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Estimating Risk-aware Flexibility Areas for 
Electric Vehicle Charging Pools via AC 

Stochastic Optimal Power Flow
Juan S. Giraldo, Member, IEEE, Nataly Bañol Arias, Member, IEEE, Pedro P. Vergara, Member, IEEE, 

Maria Vlasiou, Gerwin Hoogsteen, Member, IEEE, and Johann L. Hurink, Member, IEEE

Abstract——This paper introduces an AC stochastic optimal 
power flow (SOPF) for the flexibility management of electric ve‐
hicle (EV) charging pools in distribution networks under uncer‐
tainty. The AC SOPF considers discrete utility functions from 
charging pools as a compensation mechanism for eventual ener‐
gy not served to their charging tasks. An application of the AC 
SOPF is described where a distribution system operator (DSO) 
requires flexibility to each charging pool in a day-ahead time 
frame, minimizing the cost for flexibility while guaranteeing 
technical limits. Flexibility areas are defined for each charging 
pool and calculated as a function of a risk parameter involving 
the uncertainty of the solution. Results show that all players 
can benefit from this approach, i. e., the DSO obtains a risk-
aware solution, while charging pools/tasks perceive a reduction 
in the total energy payment due to flexibility services.

Index Terms——Electric vehicle, flexibility management, sto‐
chastic optimal power flow (SOPF), risk awareness, compensa‐
tion mechanism.

NOMENCLATURE

A. Sets

Ωω

Ωb

Ωs
K

Ωs
N

ΩS

Set of stochastic scenarios

Set of nodes

Set of breaking points at charging pool s ÎΩS

Set of charging points at charging pool s ÎΩS

Set of nodes with charging pools

ΩT

B. Parameters

αsk 

βst 

ηa
n 

ηd
n 

κ 

Dt 

πω 

anω 

Anω 

cst 

dnω 

Enω 

hsk, bsk

Īij 

p̄st 

P D
it, Q

D
it

Rij, Xij

V̄ 

-V 

VESt 

x̄n 

C. Variables

ρstω 

ϕnω 

Φsω 

Set of time periods

Break point value of energy not served at charg‐
ing pool s and point k

Risk parameter at charging pool s in period t

Expected arrival time of charging task n

Expected departure time of charging task n

Number of breaking points

Duration of period t

Probability of scenario ω

Arrival time of charging task n in scenario ω

Characteristics of charging task n in scenario ω

Unitary cost of energy at charging pool s in peri‐
od t

Departure time of charging task n in scenario ω

Required energy of charging task n in scenario ω

Coefficients of the utility function at charging 
pool s and break point k

The maximum allowed current magnitude at 
branch i-j

The maximum allowed power of charging pool s 
in period t

Active and reactive power demands at node i and 
period t

Resistance and reactance of branch i-j

The maximum allowed voltage magnitude

The minimum allowed voltage magnitude

Voltage at substation node in period t

The maximum charging power of charging task n

Power mismatch for charging pool s in period t 
and scenario ω

Energy not served to task n in scenario ω

Total energy not served at charging pool s in sce‐
nario ω
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λ̄skω, 

-λ skω

Zsω 

Rst

I sqr
ijtω 

pst

Pijtω, 
Qijtω

V sqr
itω 

xstω 

yskω 

Weights at charging pool s and break point k in 
scenario ω

Auxiliary variable representing the cost of energy 
not supplied to charging pool s in scenario ω

Flexibility area of charging pool s in period t

Squared current magnitude flowing through 
branch i-j in period t and scenario ω

Reserved power for charging pool s in period t

Active and reactive power flowing through branch 
i-j in period t and scenario ω

Squared voltage magnitude at node i in period t 
and scenario ω

Allocated power consumption for charging pool s 
in period t and scenario ω

Binary variable representing state of segment at 
charging pool s and break point k in scenario ω

I. INTRODUCTION 

BESIDES being an environmentally-friendly option for 
transportation, electric vehicles (EVs) can also provide 

services due to the controllable nature of their load. Exam‐
ples of these services are, amongst others, congestion man‐
agement, peak shaving, and frequency regulation [1]. These 
services may be of increased value as technical problems 
such as voltage violations and branch overloading are expect‐
ed to be more likely in distribution systems if no actions are 
taken [2]. For distribution system operators (DSOs), which 
are responsible for delivering electricity to end customers 
and maintaining a reliable network operation, it might be in‐
teresting to assess the flexibility needs in their networks. In 
a later stage, these flexibility needs may also be provided by 
entities such as aggregators to solve operating issues or offer 
it as an ancillary service. For this, flexibility areas may be 
determined corresponding to the range of active power in 
which flexibility sources can be managed [3].

In [4], it is already stated that network issues can be tack‐
led through flexibility management frameworks to avoid 
common issues in distribution systems, such as congestion 
or voltage limit violations. This strategy is known as DSO’s 
flexibility procurement, and it has gained momentum during 
the last few years due to its economic advantages over other 
solutions such as grid reinforcement. However, for a flexibili‐
ty scheme to be successful, it must guarantee that all partici‐
pants can benefit from participating and are thus willing to 
engage in the flexibility scheme [5].

Due to driving behaviours, penetration levels, and energy 
requirements, different EVs add an intrinsic, highly volatile 
stochasticity layer to the already complex flexibility manage‐
ment problem [6]. Hence, to successfully implement a flexi‐
bility scheme, new management mechanisms are needed that 
incentivise EV users to offer their flexibility and encourage 
them to participate in such schemes allowing the DSO to 
guarantee a high-quality delivery service under uncertainty. 
In this context, a call for flexibility consists of acquiring ser‐
vices from EVs by the DSO to ensure the safe operation of 

the grid [3], ensuring that interests of EVs are respected.
Several works have studied flexibility concepts concerning 

EVs in distribution systems using pricing strategies. For ex‐
ample, [7] proposes a roadmap with key recommendations 
for the inclusion of EVs, where they define EV flexibility 
services in terms of power, time, duration, and location. Fur‐
thermore, [8] proposes an adaptive pricing strategy that 
helps to mitigate peak demand and to reduce the need for 
grid reinforcement. Likewise, in [4], a dynamic pricing strat‐
egy for peak load reduction is proposed to optimize the prof‐
it of charging pool owners, while the uncertain preferences 
of customers are accounted for via robust optimization.

Smart charging strategies designed in [9] are able to satis‐
fy multiple flexibility objectives and target specific groups 
of EV users according to user profile preferences. However, 
they do not take into account different pricing schemes, ag‐
gregator profit, and EV user compensation. Similarly, [10] 
presents a stochastic optimization model for cooperative con‐
trol of charging stations using an aggregated energy storage 
equivalent to describing the charging tasks of EVs. Howev‐
er, although the approaches mentioned above can provide lo‐
cal peak shaving services, they are not designed to consider 
network constraints. In [11], EV flexibility is provided in the 
form of peak shaving and valley filling, and pricing and 
charging scheduling mechanisms are proposed based on a 
linear demand-price function. The problem is formulated as 
a bilevel program in which the distribution market clearing 
is simulated at the lower level and the EV charging schedul‐
ing is solved at the upper level. Although aggregated flexibil‐
ity is calculated for DSO services, the proposed framework 
is deterministic disregarding the uncertain nature of EV pa‐
rameters.

The concept of flexibility envelopes is introduced in [12] 
as an alternative to quantifying flexibility reserves consider‐
ing the time evolution. This concept has been used, for ex‐
ample, in [13], to show that the flexibility reserves depend 
highly on the availability of EVs. Furthermore, in [14], flexi‐
bility envelopes are calculated for local energy communities 
highlighting it as an ease-of-use approach for managing and 
reserving flexibility in real-time. A similar concept known as 
flexibility areas has been used to estimate the flexibility of 
the available active and reactive power at the transmission 
system operator (TSO)-DSO boundary [3]. A bottom-up ag‐
gregation is commonly performed to estimate such flexibility 
areas by determining the potential of different assets at the 
boundary [15]. In [16], a risk-aware framework is proposed 
to define the aggregated flexibility from TSO-DSO intercon‐
nections and a two-stage linear stochastic optimization mod‐
el is developed to optimally define the active power flexibili‐
ty available from DSOs to TSOs via a DC optimal power 
flow (DC-OPF). Moreover, as concluded in [17], optimal 
power flow (OPF) based algorithms allow for obtaining 
more reliable feasible operating regions compared with ran‐
dom sampling methods. However, none of the above ap‐
proaches does consider uncertainty.

Stochastic programming is a common approach for han‐
dling uncertainty in electrical power systems including net‐
work constraints [18]. For example, [19] introduces a multi-
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period AC stochastic OPF (SOPF) considering different flexi‐
bility assets for congestion management and voltage control. 
A two-stage stochastic programming model for managing the 
flexibility of EVs is proposed in [20] for distribution sys‐
tems in which EVs have already been fully recharged. Simi‐
larly, [21] uses a linearized power flow model in a stochastic 
optimization model considering network constraints focusing 
on the network reliability. Robust optimization is also used 
as in [22] to provide flexibility of EVs to DSOs through ac‐
tive and reactive power management strategies, which mini‐
mizes the amount of non-supplied energy and considers net‐
work constraints. A queuing network model for EV charging 
is presented in [23], where the power allocation is defined in 
the distribution network while avoiding congestion and volt‐
age issues. However, all these works assume that users agree 
to participate in the flexibility scheme without taking into ac‐
count their particular priorities.

The willingness of participants to engage in energy trad‐
ing is an essential factor to be considered in a flexibility 
scheme. Different approaches have been identified in the lit‐
erature, such as solving a global optimization problem that 
is aware of all participants’  subproblems, double auction 
schemes, and using marginal utility functions [5]. Reference 
[24] quantifies the EV flexibility for a group of EVs classi‐
fied by user priorities in terms of amount, time, and duration 
of availability via a data-driven approach. Even though the 
EV flexibility is properly quantified, the work focuses on da‐
ta analysis without explicitly proposing an EV flexibility 
scheme for practical implementations. Similarly, an online al‐
gorithm for charging scheduling of EVs in charging pools is 
proposed in [25], aiming to optimize the amount of energy, 
charging time, and prices for EV users, which is able to 
choose the most preferable option of EV users from a menu-
based pricing scheme. Although this work ignores economic 
profits of each individual charging pool and a detailed opera‐
tion of the power grid (i.e., power flow equations), its online 
nature sets it as a promising option for real implementations 
of EV flexibility schemes. With this, simplified representa‐
tions for utility functions are common since they allow for 
using decentralized optimization algorithms. For example, 
[26] introduces a decentralized flexibility market based on lin‐
ear utility functions where the prosumers’  willingness to par‐
ticipate is explicitly considered. Furthermore, [27] proposes 
using piecewise-quadratic utility functions. However, as found 
in [5], utility functions are often nonlinear and nonconvex, and 
in the case that they are linear, they can be relatively flat with 
occasionally significant variations, resulting in non-smooth 
utility functions.

The reviewed studies show that flexibility services via EV 
charging have been widely studied. However, we have identi‐
fied three main gaps in the current literature which we at‐
tempt to fill with this paper.

1) Most papers dealing with local EV energy management 
disregard network constraints and do not consider uncertain‐
ties. We propose an multi-period AC SOPF considering net‐
work constraints and uncertainty related to EV requirements.

2) Most papers consider quadratic utility functions be‐
cause of their attractive properties. We propose a general 

piecewise-linear formulation that is able to deal with convex 
and nonconvex utility functions allowing us to represent the 
interests of EV users. The proposed utility functions repre‐
sent the participants’  willingness to offer flexibility services 
in the form of energy not served in return for compensation.

3) We propose a methodology to estimate risk-aware flexi‐
bility areas where the DSO can guarantee operational limits. 
This is done by introducing a risk parameter representing the 
willingness of the DSO to withstand operational limit viola‐
tions. This methodology allows estimating probable costs for 
flexibility requirements and gives the charging pools more 
freedom to manage the EV load.

II. PROBLEM DESCRIPTION 

An operator entity, namely the DSO, is responsible for 
guaranteeing reliable operational conditions in an electrical 
distribution network. In addition to constraint satisfaction (i.e., 
voltage and current magnitude limits), the DSO aims to 
achieve an economically efficient operation on a day-ahead 
time frame via flexibility procurement. In this context, we 
consider a distribution network with a set Ωb of nodes, con‐
nected by a set of distribution lines. A fixed number of 
charging pools are connected to the network, identified by 
the subset ΩS ÌΩb. Hereby, a charging pool s ÎΩS consists 
of a fixed set Ωs

N of charging points (e.g., the number of EV 
parking spaces). A charging task n arriving at the charging 
pool s is represented as n ÎΩs

N, and is characterized by its 
set of requirements An. It is assumed that a truthful local 
market mechanism [28] is implemented, eliminating any stra‐
tegic behaviour from the participants, meaning that all charg‐
ing tasks arriving at a charging pool are willing to provide 
demand flexibility services in exchange for compensation. 
This compensation must reflect the charging tasks involved 
in the process, whether by a tariff reduction, a bonus, or any 
other kind of settlement [29]. Therefore, the charging pools 
act as local flexibility aggregators characterized by a utility 
function us which are able to control the charging profiles of 
their tasks.

In the implemented market mechanism, the charging pools 
agree on truthfully communicating the expected require‐
ments of their charging tasks An along with their utility func‐
tions us to the DSO. Therefore, the DSO aims to obtain opti‐
mal demand profiles for the charging pools, which minimize 
the cost for flexibility procurement while guaranteeing the 
safe operation of the network over a planning horizon ΩT. In 
operation, it would be ideal that the charging pools could 
provide the required demand profiles, meaning that all opera‐
tional constraints are satisfied. However, in real operation, 
the actual delivered power might vary around the planned 
profiles since the information from the charging pools is in‐
trinsically uncertain, e.g., due to the stochastic behaviour of 
their charging tasks. Hence, the DSO needs to plan its ac‐
tions taking into account the operation uncertainties from the 
charging pools. For this purpose, in this paper, we propose 
using a multi-period AC SOPF, extending the work in [18].

Let ωÎΩω be a realization in a set of stochastic scenarios 
considering possible outcomes due to the uncertainty of the 
characteristics of the charging tasks. Hence, Anω represents 
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the expected requirements of charging task n ÎΩs
N in scenar‐

io ω. The DSO receives this information from the charging 
pools and solves the AC SOPF by minimizing the expected 
costs for flexibility Zs in a day-ahead time frame. The DSO 
needs to define a risk parameter βst based on the risk it is 
willing to withstand over operational limit violations. Using 
the optimal solution and the risk parameter, the DSO calcu‐
lates and communicates a lower and upper power bound to 
each charging pool valid for each period of the planning ho‐
rizon. These bounds compose the flexibility area, denoted by 
Rst. A graphical representation of the day-ahead planning in‐
volving the DSO, charging pools, and charging tasks is de‐
picted in Fig. 1 along with its respective section in the paper.

In the operation stage, each charging pool s is responsible 
for the local flexibility management of its charging tasks 
considering the flexibility area provided by the DSO. This 
can be done, for example, using profile steering as in [30]. 
The actual energy not served to the charging tasks at the end 
of the day is then aggregated and mapped through the utility 
function to calculate the actual cost for flexibility.

III. MATHEMATICAL MODELS 

In this section, the different components of the considered 
setting are presented.

A. Charging Tasks

Consider a charging task n ÎΩs
N in charging pool s ÎΩS 

with a maximum deliverable power x̄n. In each scenario 
ωÎΩω, a charging task is characterized by the tuple Anω =
(anω dnω Enω ). The tuple is composed of the arrival time of 
the task anω ÎΩT following a Poisson distribution Pois(×) 
characterized by its expected value ηa

n [23], its departure 
time dnω ÎΩT as a function of the charging duration follow‐
ing an exponential distribution Exp(×) characterized by the 
rate ηd

n [31], and the required charging energy Enω assumed 
to follow a uniform distribution U(×) over the closed interval 
[e1e2 ]:

ì

í

î

ïïïï

ï
ïï
ï

anω Pois(ηa
n )

dnω Exp(ηd
n )+ anω

Enω U(e1e2 )

(1)

For feasibility, we assume anω < dnω £ |ΩT |, and that with‐

in the charging period, the required energy can be delivered 
at full power, i.e., Enω £(dnω - anω )x̄n.

It is worth mentioning that the effectiveness of the model 
is independent of the probability distribution function used 
to model the exogenous stochastic parameters. In fact, these 
scenarios can also be mapped from real data [6] or can be 
synthetically generated [9], [20], [32].

B. Charging Pools

A charging pool s ÎΩS gets an energy reserve for its 
charging operation for a future planning horizon ΩT. The en‐
ergy reserve is composed of averaged power slots defined 
before the actual realization pst" t ÎΩT and eventual power 
mismatches ρstω due to the uncertainty of the realizations in 
each scenario. In other words, pst represents the lower pow‐
er bound of the charging pool in each period, while ρstω rep‐
resents any consumption above that bound. Let xntω be the 
average power consumption allocated to the charging task 
n ÎΩs

N during timeslot t at the realization of scenario ω. 
This is a decision variable determined by the charging pool. 
Then, the power consumption profile of a charging pool s in 
each stochastic scenario is expressed as:

pst + ρstω = ∑
n ÎΩs

N

xntω    " s ÎΩS t ÎΩT ωÎΩω (2)

Equation (2) is limited by an upper bound p̄st representing 
the power capacity of the connection of the charging pool, 
e.g., at the transformer, there exists (3) with pstρstω ³ 0.

0 £ pst + ρstω £ p̄st    " s ÎΩS t ÎΩT ωÎΩω (3)

While the power allocation of each task is bounded by its 
maximum charging power x̄n as shown in (4) and power can‐
not be allocated to task n outside the arrival and departure 
time of the task. Hence, xntω = 0 for t < anω or dnω < t.

0 £ xntω £ x̄n    " s ÎΩS n ÎΩs
N t ÎΩT ωÎΩω:anω £ t £ dnω

 (4)

Note that vehicle to grid (V2G) can be included by mak‐
ing the left-hand side of (4) smaller than zero, for example, 
to allow peer-to-peer transactions inside the charging 
pool [22].

The charging pools also offer flexibility which may imply 
that some charging tasks end with a lower charged energy 
than initially requested. This leads to energy not served at 
task n in scenario ω, defined as ϕnω:

Enω = ∑
t ÎΩT

 xntω + ϕnω    " s ÎΩS n ÎΩs
N ωÎΩω (5)

For charging pool s, the total amount of energy not served 
to its charging tasks is expressed as:

Φsω = ∑
n ÎΩs

N

 ϕnω    " s ÎΩS ωÎΩω (6)

C. Discrete Utility Functions

The utility function us of a charging pool s ÎΩS expresses 
the cost for flexibility as a function of the total energy not 
served Φsω. It has been recognized that actual utility func‐
tions can be highly nonlinear [5] and also not necessarily 
convex. Therefore, a general formulation is needed to ap‐
proximate any realistic utility function. To this end, we pro‐

DSO

Charging

pool

Charging

task

Utility

function u
s

Characterization

A
n,ω

Section III-A

Section III-C

Section IV-A

Expected cost

for flexibility Z
s

Day-area

Section IV-B Section V-C

Section V-A

Actual cost for

flexibility

Flexibility area
Flexibility

management

Charging

management

realization

SOPF

Historical data

R
s,t

Operation

Fig. 1.　Interaction between DSO, charging pools, and charging tasks.
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pose the use of discretized utility functions using a semicon‐
tinuous convex combination formulation [33]. This formula‐
tion does not rely on the nature of the utility function (mono‐
tonicity or convexity) to approximate it.

An example of a utility function us is shown in Fig. 2, 
where the dashed line represents a continuous nonlinear func‐
tion, approximated by a linear piecewise function with three 
segments.

In this work, we consider a lower-semicontinuous piece‐
wise-linear function representing the utility function of the 
charging pool s:

us =

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

fs0 = 0                          Φsω = 0

fs1 = hs1Φsω + bs1    0 <Φsω £ αs1

    
fsκ = hsκΦsω + bsκ     αsκ - 1 <Φsω £ αsκ

(7)

where k ÎΩs
K ={0 1 κ}; {hsk bsk } and {αsk - 1 αsk } denote 

the coefficients of the functions and their lower and upper 
bounds with " k ³ 1, respectively. For the sake of simplicity, 
we take ūsk - 1: = fsk (αsk - 1 ) and -u sk: = fsk (αsk ) as the function 

of segment k:k ³ 1 evaluated on its endpoints. In order to sat‐
isfy (7), -u s0 = ūs0 = αs0 = 0.

It must be pointed out that (7) cannot be directly integrat‐
ed into a mathematical programming model. However, by de‐
fining multipliers 

-
λ skω-λ skω ³ 0" k ÎΩs

K as the weights at 

each two endpoints, and binary variables yskω, the utility 
function can be expressed as a linear combination of the 
cost of the endpoints:

Zsω = ∑
k ÎΩs

K: k < κ

(-λ skω-u sk + -
λ skωūsk )+ -λ sκω-u sκ (8)

And the energy not supplied is defined as:

Φsω = ∑
k ÎΩs

K: k < κ

(-λ skω + -
λ skω )αsk + -λ sκωαsκ    " s ÎΩS ωÎΩω

(9)

To make sure that (8) and (9) lead to a proper representa‐
tion of the utility function, the following constraints are add‐
ed:

1 = ∑
k ÎΩs

K: k < κ

(-λ skω + -
λ skω )+ -λ sκω    " s ÎΩS ωÎΩω (10)

-
λ skω + -λ sk + 1ω = ysk + 1ω    "s ÎΩSk ÎΩs

K ωÎΩω: k < κ    (11)

∑
k ÎΩs

K:k ³ 1

yskω £ 1    " s ÎΩS ωÎΩω (12)

yskω Î{01}    "s ÎΩS k ÎΩs
K ωÎΩω:k ³ 1 (13)

Notice that (10) and (11) ensure that the multipliers are 
only different from zero in the segment where yskω is acti‐
vated, while (12) and (13) guarantee that only one segment 
can be active. Hence, considering the utility functions, the 
set of variables from the charging pools is defined as Ycp =
{ΦsωZsω

-
λ skω-λ skωyskωxntω}.

D. Distribution Network Model

We consider a distribution network with radial topology 
behind an electrical substation denoted by ES and a set of 
branches Ωl ÌΩb ´Ωb. The operating state of the network for 
a given scenario ωÎΩω can be calculated based on the pow‐
er flow equations as given in constraints (14) - (19), adapted 
from [34]. Hereby, the active power balance in the network 
is ensured by (14) and the reactive power balance is given 
by (15).∑

mi ÎΩl

Pmitω - ∑
ij ÎΩl

(Pijtω + Rij I
sqr
ijtω )+ P G

itω =

P D
it + ∑

s ÎΩS:s = i

pst + ρstω " i ÎΩb t ÎΩT ωÎΩω (14)

∑
mi ÎΩl

Qmitω - ∑
ij ÎΩl

(Qijtω + Xij I
sqr
ijtω )+ QG

itω = QD
it

"i ÎΩbt ÎΩT ωÎΩω (15)

Regular power demands are assumed to be deterministic 
parameters expressing the base load of all nodes disregard‐
ing EVs. Doing this allows us to focus on the impact of 
EVs. Active and reactive power flows to node i from its par‐
ent node m are denoted by Pmitω and Qmitω, while Pijtω and 
Qijtω are the active and reactive power flows from node i to 
its descendant node j. For the purposes of this work, it is al‐
so assumed that the charging stations operate at a unitary 
power factor and no other controllable power sources such 
as distributed generators are available in the network, hence 
P G

itω = QG
itω = 0"i ÎΩbi ¹ ES. Also, the voltage magnitude 

is assumed to be known for the substation (V sqr
EStω = 1.0 p.u.). 

The voltage magnitude drop between nodes i and j is repre‐
sented as:

V sqr
jtω = V sqr

itω - 2(Rij Pijtω + XijQijtω )- (R2
ij + X 2

ij )I sqr
ijtω

"ij ÎΩlt ÎΩT ωÎΩω (16)

where V sqr
itω: = V 2

itω and I sqr
ijtω: = I 2

ijtω are defined to obtain a 
convex relaxation of the problem [35], while branch power 
flows are obtained using the rotated second-order cone con‐
straint:

V sqr
jtω I sqr

ijtω ³ P 2
ijtω + Q2

ijtω    "ij ÎΩlt ÎΩT ωÎΩω (17)

Furthermore, the upper and lower bounds for nodal volt‐
age and branch current magnitudes are enforced by:

-V
2 £ V sqr

itω £ -
V

2
    "i ÎΩbt ÎΩT ωÎΩω (18)

0 £ I sqr
ijtω £ -

I
2
ij    "ij ÎΩlt ÎΩT ωÎΩω (19)

Finally, the set of variables from the distribution network 
is denoted by Ydn ={V sqr

itωI
sqr
ijtωPijtωQijtωρstω}.
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Fig. 2.　Representation of a utility function for a charging pool s with κ = 3.
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IV. PROPOSED AC SOPF MODEL AND ESTIMATION OF 
FLEXIBILITY AREAS 

A. Mathematical Model

Using the mathematical formulations given in the previous 
section, the proposed AC SOPF is cast as a two-stage sto‐
chastic optimization model, formulated as:

ì

í

î

ïïïï

ïïïï

min
Y ( )∑

ωÎΩω

πω∑
s ÎΩS

Zsω - ∑
t ÎΩT

∑
s ÎΩS

cst  pst

s.t.  (2)-(6) (8)-(19)

(20)

where the set Y = YcpYdnYst contains the decision vari‐
ables of the model. The first-stage variables here-and-now 
are pst, representing the decisions the DSO takes in advance 
without knowing the actual realizations, while the second-
stage variables wait-and-see are Ycp and Ydn, representing 
the expected stochastic behavior of the system after fixing 
the first-stage variables. Note that although DSOs are not al‐
lowed to retail electricity, they may procure flexibility from 
the charging pools, which act as local flexibility aggregators. 
Hence, the objective function in (20) minimizes the expected 
value of the cost for flexibility and maximizes the energy re‐
served for the charging pools.

It must be pointed out that the AC SOPF in (20) is based on 
a mixed-integer second-order cone programming (MISOCP) 
problem, which is nonconvex in principle. However, if the 
two sufficient conditions defined in [35] are satisfied, the re‐
laxed continuous equivalent is convex and exact, and a glob‐
ally optimal solution is numerically reachable [36]. In the 
presented model, both conditions are satisfied since the only 
power source in the system is the substation. Thus, every 
node only consumes power, and the upper bounds of the 
voltages are not binding as long as VESt <

-
V. Moreover, a nu‐

merical solution to (20) can be obtained using the sample av‐
erage approximation (SAA) technique under different scenar‐
io generation methods, e. g., Monte Carlo (MC), moment 
matching, or point estimate methods [18].

B. Estimation of Flexibility Areas

Based on the optimal solution Y * of the AC SOPF in 
(20), the empirical cumulative density function (eCDF) of 
ρ*

stω can be calculated, which is denoted as Fρst
. Hence, the 

flexibility area of a charging pool s in period t is calculated as:

Rst = p*
st + F -1

ρst
(βst ) (21)

where βst Î[01]. Notice that the flexibility area Rst is com‐
posed of two terms, the power reserve serving as a lower 
limit p*

st and the upper limit calculated for a specified quan‐
tile. It is worth noting that the risk of violating the operation‐
al limits and the flexibility area are directly proportional. 
This means that βst = 0 represents the most conservative al‐
ternative (lowest risk/smallest area), i.e., Rst = p*

st, while the 
most optimistic alternative (highest risk/biggest area) is giv‐
en for βst = 1, leading to Rst = p*

st + max
ω

{ρ*
stω}.

Furthermore, from the perspective of the charging pools, 
the flexibility area can be interpreted as an accepted operat‐
ing region to fulfill its charging duties within which the 
DSO expects to guarantee operational limits. Finally, notice 

that Rst can only be obtained after solving (20) since it de‐
pends on the optimal solution to uncertain realizations.

V. TEST SYSTEM AND SIMULATIONS 

In this section, we evaluate the proposed AC SOPF. For 
the tests, we consider a radial distribution system modified 
from [34] with 34 nodes, as shown in Fig. 3, which is an 11 
kV network with a peak total nominal power of 1.86 MW, 
1.23 Mvar, -V = 0.95 p.u., and 

-
V = 1.05 p.u.. The maximum 

phase current at the substation transformer connecting nodes 
1-2 is set to be 

-
I 1 2 = 88 A. Four charging pools are placed at 

nodes 16, 20, 27, and 28, with 30, 59, 36, and 16 charging 
tasks spread over the planning horizon, respectively. The 
planning horizon is discretized in 24 one-hour intervals, re‐
sembling a day-ahead planning procedure.

The shape parameters ηa
n η

d
n, characterizing the arrival and 

duration time for the EV charging tasks, were obtained con‐
sidering the data in [9] for weekdays. An MC SAA with 
|Ωω | = 500 was used to solve the two-stage AC SOPF (20), 

considering equiprobable scenarios, i.e., πω = 1 ||Ωω . The ar‐

rival time and departure time for each scenario were calculat‐
ed as in (1), while the energy required in each scenario was 
calculated as Enω = min{U(e1e2 ) x̄n (dnω - anω )} with e1 = 0 
kWh and e2 = 100 kWh. Without loss of generality, the maxi‐
mum power at each charging pool has been set to be p̄st =
200 kW, a fixed cost for electricity of cst = 0.2 €/kWh was 
chosen, and the maximum power at each charging task was 
set to be x̄n = 22 kW. Finally, the utility functions for the 
four charging pools have been parameterized as in Fig. 4 
with κ = 3.

A. Obtaining Flexibility Areas–Day-ahead Planning

Two main tests were carried out to determine the flexibili‐
ty areas. The first one corresponds to the base case, an in‐
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Fig. 3.　34-nodes test system including four charging pools.
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stance with relaxed voltage and current magnitude con‐
straints and disabled flexibility from charging pools. The 
base case corresponds to a situation where all required ener‐
gy from charging tasks is supplied as soon as possible, re‐
gardless of the network status. The mean and standard devia‐
tion of the minimum voltage magnitude and the maximum 
branch current in each time period for the base case are 
shown in Fig. 5. In Fig. 5(a), periods with undervoltage 
problems can be seen in around the 8th-10th hour and the 18th-
20th hour. Similarly, periods with overloading problems are 
evident in Fig. 5(b) around the 18th-20th hour. These results 
indicate that the DSO might have a congestion problem dur‐
ing the planning horizon; hence, the flexibility is required.

The second test corresponds to the opposite case, i.e., op‐
erational constraints are enforced and flexibility from charg‐
ing pools is enabled. The resulting value of the objective 
function found was -€4059.12 in the base case and 
-€3908.78 in the flexibility enabled case. Notice that lower 
values indicate less energy not served. These results repre‐
sent a reduction of 3.7% in the total expected payment due 
to the flexibility cost in the latter case. These results indicate 
that the charging pools (aggregators) would need to pay for 
the energy not served to some charging tasks to comply with 
the DSO’s expected flexibility requirements. Consequently, 
it is expected that the DSO settles this difference with the 
charging pools as part of a flexibility market [29].

The flexibility areas proposed in Section IV-B allow the 
DSO to estimate safe operation regions for the charging 
pools. The first step to obtain the flexibility areas is calculat‐
ing the empirical eCDF of ρ*

stω based on (21). The eCDF of 
operating power ρ*

stω of the four charging pools at s =
{16 20 27 28} are shown in Fig. 6(a) for the 14th hour and 
in Fig. 6(b) for the 19th hour. It can be observed that the ex‐
pected power areas chosen depend on the period, e. g., for 
β27 = 0.8, the operating power needs to be lower than or 
equal to ρ27 = 49.61 kW at the 14th hour, but lower than or 
equal to ρ27 = 4.96 kW at the 19th hour. This difference is ex‐
pected due to the characteristics of the network, i. e., there 
are some periods when the charging pools can have more 
room to supply their charging tasks without compromising 
the operational limits of the network than in other periods. 
The flexibility area, which finally will be communicated to 
the charging pools, has been calculated using (21) for both 

test cases. In (21), the flexibility area is composed of two 
terms, the power reserve serving as a lower limit (bold line 
in Fig. 7) and the upper limit calculated for a specified quan‐
tile, as shown in Fig. 7 for s = 20 and s = 27 using βst = 0.9. 
The load shifting is evident when comparing both test cases 
during the whole time horizon, especially during critical 
time intervals (the 8th-10th hour and the 18th-20th hour).

However, load shifting is not always sufficient to solve 
the congestion problems in this test case. Therefore, the 
charging pools must also procure flexibility from the charg‐
ing tasks in the form of energy not served to guarantee the 
operational limits of the DSO. The probability density func‐
tion (PDF) of the total energy not served at the four charg‐
ing pools is presented in Fig. 8(a).

Similarly, Fig. 8(b) presents the eCDF of the total cost for 
flexibility at each charging pool. It can be observed that the 
most procured charging pools are s = 20 and s = 27, which be‐
long to the same network feeder, as shown in Fig. 3. Interest‐
ingly, for this feeder, the most pronounced voltage drops oc‐
cur; hence, the DSO must procure flexibility in these two 
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charging pools to solve voltage problems. It is then evident 
that some charging pools can have an advantageous market 
position and might behave strategically depending on their 
location in the network (e. g., due to the radial topology of 
distribution networks). Therefore, these results reinforce the 
importance of truthful and fair market mechanisms in future 
flexibility markets [28], [29].

Moreover, from Fig. 8(b), the DSO can estimate the ex‐
pected cost for flexibility at each charging pool. For exam‐
ple, using the 90th percentile for s = 27 means that the total 
cost for flexibility at that charging pool is expected to be 
lower than or equal to 48.97 in at least 90% of the expected 
scenarios.

B. Validation of Obtained Flexibility Areas with Probabilistic 
Power Flow–Operation

The next step considers an operation scenario based on 
the flexibility areas identified for day ahead in Section V-A. 
Two risk values are tested in this subsection to show the im‐
pact of βst on the safe operation of the test system. We took 
arbitrarily risk values βst Î{0.57 0.99} for the following anal‐
ysis. A probabilistic power flow consisting of 5000 MC sim‐
ulations is executed, considering the uncertainties of the ag‐
gregated consumed power at the charging pools. A sequen‐
tial implementation of the power flow given in [37] has 
been used due to its convergence and computational charac‐
teristics. Uniform distributions are assumed to cope with any 
scenario combination within the flexibility area defined by 
the selected risk value of the form U(pstRst ). It is as‐
sumed that the charging pools are able to control their con‐
sumption within the required flexibility area. Finally, it must 
be pointed out that voltage and current magnitude limits are 
not enforced in the power flow.

At each MC simulation, the lowest voltage and the high‐
est current magnitudes of the test system per time period are 
stored. In Fig. 9(a), the mean of the lowest voltage magni‐
tude among the buses using both risk values is the continu‐
ous line, while the shaded area indicates its maximum/mini‐
mum. Similarly, Fig. 9(b) presents the mean of the highest 
current magnitude and its maximum/minimum. For instance, 
at the 20th hour, the mean of the lowest voltage magnitude 
for βst = 0.57 is 0.9514 p.u. with a maximum of 0.9522 p.u. 
and a minimum of 0.9507 p.u.. The maximum current magni‐
tude at the same time has an average of 85.37 A, a maxi‐
mum of 86.27 A, and a minimum of 84.48 A. On the other 
hand, for βst = 0.99, the mean of the lowest voltage magni‐
tude is 0.9499 p. u. with a maximum of 0.9521 p. u. and a 
minimum of 0.9479 p.u.; while the current magnitude has an 
mean of 87.43 A, a maximum of 89.95 A, and a minimum 
of 84.69 A.

The eCDFs of the minimum voltage magnitude consider‐
ing all time periods are depicted in Fig. 10(a) for both risk 
values. It can be observed that around 88% of the scenarios 
violate the voltage limit for βst = 0.99, whereas for βst = 0.57, 
the minimum voltages are always within the limit. The 
eCDFs of the maximum current magnitude are displayed in 
Fig. 10(b), where a similar result is obtained with only 10% 
of the scenarios respecting the maximum current magnitude 

limit when βst = 0.99. These results indicate that the DSO 
must determine the required flexibility areas based on the 
risk it is willing to accept since there is a trade-off between 
the chosen risk value and the probability of violating the op‐
erational limits.

C. Impact of Flexibility Areas on Total Payment of Charging 
Pools

A final test is performed to assess the impact of the flexi‐
bility areas on the total payment received by the charging 
pools. We considered ten risk values used by the DSO, as 
shown in Fig. 11 for the chosen values. The obtained flexi‐
bility areas for different risk values were taken as power lim‐
iters for the charging pools, i. e., p̄st = Rst. On the other 
hand, the total payment, representing the revenue of the 
charging pools, was calculated as the difference between the 
cost for the energy delivered to their charging tasks and the 
cost for energy not served. Thus, positive total payment val‐
ues are desired to guarantee revenue adequacy [38]. We sim‐
ulated 1000 random scenarios for each risk value, following 
the same distributions as described earlier for the random 
variables. Voltage and current magnitude limits were en‐
forced and the flexibility was enabled.

The obtained results are presented in Fig. 11 using a box 
plot where the median, the interquartile range, and the 90% 
confidence intervals are depicted. Results for βst = 0.57 show 
that the median is -€18.48, the interquartile range is limited 
by €1978.87 and -€1635.18, and the confidence interval is 
€4021.13 and -€3826.80, respectively; whereas for βst = 0.99 
all these values increase considerably. Hence, it can be ob‐
served that the total payment for flexibility increases with 
the risk value, meaning there is a trade-off between the risk 
the DSO is willing to stand and the revenue of the charging 
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pools. Interestingly, risk values βst < 0.57 might produce in‐
adequate revenue situations, which encourages the use of 
proper compensation mechanisms for energy not served [32]. 
Consequently, it is expected that the DSO settles this differ‐
ence with the charging pools as part of a flexibility mar‐
ket [29].

VI. CONCLUSION 

In this paper, we propose an AC SOPF for the flexibility 
management of charging pools in distribution networks intro‐
ducing the concept of flexibility areas. The AC SOPF consid‐
ers discrete utility functions for charging pools as a compen‐
sation mechanism for eventual energy not served to their 
charging tasks. The utility functions are presented using a 
general piecewise-linear formulation to deal with convex and 
nonconvex prosumer preferences. The aim is to minimize 
the expected cost for energy not served while satisfying oper‐
ational constraints. An application of the proposed AC SOPF 
is described, where a DSO specifies the flexibility area to 
each charging pool in a day-ahead time frame under uncer‐
tainty. This methodology allows estimating probable costs 
for flexibility requirements and gives the charging pools 
more freedom to manage the EV load. Results show that a 
safe flexibility area for charging pools can be used to ad‐
dress DSO’s congestion problems, either by load shifting or 
by managing the energy not served. Moreover, the DSO is 
able to calculate the flexibility area as a function of a risk 
parameter βs and estimate probable costs for flexibility re‐
quirements. Results show a trade-off between the risk the 
DSO is willing to stand and the revenue of the charging 
pools. At the same time, charging pools and tasks perceive a 
total energy payment reduction as compensation for the ener‐
gy not served, which might stimulate charging pool opera‐
tors and EV users to offer flexibility services (e.g., in a local 
flexibility market). Future work has to analyze the impact of 
the proposed flexibility area considering V2G-enabled EVs 
and reactive power compensation capabilities.
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