes and to guarantee observability/control-
lability of the basis [33, 34]. Furthermore, the influence of the neglected dynamics
is hard to quantify and the projection basis can be sensitive to the temporal and
spatial resolution of the data, initial conditions and simulation/experimental condi-
tions [35].

These limitations and difficulties motivate the use of state-space discretisations
for control design. In the case of Galerkin discretisation the state-space model
is obtained by projecting the governing equations on prior selected mathematical
modes. The main advantages of mathematical Galerkin models is that they are
guaranteed to converge to the Navier-Stokes solution with increasing number of
modes [36] and they are less sensitive to variations in the experimental/simulation
conditions [35, pp. 112-149]. In other words, mathematical modes are guaranteed to
be complete for the function space (state space) to be approximated, independently
of the equations/flow configuration to be approximated. The main limitation is
that this approach naturally leads to high order models. Fortunately, the flow to be
modelled is laminar and the equations to be approximated are linear, reducing the
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Figure 1.6: Model hierarchy for control design from Brunton and Noack [8]. The blue part indicates
the extension from Brunton and Noack [8] to include the finite-dimensional approximation and
control approach considered in this dissertation.

dimensional complexity. Furthermore, the instability mechanisms can be leveraged
to avoid very large systems; convective instabilities appear in a bounded frequency
band and the spectrum of globally unstable systems shows a clear separation between
a finite-dimensional unstable part and an infinite dimensional stable complement.

The central philosophy in this dissertation is that the model should be good
enough for control applications rather than numerical simulations; Modelling for
control rather than modelling for simulation and control. The idea is to select an
analytic basis a priori with the flexibility and accuracy required for control appli-
cations and to obtain the state-space model directly from the governing equations.
The state-space model represents a white-box that effectively balances the accuracy
and computational complexity required for the application of system theoretical
tools for model reduction and control design. The white-box state-space model can
also be used as a higher fidelity ’truth’ model, which is crucial to ensure that a
control does not exploit a weakness/neglected dynamics in a ROM. Therefore the
controllers synthesised with this approach are indicated on the intersection between
gray-box and white-box. It is anticipated that this route can open new possibilities
for modelling & control design and can simplify the synthesis of controllers also for
real-life applications of flow control. This is investigated in the present work.

1.2.2. Research objectives and scope
This dissertation aims to develop systematic tools and procedures to design exper-
imentally feasible controllers from the governing equations. A significant part of
this dissertation presents a theoretical framework for modelling, finite-dimensional
approximation and control design for fluid dynamical systems as motivated in the
previous section. Additionally, this dissertation aims at demonstrating the practical
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feasibility of the proposed approach in both simulation and experiment. Appli-
cation is particularly focussed on control of linear convective instabilities in two-
dimensional wall-bounded shear flows. This is encountered in many physically and
engineering relevant cases, such as laminar-turbulent transition on aircraft wings
in low disturbance cruise conditions. While breakdown in convectively dominated
flows is preceded by nonlinear and three-dimensional development of instabilities, an
efficient and cost effective control strategy has higher chances of success if applied at
the initial, linear stages of growth, due to the more relaxed constraints on actuator
amplitude, dynamic range, sensor-actuator lag, consumed power and dimensional
complexity.

This work combines both numerical, theoretical and experimental parts. The
research performed in this dissertation can be divided in three main parts, which
are finite-dimensional approximation, modelling & control of convective instabilities
and experimental validation. The objectives are summarised below.

Objective 1 Develop a new framework to derive finite-dimensional state-space
descriptions from the governing equations. This objective links the Navier-Stokes
equations with control theory. State-space modelling is not simply the spatial dis-
cretisation of the governing equations. It poses significant analytic and numerical
challenges (even in a 1-D spatial domain when considering the Orr-Sommerfeld/
Squire form in wavenumber space [37–39]) for irregular geometries and general ac-
tuator/sensor configurations. All computations, e.g. incorporating the boundary
conditions and the divergence-free constraint, have to be done with care to have a
well conditioned system matrix (i.e. with a low condition number) without spurious
modes, that can be used for control design. An effort is made to make state-space
modelling viable for 2-D/3-D general geometries while ensuring that fundamental
properties like stability, controllability/observability of the system are not affected
by the discretisation.

Objective 2 Gain physical insight into the instability mechanisms and exploit
these mechanisms for modelling, estimation and control. This objective involves
the application for control of convective instabilities. Model-based controllers rely
on a priori assumptions on the external disturbance environment, particularly for
effective estimation of the flow instabilities. Convective instabilities are reflections
of upstream disturbances, which are not precisely known in real environments. Fur-
thermore, wall-bounded flows have a conceptually unbounded domain. This poses
great challenges for accurately capturing the effect of the upstream disturbance en-
vironment, which is crucial for an effective control design as it forms the basis for
the measured unsteadiness in convectively unstable flows. An effort is made to ac-
curately model the effect of external disturbances on the flow instabilities and the
measured unsteadiness, while at the same time avoiding a disturbance specific con-
trol design and very large systems.
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Objective 3 Integrate practical actuators and sensors and evaluate the con-
trollers in experiments. This objective is crucial to investigate the practical feasibil-
ity. Practical demonstrations of flow control are tied to the availability of suitable
sensor and actuator hardware. Desired attributes of actuators/sensors include a
rapid response, high bandwidth, cheap, small and light weight devices that need
to be integrated into existing hardware, such as wings. In addition an explicit de-
scription of the actuator and sensor is required. For the control design the spatial
distribution of the actuator momentum forcing (B) has to be estimated, which is
generally difficult in experimental applications. Similarly, for dynamic flow esti-
mation the physical model variables to be estimated have to be related with the
output measurements (C), which is difficult for surface integrated sensors, e.g. sur-
face microphones. An effort is made to integrate suitable actuators/sensors in the
control design methodology, while accounting for their physical constraints in order
to effectively apply the controllers in an experimental framework.

1.3. Research approach, contributions and disser-

tation outline
The research approach taken in this dissertation follows from the research objec-
tives. Ideally, flow control research leads to practical applications. Therefore, the
choice was made to work towards experimental validation in wind-tunnel experi-
ments, rather than focussing on comparison studies to challenge the current tools
and frameworks available in the community. The chosen control objective is the
cancellation of TS waves for laminar boundary layer transition delay. Plasma ac-
tuators and surface microphones that measure pressure fluctuations were chosen as
the actuator/sensor pair to manipulate the flow. Plasma actuators have no moving
parts, have a high operating bandwidth, and a very fast frequency response. Pres-
sure measurements can be extracted remotely from the surface by embedding the
microphone within a small cavity. Furthermore, microphones have a high signal-to-
noise ratio and are able to measure tiny TS waves in their early linear stage. These
properties make this actuator/sensor configuration attractive for flow control also
by ensuring that the associated costs of flow control are positively balanced by net
power savings. With this set-up in mind a bottom-up approach was taken.

Chapter 2 presents a new framework to derive state-space descriptions from
the governing equations. Multivariate splines defined on triangulations [40] were
chosen as mathematical basis for the Galerkin projection. They allow for mesh, de-
gree and smoothness refinements, which are desirable properties for control-oriented
modelling. The developed tools are now part of a Matlab library and are also de-
signed to be used in many other applications than flow control. To extend the
scope of this dissertation the choice was made to initially focus on a class of linear
parabolic PDEs. The literature review is also performed in the field of control of
parabolic PDEs. The application of this method to derive state-space descriptions
for the velocity-pressure form of the linearised Navier-Stokes equations is given in
appendix A. The derivation of the state-space system relies on the availability of a
null space basis matrix and a particular solution for a large sparse linear system of
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equality constraints. An efficient null space algorithm is presented in appendix C,
which accomplishes this goal and avoids the need for computationally expensive
matrix factorisations (QR, SVD).

Chapter 3 deals with the modelling, estimation and control of convective in-
stabilities in wall-bounded flows. The main contribution is a new perturbation
modelling that effectively balances spatio-temporal resolution with respect to ex-
ternal disturbances and model order. The modelling is integrated with H2 optimal
reduced-order control design. The state-space formulas for the controller that solves
the H2 optimal control problem are given in appendix B. A two-dimensional chan-
nel flow is initially considered as application case. This is both mathematically and
physically one of the best understood geometries and allowed for a rigorous ver-
ification of the modelling method and the control design using the classical local
linear stability theory. This chapter also contains a detailed literature review on
model-based flow control.

Chapter 4 is concerned with the application for control of Tollmien-Schlichting
in laminar boundary layer flows. It provides the first step toward the implementa-
tion of controllers using pressure-based sensing for transition delay in experiments.
It was found that the inclusion of pressure sensors for dynamic flow estimation was
not trivial. This chapter identifies the modelling challenges and provides physical
insights in how these modelling challenges affect the maximum attainable perfor-
mance. In past studies, implementation of pressure sensing has not been treated in
a systematic way as part of the control design methodology, which is addressed in
this chapter.

Chapter 5 present an experimental study to investigate the practical feasibility
of the proposed framework. The controllers have been tested in the newly con-
structed anechoic vertical tunnel at TU Delft. Experiments have been conducted
on a natural laminar flow over a flat plate. A surface microphone that measures
the fluctuating pressure and a plasma actuator are used as actuator/sensor pair to
control the flow. Experimentally derived body force models of plasma actuators are
integrated in the control design methodology. The control logic is implemented on
a field-programmable gate array (FPGA) inside a real-time digital signal processor,
which is ideal for high-speed flow control applications that require precise timing
and hardware tasks. This chapter provides the first study on white-box model-
based estimation and control of Tollmien-Schlichting waves naturally occurring in
low freestream turbulence conditions.

Finally, chapter 6 reflects on the objectives, summarises the main findings and
recommendations for the proposed approach are given. Additionally, a list of open
problems is provided and an outlook for future work/opportunities that extend the
results in this dissertation are given.
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Model reduction of parabolic

PDEs using multivariate
splines

A new methodology is presented for model reduction of linear parabolic partial differ-
ential equations (PDEs) on general geometries using multivariate splines on trian-
gulations. State-space descriptions are derived that can be used for control design.
This method uses Galerkin projection with B-splines to derive a finite set of or-
dinary differential equations (ODEs). Any desired smoothness conditions between
elements as well as the boundary conditions are flexibly imposed as a system of
side constraints on the set of ODEs. Projection of the set of ODEs on the null
space of the system of side constraints naturally produces a reduced-order model that
satisfies these constraints. This method can be applied for both in-domain control
and boundary control of parabolic PDEs with spatially varying coefficients on gen-
eral geometries. The reduction method is applied to design and implement feedback
controllers for stabilisation of a 1-D unstable heat equation and a more challenging
2-D reaction-convection-diffusion equation on an irregular domain. It is shown that
effective feedback stabilisation can be achieved using low order control models.

This chapter has been published as: H.J. Tol, C.C. de Visser and M. Kotsonis, Model reduction of

parabolic PDEs using multivariate splines, International Journal of Control, 2016
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2.1. Introduction
This chapter presents a reduced-order modelling approach for control of distributed
parameter systems (DPS) on general geometries using multivariate basis splines
(B-splines) defined on triangulations [40–42]. With DPS the system state, input,
output and parameters vary both spatially and temporally. This chapter focuses on
DPS governed by parabolic partial differential equations (PDEs) which for exam-
ple arise in the context of chemical processes, thermal processes and fluid dynamic
systems. PDE control theory often focuses on extending finite dimensional results
such as stability and optimal control to the infinite-dimensional case (see Curtain
and Zwart [43], Lasiecka and Triggiani [44] for a more complete coverage, and ref-
erences therein). While mathematically precise, these results are often derived for
general classes of PDEs and for systems defined on 2-D/3-D general geometries only
abstract results are typically available.

This led to the attention of structure specific opportunities that exist in PDEs
to produce results that are both constructive and mathematically rigorous [45, 46].
Constructive methods for solving optimal control problems for a class of spatially in-
variant systems with distributed sensing and actuation was first presented in Bamieh
et al. [45]. By applying a Fourier transform to the system along the spatially in-
variant coordinates the system can be block-diagonalized and decoupled in terms
of a frequency parameter that replaces the spatially invariant coordinate [45]. In
this way, analysis and design of the controller can be carried out on a parameterised
lower dimensional system and later reconstructed in the physical space [45, 47]. In
Smyshlyaev and Krstic [46, 48] a closed-form continuous backstepping control/ob-
server design method was first presented for stabilisation of a class of 1-D parabolic
PDEs. The backstepping method has the powerful feature that it produces explic-
itly computable gains and has been extended to higher dimensional spatial domains
and systems of coupled PDEs. We refer to Baccoli et al. [49] for a recent overview
of developments of the backstepping method. In particular, by also exploiting spa-
tial invariance this method has led to explicit solutions for 2-D and 3-D spatially
invariant control problems [50] such as the Navier-Stokes channel flow [51].

Many practical engineering problems are formulated in spatially variant geome-
tries such as irregular channels or require that the controls and sensors are spatially
localised. In this case a finite-dimensional approximation of the infinite-dimensional
system is often required. Model reduction is the process of reducing the infinite
dimensional PDE to a finite set of ODEs that can be used for control design.
We refer to Li and Qi [52] for a recent review on model reduction techniques for
PDEs. Galerkin projection is most commonly applied to parabolic PDEs and in this
method, one obtains a lower dimensional approximation by projecting the PDE onto
a set of spatial basis functions that contain characteristics of the expected solution.
The orthogonality of the projection ensures the best possible solution in the space
spanned by the basis functions. The main advantage of this approach is that it
is robust with respect to the truncated dynamics; a controller which exponentially
stabilises the closed-loop ODE system also stabilises the closed-loop parabolic PDE
system [53–55]. On the other hand it may require a large number of modes to derive
an ODE system with the desired degree of accuracy. Selection of the spatial basis
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functions is critical and has a great impact on the modelling performance.

A feature of most parabolic PDE systems is that the eigenspectrum of the spatial
differential operator shows a clear separation between a finite-dimensional slow part
and an infinite-dimensional fast complement [53]. If the eigenfunctions of the spatial
differential operator are known, a suitable choice for model reduction is therefore
the projection of the system on the modal subspace spanned by the dominant eigen-
functions [56–58]. This requires analytic solutions of the spatial differential operator
eigenvalue problem to form the modal subspace which are often not available for sys-
tems defined on irregular domains and systems with spatially varying coefficients.
Another approach is to utilise simulation data or experimental data of the PDE
system to compute a set of empirical eigenfunctions through the proper orthogonal
decomposition (POD) method (see e.g. Armaou and Christofides [59, 60], Baker
et al. [61]). The POD method is a statistical technique that extracts the most en-
ergetic modes from a set of snapshots and therefore leads to low-order expansions.
The POD method is applicable to a wide range of DPS, including those defined on
irregular domains. However, each set of POD modes is intrinsic to a particular sim-
ulation or snapshots and its effectiveness is highly dependent on the simulation or
experimental settings [34, 52]. It also has limitations for the describing input-output
behaviour of the system [34].

This chapter introduces a new systematic approach for model reduction of parabolic
PDEs on general geometries using multivariate B-splines defined on triangulations
[40–42]. This method uses Galerkin projection with B-splines to derive a finite set of
ODEs. The multivariate B-spline consists of piecewise defined polynomials of arbi-
trary degree called B-form polynomials. Any desired smoothness conditions between
elements as well as the boundary conditions are flexibly imposed as a system of side
constraints on the set of ODEs. Projection of the set of ODEs on the null space of
the system of side constraints naturally produces a reduced-order model that satis-
fies these constraints. The multivariate B-spline has been used in the past to find
numerical solutions for elliptic PDEs [62, 63] and steady Navier-Stokes equations
[64, 65] based on energy methods, and to find numerical solutions for Hamilton-
Jacobi-Bellman PDEs using the collocation method [66]. This work is different in
the sense that it is does not find explicit numerical solutions for PDEs. Instead
the PDE is spatially discretised and converted to a linear state-space representation
that is used for control design.

The main contribution of this chapter is a new framework to derive state-space
descriptions for a class of parabolic PDEs to which standard control theoretic tools
can be applied. The main advantage of this method is that it is general in the
sense that it can be applied for both in-domain control and boundary control of
parabolic PDEs with spatially varying coefficients defined on general geometries.
It is in particular useful for parabolic PDEs for which analytic solutions of the
spatial differential operator eigenvalue problem are not possible. We are also able
to use multivariate spline functions of variable degrees and variable smoothness
across any given domain. These properties make spline functions more user-friendly
compared to standard finite elements. Splines with higher order smoothness can
directly be implemented to approximate the strong solution of the PDE system
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and polynomials of high degrees can be easily used to get better approximation
properties [62–64]. The degree and order of continuity of splines are simply input
variables for creating the state-space models which can be also tuned to achieve a
desirable trade-off between the accuracy and the order of the model. Together with
the mesh flexibility, this method allows the construction of reduced-order models
which are both accurate and suitable for online applications. We refer to Awanou
et al. [62] for an overview of more features of multivariate splines and references
within. Compared to POD-Galerkin methods, this approach may lead to higher
order models, but in return provides a systematic approach in which the input-
output behaviour of the system is easily established. This method can also be used
in conjunction with other open-loop truncation methods for state-space systems
such as balanced truncation [67]. This combination can open a new route towards
the control of more complex problems such as the three-dimensional Navier-Stokes
equations.

In this chapter, we restrict our attention to a linear class of parabolic PDEs.
Nonlinear parabolic PDEs are also tractable for the spline Galerkin method and,
in the most general case, lead to nonlinear state-space descriptions of the PDE. To
accurately capture the nonlinear couplings between the fast and slow modes without
using a high-order model the Galerkin method should be used in combination with
(approximate) inertial manifolds to compensate the fast modes with the slow modes
[56, 61, 68]. Nonlinear model reduction and control of parabolic PDEs will therefore
be considered in a forthcoming study.

The outline of this chapter is as follows. In section 2.2 the class of parabolic PDEs
and control types for which the reduction method can be applied is formulated. In
section 2.3 a preliminary on multivariate B-splines is given. In section 2.4 the
side constraints for the boundary conditions are derived using new expressions for
differential operators acting on B-splines. Section 2.5 contains the main contribution
of this chapter in which the state-space descriptions are derived, and in section 2.6
the state-space models are used to synthesise the output feedback controller. Finally,
in section 2.7 the reduction method is used to implement the feedback controllers for
stabilisation of a 1-D unstable heat equation and a 2-D unstable reaction-convection-
diffusion equation on an irregular domain, followed by conclusions in section 2.8.

2.2. Class of systems under consideration
Let Ω be an open-bounded subset of Rn with a Lipschitz-continuous boundary Γ
and set ΩT = Ω × (0, T ] for some fixed time T > 0. In this chapter we consider
linear parabolic PDEs, with the following state-space description

∂u(x, t)
∂t

=Lu(x, t) + g(x)φ(t) in ΩT , (2.1a)

LΓu(x, t)=gΓ(x)φΓ(t) on ΓT , (2.1b)

yk(t)=
∫

Ω

δ(x − xk)Lyu(x, t) for k = 1, · · · ,K, (2.1c)

qi(t)=
∫

Ω

hi(x)Lqu(x, t)dx for i = 1, · · · , Q, (2.1d)
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with u(x, t) the state variable, x ∈ Ω the spatial coordinate, yk ∈ R a measured
output and qi ∈ R a controlled output, which is used to define the control objective
later in this section. The vector function g(x) = [g1(x), · · · , gm(x)], gi ∈ L2(Ω)
describes how the inputs φ(t) = [φ1(t), · · · , φm(t)]T ∈ Rm from m linear actua-
tors are distributed in the domain, gΓ(x) = [gΓ,1(x), · · · , gΓ,m(x)], gΓ,i ∈ L2(Γ)
describes how the inputs φΓ(t) = [φΓ,1(t), · · · , φΓ,m(t)]T ∈ RmΓ are distributed over
the boundary and hi(x) is determined by the desired performance specifications in
the domain Ω. The operator L is defined as a linear partial differential operator
with derivatives up to order k ≥ 1 with spatially varying coefficients

Lu =
∑

|α|≤k

aα(x)Dαu = a0(x)u+
∑

1≤|α|≤k

aα(x)Dαu, (2.2)

where we have used the well-known multi-index notation for the spatial derivative

Dαu =
∂|α|u

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

(2.3)

for a given multi-index (α1, α2, · · · , αn) of order |α|= α1 + α2 + · · · + αn and the
operators LΓ,Ly ,Lq are defined as partial differential operators with constant coef-
ficients. Common boundary conditions are Dirichlet (LΓ = I), Neumann (LΓ = ∂

∂n )
and Robin boundary conditions (LΓ = I + ∂

∂n ). In this study feedback stabilisation
of (2.1a) is considered where the PDE describes the error between the unsteady
response and the equilibrium profile, e.g. the error between the unsteady tem-
perature and the equilibrium profile of the temperature. It is assumed that point
measurements from K boundary or in-domain sensors are used for feedback.

The objective is to reduce the infinite-dimensional state-space system (2.1) to a
finite-dimensional state-space system using multivariate splines, which can be used
to synthesise any suitable linear controller. In this study a classical linear quadratic
optimal control problem is considered. To define the control objective, the system
(2.1) is formulated as an infinite-dimensional system in a Hilbert space X [43, 68].
The derivation of this system is also closely related to the derivation of the reduced-
order model in section 2.5. The space of square integrable functions X = L2(Ω) with
inner product (u1, u2) =

∫

Ω u1u2dx and norm ‖u1‖2= (u1, u1)1/2 where u1, u2 ∈ X
is chosen as the state space. The trajectory segment u(·, t) = {u(x, t),x ∈ Ω} is
chosen as the state with u(t)|Γ∈ U the value of u(t) on the boundary defined in a
separable Hilbert space U . Defining the following operators on X as

A : D(A ) ⊂ X 7→ X , A u(t) = Lu(t),

B : D(B) ⊂ X 7→ U , Bu(t) = LΓu(t)|Γ,

A : D(A) 7→ X , Au(t) = A u(t), for u ∈ D(A),

D(A) = D(A ) ∩ ker(B) = {u ∈ D(A );LΓu(t)|Γ= 0} ,

(2.4)

where the domain D(A ) ⊂ D(B) is the set of functions in L2(Ω) with derivatives
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up to order k in L2(Ω), defining the input and output operators as

B : Rm 7→ X , Bφ(t) = g(x)φ(t),

BΓ : RmΓ 7→ U , BΓφΓ(t) = gΓ(x)φΓ(t),

Ck : X 7→ R, Cku(t) = (δ(x − xk),Lyu(t)) ,

Qi : X 7→ R, Qiu(t) = (hi(x),Lqu(t))

(2.5)

and construct an operator Z such that

Z : U 7→ X , BZBΓφΓ(t) = BΓφΓ(t), (2.6)

the system (2.1) can be formulated as [43, section 3.3]

∂uh(t)
∂t

= Auh(t) − ZBΓφ̇Γ(t) + A ZBΓφΓ(t) + Bφ(t),

y(t) = C
(

uh(t) + ZBΓφΓ(t)
)

,

q(t) = Q
(

uh(t) + ZBΓφΓ(t)
)

,

(2.7)

where the solution of (2.7) is related to the classical solution of (2.1) by

u(t) = uh(t) + ZBΓφΓ(t). (2.8)

From (2.6) and (2.8) it follows that uh(t) can be regarded as a homogeneous solu-
tion and ZBΓφΓ(t) as a particular solution that satisfies the boundary conditions.
Equation (2.7) can also be formulated on the extended state space X e = X ⊕ RmΓ

u̇e(t) = Āue(t) + B̄φ̄(t), ue(0) = ue
0,

y(t) = C̄ue(t),

q(t) = Q̄ue(t),

(2.9)

where

ue(t) =
[
uT

h (t) φT
Γ (t)

]T
, φ̄(t) =

[
φT (t) φ̇T

Γ (t)
]T
,

Ā =
[
A A ZBΓ

0 0

]

, B̄ =
[
B −ZBΓ

0 I

]

,

C̄ =
[
C CZBΓ

]
, Q̄ =

[
Q QZBΓ

]
.

(2.10)

The control objective is to synthesise an output feedback that minimises the quadratic
(LQR) cost function

J =
∫ ∞

0

(q, q)
Rn +

(
φ̄,Rφ̄

)

Rn dt, (2.11)

subject to the system dynamics (2.9) where (·, ·)
Rn denotes the standard inner prod-

uct in Rn.
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2.3. Preliminaries on multivariate splines
Given a bounded polygonal domain Ω ∈ Rn and let T be a triangulation of Ω. The
spline space is the space of all smooth piecewise polynomial functions of degree d
and smoothness r over T with 0 ≤ r < d

Sr
d (T ) := s ∈ Cr (Ω) : s|∆∈ Pd, ∀∆ ∈ T , (2.12)

where Pd denotes the space of all polynomials of total degree d and ∆ denotes an
n-simplex (line in 1-D, triangle in 2-D, tetrahedron in 3-D) and Ω =

⋃

∆∈T ∆. In
this chapter, the B-form representation of splines defined on triangulations is used
[41, 42]. Only the essential theory that is necessary for the treatment of the spline
model reduction framework is discussed here. We refer to Lai and Schumaker [40]
for a more complete coverage.

Let ∆ = 〈v0,v1, · · · ,vn〉 be an n-simplex with vertices vi = (x(i)
1 , x

(i)
2 , · · · , x

(i)
n ).

A separate local coordinate system can be defined for each simplex in terms of
barycentric weights. In this coordinate system every point x = (x1, x2, · · · , xn) ∈ Rn

is described in terms of a unique weighted vector sum of the vertices of ∆

x =
n∑

i=0

bivi,
n∑

i=0

bi = 1, (2.13)

where b = (b0, b1, · · · , bn) ∈ Rn+1 is called the barycentric coordinate of point
x = (x1, · · · , xn) relative to simplex ∆. In the remainder of this chapter, we denote
b∆j

(x) : Rn → Rn+1 as the mapping from Cartesian coordinates to barycentric
coordinates for a specific simplex with b = b∆j

(x).
The simplex polynomials are expressed in terms of Bernstein - Bézier basis poly-

nomials of degree d

Bd
κ(b∆j

(x)) =
{

d!
κ0!κ1!···κn!b

κ0
0 bκ1

1 · · · bκn
n = d!

κ!b
κ x ∈ ∆j ,

0 x /∈ ∆j ,
(2.14)

with κ = (κ0, κ1, · · · , κn) ∈ Nn+1 a multi-index with properties κ! = κ0!κ1! · · ·κn!
and |κ|= κ0 + κ1 + · · · + κn. In [42] it is shown that the set

Bd =
{
Bd

κ(b), |κ|= d
}

(2.15)

forms a unique stable local basis for Pd on ∆. Hence, any simplex polynomial p∆j

of degree d defined on ∆ can be uniquely written as a linear combination of basis
polynomials in Bd [42]

p∆j (x) =
∑

|κ|=d

c∆j
κ Bd

κ(b), (2.16)

with c
∆j
κ the B-coefficients. The total number of valid permutations of κ is d̂ =

(d+ n)!/n! d! which is equal to the total number of B-coefficients per simplex. The
B-coefficients have a special property in the sense that they have a unique geometric
location inside their parent simplex which are referred to as the domain points. The
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Figure 2.1: Spatial location B-coefficients for a two-dimensional simplex polynomial of degree four
(left) and the B-net of the polynomial (right)

complete set of domain points ξκ in barycentric coordinates of a polynomial of degree
d is given by

Dd =
{

ξκ =
κ

d
, |κ|= d

}

, (2.17)

which is equal to the location of the unique maximum of the Bernstein basis poly-
nomial Bd

κ in (2.14). In figure 2.1, the domain points and the B-net are shown for
a bivariate simplex polynomial of degree 4. The following theorem will be used for
the spline approximation of functions over simplices.

Theorem 1. There is a unique polynomial p in n variables of degree d that inter-
polates any given function f on a n-simplex over the domain points in (2.17).

See Chung and Yao [69] for a proof. The B-form polynomial (2.16) can also be
written in vector form [70]

p∆j (x) = Bd
∆j

(x)c∆j , (2.18)

with Bd
∆j

(x) =
[
Bd

κ(b∆j
(x))

]

|κ|=d
∈ R1×d̂ the vector of basis polynomials and with

c∆j := [c∆j
κ ]|κ|=d ∈ Rd̂×1 the vector of B-coefficients. Similarly, the globally defined

spline function can be written as

s(x) =
J∑

j=1

∑

|κ|=d

c∆j
κ Bd

κ(x) = Bd(x)c, (2.19)

with Bd(x) ∈ R1×Jd̂ the global vector of vector basis polynomials and c ∈ RJd̂×1

the global vector of B-coefficients and J the total number of simplices. A spline
function is by definition a piecewise defined polynomial with Cr continuity over
the element simplex boundaries. Continuity of order Cr between two neighboring
B-form simplex polynomials p∆i, p∆j is achieved when all mth order directional
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derivatives, with 0 ≤ m ≤ r are equal at every point on the edge ∆̃i,j = ∆i ∩
∆j between the two simplices ∆i,∆j . This is enforced by homogeneous equality
constraints of the form H∆i,∆j [cT

∆i
, cT

∆j
]T = 0 which are defined for every edge

of two neighbouring simplices in triangulation T [62] and [40, pp.133-135]. This
guarantees the existence of a matrix H ∈ RR∗×Jd̂ with R∗ = rank(H) such that
s ∈ Cr(Ω) if and only if

Hc = 0. (2.20)

Constructing H is not trivial and we refer to de Visser et al. [70] for a general
formulation of the continuity conditions and the procedure to derive them utilising
a B-net orientation rule.

We next discuss the process of computing integrals and inner product of B-form
polynomials which are required for the Galerkin projection. The integral of a B-form
basis polynomial of degree d and dimension n for any multi-index |κ|= d over the
volume of its simplex ∆ is given by

∫

∆

Bd
κ(x)dx =

S∆
(

d+n
n

) , (2.21)

where S∆ is the length (1d), area (2d), volume (3d) or hypervolume of the simplex.
Equation (2.21) leads directly to inner products of any two B-form basis polynomials
Bd1

γ , Bd2
κ . Using (2.14) we have

Bd1
γ Bd2

κ =
d1! d2!
γ!κ!

bκ+γ , Bd1+d2
γ+κ =

(d1 + d2)!
(γ + κ)!

bκ+γ . (2.22)

It follows that
∫

∆

Bd1
γ Bd2

κ dx =
∫

∆

d1! d2!
γ!κ!

(γ + κ)!
(d1 + d2)!

Bd1+d2
γ+κ dx, (2.23)

which with (2.21) results in
∫

∆

Bd1
γ Bd2

κ dx =
d1! d2!

(d1 + d2)!
S∆

(
d1+d2+n

n

)
(γ + κ)!
γ!κ!

. (2.24)

In the same way it can be shown that the integral of the product of three B-form
basis polynomials Bd1

µ , Bd2
γ and Bd3

κ is given by

∫

∆

Bd1
µ Bd2

γ Bd3
κ dx =

d1! d2! d3!
(d1 + d2 + d3)!

S∆
(

d1+d2+d3+n
n

)
(µ+ γ + κ)!
µ! γ!κ!

. (2.25)

2.4. Boundary conditions as side constraints
Similar to the continuity conditions (2.20), the boundary conditions (2.1b) are in-
cluded as side constraints for the B-coefficients which are derived in this section.
With standard finite element methods boundary conditions are commonly explicitly
incorporated (Dirichlet type) in the finite element basis or implicitly incorporated
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(Neumann type) using a suitable choice for the weak formulation of the PDE. We
treat them as side constraints to simplify the construction of the spline basis that
satisfies the boundary conditions. No modifications to the spline basis or to the
weak formulation are required for different types of boundary conditions. This also
allows us to define a model reduction scheme for the general class of linear parabolic
PDEs in the next section. The side constraints constrain the spline polynomials at
the boundary such that the spline solution satisfies the boundary conditions. The
derivation of the constraints requires a new matrix formulation for B-spline deriva-
tives whose image is in the same polynomial space. This allows the formulation of
all differential operators in (2.2) in terms of a single degree polynomial basis which
will also prove to be essential in the model reduction framework. These derivatives
are completely defined in terms of a mapping acting on its B-coefficients and are
derived by combining the de Castelau formulation for the derivatives [71] with a
polynomial degree raising algorithm [63].

We start by introducing a mapping that raises the degree of a simplex polynomial
p ∈ Pd to p ∈ Pd+m. Let p be a polynomial of degree d defined on a simplex ∆
written in the vector form (2.18), and let c be its coefficients. Then it can also be
evaluated by [63]

Bd(x)c =
d!

(d+m)!
Bd+m(x)Nd+m,d

∆ c, (2.26)

with N
d+m,d
∆ ∈ R

(d+m+n)!
n!(d+m)!

×
(d+n)!

n!d! the degree raising matrix that raises the set of B-
coefficients of degree d into a set of B-coefficients of degree d + m [63]. The right
hand side of (2.26) is again a B-form polynomial with Bd+m(x) the polynomial basis
and d!

(d+m)!N
d+m,d
∆ c its B-coefficient vector. It follows that the mapping given by

c 7→ d!
(d+m)!N

d+m,d
∆ c transforms the B-coefficient vector of p ∈ Pd to the B-coefficient

vector of p ∈ Pd+m.
We next discuss derivatives of B-form polynomials. Let a = b∆j

(~v) − b∆j
(0) =

(a0, a1, · · · , an) be the directional coordinate of the unit vector ~v in barycentric
coordinates. Then the general kth order derivative of a polynomial p of degree
1 ≤ k ≤ d in the unit directions ~v1, · · · , ~vk is given by [40, pp.29]

D~vk
· ·D~v1

p(x) =
d!

(d− k)!

∑

|κ|=d−k

c(k)
κ (a(1), · · · ,a(k))Bd−k

κ (x) (2.27)

where c(k)
κ (a(1), · · · ,a(k)) are the quantities obtained after carrying out k steps of

the de Castelau iteration

c(k)
κ (a) =

∑

|γ|=1

aγc
(k−1)
κ+γ (a), |κ|= d− k, k ≤ d (2.28)

using the directional coordinates a(1), · · · ,a(k) of ~v1, · · · , ~vk in that order. For ex-
ample, if we put dκ = c

(1)
κ (a(1)), then c

(2)
κ (a(1),a(2)) = d

(1)
κ (a(2)). Equation (2.28)

can be written in matrix form [71]

c(k) = Pd−k,d−k+1(a)c(k−1)(a), (2.29)
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with Pd−k,d−k+1 ∈ R
(d−k+n)!
n!(d−k)!

×
(d−k+1+n)!
n!(d−k+1)! the one-step de Castelau matrix [71] which

reduces the set of B-coefficients of degree d − k + 1 into a set of B-coefficients of
degree d− k. Using the vector formulation of the B-form polynomial (2.18) and the
de Castelau algorithm (2.29), the general derivative (2.27) can be written in matrix
form

Dkp(x) =
d!

(d− k)!
Bd−k(x)Pd−k,d(a(1), · · · ,a(k))c, (2.30)

with Dk = Dvk
· · ·Dv1 and

Pd−k,d(a(1), · · · ,a(k)) = Πk
i=1Pd−i,d−i+1(a(i)) (2.31)

a multi-degree de Castelau matrix. Equation (2.30) can be combined with poly-
nomial degree raising (2.26) to construct kth-order derivatives whose image is in
Pd−k+m.

Theorem 2. Let p ∈ Pd be a B-form polynomial of degree 1 ≤ k ≤ d relative
to simplex ∆, and given a set of directions ~v1, · · · , ~vk described by the directional

coordinates a(k) = (a(k)
0 , · · · , a

(k)
n ). The matrix form of the kth order derivative

Dk = D~vk
· · ·D~v1

p ∈ Pd−k+m in the unit directions ~v1, · · · , ~vk is given by

Dkp(x) =
d!

(d− k +m)!
Bd−k+m(x)Nd−k+m,d−k

∆ Pd−k,d(a(1), · · · ,a(k))c. (2.32)

Proof. The right-hand side of (2.30) is a B-form polynomial in Pd−k with Bd−k(x)
its polynomial basis and c(k) = d!

(d−k)! P
d−k,d(a(1), · · · ,a(k))c its coefficients. Apply-

ing the mapping c(k) 7→ (d−k)!
(d−k+m)!N

d−k+m,d−kc(k) to (2.30) to raise Dkp(x) ∈ Pd−k

to Dkp(x) ∈ Pd−k+m gives the result in (2.32).

The spline function s ∈ Sr
d(Ω) is guaranteed to be r-times continuously differ-

entiable on the domain Ω. The following corollary introduces a mapping for the
B-coefficient vector to compute derivatives of s and follows directly from theorem 2.

Corollary 1. Given the B-coefficient vector c of s ∈ Sr
d(T ), the mapping c 7→

T
d−k+m,d
Dk c with

T
d−k+m,d
Dk = diag

(
d!

(d− k +m)!
N

d−k+m,d−k
∆ Pd−k,d(a(1), · · · ,a(k)

)J

j=1

(2.33)

maps the B-coeficients of s ∈ Sr
d(T ) to the B-coefficients of Dks ∈ Sr−k

d−k+m(T ), that
is

Dk
[

Bd(x)c
]

= Bd−k+m(x)Td−k+m,d
Dk c. (2.34)

Hence, any spatial derivative can simply be constructed by applying the mapping
(2.33) in parameter space. Note that the spatial derivative Dα (2.3) of order |α| is
a special case of Dk. Corollary 1 is used to define a similar transformation matrix
for the general linear differential operator (2.2) with constant coefficients.
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Theorem 3. Let L be a linear partial differential operator of order k given by
(2.2) with constant coefficients and given the B-coefficient vector c of s ∈ Sr

d(T ).
Furthermore let T

d,d
Dα be the transformation matrix that maps s ∈ Sr

d(T ) to Dαs ∈

S
r−|α|
d (T ) constructed using (2.33) with k = m = |α|. Then the mapping c 7→ T

d,d
L c

with
T

d,d
L =

∑

|α|≤k

aαT
d,d
Dα (2.35)

maps the B-coefficients of s ∈ Sr
d(T ) to the B-coefficients of Ls ∈ Sr−k

d (T ), that is

L
[

Bd(x)c
]

= Bd(x)Td,d
L c.

Proof. Applying Corollary 1, the linear operator acting on s can be written in terms
of a single degree basis polynomial

L
[

Bd(x)c
]

=
∑

|α|≤k

aαD
α

[

Bd(x)c
]

=
∑

|α|≤k

aαBd(x)Td,d
Dα c, (2.36)

which can be written in the form L
[

Bd(x)c
]

= Bd(x)Td,d
L c where T

d,d
L is given by

(2.35).

This theorem is used to define the boundary constraints. The value of a B-form
simplex polynomial at the edge of the simplex is uniquely determined by the values
of the B-coefficients located on the edge [64] (See also Figure 2.1). This implies
that there is a matrix D which maps the B-coefficients of s to the B-coefficients of
s|Γ, that is s|Γ= B̃d(x)Dc, with B̃d(x) an n − 1 B-form vector basis [64]. Or in
other words, the action c 7→ Dc selects the B-coefficients located on the boundary.
Combined with theorem 3 it follows that c 7→ DT

d,d
LΓ

c maps the B-coefficients of

s to the B-coefficients of LΓs|Γ, that is LΓs|Γ= B̃d(x)DT
d,d
LΓ

c. Furthermore, by
theorem 1 there is a unique n− 1 dimensional simplex polynomial that interpolates
the actuator distribution functions gΓ,i(x) at the domain points on the simplex
face located on the boundary Γ. Denote gi

Γ as the B-coefficient vector of the n− 1
dimensional spline function that interpolates gΓ,i(x) over the complete set of domain
points on the boundary Γ and define GΓ =

[
g1

Γ · · · gm
Γ

]
, we may set

DT
d,d
LΓ

c(t) = GΓφΓ(t) (2.37)

to enforce that the spline solution satisfies the boundary condition (2.1b) approxi-
mately. Note that in the case of homogeneous boundary conditions the B-coefficient
constraints model the boundary conditions exactly since no approximations are in-
volved.

Example 1. As an example consider the following homogeneous Robin boundary
conditions

as+ b
∂s

∂n
= 0 on Γ, (2.38)
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where a and b are constants. First the left hand side of (2.38) is written as a single
spline function

Bd(x)
(

aI + bTd,d
Dn

)

c = Bd(x)Td,d
LΓ

c = 0 (2.39)

and we can set
D

(

aI + bTd,d
Dn

)

c = DT
d,d
LΓ

c = 0 (2.40)

to encode that the spline function satisfies (2.38) on the boundary.

2.5. Model reduction of linear parabolic PDEs
In this section, the finite-dimensional state-space description of (2.1) is constructed
using multivariate splines. First, the DPS is reduced to a finite set of coupled ODEs
using Galerkin projection after which the complete system of equations including the
side constraints for the smoothness conditions (2.20) and boundary conditions (2.37)
is transformed to state-space format using a null space approach that significantly
reduces the size of the system.

The spline approximation is determined through the following Galerkin-type
weak formulation: Find u(x, t) ∈ L2

(
0, T ;Hk(Ω)

)
such that

∫

Ω

∂u(x, t)
∂t

v(x) dx =
∫

Ω

(

Lu(x, t) + g(x)φ(t)
)

v(x) dx,

LΓu(x, t) = gΓ(x)φΓ(t), on ΓT ,

(2.41)

∀v ∈ V0 and t ∈ [0, T ], with Hk(Ω) the standard Sobolev space consisting of all
functions whose spatial derivatives up to kth-order exist in the weak sense and are
in L2(Ω) and with V0 the space associated with the test functions v(x)

V0 =
{
v ∈ Hk(Ω) : LΓv = 0

}
. (2.42)

A common approach is to apply integration by parts and the Gauss-Green theorem
to (2.41) to lower the smoothness requirements and to implicitly incorporate natural
(Neumann type) boundary conditions in the weak formulation. This approach is
not employed here since a spline basis of higher degree and smoothness with the
characteristics of the strong solution can easily be constructed.

We now define the spline approximation of (2.41). Let T be the triangulation
of Ω if Ω is a polygonal domain. Otherwise we choose the vertices on Γ such that
T becomes the approximation of Ω. Let d and r be two positive integers with
d > r, r ≥ k − 1 and let S be a spline subspace consisting of spline functions which
are Cr inside Ω. We have that S ⊂ Sk−1

d (T ) ⊂ Hk(Ω). The finite-dimensional
approximation of u in Ω can be represented by

uN (x, t) = su(x, t) =
J∑

j=1

∑

|κ|=d

c∆j
κ (t)Bd

κ(x) = Bd(x)c(t), (2.43)

with s ∈ S, N = Jd̂ and where the B-coefficients satisfy the Cr continuity conditions
(2.20). In (2.43) the B-form basis polynomials Bd

κ(x) are used as spatial basis
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functions and the B-coefficients as time-varying expansion coefficients. Let S0 =
S ∩ V0. The spline approximation of (2.41) with respect to the spatial variables is
s(·, t) ∈ S which must satisfy the approximate boundary conditions (2.37) such that

∫

Ω

∂su(x, t)
∂t

sv(x) dx =
∫

Ω

(

Lsu(x, t) + g(x)φ(t)
)

sv(x) dx (2.44)

∀sv ∈ S0 and t ∈ [0 T ]. Recall from theorem 3 that the differential operator acting
on s can be written in terms of a single degree basis polynomial

L
[

Bd(x)c(t)
]

=
∑

|α|≤k

aα(x)Bd(x)Td,d
Dα c(t), (2.45)

with T
d,d
Dα the transformation matrix that maps the B-coefficient vector of s ∈ Sr

d(T )

to the B-coefficients of Dαs ∈ S
r−|α|
d (T ). Let d be the B-coefficient vector of the

test function sv ∈ S0 with sv = Bd(x)d, (2.44) can be written as

dT

(∫

Ω

[

Bd(x)
]T

Bd(x) dx

)

ċ(t)

= dT

[
∑

|α|≤k

( ∫

Ω

aα(x)
[

Bd(x)
]T

Bd(x) dx

)

T
d,d
Dα

]

c(t)

+ dT

(∫

Ω

[

Bd(x)
]T

g(x) dx

)

φ(t),

(2.46)

which must hold for all B-coefficient vectors d of splines in S0, that is for all d

satisfying the Cr smoothness constraints Hd = 0 and the homogeneous boundary
constraints DT

d,d
LΓ

d = 0. Equation (2.46) is written in terms of B-form polynomials
by approximating the actuator distribution functions gi(x) and the PDE coefficients
aα(x) using B-splines. If these functions are continuous, interpolation is the obvious
choice. By theorem 1 there is a unique simplex polynomial that interpolates aα(x)
over the simplex domain points {ξ∆

κ , |κ|= d}. Let aα be a B-coefficient vector with
saα

(x) = Bd(x)aα ∈ S0
d(T ) the spline interpolation of aα(x) over the complete set

of domain points and let gi be a B-coefficient vector with sgi
(x) = Bd(x)gi ∈ S0

d(T )
the spline interpolation of gi(x) and define G =

[
g1, g2, · · · , gm

]
, then the projection

condition (2.46) can be approximated in terms of B-form polynomials by

dT

(∫

Ω

[

Bd(x)
]T

Bd(x) dx

)

ċ(t)

= d
T

[
∑

|α|≤k

(∫

Ω

Bd(x)aα
[

Bd(x)
]T

Bd(x) dx

)

T
d,d
Dα

]

c(t)

+ dT

(∫

Ω

[

Bd(x)
]T

Bd(x) dx

)

Gφ(t).

If aα(x) and gi(x) are not continuous, interpolation can still be used except that
the interpolation values should come from a suitable continuous approximation of
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aα(x) and gi(x) or one can use a piecewise discontinuous polynomial approximation
using for example a least squares fit [70].

The integral over a simplex ∆ of the product of two or more basis polynomials
defined on different simplices is always equal to zero because of their local support.
It follows that the integrals in (2.47) result in block diagonal matrices. Applying
the integration gives

dT M ċ(t) = dT




∑

|α|≤k

K(aα)Td,d
Dα



 c(t) + dT MGφ(t), (2.47)

with M = diag(M∆) a mass matrix [64] with blocks

M∆ =
[∫

∆

Bd
κ(x)Bd

γ(x) dx

]

|κ|= d
|γ|= d

(2.48)

and K(aα) = diag(K∆(aα)) a bending matrix with blocks

K∆(aα) =
[∫

∆

Bd(x)aαBd
κ(x)Bd

γ(x) dx

]

|κ|= d
|γ|= d

=





∫

∆

∑

|µ|=d

Bd
µ(x)aα

µB
d
κ(x)Bd

γ(x) dx





|κ|= d
|γ|= d

. (2.49)

Using (2.24) and (2.25) the mass and bending matrices can be explicitly calculated
with

M∆ =
d! d!
(2d)!

S∆
(

2d+n
n

)

[
(γ + κ)!
γ!κ!

]

|κ|= d
|γ|= d

, (2.50)

Kα
∆ =

d! d! d!
(3d)!

S∆
(

3d+n
n

)




∑

|µ|=d

aα
µ

(µ+ γ + κ)!
µ! γ!κ!





|κ|= d
|γ|= d

. (2.51)

Let K =
∑

|α|≤k K(aα)Td,d
Dα and F = MG, it follows that the B-coefficient vector c

of the spline approximation satisfies

dT M ċ(t) = dT Kc(t) + dT Fφ(t), (2.52a)

Hc(t) = 0, (2.52b)

DT
d,d
LΓ

c(t) = GΓφΓ(t) (2.52c)

for all B-coefficient vectors d of splines in S0 satisfying Hd = 0 and DT
d,d
LΓ

d = 0.
Existence and uniqueness of c can be shown by using the same argument for the
existence of the weak solution satisfying (2.41) [62, 65]. We are interested in solving
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(2.52) for ċ. A null-space approach is proposed which significantly reduces the size

of the system by the rank of the side constraints. Let L =
[

HT (DT
d,d
LΓ

)T
]T

and

ḠΓ =
[

0T GT
Γ

]T
, the constraints (2.52b) and (2.52c) can be written as

Lc(t) = ḠΓφΓ(t). (2.53)

Let V be a basis for null(L) such that LV = 0 and let cp(t) = ZφΓ(t) be a particular
solution of (2.53). The general solution set for (2.53) can be written as

c(t) = Vch(t) + ZφΓ(t), (2.54)

with ch ∈ RN−R∗

the coordinate vector of c relative to the basis for null(L) and
with R∗ the rank of L. Since Ld = 0 for all B-coefficient vectors d of splines in S0,
the solution set for d can be written as d = V dh. Substituting this set for d and
the solution set (2.54) for c in (2.52) gives

dT
h V T M

(

V ċh(t) + Zφ̇Γ(t)
)

= dT
h V T K

(

V ch(t) + ZφΓ(t)
)

+ dT
h V T Fφ(t), (2.55)

which is a reduced unconstrained system of order N−R∗ projected on the null space
of the side constraints. Since (2.55) must hold for all dh, (2.55) is equivalent to

(

V T MV
)

ċh(t) = V T
[
KVch(t) + KZφΓ(t) + Fφ(t) − MZ φ̇Γ(t)

]
. (2.56)

The null-space method requires the construction of the null basis V for L. We
use the sparse null-space algorithm recently introduced in Hölzel and Bernstein
[72] which is in particularly useful for computing the null space of large sparse
matrices. The algorithm from Hölzel and Bernstein [72] is presented in appendix C
and extended to compute both a basis for the null space and a particular solution
for the linear equality constraints (2.53). For the measured output (2.1c) and the
controlled output (2.1d), the null space Galerkin method yields

yk(t) = Bd(xk)Td,d
Ly

[Vch(t) + ZφΓ(t)] , (2.57)

qi(t) =
(
hi

)T
MT

d,d
Lq

[Vch(t) + ZφΓ(t)] , (2.58)

where T
d,d
Lz

maps the B-coefficient vector of s to the B-coefficient vector of Lzs and
with hi the B-coefficient vector of the spline that interpolates hi(x). Finally, we
obtain the system in state-space format

u̇e
N (t) = Aue

N (t) + Bφ̄(t),

yk(t) = Ckue
N (t),

qi(t) = Qiu
e
N (t),

(2.59)
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where

ue
N (t) =

[
cT

h (t) φT
Γ (t)

]T
, φ̄(t) =

[
φT (t) φ̇T

Γ (t)
]T
,

A =

[(

V T MV
)−1

V T KV
(

V T MV
)−1

V T KZ

0 0

]

,

B =

[(

V T MV
)−1

V T F −
(

V T MV
)−1

V T MZ

0 I

]

,

Ck =
[

Bd(xk)Td,d
Ly

V Bd(xk)Td,d
Ly

Z
]

,

Qi =
[
(
hi

)T
MT

d,d
Lq

V
(
hi

)T
MT

d,d
Lq

Z

]

.

(2.60)

Remark 1. The approximation power of the general multivariate spline space Sr
d(T )

is not fully known. For bi-variate spline spaces full approximation power in all
p-norms is achieved when d ≥ 3r + 2 (see Lai and Schumaker [73] and Lai and
Schumaker [40, pp.276-286]). The orthogonality of the Galerkin projection (2.44)
ensures that the approximation ue

N is the best possible solution in the space spanned
by the basis functions. Specific bounds for the L2 norm of projections onto bi-variate
spline spaces S0

d(T ) and Sd
d(T ) with d ≥ 3r + 2 are derived in Von Golitschek and

Schumaker [74].

2.6. Controller synthesis
The reduced-order model (2.59) can be used to design any suitable linear controller.
In this study a quadratic optimal design is considered where the controlled output
(2.58) is used to build the objective function (2.11). The quadratic objective function
(2.11) for the reduced-order model becomes

J =
∫ ∞

0

(ue
N )T

QT Que
N + φ̄T Rφ̄ dt. (2.61)

Assuming that (A,B) is stabilisable the state feedback φ̄(t) = −Kcx
N (t) that min-

imises (2.61) can be computed by solving the associated algebraic Riccati equation
for (2.61) (see appendix B). An output feedback controller is obtained by combining
the state feedback with a state observer and takes the form

φ̄(t) = −Kcûe
N (t),

˙̂ue
N (t) = Aûe

N (t) + Bφ̄(t) + Ko

(

y(t) − ŷ(t)
)

,

ŷ(t) = C ûe
N (t), ûe

N (0) = ûe
N,0,

(2.62)

where the observer gain Ko is tuned such that the closed-loop dynamics of the
estimation error (ue

N −ûe
N ) governed by the eigenvalues of A−KoC is asymptotically

stable with a sufficient convergence rate. The closed-loop system consists of the
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actual DPS (2.9) combined with the controller (2.62)
[

u̇e

˙̂ue
N

]

=
[

Ā −B̄Kc

KoC̄ A − BKc − KoC

] [
ue

ûe
N

]

. (2.63)

When using reduced-order models in the design of a control system, the truncated
dynamics must be taken into account in the stability analysis. Robustness with
respect to the truncated dynamics of reduced-order controllers based on projections
on non-modal subspaces, such as finite-element spaces and spline spaces, for the
linear class of parabolic DPS treated in this chapter has been discussed in Balas [54].
In Balas [54], precise conditions are derived under which model reduction based on
consistent Galerkin approximations will lead to stable infinite-dimensional control.
In particular, provided that the infinite-dimensional system is exponentially stable
and N sufficiently large, a controller which exponentially stabilises the closed-loop
ODE system also stabilises the closed-loop parabolic PDE system. The assumption
that the DPS is exponentially stable is generally required in order to prove that the
estimates are bounded for all times, that is ‖u−uN‖2≤ µ(N), ∀t with µ(N) a positive
number depending on N satisfying limN→∞µ(N) = 0 [54, 61]. In the next section we
apply the reduction method to control two unstable PDEs and analyse the closed-
loop stability by computing the eigenvalues of (2.63) numerically. To compute the
eigenvalues and to simulate the response of the system, an accurate high-order model
is used to represent the actual DPS, that is, Ā, B̄ and C̄ in (2.63), and lower order
models are used to design the control system. For a given partitioning of the domain,
the degree and order of continuity of the splines basis can be chosen arbitrarily to
derive these state-space models. The order of continuity is chosen equal to the
continuity of the strong solution of the PDE system. For the systems considered in
the next section the strong solution is C2 smooth. The degree of the control model
can subsequently be tuned to obtain a desirable trade-off between the order of the
model and the accuracy of the model, and thereby closed-loop performance. We
provide a closed-loop performance analysis for various degrees and select the model
that gives a good balance between model order and performance to implement the
controller.

2.7. Demonstration
In this section, two representative PDE control problems are presented to demon-
strate the implementation and to evaluate the effectiveness of the proposed model
reduction scheme. In the first case we consider stabilisation of a 1-D unstable
reaction-diffusion process which is often considered as a benchmark problem (see
e.g. Smyshlyaev and Krstic [46]). For this problem an analytic solution of the
spatial differential operator eigenvalue problem is available which allows for a di-
rect comparison of the eigenvalues and stability eigenfunctions of the reduced-order
models with the analytic solution. In the second case, stabilisation of a 2-D reaction-
convection-diffusion equation on an irregular spatial domain is considered for which
analytic solutions of the spatial differential operator eigenvalue problem are not
possible. This is a non-trivial example which better illustrates the potential of the
spline reduction framework. We provide numerical convergence results for increasing
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Table 2.1: Number of system states (Jd̂ − R∗ + 1).

Degree 3 4 5 6 7 8 9 10

T3 5 8 11 14 17 20 23 26

T6 8 14 20 26 32 38 44 50

polynomial degrees and show that effective feedback stabilisation can be achieved
using low-order control models.

2.7.1. Boundary feedback stabilisation of a reaction-diffusion
equation

In this demo boundary feedback control of an unstable reaction-diffusion equation
with constant coefficients is considered







∂u(x,t)
∂t = µ∂2u(x,t)

∂x2 + au(x, t) in (0, 1) × (0,∞),
u(0, t) = 0, u(1, t) = u(t) in (0,∞),
u(x, 0) = sin(πx) in (0, 1),
y(t) = ∂u(0,t)

∂x in (0,∞),
q1(t) =

∫

Ω
sin(πx)u(x, t) dx in (0,∞),

q2(t) =
∫

Ω sin(2πx)u(x, t) dx in (0,∞),

(2.64)

where ∂u
∂x (0, t) is measured and u(1, t) is actuated. The coefficients are chosen as

µ = 0.2, a = 4. The complete system is converted to state-space format using a
C2(Ω) continuous spline basis of various degrees defined on a uniform partitioning of
the domain consisting of three and six simplices. The dimension of the state-space
systems is listed in table 2.1. For system (2.64), the differential operator is of the
form Au = µ∂2u

∂x2 + au and the exact solution of the differential operator eigenvalue
problem Aũj(x) = λj ũj(x) is given by [43]

λj = a− µj2π2, ũj(x) = sin (jπx) , (2.65)

with j = 1, 2, ··,∞, λj the eigenvalues and ũj the eigenfunctions. The case with
µ = 0.2, a = 4 corresponds to one unstable eigenvalue at λ1 = 4 − 0.2π2 ≈ 2.03.
Using this eigenfunction expansion we can directly calculate power spectral density
(PSD) of the differential operator [75]

‖(iω − A)−1‖2
HS= ‖F(ω)‖2

HS=
∑

j∈N

1
ω2 + λ4

j

, (2.66)

where ‖·‖HS denotes the Hilbert-Schmidt norm (generalisation of the Frobenius
norm for matrices). Figure 2.2 shows the errors for the first four dominant eigenval-
ues of the reduced-order models and figure 2.3 compares the PSD. It can be observed
that the dominant modes converge quickly up to numerical precision and that the
reduced-order models only deviate at higher frequencies.
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Table 2.2: Real part of the two least stable eigenvalues of the closed loop system (2.63).

degree 3 4 5 6 7 8

σ1 -1.41 -2.47 -2.62 -2.69 -2.69 -2.69

σ2 -1.56 -3.29 -3.06 -3.09 -3.10 -3.10

The control objective is to stabilise the state at its unstable equilibrium ū = 0.
The controller (2.62) is synthesised using s ∈ S2

d(T3) Galerkin models of various
degrees. The controlled output is built using the first two dominant eigenfunctions
ũ1(x), ũ2(x) and the input weight is set to R = 0.01. Adding more eigenfunctions
to the controlled output or lowering the input weight did not further improve the
performance of the controller. An s ∈ S2

10(T6) Galerkin model is assumed to rep-
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Figure 2.4: Closed-loop response of the s ∈ S2
4 (T3) controller. An s ∈ S2

10(T6) Galerkin model is
used for simulating the response. (a) Response, (b) boundary control input, (c) L2 norm of the
state.

resent the original DPS, that is Ā, B̄, C̄ in (2.63), and is used in the simulations.
It is verified that a further increase of the order provided no improvement on the
accuracy of the results. The real part of the two least stable eigenvalues (pairs)
of the closed-loop system (2.63) is shown in table 2.2. Higher degree controllers
give a faster stabilisation but no significant improvement is achieved after d = 4;
the dominant dynamics are accurately captured by low-degree models. The closed-
loop response for the s ∈ S2

4(T3) model-based controller is shown in figure 2.4. It
can be observed that the s ∈ S2

4(T3) model-based controller provides a satisfactory
performance and quickly stabilises the system.

2.7.2. In-domain control of a reaction-convection-diffusion
equation

In this demo in-domain feedback control of a reaction-convection-diffusion equation
is considered with spatially varying coefficients







∂u(x,t)
∂t = µ(x)∇2u(x, t) − v(x) · ∇u(x, t)

+a(x)u(x, t) + g(x)φ(t) in ΩT ,
∂u(x,t)

∂n = 0 on Γ,
u(x, 0) = 5 cos(π(x2

1 − 1)(x2
1 − 0.09))

−5 cos(π(x2
2 − 1)(x2

2 − 0.09)),
yk(t) = qk(t) = u(xk, t) for k = 1, · · · , 4

(2.67)

defined on a rectangular domain with a cut-out

Ω = {(x1, x2) , (x1, x2) ∈ (−1, 1) × (−1, 1) \(−0.3, 0.3) × (−0.3, 0.3)}.

A rotating velocity field is applied with v(x) =
[
x2 −x1

]T
, the diffusivity is kept

constant µ(x) = µ = 0.05 and the reaction rate is chosen as a(x) = 0.5 cos(1
2πx1)ex2

which has a destabilising effect. The system is controlled using four actuators
whose spatial distributions are modelled as Gaussian radial basis functions: gi(x) =
exp[−(‖x − xc‖2

2)/(2σ2)] and four in-domain Dirichlet measurements are used for
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Table 2.3: Dimension state-space systems

Degree 4 5 6 7 8 9 10

(a) Number of states Jd̂ − R∗

T56 18 114 266 474 738 1058 1434

T120 32 232 552 992 1552 2232 3032

(b) State reduction R∗

T56 822 1062 1302 1542 1782 2022 2262

T120 1768 2288 2808 3328 3848 4368 4888
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Figure 2.5: Control layout and triangulations. (a): Domain, convective field v(x), actuator distri-
bution contours gi(x) and sensor locations zi. (b): Triangulation with 56 simplices used for control
design. (c): Triangulation with 120 simplices used for simulation.

feedback. The complete geometry is shown in figure 2.5 along with the triangula-
tions used in this study. All state-space models are derived using a C2 continuous
spline basis of various degrees defined on a triangulation consisting of 56 and 120
simplices. The dimension of the state-space systems are listed in table 2.3(a) and the
size reduction R∗ resulting from the null-space projection is listed in table 2.3(b).

Since no analytic solution is available, the state-space systems are validated
using a manufactured solution [76]. For this, we consider the system (2.67) with
manufactured solution u∗(x, t) = u(x, 0)φ∗(t). Since the solution is not exact,
inserting this solution into the PDE results in a residual that does not cancel out.
This residual is added as the source term to the right-hand side of the PDE to create
a modified PDE for which the artificial solution is correct and can thus be used for
comparison. A sinusoidal input is applied φ∗(t) = cos(πt) and the resulting state-
space models are integrated over a time span of 1 second using a low sample time of
∆t = 0.001 to minimise the errors from the time integration. The maximum error
of spline solutions of various degrees against the manufactured solution is shown in
figure 2.6.

S2
d(T56) state-space models for the original system are used to synthesise the

controller (2.62). The measured output is also chosen as the controlled output and
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Figure 2.7: Real part of the least stable eigenvalue of the closed-loop system (2.63) with R =
diag(0.01). An s ∈ S2

9(T120) model is used as the ’true system’. Left: s ∈ S2
d

(T56) controllers using

four actuators with one (y1), two (y1, y3), three (y1, y2, y3) and four sensors. Right: s ∈ S2
d

(T56)
controllers using four sensors with one (g1), two (g1, g3), three (g1, g2, g3) and four actuators.

the input weight is set to R = diag(0.01). A high-order s ∈ S2
9(T120) model is

assumed to represent original DPS and is used to simulate the response. Figure 2.7
shows the real part of the most dominant eigenvalue of the closed-loop system for
various sensor/actuator configurations. We were able to lower the degree to d = 5
after which the stabilisation effect is lost at d = 4 which is in accordance with the
validation results in figure 2.6. The s ∈ S2

6(T56) model gives a good balance between
performance and model order (see Table 2.3), and is used to implement the con-
troller. Figure 2.8 shows the dominant eigenvalues of the s ∈ S2

6(T56) control model
and the s ∈ S2

9(T120) simulation model. It can be observed that the eigenvalues of
the control and simulation model coincide well and that they only differ significantly
in the highly damped region (Re λ < −4.5). As a result the controller effectively
stabilises the system as can be seen in figure 2.9. As a final study, we keep the
s ∈ S2

6(T56) controller but vary the number of observation points used for feedback
(figure 2.10(a)) and the number of actuators used for control (figure 2.10(b)). It can
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Figure 2.9: Closed-loop response of the s ∈ S2
6 (T56) controller using four sensors and four actuators.

An s ∈ S2
9 (T120) Galerkin model is used for simulating the response. (a): Response at 4 time

instants. (b): L2 norm (left), control inputs (middle) and observer estimation errors (right).

be observed that effective feedback stabilisation can be achieved using a minimal
amount of sensors and actuators.

2.8. Conclusions
This chapter presented a new framework for model reduction of parabolic PDEs
on general geometries using multivariate B-splines of arbitrary degree and arbitrary
smoothness. The method uses Galerkin projection with B-splines to derive state-
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Figure 2.10: L2 norm of the state for various controllers. An s ∈ S2
9(T120) model is used as the

’true system’. (a): s ∈ S2
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(y1, y2, y3), and four sensors. (b): s ∈ S2
6 (T56) controllers using four sensors with one (g1), two

(g1, g3), three (g1, g2, g3) and four actuators.

space descriptions that can be used for control design. The method can be used
to design both in-domain and boundary feedback controllers for PDEs. The effec-
tiveness of the proposed reduction scheme is demonstrated using two examples, a
1-D unstable reaction-diffusion equation and a 2-D unstable reaction-convection-
diffusion equation with spatially varying coefficients on an irregular domain. A fast
numerical convergence of the models is demonstrated for increasing mesh resultion
and degree of splines. It is shown that the proposed reduction scheme results in
accurate low-order models of the PDE. The reduced-order models are successfully
applied to design and implement feedback controllers for the two test cases. Order
reduction is achieved by defining a triangulation and spline basis that effectively
balances numerical accuracy and computational complexity for the application of
control theoretic tools. The controller is subsequently designed in closed-loop with
a high-order discretisation. The high-order discretisation is used as a high fidelity
truth model to assure that the controller achieves closed-loop stability. Since the
considered PDE control problems are unstable, no closed-loop stability guarantees
are available for the original (non-discretised) infinite-dimensional system. However,
the high fidelity models were converged up to numerical precision giving confidence
that the controllers are robust to the truncated dynamics. A fast convergence of
the closed-loop system eigenvalues is demonstrated and it is shown that the order
of the model only has to be sufficiently large, e.g. 8 degrees of freedom for the 1-D
control example, to achieve effective feedback stabilisation.

For more complex systems, such as Navier-Stokes systems, this method can
also be used in conjunction with state-space based truncation methods, such as
balanced truncation, to produce real-time capable models. In the next chapter this
combination will be used for estimation and control in wall-bounded shear flows.
Future work will focus on extending this method to nonlinear PDE systems to
further evaluate its effectiveness for practical applications of PDE control.





3
Localised estimation and
control of instabilities in

shear flows

A new framework is presented for estimation and control of instabilities in wall-
bounded shear flows described by the linearised Navier-Stokes equations. The con-
trol design considers the use of localised actuators/sensors to account for convective
instabilities in an H2 optimal control framework. External sources of disturbances
are assumed to enter the control domain through the inflow. A new inflow dis-
turbance model is proposed for external excitation of the perturbation modes that
contribute to transition. This model allows efficient estimation of the flow pertur-
bations within the localised control region of a conceptually unbounded domain. The
state-space discretisation of the infinite-dimensional system is explicitly obtained,
which allows application of linear control theoretic tools. A reduced-order model is
subsequently derived using exact balanced truncation that captures the input/output
behaviour and the dominant perturbation dynamics. This model is used to design
an H2 optimal controller to suppress the instability growth. The two-dimensional
non-periodic channel flow is considered as an application case. Disturbances are
generated upstream of the control domain and the resulting flow perturbations are
estimated/controlled using point wall shear measurements and localised unsteady
blowing and suction at the wall. The controller is able to cancel the perturbations
and is robust to both unmodelled disturbances and sensor inaccuracies. For single-
frequency and multiple-frequency disturbances with low sensor noise a nearly full
cancellation is achieved. For stochastic forced disturbances and high sensor noise
an energy reduction in perturbation wall shear stress of 96% is shown.

This chapter has been published as: H.J. Tol, M. Kotsonis, C.C. de Visser and B. Bamieh, Localised

estimation and control of linear instabilities in two-dimensional wall-bounded shear flows, Journal
of Fluid Mechanics, vol. 824, pp. 818-865, 2017
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3.1. Introduction
It is widely accepted that if the initial perturbations are small, the initial phase
of the laminar-turbulent transition in wall-bounded shear flows is largely governed
by linear mechanisms [21, 77–79]. The application of linear control theory to fluid
flows is therefore considered as a viable route to suppress instabilities and delay
transition for reducing skin-friction drag [33, 37, 39, 80–85]. In particular, optimal
multivariable control strategies (LQG/H2,H∞) [29, 86] have been successfully ap-
plied, see Kim and Bewley [6], Bagheri and Henningson [7], Sipp and Schmid [9] for
an in-depth review on this subject. These control strategies can be decomposed in
a state estimation problem from non-ideal (noisy) measurements and a state feed-
back control problem. Once the evolution of the flow perturbations is sufficiently
estimated, the estimated state can subsequently be used for feedback control of the
perturbations. The construction of an accurate linear state-space model describ-
ing the perturbation dynamics from all inputs to all outputs is the cornerstone of
linear-model based control and is considered as a significant challenge [7, 9]. Lim-
its related to unmodelled dynamics and nonlinearities are commonly assessed from
case to case [85, 87] and/or addressed using robust design techniques such as H∞

loop shaping [15, 39]. For example, in Jones et al. [39] the effect of nonlinearity
is attenuated by a linear feedback controller that employs high loop gain over a
selected frequency range. As recently reviewed in Sipp and Schmid [9], Schmid and
Sipp [28], different difficulties arise for modelling and control of globally unstable
oscillator flows and convectively unstable amplifier flows. Oscillator flows, such as
bluff body flows and open cavity flows, are characterised by the presence of global
instabilities that oscillate at a particular frequency and are rather insensitive to
upstream perturbations. Modelling the external disturbance environment is thus
less of an issue for suppressing global instabilities [9, 88–90], but it raises different
issues related to nonlinear saturation of global instabilities [15]. On the other hand
amplifier flows, such as channel flows and boundary layer flows, are characterised
by the presence of convective instabilities that amplify downstream (in space) in a
broadband frequency spectrum in both space and time. Amplifier flows are highly
sensitive to external disturbances and there exists only a small window in time to
suppress convective instabilities. This poses great challenges for control design and
accurately modelling the upstream disturbance environment is crucial since it forms
the basis for estimation and control of the flow perturbations [33, 91, 92]. This
chapter focuses on convective instabilities due to their strong relevance to engineer-
ing problems such as laminar-turbulent transition of flow over aerofoils. Besides the
distinction in instability behaviour, two approaches with regard to the flow mod-
elling and the controller synthesis are frequently further distinguished from each
other [7], namely the wavenumber approach for distributed control design and the
localised control approach using reduced-order models. The framework presented
in this chapter is inspired by both approaches which are discussed next.

3.1.1. Distributed control and localised computations
A large number of studies, including the seminal works by Joshi et al. [80] and Be-
wley and Liu [37], consider full-domain distributed sensing and actuation to derive
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the control laws. Distributed control designs often exploit the spatial invariance
property of parallel flows to derive low-order models of the perturbation dynamics.
In the case of spatial invariance it is assumed that the base flow is invariant in the
streamwise (x) and spanwise (z) directions and that the sensors and actuators are
fully distributed along these coordinates. By using a Fourier-Galerkin decomposi-
tion or a Fourier transform along the spatially invariant coordinates, the system can
be block diagonalised and decoupled in terms of discrete sets of wavenumbers that
replace the spatially invariant coordinates [37, 80]. Analysis and design of the con-
troller can thus be carried out on a parameterised lower-dimensional system. The
resulting feedback controllers can subsequently be reconstructed in physical space
by computing the so-called control convolution kernels [45, 82]. In Hœpffner et al.
[91], Chevalier et al. [93] stochastic models for external sources of excitation were in-
troduced that allow the computation of well-resolved estimation convolution kernels
for shear stress and pressure measurements. These estimation/control convolution
kernels have a localised structure in space and it was shown in Bamieh et al. [45] that
localisation of the convolution kernels is a universal property of spatially invariant
optimal control problems. Although, strictly speaking the wavenumber approach is
only applicable to spatially invariant systems, it has also been successively applied to
spatially developing boundary layers [84, 94, 95] and fully turbulent flows [96–98].
The use of control/estimation convolution kernels avoids the need for online fast
Fourier transforms (FFT) of the measurement vector and inverse Fourier transform
(iFFT) of the control vector. While this approach introduces a controller with the
same order as the system, it is shown in Högberg et al. [82] that spatially truncating
the convolution kernels does not degrade the closed-loop performance of the control
system. Since these convolution kernels are localised, the feedback controller can be
implemented with only localised computations. As a result, relatively small com-
putational domains can be considered for an effective control design. For example
in Chevalier et al. [84] and Monokrousos et al. [95] all perturbations were generated
upstream of the control domain and they were able to suppress Tollmien-Schlichting
waves and streaks in a flat plate boundary layer using small strips of distributed
sensors and actuators.

3.1.2. Model reduction and localised control

The exploitation of the spatial invariance property for control design, although effec-
tive for distributed feedback control, requires sensor and actuator distributions that
are currently not available or cannot be manufactured in a cost effective way. More-
over, in practice efficient control can be achieved using only a few localised sensors
and actuators, leading to a more cost-effective control design. This led to the use
of reduced-order modelling techniques for control design that make no assumptions
on the flow geometry and the shape and distribution of the actuators/sensors. This
approach, also known as the reduced-order modelling approach, accounts for phys-
ically realisable localised actuators/sensors and has been validated in experiments
[87, 88, 99]. Galerkin projection is commonly applied, in which a reduced-order
model (ROM) is obtained by projecting the Navier-Stokes equations onto a reduced
set of modes. The choice of these modes is critical and greatly determines the
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effectiveness of the ROM for control application [89, 100, 101]. The global eigen-
functions (EF) of the linear operator [102], as well as different variants of proper
orthogonal decomposition modes (POD) [103, 104] have been successfully applied
for model reduction and control design. Another approach is the use of balanced
modes, also known as balanced truncation, which typically produces models that
are more robust and are better able to capture the input-output behaviour of the
system [34, 89, 100, 101].

Balanced truncation is widely used for model reduction of linear systems [67]
and has the advantage of having a priori error bounds and guaranteed stability
of the reduced-order model. This method requires an initial model of the flow in
finite-dimensional state-space format and constructs a ROM by extracting the most
controllable and observable modes of the state-space system. The construction of
these so-called balanced modes involves the computation of the controllability and
observability Gramians of the high-order model. These Gramians are obtained by
solving a set of Lyapunov equations which becomes computationally intractable for
very large systems (e.g. 105 states or more). Furthermore this method requires a
model of the flow in state-space format, which is not always available for complex
flow control problems. To reduce the complexity, an approximate method is pro-
posed by Rowley [34], called balanced POD (BPOD), in which empirical Gramians
are computed directly from impulse response snapshots of the system and the related
adjoint. This method is suitable for large systems as it avoids the direct computa-
tion of the Gramians and is successfully applied for modelling of the channel flow
[101] and control of both boundary layer flows [7, 33, 105] and globally unstable
flows [89, 106].

A limitation of BPOD is that it requires full-state snapshots and adjoint sim-
ulations to form the bi-orthogonal sets and thus cannot be applied to experimen-
tal data. Another approach is the use of system identification methods in which
low-order models are obtained from a sample of input-output measurements. In
particular the eigensystem realisation algorithm (ERA) [107] was recently used to
construct reduced-order models for fluid flows [15, 27, 85, 90, 108, 109]. ERA is
based on the impulse response measurements and does not require prior knowledge
of the high-order system. It is shown in Ma et al. [90] that ERA can theoretically
obtain the same reduced-order models as BPOD and in Flinois and Morgans [15] it
is shown that ERA can also directly be applied to globally unstable flows.

3.1.3. Scope and outline of the present study
Modelling the influence of upstream disturbances is crucial for the control of con-
vective instabilities. The disturbance sources are generally not precisely known in
real experiments and modelling assumptions have to be made. For localised tran-
sition control the disturbance is commonly represented by a localised body force
placed upstream of the control actuators, see e.g. Belson et al. [27], Bagheri et al.
[33], Semeraro et al. [85, 92]. For example, in Semeraro et al. [92] the disturbance
was modelled as a localised initial condition that provides the maximum energy
amplification of the perturbation at a given final time. Different choices and place-
ments of the disturbance model result in different spatial and temporal scales of the
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perturbations in the control region. To properly account for the upstream distur-
bance environment, relatively large computational domains are often considered to
derive the ROM. These result in high-dimensional systems and prohibit the direct
state-space modelling from the governing equations. Currently, direct modelling
is avoided, also due the computational challenges, and low-order linear approxi-
mations of the dynamics are obtained from snapshots through (adjoint) numerical
simulations or from input-output data using system identification. Often the same
disturbance that is used to synthesise the ROM and control laws is also used to
evaluate the controller through numerical simulations. Robustness of the controller
to unmodelled disturbances is often not shown or addressed.

In this chapter a new approach is presented for localised modelling and con-
trol of convective instabilities in two-dimensional (2-D) wall-bounded shear flows.
The objective is to provide a systematic procedure to efficiently model upstream
disturbance environments and to design reduced-order controllers directly from the
governing equations without the use of numerical simulations or system identifica-
tion. Inspired by the earlier work regarding distributed control, very large systems
are avoided by focussing on localised computations. When using spatially localised
actuators/sensors for feedback control, the control domain that encapsulates the
actuators/sensors is much smaller than the complete physical domain. It is as-
sumed that external sources of disturbances enter the control domain through the
inflow boundary. A novel physically motivated inflow disturbance model is proposed
for the external excitation, which allows efficient estimation of the flow perturba-
tions within the localised control domain using wall shear sensors. Unlike common
practices for localised control, the state-space system used for discretisation of the
infinite-dimensional system is explicitly obtained. The state-space modelling in this
chapter can make a large set of powerful and mature control theoretic tools for model
reduction and control directly applicable to the linearised Navier-Stokes equations.
In this work the modelling is combined with exact balanced truncation to reduce
the order of the controller and the truncated dynamics is taken into account in the
control system design.

The scope of this chapter is input-output modelling of the flow dynamics (actua-
tors/sensors and upstream perturbations) and H2 optimal reduced-order controller
design. A super-critical 2-D non-periodic channel flow is chosen as application case.
This is both mathematically and physically one of the best understood geometries
and allows for a rigorous verification of the modelling method and the control de-
sign using the classical linear stability theory. The formulation and the methods
presented in this chapter can in principle be applied to general geometries and any
actuator/sensor configuration and allow for a straightforward extension to spatially
developing boundary layers. A feedforward actuator/sensor configuration [27] is con-
sidered in which upstream sensors are used to detect the incoming perturbations.
Such a set-up is commonly considered for convectively unstable flows [9, 33, 85] and
guarantees the best nominal performance [27]. Nonetheless a feedforward approach
can be more sensitive to unmodelled disturbances/dynamics as compared to feed-
back configurations as argued in [27]. In this chapter closed-loop convergence is
shown with respect to the truncated dynamics and the robustness to unmodelled
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disturbances is assessed from case to case. The controllers are evaluated using lin-
ear simulations based on the assumption that the amplitude of the perturbations
is small. In Semeraro et al. [85] it is verified through nonlinear simulations that a
fully linear control approach can be effective in delaying transition in the presence
of perturbation amplitudes up to 1% of the free stream velocity. Limitations with
respect to strong nonlinear dynamics at transitional amplitudes are out of the scope
of this work. However, the modelling presented in this chapter also enables the
application of linear H∞ robust design strategies, of the sort presented in Flinois
and Morgans [15], Jones et al. [39], Baramov et al. [83], to account for modelling
uncertainties. This would require a change of control set-up to include feedback
measurement information to effectively account for model uncertainty in the control
design.

The outline of this chapter is as follows. Section 3.2 outlines the dynamic mod-
elling and the problem formulation for control of convective instabilities. Section 3.3
presents the design and synthesis of the reduced-order controller. In section 3.4 the
controller is evaluated using numerical simulations of the closed-loop system. All
disturbances are generated upstream of the computational domain for the control
model. Three different disturbance cases are considered in order to demonstrate
the effectiveness and the robustness of the proposed control design. In the last sec-
tion concluding remarks are given and a discussion regarding the application of this
method to more complex flow geometries is laid out. This chapter is complemented
with two Appendices. In appendix A the numerical scheme to derive the finite-
dimensional state-space system of the flow is described. This numerical scheme is
based on multivariate B-splines defined on triangulations [40–42] and is an extension
of the model reduction scheme for parabolic PDEs presented in chapter 2 to fluid
flows. In Appendix B the state-space formulas for the controller that solves the H2

optimal control problem are given.

3.2. Dynamic modelling and problem formulation
This section presents the dynamic modelling and a generalised problem formulation
for localised control of instabilities that contribute to transition in 2-D wall-bounded
shear flows. The classical route to transition is considered, in accordance with the
linear stability theory (LST) [21], triggered by linear growth of convective instabil-
ities. The 2-D non-periodic channel flow is considered as application case. First
the channel geometry and the governing equations are given in section 3.2.1. In
section 3.2.2 the feedforward actuator/sensor configuration used for control is pre-
sented. The new inflow disturbance model to account for upstream disturbance
environments is introduced in section 3.2.3. To apply linear control theoretical tools
the input-output system must be formulated into the standard state-space form.
To generalise the framework the system is written as an abstract equation in op-
erator form [43, 110] in section 3.2.4. Explicit discrete expressions are obtained
for all operators and the underlying numerical method (Appendix A) is discussed
in section 3.2.5. Finally the H2 optimal control problem to account for the flow
perturbations is defined in section 3.2.6.
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Figure 3.1: Channel flow geometry and control layout including the shear sensor locations yi,
boundary actuator distributions gi(x) and controlled output distribution qi(x).

3.2.1. Governing equations
This chapter considers a 2-D non-periodic flow between two infinite flat plates.
The flow is non-dimensionalised using the maximum centreline velocity U0 and half-
height h with corresponding Reynolds number Re = U0ρh

µ where ρ is the density and
µ the dynamic viscosity of the fluid. For flow simulations a total non-dimensional
length Lsim = 16π is considered. This section focuses in particular on the flow model
that is used for control design. For control design purposes a localised region with
a length of Lc = 8π is considered. External sources of disturbances are assumed
to enter the control domain though the inflow. The geometry of the flow is shown
in figure 3.1. A supercritical case is studied at Re = 7000 for which the flow field
is convectively unstable. However, the non-periodic flow configuration is globally
stable since any initial perturbation eventually leaves the computational domain.
The control objective is to stabilise convective perturbations around the steady-state
parabolic velocity profile U(y) =

[
1 − y2, 0

]T
. The dynamics of small-amplitude

perturbations in a viscous incompressible flow is governed by the Navier-Stokes
equations linearised around the base flow and the continuity equation

∂u

∂t
+ (U ·∇) u + (u·∇) U −

1
Re

∆u + ∇p = f in Ω, (3.1a)

∇·u = 0 in Ω, (3.1b)

u = ub on ΓD, (3.1c)

−pn +
1
Re

(n·∇) u = 0 on Γout, (3.1d)

where u(x, t) = [u(x, t), v(x, t)] and p(x, t) denote the velocity and pressure per-
turbation field, x = (x, y) is the spatial coordinate and f (x, t) is an in-domain body
force field per unit mass typically used for applying control. The system is closed
by the boundary conditions (3.1c)-(3.1d) where ΓD = Γin ∪ Γr is the Dirichlet part
of the boundary, Γin the inflow part of the boundary, Γr are the rigid walls and
Γout the Neumann outflow part of the boundary. ub(x, t) is a prescribed velocity
input profile used for boundary control at the wall boundary Γr and for the external
disturbances at the inflow boundary Γin. The outflow boundary condition (3.1d)
is known as a no-stress condition and has proven to be well suited for unidirec-
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tional outflows [111]. It is naturally satisfied by the variational formulation used
in the numerical method (see appendix A). The artificial non-physical effect of this
boundary condition near the outflow is investigated in section 3.3. In this study only
boundary feedback control is considered, therefore the in-domain body force is set
to zero (f = 0) in the remainder of this section. However, in-domain disturbances
are considered to evaluate the controller in section 3.4.

3.2.2. Inputs and outputs
The chosen control objective is to suppress the effect of inflow disturbances on
the fluctuating wall shear stress. The control actuation is achieved by means of
unsteady blowing and suction at the wall and boundary shear sensors are used
to extract the measurements. A feedforward actuator/sensor configuration [27] is
considered in which two point shear sensors at the walls are placed upstream of
the control actuators. A schematic representation of the control layout is shown in
figure 3.1. It is shown in Belson et al. [27] that feedforward configurations achieve
the best disturbance attenuation, but can be less robust to additional disturbances
not seen by the sensor. The shear sensors ym are therefore placed close to the
control actuators gc. In addition a controlled shear output q is defined which will
be used to define the performance objective of the controller. The specifications
will be discussed next. The boundary actuation is modelled through the boundary
conditions (3.1c) and is decomposed into an external disturbance and a control

u|ΓD
= ub = uc(x, t) + ud(x, t), (3.2)

with uc(x, t) the actuation imposed at the rigid walls and ud(x, t) the external
disturbance imposed at the inflow. This disturbance model is discussed in detail
in the next section. To manipulate the flow, localised wall-normal blowing and
suction with zero-net-mass-flux is considered. It is assumed that the spatio-temporal
actuator model is described by the following state-space description

η̇c = τ−1 (φ − ηc) = Acηc + Bcφ,

uc = Gcηc = Ccηc,
(3.3)

with ηc(t) ∈ R2 the actuator state that describes the magnitude of the blowing and
suction, φ(t) ∈ R2 the control input and uc(x, t) is the actuator velocity output at
the wall. The temporal dynamics is described by a first-order low-pass filter defined
by Ac = −τ−1I, Bc = τ−1I with τ the time constant of the filter. A fast actuator is
assumed with τ = 0.1, that is a stable approximation of a pure integrator typically
used for boundary control in shear flows, see e.g. [82, 94]. The actuator output at
the wall is defined by Cc = Gc(x) = [gc1

(x), gc2
(x)] with gci

∈ L2(Γri
)2 the spatial

distribution function that describes how ηci
(t) is distributed on the rigid boundary.

A localised sinusoidal spatial distribution function is considered

gc(x) =







[

0 sin
(

2π(x−xg)
Lg

)]T

if x ∈ [xg, xg + Lg]
[
0 0

]T
elsewhere.

(3.4)
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Such a set-up is frequently considered in a fully distributed setting to control single
wavenumber pairs, see e.g. Aamo and Krstic [10], Bewley and Liu [37], Jones et al.
[39]. Here a localised distribution is considered with a spatial length of Lg = 3 ≈
0.95π and origin at xg = 9 ≈ 2.86π. The length Lg is less than half the wavelength
of the dominant spatial perturbation mode which is 2π (see next section).

Information about the perturbation field is given by two wall-normal shear stress
point measurements

ymi
=

∫

Γri

δ(x− xm)t· (n·∇) u|Γri
dx+ wni

=
∫

Γri

δ(x− xm)
∂u

∂y
|Γri

dx+ wni
, (3.5)

where n is the inward unit normal on Γr and t the corresponding unit tangential
vector and the Dirac function δ indicates a point measurement. The term wall shear
stress is used loosely here as the shear stress at the wall τxy|Γr

= (1/Re)∂u/∂y|Γr

also depends on the Reynolds number. It is assumed that the Reynolds number is
known, so that ∂u/∂y|Γr

may easily be determined from measurements of τxy|Γr
.

The measurement noise wn(t) is assumed to be a Gaussian stochastic process with
zero means and covariances

E {wn(t)} = 0, E
{

wn(t)wT
n (τ)

}
= Iσ2

nδ(t− τ), (3.6)

with σ2
n the variance of both sensors. A feedforward configuration is chosen where

the sensor is placed upstream of the control actuators at xm = 7.5 ≈ 2.39π. In
addition to the measured output, also two controlled outputs are defined

qi =
∫

Γri

h(x)t· (n·∇) u|Γri
dx, (3.7)

where h(x) is determined by the desired performance specifications in the domain.
In this study we wish to stabilise the perturbations by minimising the wall shear
stress downstream of the control actuators integrated over a localised region over
the boundary. To this end h(x) is chosen as a Gaussian distribution function

h(x) = e
−

(x−xq)2

σ2
x , (3.8)

with xq = 17.5 ≈ 5.57π the centre of the distribution and σx = 1 the radius. The
controlled output is used to define the control objective in the H2 control framework
later in this section.

3.2.3. Inflow disturbance model
2-D flow perturbations are characterised by unsteady fluctuations over a broad range
of length scales and time scales. This makes the problem of estimating and control-
ling these perturbations inherently difficult. In particular the performance of the
state estimation relies on the construction of a proper model for the external flow
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disturbances [91]. In this section a new inflow disturbance model is introduced which
allows for an efficient estimation of the flow perturbations within the localised con-
trol domain. To generate the external disturbances a superposition of eigenmodes
from the spectrum of the Orr-Sommerfeld (OS) operator is used. These modes are
calculated from the OS equation at the desired temporal frequencies. With this
approach, specific modes of the flow perturbations can thus be selected and are in-
cluded in the control design. In this way the most dominant modes that contribute
to transition can be precisely targeted by the controller. These modes are included
in the state-space model by imposing them at the inflow boundary of the control
domain. Such a boundary condition has been used to introduce disturbances in
DNS, e.g. for evaluating controllers [83, 112]. However, the use of such boundary
conditions as a disturbance model that is included in the design of the controller
has so far not been reported. We consider H2 optimal control which is a design
methodology in which the external sources of excitation are stochastic. First the
disturbance model is presented for the case of stochastic excitation of the modes in
section 3.2.3 and in section 3.2.3 the specific modes are selected that are included
in the control design.

External disturbances
Assuming that the perturbations are sufficiently small, a single mode of the flow
perturbation in a 2-D unbounded domain takes the form

u = Real
[

A0ũ(y)ei(αx−ωt)
]

, (3.9)

with A0 the initial amplitude, ũ(y) = ũr(y) + iũi(y) ∈ C the eigenfunction, ω the
radial frequency and α the non-dimensional wavenumber. The eigenfunction ũ for
a particular frequency and wavelength can be determined from the Orr-Sommerfeld
equation which will be discussed in the next section. The inflow is considered as the
disturbance source which generates the perturbation (3.9) at a particular frequency
that grows in space. Thus, the case ω ∈ R and α = αr + iαi ∈ C is considered and
the spatial wavelength of the perturbation is given by λx = 2π/αr. At the inflow
x = 0 a single mode of the perturbation can be described by

u|Γin
= ud = Real

[
A0ũ(y)e−iωt

]

= ũr A0 cos(ωt)
︸ ︷︷ ︸

ηr
d

+ũi A0 sin(ωt)
︸ ︷︷ ︸

ηi
d

. (3.10)

Equation (3.10) corresponds to a solution of a modal perturbation imposed at the
inflow. The spatial content consists of the real and imaginary part of the eigenmode
each excited with a persistent sinusoidal temporal input, where ηr

d is the input that
excites the real part of the eigenmode and ηi

d the input that excites the imagi-
nary part of the eigenmode. The two temporal components are not independent
and for a modal perturbation the two components are 90o out of phase, that is
6 ηr

d = 6 ηi
d + 90o. However, external disturbances are accounted for in a stochastic

control framework in which the temporal disturbances are considered as independent
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inputs. To effectively account for modal perturbations in the control design, ηd is
not regarded as an external disturbance, but as a dynamic state in the disturbance
model. The phase dependency can then be included in the model by exploiting the
fact that ηi

d = − 1
ω η̇

r
d for the case of a modal perturbation with frequency ω. Let

ηr
d = ηd and ηi

d = − 1
ω η̇d, (3.10) can be represented in terms of a single temporal

component and its derivative

ud = ũrηd −
1
ω

ũiη̇d, (3.11)

where the imaginary part of the eigenfuction is scaled with the perturbation fre-
quency to account for the phase. Accounting for the phase in the model will reduce
the non-modal spatial transients introduced by the perturbation near the inflow as
will be shown in section 3.3.1. To account for the inflow perturbation (3.11) in the
control design a second-order low-pass filter is proposed for the temporal dynamics

η̈d = ω2
nwd − 2ζωnη̇d − ω2

nηd, (3.12)

with ζ the damping ratio, ωn the undamped natural frequency and wd the external
disturbance assumed to be an uncorrelated white Gaussian stochastic process with
zero mean and variance

E {wd(t)} = 0, E {wd(t)wd(τ)} = σ2
dδ(t− τ). (3.13)

The low-pass filter (3.12) allows the frequency response shaping of ud at the inflow.
The parameters are chosen such that the filter amplifies the frequencies near the
frequency ω of the perturbation mode. The damping ratio is set to ζ = 0.25. The
natural frequency is chosen such that the peak frequency ωp = ωn

√

1 − 2ζ2, where
the filter has the maximum magnitude, is equal to the frequency of the perturbation
mode. The magnitude plot of the filter as a function of the normalised frequency
ω/ωp is shown in figure 3.2. With these settings the filter amplifies the disturbance
magnitude by approximately a factor two at ωp. By increasing the magnitude at
the perturbation frequency the controller will be better able to target the mode.
The filter attenuates the disturbance at higher frequencies which will also make
the controller design more robust to unresolved dynamics [39]. Finite-dimensional
representations of the system (discussed in the next section) are used for the control
design which only resolve a finite number of modes, typically those with a lower
temporal frequency. By suppressing the magnitude of the disturbance at higher
frequencies, the situation where the disturbance excites unresolved plant dynamics
is avoided. This in turn avoids that the controller, which is designed based on the
disturbance model, estimates unresolved plant dynamics. This phenomenon is also
known as spillover and can destabilise the infinite-dimensional system [53].

The disturbance model defined by (3.11) and (3.12) can be written in state-space
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Figure 3.2: Magnitude plot of the low pass filter (3.12) used for the disturbance model. The
frequency is normalized with the peak frequency ωp.

format as
[
η̇d

η̈d

]

=
[

0 1
−ω2

n −2ζωn

]

︸ ︷︷ ︸

Ad

[
ηd

η̇d

]

︸︷︷︸
η̄d

+
[

0
ω2

n

]

︸ ︷︷ ︸

Bd

wd

ud =
[
ũr − 1

ω ũi
]

︸ ︷︷ ︸

Cd

[
ηd

η̇d

]







⇒
˙̄ηd = Adη̄d + Bdwd

ud = Cdη̄d,
(3.14)

where η̄d = [ηd, η̇d] is the state, wd is the external disturbance and the perturbation
velocity ud at the inflow is the output. For the case when multiple N modes are ac-
counted for in the control design, the state-space systems for the selected frequencies
and wavenumbers can be combined in diagonal form as Ad = diag{Ad1 , · · · ,AdN

},
Bd = diag{Bd1, · · · ,BdN

} and Cd = [Cd1 , · · · , CdN
].

Selection of the perturbation modes
The next step is to select the modes that contribute to the transition process to
include in the disturbance model (3.14) for control design. The modes are computed
from the Orr-Sommerfeld equation. Let ũ = [∂ψ̃/∂y,−∂ψ̃/∂x] = [ψ̃′, −iαψ̃]T . The
eigenfunction for the streamfunction ψ̃ satisfies the Orr-Sommerfeld equation

(

U −
ω

α

) (

ψ̃
′′

− α2ψ̃
)

− U
′′

ψ̃ = −
i

αRe

(

ψ̃′′′′ − 2α2ψ̃
′′

+ α4ψ̃
)

,

ψ̃(±1) = ψ̃′(±1) = 0,
(3.15)

which is an eigenvalue problem with ψ̃ the eigenfunction of the problem and with
either α or ω the eigenvalue of the problem. The prime superscript in (3.15) denotes
differentiation with respect to y. The spatial amplification theory is considered to
generate the modes. Thus a real frequency ω is chosen and (3.15) is solved for the
complex eigenfunction and complex wavenumber α. At each frequency and Reynolds
number this gives a spectrum of spatial eigenvalues. Figure 3.3 shows the spectrum
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Figure 3.3: Spatial Orr-Sommerfeld spectrum for ω = 0.253 and Re = 7000. Only the dominant
eigenvalues that contribute to a physical downstream response are shown.

at the most dominant frequency that includes the mode with the maximum growth
rate given by the imaginary part of the spatial eigenvalue (wavenumber). For the
case Re = 7000 the dominant frequency is approximately ω = 0.253. Only the least
stable eigenvalues that contribute to a physical downstream response are shown in
figure 3.3 [21, pp. 260]. The spectrum contains one spatially growing mode (k = 1)
with a negative imaginary part. This is the leading or most unstable mode that
contributes to the primary route to transition [16] in 2-D channel flows. The left
branch k = 2, · · · , k = 13, k = 15 are ‘’centre modes’ [6] with very little support near
the walls and represent perturbations in the freestream. Mode k = 14 is highly stable
and has negligible influence in the transition process. Figure 3.4 shows the spatial
eigenvalue of the first or most unstable (k = 1) mode as a function of the temporal
frequency. Although the flow is unstable over the frequency range 0.216 ≤ ω ≤
0.286, only the leading mode calculated at the most amplified frequency ω = 0.253
is included in the control design. This will be referred to as the design point in the
remainder of the chapter. Figure 3.5 shows the shape of the eigenfunction for this
particular mode. This mode is used to define the inflow perturbation (3.14). Note
that the design frequency becomes part of the disturbance model. This model can
easily be extended to include the dominant modes calculated for different temporal
frequencies. However, it is found that adding more eigensolutions does not improve
the performance of the control system. This is a direct result of the near-linear
dependence of the leading eigenmodes for different temporal frequencies. In other
words the modes are very similar. It will be shown in section 3 that also at other
frequencies than the design point, the single mode inflow disturbance will quickly
develop in-domain to a travelling wave with a spatial growth as predicted by the
Orr-Sommerfeld equation (3.15).
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Figure 3.5: The selected eigenfunction included in the inflow disturbance model for the control
design. The Orr-Sommerfeld eigenfunction for u (a) and v (b) calculated at Re = 7000, ω = 0.253.
The corresponding wavenumber for this mode is α = 1 − 0.0047i.

3.2.4. State-space formulation
In this section the linearised Navier-Stokes equations (LNSE) including the inputs,
outputs and the inflow disturbance model are written as a boundary control system
in the standard state-space format (u̇ = Au + Bφ, y = Cu). This is required for
defining the control objective and applying control theoretic tools. Boundary con-
trol systems do not fit directly into the standard form. However, we can extract
the boundary controlled part of the dynamical model and rewrite the system on an
extended state space in standard form. This method originates from Fattorini [113]
and has been applied for boundary control of wall-bounded shear flows [82, 84, 94].
We also refer to Curtain and Zwart [43, Sec 3.3] for more information on this formu-
lation. Let X (Ω) be the space of n-dimensional divergence free functions defined on
Ω with inner product (u1,u2) =

∫

Ω
u1·u2dx and norm ‖u1‖2= (u1,u1)1/2 where

u1,u2 ∈ X . Furthermore, let the trajectory segment u(·, t) = {u(x, t), x ∈ Ω} be
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the state and u(t)|Γ∈ U the value of u(t) on the boundary defined in a separable
Hilbert space U . The LNSE (3.1) in X (Ω), including the boundary inputs (3.2), the
measurements (3.5) and the controlled output (3.7), can be written as

u̇ = A u,

Bu = uc + ud,

q = Qu,

ym = Cu + wn.

(3.16)

The operator A : D(A ) ⊂ X 7→ X corresponds to evaluating the linear differential
operator of the LNSE. The pressure can be eliminated from the equations by using
a space of velocity fields which are divergence free [110], which is also done here
(see also appendix A for the variational formulation). B : X 7→ U is a boundary
operator which maps the flow field to its values on the boundary and C, Q are
output operators, respectively defined as

Bu = u|ΓD
, Ciu =

(
δ(x− xm), t· (n·∇) u|Γri

)
, Qiu =

(
h(x), t· (n·∇) u|Γri

)
.

(3.17)
To extract the boundary controlled part the first step is to construct two operators
Zc, Zd such that

Zc : U 7→ X , BZcuc = uc,

Zd : U 7→ X , BZdud = ud.
(3.18)

The boundary condition can then be removed by decomposing the state into

u = uh + Zcuc + Zdud. (3.19)

The dynamics of the new state uh is governed by the following evolution equation
with homogeneous boundary conditions [43]

u̇h = Auh − Zcu̇c + A Zcuc − Zdu̇d + A Zdud, (3.20)

where the operator A : D(A) 7→ X is defined as

Auh(t) = A uh(t), for uh ∈ D(A),

D(A) = D(A ) ∩ ker(B) = {uh ∈ X | uh(t)|ΓD
= 0} .

(3.21)

If uh is a solution of the homogeneous system (3.20), then u defined by (3.19) is a
solution of the original system (3.16) [43, 113]. Equation (3.20) contains both the
temporal inputs and their time derivatives which is undesirable since they are not
independent inputs. This can be eliminated by reformulating (3.20) on the extended
state-space X e = X ⊕ U





u̇h

u̇c

u̇d



 =





A A Zc A Zd

0 0 0
0 0 0









uh

uc

ud



 +





−Zc

I

0



 u̇c +





−Zd

0
I



 u̇d. (3.22)
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The inflow perturbation velocity and the wall actuation velocity have become a
state of the system in this formulation. The external input is actually the time
derivative of the boundary velocity. From the actuator model (3.3) it follows that
uc = Ccηc, u̇c = CcAcηc + CcBcφ and from the disturbance model (3.14) it follows
that ud = Cdηd, u̇d = CdAdη̄d + CdBdwd. Substituting these expressions in (3.22),
and combining this system with the actuator dynamics (3.3) and the disturbance
dynamics (3.14), gives the following augmented system





u̇h

η̇c
˙̄ηd



 =





A A ZcCc − ZcCcAc A ZdCd − ZdCdAd

0 Ac 0
0 0 Ad





︸ ︷︷ ︸

Ā





uh

ηc

η̄d





︸ ︷︷ ︸
ue

+





−ZcCcBc

Bc

0





︸ ︷︷ ︸

B̄c

φ +





−ZdCdBd

0
Bd





︸ ︷︷ ︸

B̄d

wd,

q =
[
Q QZcCc QZdCd

]

︸ ︷︷ ︸

Q̄





uh

ηc

η̄d



 ,

ym =
[
C CZcCc CZdCd

]

︸ ︷︷ ︸

C̄





uh

ηc

η̄d



 + wn,

(3.23)

where also included are the resulting output equations from the state transformation
(3.19). (3.23) can be compactly written as

u̇e = Āue + B̄cφ + B̄dwd,

q = Q̄ue,

ym = C̄ue + wn,

(3.24)

with ue the extended state. A final remark is given about the controllability of the
system. By formulating the system on the extended state space (3.20) pure inte-
grators have been added at the system external inputs. This results in additional
system poles at the origin. As a result, the system in the form (3.20) is not stabilis-
able, which means that not all uncontrollable modes are asymptotically stable. This
is a direct result of the fact that both the control and disturbance are defined at the
boundary and both appear as a state in the system. It is not possible to influence
the additional poles of the disturbance dynamics by means of control and vice versa
(Assumption (i) is violated, and assumptions (iii) and (iv) are violated for ω = 0,
see Appendix B). By including the actuator dynamics and disturbance dynamics,
the uncontrollable poles at the origin are moved to the stable left half-plane to the
location of the eigenvalues of Ac and Ad. The state-space formulation (3.23) is thus
stabilisable which allows the synthesis of H2 optimal controllers.
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3.2.5. Finite-dimensional system
Equation (3.24) represents the continuous formulation of the flow control problem.
For simulation and control design a finite-dimensional representation of (3.24) is
required. In chapter 2 a framework is presented for deriving state-space descriptions
for a general class of linear parabolic PDEs to which standard control theoretic tools
can be applied. This method is also used in this chapter and uses multivariate B-
splines of arbitrary degree and smoothness defined on triangulations [40–42] to find
matrix representations of all operators in (3.23). This method has the flexibility
of the finite element method to use local refinements and to cope with irregular
domains, and the high approximation power of spectral methods. The triangulations
used to construct the simulation model and the model that is used as a starting point
for model reduction and control design are shown in figure 3.6. The use of spline
spaces provides a convenient way for stating the degree and smoothness of the spline
model. In addition, the approximation properties of such spline spaces have been
extensively studied in the literature [40]. Let T be the triangulation of Ω. The
spline space is the space of all smooth piecewise polynomial functions of arbitrary
degree d and arbitrary smoothness r over T with 0 ≤ r < d

Sr
d (T ) := s ∈ Cr (Ω) : s|t∈ Pd, ∀t ∈ T , (3.25)

with Pd the space of all polynomials of total degree d and t denotes a triangle. We
construct a basis for the smooth divergence free spline subspace S such that S ⊂ X
in conjunction with a Galerkin scheme to obtain a finite-dimensional representation
of the governing equations. The pressure is eliminated from the equations by using
a space of velocity fields which are divergence free and a suitable choice of the
variational formulation. This will also avoid singularities in the numerical method.
The Galerkin-type variational formulation through which the spline approximation
is determined and the corresponding numerical method are described in detail in
appendix A.1.

To derive the full-order control model a structured triangulation is used, refined
near the walls to properly resolve the shear features of the flow consisting of nt = 960
triangles, and the S0

4 (T960)2 spline space is chosen as approximating space for the
velocity field. C0 continuous spline elements are chosen which allows an accurate
interpolation of the actuator distribution function at the boundary. Degree d = 4
elements are chosen which allows the construction of an exactly divergence free
basis and to obtain better approximation properties [40, 62]. With this degree each
element t has a total of Nt = 15 degrees of freedom. The complete basis for L2(Ω)2

has a total of N = nt × Nt × 2 = 28800 degrees of freedom. This basis is used
to spatially discretise the system. The resulting discrete system is transformed to
state-space format using the null-space projection method. This projection employs
a similar state transformation as in (3.19), but in a discrete setting, and results in
a reduced number of states that have a minimal non-zero support for the smooth
divergence free spline space S ⊂ X . The reduction is equal to the total rank R∗ of
the discrete divergence, boundary and smoothness operators. The order of the state-
space model resulting from the null-space projection is N − R∗ = 5569. The large
reduction can be contributed to the fact that the constrained smooth divergence
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Figure 3.6: Triangulations used for the simulation model and the model that is used for model
reduction and control design. (a) Triangulation with 960 triangles used for the control model. (b)
Triangulation with 1920 triangles used for the simulation model.

free subspace is much smaller than the unconstrained space. The order of the model
is sufficiently small to allow a direct application of balanced truncation for model
reduction. For the case of spatially periodic boundary conditions the accuracy of
the model can be assessed via comparison of the model spectra with the temporal
spectra of the Orr-Sommerfeld equation (3.15). This comparison is demonstrated in
appendix A.2. The numerical accuracy of the first 22 dominant eigenvalues varies
between 2×10−8 ≤ |λk−λOS

k |≤ 2×10−3. This is considered accurate for the purpose
of control design and demonstration. A more physical validation of the model for the
non-periodic case considered in this study is conducted in section 3.3. A different
model is used for simulating the response of system. The simulation model is defined
on a longer domain with a total length of Lsim = 16π. A similar triangulation
consisting of 1920 triangles is used and the simulation model has approximately
the same accuracy as the control model. In the next sections we focus on the
control model and use the notation (A,B,C,D) to represent the full-order finite-
dimensional system and use the notation (A,B,C ,D) to represent a reduced-order
system resulting from balanced truncation.

3.2.6. Formulation of the H2 control problem
In this section the feedback design problem for the state-space representation of the
flow (3.24) is cast as an H2 optimisation problem. The state-space formulas for the
optimal solution are given in Appendix B. We refer to Zhou et al. [29], Doyle et al.
[30], Skogestad and Postlethwaite [86] for more detail on this control theory. The
main objective of the feedback control design is to find a control input φ based on
the output measurement ym that minimises the wall shear stress defined by q in
the presence of the disturbances wd and wn. First the standard control formulation
that is considered by H2 control is presented. The application of H2 control to the
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K

G

y

Figure 3.7: The general control configuration. System G, controller K , output measurement y ,
control input φ, performance objective z and exogenous disturbances w.

state-space representation of the flow (3.24) will follow thereafter. Let w be the
vector of exogenous disturbances and z the vector of performance measures to be
minimised. The H2 control problem is a disturbance rejection problem and considers
the standard control configuration shown in figure 3.7 which is described by

[
z

y

]

= G(s)
[
w

φ

]

=
[
Gzw(s) Gzφ(s)
Gyw(s) Gyφ(s)

] [
w

φ

]

,

φ = K(s)y ,
(3.26)

with K(s) the controller to be synthesised and G(s) the open-loop transfer function
matrix of the generalised plant defined by

G(s) = Cp (sI − Ap)−1
Bp + Dp, (3.27)

with the state-space realisation

G(s) =





Ap

[
B1 B2

]

[
C1

C2

] [
0 D12

D21 0

]



 =
[

Ap Bp

Cp Dp

]

, (3.28)

To account for the state disturbances wd and the measurement noise wn in a H2

control framework the state-space system (3.24) is formulated as a generalised plant
(3.28) and scaled in terms of two parameters which may be individually adjusted to
achieve the desired closed-loop performance. A similar scaling was also presented
in Bewley and Liu [37]. The control objective is to counteract the influence of the
state disturbance wd on the controlled output defined by q = Q̄ue. Therefore the
controlled output is used to define the performance measure z

z =
[
Q̄
0

]

ue +
[

0
lI

]

φ, (3.29)

which also includes a penalty on the control defined by the parameter l. The pa-
rameter l determines the trade-off between a low control effort (φT φ) and a low
controlled output energy (qT q). For the design of the controller, decisions must
be made about the expected state disturbances and measurement noise. The tem-
poral magnitude of these disturbances in the state-space system is defined by the
expected covariances of the temporal state disturbance (3.13) and the measurement
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noise (3.6). In this study it is assumed that nothing is known a priori about the ex-
pected covariances. To make a parametric study for the controller design tractable,
a relative magnitude of the measurement noise is defined

γ =
σn

σd
, (3.30)

which is the ratio between the root mean square of the expected variance of re-
spectively the sensor noise and the state disturbance. The state disturbance and
measurement noise are respectively modelled as wd = σdw1 and wn = σnw2 with
w1 and w2 defined as white noise with unit intensity. The system is parameterised
in terms of γ by defining a new scaled observation that is used for feedback

y =
γ

σn
ym =

γ

σn

(
C̄ue + σnw2

)

=
γ

σn
C̄ue + γw2 (3.31)

and the system is normalised such that σd = 1. Using this normalisation it follows
from (3.30) that γ = σn and the observation (3.31) is obtained by a simple change
of variables. For the control design γ does not represent a physical root mean square
value of the measurement noise, but a relative measure with respect to the state
disturbance, used to tune the controller. Defining the vector of disturbances as
w = [w1, wT

2 ]T and the following system matrices

Ap = Ā, B1 =
[
σdB̄d 0

]
, B2 = B̄c,

C1 =
[
Q̄
0

]

, D12 =
[

0
lI

]

, C2 =
γ

σn
C̄, D21 =

[
0 γI

]
,

(3.32)

the system (3.24) can be written as a generalised plant with the state-space formu-
lation (3.28), that is

u̇e = Apue + B1w + B2φ,

z = C1ue + D12φ,

y = C2ue + D21w.

(3.33)

The H2 control design problem for this system is to find a controller K(s) that, based
on the measurement information y , generates a control input φ which stabilises the
system (3.33) internally and minimises

‖T zw(s)‖2 =

√

1
2π

∫ ∞

−∞

Trace{T∗
zw(iω)T zw(iω)}dω (3.34)

=

√
√
√
√

1
2π

∫ ∞

−∞

∑

i,j

|T i,j
zw(iω)|2dω. (3.35)

Equation (3.34) is referred to as the H2-norm of the closed-loop transfer function
matrix T zw from the external disturbances w to the control objectives z and |T i,j

zw |
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denotes the magnitude of the closed-loop transfer function from the j-th disturbance
to the i-th objective. T zw is given by

T zw(s) =
z(s)
w(s)

= Gzw(s) + Gzφ(s)K(s) (I − Gyφ(s)K(s))−1
Gyw(s), (3.36)

which follows from (3.26). Physically, the H2 norm in (3.34) can be interpreted
as the amplification of the system from w to z integrated over all frequencies.
In the time domain, this is equivalent to the variance amplification of stochastic
disturbances [79]. By minimising the H2 norm, the controlled output power E[zT z]
of the system, due to unit white Gaussian disturbances w, is minimised. The state-
space formulas for the optimal controller K(s) that minimise (3.34) are given in
appendix B. It combines a state estimator (Kalman filter) for the flow field and a
state feedback, and has a state-space description of the form

u̇e
K = AKue

K + BKy ,

φ = CKue
K ,

(3.37)

with ue
K the estimated state and AK = A+B2CK −BKC2. The controller input ma-

trix BK represents the estimator gain and the output matrix CK represents the state
feedback gain. The controller (3.37) can be structured using the separation princi-
ple, which means that the estimator and state feedback can be tuned independently.
Thus the control penalty l and the estimation parameter γ may be individually ad-
justed to achieve the desired characteristics for the closed-loop system T zw. A low
value for the control penalty l results in higher gain state feedback CK . Similarly,
when γ is small (high signal to noise ratio) the observation is fed back more aggres-
sively (high observer gain BK) than when γ is high. The controller K(s) in (3.37)
represents the full order controller. Such a high-order controller is usually not real
time implementable for practical flow configurations. To synthesise a reduced-order
controller Kr(s) for the high-order plant the so-called reduce-then-design approach
[114] is used, which is discussed in detail in the next section. This section also
includes a parametric study for the parameters γ and l.

3.3. Controller design and synthesis
In this section the reduced-order controller is designed and synthesised for the prob-
lem defined in the previous section. An input-output analysis [33] is conducted in
section 3.3.1 for the uncontrolled system using the spatio-temporal frequency re-
sponse [79, 83] to identify the perturbation modes that are captured by the inflow
disturbance model and are retained in the reduced-order model. The input-output
analysis reveals the non-modal transients introduced by the inflow disturbance as
well as the modal unstable perturbation modes. In section 3.3.2 a reduced-order
model that captures the input-output behaviour is derived using balanced trunca-
tion. This model is used to design the optimal controller and the truncated dynam-
ics is taken into account in the control system design. This section also includes a
parametric study for the estimator and state feedback design problem. Finally, the
closed-loop performance of three selected controllers is evaluated in the frequency
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Figure 3.8: The magnitude of the spatio-temporal frequency response from the inflow disturbance
w1 to the shear along the lower wall y1(x, y = −1). The 10 contour levels lie within |Gy1w1 |∈
[6.9, 69.4].

domain in 3.3.3. These three controllers will also be evaluated in section 3.4 using
numerical simulations of the closed-loop system.

3.3.1. Analysis of the uncontrolled system
In this section the uncontrolled system from the disturbance input w to the shear
output y , that is Gyw = [Gyw1 ,Gyw2 ] in (3.26), is analysed in the frequency do-
main. In particular the effect of the inflow disturbance w1 on y is investigated from
an input-output viewpoint. The disturbance input w1 excites the Orr-Sommerfeld
eigenfunction calculated for the most amplified frequency (ω = 0.253) at the inflow,
see also section 3.2.3 and figure 3.5. The perturbation shear stress created by the
disturbance along the complete lower wall, y1(x) = (∂u/∂y)(x,−1), is considered
as output in the analysis. In this way the spatial transients created by the inflow
disturbance can be evaluated and the perturbation modes that are excited can be
identified. The same results hold for the upper wall due to the symmetry of the
geometry. If a linear system is forced by a sinusoidal input at a particular frequency,
once the initial temporal transients have died out asymptotically, the output will
also be sinusoidal, at the same frequency, but with a change in amplitude and a
phase shift. The magnitude amplification and phase shift of the output are equal to
the magnitude and phase of the frequency response of the system. The frequency
response is obtained by evaluating the transfer function on the imaginary axis, that
is s = iω. The asymptotic response for the shear output along the lower wall in the
spatio-temporal frequency domain is given by

y1(iω, x) = Gy1w1 (iω, x)w1(iω), (3.38)
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Figure 3.9: Fully developed open-loop response of the streamwise perturbation velocity for two
inflow disturbance frequencies. (a) 10 levels in the range u ∈ [−1.61, 1.61]. (b) 10 levels in the
range u ∈ [−1.00, 1.00].

where Gy1w1(iω, x) is obtained from the (1,1) element of

Gyw(iω, x) = C2(x) (iωI − Ap)−1 B1. (3.39)

Gy1w1(iω, x) is the spatio-temporal frequency response function [79] from the inflow
disturbance w1 to the shear stress along the lower wall. It is a function of temporal
frequency and streamwise direction. Gy1w1(iω, x) is visualised using the magnitude
bode plot |Gy1w1(iω, x)| which is shown in figure 3.8. To support the interpretation
of the magnitude the fully developed open-loop response for ω = 0.25 and ω = 0.35
is shown in figure 3.9. The effect of the low-pass filter (3.12) on the magnitude at
the inflow and the amplification at the design frequency ω = 0.253 can clearly be
observed. After initial spatial transients near the inflow boundary, the modal per-
turbations are revealed and the magnitude linearly increases or decreases depending
on the frequency of w1. At the design frequency an insignificant transient is involved
for the mode to develop in the domain. Larger transients can be observed near the
inflow at other frequencies than the design point. These non-modal transients do
not cause a problem for control design as they have died out in the control region
(x > 2π). The outflow boundary condition (3.1d) gives rise to an artificial gain
near the outflow x > 6π. This does not result in reflections (wiggles) in the control
domain. No special attention needs to be taken for the non-physical region as long
as no measurement sensors are placed in this region. For validation purposes the
exponential growth for the perturbation shear output is compared with predictions
from linear stability theory. The exponential growth can be calculated using

αi = −
1

x1 − x0
ln

|Gy1w1 (iω, x1)|
|Gy1w1 (iω, x0)|

. (3.40)

The location of the shear sensor x0 = xm = 2.39π and the location of the controlled
shear output x1 = xq = 5.57π are chosen to compute the growth rate. Within this
region the magnitude varies linearly over a wide range of frequencies. Figure 3.10
shows the magnitude of Gy1w1 (iω, x) at the two spatial locations and the exponential
growth rate of the magnitude compared with the growth rates from LST. Good
agreement with LST predictions can be observed. Both the model and the OS-
equation predict instability within the range 0.216 ≤ ω ≤ 0.286. The real part of the
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Figure 3.10: (a) Magnitude of the shear output at two x-locations and (b) resulting exponential
growth (3.40) compared with the solutions of the Orr-Sommerfeld equation.

wavenumber αr and the corresponding wavelength λx = 2π/αr of the perturbation
can be evaluated using the phase response of the system. Let 6 Gy1w1(iω, x) be the
phase in degrees for the shear output along the lower wall. The real part of the
wavenumber can be calculated using

αr =
|6 Gy1w1 (iω, x1) − 6 Gy1w1 (iω, x0)| π

180

x1 − x0
. (3.41)

Figure 3.11 shows the phase at the two spatial locations and the resulting wavenum-
bers compared with the predictions from LST. It can be observed that also the wave-
lengths are in good agreement with LST. At ω = 0.25 LST predicts a wavelength
of λx = 2π/αr ≈ 2π and at ω = 0.35 a wavelength of λx ≈ 1.6π. These wavelengths
can also be observed in figure 3.9.

These results verify that the single mode inflow disturbance model accurately
captures the wavelengths and growth rates in a wider frequency band in the actu-
ator/sensor region. Also at other frequencies than the design frequency, the distur-
bance will quickly develop in-domain to a travelling wave with a spatial wavelength
and growth rate as predicted by the OS equation. It provides confidence that the
followed modelling procedure allows for an efficient estimation of the dominant flow
perturbations in the localised control domain using wall shear sensors. In the next
section the controller is designed to reduce the magnitude of the shear downstream
of the control actuators.

3.3.2. Reduced-order controller
The reduce-then-design approach [114] is used to construct a reduced-order con-
troller for the high-order plant. First, exact balanced truncation [67] is applied
to construct a reduced-order model (ROM) of the full order system after which
the ROM is used to synthesise the optimal controller. Exact balanced truncation
requires dense matrix factorisations and generally results in a computational com-
plexity of O(N3) and a storage requirement of O(N2). Exact balanced truncation
is not computationally tractable for very large systems and approximate methods,
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Figure 3.11: (a) Phase of the shear output at two x-locations and (b) resulting wavelength (3.41)
compared with the solutions of the Orr-Sommerfeld equation.

such as proposed by Rowley [34], could be used in this case. However, the modelling
approach in this chapter avoids very large systems through localised computations
allowing to apply exact balanced truncation (N = 5569 for the control model). Since
the current flow configuration is globally stable, balanced truncation can directly
be applied without the need of separating the stable and unstable subspaces. Only
the application of balanced truncation for model reduction and control design is
discussed in this section. We refer to Moore [67] for more detail and to Kim and
Bewley [6], Rowley [34] for more background in the context of flow control.

Balanced truncation extracts the most controllable and observable modes of
the system and first involves creating a balanced realisation of the system such
that each state has an equal measure for both controllability and observability.
Let Gb(s) = (Ab,Bb, Cb,Db) be a balanced realisation of the generalised plant
G(s) = (Ap,Bp, Cp,Dp) given by (3.28) such that the controllability Gramian and
observability Gramian respectively defined as

P =
∫ ∞

0

eAbtBbB
T
b e

AT
b tdt, (3.42)

Q =
∫ ∞

0

eAT
b tCT

b Cbe
Abtdt (3.43)

are given by P = Q = diag(σH
1 , σ

H
2 , · · · , σH

N ) =: Σ where σH
1 ≥ σH

2 ≥ · · · ≥ σH
N ≥ 0

are the Hankel singular values of the system. An efficient algorithm for creating
balanced realisations is available in Matlab (balreal). This algorithm computes the
similarity transformation ue

b = Sue, which balances the plant matrices through
Ab = SApS−1, Bb = SBp, Cb = CpS−1 and Db = Dp. The similarity transformation
S is obtained from the Cholesky factorisation of the Gramians [115]. The Gramians
are computed by solving a set of Lyapunov equations [67]. This method is also
stable if the system contains nearly uncontrollable/unobservable modes which are
present in the linearised Navier-Stokes operator [6, 37]. The balanced realisation
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Figure 3.12: The first 150 Hankel singular values (’•’ markers), the theoretical upper bound (dashed
line) and theoretical lower bound (solid line) for the maximum error of the reduced-order model.

and corresponding singular values can be partitioned as

Ab =
[
A11 A12

A21 A22

]

, Bb =
[
B1

B2

]

, Cb =
[
C1 C2

]
, Σ =

[
Σ1 0
0 Σ2

]

, (3.44)

where Σ1 = diag(σH
1 , σ

H
2 , · · · , σH

r ) and Σ2 = diag(σH
r+1, σ

H
r+2, · · · , σH

N ). The reduced-
order model of order r is obtained by truncating the least observable/control-
lable modes, that is truncating the r + k, k = 1, · · · , N − r modes: Gr(s) =
(A11,B1, C1,Db) := (A,B,C ,D). Note that balanced truncation does not depend
on Db and it follows that Db = Dp = D. A feature of balanced truncation is the
existence of upper and lower bounds for the maximum error of the reduced-order
model

σH
r+1 ≤ ‖G − Gr‖∞< 2

N∑

k=r+1

σH
k (3.45)

with σH
r+1 the first neglected Hankel singular value. Figure 3.12 shows the first 150

Hankel singular values of the system and the upper and lower bounds for the maxi-
mum error. The steep initial drop indicates that the input-output behaviour can be
captured using low-order models. However, no guarantees are available about the
stability and performance of a controller designed for Gr on the original system G

and the truncated dynamics should be taken into account in the performance analy-
sis. Therefore, instead of evaluating the performance of the ROM, the performance
of the reduced-order controller in combination with the original system is evaluated
for increasing order r.

The reduced-order model Gr is used to synthesise the H2 optimal reduced-order
controller Kr(s) that minimises (3.34) (See appendix B), and takes the form

u̇e
K = AKue

K + BKy ,

φ = CKue
K ,

(3.46)

with ue
K ∈ Rr the controller state. The resulting closed-loop system from the

disturbance w to the control objective z is obtained by combining the controller
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(3.46) with the original system (3.33) and is given by
[

u̇e

u̇e
K

]

=
[

Ap B2CK

BKC2 AK

]

︸ ︷︷ ︸

Acl

[
ue

ue
K

]

+
[

B1

BKD21

]

︸ ︷︷ ︸

Bcl

w,

z =
[
C1 D12CK

]

︸ ︷︷ ︸

Ccl

[
ue

ue
K

]

.

(3.47)

For the design of the controller, the performance of the closed-loop system (3.47)
is characterised for different combinations of control penalties l and estimation penal-
ties γ. As in Bewley and Liu [37] a parametric study is conducted for the H2 norms
of the following two closed-loop transfer functions

T qw =
[
C1 0

]
(sI − Acl)

−1
Bcl, (3.48)

T φw =
[
0 CK

]
(sI − Acl)

−1
Bcl, (3.49)

which are the closed-loop transfer function matrices from the disturbance to re-
spectively the controlled output q and the control input φ. The definitions of the
closed-loop system matrices (Acl,Bcl, Ccl) follow from (3.47). The H2 norms of these
transfer functions are related by

‖T zw‖2
2= ‖T qw‖2

2+l2‖T φw‖2
2, (3.50)

with T zw = Ccl (sI − Acl)
−1

Bcl the transfer function from the disturbance to the
combined performance objective z. A low value for ‖T qw‖2 indicates a good con-
troller performance while a low value for ‖T φw‖2 indicates a low control effort.
A finite value for these norms means an exponentially stable closed-loop system.
Figure 3.13 shows the norms as function of the order r of the controller for the
combination γ = 1, l = 1. The norm of the full order controller (r = N) is indi-
cated by the asymptotes. It can be observed that the performance of the closed-loop
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Figure 3.14: Performance of the ROM (r = 50). Magnitude frequency response from the state
disturbance w1 to the measured output y1 (a) and from the control input φ1 to the controlled
shear output q1 (b) at the lower wall.

system converges quickly to the case of a full order controller. Similar results were
obtained for other combinations. We select r = 50 to design and implement the
controller. With this order the performance has converged and there is no loss in
performance due to the truncated dynamics. The input-output behaviour of the
ROM with r = 50 is compared to full system in figure 3.14. Shown is the magnitude
frequency response of the transfer function Gy1w1 from the inflow disturbance w1 to
the measured output y1 (a) and the transfer function Gq1φ1 from the control input
φ1 to the controlled output q1 at the lower wall (b). There is a good agreement and
the ROM accurately captures the input-output (disturbance and control) behaviour.

Figure 3.15 shows the contours of the H2 norms and the relative energy norm
‖T qw‖2

2/‖Gqw‖2
2 for the order r = 50 controller. It can be observed that an energy

reduction between 90% − 99% can easily be achieved by a proper choice of the
design parameters. The performance for the case l → ∞, γ → ∞ converges to the
uncontrolled case. The control penalty l can be used to tune the feedback gain
CK in (3.46) and determines the trade-off between control effort and magnitude of
the shear perturbation q. Lower values lead to an increased controller performance
(low ‖T qw‖2) at the cost of a higher control effort. It is found that choosing l < 10
does lead to a significantly increase in performance. The parameter γ can be used
to tune the estimator, that is the output injection gain BK in (3.46). Low values
for γ (high to noise ratio) lead to a higher magnitude of estimator feedback and an
increased performance. However, choosing a lower value for γ leads to a reduced
robustness. The role of γ is to account for uncertainties in the estimated output
which also arise in the case of unmodelled dynamics and unmodelled disturbances.
High estimator gain feedback can in this case result in larger overshoots which
should be avoided since they can aggravate the initial stage to transition. From
the contour of ‖T qw‖2 it can be observed that for a given control penalty l, the
estimation penalty γ, and thus the robustness, can be increased up to the curvature
of the contour level without significant loss of performance. Thus choices for l and
γ on the curvature of a desired performance level can be considered as an optimal
trade-off between robustness and the desired performance. In this study robustness
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Figure 3.15: Contours of the closed-loop system norms ‖T qw‖2 (a), ‖T φw‖2 (b) and the relative
energy norm ‖T qw‖2

2/‖Gqw‖2
2 (c) with a r = 50 reduced-order controller for different combinations

of control parameter l and estimation parameter γ (‖Gqw‖2= 16.90). Controllers (I) l = 10, γ =
1.5, (II) l = 20, γ = 5 and (III) l = 40, γ = 15 are considered for evaluating the closed-loop
response of the system.

is valued more than control effort in determining the trade-off. Three controllers will
be investigated in the next sections for evaluating the performance in the frequency
domain and through numerical simulation. The design parameters for the controllers
are marked in figure 3.15. The first (I) is a high gain controller with l = 10, γ = 1.5
corresponding to approximately a 99.9% energy reduction. The second (II) is an
intermediate controller with l = 20, γ = 5 corresponding to a 99% energy reduction
and the third (III) is a lower gain controller with l = 40, γ = 15 corresponding to
a 90% energy reduction.

3.3.3. Closed-loop frequency response
In this section the three selected controllers are evaluated in the frequency domain.
The magnitude frequency response from w1 to the controlled output q1 (3.7) is shown
in figure 3.16. The magnitude of the closed-loop system Tq1w1 is compared with the
magnitude of the open-loop system Gq1w1 . The frequency domain performance for
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Figure 3.16: Closed-loop frequency response from the inflow disturbance w1 to the controlled
output q1 along the lower wall.

the three controllers is in accordance with the results in figure 3.15. Controller (III)
limits the control effort and takes higher levels of sensor inaccuracies into account.
It is more conservative also with respect to higher frequencies. The three controllers
significantly suppress the most amplified frequencies close to the design frequency
ω = 0.253 as well as the off-design frequencies. The peak magnitude is equal to
the H∞ norm of Tq1w1 which is reduced between approximately 80% − 99% for the
three controllers.

The perturbation shear reduction along the complete walls, as well as spatial
transients introduced by the control can be evaluated using the spatio-temporal fre-
quency response. Figure 3.17 shows the magnitude for the shear along the lower
wall for the open-loop system (a) and closed-loop (b) system with controller (II).
Compared to the open-loop magnitude it can be observed that the controller signif-
icantly reduces the shear in the entire downstream region of the control actuators.
The magnitude at the most dominant frequencies 0.1 ≤ ω ≤ 0.4 is significantly
suppressed and only small amplifications are present in the region of the control
actuator.

3.4. Closed-loop simulations
In this section the effectiveness of the proposed control design is evaluated using
linear simulations of the closed-loop system. The three controllers characterised by
(I) l = 10, γ = 1.5, (II) l = 20, γ = 5 and (III) l = 40, γ = 15 are again considered,
see also figure 3.15. The model defining a channel with a total length of Lsim = 16π,
as discussed in section 3.2.5, is used for simulating the response. Disturbances are
generated upstream of the control domain and propagate downstream. Three dif-
ferent disturbance cases are considered to demonstrate the robustness of the control
design. In the first case (Case A, section 3.4.1), a single-frequency perturbation is
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considered which is generated using the disturbance model presented in section 3.2.
This case can be seen as the design case, since the same disturbance model is used
for both simulation and control design. In the second test case (case B, section 3.4.2)
a multiple-frequency disturbance is considered in the form of a wave-train consist-
ing of a linear combination of Orr-Sommerfeld modes. This case is used to verify
the spatio-temporal frequency domain results in the previous section and to test
if the controller based on the single mode inflow disturbance model indeed allows
for efficient estimation and control of perturbations in a wider frequency band. In
the third test case (case C, section 3.4.3) the controller is evaluated for a stochastic
excited body force located at the upper wall. Similar body forces have been used
by Bagheri et al. [33], Dadfar et al. [109] to evaluate controllers for transition delay.
The case is used to study the effectiveness of the controller in a transient unmodelled
environment.

For simulating the response, the original unscaled system (3.24) is considered.
For the design of the controller no a priori knowledge is assumed about the expected
covariances σ2

d and σ2
n of respectively the state and measurement disturbances.

Therefore, a scaling is introduced in terms of an expected relative magnitude of
the sensor noise γ = σn/σd. γ plays a role for accounting measurement uncertain-
ties in the control design and is not used for defining the measurement noise in
the simulations. We also wish to investigate the robustness of the three controllers
with respect to unmodelled measurement inaccuracies. Therefore each disturbance
case is considered with both a low sensor noise σn = 0.01 and a high sensor noise
σn = 0.2. In total 18 different cases were simulated: three disturbance cases (A,B,C)
with three controllers and two sensor noise intensities. The cases and the results are
summarised in table 3.1 and are discussed in more detail in the next three sections.

3.4.1. Case A: single-frequency disturbance
In the first case a single-frequency modal disturbance, of the form (3.9), is con-
sidered with ω = 0.253 which has the maximum growth rate for the investigated



3

74 3. Localised estimation and control of instabilities in shear flows

Case Control penalty estimation penalty Shear energy reduction control effort
l γ ‖qcon‖2

2/‖qunc‖2
2 rms φ

A1.I 10 1.5 0.000088 0.002404
A2.I 10 1.5 0.001521 0.002398
A1.II 20 5 0.001940 0.002319
A2.II 20 5 0.003669 0.002312
A1.III 40 15 0.041873 0.001932
A2.III 40 15 0.044999 0.001924
B1.I 10 1.5 0.000112 0.001064
B2.I 10 1.5 0.007609 0.001091
B1.II 20 5 0.002147 0.001023
B2.II 20 5 0.007735 0.001045
B1.III 40 15 0.048270 0.000840
B2.III 40 15 0.047928 0.000855
C1.I 10 1.5 0.027664 0.001026
C2.I 10 1.5 0.038694 0.001017
C1.II 20 5 0.030085 0.000985
C2.II 20 5 0.041530 0.000972
C1.III 40 15 0.078881 0.000806
C2.III 40 15 0.092690 0.000791

Table 3.1: The controlled shear output energy reduction and the control effort for three controllers.
Three disturbance cases (A, B, C) are considered with both a low sensor noise (A1, B1, C1) and with
a high sensor noise (A2, B2, C2). Each case is evaluated using three controllers (A1.I, A1.II, A1.III).
Disturbance case A-C corresponds respectively to the single-frequency disturbance, Multiple-

frequency disturbance and stochastic in-domain forcing. (rms φ =

√
1
T

∫ T

0
|φ|2 dt)

conditions. This disturbance is generated at the inlet x = −4π of the simulation
domain using the disturbance model presented in section 3.2.3. The shape of the
disturbance corresponds to the eigenfunction calculated from the Orr-Sommerfeld
equation at ω = 0.253 (see figure 3.5). To mimic the transitional regime in the simu-
lations the amplitude of the perturbation is set to A0 = 0.01. First the performance
of controller (II) with l = 20, γ = 5 and a low sensor noise σn = 0.01 is investigated.
Figure 3.18 shows the temporal evolution of the shear measurements ym that are
used for feedback, the control input φ (amplitude of the blowing and suction), the
perturbation energy (E = ‖u‖2

L2) and the norm of the controlled output ‖q‖2. q

reflects the controller performance as it is used within the control objective that is
minimised by the controller, see (3.29). As the perturbation convects downstream
towards the control region, the amplitude of blowing and suction increases to cancel
the perturbation. The effect of the noise on the shear measurements can be observed
and the resulting control input confirms the filtering and feedback of these measure-
ments. Both control actuators at the upper and lower wall act in phase which is
to be expected due to the symmetry of the geometry and the control layout. A
snapshot at t = 200 of the flow perturbation field in the control domain x ∈ [0, 8π]
is shown in figure 3.19. The performance of the state estimation is best visualised
without control applied. Figure 3.19(a) shows the estimated flow field without con-
trol, figure 3.19(b) shows the real flow field without control and figure 3.19(c) shows
the real controlled flow. The estimated flow field is computed from the controller
state ue

K through ue
K 7→ S−1

r ue
K where S−1

r are the first r columns of the inverse
of the similarity transformation as discussed in section 3.3.2. It can be seen that



3.4. Closed-loop simulations

3

75

 

 

 

 

 

 

 

 

y2

y1

no control
control

φ2

φ1

no control
control

(a)

(d)

(b)

(c)

y
m

t

‖
q

‖
2

t

φ

t

E

t

0 50 100 150 200 250

0 50 100 150 200 250

0 50 100 150 200 250

0 50 100 150 200 250

×10−3

×10−3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.4

0.5

−3

−2

−1

0

1

2

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3.18: Closed-loop performance for the single-frequency disturbance case. Controller (II)
with low sensor noise is considered. (a) Shear measurements ym used for feedback. (b) Control
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of the controlled perturbation shear output ‖q‖2.

the flow perturbations are well reconstructed in the control region where the mea-
surements are taken, actuation is applied and where the performance objective q

is defined. As a result the controller is effective in cancelling the perturbations by
minimising the effect of the perturbation on q. Only low-amplitude oscillations re-
main. The required amplitude of the blowing and suction is of the same order as the
magnitude of the perturbation as can be seen in the snapshot for the wall-normal
velocity component in figure 3.19(c).

To compare the performance of the three controllers, the spatial evolution of
the perturbation is evaluated. We define the amplitude of the streamwise velocity
perturbation as

A(x) = max
t,y

√

|u|2. (3.51)

Figure 3.20 shows the amplitude for the three controllers with both low (σn = 0.01)
and high (σn = 0.2) measurement noise. The amplitude reduction for the three
controllers is in accordance with the frequency domain results in figure 3.16. The
controllers are also robust to higher levels of sensor noise. Controller (III) takes
higher sensor inaccuracies into account and the performance is preserved in the case
of high sensor noise, see also table 3.1. Controllers (I) and (II) do not take such high
measurement noise into account and the performance is less preserved. However,
no severe deterioration can be observed. This can also be contributed to the simple
structure of the perturbation.
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3.4.2. Case B: multiple-frequency disturbance
In the second test case a multiple-frequency disturbance is considered. The total
disturbance consists of a linear combination of Orr-Sommerfeld modes. In total
16 modes in the frequency range ω ∈ [0.1, 0.4] are excited. Thus the disturbance
is generated using 16 eigenfunctions whose shape corresponds to the eigenfunction
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Frequency ω wavelength αr growth rate αi

0.10 0.5611 0.0666
0.12 0.6247 0.0511
0.14 0.6843 0.0369
0.16 0.7418 0.0242
0.18 0.7982 0.0134
0.20 0.8541 0.0049
0.22 0.9095 0.0010i
0.24 0.9646 -0.0042
0.26 1.0193 -0.0044
0.28 1.0735 -0.0015
0.30 1.1270 0.0047
0.32 1.1797 0.0145
0.34 1.2314 0.0281
0.36 1.2817 0.0469
0.38 1.3300 0.0687
0.40 1.3757 0.0971

Table 3.2: Spectrum of the multiple-frequency wave packet for case B.

calculated from the Orr-Sommerfeld equation at the selected frequencies. The tem-
poral frequencies, the spatial wavelengths and spatial growth rates of these modes
are listed in table 3.2. The spectrum includes 3 convectively unstable modes and
13 stable modes. Each mode is given the same amplitude A0 = 0.002 such that
the total disturbance is in the form of a wave-train that is modulated as it propa-
gates downstream. First the performance of controller (II) with a low sensor noise
σn = 0.01 is again investigated. The input-output signals and the closed-loop per-
formance are shown in figure 3.21 and a snapshot at t = 200 of the perturbation field
in the control domain is shown in figure 3.22. The modulation of the perturbation
can clearly be observed and the perturbation presents a richer structure as compared
to the single-frequency case. With respect to the closed-loop performance the same
observations can be made. The measurements are successfully filtered and the real
flow is reconstructed well in the control domain as can be seen in figure 3.22. The
controller is again able to cancel the perturbations and to suppress the perturbation
wall shear stress. Although the unstable modes are dominant in the simulations,
the (nearly) stable modes have not damped out and are still present as can be seen
in figure 3.22. Nevertheless, the controller achieves nearly a full cancellation of the
perturbations. This corroborates the findings of the input-output analysis presented
in section 3.3.1 showing that the single mode disturbance model accurately captures
the spatial wavelength and spatial growth of perturbations in a wider frequency band
in the actuator/sensor region. As such the controller is able to effectively estimate
and control a broader frequency spectrum of modes. To compare the performance
of the three controllers, the spatial evolution of the perturbation is again evaluated.
Since the amplitude of the perturbation also varies in time a measure for the time
averaged amplitude is defined

Ā(x) = max
y

√

1
T

∫ T

0

|u|2 dt, (3.52)
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Figure 3.21: Closed-loop performance for the Multiple-frequency disturbance case. Controller (II)
with low sensor noise is considered. (a) Shear measurements ym used for feedback. (b) Control
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L2 . (d) Norm of the controlled perturbation shear
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Figure 3.22: Snapshot of the perturbation velocity within the control domain x ∈ [0, 8π] at t = 200
for the uncontrolled and controlled Multiple-frequency disturbance. Controller (II) with low sensor
noise is considered. (a) Estimated velocity without control. (b) True velocity without control. (c)
True velocity with control. The triangles indicate respectively the position of the measurement
sensors (▽), the actuators (△) and the controlled outputs (⊲).
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Ā

(x
)

x

10−5

10−4

10−3

10−2

10−5

10−4

10−3

10−2

Figure 3.23: The wall-normal maximum amplitude of the rms streamwise perturbation velocity
(3.52) of the Multiple-frequency disturbance for three controllers. (a) Feedback with low measure-
ment noise σn = 0.01. (b) Feedback with high measurement noise σn = 0.2. The triangles indicate
respectively the position of the measurement sensors (▽), the actuators (△) and the controlled
outputs (⊲).

which is the wall-normal maximum amplitude of the root mean square (rms) stream-
wise velocity perturbation [116]. Figure 3.23 shows the time averaged amplitude for
the three controllers with both low and high measurements noise. It can be observed
that the amplitude reduction in case of high measurement noise for controller (I)
is reduced more significantly. This is to be expected since the controller does not
take high measurement inaccuracies into account. However, it still achieves a robust
performance. Actually controller (I) and (II) have a comparable performance, see
also table 3.1. This indicates that there is no large sensitivity in the choice of design
parameters in case of high sensor noise. Again, the performance of controller (III)
is preserved and is in accordance with its design.

3.4.3. Case C: stochastic in-domain forcing
In the third most challenging test case a stochastic in-domain forcing is considered
which is generated at the upper wall near the inflow. In this case the momentum
equation is forced with

f(x, y, t) = F (x, y)w(t), (3.53)

where w(t) is zero mean white noise with a normal distribution at unit intensity. The
spatial distribution of the ’vibrating ribbon’ at the upper wall (y = 1) corresponds
to that of Bertolotti et al. [117] and has the form Fx = ∂ψ/∂y, Fy = −∂ψ/∂x with

ψ(x, y) = ǫexp
(

−
(x− xr)2

σ2
x

−
(y − 1)2

σ2
y

)

(y − 1)2 cos((x− xr)), (3.54)

where ǫ = 0.5 is the amplitude of the force, σx = 1, σy = 0.1 the spatial lengths,
xr = −3π the x-position of the ribbon. The spatial distribution of this force is shown
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Figure 3.24: Contours of the spatial distribution F = [Fx, Fy]T of the in-domain disturbance used
for Case C.
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in figure 3.24. The body force (Fx, Fy) is both divergence free and satisfies the no-
slip boundary conditions. First the performance of controller (II) with a low sensor
noise is investigated. The input-output signals and the closed-loop performance are
shown in figure 3.25 and a snapshot at t = 350 of the perturbation field in the
control domain is shown in figure 3.26. In addition, to better visualise the evolution
of the perturbation and the controller performance, the temporal evolution for the
shear stress along the lower wall for the uncontrolled case and the controlled case is
shown in figure 3.27.

The stochastic disturbance excites a spectrum of frequencies which results in
large initial transients after which the disturbance develops in the form of wavepack-
ets as can be seen in the energy plot in figure 3.25. The transients can also observed
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Figure 3.26: Snapshot of the perturbation velocity within the control domain x ∈ [0, 8π] at t = 350
for the uncontrolled and controlled stochastic disturbance. Controller (II) with low sensor noise is
considered. (a) Estimated velocity without control. (b) True velocity without control. (c) True
velocity with control. The triangles indicate respectively the position of the measurement sensors
(▽), the actuators (△) and the controlled outputs (⊲).
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Figure 3.27: Temporal evolution of the wall shear stress ∂u/∂y along the bottom wall of the
channel for the stochastic forced disturbance. The triangles indicate respectively the position of
the measurement sensors (▽), the actuators (△) and the controlled outputs (⊲).

in the temporal evolution of the wall shear stress in figure 3.27 and are also present
in the control region. It can be observed that the controller is still able to properly
estimate the flow field and is effective in both minimising the wall shear stress and
reducing the perturbation energy in the domain. Although a complete cancellation
of the disturbance is not possible, the controller manages to achieve a reduction of
97% in the controlled shear output power, see also table 3.1. Note that the dis-
turbance is completely independent of the disturbance model used to design the
controller. It is defined in-domain and creates initially asymmetric developing per-
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Ā
(x

)

x

10−4

10−3

10−2

10−4

10−3

10−2
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turbations while the complete input-output layout is symmetric. Furthermore the
transients are not accounted for in the control design and the perturbations are
not fully developed in the control domain. Nevertheless, the controller achieves a
high level of robustness to unmodelled disturbances; no overshoots can be observed
in the perturbation energy and the controlled output, and the controller does not
aggravate the flow. This can be contributed to the fact that the controller is able
to estimate and stabilise the underlying modes that are present in the disturbance
as can be seen from figure 3.26.

Figure 3.28 shows the time-averaged amplitude for the three controllers with
both low and high measurements noise. It can be observed that controllers (I) and
(II) have comparable performance, also for the low sensor noise case. This can be
contributed to the fact that uncertainties in output measurements also arise due to
the unmodelled disturbances. This indicates that there is also no large sensitivity
in the choice of design parameters in case of unmodelled disturbances.

3.5. Conclusions
The chapter presented a new framework to design and synthesise H2 optimal con-
trollers for control of linear instabilities in 2-D laminar wall-bounded shear flows.
The 2-D non-periodic channel flow is considered as a case study. The flow mod-
elling accounts both for localised actuation/sensing and the dominant perturbation
dynamics in physical space. A new inflow disturbance model is presented for ex-
ternal sources of excitation. This model allows for an efficient estimation of the
flow perturbations in the localised control domain using wall shear sensors. The
perturbation modes that contribute to transition can be selected and are included
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in the control design. In this way the most dominant modes of the flow can be pre-
cisely targeted by the controller. A reduced-order model (r = 50) that captures the
input-output behaviour is derived directly from the linearised Navier-Stokes equa-
tions using exact balanced truncation. No numerical simulations are required to
synthesise the controller. The reduced-order model is used to design an H2 opti-
mal controller to minimise the wall shear stress created by the perturbations. It
is shown that there is no loss in performance due to the truncated dynamics and
the reduced-order controller maintains the closed-loop performance as compared to
the full order controller. The controller is evaluated with linear simulations of the
closed-loop system. Three different disturbance cases are considered to evaluate
the effectiveness and robustness of the proposed control design. It is shown that
the controller is able to cancel the perturbations and is robust to both unmodelled
disturbances and sensor inaccuracies.

The modelling presented in this chapter provides an efficient means to design and
synthesise controllers directly from the governing equations. This can be contributed
to the fact that the aim is to capture the input-output behaviour for localised sensors
and actuators, and the dominant perturbation dynamics within this localised region.
It is shown that with the new inflow disturbance model only minor spatial transients
are involved for the perturbation modes to develop in the domain. This allows an
arbitrary placement of the computational inflow boundary as it does not affect the
spatial length scales of the perturbations in the control region. Small computational
domains can thus be used to create the control models. Furthermore, to achieve
effective control it is not required to fully resolve the flow at all length scales in
the initial model. Only the dominant modes that contribute to transition and are
included in the control design should be accurately resolved. These features can
make the extension to three dimensions computationally feasible. Transition in
3-D flows is also governed by algebraic growth of non-modal perturbations, which
bypasses the classical transition scenario considered in this study. To effectively
apply this method to 3-D flows requires the inclusion of multiple perturbation modes
at different wavenumbers in the disturbance model or the use of optimal inflow
perturbations, e.g. of the form presented in Andersson et al. [116].

Significant work remains to be done to apply this method in experiments. In
the next chapter this method is extended for control of Tollmien-Schlichting waves
in spatially developing boundary layer flows, which is the first step towards the
experimental validation of this method in the wind tunnel (Chapter 5). Future
work will focus on the application for efficient modelling and control of 3-D distur-
bances. This chapter focussed on optimal control and no other model uncertainties,
such as input/actuator uncertainties and uncertainties in the Reynolds number were
addressed. Recently in Fabbiane et al. [87] it is shown through experiments that
deviations from the design conditions can destabilise optimal controllers. Future
work will also focus on addressing model uncertainties by integrating this method
in a H∞ robust control framework.
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Estimaton and control of TS

waves in Falkner-Skan
boundary layers

This chapter investigates the use of point wall pressure measurements for dynamic
estimation and control of Tollmien-Schlichting (TS) waves in Falkner-Skan bound-
ary layers. A new approach is presented for input-output modelling of the linear
dynamics of the fluid system and the integration with H2/LQG reduced-order con-
trol design. The input-output relation between the external velocity perturbations
and the pressure fluctuation at the wall is derived directly from the governing equa-
tions. A Kalman filter is used to obtain time-resolved estimates of the velocity field
using pressure information at a single point on the wall. The estimated field is in
turn used to calculate an optimal feedback control to suppress the instabilities. The
controllers are evaluated for localised optimal perturbations that convect downstream
(TS waves). Robustness to variations in the Reynolds number and pressure gradient
is analysed. It is shown that the controller is able to reduce the peak energy with
more than 99% for the nominal designed case. In the case of small parameter varia-
tions (< 25%) a reduction of more than 90% is shown and in case of large parameter
variations (> 50%) a reduction of more than 50% is shown.

This chapter is under review in AIAA journal as: H.J. Tol, M. Kotsonis and C.C. de Visser,
Estimation and control of TS waves in Falkner-Skan boundary layers, 2018
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4.1. Introduction
Advances in actuator and sensor technologies that can sense/manipulate fluid flows
on very short time and length scales have motivated the field of closed-loop flow
control. In closed-loop control real-time sensor information is used to devise con-
trols that alter the flow towards a desired state. In practice, measurements are
non-ideal (noisy) and available only in a small portion of the system. Dynamic
estimation strategies filter the available information using the governing equations,
to extract the signal and to reconstruct the state of the system. The estimated
state can subsequently be used within a state feedback control law. The combi-
nation of model-based estimation and control has gained significant attention for
flow control [6, 7, 9] and is commonly referred to as an output feedback controller
or a dynamic compensator [33, 82, 84, 109, 118]. In this study, pressure-based
compensators are designed to delay laminar-turbulent transition triggered by two-
dimensional Tollmien-Schlichting (TS) wavepackets in laminar Falkner-Skan flows.
The compensator approach in this study can be classified as a white box/gray box
approach in which the model is a-priori based on the physics of the system, in this
case the linearised Navier-Stokes equations (LNSE). Such model-based techniques
provide important insights into the instability mechanisms that have to be addressed
and potentially lead to the best possible performance with stability guarantees. For
a recent and extensive review on control of transition and turbulence, also including
so-called black-box and model-free approaches, the reader is referred to Brunton
and Noack [8].

Two crucial aspects to achieve practical implementation of compensators are
the computational cost for real-time application and the integration of physically
realizable actuators/sensors that are localised in space. To address these aspects,
reduced-order models (ROM) have been extensively used in the design of com-
pensators. Many techniques are available for model reduction of fluid flows which
commonly involve the projection of the high-order system on a lower dimensional
subspace. We refer to [32] for a recent review on model reduction methods for
flow analysis and control. It is accepted that for control design purposes, projec-
tion on controllable and observable subspaces, formed by so-called balanced modes,
produces the most reliable models with superior performance [32, 89, 100, 101].
Balanced truncation [67] is widely used in control theory to extract the most con-
trollable and observable modes of the system. However, exact balanced truncation is
computationally intractable for high-order systems, e.g. if n > 105. For flow control
purposes snapshot-based (white box) balanced truncation [34] and input-output-
based (black-box) truncation using the eigensystem realization algorithm (ERA)
[90, 107] are widely used. Both aim to construct approximate balanced reduced-
order models that capture the input-output behavior of the system, similar to exact
balanced truncation.

To account for spatially localised actuators/sensors in the control design, Bagheri
et al. [33] were the first to rigorously combine balanced model reduction with
H2/LQG closed-loop control for convective instabilities in 2-D boundary layer flows.
The control design considered the use of in-domain volume forcing actuation and
in-domain velocity measurements. This approach was extended in Bagheri et al.
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[105] to include wall shear measurement and wall actuation by means of localised
suction and blowing. A generalization of the work of Bagheri et al. [33] to 3-D flows
is presented in Semeraro et al. [92] and was applied by Semeraro et al. [85] in fully
non-linear simulations to verify the possibility of delaying transition to turbulence
using velocity measurements and volume forcing actuation. Limitations related to
a more realistic set-up were addressed by Dadfar et al. [109, 119] for 2-D boundary
layer flows. They integrated experimentally identified models of plasma actuators
and physical actuator constraints were taken into account in the control design.
Using plasma actuators and hot-wire velocity measurements Fabbiane et al. [87]
demonstrated, for the first time, suppression of disturbances in wind-tunnel exper-
iments using 2-D model-based LQG compensators, without any model fitting or
system identification.

Currently, localised (white/gray) model-based compensators for transition de-
lay have either used velocity measurements or shear measurements for estimation
of the perturbation field. Although, hot wire anemometry and hot film sensors
can be effective for closed-loop control [87, 120], they can become problematic in
practice. Hot wires are intrusive and the wires can break easily. Wall shear stress
sensors are placed on the wall, but generally have a low signal to noise ratio, are
not robust (temperature dependent, high mechanical stresses) and uncertainties are
hard to quantify [121]. Pressure measurements on the other hand generally have
a high signal-to-noise ratio and can be extracted remotely from the surface, e.g.
using microphones embedded within a small cavity. The cavity does result in a loss
of amplitude and phase and gives rise to Helmholtz resonances, which has to be
accounted for.

Pressure measurements are commonly considered for control of global insta-
bilities in free shear layer flows involving flow-induced noise/vibrations and flow-
structure interaction. We refer to Cattafesta et al. [5] for an extensive review on
control of flow-induced cavity oscillations. Different variants (linear, quadratic,
higher order) of static estimators, also known as stochastic estimation (SE) as origi-
nally introduced by Adrian [122], have been successfully applied for control in cavity
flows [88, 123] and axisymmetric jets [124]. We refer to Lasagna et al. [125] for a
recent overview of the SE technique, both for investigating the flow physics and the
control applications. With SE the state estimate is represented by a static func-
tion of the sensors and the state estimate depends only on the measurements at the
present time. This technique does not require a model, but requires a larger number
of sensors, and is more sensitive to noise than dynamic model-based observers, such
as the Kalman filter [5, 34, 124, 126]. Owing to the need for a ROM of the flow
dynamics, preferably balanced, that relate the point pressure measurements with
the model variables, dynamic state estimation is challenging. Models used for dy-
namic estimation/control which are based solely on the physics of the system have
been obtained through POD/Galerkin projection in Sinha et al. [124], Rowley and
Juttijudata [127], and balanced models from input-output data (black-box) using
ERA have been obtained in Illingworth et al. [108, 128] for feedback control of flow
resonances.

Pressure sensors provide significant advantages over velocity or shear stress sen-
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sors in experimental applications. However, no attempt has yet been made to inte-
grate point pressure measurements in the framework of (white/gray) model-based
estimation and control for convective instabilities in boundary layer flows. This is
the goal of the present study. The main contribution of this chapter is a new ap-
proach for the input-output modelling of the linear dynamics and the integration
with H2/LQG reduced-order controller design. To the best of our knowledge this is
the first time that a localised pressure-based compensator is derived directly from
the governing equations which is used to control instabilities in boundary layer flows.
The use of pressure measurements for dynamic flow estimation is not trivial. Two
fundamental challenges have been identified and addressed in this study.

1) For modelling of wall-bounded shear flows, the pressure is commonly elim-
inated from the state equations (also in this study) by formulating the linearised
Navier-Stokes equations in a divergence free state-space, see e.g. Bagheri et al.
[33], Semeraro et al. [92], Bagheri et al. [105] and we refer Bewley et al. [129] for a
general framework. Due to the fact that pressure is eliminated from the model, es-
timation for correlating the model variables to the pressure measurements becomes
less trivial.

2) Wall-bounded shear flows behave as noise amplifiers that support convective
instabilities in broadband frequency spectrum. Amplifier flows are highly sensitive
to upstream external disturbances and there is only a small window in time to
suppress the convective instabilities. Accurately modelling the effect of upstream
disturbances is crucial as it forms the basis for estimation and control of the flow
perturbations in the control domain [33, 130]. Since the fluctuating pressure at a
given point on the wall is related to the global information of the associated flow field
(e.g. through the pressure-Poisson equation), additional unmodelled disturbances as
well as dynamic uncertainties inherent in any ROM, can result in high uncertainties
in the modelled pressure output.

Accurately modelling the effect of upstream disturbances in 2-D wall bounded
shear flows has been addressed in chapter 3. It was shown that the use of physically
motivated inflow disturbance models allows for efficient estimation and control of
the perturbations within a localised region that encapsulates the actuators and
sensors. Very large systems are subsequently avoided by synthesizing the controller
within a localised computational domain. The synthesis approach combines direct
state-space modelling from the governing equations with exact balanced truncation
to design low-order controllers. In chapter 3 flow perturbations in a channel flow
are estimated/controlled using wall shear measurements and localised suction and
blowing at the wall. In this chapter the framework from chapter 3 is applied to
Falkner-Skan flows and is extended by introducing point wall pressure measurements
for the flow estimation. This study provides the first step towards applying the
controller for transition delay in experiments. As stated earlier, the objective is to
enable the use of point pressure sensors for dynamic flow estimation because of their
practical advantages, rather than improving the performance as compared to other
measurement strategies. In order to provide physical insights in how, and if, the
aforementioned additional modelling challenges affect the controller performance,
the results with pressure sensing are compared with the results of shear sensing,
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Figure 4.1: Simulation domain, control domain and input-output configuration for the control of
perturbations in a 2-D flat plate geometry. Reference displacement thickness δ∗

0 , pressure mea-
surement pm, controlled output q, actuator distribution gc and p0 = p(xmin, ymin) with p the
fluctuating pressure. The two dot (•) connected arrows indicate the spatial integration paths
along the inflow and wall boundary to derive the output equation for pm in section 4.5.

which has been typically used in previous studies. In addition, the robustness of
the modelling and control approach to variations in the Reynolds number and the
pressure gradient is investigated.

The outline of this chapter is as follows. In section 4.2 the governing equations
are presented. In section 4.3 the equations are written in state-space form and
the finite-dimensional approximation is discussed. Section 4.4 presents the inflow
disturbance model, which is linked to the relevant flow physics, and is of importance
for the estimation problem. The pressure is eliminated from the state equations by
formulating the state equations in a divergence free basis. In section 4.5 a new
pressure output equation is derived which relates the upstream disturbances and
the velocity perturbation field with the pressure at the measurement location at the
wall. The output equation is required to dynamically estimate the velocity field using
a Kalman filter. In section 4.6 the reduced-order controller/estimator is designed
within an H2/LQG optimal control framework. The controllers are evaluated in
section 4.7 followed by conclusions in section 4.8.

4.2. Governing equations
2-D perturbations in an incompressible boundary layer flow over a flat plate are
considered. The flow configuration, including the inputs-outputs, used in this study
is shown in figure 4.1. The chosen control objective is to suppress the effect of
inflow disturbances on the wall shear stress defined by the controlled output q(t).
The control actuation is achieved by localised wall-normal suction and blowing at the
wall characterised by the distribution gc(x) and a pressure sensor is used to extract
the measurement information pm(t) at the wall. A feedforward actuator/sensor
configuration [27] is considered in which the sensors are placed upstream of the
actuators to detect the upcoming perturbation. Such a setup is recommended for
H2/LQG optimal control of convective instabilities as reviewed by Sipp and Schmid
[9], Schmid and Sipp [28]. It guarantees robust stability in amplifier flows and the
best nominal performance [9, 27, 28]. Due to the convective nature of the flow, this
setup dynamically corresponds to disturbance feedforward control, which is a special
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case of output feedback control within the optimal control framework formalised by
Doyle et al. [30]. In this section the flow domain and the governing equations are
presented. The inputs and outputs will be discussed in the next sections.

The dynamics of the perturbations are obtained by linearising the Navier-Stokes
equations around the steady boundary layer. The boundary layer is approximated
by a profile from the family of Falkner-Skan similarity solutions. It is assumed
that the outer free-stream velocity is given by U∗

∞ = U∗
0 (x∗/x∗

0)m with x∗
0 a fixed

physical position from the virtual leading edge of the plate and U∗
0 the free-stream

velocity at that position. The asterisk (*) is used to denote a dimensional variable.
The parameter m characterizes the pressure gradient, both favourable (m > 0)
and adverse pressure gradients (m < 0) can be accounted for. The boundary layer
displacement thickness δ∗

0 and the free-stream velocity U∗
0 at x∗ = x∗

0 are chosen
as reference variables to non-dimensionalise the flow with corresponding Reynolds
number Re = Re0 = U∗

0 δ∗

0

ν where ν is the kinematic viscosity. For the nominal
simulation case and control design case we select Re = 500, m = −0.02 which cor-
responds to a distance of x∗

0 = 147δ∗
0 from the virtual leading edge. The computa-

tional domain is also scaled with δ∗
0 and the non-dimensional coordinates are defined

as x = (x∗ − x∗
0)/δ∗

0 , y = y∗/δ∗
0 . For flow simulations the domain xsim ∈ [0, 400],

ysim ∈ [0, 25] is considered. The controller is synthesised using localised compu-
tations within the domain xc ∈ [150, 310], yc ∈ [0, 25]. Based on the following
similarity variable ξ(x∗) = y∗

√

U∗
∞/νx

∗, the boundary layer in these domains is
obtained by solving the Falkner-Skan equation

f ′′′ +
m+ 1

2
ff ′′ +m(1 − f ′2) = 0,

f(0) = f ′(0) = 0, f ′(∞) = 1.
(4.1)

The solutions for f(ξ) and f ′(ξ) are combined into the non-dimensional velocity
profiles

U(x) =
U∗

U∗
0

=U∞f
′(ξ), (4.2)

V (x) =
V ∗

U∗
0

=
1
2̺

√

U∞

(x + x0)x0

(

(1 −m)ξf ′(ξ) − (1 +m)f(ξ)
)

, (4.3)

with ξ(x) = ̺
√

U∞
x0

x+x0
y, ̺ =

∫ ∞

0
(1 − f ′)dξ and U∞ = U∗

∞/U
∗
0 = (x/x0 + 1)m.

The displacement thickness for this boundary layer is given by δ∗ =
∫ ∞

0 (1 −

U∗/U∗
∞) dy∗ =

√

νx∗/U∗
∞̺, and the local Reynolds number Reδ at a particular

x station can subsequently be computed using

Reδ = Re

√
(

1 +
̺2x

Re

)

U∞. (4.4)

Figure 4.2 shows the boundary layer (4.2)-(4.3) along with the local Reynolds num-
bers (4.4). Small perturbations to the boundary layer are governed by the linearised
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Figure 4.2: Falkner-Skan boundary layer (m = −0.02, Re0 = 500) used for the linearization. (a)
streamwise component U . (b) wall-normal component V .

Navier-Stokes equations (LNSE). Let U(x)+u(x, t) be the perturbed velocity field.
The linearised non-dimensional equations, including the boundary conditions used
in this study, are given by

∂u

∂t
= − (U ·∇) u − (u·∇) U +

1
Re

∆u
︸ ︷︷ ︸

Lu

−∇p+ f , (4.5a)

0 = ∇·u, (4.5b)

u|ΓD
= ub, (4.5c)

0 = −np|Γout
+

1
Re

(n·∇) u|Γout
, (4.5d)

where L is the linearised Navier-Stokes operator, u(x, t) = [u(x, t), v(x, t)] and
p(x, t) denote the velocity and pressure perturbation field and f(x, t) is body force
field per unit mass. In-domain body forces are typically used for applying control. In
this study only wall-actuation is considered, which is modelled through the boundary
condition. Without loss of generality the body force will be set to zero in the
remainder of the chapter. The system is closed by the boundary conditions (4.5c)-
(4.5d), where Γout is the outflow part of the boundary and ΓD is the Dirichlet part
of the boundary, which includes the rigid wall Γwall, the computational inflow Γin

and the outer free-stream boundary Γfs. ub is the prescribed velocity input profile
at the boundary, which is used to model the wall-actuation (see next section) and
to account for external disturbances in the control design. The inflow boundary
condition used to impose the external disturbances in the control model is discussed
in section 4.4 and is an integral part of the control design. An unperturbed flow
is assumed at the computational inflow of the simulation domain (u(0, y) = 0)).
For both cases it is assumed that the perturbations vanish at the upper boundary
(u(x, 25) = 0). A standard outflow boundary condition (4.5d) is prescribed, which
has proven to be well suited for uni-directional outflows [111]. The outflow condition
is implicitly satisfied by the variational formulation used to discretise the LNSE and
does not need to be explicitly taking into account.
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4.3. State-space formulation
In order to apply linear control theoretic tools the flow equations must be formulated
into the standard state-space form. To generalise the modelling approach and control
system design the equations are written as an abstract equation in operator form
[43, 110]. Explicit discrete expressions are obtained for all operators which are
discussed afterwards.

4.3.1. Abstract form
The pressure term, along with the divergence equation can be eliminated by the
projection of the equations onto the divergence free space [110]. This avoids singu-
larities resulting from the assumption of incompressibility. Control and disturbance
are introduced through the boundary which renders the system in-homogeneous. By
a standard lifting procedure [94, 110] the effect of the boundary condition can be
represented by a volume forcing in a modified state-space system with homogeneous
boundary conditions. We also refer to Curtain and Zwart [43, section 3.3] for more
information about this formulation. The boundary condition is decomposed into
an external disturbance and a control ub = ud + uc with uc(x, t) the suction and
blowing imposed at the rigid wall and ud(y, t) the perturbation velocity imposed
at the inflow. Both actuation and disturbance are mathematically equivalent. The
boundary condition can be lifted by setting

u = uh + Zub = uh + Zcuc + Zdud, (4.6)

where uh is a solution of the homogeneous problem and Z ‘lifts’ the boundary
condition to the interior of the domain and must be defined such that (Zub) |ΓD

= ub

and ∇ · (Zub) = 0 [43, 110]. Let X = {u ∈ L2(Ω)2| ∇ · u = 0} and let P be
an orthogonal projector from L2(Ω)2 7→ X satisfying Pu = u and P(∇p) = 0.
Applying the projection P to (4.5a) and substituting the change of variables (4.6)
gives the following homogeneous equation in operator form

u̇h = Auh + A Zub − Zu̇b, (4.7)

where A u = PLu, Au = A u for u ∈ D(A) and the domain D(A) includes
homogeneous boundary conditions D(A) = {u ∈ X | u|ΓD

= 0}. The external input
in (4.7) is actually the time derivative of the prescribed velocity at the boundary ub.
The spatio-temporal boundary actuator/disturbance model for ub can be described
by

η̇b = Abηb + Bc
bφ(t) + Bd

bwd,

ub = Cbηb,
(4.8)

where ηb(t) is the temporal state at the boundary, φ(t) the control input, wd(t)
the external disturbance input and ub(x, t) is the output velocity at the boundary.
Since actuation and disturbance are independent of each other, the state-space (4.8)
has the form Ab = diag{Ac, Ad}, Bc

b = [Bc, 0]T , Bd
b = [0, Bd]T , Cb = [Cc, Cd].

The inflow disturbance model (Ad,Bd, Cd) is discussed in detail in the next section.
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Figure 4.3: Triangulations used for the simulation model and control model. (a) Triangulation
with 1200 elements used for the simulation model. (b) Triangulation with 340 elements used for
the control model.

To manipulate the flow, localised unsteady blowing and suction is considered that
influences the wall-normal component at the wall. It is assumed that the actuator
dynamics are described by

η̇c = τ−1 (φ− ηc) = Acηc + Bcφ,

uc = gcηc = Ccηc,
(4.9)

with ηc(t) the temporal actuator state that describes the amplitude of the blowing
and suction. The temporal dynamics are governed by a simple first order lag filter
with τ the time constant. The time constant is set equal to the sampling time of
the simulations. In this case the filter corresponds to a stable approximation of a
pure integrator commonly used for boundary control [80, 84]. A localised spatial
distribution is considered with gc(x) = [0, gcv

]T where gcv
= sin (2π(x− xg)/Lg)

if xg ≤ x ≤ xg + Lg and gcv
= 0 elsewhere. The spatial length is set to Lg = 20

starting at xg = 230. The spatial length is chosen to be less than the spatial wave-
lengths of the dominant TS waves (see next section) and allows for effective control
over a broad frequency spectrum. Combining the boundary dynamics (4.8) with the
dynamics in the interior of the domain (4.7) and using u̇b = CbAbηb+CcBcφ+CdBdwd

it is straightforward to express (4.7) in the (extended) state-space form

u̇e = Āue + B̄cφ+ B̄dwd, (4.10)

ue =
[
uh

ηb

]

, Ā =
[
A A ZCb − ZCbAb

0 Ab

]

, Ab =
[
Ac 0
0 Ad

]

, Cb =
[
Cc Cd

]
,

B̄c =
[
−ZcCcBc

Bc
b

]

, B̄d =
[
−ZdCdBd

Bd
b

]

, Bc
b =

[
Bc

0

]

, Bd
b =

[
0

Bd

]

,

where ue denotes an extended state. The output equation for the wall pressure
measurements will be derived in section 4.5. This equation is less trivial since the
pressure is eliminated from the state equations.
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4.3.2. finite-dimensional approximation
Equation (4.10) represents the continuous formulation of the system. For simula-
tion and control design a finite-dimensional approximation of (4.10) is required. The
method of Galerkin projection with multivariate splines presented in chapter 2 is
used to find matrix representations of all operators in (4.10). The pressure is elimi-
nated from the equations by using a space of velocity fields which is divergence free
and a suitable choice of variational formulation (see appendix A.1). By expanding
the solution in the null basis of the discrete divergence operator a minimal support
basis is obtained for a divergence free spline space S ⊂ X . The system is projected
on this basis through the variational formulation to obtain the finite-dimensional
system. The triangulations used to construct the simulation model and the initial
model that is used for model reduction and control design are shown in figure 4.3.
To derive the simulation model a structured triangulation consisting of 1200 ele-
ments is used. It is refined near the wall using a hyperbolic stretching function to
properly resolve the shear features. C0 continuous elements and high degree, fifth
order B-form polynomials are chosen which allow for better approximation prop-
erties [64]. The simulation model has a total of 11501 states. The model order
already includes a large initial reduction resulting from the elimination of the diver-
gence free constraint through the null basis expansion, which is equal to rank of the
discrete divergence operator. It is verified with a mesh convergence analysis that
higher resolutions did not provide an improved accuracy of the simulation results.
To construct the initial model that is used for model reduction and control design
a lower order discretisation is used. Again C0, d = 5 elements are chosen, but a
coarser mesh consisting of 340 elements is used. The control model has 3231 states
which allows efficient application of control theoretic tools for model reduction and
control design. In the next sections the notation (A,B, C,D) is used to denote the
full order finite-dimensional system and the notation (A,B,C ,D) is used to denote
a reduced-order model.

4.4. Inflow disturbances
The state-space description (4.10) also includes a disturbance model, defined by
(Ad,Bd, Cd), to account for external disturbances in the control design. In partic-
ular the performance of the state estimation relies on the model for the external
disturbances as the estimation error is minimised in the presence of these distur-
bances. The spatio-temporal structures that can be estimated in the control (actu-
ators/sensors) domain depend on the spatial-temporal structures that are excited
by the external disturbances. External disturbances are introduced through the
inflow boundary u|Γin

= ud with ud the inflow perturbation velocity. The inflow
perturbation is computed such that it allows for efficient estimation of the domi-
nant perturbations that contribute to transition. The primary route to transition
[16] is considered, trigged by linear growth of the primary modes as described by
the classical linear stability theory (LST) [21]. LST assumes a locally parallel flow
in which the primary modes take the form

u = Real
[

ũei(αx−ωt)
]

, (4.11)
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Figure 4.4: The leading or most unstable wavenumber as function of temporal frequency at Re0 =
500, x = 150, m = −0.02. (a) The imaginary part. Negative values characterize unstable modes
(gray region). (b) The real part. The point marked by ‘o’ corresponds to the most amplified
frequency for the investigated conditions.

with ũ(y) = ũr(y) + iũi(y) the complex eigenfunction of the mode, α = αr +
iαi the complex wave-number and ω the real frequency of the mode. The inflow
is considered as the disturbance source which generates the perturbation (4.11)
at a particular frequency ω. The modes are computed as solutions of the Orr-
Sommerfeld equation using a local parallel spatial stability analysis at the inflow of
the control domain, that is at Re0 = 500 and x = 150 (Reδ = 706). Figure 4.4
shows the wavenumber (spatial eigenvalue) of the primary mode as function of the
temporal frequency. Negative values for αi characterize unstable modes. Although
the spectrum of the Orr-Sommerfeld operator is continuous and unstable over a
broad range of frequencies, only the most unstable primary mode is included in the
model for control design. The motivation for this will be explained later in this
section. For the nominal investigated conditions, the most amplified frequency is
found at ω = ωd = 0.078, see figure 4.4. This frequency will be referred to as
the design frequency. Note that this frequency is not necessarily the most amplified
frequency for the spatially developing boundary layer and a discrepancy between the
parallel theory and the non-parallel theory is to be expected [131]. Nevertheless,
it is found that the design frequency selected from parallel theory provides a good
estimate. The shape of the eigenfuction at this frequency is shown in figure 4.5. The
eigenfunction is normalised such that the maximum magnitude of the streamwise
component is equal to one. At the inflow, this perturbation mode (4.11) can be
described by

u|Γin
= ud = ũr cos(ωdt)

︸ ︷︷ ︸
ηd

+ũi sin(ωdt)
︸ ︷︷ ︸

− 1
ωd

η̇d

. (4.12)

Equation (4.12) employs an ansatz in time and the two temporal components are
900 out of phase. To account for the perturbation modes in a stochastic control
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design, the following dynamic disturbance model is proposed in section 3.2.3
[
η̇d

η̈d

]

=
[

0 1
−ω2

n −2ζωn

]

︸ ︷︷ ︸

Ad

[
ηd

η̇d

]

︸︷︷︸
η̄d

+
[

0
ω2

n

]

︸ ︷︷ ︸

Bd

wd, (4.13a)

ud =
[
ũr − 1

ωd
ũi

]

︸ ︷︷ ︸

Cd

[
ηd

η̇d

]

. (4.13b)

The temporal dynamics (4.13a) of the perturbation mode ud is given by a second
order low-pass pass filter with ωn the undamped natural frequency, ζ the damping
ratio, η̄d = [ηd, η̇d]T the temporal state and wd the external disturbance input. The
low-pass filter allows the magnitude shaping of ud depending on the input frequency
of wd. We choose ζ = 0.15 and ωn = 0.08 such the filter has a peak frequency
ωp =

√

1 − 2ζ2 = ωd at the design frequency and amplifies the magnitude of the
disturbance wd at this frequency with approximately a factor of 3.5. By increasing
the magnitude of the disturbance around the design frequency, the controller will
be better able to target the most unstable frequencies that contribute to transition,
while at the same time achieving robustness at the off-design frequencies.

For the control design the external disturbance is assumed to be zero-mean
Gaussian white noise with unit root mean square (rms) intensity. This scaling was
discussed in detail in section 3.2.6. The temporal state is distributed at the in-
flow boundary through the output equation (4.13b), where ηd excites the real part
of the eigenfunction and η̇d excites the imaginary part of the eigenfunction scaled
with the perturbation frequency to account for the phase. This model can easily
be extended to include the excitation of Orr-Sommerfeld eigenfunctions calculated
at different temporal frequencies. However, it was shown in chapter 3 that a single
mode disturbance model is effective for estimation of multiple frequency wavepack-
ets, which is also observed for the application case considered in this study. This
can be contributed to the fact that the eigenfunction is excited over all frequencies
in case of stochastic excitation. Also at other frequencies than the design frequency,
the inflow perturbation will develop spatially to modal perturbations with different



4.5. Pressure output equation

4

97

wavelengths and growth rates. The computational inflow is placed sufficiently far
from the sensor location such that the non-modal and possible non-physical spatial
transient behaviour near the inflow does not significantly contribute to the input-
output behaviour. The sensitivity of the controller performance with respect to the
location of the computational inflow boundary will be investigated in section 4.7.

4.5. Pressure output equation
Information about the perturbations is extracted from pressure measurements at
a single point on the wall. In this section the pressure output equation is derived
which relates the model variables, i.e. the upstream disturbances and the velocity
perturbation field, with the fluctuating pressure at the measurement location at the
wall. The output equation is required to estimate the velocity field using a Kalman
filter. The output equation is derived from the LNSE which describes the fluctuation
pressure uniquely up to an arbitrary additive constant in space. To fix this constant
it is assumed that the fluctuating pressure is zero at the intersection point of the
outer free-stream boundary and the inflow boundary (p(xmin, ymax = 0), see also
figure 4.1). The formulation of the output equation utilizes the formal inverse of the
pressure gradient at the inflow and wall boundaries. The use of spatial integration
along the boundaries avoids additional computational challenges which would arise
when considering the 2-D pressure-Poisson equation, such as higher order derivatives
and non-homogeneous Neumann boundary conditions. The practice of integrating
the governing equations to obtain the pressure can also be found in literature. For
example, to obtain the pressure field from experimental velocity field data [132].
However, the application for dynamic flow estimation has so far not been reported.
Two spatial integration paths are considered to formulate the output equation, see
also figure 4.1. The first path is along the inflow boundary from the freestream
boundary, with p(xmin, ymax, t) = 0, to the pressure at the wall p(xmin, 0, t) = p0(t).
The second path is along the wall, with p0(t) as boundary condition, to the pressure
at the measurement location p(xm, 0, t) = pm(t). First the second integration path
is considered.

The pressure at the wall is related with the perturbation velocity through

∂xp|Γwall
=

1
Re

∂yyu|Γwall
, p(xmin, t)|Γwall

= p0(t). (4.14)

Equation (4.14) is obtained by evaluating the x-momentum equation (4.5a) at the
wall. The boundary condition at xmin can be lifted through the following linear
change of variables p|Γwall

= ph + Ip0 where ph is the solution with homogeneous
boundary conditions and with I(x)p0 = p0 for all x satisfying Ip0|xmin

= p0 and
∂xI = 0. Note that I(x)p0(t) represents the constant in space to uniquely define
the pressure at the wall. The pressure at the wall is subsequently given by

p|Γwall
= ph + Ip0

= ∂̃−1
x

1
Re

∂yyu|Γwall
+Ip0, (4.15)
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where ∂̃−1
x denotes the formal inverse of ∂̃x which is defined as ∂̃xp = ∂xp for

p ∈ D(∂̃x) with D(∂̃x) = {p ∈ L2(Γwall) | p(xmin, t) = 0}. ∂̃x is simply the
restriction of ∂x with the homogeneous boundary condition to allow the inversion
of the operator. The measured pressure is obtained by evaluating (4.15) at the
measurement location and can be written as

pm = p(x = xm, t)|Γwall
= Cwallu + p0, (4.16)

where the output operator Cwall is formally defined as

Cwallu =
1
Re

∫

Γwall

δ(x− xm)∂̃−1
x ∂yyu|Γwall

dx. (4.17)

The Dirac function indicates a point measurement at xm. Equation (4.16) still
contains the unknown boundary condition p0. The equation for p0 is obtained
similarly by considering the first integration path. This path is defined by the
y-momentum equation at the inflow boundary

∂yp|Γin
= eT

2 (L − ∂t) u|Γin
, p(ymax, t)|Γin

= 0, (4.18)

where e2 = [0 1]T selects the wall-normal component of the equation. Defining
∂̃yp = ∂yp for p ∈ D(∂̃y) with D(∂̃y) = {p ∈ L2(Γin) | p(ymax) = 0}, (4.18) can be
solved for the pressure at the inflow boundary

p|Γin
= ∂̃−1

y eT
2 (L − ∂t) u|Γin

. (4.19)

From the disturbance model (4.13) it follows that ∂tu|Γin
= u̇d = CdAdη̄d + CdBdwd

and substituting this expression in (4.19) gives

p|Γin
= ∂̃−1

y eT
2 (Lu|Γin

−CdAdη̄d − CdBdwd) . (4.20)

Defining the output operators as

Cinu =
∫

Γwall

δ(y)∂̃−1
y eT

2 Lu|Γin
dx,

Cη
inη̄d = −

∫

Γwall

δ(y)∂̃−1
y eT

2 CdAdη̄d dx,

Dinwd = −

∫

Γwall

δ(y)∂̃−1
y eT

2 CdBdwd dx,

(4.21)

the output equation for p0 can be written as

p0 = p(0, t)|Γin
= Cinu + Cη

inη̄d + Dinwd. (4.22)

Substituting (4.22) for p0 in (4.16) gives

pm = (Cwall + Cin) u + Cη
inη̄d + Dinwd. (4.23)
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Applying the linear change of variables from (4.6) for u and using uc = Ccηc,
ud = Cdη̄d finally gives the output equation for the pressure at the measurement
location.

pm =
[
Cwall + Cin (Cwall + Cin) ZcCc (Cwall + Cin) ZdCd + Cη

in

]





uh

ηc

η̄d



 + Dinwd

=C̄pue + D̄dwd. (4.24)

Again, discrete expressions are obtained for all operators in (4.24) using Galerkin
projection where the pressure at the boundaries is approximated by a univariate
spline basis for L2(Γ). Note that the uncertain state dynamics due to the unknown
constant is accounted for in the output equation as a direct feed-through of the state
disturbances. To also account for sensor inaccuracies it also assumed that the mea-
surement is corrupted by zero-mean Gaussian white noise wn which modifies (4.24)
to

pm = C̄pue + D̄dwd + γpwn, (4.25)

where γp reflects the magnitude of the uncertainty which can be tuned to design
the controller. The gradient approach to derive (4.25) results in uncertainties in the
output equation. Firstly, p0(t) defined in (4.22) is uncertain due to the assumption of
zero fluctuation pressure at the freestream boundary. Secondly, the pressure output
pm is obtained by integrating the governing equations and the associated global
flow field from the inflow to the measurement location. As a result, additional
unmodelled disturbances and dynamic uncertainties can accumulate in high output
uncertainties. To investigate whether this affects the robustness and performance of
the controller, a second measurement case is considered which is based on the wall
shear stress

τm = τxy(xm, t)|Γwall
= C̄τ ue + γτwn, (4.26)

where

C̄τ ue =
1
Re

∫

Γwall

δ(x− xm)∂yu|Γwall
dx. (4.27)

4.6. H2/LQG reduced-order control design
The reduced-order controller is designed within an H2/LQG optimal control frame-
work to account for the inflow disturbances and measurement noise. The controller
is designed for the state-space system defined by the state equation (4.10) and the
output equations (4.25) and (4.26). In addition a controlled output q is defined
which is used as control objective to synthesise the controller. The complete input-
output system can be formulated as

u̇e = Āue + B̄cφ+ B̄dwd,

q = C̄1ue,

ym = C̄2ue + D̄dwd + γwn,

(4.28)
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where ym is either the measured pressure or the wall shear stress. The controlled
output is defined by

q = C̄1u =
∫

Γwall

h(x)τxy |Γwall
dx

=
1
Re

∫

Γwall

h(x)∂yu|Γwall
dx, (4.29)

where h(x) is chosen as a Gaussian distribution function h(x) = exp
[
−((x− xq)/rx)2

]

with xq = 280 the center of the distribution and rx = 5 the radius. The wall shear
stress in (4.29) is found to be an effective and robust performance indicator for the
input-output configuration considered in this study. The controlled output is placed
sufficiently far from the actuator (see also figure 4.1) such that the actuator has no
direct influence on q and minimization of q is achieved by minimizing the effect of
inflow perturbations alone. However, it is found that there is not much sensitivity
with respect to the choice of the position xq and the radius rx of the distribution,
as long as it is placed sufficiently far from the actuator.

H2 optimal control defines the cost function in the frequency domain, while LQG
control is the time-domain equivalent and is considered in this section. The control
objective is to suppress the wall shear stress defined by q. The LQG cost function
to design the controller is defined by

JLQG = E

{

lim
T →∞

1
T

∫ T

0

zT z dt

}

= E

{

lim
T →∞

1
T

∫ T

0

q2 + l2φ2 dt

}

, (4.30)

with z(t) = [q(t), lφ(t)]T the performance measure to be minimised. Equation (4.30)
also includes a penalty on the control input defined by the parameter l which deter-
mines the trade-off between a low controlled output power q2 and a low control effort
φ2 in the design of the controller. The reduced-order controller that minimises (4.30)
is derived in two steps. First, a reduced-order model (ROM) is derived using bal-
anced truncation [67]. Secondly, the ROM is used to synthesize the controller and
the truncated dynamics are taken into account in the control system design. Bal-
anced truncation extract the most controllable and observable modes of the system.
It first involves a similarity transformation of the form ue 7→ Sue, which balances
the system matrices through Ā 7→ SĀS−1, B̄ 7→ SB̄ and C̄ 7→ C̄S−1, D̄ 7→ D̄, such
that each state has an equal measure for both controllability and observability. The
reduced-order model of order r described by the matrices A,B,C and D is obtained
from the balanced matrices by retaining the rows and columns corresponding to
most controllable and observable states. The optimal controller based on the ROM
combines a state estimator and a state feedback, and can be written as a dynamic
system in the form

˙̂ur = Aûr + Bcφ+ L (ym − C ûr) ,

φ = −F ûr,
(4.31)



4.6. H2/LQG reduced-order control design

4

101

with ûr ∈ R
r the estimated state and where F , L are respectively the state feedback

gain and the estimator (Kalman) gain to be optimised. Due to the well known
separation property [29, pp. 388-390] of the optimal solution the state feedback
and the state estimator can be designed and synthesised independently. The state
feedback gain is obtained by minimizing (4.30) when noise is ignored. For the ROM
this means to find F that minimizes

J = lim
T →∞

1
T

∫ T

0

uT
r CT

1 C1ur + l2φ2 dt (4.32)

subject to the closed-loop system dynamics u̇r = (A − BcF) ur. The Kalman gain
L is subsequently obtained by minimizing the covariance of the estimated state

E
{

(ur − ûr)T (ur − ûr)
}

= E
{

ũT
r ũr

}
(4.33)

subject to the error dynamics ˙̃ur = (A − LC) ũr + (Bd − LDw)wd − Lγwn. Note
that L is optimised to provide an optimal estimate in the presence of external dis-
turbances wd and wn. For the control design the external disturbances are assumed
to be Gaussian white noise with unit intensity. As a result the estimation problem
is parameterised in terms of γ which reflects the uncertainty in the measurement.
It can be shown that with this parameterisation γ also reflects a rms value for
the sensor noise relative to the state disturbances [37], see also section 3.2.6. The
optimal solutions for the control and estimation problem can be obtained indepen-
dently by solving the associated algebraic Riccati equations for (4.32) and (4.33)
(see appendix B), which together form the compensator (4.31). In the design of the
compensator the parameters l and γ can independently be adjusted to achieve the
desired closed-loop performance. However, no guarantees are available about the
performance of the controller designed for the ROM on the original system. There-
fore the truncated dynamics are taken into account by evaluating the performance
of the controller in combination with the original system. Combining the compen-
sator (4.31) with the original system (4.28) gives the following closed-loop system
from the external disturbances to the performance measure z(t) = [q(t), lφ(t)]T

[
u̇e

˙̂ur

]

=
[

Ā −B̄cF

LC̄ A − BcF − LC

]

︸ ︷︷ ︸

Acl

[
ue

ûr

]

+
[

B̄d 0
LD̄w Lγ

]

︸ ︷︷ ︸

Bcl

[
wd

wn

]

,

z =
[
C̄1 0
0 −lF

]

︸ ︷︷ ︸

Ccl

[
ue

ûr

]

.

(4.34)

The H2 system norm of the following two closed-loop transfer functions

T qw =
[
C1 0

]
(sI − Acl)

−1
Bcl, (4.35)

T φw =
[
0 −F

]
(sI − Acl)

−1
Bcl, (4.36)

will be used as performance metric to design the controller. ‖T qw‖2 is the H2

closed-loop system norm from the external disturbances to the controlled output
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Figure 4.6: Contours of the closed-loop system norms ‖T qw‖ (4.35), ‖T φw‖2 (4.36) and the relative
energy norm ‖T qw‖2

2/‖Gqw‖2
2 (Gqw = 0.0525). (a) pressure-based estimation. (b) shear-based

estimation.

and is a measure for the control performance. ‖Tφw‖2 is the closed-loop system
norm from the external disturbances to the control input and is a measure for the
control effort. These norms are related to the LQG cost function (4.30) through

JLQG = ‖T zw‖2
2= ‖T qw‖2

2+l2‖T φw‖2
2, (4.37)

where T zw = Ccl (sI − Acl)
−1

Bcl. Based on a convergence analysis for the system
norms the order of the ROM and corresponding controller is chosen as r = 50. With
this order the norms have converged sufficiently to the norms of the closed-loop sys-
tem with the full-order controller and there is no loss in performance due to the
truncated dynamics. Figure 4.6 shows the contours of the H2 system norms and the
relative energy norm with both pressure-based estimation (a) and shear-based esti-
mation (b) as function of the design parameters (γ, l) for the order r = 50 controller.
A low value for the control penalty l gives an improved performance at the cost of a
higher control effort (higher state feedback gain F). A low value for γ reflects a low
output uncertainty. This gives an improved estimator performance at the cost of
a reduced robustness in case of unmodelled measurement inaccuracies. Due to the
separation principle of the control design, the output equation (pressure or shear)
only affects the performance of the state estimator which can be tuned through γ.
Note that γ models a relative magnitude of the sensor noise, a convenient means
to account for inaccuracies in the control design. The true magnitude of the noise
will be substantially different for actual shear and pressure sensors, which typically
measure in Volts. Any sensor calibration, e.g. Volts to Pascal, will also change the
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magnitude of the noise. Therefore no conclusions can be drawn regarding robustness
to sensor inaccuracies based on the magnitudes of γτ and γp compared to each other
in figure 4.6. To make a fair comparison between the two measurement cases, γ is
adjusted such that both have the same performance from a design perspective. It
can be observed that, through proper selection of γ, the same performance can be
achieved for a given l from an H2 design perspective, with both pressure and shear
measurements. Two performance levels are chosen, those corresponding to a 99%
(Design point (I)) and a 90% (Design point (II)) controlled output energy reduction.
The pressure-based controllers are characterised by (I) l = 0.025, γp = 0.0785, (II)
l = 0.05, γp = 0.3306 and the shear-based controllers by (I) l = 0.025, γτ = 0.0031,
(II) l = 0.05, γτ = 0.0113. These design points are on the curvature of the per-
formance level which provides a good trade-off between performance, control effort
and robustness. For the selected controllers, robustness to output uncertainties is
given priority in determining this trade-off.

4.7. Results
The selected controllers are evaluated using linear simulations of the closed-loop
system. The model defining a plate with a total length of Lsim = 400 as dis-
cussed in section 4.3 is used for simulating the response of the closed-loop system.
All simulations are performed with a sampling time of ∆t = ∆t∗δ∗

0/U
∗
0 = 0.2. The

performance is studied for exponentially growing perturbations introduced using op-
timal initial conditions. The initial condition is optimised to provide the maximum
energy growth

G(t) =
E(t)
E(0)

= max
u0

‖u‖2
L2

‖u0‖2
L2

= max
‖u0‖2

L2 =1
‖u‖2

L2 (4.38)

at the given final time tmax = 700. At this final time the initial condition is spa-
tially localised upstream of the control region. The initiation of the perturbations
is independent of the disturbance model used to design the controller and provides
a good benchmark to evaluate the effectiveness of the proposed control design [105].
In addition this perturbation case allows the proper evaluation of the estimator per-
formance as the perturbations convect through the control domain. For the design
of the estimator the problem is scaled in terms of γ. The role of γ is to account
for uncertainties in the control design and is not used to define the measurement
noise in the simulations. First the nominal performance without uncertainties is
evaluated in section 4.7.1. The estimated pressure output p̂ = C û of the Kalman
filter can be sensitive to non-physical estimated velocities near the inflow bound-
ary of the control domain if these contribute significantly to the output behaviour.
Therefore the sensitivity of the location of the computational inflow boundary, and
thus the inflow disturbance model, on the controller performance is investigated in
section 4.7.2. The effect of sensor noise, uncertainties in the Reynolds number and
the pressure gradient is discussed in section 4.7.3.
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Figure 4.7: Uncontrolled, controlled and estimated energy for the optimal perturbation at Re0 =
500, m = −0.02. Controller (I) is considered. (a) pressure-based . (b) shear-based.
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Figure 4.8: Input-output signals for control of the optimal perturbation at Re0 = 500, m = −0.02.
Controller (I) is considered.

4.7.1. Nominal performance
First the performance of controller (I) is evaluated for the nominal simulation case
(Re0 = 500, m = −0.02). Figure 4.7 shows the perturbation energy growth as
function of time with both pressure-based estimation (a) and shear-based estimation
(b). The input-output signals, which are the pressure measurement pm(t), the shear
measurement τm(t), the amplitude of the blowing and suction φ(t) and the controlled
output q(t), are shown in figure 4.8. The controlled output q(t) reflects the controller
performance as it is used within the control objective that is minimised by the
controller. Snapshots of the uncontrolled and controlled streamwise perturbation
field with pressure-based estimation at t = 200, t = 330, t = 450 and t = 600 are
shown in figure 4.9.

The initial perturbation for the uncontrolled case leads to an energy amplification
of G(tmax) ≈ 3 × 102. After an initial transient growth the perturbation quickly
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Figure 4.9: Snapshots of the uncontrolled and controlled streamwise perturbation field at t = 200
(a), t = 330 (b) t = 450 (c) and t = 600 (d). Pressure-based controller (I) is considered. The
triangles indicate respectively the position of the measurement sensor (▽), the actuator (△) and
the controlled output (⊲).

develops into an exponentially growing wavepacket that propagates downstream.
The energy of the uncontrolled wavepacket reaches a maximum at t = 700 after
which it decays again as the wavepacket leaves the computational domain xsim ∈
[0, 400]. After the wavepacket passes the sensor (t > 100) the estimated perturbation
energy quickly aligns with the energy of the actual state. The estimated state is used
to determine the control input and the perturbation grows only until it reaches the
actuator position after which it begins to decay due to the control action of unsteady
blowing and suction. An energy reduction of more than two orders of magnitude
is subsequently achieved. The estimated perturbation goes to zero again, while the
remaining perturbation leaves the localised control domain xc ∈ [150, 310] after
roughly t = 550, see also snapshot (d) in figure 4.9. The estimated energy does
not align exactly due to the non-physical effect of the boundary conditions near
the inflow and outflow of the control domain. The non-physical effect at the off-
design frequencies near the inflow boundary contributes more to the pressure output
behaviour, resulting in a slightly reduced performance as compared to the shear-
based controller.

A larger over-estimation can be observed with pressure measurements, which
can be contributed to the additional output uncertainty as discussed in section 4.5.
The over-estimation decays over time as the perturbations propagate away from the
computational inflow of the control model. This can also be viewed through the real
and estimated pressure at the sensor location in figure 4.8. Note that the pressure
pm(t) and shear measurements τm(t) are very similar. They have a negligible shift in
phase compared to each other, but the pressure is amplified more with approximately
a factor of 30. This is in accordance with the choice of the design parameter γ to
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Figure 4.10: Snapshots of the perturbation velocity within the control domain xc ∈ [150, 310]
at t = 390 for the uncontrolled and controlled optimal perturbation. Pressure-based controller
(I) is considered. (a) Estimated velocity without control. (b) True velocity without control. (c)
Estimated velocity with control. (d) True velocity with control. The triangles indicate respectively
the position of the measurement sensor (▽), the actuator (△) and the controlled output (⊲).

achieve the same performance from an H2 design perspective. The control input
confirms the filtering of the measurement and the wave cancellation to minimize the
wall shear stress defined by q. By minimizing q the energy is reduced in the entire
region upstream of the control domain. Both controllers are able to attenuate the
energy with more than two orders of magnitude.

The performance of the state estimator is also visualised in figure 4.10, which
shows a snapshot of the reconstructed and true flow field at t = 390 in the control
domain x ∈ [150, 310] with pressure-based estimation. Figure 4.10(a) shows the
estimated flow field without control, figure 4.10(b) shows the real flow field without
control, figure 4.10(c) shows the estimated flow field with control and figure 4.10(d)
shows the true flow field with control. The estimated field without actuation ap-
plied is also shown to visualize the reconstruction in the downstream region where
the controlled output is defined. The perturbations are very well reconstructed in
the input-output region. As a result the control is able to effectively dampen the
incoming perturbations and the effect of the suction and blowing on the flow field
can clearly be observed.

Figure 4.11 shows the wall normal maximum amplitude of the rms streamwise
velocity perturbation [116]

urms,max(x) = max
y

√

1
T

∫ T

0

|u|2 dt (4.39)

for the uncontrolled and controlled case. The performance of controller (I) is com-
pared with controller (II). The amplitude of the perturbation grows exponentially
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Figure 4.11: The rms streamwise perturbation velocity. (a) pressure-based. (b) shear-based. The
triangles indicate respectively the position of the measurement sensor (▽), the actuator (△) and
the controlled output (⊲)

until it reaches the actuator position at which it begins to decay due to the action
of blowing and suction. Only a small amplification is present in the region of the
control actuator (230 ≤ x ≤ 250). Controller (I) is able to reduce the amplitude
with more than one order of magnitude at the location of the controlled output q
(xq = 280). Controller (II) is more conservative as it takes higher output uncer-
tainties into account. It can be observed that controller (II) with pressure-based
estimation achieves a better performance as compared with shear-based estimation
and the additional output uncertainty no longer influences the performance. From
these results it can be concluded that in the nominal case a comparable performance
can be achieved with both pressure-based and shear-based control.

4.7.2. Effect of domain truncation
In this section the sensitivity of the controller performance with respect to do-
main truncation is investigated. More specifically, the effect of the location of the
computational inflow of the control domain, and thus the location of the inflow dis-
turbance model is investigated. A controller is considered synthesised within the
domain xc ∈ [180, 310]. Compared to the nominal case in the previous the section,
the inflow is placed ∆x = 30 closer to the location of the measurement sensor at
xm = 210. This corresponds to approximately one spatial wavelength λx = 2π/αr of
the most amplified perturbation mode for the investigated condition, see figure 4.4.
The control design as presented in section 6 is performed with the truncated model
and the design parameters are again selected such that controller (I) and (II) achieve
respectively a 99% and 90% energy reduction from an H2 design perspective. Fig-
ure 4.12 shows the temporal energy growth with controller (I). Figure 4.13 shows
the amplitude of the rms streamwise velocity (4.39) of controllers (I) and (II). It can
be observed that the performance of pressure-based controller (I) has deteriorated
as a result of the domain truncation. This can be contributed to the fact that the
domain truncation results in higher pressure output uncertainties. Nevertheless, no
severe deterioration can be observed. Higher output uncertainties are taking into
account in the design of controller (II) and the performance is preserved in the
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Figure 4.12: Results with the truncated control domain xc ∈ [180, 310]. Perturbation energy for the
optimal perturbation at Re0 = 500, m = −0.02. Controller (I) is considered. (a) pressure-based.
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Figure 4.13: Results with the truncated control domain xc ∈ [180, 310]. The rms streamwise
perturbation velocity. (a) pressure-based. (b) shear-based.

case of a truncated domain. Actually pressure-based controllers (I) and (II) have
comparable performance as can be seen from figure 4.13. The performance of both
shear-based controllers has been completely preserved, as compared to the nominal
case in figure 4.7(b), and the domain truncation has no effect. This illustrates the ef-
fectiveness of using the inflow disturbance model for estimation of the perturbations
in the control domain.

4.7.3. Robustness
When applying the controller in a real application, modelling uncertainties are un-
avoidable and deteriorate the nominal performance. The controller is designed in an
optimal control framework and uncertainties are not directly taken into account as
would be the case for a robust controller. In this section the controller is evaluated
in off-design conditions. Both uncertainties in the pressure gradient characterised
by the parameter m and the Reynolds number are considered. In addition the effect
of sensor noise for the nominal case is investigated. The results for pressure-based
estimation are summarised in Table 4.1. The results with shear-based estimation are
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Figure 4.14: The perturbations energy with pressure-based estimation (a) and shear-based estima-
tion (b) for an optimal perturbation at the off-design condition Re0 = 500, m = −0.03. Controller
(I) is considered and compared with the same controller acting on the designed conditions.

omitted in table 4.1 as they provide no significant difference with respect to perfor-
mance, similar to what has been observed in the previous section. For example, the
effect of a variation in pressure gradient with m = −0.03 is shown in figure 4.14. To
illustrate the loss in performance, controller (I) designed for m = −0.02 is compared
with a controller acting at the simulation conditions. In accordance to the linear
stability theory the flow is more unstable and the optimal initial condition provides
a larger amplification G(t) = E(tmax)/E(0) ≈ 2 × 103. The controllers designed for
m = −0.02 still provide an acceptable performance. Similar results are obtained
with variations in the Reynolds number, see Table 4.1. In case of small variations
the controller is still able to reduce the energy peak between one and two orders
of magnitude. A progressive loss of performance is observed for larger deviations
from the design conditions. This can be contributed to the different speed, spatial
wave-length and growth of the wavepacket. This makes the control out of phase
with the perturbations. Nevertheless, the controller provides an energy reduction
and does not destabilize the flow in case of large uncertainties. For example, for the
case Re0 = 800,m = −0.04 the controller reduces the peak energy with approxi-
mately 65%. There is also no large sensitivity in the choice of the design parameters.
Controller (II) takes higher levels of uncertainties into account in the design and the
performance is more preserved. Nevertheless, controller (I) still achieves a better
performance in most simulation cases.

Additional simulations have been performed in which the measurement is cor-
rupted with Gaussian white noise with rms intensity σn. The effect of noise on
the performance depends on the relative magnitude of the noise with respect to the
measurement information (signal to noise ratio). Therefore the effect of noise is
only considered for the nominal case as the amplification from the initial condition
to the pressure measurement varies significantly between the simulation conditions
(Energy amplification between 102 − 107). Higher noise intensities give a reduced
performance, but the effect is less significant as compared with parameter varia-
tions. In case of realistic relative noise intensities the controller is properly able to
filter the measurement information and to preserve the performance. This is to be
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Simulation Design Controlled output Energy
settings point reduction reduction

rms qcon/ E(tmax)con/
Re0 m σn rms qunc E(tmax)unc

500 0 0 (I) 0.4212 0.1808
500 0 0 (II) 0.3102 0.0841
500 -0.02 0 (I) 0.0553 0.0021
500 -0.02 0 (II) 0.1328 0.0189
500 -0.03 0 (I) 0.1754 0.0264
500 -0.03 0 (II) 0.2622 0.0692
500 -0.04 0 (I) 0.3502 0.1149
500 -0.04 0 (II) 0.4120 0.1642
500 -0.06 0 (I) 0.6558 0.4255
500 -0.06 0 (II) 0.6850 0.4549

400 -0.02 0 (I) 0.1993 0.0381
400 -0.02 0 (II) 0.2548 0.0666
600 -0.02 0 (I) 0.1521 0.0184
600 -0.02 0 (II) 0.1547 0.0185
800 -0.02 0 (I) 0.4128 0.1600
800 -0.02 0 (II) 0.3688 0.1159

400 -0.03 0 (I) 0.1861 0.0334
400 -0.03 0 (II) 0.2925 0.0945
600 -0.03 0 (I) 0.2700 0.0630
600 -0.03 0 (II) 0.3095 0.0851
800 -0.04 0 (I) 0.5957 0.3412
800 -0.04 0 (II) 0.5937 0.3266

500 -0.02 0.02 (I) 0.0575 0.0023
500 -0.02 0.02 (II) 0.1378 0.0209
500 -0.02 0.05 (I) 0.0645 0.0022
500 -0.02 0.05 (II) 0.1431 0.0221
500 -0.02 0.15 (I) 0.1446 0.0082
500 -0.02 0.15 (II) 0.1959 0.0284

Table 4.1: Performance parameters to evaluate the robustness (rms q =

√
1
T

∫

T
|q|2 dt).

expected as sensor noise is taken into account in the control design. Note that for
the case σn = 0.15 the pressure measurement is corrupted with approximately 100%
with respect to its magnitude, see figure 4.8 for the input-output signals.

4.8. Conclusions
In practical flow control applications, real-time measurements can only be obtained
via sensors at discrete locations at the wall. Especially pressure-based sensors are
technically attractive by ensuring that the associated costs of active flow control are
positively balanced by net power savings. However, in past studies, implementa-
tion of pressure sensing in control design has not been treated in a systematic way
as part of the control design methodology. In this chapter the problem of point
pressure output feedback control of 2-D boundary layer instabilities is addressed. A
new approach is presented to design and synthesize reduced-order compensators for
estimation and control directly from the governing equations. The use of pressure
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measurements for dynamic flow estimation gives rise to additional modelling diffi-
culties and output uncertainties as the pressure at a single point is related to global
information of the flow field. These uncertainties are accounted for by accurately
modelling the effect of upstream perturbations on the output. The input-output
behaviour, which forms the basis for the estimation strategy, between the external
flow perturbations and the pressure at wall is obtained using a novel method based
on spatial integration of the governing equations. The results show that the dy-
namic estimation strategy is capable of obtaining accurate time-resolved estimates
of the convective perturbation field in the localised control domain from pressure
measurements at a single location at the wall. As a result the controller is able to
significantly suppress the perturbation growth, also in case of model uncertainties
in both the Reynolds number and pressure gradient.

The controller is also compared against an equivalent controller formulation
based on shear stress measurements. It shown that, through proper selection of
the controller design parameters, which parameterise the estimation and the state
feedback control problem, a comparable performance and robustness can be achieved
with both pressure and shear output feedback control. The comparison is conducted
assuming an “all else equal” perspective to investigate whether the additional mod-
elling challenges related to pressure measurement affect the maximum attainable
performance. However, pressure sensors are commonly better than shear stress sen-
sors from the viewpoint of signal to noise ratio. Accurate damping of TS waves
requires highly sensitive sensors, which are able to detect low amplitude TS waves
in their early linear stage. In the next chapter the controllers are applied in experi-
ments. This work has addressed important issues related to this next step, including
modelling of the input-output dynamics and obtaining experimentally feasible low-
order controllers, and thus provides an important step forwards for transition delay
in boundary layer flows.





5
Experimental estimation and

control of natural TS waves

A compensator strategy that incorporates a model based on the linearised Navier-
Stokes equations, aimed to suppress Tollmien-Schlichting waves naturally occurring
in low freestream turbulence conditions is experimentally demonstrated. Experiments
have been conducted on a flat plate geometry under the influence of an externally
imposed adverse pressure gradient. A Kalman filter is used to estimate the effect of
upstream disturbances based on pressure information from a single wall-embedded
microphone. This information is used by the controller to cancel the incoming per-
turbations using a surface DBD plasma actuator. The estimates obtained from the
Kalman filter are compared with experimental data obtained using Particle Image
Velocimetry (PIV). It is shown that the Kalman filter is able to estimate the spatio-
temporal behaviour of the perturbation field even though it relies on a priori assump-
tions on the upstream disturbance environment. The performance of the controller
and its robustness to varying freestream velocities is analysed in comparison with
open-loop continuous forcing. It is shown that the controller is able to additionally
reduce the fluctuating pressure power at the most amplified frequencies with more
than one order of magnitude and is capable of reducing the standard deviation of
the downstream sensor signal between 30-60% for a range of off-design free-stream
velocities.

This chapter is under review in AIAA journal as: H.J. Tol, C.C. de Visser and M. Kotsonis,
Experimental model-based estimation and control of natural Tollmien-Schlichting waves, 2018
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5.1. Introduction
Tollmien-Schlichting (TS) waves play an important role in the process of laminar-
turbulent transition on unswept wings in low freestream turbulence conditions (<
1%). By suppressing the growth of TS waves in their early linear stage it is possible
to delay the transition process, extend laminar flow and reduce skin friction drag.
Active control can be performed in an open-loop manner in which the actuator set-
tings have been predetermined and do not depend on measurements, e.g. steady
operation of plasma actuators [133]. Open-loop control typically involves changing
the mean flow conditions to achieve stabilisation of the flow, which requires relative
high power consumption. Reactive control strategies (i.e. closed-loop) on the other
hand aim at directly targeting the inherent instability mechanism and potentially
lead to a better performance and lower power consumption. Early closed-loop ap-
plications based on the wave-superposition principle [134–136] such as phase control
and opposition control successfully attenuated deterministically generated TS waves.
However, naturally occurring TS waves exhibit a bounded but non-deterministic
spectrum of phases and frequencies. Several studies have treated the cancellation of
natural and non-deterministically excited TS waves using adaptive control methods
and model-free control methods, such as the filtered x-LMS algorithm [137–140]
and extremum seeking control [141]. In addition, the application of model-based
control theory provides a solid framework for model identification and controller
design, which showed promising results in both numerical studies [85, 100, 109] and
experiments [87, 120, 142, 143]. The present study follows the latter approach by
developing and implementing a model-based estimator and controller for the atten-
uation of TS waves in an experimental framework.

Laminar boundary layers behave as noise amplifiers of upstream disturbances
and are in particular challenging to control. Convective instabilities that appear as
distinct wavepackets, such as TS waves, are generally uncorrelated to each other.
Furthermore, there exists only a small window of opportunity to suppress these
instabilities, between the time they are large enough to be detected by sensors and
the time they become nonlinear. The convective nature of the flow and the lack
of a physical downstream-to-upstream feedback mechanism favour a feedforward
actuator-sensor configuration. In this case a sensor located upstream of the actuator
measures the incoming perturbations, while the controller can use a model of the
perturbation evolution to devise an actuator signal that cancels the perturbations.
While such disturbance feedforward systems result in the best nominal performance,
it is well known that they rely on an accurate model of the flow, including an accurate
representation of the upstream disturbance environment [9, 27, 87].

The model can be obtained either from the governing equations of fluid flow
(white-box) or from a sample of input-output measurements using systems identi-
fication techniques (black-box). Numerical studies commonly focus on optimal and
robust estimation and control laws based on a Galerkin state-space formulation of
the linearised Navier-Stokes equations [33, 37]. Such white-box model-based con-
trollers provide important physical insights and give the best possible (i.e. optimal)
performance for a given set of inputs-outputs. However, this approach requires the
use of empirical model reduction methods [32] to synthesise experimentally feasi-
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ble controllers. Furthermore, this approach requires a priori assumptions on the
source and distribution of the external disturbances, which is not precisely known
in real flow environments. Hervé et al. [144] and Sipp and Schmid [9] argued that
Galerkin models are inappropriate due to the challenges in obtaining an accurate
representation of the upstream disturbance environment. To mitigate these chal-
lenges, they recommended data-based system identification techniques for experi-
mental control of amplifier flows. In this case the input-output relation is directly
identified from a sample of input-output measurements. This approach avoids the
need for a predefined disturbance model by processing information from an up-
stream sensor, which approximates the influence of the upstream disturbances. For
example, this is achieved by incorporating this information in an auto-regressive
design [142] or finite impulse response filters [120]. A drawback on the other hand
is that system-identified linear models can present challenges when nonlinearities
and stochastic velocity components are present in the flow, such as the presently
considered case of natural TS waves cancellation.

The present work investigates the practical feasibility and performance of a
white-box model-based compensator for estimation and control of TS waves in an
experimental environment where the instabilities appear and grow naturally. Of
the previous works, the approach taken in this study follows the guidelines set by
the work of Fabbiane et al. [87]. Fabbiane et al. [87] were the first to demonstrate
the suppression of artificially induced perturbations in experiments based on a DNS
model of the flow. To the author’s knowledge, the present study provides the first
experimental demonstration of model-based control of natural TS waves in an ex-
perimental framework. This work makes use of the combined framework presented
in chapters 2-4, to synthesize reduced-order controllers directly from the governing
equations without the use of prior numerical data or empirical model reduction.
The approach combines state-space discretisation of the linearised Navier-Stokes
equations using multivariate splines with exact balanced truncation to design ex-
perimentally feasible low-order controllers. It was shown that the use of physically
motivated inflow disturbance models allows for efficient estimation of the perturba-
tions within localised computational domains, also in the case of unknown/unmod-
elled upstream disturbances. This framework is applied in this study for estimation
and control of Tollmien-Schlichting waves. For the experimental realisation of the
control objectives, wind tunnel experiments have been conducted in an anechoic,
low-turbulence facility. A two-dimensional laminar boundary layer is established
on a flat plate geometry under the influence of an externally imposed adverse pres-
sure gradient. A high-sensitivity surface microphone that measures the fluctuating
pressure at the wall and a Dielectric Barrier Discharge (DBD) plasma actuator are
used as actuator/sensor pair. The model-based estimator and controller are im-
plemented in a real-time FPGA-based digital signal processor. Particle Image Ve-
locimetry (PIV) measurements are used to compare the spatio-temporal estimates
obtained from the state estimator with the natural perturbation fields to validate
the modelling methodology. The experimental control performance of the combined
estimation/feedforward control approach is investigated in both nominal designed
conditions and in off-design conditions to evaluate the robustness.
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5.2. Experimental set-up
5.2.1. Flow facility and PIV set-up
A schematic of the experimental set-up is shown in figure 5.1. The experiment is
performed in the newly constructed Anechoic Vertical Tunnel (AVT) at TU Delft,
enabling a free-stream turbulence intensity under 0.04% at the tested conditions.
The test section features a square cross-section of 0.5 m on each side. Positioned
at a distance of 0.1 m from the centreline, a flat plate of 1 m length and 0.5 m
width features a super-elliptical leading edge and a movable flap at the trailing
edge to control the stagnation point, which ensures a smooth development of the
boundary layer. The freestream velocity is measured with a pitot-static tube located
upstream of the leading edge and is set at U∞ = 9.4 m/s as design condition for the
control design. Natural two-dimensional boundary layer instabilities (i.e. TS waves)
are introduced at the leading edge via boundary layer receptivity to acoustic and
vortical disturbances in the freestream flow and amplify as they convect downstream.
An adjustable flexible wall opposite to the flat plate controls the pressure gradient
to increase the amplification rate of the perturbations and to promote transition
at the relative low freestream velocities. A streamwise array of 24 surface pressure
taps, positioned mid-span, is used to determine the pressure distribution (Cp) and
to characterise the mean flow (see next section).

For the current study two independent experimental campaigns were performed.
The first was performed using the set-up in figure 5.1, in an uncontrolled and clean
setting, where the actuator was not present on the flat plate. The primary objective
of this first campaign was to characterise the base flow and the stability properties
of the laminar boundary layer, which are crucial for control design. In addition, the
preliminary study provided the necessary experimental base to validate the mod-
elling methodology for the dynamic flow estimation. The objective of the second
campaign was the application and demonstration of reactive control, which is pre-
sented in section 5.4. Care was taken to ensure identical flow conditions between
the two experimental campaigns. The Cp distributions with the 2σ bounds for both
experiments are shown in figure 5.2. It can be observed that the distributions match
closely in the actuator-sensor region up to x = 0.4 mm. The kink in the pressure
and corresponding increase of standard deviation after x = 0.4 m is an indication
of laminar-turbulent transition of the boundary layer.

A two-component planar Particle Image Velocimetry (2C-PIV) system was em-
ployed to investigate the flow field in the x−y plane and to compare the modelled/es-
timated velocity perturbation fields with the experimental perturbation fields. Illu-
mination was provided by a Quantel EverGreen dual-pulse Nd:YAG laser of average
pulse energy of 200 mJ. The laser beam (wavelength 532 nm) was arranged into
a light sheet of approximately 1 mm thickness, aligned with the x − y plane at
the midspan of the flat plate. A 16 MPx LaVision Imager LX Pro CCD camera
equipped with a Nikkor 105 mm Macro objective set at aperture of f/5.6 was em-
ployed to register the particle images. A cropped sensor resolution of 4920 × 750
pixels was used to image a Field Of View (FOV) of 130 mm × 20 mm, arriving to
a magnification factor of approximately 0.2. The flow was seeded by a Safex fog
generator producing water/glycol-based particles of average diameter of 1 µm. Raw
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Figure 5.1: Schematic of the experimental set-up (not up to scale).
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Figure 5.2: Cp distribution for the two experimental campaigns. The triangles indicate the position
of the microphones (▽) and the plasma actuator (△).

particle image pairs were captured at a frequency of 2.2 Hz with an interframe time
interval (∆t) of 26 µs. Velocity vector fields were computed using the multi-step
interrogation algorithm [145] with a final interrogation window of 12 × 12 pixels
with a 50% overlap. The velocity vectors were returned on a grid of 9 vectors per
mm. A total of 500 velocity snapshots were obtained for each measurement case.
For the experimental data presented in this work, uncertainty is quantified using
the correlation statistics method [146]. The local error for instantaneous velocity
measurements is estimated to be ǫu ≈ 1%.

5.2.2. Control system elements
The flow is controlled using an Alternating Current Dielectric Barrier Discharge
(AC-DBD) plasma actuator. It consists of a 10 mm wide grounded and encapsulated
copper electrode of 30 µm thickness and a 5 mm wide exposed electrode connected
to a high voltage amplifier (Trek 20/20C). No streamwise gap is formed between the
electrodes. The interface of the two electrodes is chosen as the reference position
of the actuator, which is placed at xact = 0.31 m. The active length of actuator
(along which plasma is formed) has a length of 0.3 m in the spanwise direction. Two
layers of dielectric polyimide tape (Kapton) with a total thickness of approximately
100 µm separate the two electrodes. Preliminary measurements verified that the
geometric protrusion of the actuator has no influence on the transition process.

The actuator is driven by an amplitude modulated voltage signal formed by a
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V̄pp + φV̄pp

0.5(V̄pp + φ) sin(2πfact)

t
V

ap
p

Figure 5.3: Example of an applied voltage signal visualising the operation mode of the plasma ac-
tuator. Carrier frequency fac, mean applied peak-to-peak voltage V̄pp and the unsteady amplitude
modulation φ specified by the controller.

carrier sinusoidal wave and an unsteady amplitude modulation that is specified by
the controller. An example of an applied voltage signal illustrating the actuator
operation is shown in figure 5.3. The carrier signal is required to form the plasma.
The carrier frequency of the actuator is set to 2 kHz, which is one order of magni-
tude higher than the most unstable TS waves for the investigated conditions. The
amplitude of the applied voltage signal determines the strength of the plasma for-
mation. For this actuator an operating range from Vpp = 6 kV to Vpp = 16 kV
has to be maintained in order to produce a stable discharge [147]. The voltage is
the peak-to-peak voltage (Vpp) of the applied waveform. To account for the thresh-
old a constant mean forcing is applied, whereas the compensator can modulate the
amplitude of the high-voltage supply through the control signal φ [87, 109, 141].
The mean forcing also naturally accounts for the unidirectional forcing constraint
of the actuator in the control design [109]. The compensator will be discussed in
detail in section 5.3. A mean voltage supply of V̄pp = 8 kV and V̄pp = 9 kV is
investigated in this study. The applied voltage signal to the actuator is thus given
by Vapp = 0.5(V̄pp + φ) sin(2πfact) where φ is supplied by the compensator.

Two LinearX M53 microphones were employed to measure the fluctuation pres-
sure at the wall. The microphones have an uncorrected frequency response of ±5
dBspl (reference level 20 µPa) in the range 20 Hz - 20 kHz and an acoustic sensitivity
of 140 mV / 94 dBspl (140 mV / Pa). The primary microphone located at x = 0.3 m
provides the compensator with the required feedforward information. Additionally,
a second microphone is placed at x = 0.4 m to monitor the performance of the com-
pensator. The microphones were embedded in a cavity, within the body of the plate
connected to the surface through a small pinhole of 0.1 mm in diameter. Care was
taken in the design of the cavities in order to sufficiently separate the inherent cav-
ity resonance frequency from the dominant TS wave frequencies. The microphones
are calibrated in-situ to provide unsteady pressure measurements in Pascals using
a GRAS 42AA pistonphone, outputting a root mean square (rms) pressure level of
114 dBspl (10 Pa) at a frequency of 250 Hz.

Software and hardware from National Instruments is used for the experimen-
tal implementation of the controller. LabView routines are constructed to control
the input-output logic, process the measurement data from the microphone and
generate the control input. The control logic is compiled and executed on a field-
programmable gate array (FPGA) architecture using a NI 9022 CompactRIO digital
signal processor. 16-bit A/D and D/A input/output modules are used for commu-
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Figure 5.4: (a) Inviscid external velocity obtained from the static pressure taps and corresponding
fit obtained with a second order polynomial using the data up to x = 0.4 m. (b) Comparison of
the computed base flow with experimental data.

nication with the microphones and the plasma actuator. The control logic consists
of two parallel loops. The first loop filters the measurement information (i.e. micro-
phone readings) using a second order bandpass filter (50-800 Hz) and executes at a
clock frequency of 100 kHz. The bandpass filter eliminates the DC component, the
low frequency background noise and the high frequency electromagnetic noise due
to the plasma actuator. The first loop is additionally responsible for the generation
of the final plasma signal by producing the carrier signal and subsequently modu-
lating it with the control signal. The second loop contains the actual compensator,
in the form of vectors and two-dimensional state-space matrices (see section 5.3),
which calculates the necessary amplitude modulation of the applied voltage signal
and executes at 20 kHz.

5.2.3. Base flow and stability
The base flow is obtained as a steady (i.e. time invariant) numerical solution of the
boundary layer equations. The external freestream boundary condition is matched
with the external inviscid velocity obtained from the measured Cp distributions,
Ue = U∞

√
1 − Cp. To obtain a sufficiently smooth solution, the inviscid veloc-

ity distribution is fitted with a second order polynomial using the Cp data up to
x = 0.4 m, just upstream of the kink in the pressure distribution, which is il-
lustrated in figure 5.4(a). An analytical Falkner-Skan inflow profile based on the
local approximation of Ue(x) ∝ xm is assumed at the location of the first pres-
sure tap x0 = 0.1 m where m is calculated from the inviscid velocity distribution
m = (x0/Ue)(dUe/dx) = −0.032. Figure 5.4(b) shows a comparison of numerically
estimated and experimentally measured local velocity profiles at three locations in
the considered domain. It can be observed that the mean flow fits the experimental
data well, except near the wall were PIV becomes less accurate due to wall reflec-
tions and high flow shears, inherently corrupting the particle cross-correlation. It
should be noted that PIV data has only been used for validation purposes and has
not been used for computing the base flow for the control design.

Linear stability theory (LST) calculations for the base flow are shown in fig-
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tours. The dashed black line shows the local most unstable frequency and the dashed white line
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ure 5.5(a) and the power spectral density (PSD) for the natural perturbations mea-
sured by the two pressure sensors is shown in figure 5.5(b). Based on the empirical
N-factor method [148], LST predicts the location of transition at x = 0.47 m where
the integrated amplification factor reaches N ≈ 9. This estimation agrees well with
the experimentally detected transition location at x = 0.43 m as observed from the
kink in the Cp measurements in figure 5.2. The most amplified frequency measured
at x = 0.3 m is 210 Hz which closely matches the LST predictions (dashed white
line). In addition, background noise measurements have revealed that the peak at
330 Hz corresponds to noise caused by the wind tunnel power supply. The power at
210 Hz increases with two orders of magnitude between x = 0.3 m and x = 0.4 m.
The slight mismatch with the LST prediction of the most amplified frequency at
x = 0.4 m can be contributed to strong flow nonlinearities due to the larger pertur-
bation amplitude further downstream. The good agreement between the theoretical
predictions and the experimental results in the actuator/sensor region indicates that
linear control based on a 2-D model of the flow can be effective for this set-up.

5.3. The linear compensator
A disturbance feedforward controller is designed using the framework from chap-
ter 3. The synthesis approach combines state-space discretisation of the governing
equations using spline elements (chapter 2) with balanced truncation [67] to syn-
thesize low order controllers. The computational domain and input-output layout
used for control design is shown in figure 5.6. A localised computational domain
xc ∈ [0.22 m, 0.41 m] is considered to avoid very large systems. The local Reynolds
number at the beginning of the domain is Re = U0δ

∗
0/ν = 835 with U0 = 11.3 m/s

and δ∗
0 = 1.16 mm, matching the experimentally measured flow parameters. The

height of the domain is set to H = 20 mm ≈ 17δ∗
0 . The finite-dimensional approx-
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Figure 5.6: Computational domain (dashed line), mesh used for the discretisation (triangulation),
and input-output configuration used for control design. The computational domain extends 164δ∗

0

in streamwise direction and 17δ∗

0 in the wall-normal direction, with δ∗

0 = 1.16 mm. Measurement
p1, plasma actuator φ, controlled output q and inflow disturbance w.

imation of the system in state-space format is obtained using Galerkin projection
of the linearised Navier-Stokes equations (LNSE) around the base flow with fifth
order bivariate spline elements [40]. This system is in turn used to synthesise the
reduced-order compensator. This gives rise to the following two systems

u̇ = Au + B1w +
1
k

B2φ, p1 = Cu + Dw (5.1)

ûr = Aûr + B2φ̃+ L(p1 − p̂1), p̂1 = C ûr

φ̃ = 1
kφ = −F ûr

}

(5.2)

Equation (5.1) is the full order system with (A,B, C,D) the state-space matrices re-
sulting from the discretisation, u the full order state vector, φ the control input that
specifies the amplitude modulation of the actuator voltage signal, p1 the upstream
sensor signal and w = (wd, wn) the vector of state disturbances and measurement
noise to account for uncertainties in the control design. The role of the gain k,
and the underlying continuous models of the actuator B2, sensor C and the exter-
nal disturbances B1 will be described later in this section. System (5.1) is balanced
and reduced to retain the r most controllable/observable modes in the reduced-order
model (ROM) defined by (A,B,C ,D). Based on the available memory on the FPGA
of the real-time controller the order of the ROM was set to r = 40. The ROM is
subsequently used to design the compensator defined by (5.2) with L and F respec-
tively the estimator (Kalman) gain and state-feedback gain to be optimized. The
compensator combines a Kalman filter, which constructs a low-dimensional approx-
imation from the upstream measurements p1 and a state-feedback, which computes
the control signal φ from the estimated state. An LQG design is employed to syn-
thesise the compensator by solving two independent optimisation problems based
on the ROM [29, Chapter 14]. In the following sections, the state-estimator and
controller are discussed respectively.

5.3.1. State estimator
The Kalman filter is designed to minimize the covariance of the difference between
the reduced order state ur and the estimate state ûr assuming that the system is
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excited by Gaussian white noise. This requires a priori assumptions on the source
and distribution of the upstream disturbance environment modelled by B1 and an
output equation which relates the upstream perturbations with the pressure fluctua-
tions at the measurement location at the wall. The derivation of the output equation
is not trivial as the pressure is initially eliminated by formulating the LNSE on a
divergence-free state-space to avoid singularities. In chapter 4 a novel method is pre-
sented to retrieve the output equation based on spatial integration of LNSE along
the inflow and wall boundaries in a separate step, independently of the derivation of
the state equations. Mathematically, the output operator C represents the formal in-
verse of the pressure gradient along the inflow and wall boundaries. The disturbance
model forms the basis for the model reduction and is crucial to allow an accurate
reduction of the dynamics and capturing of the relevant flow physics. When model
reduction is used in the design of the compensator, the spatio-temporal dynamics
which are retained in the ROM and can be estimated depend on the spatio-temporal
dynamics that are excited by the external disturbance model. It is shown in chap-
ter 3, through a spatio-temporal frequency response analysis, that the use of inflow
disturbance models allows for efficient estimation of the dominant flow perturbations
in broad temporal and spatial bandwidth. The external disturbance model consists
of a second-order low pass filter which accounts for the temporal dynamics of the
most amplified Orr-Sommerfeld eigenfunction (in the present case corresponding to
a TS wave). For the investigated conditions, the most amplified eigenfuction at the
inflow x = 0.22 m is found at f = 240 Hz, see also figure 5.5.

To gain a more physical insight in the estimator performance and validate the
modelling methodology, the estimates obtained from the estimator are compared
with experimental data obtained from PIV. For this, an experiment under natural
(i.e. non-actuated) conditions was performed in which the timestamps of the PIV
snapshots were synchronised with the microphone-based unsteady pressure mea-
surements. In total 500 PIV snapshots were obtained, sampled at a rate of 2.2 Hz.
The upstream sensor signal p1 was used as input to the estimator

ˆ̇ur = Aûr + L(p1 − C ûr), ûr(0) = 0, (5.3)

which filters the data and reconstruct the state ur in the process. The state ur is
the vector of reduced-order expansion coefficients, which is related to the full order
coefficients through u = S−1

r ur, where S−1
r are the first r columns of the inverse

of the similarity transformation u 7→ Su used to balance the system required for
model reduction. In this way the flow field could be reconstructed from the reduced-
order estimates and compared with experimental data at the corresponding PIV
timestamps. A POD reconstruction of the PIV data was necessary in order to
measure TS waves in the control region, since the measurement noise overlays the
TS waves that have a low amplitude. The PIV data was reconstructed in the domain
x ∈ [0.285 m, 0.345 m], which encapsulates both the actuator and sensor used for
control, using the first seven POD modes, which capture 30% of the total energy.
It was verified that the further inclusion of additional low-energy modes was only
adding more uniform noise to the reconstruction.

Figure 5.7 illustrates the comparison of the experimentally measured and esti-
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Figure 5.8: Snapshot of the perturbation velocity in the control region at t = tpiv (see figure 5.7).
(a) Estimated velocity field. (b) Experimental velocity field from POD reconstruction. The trian-
gles indicate the position of the microphone (▽) and the plasma actuator (△).

mated pressure measurements for a time sample of 0.1 s. Respectively, figure 5.8
shows the instantaneous estimated velocity perturbation field and corresponding in-
stantaneous POD reconstructed field at t = tpiv. Similar agreement was obtained
for other timestamps were the TS waves were of sufficient amplitude. Figure 5.9
shows the root-mean-square (rms) value of the estimated and measured stream-
wise and wall-normal velocity components at four different streamwise locations. It
should be noted that this is a temporal statistical quantity, while the PIV data is
not time-resolved. Furthermore, the PIV data is less accurate near the wall and
more noisy upstream, where the TS waves have a lower amplitude. Nonetheless im-
portant observations can be made from these results. The Kalman filter is able to
reconstruct the signal and to obtain spatial-temporal estimates of the perturbation
field. The shape, magnitude and phase of the perturbations match well in particu-
lar for the wall-normal component. The wall-normal component also has a simpler
spatial structure and is less pronounced at the wall allowing for a better reconstruc-
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Figure 5.9: The estimated and experimentally measured rms value of the streamwise and wall-
normal velocity components at four different streamwise locations.

tion with POD. The largest disagreement between the measured and reconstruct
signal as well as between the measured and reconstructed perturbation field is in
the maximum amplitude. The estimates deteriorate further downstream from the
measurement sensor due to model uncertainties and nonlinearities. Note that the
rms of the perturbation grows with a factor 3 between 0.3 m ≤ x ≤ 0.34 m. There-
fore, to achieve sufficient robustness the actuator is placed close to the feedforward
sensor.

To the best of the authors’s knowledge, this is the first time that model-based
estimates of the perturbation field are matched with experimental data. The re-
sults indicate that model-based control theory, that makes a priori assumptions on
the external disturbances, is able to predict the linear dynamics of natural flow
perturbations.

5.3.2. Controller
The state feedback is designed to minimise the fluctuating wall-shear stress defined
by q =

∫
h(x)(∂u/∂y)dx where h(x) is a Gaussian function centred at xq = 0.38

with a width of 1 cm. The actuator is modelled as an in-domain body force with B2

the spatial distribution of the force, which is shown in figure 5.10. The body force
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Figure 5.10: Spatial distribution of the linear plasma body force model used for controller design.
Grey horizontal bars indicate the position of the exposed and covered electrodes.

is assumed to be linear in the unsteady modulation φ of the applied voltage signal
Vapp = 0.5(V0 +φ) sin(2πfact). The body force is obtained by fitting a linear model
through experimentally derived body force distributions obtained by Kotsonis et al.
[147], with the assumption that the body force is zero at and below the minimum
discharge threshold of Vpp = 6 kV (i.e. prior to plasma ignition). It is assumed that
the body force distribution gives a sufficient representation of the actual actuator
effect, but the magnitude of the body force is assumed to be influenced by inherent
uncertainties. The effective body force magnitude depends highly on the actuator
fabrication, while the dielectric barrier degrades over time resulting in an increased
power consumption and modified force magnitudes [149]. To make the control design
tractable, an online tuning gain k is included to account for magnitude uncertainties
in the body force model. This tuning gain scales the magnitude of the body force,
or more convenient for control design, scales the magnitude of the control input
(1/k)B2φ = B2φ̃. The controller is optimized for φ̃ based on the nominal model and
is multiplied with the tuning gain φ = kφ̃ when applied in real-time. The voltage
signal to the actuator is thus given by Vapp = 0.5(V0 + kφ̃) sin(2πfact) where φ̃ is
supplied by the compensator. Note that this tuning is consistent with the optimal
control design since this change of coordinate not only scales the magnitude of B2,
but also changes the control penalty in the well known LQR control objective

J = lim
T →∞

1
T

∫ T

0

q2 +
(
l

k
φ

)2

dt = lim
T →∞

1
T

∫ T

0

q2 +
(
lφ̃

)2
dt (5.4)

that is minimized by the controller. The control penalty l is tuned such that the
complete compensator reduces the energy q2 with two orders of magnitude for the
nominal case k = 1. While this is a is rather aggressive tuning, the gain can be
easily detuned online to not aggravate the flow.

To study the maximum attainable performance that can be achieved by the
compensator, offline simulations have been performed in which the linearised equa-
tions are forced with a uniform stochastic disturbance, as an approximation to the
inherent disturbance environment in the wind tunnel. The spatial distribution of
the disturbance is modelled as a divergence free Gaussian body force distribution
placed upstream of the control domain [33]. The base flow distortion introduced
by the average constant forcing of the plasma actuator is taken into account in the
computation of the base flow used for the linear simulations. Note that the control
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Figure 5.11: Offline simulation of a uniform white disturbance. Shown is the wall-normal maximum
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△), the sensor (▽), the actuator (△) and the control objective (⊲).

model is based on the nominal undistorted base flow which introduces a difference
between modelled flow and the simulated flow (and experimental flow in the next
section). Figure 5.11 shows the wall-normal maximum amplitude of the rms stream-
wise velocity perturbation without control, with continuous forcing at V̄pp = 8 kV
and V̄pp = 9 kV, and with LQG control at these two offset voltages. The spatial
growth of the uncontrolled perturbation in the control domain is in accordance with
the growth observed in figure 5.9. The constant forcing has a significant stabilis-
ing effect on the flow which accumulates over some distance from the location of
the actuator due to the generated streamwise jet. Nonetheless, the LQG controller
achieves an additional one order of magnitude reduction as compared to continuous
forcing both for the 8 kV and 9 kV offset case.

5.4. Experimental control performance
In this section the nominal performance as well as the robust performance in off-
design conditions of the compensator is evaluated in the experimental context. All
results contain a comparison between an 8 kV and a 9 kV mean peak-to-peak volt-
age supply. The performance of the compensator is in particular compared against
the performance with open-loop continuous forcing to properly evaluate the contri-
bution of the unsteady actuation. The control objective is evaluated based on the
downstream microphone signal p2, which is recorded for periods of 20 s sampled at
30 kHz for each test case. Evaluation of the time domain performance is based on
the standard deviation of the signal. To compute the standard deviation, the signal
is filtered between 50-800 Hz to filter out the low frequency background noise (see
also figure 5.5(b)) and the high frequency electromagnetic noise at 2 kHz due to
the plasma actuator carrier signal. During preliminary tests it was found that the
actuator was stronger than assumed in the control design. Additionally it was ob-
served that strong actuation can in fact promote transition due to nonlinear effects
and control spillover [150], which should be avoided. Therefore the controller had
to be detuned to achieve an effective stabilisation. For the nominal designed case,
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Figure 5.13: Power spectral density of the downstream sensor signal without control, with open-
loop control and LQG control. (a) V̄pp = 8 kV. (b) V̄pp = 9 kV.

the data was recorded for k ∈ [0.25 0.5] with steps of ∆k = 0.05. The effect of the
tuning gain on the standard deviation for the nominal designed case is shown in
figure 5.12. With the proper tuning, a reduction of 50-55% in standard deviation
compared to open-loop forcing has been measured. The effect of the tuning gain
is best observed in the frequency domain. Figure 5.13 compares the power spec-
tral density for the 8 kV, k = (0.35, 0.5) control cases (Figure 5.13(a)) and for the
9 kV, k = (0.3, 0.4) control cases (Figure 5.13(b)). At these values the effect of
the tuning gain was best observed. A higher gain might give a better attenuation
of the most amplified frequencies, but in turn results in more spillover at the lower
frequencies. For example, for the 9 kV, k = 0.4 control case the energy at the
most amplified frequencies is reduced with two orders of magnitude (40 dB), while
the k = 0.3 controller reduces the peak with 20 dB. Nevertheless, the standard de-
viation at k = 0.4 is higher as the amplitude at the spillover frequencies (f < 130
Hz) dominate the stabilised bandwidth. A similar observation can be made for the
8 kV control cases. However, the effect is more pronounced for the 9 kV cases as
it achieves a better open-loop stabilisation of the most amplified frequencies. The
8 kV open-loop forcing gives a reduction of 1 − σol/σunc = 65%, whereas the 9 kV
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Figure 5.14: Effect of wind-tunnel speed variation on the standard deviation of the downstream
sensor signal (k = 0.35). Ratio between the controlled (LQG and open-loop) and the uncontrolled
case with V̄pp = 8 kV (a) and V̄pp = 9 kV (b). (c) Ratio between the LQG controlled and
open-loop forcing case.

open-loop forcing gives an 88% reduction. This significant stabilisation can also be
contributed to the low free-stream velocity as discussed in the previous section. In
fact, 9 kV open-loop forcing gives a better performance than the 8 kV LQG control
performance. Therefore the main benefit for the investigated conditions is a re-
duced power consumption. However, at higher freestream velocities, the jet added
by the plasma actuators becomes less dominant and open-loop control becomes less
effective, see also figure 5.14.

Figure 5.14 shows the effect of the wind tunnel speed on the standard deviation
of the downstream pressure signal for k = 0.35. The PSD at two off-design wind
tunnel speeds is shown in figure 5.15. Variations in the freestream velocity from the
design condition at U∞ = 9.4 m/s give a reduced performance. Nevertheless, the
controller provides a reduction as compared to open-loop forcing in particular in
the higher range of freestream velocities. The controller is still able to significantly
reduce the spectral density at the most amplified frequencies in off-design conditions.
However, at lower free-stream velocities the spillover becomes more dominant as can
be seen from figure 5.15, resulting in reduced effectiveness.

In summary, the most amplified frequencies are successfully reduced by the com-
pensator. However, the effectiveness as compared to open-loop forcing is reduced
as the mean applied forcing already provides a significant stabilisation. As a result
the spillover at lower frequencies introduced by the unsteady actuation becomes
more dominant. The compensator is able to achieve a robust reduction in standard
deviation between 30-60% within the range U∞ = 8.4 − 11.4 m/s as compared to
open-loop forcing.

5.5. Conclusions
An experimental implementation of a compensator strategy, based on a Galerkin
discretisation of the linearised Navier-Stokes equations, has been applied in a natu-
ral TS-wave dominated flow over a flat plate subject to an adverse pressure gradient.
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Figure 5.15: Power spectral density of the downstream sensor signal at two off-design freestream
velocities. (a) V̄pp = 8 kV. (b) V̄pp = 9 kV.

Such white-box methods are not yet considered competitive in an applied setting
due to their difficulty in obtaining an accurate representation of the upstream dis-
turbance environment. However, it is experimentally verified that the Kalman filter,
which makes a priori assumptions on the noise characteristics, is able to predict the
effect of upstream disturbances and to estimate TS waves naturally occurring in
a low freesteam turbulence environment. This leads to the following conclusions:
(1) it is the effect of upstream disturbances that is important to model and not
the disturbances itself (which is more complex than assumed) and (2) the effect of
external disturbances can be properly modelled by an inflow disturbance model.

A single DBD plasma actuator is used to simultaneously increase the local stabil-
ity of the boundary layer and to attenuate the TS waves through unsteady modula-
tion of the actuator voltage signal. The performance and robustness of the controller
is compared to the case of continuous actuation. Results show that the controller
is able to additionally reduce the spectral density at the most amplified frequencies
with more than one order of magnitude and is capable of reducing the standard
deviation of the unsteady pressure signal between 30-60% for a range of off-design
freestream velocities. While this reduction is less than the respective reduction in
numerical simulations, it is of the same order as what has been achieved in re-
cent experimental studies using system identification techniques. To the best of
our knowledge, the best performance (for a comparable flow scenario) was reported
by Goldin et al. [143], who achieved a maximum localised reduction of 85% of the
downstream sensor signal in a natural TS-wave dominated boundary layer flow.
Juillet et al. [120] achieved an average localised reduction of 45% in a convective
dominated channel flow and Gautier and Aider [142] achieved a 35% reduction in
turbulent kinetic energy fluctuations in a convective backward-facing step flow. It
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should be noted that the maximum attainable performance also depends on the
choice of the actuator/sensor set-up and the disturbance scenario (TS-dominated,
streak dominated, intensity, amplitude, etc.). Furthermore, the spatial extent of
the reduction should be contrasted to length scales of the perturbations and the
placement of the objective sensor. A similar experimental set-up and white-box ap-
proach was considered by Fabbiane et al. [87] to suppress TS waves in a boundary
layer flow using a single plasma actuator, but introduced the upstream disturbances
artificially. For uniform random disturbances they achieved a maximum reduction
in standard deviation of 60%, compared to the uncontrolled case, measured 5 cm
downstream of the actuator.

Fabbiane et al. [87] also stressed the robustness issues of disturbance feedfor-
ward optimal controllers for transition delay. The framework used in this study also
shows promise for the development of robust feedback controllers to guarantee both
robust stability and robust performance in off-design conditions, e.g. using H∞ and
µ-synthesised techniques. It was shown in [27] that in case of feedback actuator/sen-
sor configurations, the sensor has to be placed closely behind the actuator (less than
one wave-length of the perturbations) and that such configurations are highly sensi-
tive to neglected/truncated dynamics resulting from the model reduction step. By
synthesising the reduced-order compensator directly from the governing equations,
both the need for data-driven empirical model reduction and system-identification
are avoided, allowing for an accurate reduction of the dynamics also for feedback ac-
tuator/sensor configurations. In this study the sensor was also placed 1 cm upstream
of the actuator, which is less than half the wave-length of the most amplified pertur-
bation. It became evident that the compensator was resilient to upstream influence
of the actuator on the sensor as well as to electromagnetic inference introduced by
the actuator.

Based on the presented results it can be concluded that the linear control ap-
proach presented in this chapter is a competitive technique in an applied experi-
mental setting. It provides an efficient mean to synthesise compensators directly
from the governing equations without the use of prior numerical data or exper-
imental data. It is able to estimate and control natural flow perturbations and
provides a promising direction for control of convective instabilities in wall-bounded
shear flows. The question whether the modelling/synthesis approach in this study
is more viable than the empirical model reduction tools and system-identification
techniques currently available in the community should be carefully investigated in
future works.
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Conclusions and outlook

6.1. Conclusions
This dissertation has introduced a new approach for finite-dimensional approxima-
tion and control of wall-bounded shear flow systems. The research performed in this
dissertation can be divided in three parts. Chapter 2 focussed on deriving finite-
dimensional state-space representations from the governing equations. Chapter 3
concentrated on modelling, estimation and control of convective instabilities. Chap-
ter 4 and chapter 5 were concerned with the integration of practical actuators and
sensors, and to investigate the practical feasibility in experiments.

6.1.1. Finite-dimensional approximation
In the first part, a new framework has been presented to obtain finite-dimensional
state-space descriptions from the governing equations using multivariate splines.
Multivariate splines have the desired accuracy and geometric flexibility for practi-
cal applications of PDE control. They are defined on triangular meshes allowing
approximation of any domain with local refinements in the control region, i.e. the
region with the sensors and actuators, and extraction of the key features of the
system. Secondly, they are general in terms of smoothness and degree allowing for a
high ‘spectral like’ resolving power. The degree and order of continuity of splines are
simply input variables for creating the state-space models. These properties allow
for the construction of models that effectively balance accuracy and computational
complexity required for application of systems theoretical tools.

The main challenge in using Galerkin’s method for finite-dimensional approxi-
mation is the construction of a spatial basis for the infinite-dimensional state space,
which is the space of smooth divergence-free functions which satisfies the boundary
conditions. If this is not done with care, the resulting system of equations may be
overdetermined or may not have a unique solution. In this case, the system matrix
will be ill-conditioned and may contain non-physical spurious eigenmodes (which
may even be controllable). Multivariate splines are unique in the sense that they
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achieve modularity for the construction of the smooth divergence-free spatial basis.
They consist of discontinuous piecewise polynomial functions over a triangulation
and any desired smoothness conditions in the domain as well as the boundary con-
ditions and the divergence-free conditions can be flexibly treated as side constraints
for the polynomial expansion coefficients. This modularity allowed the generalisa-
tion of the framework for arbitrary boundary conditions and general geometries.
By expanding the solution in the null basis of the side constraints results in a min-
imal support basis for the infinite-dimensional state space and naturally produces
a system free of spurious eigenmodes. Also, a new differentiation matrix has been
proposed, which greatly simplifies the computation of the partial derivatives as well
as the derivation of the discrete projection matrices to obtain the finite-dimensional
approximation of the differential operators. These new tools are now part of a Mat-
lab differentiation matrix and projection suite, which can theoretically (in case of
unlimited computational resources) be used for obtaining state-space descriptions
of any linear PDE system, but also for solving steady partial differential equations
and boundary value problems. This suite can complement existing Matlab differ-
entiation matrix suites such as the spectral collocation software suite developed by
Weideman and Reddy [151].

6.1.2. Modelling, estimation and control
The second part focussed on modelling, estimation and control of convective insta-
bilities. Convective instabilities appear in a frequency broadband in both space and
time and are driven by unknown upstream disturbances. Accurately modelling the
effect of upstream disturbances is crucial as it forms the basis for the measured un-
steadiness. The objective of the modelling was to have a desirable trade-off between
model order and the spatial-temporal resolution of the model relative to the external
disturbances. The objective of the control design was to avoid a disturbance specific
design, i.e. to make the controller robust to unmodelled disturbances and to achieve
robustness with respect to the truncated dynamics. The central design philosophy
to avoid a disturbance specific control design is the following: Any perturbation field
can be decomposed into a range of instability modes/eigenmodes with a temporal
frequency and a spatial wavelength. Rather than making a specific assumption on
the source and spatial structure of the external disturbance, the instability modes
that physically contribute to the transition process are selected and included in the
disturbance model. In this way the compensator is able to estimate and stabilise
the underlying modes that are present in any perturbation field.

To realise this philosophy a new inflow disturbance model is proposed that con-
sists of a second-order low-pass filter which accounts for the temporal dynamics of
a combination of flow perturbation modes. The motivation for using inflow dis-
turbance models is that the modes can be efficiently computed using a local linear
stability analysis at the computational inflow. Furthermore, the spectrum at a given
streamwise location reflects the broadband noise present in the upstream flow. This
allowed for efficient modelling of the effect of the upstream disturbance environ-
ment using localised computational domains, which naturally prevents the creation
of very large systems. Furthermore, the second-order low-pass filter allows the fre-
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quency response shaping at the computational inflow to physically comply with
the LST predictions, to precisely target the most unstable modes, while at the same
time achieving robustness for higher, possibly unresolved frequencies. By means of a
spatio-temporal frequency response analysis of the full order system it is shown that
the use of inflow disturbance models allows for efficient modelling of the instabilities
in a broad spatial and temporal bandwidth.

The full-order system is coupled with balanced truncation to reduce the order of
the system and the corresponding controller. The full-order system is used as higher
fidelity truth model to assure that the reduced-order controller maintains the closed-
loop performance as compared with the full-order controller. This is crucial to assure
that the controller does not exploit any weaknesses of the neglected dynamics. A fast
closed-loop convergence is demonstrated with respect to the truncated dynamics and
it is shown that convergence can be achieved with low-order (r ≈ 50) controllers.
The fast convergence can be contributed to the use of a mathematical Galerkin
model combined with the efficient modelling of the instabilities. The effectiveness of
the control design is demonstrated through three different unmodelled disturbance
cases. The simulation results corroborate the presented ideas and it is shown that
the controllers are capable of achieving their objectives in the presence of unmodelled
disturbances.

6.1.3. Actuators, sensors and experimental demonstration
The third and final part focussed on the practical demonstration of the controllers.
Motivated by their practical advantages, a surface microphone and a plasma ac-
tuator were chosen as the actuator/sensor pair used for control. Particularly the
use of microphones for dynamic flow estimation proved to be a challenge. The
pressure is initially eliminated from the state equations to avoid singularities. As
a result, estimation for correlating the model variables with the pressure measure-
ments becomes less trivial. A novel solution is proposed based on spatial integration
of the pressure gradient along the boundaries. This resulted in new output oper-
ators that relate the external inflow disturbances and the perturbation field with
the fluctuation pressure at the wall. The output operators were integrated in the
optimal control design and proved to be successful in both simulation and experi-
ment. The experimental study considered a natural laminar flow over a flat plat in
low freestream turbulence conditions. One of the main results of the experiment is
the comparison of the estimated perturbation fields with the measured data from
PIV. This validated the modelling philosophy and more importantly, validated that
model-based controllers, which make a priori assumptions on the noise and distur-
bance statistics, are able to estimate the spatio-temporal behaviour of natural flow
perturbations. The external disturbance field is generally very complex. It includes
freestream turbulence, sound, vorticity and wall surface roughness, which is very
difficult to characterise and not included in the external disturbance model. It can
therefore be concluded that it is the effect of the external disturbances that is im-
portant to characterise and not the disturbances itself. Furthermore, the effect of
the external disturbances can be properly modelled with the proposed inflow dis-
turbance model. A similar conclusion can be drawn for the actuator. It was found
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that accurately modelling the effect of the plasma actuator was very difficult. The
properties highly depend on the actuator fabrication and the actuator deteriorat-
ed/broke quickly during operation. To mitigate the effect of actuator uncertainties
a simple online gain tuning approach is proposed, which proved to be effective in
achieving attenuation of TS-waves. An additional maximum reduction of 60% as
compared to open-loop forcing has been achieved. However, the gain tuning can
be considered as a ‘band-aid’ solution and a better performance is anticipated in
future experiments. To achieve a better performance significant efforts should be
directed at the development of durable actuators along with corresponding models.
This requires close collaboration with the actuator community.

6.1.4. Final discussion
This work showed that it is possible to synthesise experimentally feasible controllers
from the governing equations without the use of empirical techniques. The main
advantages are low costs for obtaining the model, fast convergence of the model and
the availability of a higher fidelity truth model. The truth model can be used to
gain physical insights and to assure that the reduced-order controllers are naturally
robust to the truncated dynamics. Based on what has been achieved in literature it
can be concluded that the proposed approach is a competitive approach also in an
applied setting. However, several (severe) analytical and computational challenges
had to be addressed and many more are expected to follow when continuing the
development of the presented approach. Also no comparison studies have been
performed with respect to the current state of the art. Therefore, no conclusions can
be drawn whether the presented approach is more viable or better performing than
the current tools/frameworks available in the community. This should be carefully
investigated in future works before continuing the development of the presented
approach.

There are still many open problems to be solved to make the approach work on
for example aircraft wings or the roof of cars. Practically, this work is still limited
to two-dimensional linear flow configurations. However, the examples and demon-
strations in this work have not reached their computational limits. While for more
complex and three-dimensional flow configurations this approach may currently be
closely tied with the available computational resources, it may not be in the future
considering continuing advancements in multivariate spline theory, linear algebra,
microprocessors and scientific computing. It is anticipated that this approach can
also significantly contribute to the understanding and control of more complex flows
and is worth pursuing in future works.

6.2. Outlook and open problems
The methods presented in this dissertation provide a starting point towards more
complex estimation and control problems. The following open questions and possible
directions of research that extend the results in this dissertations are given:

• The practical feasibility of the framework for control of three-dimensional in-
stabilities such as streaks should be investigated. Three-dimensional prob-
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lems typically require a lot of memory for matrix storage and computations

(O
(

(nxnynz)3
)

) and this study does not make an exception to that. However,

the system model should be good enough for control design and not necessary
for accurate numerical simulation. The equations to be controlled are linear,
the flow to be modelled is laminar and the instability mechanisms can be ex-
ploited to capture the relevant flow physics. Furthermore, it is not required
to fully resolve the flow at all length and time scales to achieve effective con-
trol. By considering localised computational domains combined with focussing
on resolving the dominant length scales of the perturbations, this approach
can be made computationally feasible. Early systematic approaches for flow
control were already able to compute three-dimensional spatially localised es-
timation/control convolution kernels for distributed feedback control, showing
that these computational challenges can be overcome.

• Chapter 4 identified the problems related to the use of pressure measurements
for dynamic flow estimation. A solution was proposed based on spatial inte-
gration of the pressure gradient along the boundaries. While effective for the
considered flow configuration, it does not trivially extend to general geome-
tries and general actuator/sensor configurations. Particularly, if a feedback
actuator/sensor configuration is considered the integration path to derive the
output equation passes through the streamwise location of the actuator. In
this case the use of spatial integration is only robust if the actuator model is
divergence free and satisfies the boundary conditions. This was not the case
for the identified plasma actuator model considered in the experiments. As
a result the divergence-free projection of the body force results in thin shear
layers at the wall, which get integrated in the output equation, degrading
the numerical accuracy and affecting the input-output behaviour significantly.
This was the main reason to only investigate a feedforward actuator/sensor
configuration in the experimental study. Pressure based dynamic flow esti-
mation for general geometries is still an open problem. A possible solution is
to use the pressure Poisson equation for deriving the output equation, which
should be investigated in future works.

• The actuator and sensor placement that leads to good performance in convec-
tive systems results in a disturbance feedforward control system. While robust
stability is guaranteed in this case, such systems suffer from a poor robust per-
formance in case of model mismatch and uncertainties. To account for model
uncertainties in the control design, a change of set-up to include feedback
measurement information is required. However, convective instabilities that
appear in distinct wavepackets, such as TS-waves, are generally uncorrelated
to each other. As a result, to achieve effective feedback control in this case, the
feedback sensor has to be placed very close behind the control actuator giving
rise to an almost collocated control system. This poses severe restrictions on
accurately modelling the effect of the actuator on the sensor. Such systems
are more sensitive to truncated and neglected dynamics, requiring the need for
robust control design techniques such as H∞-control or µ-synthesis. Robust
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reduced-order feedback control for convective systems is still an open prob-
lem. Preliminary results [152] based on the Kuramoto-Sivashinsky equation,
a simplified benchmark model for convective systems, show that it is indeed
possible to guarantee both robust stability and robust performance for a wide
range of off-design conditions.

• One source of uncertainty in flow control is parametric uncertainty in the
external freestream velocity and the Reynolds number. The Reynolds num-
ber in turn affects the base flow used for the linearisation, which acts as a
spatially distributed parameter on the linearised equations. Instead of view-
ing the Reynolds number as source of uncertainty it can also be viewed as a
nonlinearity acting on the system. A simple method to account for this non-
linearity in the control design would be the use of classical gain scheduling,
for example with the external free-stream velocity as scheduling parameter,
which can be measured online with a pitot-tube. This would require the de-
sign and synthesis of controllers for a family of linearisations, which spans
the envelope of operation. The family of controller gains can subsequently be
combined through online gain interpolation. More rigorous methods such as
velocity-based linearisation along a trajectory or robust linear parameter vary-
ing techniques [153, 154] might also be worth investigating in future works,
also to account for nonlinearities in actuator models.

• The flow control problem is essentially nonlinear; however, the equations were
linearised in order to apply linear control theoretic tools. Although the effec-
tiveness of linear control is physically motivated, it is anticipated that non-
linear control methods such as nonlinear dynamic inversion [155] and back-
stepping [156] can improve the performance at higher perturbation amplitudes
and can extend the effectiveness region. This would require the use of nonlin-
ear model reduction techniques for the (finite-dimensional) design of control
systems. The method of Galerkin projection, as presented in chapter 2, also
applies to nonlinear systems, and in the case of fluids leads to state-space de-
scriptions with quadratic nonlinearities [32]. To avoid high-order systems, the
system can be projected on a reduced set of modes, e.g. balanced modes of the
equivalent linear system [157]. The methods presented in the dissertation can
provide a new route to obtain nonlinear models using mathematical modes,
rather than empirical modes.

• In this work a single actuator/sensor pair was used for estimation and con-
trol. In theory this is sufficient to achieve more than one order of magnitude
reduction and also works in controlled experimental conditions. However, for
future non-academic applications, e.g. aircraft wings, requires the use of span-
wise and streamwise distributed actuator/sensor grids in order to achieve a
profitable drag reduction and extended delay of transition. The future ‘smart’
wings require multi-input-multi-output modelling and control design. The
techniques in this work naturally account for any number of actuators/sen-
sors allowing for this extension without an increase in difficulty with respect
to obtaining the model. However, the costs with respect to the experimental
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feasibility, i.e. the wiring and communication needs, increase rapidly with the
number of inputs and outputs. A possible route to reduce the communica-
tion needs is the use of streamwise repeated control [137] and decentralised
control [158]. This involves the implementation of independent controllers at
different streamwise and spanwise locations. The localised modelling approach
presented in chapter 3 can provide new routes to efficiently decentralise the
controllers along with their computational domain.

• This work has focussed on convective instabilities in wall-bounded flows. The
application to global instabilities in more complex geometries should be inves-
tigated. Complex and irregular geometries are very tractable by the spline-
Galerkin method. Preliminary results on global stability analysis of a cylinder
flow, see also figure 1.2, indicate that the numerical tools are viable for resolv-
ing the global modes. The global mode in figure 1.2 was obtained as eigenmode
of the system matrix, rather than as a numerical solution of an eigenvalue prob-
lem, making extension to a control application by including actuators/sensors
rather straightforward. A suitable academic test case would be the control
of vortex shedding for a flow over a rotating cylinder, with hot-wire sensors
placed in the wake and a controller that specifies the direction and speed of
the rotation.

• A final recommendation is to explore other areas involving distributed param-
eter systems that model physical systems. Examples are flexible structures
in civil engineering applications, wavefronts for turbulence induced aberration
compensation in the field of adaptive optics, chemical processes in process
industries, flight envelope prediction for fault-tolerant flight control, the Ein-
stein field equation for relativistic systems and finally quantum mechanical
systems.





A
A state-space representation
for incompressible fluid flows

In this appendix the finite-dimensional state-space system of the linearised Navier-
Stokes equations is derived. In Awanou and Lai [64] a variational approach is pre-
sented for approximating steady Navier-Stokes equations in velocity pressure for-
mulation using multivariate splines. This approach is combined with the framework
from chapter 2 to derive state-space descriptions for the linearised Navier-Stokes
equations and is presented in section A.1. The state-space system for the case of
the non-periodic channel flow was validated in section 3.3 by comparing the spatial
stability with the predictions from LST. For completeness and to mathematically
verify the numerical method, the state-space system for the case of the periodic
channel flow is verified using the temporal stability theory in section A.2.

A.1. Numerical method
Let Ω denote the domain in Rn with n = 2 or 3 and Γ its boundary. In this appendix
the forced LNSE are considered which are given by

∂u

∂t
+ (U ·∇) u + (u·∇) U −

1
Re

∆u + ∇p = f in Ω, (A.1a)

∇·u = 0 in Ω, (A.1b)

u = ub on ΓD, (A.1c)

−pn +
1
Re

(n·∇) u = 0 on Γout, (A.1d)

where u denotes the velocity field, p the pressure, U the steady base flow used
for linearisation and f the body force. The body force is used for control and is
assumed to be of the form f = [fi(x)]ni=1φ(t) with fi(x) the spatial distribution of
ith component of the body force and φ(t) the in-domain temporal control input. The
system is closed by the boundary conditions (A.1c)-(A.1d) with ΓD the Dirichlet part
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of the boundary and Γout the outlet boundary. For control applications the boundary
condition is of the form u|ΓD

= ub(x, t) = [gi(x)]ni=1φΓ(t) with gi(x) the spatial
distribution for the ith velocity component and φΓ(t) the temporal boundary control
input. In this appendix only the state-equations are considered. The reader is
referred to chapter 2 for the derivation of the output equations (3.5) and (3.7). First
the Galerkin-type variational formulation through which the spline approximation
is determined is presented. In order to introduce the variational formulation some
functions spaces need to be defined. Let L2(Ω) be the space of square-integrable
functions over Ω. We define the following Sobolev spaces

H1(Ω) =
{

u ∈ L2(Ω),
∂u

∂xi
∈ L2(Ω) for i = 1, · · · , n

}

, (A.2)

H1
0 (Ω) =

{
u ∈ H1(Ω), u|ΓD

= 0
}
. (A.3)

H1(Ω) consists of square integrable functions whose first order derivative exists in
the weak sense and H1

0 (Ω) is the subspace in which the functions vanish on the
Dirichlet portion of the boundary ΓD. For vector valued functions the notation
H1(Ω) = H1(Ω)n is used. We define the bilinear form

a (v,u) =
1
Re

∫

Ω

∇v:∇u dΩ =:
1
Re

∫

Ω

n∑

i=1

n∑

j=1

∂ui

∂xj

∂vi

∂xj
dΩ ∀ v,u ∈ H1(Ω)

(A.4)
and the trilinear form

b(v,u,w) =
∫

Ω

v· (u·∇) w dΩ =
∫

Ω

n∑

i=1

n∑

j=1

viuj
∂wi

∂xj
dΩ ∀ v,u,w ∈ H1(Ω).

(A.5)
Also the inner product for functions belonging to L2(Ω) is given by

(v,u) =
∫

Ω

v·u dΩ. (A.6)

Equation (A.1) has no dynamic equation for the pressure that can be utilised for
control. To avoid singularities the pressure is eliminated from the equations by using
a space of velocity fields which are exactly divergence free. Let

V0 =
{

v ∈ H1
0(Ω), ∇·v = 0

}
, (A.7)

Vg =
{

u ∈ H1(Ω), u|ΓD
= ub, ∇·u = 0

}
. (A.8)

The weak form of A.1 can be obtained by taking the inner product of the first
equation (A.1a) with v ∈ V0

∫

Ω

{

v·
∂u

∂t
−

1
Re

v·∆u + v· (U ·∇) u + v· (u·∇) U + v·∇p

}

dΩ =
∫

Ω

v·f dΩ.

(A.9)
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Applying integration by parts and the divergence theorem to the diffusion term and
the pressure gradient term gives

∫

Ω

{

v·
∂u

∂t
+

1
Re

∇v : ∇u + v· (U ·∇) u + v· (u·∇) U − p (∇·v)
}

dΩ

−

∫

ΓD

v·

(

−pn +
1
Re

(n·∇) u

)

dΓ −

∫

Γout

v·

(

−pn +
1
Re

(n·∇) u

)

dΓ

=
∫

Ω

v·f dΩ. (A.10)

The Neumann outflow boundary condition A.1d occurs in (A.10) as a boundary
integral term and can therefore naturally be imposed by setting it to zero. Further-
more, ∇·v = 0 and v|ΓD

= 0 for all v ∈ V0. The variational formulation of the
problem (A.1) can thus be stated as: Find u ∈ L2 (0, T ; Vg) such that

(

v,
∂u

∂t

)

+ a (v,u) + b (v,U ,u) + b (v,u,U) = (v,f) ∀ v ∈ V0. (A.11)

The multivariate spline space is used as approximating space for the velocity. Let
T be the triangulation of the domain Ω. The spline space is the space of all smooth
piecewise polynomial functions of arbitrary degree d and arbitrary smoothness r
over T with 0 ≤ r < d

Sr
d (T ) := s ∈ Cr (Ω) , s|∆∈ Pd, ∀t ∈ T , (A.12)

with Pd the space of all polynomials of total degree d and ∆ denotes a triangle. To
approximate the velocity vector u we use su = [si]ni=1 ∈ Sg with Sg = Sr

d (T )n
∩Vg.

The spline approximation of (A.11) is to seek su(·, t) ∈ Sg ⊂ Vg such that
(

sv,
∂su

∂t

)

+ a (sv, su) + b (sv,U , su) + b (sv, su,U) = (sv,f) ∀ sv ∈ S0.(A.13)

After constructing a basis for S0 and Sg, (A.13) is equivalent to a system of ordinary
differential equations. However, the implementation of such divergence free spline
elements of arbitrary degree and smoothness is very complicated. Awanou and Lai
[64] streamlined this process by skipping the construction of smooth divergence-free
finite elements. Instead, they used discontinuous piecewise polynomial functions
over a triangulation and treated desired smoothness properties together with the
boundary conditions and the incompressibility condition as side constraints. This
approach is also applied here to the time dependent problem (A.13). Recall from
section 2.3 that the multivariate spline function can be represented in the vector
form

si(x, t) = Bd(x)ci(t), (A.14)

with Bd(x) ∈ R
1×·Jd̂ the global vector of B-form basis polynomials, J the number

of elements in T and d̂ =
(

n
n+d

)
the number of basis polynomials per element. The

spline function is identified by its B-coefficient vector ci(t) ∈ RJd̂×1 which are used
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as the time-varying expansion coefficients. As described in section 2.3, since s has a
certain smoothness, the smoothness conditions can be expressed by a linear system.
That is s ∈ Cr if and only if

Hci = 0. (A.15)

The Dirichlet boundary condition (A.1c) provides additional constraints on the B-
coefficient vector. Also recall from section 2.4 that the discrete constraints for this
condition can be given by a linear system

Dci = giφΓ, (A.16)

where gi is a vector of B-coefficients that interpolates gi(x) at the boundary ΓD.
The spline approximation su = [si]ni=1 is identified with B-coefficients c = [ci]ni=1.
Hence the discrete equivalent of ∇·u = 0 is given by [64]

n∑

i=1

T
d−1,d
∂xi

ci = T
d−1,d
∇

c = 0, (A.17)

with T
d−1,d
∂xi

is the differentiation matrix, which maps the B-coefficient vector s ∈

Sr
d(T ) to the B-coefficient vector of ∂

∂xi
s ∈ Sr−1

d−1(T ), see theorem 2 in section 2.4. Let

H̄ and D̄ be the matrices that encode the smoothness conditions and the boundary
conditions for the complete discrete velocity field. Furthermore let

L =
[

H̄T D̄T
(

T
d−1,d
∇

)T
]T

, Ḡ =
[
0 GT 0

]T
, (A.18)

then for all spline vector functions s with B-coefficient c satisfying

Lc = ḠφΓ (A.19)

we have that s ∈ Sg, and can thus be used to approximate the variational formu-
lation. The inner products, bilinear form and trilinear forms in (A.13) are com-
puted using the mass and bending matrices derived section 2.5. Let d denote the
B-coefficient vector of the test function sv. Furthermore, let U i be a vector of B-
coefficients of the spline function that interpolates U i(x) in the domain, and let f i

be a vector of B-coefficients that interpolates the spatial distribution of ith com-
ponent of the body force fi(x). Then the inner products, the bilinear form and
the trilinear forms can be approximated in terms of B-form polynomials and be
computed using

(

sv,
∂su

∂t

)

=
∫

Ω

sv·
∂su

∂t

=
∫

Ω

n∑

i=1

dT
i

[

Bd(x)
]T

Bd(x)ċi dΩ

=
n∑

i=1

dT
i Mċi, (A.20)
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(sv,f ) =
∫

Ω

sv·f

=
∫

Ω

n∑

i=1

dT
i

[

Bd(x)
]T

Bd(x)f iφ dΩ

=
n∑

i=1

dT
i Mf iφ, (A.21)

a (sv, su) =
1
Re

∫

Ω

∇sv:∇su dΩ

=
1
Re

∫

Ω

n∑

i=1

n∑

j=1

d
T
i

[

T
d,d
∂xj

]T [

Bd(x)
]T

Bd(x)Td,d
∂xj

ci dΩ

=
1
Re

n∑

i=1

n∑

j=1

dT
i

[

T
d,d
∂xj

]T

MT
d,d
∂xj

ci

=
1
Re

n∑

i=1

dT
i





n∑

j=1

[

T
d,d
∂xj

]T

MT
d,d
∂xj



 ci, (A.22)

b (sv,U ,u) =
∫

Ω

sv· (U ·∇) su dΩ

=
∫

Ω

n∑

i=1

n∑

j=1

dT
i

[

Bd(x)
]T (

Bd(x)U j
)

Bd(x)Td,d
∂xj

ci dΩ

=
n∑

i=1

n∑

j=1

dT
i K

(
U j

)
T

d,d
∂xj

ci

=
n∑

i=1

dT
i





n∑

j=1

K
(
U j

)
T

d,d
∂xj



 ci, (A.23)

b (sv, su,U) =
∫

Ω

sv· (su·∇) U dΩ

=
∫

Ω

n∑

i=1

n∑

j=1

dT
i

[

Bd(x)
]T (

Bd(x)cj

)

Bd(x)Td,d
∂xj

U i dΩ

=
n∑

i=1

n∑

j=1

dT
i K

(

T
d,d
∂xj

U i
)

cj , (A.24)

with T
d,d
∂xj

the differentiation matrix which maps the B-coefficients of s ∈ Sr
d(T )

to the B-coefficient vector ∂
∂xj

s ∈ Sr−1
d (T ), with M a block diagonal mass matrix
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whose blocks are given by (2.48) and K (a) a block diagonal bending matrix for the
B-coefficient vector a (e.g. a = T

d,d
∂xj

U i) whose blocks are given by (2.49). Using

these expressions, the variational formulation (A.13) can be translated to: Find c

satisfying (A.19) such that

dT M̄ ċ + dT K̄c = dT Fφ ∀d with Ld = 0, (A.25)

where M̄ is a stacked velocity mass matrix and K̄ denotes the discretisation of
the linear diffusion term and the two linear convective terms. The right hand side
matrix F contains the contribution of the in-domain forcing model.

The side constraints are commonly enforced through Lagrange multipliers [64,
65]. In section 2.5 a null space approach is proposed to transform (A.25) to state-
space format. This approach result in a reduced set of coefficients with minimal
non-zero support for Sg which makes the resulting state-space model suitable for
control applications. Let V be a basis for null(L) such that LV = 0 and let cp = ZφΓ

be a particular solution of (A.19). The general solution set for (A.19) can be written
as

c = V ch + ZφΓ, (A.26)

with ch ∈ RN−R∗

the coordinate vector of c relative to the basis for null(L) and
with R∗ the rank of L. Since Ld = 0 for all B-coefficient vectors d of splines in S0,
the solution set for d can be written as d = Vdh. Substituting this set for d and
the solution set (A.26) for c in (A.25) gives

dT
h V T M̄

(

V ċh + Z φ̇Γ

)

+ dT
h V T K̄

(

V ch + ZφΓ

)

= dT
h V T Fφ, (A.27)

which is a reduced unconstrained system of order N−R∗ projected on the null space
of the side constraints. Since (A.27) must hold for all dh, (A.27) is equivalent to

(

V T M̄V
)

ċh = V T
[
−K̄V ch − K̄ZφΓ + Fφ− M̄Z φ̇Γ

]
. (A.28)

Defining the following matrices

A = −
(

V T M̄V
)−1

V T K̄V , AΓ = −
(

V T M̄V
)−1

V T K̄Z ,

BΩ =
(

V T M̄V
)−1

V T F , BΓ = −
(

V T M̄V
)−1

V T M̄Z ,

(A.29)

(A.28) can be written as

ċh = Ach + AΓφΓ + BΓφ̇Γ + BΩφ. (A.30)

Finally we obtain the system in state-space format

[
ċh

φ̇Γ

]

=
[
A AΓ

0 0

] [
ch

φΓ

]

+
[
BΓ

1

]

φ̇Γ +
[
BΩ

0

]

φ (A.31)
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A.2. Verification
In this section the numerical method is validated using the temporal stability the-
ory. By considering the channel flow (figure 5.6) with spatially periodic boundary
conditions the eigenvalues of the state-space model (A.31) can be compared with
the temporal eigenvalues of the Orr-Sommerfeld equation (3.15). The channel with
length L = 8π is considered for the case Re = 7000. The S0

4(T960) state-space
model which is used for the controller synthesis is again considered but now with
periodic boundary conditions. Periodic boundary conditions can be applied in the
numerical method by simply extending the inter-element continuity between the in-
flow and outflow. The open-loop uncontrolled system is represented by ċh = Ach.
We wish to compare the eigenvalues λ of A with the eigenvalues ω of the Orr-
Sommerfeld equation. The eigenvalues of A correspond to fundamental solutions
eλt in the time domain. From (3.9) it follows that the temporal frequencies of the
Orr-Sommerfeld equation can be related to system eigenvalues by λOS = −iωOS

Furthermore, the wavelengths that fit in a periodic channel of box size L are
given by λx = L/j, j ∈ N+. Hence the corresponding wavenumbers are given
by αj = 2πj/L = jα0, j ∈ N+ with α0 the fundamental wavelength. To compare
the eigenvalues of the state-space model we solve the Orr-Sommerfeld equation for
a set of integer multiples of the fundamental wavenumber and apply the conversion
λOS = −iωOS to relate the frequencies ω to system eigenvalues λ. The dominant
eigenvalues of the Orr-Sommerfeld equation and the spline model are listed in ta-
ble A.1. The spline model accurately captures the dominant dynamics of the flow.

k Orr-Sommerfeld λOS spline λ |λ − λOS |

1 0.00171539 - 0.25292937i 0.00171537 - 0.25292939i 0.00000003

2 -0.00759183 - 0.16438997i -0.00759179 - 0.16439009i 0.00000013

3 -0.01182921 - 0.34340007i -0.01183063 - 0.34339614i 0.00000418

4 -0.01747563 - 0.03476212i -0.01747563 - 0.03476210i 0.00000002

5 -0.01806727 - 0.10889122i -0.01806702 - 0.10889070i 0.00000058

6 -0.02099365 - 0.22879485i -0.02099071 - 0.22879873i 0.00000487

7 -0.02111395 - 0.22887111i -0.02111549 - 0.22886843i 0.00000309

8 -0.02144973 - 0.08601143i -0.02144968 - 0.08601153i 0.00000011

9 -0.02973214 - 0.47006733i -0.02975512 - 0.47005252i 0.00002734

10 -0.02982088 - 0.47011896i -0.02982758 - 0.47015029i 0.00003204

11 -0.03010486 - 0.18403967i -0.03010637 - 0.18403908i 0.00000162

12 -0.03639968 - 0.71336680i -0.03574655 - 0.71362950i 0.00070398

13 -0.03646103 - 0.71340240i -0.03643618 - 0.71340606i 0.00002512

14 -0.03770525 - 0.21175241i -0.03763012 - 0.21170367i 0.00008956

15 -0.03799777 - 0.21196786i -0.03804988 - 0.21203181i 0.00008249

16 -0.04198552 - 0.95771911i -0.04124565 - 0.95600997i 0.00186241

17 -0.04201606 - 0.95773859i -0.04200127 - 0.95779573i 0.00005902

18 -0.04238220 - 0.24852281i -0.04238296 - 0.24852450i 0.00000185

19 -0.04672358 - 0.41404472i -0.04669017 - 0.41400991i 0.00004825

20 -0.04686574 - 1.20274634i -0.04683349 - 1.20289856i 0.00015560

21 -0.04687263 - 1.20274602i -0.04810140 - 1.20071794i 0.00237128

22 -0.04951767 - 0.08897461i -0.04951630 - 0.08896558i 0.00000913

Table A.1: Dominant eigenvalues of the S0
4(T960) spline model compared with the solution of the

Orr-Sommerfeld equation for αj = 2πj

L
, j ∈ N+. The channel with a length L = 8π is considered

for the case Re = 7000 with spatially periodic boundary conditions





B
Solution of the H2/LQG
optimal control problem

This appendix presents the state-space formulas for the controller that solves the
H2 optimal control problem. The reader is referred to Doyle et al. [30] and Zhou
et al. [29, chapter 14] for the derivation of the formulas and more information about
this control theory. The H2 control problem considers the generalised plant with
state-space realisation

u̇ = Au + B1w + B2φ,

z = C1u + D12φ

y = C2u + D21w

The output feedback φ(s) = K(s)y(s) must internally (exponentially) stabilise the
system and minimise the H2 norm of the closed-loop map T zw defined by

‖T zw(s)‖2=

√

1
2π

∫ ∞

−∞

Trace{T T
zw(iω)T zw(iω)}dω =

√
√
√
√

1
2π

∫ ∞

−∞

∑

i,j

|T i,j
zw(iω)|2dω.

This problem has a unique solution provided that

1. (A,B2,C2) is stabilisable and detectable

2. D12 and D21 have full rank.

3.
[
A − iωI B2

C1 D12

]

has full column rank for all ω

4.
[
A − iωI B1

C2 D21

]

has full row rank for all ω
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The state-space realisation of the optimal controller K(s) is then given by

u̇K = AKuK + BKy

φ = CKuK

where

CK = −
(

DT
12D12

)−1 (

BT
2 X + DT

12C1

)

BK =
(

Y CT
2 + B1DT

21

) (

DT
21D21

)−1

AK = A + B2CK − BKC2

and where X and Y are the unique solution of the following algebraic Riccati equa-
tions

(A− B2

(

DT
12D12

)−1

DT
12C1

)T

X + X

(

A − B2

(

DT
12D12

)−1

DT
12C1

)

−

XB2

(

DT
12D12

)−1

BT
2 X + CT

1 C1 − CT
1 D12

(

DT
12D12

)−1

DT
12C1 = 0,

(A− B1DT
21

(

DT
21D21

)−1

C2

)

Y + Y

(

A − B1DT
21

(

DT
21D21

)−1

C2

)T

−

Y CT
2

(

DT
21D21

)−1

C2Y + B1BT
1 − B1DT

21

(

DT
21D21

)−1

D21BT
1 = 0

Linear Quadratic Gaussian (LQG) control is a special of H2 which considers the
following stochastic system

u̇ = Au + Bφ + wd,

y = Cu + wn,

where wd is a disturbance and wn is measurements noise assumed to be uncorrelated
Gaussian stochastic processes with zero means and covariances

E
{

wd(t)wT
d (τ)

}
= W δ(t− τ), and

E
{

wn(t)wT
n (τ)

}
= V δ(t− τ).

The LQG problem is to find φ(s) = K(s)y that minimises

J = E

{

lim
T →∞

1
T

∫ T

0

uT Qu + φT Rφ dt

}

.

This problem can be cast as an H2 optimisation problem by defining B1 = W
1
2 ,

D21 = V
1
2 , C1 = Q

1
2 , D12 = R

1
2 .
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A null space algorithm for

linear systems

The null space approach to transform the discrete system of equations to state-
space format, as presented in chapter 2 and appendix A, relies on the availability
of a general solution set for the side constraints for the smoothness conditions,
boundary conditions and divergence-free condition. This requires both a null space
and a particular solution for a large sparse linear system of equations. In this
appendix an efficient algorithm is presented to construct a general solution set in
n3/3+O(n2) multiplications. It can be applied to both full rank and deficient rank,
determined and underdetermined linear systems of the form

Ax = b, (C.1)

where A ∈ Rm×n with rank(A) = r ≤ m ≤ n. Without loss of generality it is
assumed that there exists a solution set of the form

x = Vxh + p, (C.2)

with V ∈ R
n×(n−r) a basis for the null space of A, xh ∈ R

n−r free to choose and
p ∈ Rn a particular solution. The calculation of the null space is equivalent to the
algorithm recently presented in Hölzel and Bernstein [72] to construct a basis for
the null space of large sparse matrices. The algorithm from Hölzel and Bernstein
[72] is extended in this appendix to compute both a basis for the null space and a
particular solution for linear systems. The described approach represents a special
case of the ABS class of algorithms introduced by Abaffy, Broyden and Spedicato
[159].

149



C

150 C. A null space algorithm for linear systems

C.1. Algorithm
The algorithm computes a basis for the null space and a particular solution in m
stages such that x(m) solves the system at stage m, that is

Ax(m) = b, (C.3)

where the solution is expressed as

x(m) = V (m)x
(m)
h + p(m). (C.4)

Starting with V (0) = In, p(0) = 0, at the kth stage we wish to update the basis for
the null space and the particular solution such that

A(k) = AV (k−1) =
n− k + 1

[
0

A
(k)
2

]
k − 1

m− k + 1
, (C.5a)

b(k) = b − Ap(k−1) =
[

0
b

(k)
2

]
k − 1

m− k + 1
. (C.5b)

In other words V (k) ∈ Rn×(n−k) is a basis for the null space of the first k rows of A

and p(k) ∈ Rn a particular solution of the first k equations of Ax = b. At the end
of the mth stage we have AV (m) = 0 and Ap(m) = b such that (C.4) is a solution
of the system (C.1). The equations are eliminated by successively substituting a
solution for each equation of the form (C.4). The expressions for V (k), p(k) are
based on the following proposition.

Proposition 1. Let A ∈ Rm×n, a ∈ R1×n, b ∈ Rm and b1 ∈ R. Also let V ∈
Rn×(n−1) be a basis for null(a), M ∈ R(n−1)×(n−m−1) a basis for null(AV ), p ∈ Rn

a particular solution of ap = b1 and q ∈ Rn−1 a particular solution of AV q =
b − Ap. Then

1) V ′ = V M is basis for the null space of A′ :=
[

a

A

]

;

2) p′ = V q + p is particular solution for A′p′ = b′ where b′ :=
[
b1

b

]

.

Proof. A proof for 1) is given in [72] and is also included here for completeness. Let
y ∈ null(A′) such that ay = 0 and Ay = 0. Since y ∈ null(a) there exists w ∈ R

n−1

such that y = Vw. Then Ay = AV w = 0 and since M is a basis for null(AV )
there exists z ∈ Rn−m−1 such that w = Mz. Then we have y = V Mz and hence
V ′ = V M is a basis for null(A′). Statement 2) is proved in the similar way. Let p′

be a particular solution of A′p′ = b′ such that ap′ = b1 and Ap′ = b. Since also
ap = b1 and V is a basis for null(a), there exists q ∈ Rn−1 such that p′ = Vq + p.
Then Ap′ = A (V q + p) = b which shows that q must be a particular solution of
AV q = b − Ap.
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From this proposition it follows that following recurrence for V (k) and p(k) result
in the forms (C.5a) and (C.5b).

V (k) = V (k−1)Mk, (C.6)

p(k) = V (k−1)qk + p(k−1), (C.7)

with Mk ∈ R(n−k+1)×(n−k) a basis for the null space of the kth equation of the
reduced system, that is

a
(k)
k Mk = 0, (C.8)

and qk ∈ Rn−k+1 a particular solution of kth equation of the reduced system, that
is

a
(k)
k qk = b

(k)
k , (C.9)

where a
(k)
k denotes the kth row of A(k). Constructing a basis for a null space and

a particular solution of a single equation is trivial. Let a
(k)
k =

[

a
(k)
k,1, · · · , a

(k)
k,n−k+1

]

and let s be an index such that a(k)
k,s 6= 0 and define the column vector of multipliers

mk ∈ Rn−k as

mk =
[

a
(k)

k,1

a
(k)

k,s

, · · · ,
a

(k)

k,s−1

a
(k)

k,s

,
a

(k)

k,s+1

a
(k)

k,s

, · · · ,
a

(k)

k,n−k+1

a
(k)

k,s

]T

(C.10)

then

Mk =





Is−1 0(s−1)×(n−k−s+1)

01×(s−1) 01×(n−k−s+1)

0(n−k−s+1)×(s−1) In−k−s+1



 − esmT
k , (C.11)

is a basis for the null space of a
(k)
k and

qk =
[

01×(s−1), b
(k)
k /a

(k)
k,s, 01×(n−k−s+1)

]T

(C.12)

a solution of (C.9). For stability reasons the index s is chosen such that it is the
index of the largest absolute element in a

(k)
k where

|a
(k)
k,s|= max

1≤j≤n−k+1
|a

(k)
k,j |. (C.13)
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The complete algorithm is summarised below.

input : A ∈ Rm×n with rank(A) = r ≤ m ≤ n and b ∈ Rm×1.
output: Basis matrix V ∈ Rn×n−r for the null space of A and a particular

solution p of Ax = b.

1 initialization; V (0) = I, p(0) = 0.
2 for k = 1 : m do

3 compute a
(k)
k = akV (k−1), b(k)

k = bk − akp(k−1).

4 Find the column index s of the largest absolute element in a
(k)
k .;

5 if a
(k)
k,s = 0 then

6 V (k) = V (k−1) , p(k) = p(k−1)

7 else
8 Construct Mk (C.11) and qk (C.12).

9 Update the basis for the null space V (k) = V (k−1)Mk.
10 Update the particular solution p(k) = V (k−1)qk + p(k−1).
11 end

12 end

13 return V = V (k), p = p(k)

Algorithm 1: ABS nullspace algorithm

All computations in algorithm 1 are of the order n2 except for the update of the
null space matrix (line 9) which requires n3/3 calculations.

C.2. An illustrative example

Consider the following linear system Ax = b

[
1 −2 −1

−3 2 3

]




x1

x2

x3



 =
[
−1
2

]

. (C.14)

For the first iteration we have a
(1)
1 = a1 and b

(1)
1 = b1. The second element a(1)

1,2 is

the largest absolute element of a
(1)
1 . The null space and particular solution of the

first equation with s = 2 are given by

M1 =





1 0
1
2 − 1

2
0 1



 , q1 =





0
1
2
0



 . (C.15)
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For the first iteration we have V (1) = M1 and p(1) = q1. Continuing to the second
iteration, the second equation of the reduced system is defined by

a
(2)
2 = a2V (1) =

[
−3 2 3

]





1 0
1
2 − 1

2
0 1



 =
[
−2 2

]
, (C.16)

b
(2)
2 = b2 − a2p(1) = 2 −

[
−3 2 3

]





0
1
2
0



 = 1. (C.17)

The first element is the largest absolute element of a
(2)
2 . The null space and par-

ticular solution with s = 1 of the second equation of the reduced system are given
by

M2 =
[
1
1

]

, q2 =
[
− 1

2
0

]

. (C.18)

The null space and particular solution for the original system (C.14) are then given
by

V (2) = V (1)M2 =





1 0
1
2 − 1

2
0 1





[
1
1

]

=





1
0
1



 , (C.19)

p(2) = V (1)q2 + p(1) =





1 0
1
2 − 1

2
0 1





[
− 1

2
0

]

+





0
1
2
0



 =





− 1
2

1
4
0



 . (C.20)

The expressions can be verified by substituting x = V (2)xh + p(2) in (C.14).
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