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Model-based reinforcement learning seeks to simultaneously learn the dynamics of an unknown 
stochastic environment and synthesise an optimal policy for acting in it. Ensuring the safety 
and robustness of sequential decisions made through a policy in such an environment is a key 
challenge for policies intended for safety-critical scenarios. In this work, we investigate two 
complementary problems: first, computing reach-avoid probabilities for iterative predictions 
made with dynamical models, with dynamics described by Bayesian neural network (BNN); 
second, synthesising control policies that are optimal with respect to a given reach-avoid 
specification (reaching a “target” state, while avoiding a set of “unsafe” states) and a learned 
BNN model. Our solution leverages interval propagation and backward recursion techniques to 
compute lower bounds for the probability that a policy’s sequence of actions leads to satisfying 
the reach-avoid specification. Such computed lower bounds provide safety certification for the 
given policy and BNN model. We then introduce control synthesis algorithms to derive policies 
maximizing said lower bounds on the safety probability. We demonstrate the effectiveness of our 
method on a series of control benchmarks characterized by learned BNN dynamics models. On 
our most challenging benchmark, compared to purely data-driven policies the optimal synthesis 
algorithm is able to provide more than a four-fold increase in the number of certifiable states and 
more than a three-fold increase in the average guaranteed reach-avoid probability.

1. Introduction

The capacity of deep learning to approximate complex functions makes it particularly attractive for inferring process dynamics 
in control and reinforcement learning problems [56]. In safety-critical scenarios where the environment and system state are only 
partially known or observable (e.g., a robot with noisy actuators/sensors), Bayesian models have recently been investigated as a 
safer alternative to standard, deterministic, Neural Networks (NNs): the uncertainty estimates of Bayesian models can be propagated 
through the system decision pipeline to enable safe decision making despite unknown system conditions [15,20,46]. In particular, 
Bayesian Neural Networks (BNNs) retain the same advantages of NNs (relative to their approximation capabilities) and also enable 
reasoning about uncertainty in a principled probabilistic manner [49,51], making them very well-suited to tackle safety-critical 
problems.
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In problems of sequential planning, time-series forecasting, and model-based reinforcement learning, evaluating a model with 
respect to a control policy (or strategy) requires making several predictions that are mutually dependent across time [19,42]. While 
multiple models can be learned for each time step, a common setting is for these predictions to be made iteratively by the same 
machine learning model [34], where the state of the predicted model at each step is a function of the model state at the previous 
step and possibly of an action (from the policy). We refer to this setting as iterative predictions.

Unfortunately, performing iterative predictions with BNN models poses several practical issues. In facts, BNN models output 
probability distributions, so that at each successive timestep the BNN needs to be evaluated over a probability distribution, rather than 
a fixed input point – thus posing the problem of successive predictions over a stochastic input. Even when the posterior distribution 
of the BNN weights is inferred using analytical approximations, the deep and non-linear structure of the network makes the resulting 
predictive distribution analytically intractable [51]. In iterative prediction settings, the problem is compounded and exacerbated by 
the fact that one would have to evaluate the BNN, sequentially, over a distribution that cannot be computed analytically [20]. Hence, 
computing sound, formal bounds on the probability of BNN-based iterative predictions remains an open problem. Such bounds would 
enable one to provide safety guarantees over a given (or learned) control policy, which is a necessary precondition before deploying 
the policy in a real-world environment [55,60].

In this paper, we develop a new method for the computation of probabilistic guarantees for iterative predictions with BNNs over 
reach-avoid specifications. A reach-avoid specification, also known as constrained reachability [57], requires that the trajectories of a 
dynamical system reach a goal/target region over a given (finite) time horizon, whilst avoiding a given set of states that are deemed 
“unsafe”. Probabilistic reach-avoid is a key property for the formal analysis of stochastic processes [1], underpinning richer temporal 
logic specifications: its computation is the key component for probabilistic model checking algorithms for various temporal logics 
such as PCTL, csLTL, or BLTL [18,40].

Even though the exact computation of reach-avoid probabilities for iterative prediction with BNNs is in general not analytically 
possible, with our method, we can derive a guaranteed (conservative) lower bound by solving a backward iterative problem obtained 
via a discretisation of the state space. In particular, starting from the final time step and the goal region, we back-propagate the 
probability lower bounds for each discretised portion of the state space. This backwards reachability approach leverages recently 
developed bound propagation techniques for BNNs [63]. In addition to providing guarantees for a given policy, we also devise 
methods to synthesise policies that are maximally certifiable, i.e., that maximize the lower bound of the reach-avoid probability. We 
first describe a numerical solution that, by using dynamic programming, can synthesize policies that are maximally safe. Then, in 
order to improve the scalability of our approach, we present a method for synthesizing approximately optimal strategies parametrised 
as a neural network. While our method does not yet scale to state-of-the-art reinforcement learning environments, we are able to 
verify and synthesise challenging non-linear control case studies.

We validate the effectiveness of our certification and synthesis algorithms on a series of control benchmarks. Our certification 
algorithm is able to produce non-trivial safety guarantees for each system that we test. On each proposed benchmark, we also 
show how our synthesis algorithm results in actions whose safety is significantly more certifiable than policies derived via deep 
reinforcement learning. Specifically, in a challenging planar navigation benchmark, our synthesis method results in policies whose 
certified safety probabilities are eight to nine times higher than those for learned policies.

We further investigate how factors like the choice of approximate inference method, BNN architecture, and training methodology 
affect the quality of the synthesised policy. In summary, this paper makes the following contributions:

• We show how probabilistic reach-avoid for iterative predictions with BNNs can be formulated as the solution of a backward 
recursion.

• We present an efficient certification framework that produces a lower bound on probabilistic reach-avoid by relying on convex 
relaxations of the BNN model and said recursive problem definition.

• We present schemes for deriving a maximally certified policy (i.e., maximizing the lower bound on safety probability) with 
respect to a BNN and given reach-avoid specification.

• We evaluate our methodology on a set of control case studies to provide guarantees for learned and synthesized policies and 
conduct an empirical investigation of model-selection choices and their effect on the quality of policies synthesised by our 
method.

A previous version of this work [65] has been presented at the thirty-seventh Conference on Uncertainty in Artificial Intelligence. 
Compared to the conference paper, in this work, we introduce several new contributions. Specifically, compared to Wicker et al. [65]
we present novel algorithms for the synthesis of control strategies based on both a numerical method and a neural network-based 
approach. Moreover, the experimental evaluation has been consistently extended, to include, among others, an analysis of the role 
of approximate inference and NN architecture on safety certification and synthesis, as well as an in-depth analysis of the scalability 
of our methods. Further discussion of related works can be found in Section 7.

2. Bayesian neural networks

In this work, we consider fully-connected neural network (NN) architectures 𝑓𝑤 ∶ ℝ𝑚 → ℝ𝑛 parametrised by a vector 𝑤 ∈ ℝ𝑛𝑤

containing all the weights and biases of the network. Given a NN 𝑓𝑤 composed by 𝐿 layers, we denote by 𝑓𝑤,1, ..., 𝑓𝑤,𝐿 the layers of 
𝑓𝑤 and we have that 𝑤 =

(
{𝑊𝑖}𝐿𝑖=1

)
∪
(
{𝑏𝑖}𝐿𝑖=1

)
, where 𝑊𝑖 and 𝑏𝑖 represent weights and biases of the 𝑖-th layer of 𝑓𝑤. For 𝑥 ∈ℝ𝑛 the 
2

output of layer 𝑖 ∈ {1, ..., 𝐿} can be explicitly written as 𝑓𝑤,𝑖(𝑥) = 𝑎(𝑊𝑖𝑓
𝑤,𝑖−1(𝑥) + 𝑏𝑖) with 𝑓𝑤,1(𝑥) = 𝑎(𝑊1𝑥 + 𝑏1), where 𝑎 ∶ℝ →ℝ
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is the activation function. We assume that 𝑎 is a continuous monotonic function, which holds for the vast majority of activation 
functions used in practice such as sigmoid, ReLu, and tanh [28]. This guarantees that 𝑓𝑤 is a continuous function.

Bayesian Neural Networks (BNNs), denoted by 𝑓𝐰, extend NNs by placing a prior distribution over the network parameters, 
𝑝𝐰(𝑤), with 𝐰 being the vector of random variables associated to the parameter vector 𝑤. Given a dataset , training a BNN on 
 requires to compute posterior distribution, 𝑝𝐰(𝑤|), which can be computed via Bayes’ rule [51]. Unfortunately, because of 
the non-linearity introduced by the neural network architecture, the computation of the posterior is generally intractable. Hence, 
various approximation methods have been studied to perform inference with BNNs in practice. Among these methods, we consider 
Hamiltonian Monte Carlo (HMC) [51], and Variational Inference (VI) [13]. In our experimental evaluation in Section 6.3 we employ 
both HMC and VI.

Hamiltonian Monte Carlo (HMC) HMC proceeds by defining a Markov chain whose invariant distribution is 𝑝𝐰(𝑤|), and relies 
on Hamiltionian dynamics to speed up the exploration of the space. Differently from VI discussed below, HMC does not make any 
parametric assumptions on the form of the posterior distribution and is asymptotically correct. The result of HMC is a set of samples 
that approximates 𝑝𝐰(𝑤|). We refer interested readers to [35,52] for further details.

Variational inference (VI) VI proceeds by finding a Gaussian approximating distribution 𝑞(𝑤) ∼ 𝑝𝐰(𝑤|) in a trade-off between 
approximation accuracy and scalability. The core idea is that 𝑞(𝑤) depends on some hyperparameters that are then iteratively 
optimized by minimizing a divergence measure between 𝑞(𝑤) and 𝑝𝐰(𝑤|). Samples can then be efficiently extracted from 𝑞(𝑤). 
See [13,38] for recent developments in variational inference in deep learning.

3. Problem formulation

Given a trained BNN 𝑓𝐰 we consider the following discrete-time stochastic process given by iterative predictions of the BNN:

𝐱𝑘 = 𝑓𝐰(𝐱𝑘−1,𝐮𝑘−1) + 𝐯𝑘, 𝐮𝑘 = 𝜋𝑘(𝐱𝑘), 𝑘 ∈ℕ>0, (1)

where 𝐱𝑘 is a random variable taking values in ℝ𝑛 modelling the state of System (1) at time 𝑘, 𝐯𝑘 is a random variable modelling 
an additive noise term with stationary, zero-mean Gaussian distribution  (0, 𝜎2 ⋅ 𝐼), where 𝐼 is the identity matrix of size 𝑛 × 𝑛. 𝐮𝑘
represents the action applied at time 𝑘, selected from a compact set  ⊂ ℝ𝑐 by a (deterministic) feedback Markov strategy (a.k.a. 
policy, or controller) 𝜋 ∶ℝ𝑛 ×ℕ → .1

The model in Eqn. (1) is commonly employed to represent noisy dynamical models driven by a BNN and controlled by the policy 
𝜋 [20]. In this setting, 𝑓𝐰 defines the transition probabilities of the model and, correspondingly, 𝑝(𝑥̄|(𝑥, 𝑢), ) is employed to describe 
the posterior predictive distribution, namely the probability density of the model state at the next time step being 𝑥̄, given that the 
current state and action are (𝑥, 𝑢), as:

𝑝(𝑥̄|(𝑥, 𝑢),) = ∫
ℝ𝑛𝑤

 (𝑥̄ ∣ 𝑓𝑤(𝑥, 𝑢), 𝜎2 ⋅ 𝐼)𝑝𝐰(𝑤|)𝑑𝑤, (2)

where  (⋅ ∣ 𝑓𝑤(𝑥, 𝑢), 𝜎2 ⋅ 𝐼) is the Gaussian likelihood induced by noise 𝐯𝑘 and centred at the NN output [51].
Observe that the posterior predictive distribution induces a probability density function over the state space. In iterative prediction 

settings, this implies that at each step the state vector 𝐱𝑘 fed into the BNN is a random variable. Hence, a 𝑁 -step trajectory of the 
dynamic model in Eqn (1) is a sequence of states 𝑥0, ..., 𝑥𝑁 ∈ ℝ𝑛 sampled from the predictive distribution. As a consequence, a 
principled propagation of the BNN uncertainty through consecutive time steps poses the problem of predictions over stochastic inputs. 
In Section 4.1 we will tackle this problem for the particular case of reach-avoid properties, by designing a backward computation 
scheme that starts its calculations from the goal region, and proceeds according to Bellman iterations [11].

We remark that 𝑝(𝑥̄|(𝑥, 𝑢), ) is defined by marginalizing over 𝑝𝐰(𝑤|), hence, the particular 𝑝(𝑥̄|(𝑥, 𝑢), ) depends on the specific 
approximate inference method employed to estimate the posterior distribution. As such, the results that we derive are valid w.r.t. a 
specific BNN posterior.

Probability measure For an action 𝑢 ∈ ℝ𝑐 , a subset of states 𝑋 ⊆ ℝ𝑛 and a starting state 𝑥 ∈ ℝ𝑛, we call 𝑇 (𝑋|𝑥, 𝑢) the stochastic 
kernel associated (and equivalent [1]) to the dynamical model of Equation (1). Namely, 𝑇 (𝑋|𝑥, 𝑢) describes the one-step transition 
probability of the model of Eqn. (1) and is defined by integrating the predictive posterior distribution with input (𝑥, 𝑢) over 𝑋, as:

𝑇 (𝑋|𝑥, 𝑢) =∫
𝑋

𝑝(𝑥̄|(𝑥, 𝑢),)𝑑𝑥̄. (3)

In what follows, it will be convenient at times to work over the space of parameters of the BNN. To do so, we can re-write the 
stochastic kernel by combining Equations (2) and (3) and applying Fubini’s theorem [21] to switch the integration order, thus 
obtaining:

1 We can limit ourselves to consider deterministic Markov strategies as they are optimal in our setting [1,11]. Also, in the following, we denote with 𝜋 the 
3

time-varying policy described, at each step 𝑘, by policy 𝜋𝑘 ∶ℝ𝑛 → .
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𝑇 (𝑋|𝑥, 𝑢) = ∫
ℝ𝑛𝑤

⎡⎢⎢⎣∫𝑋
 (𝑥̄|𝑓𝑤(𝑥, 𝑢), 𝜎2 ⋅ 𝐼)𝑑𝑥̄

⎤⎥⎥⎦
𝑝𝐰(𝑤|)𝑑𝑤. (4)

From this definition of 𝑇 it follows that, under a strategy 𝜋 and for a given initial condition 𝑥0, 𝐱𝑘 is a Markov process with a well-
defined probability measure Pr uniquely generated by the stochastic kernel 𝑇 [11, Proposition 7.45] and such that for 𝑋0, 𝑋𝑘 ⊆ℝ𝑛:

Pr[𝐱0 ∈𝑋0] = 𝟏𝑋0
(𝑥0),

Pr[𝐱𝑘 ∈𝑋𝑘|𝐱𝑘−1 = 𝑥,𝜋] = 𝑇 (𝑋𝑘|𝑥,𝜋𝑘−1(𝑥)),
where 𝟏𝑋0

is the indicator function (that is, 1 if 𝑥 ⊆𝑋0 and 0 otherwise). Having a definition of Pr allows one to make probabilistic 
statements over the stochastic model in Eqn (1).

Remark 1. Note that, as is common in the literature [20], according to the definition of the probability measure Pr we marginalise 
over the posterior distribution at each time step. Consequently, according to our modelling framework, the weights of the BNN are 
not kept fixed during each trajectory, but we re-sample from 𝐰 at each time step.

3.1. Problem statements

We consider two problems concerning, respectively, the certification and the control of dynamical systems modelled by BNNs. We 
first consider safety certification with respect to probabilistic reach-avoid specifications. That is, we seek to compute the probability 
that from a given state, under a selected control policy, an agent navigates to the goal region without encountering any unsafe states. 
Next, we consider the formal synthesis of policies that maximise this probability and thus attain maximal certifiable safety.

Problem 1 (Computation of Probabilistic Reach-Avoid). Given a strategy 𝜋, a goal region G ⊆ℝ𝑛, a finite-time horizon [0, 𝑁] ⊆ ℕ, and 
a safe set S ⊆ℝ𝑛 such that G ∩ S = ∅, compute for any 𝑥0 ∈ G ∪ S

𝑃𝑟𝑒𝑎𝑐ℎ(G,S, 𝑥0, [0,𝑁]|𝜋) =
Pr

[
∃𝑘 ∈ [0,𝑁],𝐱𝑘 ∈G ∧ ∀0 ≤ 𝑘′ < 𝑘,𝐱𝑘′ ∈ S ∣ 𝐱0 = 𝑥0, 𝜋

]
. (5)

Outline of the approach In Section 4.1 we show how 𝑃𝑟𝑒𝑎𝑐ℎ(G, S, 𝑥0, [0, 𝑁]|𝜋) can be formulated as the solution of a backward 
iterative computational procedure, where the uncertainty of the BNN is propagated backward in time, starting from the goal region. 
Our approach allows us to compute a sound lower bound on 𝑃𝑟𝑒𝑎𝑐ℎ, thus guaranteeing that 𝐱𝑘, as defined in Eqn (1), satisfies the 
specification with a given probability. This is achieved by extending existing lower bounding techniques developed to certify BNNs 
[63] and applying these at each propagation step through the BNN.

Note that, in Problem 1, the strategy 𝜋 is provided, and the goal is to quantify the probability with which the trajectories of 
𝐱𝑘 satisfy the given specification. In Problem 2 below, we expand the previous problem and seek to synthesise a controller 𝜋 that 
maximizes 𝑃𝑟𝑒𝑎𝑐ℎ. The general formulation of this optimization is given below.

Problem 2 (Strategy Synthesis for Probabilistic Reach-Avoid). For an initial state 𝑥0 ∈ G ∪S, and a finite time horizon 𝑁 , find a strategy 
𝜋∗ ∶ℝ𝑛 ×ℝ≥0 →ℝ𝑐 such that

𝜋∗ = argmax
𝜋

𝑃𝑟𝑒𝑎𝑐ℎ(G,S, 𝑥0, [0,𝑁] ∣ 𝜋). (6)

In Section 5, we will provide specific schemes for synthesizing optimal strategies when 𝜋 is either a look-up table or a deterministic 
neural network.

Outline of the approach To solve this problem, we notice that the backward iterative procedure outlined to solve Problem 1 has a 
substructure such that dynamic programming will allow us to compute optimal actions for each state that we verify, thus producing 
an optimal policy with respect to the given posterior and reach-avoid specification. With low-dimensional or discrete action spaces, 
we can then derive a tabular policy by solving the resulting dynamic programming problem. For higher-dimensional action spaces 
instead, in Section 5.1 we consider (generalising) policies represented as neural networks.

4. Methodology

In this section, we illustrate the methodology used to compute lower bounds on the reach-avoid probability, as described in 
4

Problem 1. We begin by encoding the reach-avoid probability through a sequence of value functions.
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Fig. 1. Examples of functions 𝐾𝜋
𝑁−1 (left) and 𝐾𝜋

𝑁−2 (right), which are lower bounds of 𝑉 𝜋
𝑘

. On the left, we consider the first step of our backward algorithm, where 
we compute 𝐾𝜋

𝑁−2(𝑞) by computing the probability that 𝐱𝑁 ∈ G given that 𝐱𝑁−1 ∈ 𝑞. On the right, we consider the subsequent step. We outline the state we want to 
verify in red and the goal region in green. With the orange arrow, we represent the 0.95 transition probability of the BNN dynamical model, and in pink we represent 
the worst-case probabilities spanned by the BNN output. On top, we show where each of these key terms comes into play in Eqn (9). (For interpretation of the colours 
in the figure(s), the reader is referred to the web version of this article.)

4.1. Certifying reach-avoid specifications

We begin by showing that 𝑃𝑟𝑒𝑎𝑐ℎ(G, S, 𝑥, [𝑘, 𝑁]|𝜋) can be obtained as the solution of a backward iterative procedure, which 
allows to compute a lower bound on its value. In particular, given a time 0 ≤ 𝑘 <𝑁 and a strategy 𝜋, consider the value functions 
𝑉 𝜋
𝑘
∶ℝ𝑛 → [0, 1], recursively defined as

𝑉 𝜋
𝑁
(𝑥) = 𝟏G(𝑥),

𝑉 𝜋
𝑘
(𝑥) = 𝟏G(𝑥) + 𝟏S(𝑥)∫ 𝑉 𝜋

𝑘+1(𝑥̄)𝑝
(
𝑥̄|(𝑥,𝜋𝑘(𝑥)),)

𝑑𝑥̄. (7)

Intuitively, 𝑉 𝜋
𝑘

is computed starting from the goal region G at 𝑘 =𝑁 , where it is initialised at value 1. The computation proceeds 
backwards at each state 𝑥, by combining the current values with the transition probabilities from Eqn (1). The following proposition, 
proved inductively over time in the Supplementary Material, guarantees that 𝑉 𝜋

0 (𝑥) is indeed equal to 𝑃𝑟𝑒𝑎𝑐ℎ(G, S, 𝑥, [0, 𝑁]|𝜋).

Proposition 1. For 0 ≤ 𝑘 ≤𝑁 and 𝑥0 ∈ G ∪ S, it holds that

𝑃𝑟𝑒𝑎𝑐ℎ(G,S, 𝑥0, [𝑘,𝑁]|𝜋) = 𝑉 𝜋
𝑘
(𝑥).

The backward recursion in Eqn (7) does not generally admit a solution in closed-form, as it would require integrating over the BNN 
posterior predictive distribution, which is in general analytically intractable. In the following section, we present a computational 
scheme utilizing convex relaxations to lower bound 𝑃𝑟𝑒𝑎𝑐ℎ.

4.2. Lower bound on 𝑃𝑟𝑒𝑎𝑐ℎ

We develop a computational approach based on the discretisation of the state space, which allows convex relaxation methods such 
as [63] to be used. The proposed computational approach is illustrated in Fig. 1 and formalized in Section 4.3. Let 𝑄 = {𝑞1, ..., 𝑞𝑛𝑞 }
be a partition of S ∪ G in 𝑛𝑞 regions and denote with 𝑧 ∶ ℝ𝑛 → 𝑄 the function that associates to a state in ℝ𝑛 the corresponding 
partitioned state in 𝑄. For each 0 ≤ 𝑘 ≤𝑁 we iteratively build a set of functions 𝐾𝜋

𝑘
∶𝑄 → [0, 1] such that for all 𝑥 ∈G ∪ S we have 

that 𝐾𝜋
𝑘
(𝑧(𝑥)) ≤ 𝑉 𝜋

𝑘
(𝑥). Intuitively, 𝐾𝜋

𝑘
provides a lower bound for the value functions on the computation of 𝑃𝑟𝑒𝑎𝑐ℎ.

The functions 𝐾𝜋
𝑘

are obtained by propagating backward the BNN predictions from time 𝑁 , where we set 𝐾𝜋
𝑁
(𝑞) = 𝟏G(𝑞), with 

𝟏G(𝑞) being the indicator function (that is, 1 if 𝑞 ⊆ G and 0 otherwise). Then, for each 𝑘 <𝑁 , we first discretize the set of possible 
probabilities in 𝑛𝑝 sub-intervals 0 = 𝑣0 ≤ 𝑣1 ≤ ... ≤ 𝑣𝑛𝑝 = 1. Hence, for any 𝑞 ∈𝑄 and probability interval [𝑣𝑖, 𝑣𝑖+1], one can compute 
a lower bound, 𝑅(𝑞, 𝑘, 𝜋, 𝑖), on the probability that, starting from any state in 𝑞 at time 𝑘, we reach in the next step a region that has 
probability ∈ [𝑣𝑖, 𝑣𝑖+1] of safely reaching the goal region. The resulting values are used to build 𝐾𝜋

𝑘
(as we will detail in Eqn (9)). For 

a given 𝑞 ⊂ S, 𝐾𝜋
𝑘
(𝑞) is obtained as the sum over 𝑖 of 𝑅(𝑞, 𝑘, 𝜋, 𝑖) multiplied by 𝑣𝑖−1, i.e., the lower value that 𝐾𝜋

𝑘+1 obtains in all the 
states of the 𝑖 − 𝑡ℎ region. Note that the discretisation of the probability values does not have to be uniform, but can be adaptive for 
each 𝑞 ∈𝑄. A heuristic for picking the value of thresholds 𝑣𝑖 will be given in Algorithm 1. In what follows, we formalise the intuition 
5

behind this computational procedure.
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4.3. Lower bounding of the value functions

For a given strategy 𝜋, we consider a constant 𝜂 ∈ (0, 1) and 𝜖 =
√
2𝜎2erf−1(𝜂), which are used to bound the value of the noise, 𝐯𝑘, 

at any given time. Intuitively, 𝜂 represents the proportion of observational error we consider.2 Then, for 0 ≤ 𝑘 <𝑁 , 𝐾𝜋
𝑘
∶𝑄 → [0, 1]

are defined recursively as follows:

𝐾𝜋
𝑁
(𝑞) = 𝟏G(𝑞), (8)

𝐾𝜋
𝑘
(𝑞) = 𝟏G(𝑞) + 𝟏S(𝑞)

𝑛𝑝∑
𝑖=1

𝑣𝑖−1𝑅(𝑞, 𝑘, 𝜋(𝑞), 𝑖), (9)

where

𝑅(𝑞, 𝑘, 𝜋(𝑞), 𝑖) = 𝜂𝑛 ∫
𝐻

𝑞,𝜋,𝜖
𝑘,𝑖

𝑝𝐰(𝑤|)𝑑𝑤, (10)

𝐻
𝑞,𝜋,𝜖

𝑘,𝑖
= {𝑤 ∈ℝ𝑛𝑤 |∀𝑥 ∈ 𝑞,∀𝛾 ∈ [−𝜖, 𝜖]𝑛, it holds that:

𝑣𝑖−1 ≤𝐾𝜋
𝑘+1(𝑞

′) ≤ 𝑣𝑖, with 𝑞′ = 𝑧(𝑓𝑤(𝑥,𝜋𝑘(𝑥)) + 𝛾)}.

The key component for the above backward recursion is 𝑅(𝑞, 𝑘, 𝜋, 𝑖), which bounds the probability that, starting from 𝑞 at time 𝑘, 
we have that 𝐱𝑘+1 will be in a region 𝑞′ such that 𝐾𝜋

𝑘+1(𝑞
′) ∈ [𝑣𝑖, 𝑣𝑖+1]. By definition, the set 𝐻𝑞,𝜋,𝜖

𝑘,𝑖
defines the weights for which 

the BNN maps all states covered by 𝑞 into the goal states given action 𝜋(𝑞). Given this, it is clear that integration of the posterior 
𝑝𝐰(𝑤|) over the 𝐻𝑞,𝜋,𝜖

𝑘,𝑖
will return the probability mass of system (1) transitioning from 𝑞 to 𝑞′ with probability in [𝑣𝑖, 𝑣𝑖+1] in one 

time step. The computation of Eqn (9) then reduces to computing the set of weights 𝐻𝑞,𝜋,𝜖

𝑘,𝑖
, which we call the projecting weight set. A 

method to compute a safe under-approximation 𝐻̄ ⊆𝐻
𝑞,𝜋,𝜖

𝑘,𝑖
is discussed below. Before describing that, we analyze the correctness of 

the above recursion.

Theorem 1. Given 𝑥 ∈ℝ𝑛, for any 𝑘 ∈ {0, ..., 𝑁} and 𝑞 = 𝑧(𝑥), assume that 𝐻𝑞,𝜋,𝜖

𝑘,𝑖
∩𝐻𝑞,𝜋,𝜖

𝑘,𝑗
= ∅ for 𝑖 ≠ 𝑗. Then:

inf
𝑥∈𝑞

𝑉 𝜋
𝑘
(𝑥) ≥𝐾𝜋

𝑘
(𝑞).

A proof of Theorem 1 is given in the Supplementary Material. Note that the assumption on the null intersection between different 
projecting weight sets required in Theorem 1 can always be enforced by taking their intersection and complement.

4.4. Computation of projecting weight set

Theorem 1 allows us to compute a safe lower bound to Problem 1, by relying on an abstraction of the state space, that is, through 
the computation of 𝐾𝜋

0 (𝑞). This can be evaluated once the projecting set of weight values 𝐻𝑞,𝜋,𝜖

𝑘,𝑖
associated to [𝑣𝑖−1, 𝑣𝑖] is known.3

Unfortunately, direct computation of 𝐻𝑞,𝜋,𝜖

𝑘,𝑖
is intractable. Nevertheless, a method for its lower bounding was developed by Wicker 

et al. [63] in the context of adversarial perturbations for one-step BNN predictions, and can be directly adapted to our settings.
The idea is that an under approximation 𝐻̄ ⊆ 𝐻

𝑞,𝜋,𝜖

𝑘,𝑖
is built by sampling weight boxes of the shape 𝐻̂ = [𝑤𝐿, 𝑤𝑈 ], according to 

the posterior, and checking whether:

𝑣𝑖−1 ≤𝐾𝜋
𝑘+1(𝑧(𝑓

𝑤(𝑥,𝜋𝑘(𝑥)) + 𝛾)) ≤ 𝑣𝑖,

∀𝑥 ∈ 𝑞, ∀𝑤 ∈ 𝐻̂, ∀𝛾 ∈ [−𝜖, 𝜖]𝑛. (11)

Finally, 𝐻̄ is built as a disjoint union of boxes 𝐻̂ satisfying the above condition. For a full discussion of the details of this method 
we refer interested readers to [63]. In order to apply this method to our setting, we propagate the abstract state 𝑞 through the 
policy function 𝜋𝑘(𝑥), so as to obtain a bounding box Π̂ = [𝜋𝐿, 𝜋𝑈 ] such that 𝜋𝐿 ≤ 𝜋𝑘(𝑥) ≤ 𝜋𝑈 for all 𝑥 ∈ 𝑞. In the experiments, 
this bounding is only necessary when 𝜋𝑘(𝑥) is given by an NN controller, for which bound propagation of NNs can be used for the 
computation of Π̂ [25,29].

The results of Proposition 2 and Proposition 3 from Wicker et al. [63] can then be used to propagate 𝑞, Π̂ and 𝐻̂ through the BNN. 
For discrete posteriors (e.g., those resulting from HMC) one can use the method described by Gowal et al. [29] (Eqs. (6) and (7)). 
Propagation of 𝑞, Π̂ amounts to using these method to compute values 𝑓𝐿

𝑞,𝜖,𝑘
and 𝑓𝑈

𝑞,𝜖,𝑘
such that, for all 𝑥 ∈ 𝑞, 𝛾 ∈ [−𝜖, 𝜖]𝑛, 𝑤 ∈ 𝐻̂ , it 

holds that:

2 The threshold is such that it holds that 𝑃𝑟(|𝐯(𝑖)
𝑘
| ≤ 𝜖) = 𝜂. In the experiments of Section 6 we select 𝜂 = 0.99.

3 In the case of Gaussian VI the integral of Equation (10) can be computed in terms of the erf function, whereas more generally Monte Carlo or numerical integration 
6

techniques can be used.
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Algorithm 1 Probabilistic Reach-Avoid for BNNs.

Input: BNN model 𝑓𝐰 , safe region S, goal region G, discretization 𝑄 of S ∪ G, time horizon 𝑁 , neural controller 𝜋, number of BNN samples 𝑛𝑠 , 
weight margin 𝜌𝑤, state space margin 𝜌𝑥
Output: Lower bound on 𝑉 𝜋

1: For all 0 ≤ 𝑘 ≤𝑁 set 𝐾𝜋
𝑘
(𝑞) = 1 iff 𝑞 ⊆G and 0 otherwise

2: for 𝑘 ←𝑁 to 1 do

3: for 𝑞 ∈𝑄 ⧵G do

4: 𝑣1 ←max𝑥∈[𝑞−𝜌𝑥,𝑞+𝜌𝑥]𝐾
𝜋
𝑘+1(𝑧(𝑥))

5: 𝐻̄ ← ∅ # 𝐻̄ is the set of safe weights
6: for desired number of samples, 𝑛𝑠 do

7: 𝑤′ ∼ 𝑃 (𝑤|)
8: 𝐻̂ ← [𝑤′ − 𝜌𝑤, 𝑤′ + 𝜌𝑤]
9: 𝑋̄← [𝑓𝐿

𝑞,𝜖,𝑘
, 𝑓𝑈

𝑞,𝜖,𝑘
] # Computed according to Eqn (12)

10: if min𝑥∈𝑋̄ 𝐾𝜋
𝑘+1(𝑧(𝑥)) ≥ 𝑣1 then

11: 𝐻̄ ← 𝐻̄
⋃
𝐻̂

12: end if

13: end for

14: Ensure 𝐻𝑖 ∩𝐻𝑗 = ∅ ∀𝐻𝑖,𝐻𝑗 ∈ 𝐻̄

15: 𝐾𝜋
𝑘
(𝑞) = 𝑣1 ⋅ 𝜂

𝑛 ∫
𝐻̄
𝑝𝐰(𝑤|)𝑑𝑤 (Eqn (9))

16: end for

17: end for

18: return 𝐾𝜋

𝑓𝐿
𝑞,𝜖,𝑘

≤ 𝑓𝑤(𝑥,𝜋𝑘(𝑥)) + 𝛾 ≤ 𝑓𝑈
𝑞,𝜖,𝑘

. (12)

Furthermore, 𝑓𝐿
𝑞,𝜖,𝑘

and 𝑓𝑈
𝑞,𝜖,𝑘

are differentiable w.r.t. the input vector [29,64].

Finally, the two bounding values can be used to check whether or not the condition in Eqn (11) is satisfied, by simply checking 
whether [𝑓𝐿

𝑞,𝜖,𝑘
, 𝑓𝑈

𝑞,𝜖,𝑘
] propagated through 𝐾𝜋

𝑘+1 is within [𝑣𝑖, 𝑣𝑖+1]. We highlight that computing this probability is equivalent to a 
conservative estimate of 𝑅(𝑞, 𝑘, 𝜋, 𝑖).

4.5. Probabilistic reach-avoid algorithm

In Algorithm 1 we summarize our approach for computing a lower bound for Problem 1. For simplicity of presentation, we 
consider the case 𝑛𝑝 = 2, (i.e., we partition the range of probabilities in just two intervals [0, 𝑣1], [𝑣1, 1] - the case 𝑛𝑝 > 2 follows 
similarly). The algorithm proceeds by first initializing the reach-avoid probability for the partitioned states 𝑞 inside the goal region 
𝐺 to 1, as per Eqn (8). Then, for each of the 𝑁 time steps and for each one of the remaining abstract states 𝑞, in line 4 we set the 
threshold probability 𝑣1 equal to the maximum value that 𝐾𝜋 attains at the next time step over the states in the neighbourhood of 
𝑞 (which we capture with a hyper-parameter 𝜌𝑥 > 0). We found this heuristic for the choice of 𝑣1 to work well in practice (notice 
that the obtained bound is formal irrespective of the choice of 𝑣1, and different choices could potentially be explored). We then 
proceed in the computation of Eqn (9). This computation is performed in lines 5–14. First, we initialise to the null set the current 
under-approximation of the projecting weight set, 𝐻̄ . We then sample 𝑛𝑠 weights boxes 𝐻̂ by sampling weights from the posterior, 
and expanding them with a margin 𝜌𝑤 heuristically selected (lines 6-8). Then, for each of these sets, we first propagate the state 𝑞, 
policy function, and weight set 𝐻̄ to build a box 𝑋̄ according to Eqn (12) (line 9), which is then accepted or rejected based on the 
value that 𝐾𝜋 at the next time step attains in states in 𝑋̄ (lines 10-12). 𝐾𝜋

𝑁−𝑖(𝑞) is then computed in line 14 by integrating 𝑝𝐰(𝑤|)
over the union of the accepted sets of weights.

5. Strategy synthesis

We now focus on synthesising a strategy that maximizes our lower bound on 𝑃𝑟𝑒𝑎𝑐ℎ, thus solving Problem 2. Notice that, while 
no global optimality claim can be made about the strategy that we obtain, maximising the lower bound guarantees that the true 
reach-avoid probability will still be greater than the improved bound obtained after the maximisation.

Definition 1. A strategy 𝜋∗ is called maximally certified (max-cert), w.r.t. the discretised value function 𝐾𝜋 , if and only if, for all 
𝑥 ∈G ∪ S, it satisfies

𝐾𝜋∗

0 (𝑧(𝑥)) = sup
𝜋
𝐾𝜋

0 (𝑧(𝑥)),

that is, the strategy 𝜋∗ maximises the lower bound of 𝑃𝑟𝑒𝑎𝑐ℎ.

It follows that, if 𝐾𝜋∗

0 (𝑧(𝑥)) > 1 − 𝛿 for all 𝑥 ∈G ∪S, then the max-cert strategy 𝜋∗ is a solution of Problem 2. Note that a max-cert 
7

strategy is guaranteed to exist when the set of admissible controls  is compact [11, Lemma 3.1], as we assume in this work. In the 
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Algorithm 2 Numerical Synthesis of Action for region 𝑞 at time 𝑘.

Input: BNN model 𝑓𝐰 , safe region S, goal region G, action space  , abstract state 𝑞 ∈𝑄, controller 𝜋, number of BNN samples 𝑛𝑠
Output: Action maximizing 𝐾𝜋

1: Υ ← middle points of each region in a partition of 
2: 𝜅∗ ← 0
3: 𝑢∗ ← 0
4: for 𝑢 ∈Υ do

5: 𝜅̂← 0
6: for 𝑗 from 0 to 𝑛𝑠 do

7: 𝑤′ ∼ 𝑃 (𝑤|)
8: 𝑋̄← [𝑓𝐿

𝑞,𝜖,𝑘
, 𝑓𝑈

𝑞,𝜖,𝑘
] # Computed for 𝑞 and 𝑢 via (Eqn (12))

9: 𝜅̂ = 𝜅̂ + min𝑥∈𝑋̄ 𝐾∗
𝑘+1(𝑧(𝑥))

𝑛𝑠

10: end for

11: if 𝜅̂ > 𝜅∗ then

12: 𝜅∗ ← 𝜅̂

13: 𝑢∗ ← 𝑢

14: end if

15: end for

16: return 𝑢∗

next theorem, we show that a max-cert strategy can be computed via dynamic programming with a backward recursion similar to 
that of Eqn (9).

Theorem 2. For 0 ≤ 𝑘 <𝑁 and 0 = 𝑣0 < ... < 𝑣𝑛𝑝 = 1, define the functions 𝐾∗
𝑘
∶ℝ𝑛 → [0, 1] recursively as follows

𝐾∗
𝑘
(𝑞) = sup

𝑢∈
(
𝟏G(𝑞) + 𝟏S(𝑞)

𝑛𝑝∑
𝑖=1

𝑣𝑖𝑅(𝑞, 𝑘, 𝑢, 𝑖)
)
,

where 𝑅(𝑞, 𝑘, 𝑢, 𝑖) and 𝐻𝑞,𝑢,𝜖

𝑘,𝑖
are defined as in Eqn (10). If 𝜋∗ is s.t. 𝐾∗

0 =𝐾𝜋∗

0 , then 𝜋∗ is a max-cert strategy. Furthermore, for any 𝑥, it 
holds that 𝐾𝜋∗

0 (𝑧(𝑥)) ≤ 𝑃𝑟𝑒𝑎𝑐ℎ(G, S, [0, 𝑁], 𝑥|𝜋∗).
Theorem 2 is a direct consequence of the Bellman principle of optimality [1, Theorem 2] and it guarantees that for each state 

𝑞 ∈ S and time 𝑘, we have that 𝜋∗(𝑞, 𝑘) = argmax𝑢∈
∑𝑛𝑝

𝑖=1 𝑣𝑖𝑅(𝑞, 𝑘, 𝑢, 𝑖).
In Algorithm 2 we present a numerical scheme based on Theorem 2 to find a max-cert policy 𝜋∗. Note that the optimization 

problem required to be solved at each time step state, i.e. argmax𝑢∈
∑𝑛𝑝

𝑖=1 𝑣𝑖𝑅(𝑞, 𝑘, 𝑢, 𝑖), is non-convex. Hence, in Algorithm 2, in 
Line 1, we start by partitioning the action space  . Then, in Lines 4–15 for each action in the partition we estimate the expectation 
of 𝐾∗

𝑘+1 starting from 𝑞 via 𝑛𝑠 samples taken from the BNN posterior (250 in all our experiments). Finally, in Lines 11–14 we keep 
track of the action maximising 𝐾∗

𝑘+1.
The described approach for synthesis, while optimal in the limit of an infinitesimal discretization of  , may become infeasible for 

large state and action spaces. As a consequence, in the next subsection, we also consider when 𝜋 is parametrised by a neural network 
and thus can serve as a function over a larger (even infinite) state space. Specifically, we show how a set of neural controllers, one for 
each time step, can be trained in order to maximize probabilistic reach-avoid via Theorem 2. In Section 6 we empirically investigate 
both controller strategies.

5.1. An approach for strategy synthesis based on neural networks

In this subsection we show how we can train a set of NN policies 𝜋0, ..., 𝜋𝑁−1 ∶ ℝ𝑛 →  such that at each time step 𝑘, 𝜋𝑘
approximately solves the dynamic programming equation in Theorem 2. Note that, because of the approximate nature of the NN 
training, the resulting neural policies will necessarily be sub-optimal, but have the potential to scale to larger and more complex 
systems, compared to the approach presented in Algorithm 2.

At time 𝑘 we start with an initial set of parameters (weights and biases) 𝜃𝑘 for policy 𝜋𝑘. These parameters can either be initialized 
to 𝜃𝑘+1, the parameters synthesised at the previous time step of the value iteration for 𝜋𝑘+1, or to a policy employed to collect the 
data to train the BNN as in Gal et al. [24], or simply selected at random. In our implementation where no previous policy is available, 
we start with a randomly initialized NN, and then at time 𝑘 we set our initial neural policy with that obtained at time 𝑘 +1. We then 
employ a scheme to learn a “safer” set of parameters via backpropagation. In particular, we first define the following loss function 
penalizing policy parameters that lead to an unsafe behaviour for an ensemble of NNs sampled from the BNN posterior distribution:

(𝑥, 𝜃𝑘) = −𝛼|| ∑
𝑤∈𝑊̄

𝑓𝑤(𝑥,𝜋𝑘(𝑥)) −𝐀𝑘||2 + (1 − 𝛼)|| ∑
𝑤∈𝑊̄

𝑓𝑤(𝑥,𝜋𝑘(𝑥)) −𝐑𝑘||2, (13)

where 𝑊̄ are a set of parameters independently sampled from the BNN posterior 𝑝𝐰(𝑤|), for a probability threshold 0 ≤ 𝑝𝑡 ≤ 1, 
8

𝐀𝑘 = {𝑥 ∶𝐾𝜋𝑘+1
𝑘+1 (𝑥) ≥ 𝑝𝑡} and 𝐑𝑘 = {𝑥 ∶𝐾𝜋𝑘+1

𝑘+1 (𝑥) ≤ 1 −𝑝𝑡} are the sets of states for which the probability of satisfying the specification 
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at time 𝑘 + 1 is respectively greater than 𝑝𝑡 and smaller than 1 − 𝑝𝑡. For 𝑋 ⊂ ℝ𝑛, ||𝑥 −𝑋||2 = inf 𝑥̄∈𝑋 ||𝑥 − 𝑥̄||2 is the standard 𝐿2
distance of a point from a set, and 0 ≤ 𝛼 ≤ 1 is a parameter taken to be 0.25 in our experiments, that weights between reaching the 
goal and staying away from “bad” states. Intuitively, the first term in (𝑥, 𝜃𝑘) enforces 𝜃𝑘 that leads to high values of 𝐾𝜋𝑘+1

𝑘+1 , while 
the second term penalizes parameter sets that lead to small values of this quantity.

(𝑥, 𝜃𝑘) only considers the behaviour of the dynamical system of Equation (1) starting from initial state 𝑥. Then, in order to also 
enforce robustness in a neighbourhood of initial states around 𝑥, similarly to the adversarial training case [44], we consider the 
robust loss

̄(𝑥, 𝜃𝑘) = max
𝑥′∶||𝑥−𝑥′||2≤𝜖

(𝑥, 𝜃𝑘). (14)

Note that by employing Eqn (12) we obtain a differentiable upper bound of ̄(𝑥, 𝜃𝑘), which can be employed for training 𝜃𝑘.

5.2. Discussion on the algorithms

In this section we provide further discussion of our proposed algorithms including the complexity and the various sources of ap-
proximation that may lead to looser guarantees. To frame this discussion, we start by highlighting the complexity and approximation 
introduced by the chosen bound propagation technique shared by both of the algorithms. We then proceed to discuss how discreti-
sation choices made with respect to the state-space, the weight-space, and the observational noise, practically affect the tightness of 
our probability bounds for both algorithms, and finally how the action-space discretisation affects our synthesis algorithm.

Bound propagation techniques Given that there are currently no methods for BNN certification that are both sound and complete 
[10,63,65], the evaluation of the 𝑅 function will always introduce some approximation error. While it is difficult to characterize 
this error in general, it is known that for deeper networks, BNN certification methods introduce more approximation than shallow 
networks [62]. The recently developed bounds from Berrada et al. [10], have been shown to be tighter than the IBP and LBP 
approaches from Wicker et al. [63] at the cost of computation complexity that is exponential in the number of dimensions of the 
state-space. In contrast, each iteration of the interval bound propagation method proposed in and Wicker et al. [63] requires the 
computational complexity of four forward passes through the neural network architecture.

Discretization error and complexity While our formulation supports any form of state space discretisation, we can assume for simplic-
ity that each dimension of the 𝑛-dimensional state-space is broken into 𝑚 equal-sized abstract states. This implies that certification 
of the system requires us to evaluate the 𝑅 function (𝑁(𝑚𝑛)

)
many times, where 𝑁 is the time horizon we would like to verify. 

Given that 𝑛 is fixed, the user has control over 𝑚, the size of each abstract state. For large abstract states, small 𝑚, one introduces 
more approximation as the 𝑅 function must account for all possible behaviours in the abstract state. For small abstract states, large 
𝑚, there is much less approximation, but considerably larger runtime. Assume the 𝑐-dimensional action space is broken into 𝑡 equal 
portions at each dimension, then the computational complexity of the algorithm becomes (𝑡𝑐𝑁(𝑚𝑛)

)
as each of the 𝑚𝑛 states must 

be evaluated 𝑡𝑐 -many times to determine the approximately optimal action. As with the state-space discretization, larger 𝑡 will lead 
to a more-optimal action choice but requires greater computational time.

6. Experiments

We provide an empirical analysis of our BNN certification and policy synthesis methods. We begin by providing details on 
the experimental setting in Section 6.1. We then analyse the performance of our certification approach on synthesized policies in 
Section 6.2. Next, in Section 6.3, we discuss how the choice of the BNN inference algorithm affects synthesis and certification results. 
Finally, in Section 6.4 we study how our method scales with larger neural network architectures and in higher-dimensional control 
settings.

6.1. Experimental setting

We consider a planar control task consisting of a point-mass agent navigating through various obstacle layouts. The point-mass 
agent is described by four dimensions, two encoding position information and two encoding velocity [4]. To control the agent there 
are two continuous action dimensions, which represent the force applied on the point-mass in each of the two planar directions. 
The task of the agent is to navigate to a goal region while avoiding various obstacle layouts. The knowledge supplied to the agent 
about the environment is the locations of the goal and obstacles. The full set of equations describing the agent dynamics is given 
in Appendix A.1. In our experiments, we analyse three obstacle layouts of varying difficulty, which we name v1, v2 and Zigzag
- visualized in the left column of Fig. 3. Obstacle layout v1 places an obstacle directly between the agent’s initial position and the 
goal, forcing the agent to navigate its way around it. Obstacle layout v2 extends this setting by adding two further obstacles that 
block off one side of the state space. Finally, scenario Zigzag has 5 interleaving triangles and requires the agent to navigate around 
them in order to reach the goal.

In order to learn an initial policy to solve the task, we employ the episodic learning framework described in Gal et al. [23]. This 
consists of iteratively collecting data from deploying our learned policy, updating the BNN dynamics model to the new observations, 
9

and updating our policy. When collecting data, we start by randomly sampling state-action pairs and observing their resulting state 
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Fig. 2. Left Column: 200 simulated trajectories for the learned policy starting from the initial state. Centre Left Column: A 2D visualization of the learned policy. 
Each arrow represents the direction of the applied force. Centre Right Column: The epistemic uncertainty for the learned dynamics model. Right Column: Certified 
lower-bounds of probabilistic reach avoid for each abstract state according to BNN and final learned policy.

according to the ground-truth dynamics. After this initial sample, all future observations from the ground-truth environment are 
obtained from deploying our learned policy. The initial policy is set by assigning a random action to each abstract state. This is 
equivalent to tabular policy representations in standard reinforcement learning [59]. We additionally discuss neural network policies 
in Section 6.4. Actions in the policy are updated by performing gradient descent on a sum of discounted rewards over a pre-specified 
finite horizon. The reward of an action is taken to be the 𝓁2 distance moved towards the goal region penalized by the 𝓁2 proximity 
to obstacles as is done in [23,59]. For the learning of the BNN, we perform approximate Bayesian inference over the neural network 
parameters. For our primary investigation, we select an NN architecture with a single fully connected hidden layer comprising 50 
hidden units, and learn the parameters via Hamiltonian Monte Carlo (HMC). Larger neural network architectures are considered in 
Section 6.4, while results for variational approximate inference are given in Section 6.3.

Unless otherwise specified, in performing certification and synthesis we employ abstract states spanning a width of 0.02 around 
each position dimension and 0.08 around each velocity dimension. Velocity values are clipped to the range [−0.5, 0.1]. When per-
forming optimal synthesis, we discretise the two action dimensions for the point-mass problem into 100 possible vectors which 
uniformly cover the continuous space of actions [−1, 1]. When running our backward reachability scheme, at each state, we test all 
100 action vectors and take the action that maximizes our lower bound to be the policy action at that state, thus giving us the locally 
optimal action within the given discretisation. Further experimental details are presented in Appendix A and code to reproduce all 
results in this paper can be found at https://github .com /matthewwicker /BNNReachAvoid.

The computational times for each system were roughly equivalent. This is to be expected given that each has the same state space. 
The following average times are reported for a parallel implementation of our algorithm run on 90 logical CPU cores across 4 Intel 
Core Xeon 6230 clocked at 2.10 GHz. Training of the initial policy and BNN model takes in the order of 10 minutes, 6 hours for the 
10

certification with a horizon of 50 time steps, and 8 hours for synthesis.

https://github.com/matthewwicker/BNNReachAvoid
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Fig. 3. A version of each learned system after a new policy has been synthesized from the reach-avoid specification. First column: 200 simulations of the synthesized 
policy in the real environment. Second column: BNN epistemic uncertainty given as the variance of the BNN predictive distribution. Third column: A visualization 
of the maximally certifiable policies, which demonstrate a clearer tendency to avoid obstacles throughout the state space compared to the policies in Fig. 2. Fourth 
column: Synthesized policies have remarkably higher lower-bounds than learned policies, corresponding plots for learned systems in Fig. 2.

6.2. Comparing certification of learned and max-cert policies

In Fig. 2 and Fig. 3 we visualize systems from both learned and synthesized policies. Each row represents one of our control 
environments and is comprised of four figures. These figures show, respectively, simulations from the dynamical system, BNN 
uncertainty, the control policy plotted as a gradient field, and the certified safety probabilities. The first column of the Figures 
depicts 200 simulated trajectories of the learned (Fig. 2) or synthesized (Fig. 3) control policies on the BNN (whose uncertainty 
is plotted along the second column). Notice how in both cases we visually obtain the behaviour expected, with the overwhelming 
majority of the simulated trajectories safely avoiding the obstacles (red regions in the figure) and terminating in the goal (green 
region). A vector field associated with the policy is depicted in the third column of the figures. Notice that, the actions returned 
by our synthesis method intuitively align with the reach-avoid specification, that is, synthesized actions near the obstacle and out-
of-bounds are aligned with moving away from such unsafe states. Exceptions to this are represented by locations where the agent 
is already unsafe and that, as such, are not fully explored during the BNN learning phase (e.g., the lower triangles in the Zigzag

scenario), locations where two directions are equally optimal (e.g., in the top right corner of the v1 environment) and locations 
which are not along any feasibly optimal path (e.g., the lower right corner of v2) and as such are not accounted by the BNN learning.

In Table 1 we compare the certification results of the synthesized policy against the initial learned policy. As the synthesized 
policy is computed by improving on the latter, we expect the former to outperform the learned policy in terms of the guarantees 
obtained. This is in fact confirmed and quantified by the results of Table 1, which lists, for each of the three environments, the 
average reach-avoid probability estimated over 500 trajectories, the average certification lower bound across the state space, and the 
certification coverage (i.e., the proportion of states where our algorithm returns a non-zero probability lower bound). This notion of 
coverage only requires a state to be certified with a probability above 0, and so it is most informative when evaluated together with 
the average lower-bound and visual inspection of Fig. 2 and Fig. 3.

Indeed, the synthesized policy significantly improves on the certification guarantees given by the learned policy, and consistently 
so across the three environments analysed, with the lower bound improving by a factor of roughly 3.5. This considerable improve-
11

ment is to be expected as worst-case guarantees can be poor for deep learning systems that are not trained with specific safety 
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Table 1

Certification comparisons for learned and synthesized policy across the 
three environments. Performance indicates the proportion of simu-
lated trajectory that respect the reach-avoid specification. Avg. Lower 
Bound is the mean certification probability across all states. Cert. Cov-

erage is the proportion of states that we are able to certify (i.e., with a 
non-zero lower bound for the reach-avoid probability).

Learned Policy

Performance Avg. Lower Bound Cert. Coverage

V1 0.789 0.212 0.639

V2 0.805 0.192 0.484

Zigzag 0.815 0.189 0.193

Synthesized Policy (Optimal)

Performance Avg. Lower Bound Cert. Coverage

V1 𝟎.𝟗𝟒 𝟎.𝟕𝟖𝟗 𝟎.𝟖𝟎𝟖
V2 𝟎.𝟗𝟒 𝟎.𝟓𝟗𝟕 𝟎.𝟔𝟐𝟒
Zigzag 𝟏.𝟎𝟎 𝟎.𝟕𝟏𝟎 𝟎.𝟗𝟏𝟎

Table 2

Certification comparisons for learned and synthesized policy between VI and 
HMC BNN learning on obstacle layout V1. Performance indicates the pro-
portion of simulated trajectory that respect the reach-avoid specification.
Avg. Lower Bound is the mean certification probability across all states.
Cert. Coverage is the proportion of states that we are able to certify with 
non-zero probability.

Learned Policy

Performance Avg. Lower Bound Coverage

Var. Inference 0.832 0.399 0.696

Ham. Monte Carlo 0.789 0.212 0.639

Synthesized Policy (Optimal)

Performance Avg. Lower Bound Coverage

Var. Inference 𝟏.𝟎𝟎 𝟎.𝟕𝟔𝟐 𝟎.𝟖𝟓𝟏
Ham. Monte Carlo 𝟎.𝟗𝟒 𝟎.𝟕𝟖𝟗 𝟎.𝟖𝟎𝟖

Fig. 4. Top Row: Visualization of the learned system using HMC to approximately infer dynamics. Bottom Row: Visualization of the learned system using VI to 
12

approximately infer dynamics. We highlight that the VI approximation displays a 5 to 10 times reduction in epistemic uncertainty.
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Fig. 5. Top Row: Visualization of the synthesized policy and its performance based on the HMC dynamics model. Bottom Row: Visualization of the synthesized 
policy and its performance based on the VI dynamics model.

objectives [29,48,64]. In particular, for both the V1 and Zigzag case studies, we observe that the average lower bound jumps from 
roughly 0.2 to greater than 0.7. Moreover, the most significant improvements are obtained in the most challenging case, i.e., the
Zigzag environment, with the certification coverage increasing of a 4.75 factor. Interestingly, also the average model performance 
increases for the synthesized models. Intuitively this occurs because while in the learning of the initial policy passing through the 
obstacle is only penalised by a continuous factor, the synthesized policy strives to rigorously enforce safety across the BNN posterior. 
A visual representation of these results is provided in the last column of Fig. 2 for the learned policy and in Fig. 3 for the synthesized 
policy. We note that the uncertainty maps in these figures are identical as the BNN model is not changed, only the policy.

6.3. On the effect of approximate inference

The results provided so far have been generated with BNN dynamical models learned via HMC training. However, different 
inference methods produce different approximations of the BNN posterior thus leading to different dynamics approximations and 
hence synthesized policies.

Table 2 and the plots in Figs. 4 and 5 analyse the effect of approximate inference on both learned and synthesized policies, 
comparing results obtained by HMC with those obtained by VI training on the v1 scenario. We notice that also in the case of VI 
the synthesized policy significantly improves on the initial policy. Interestingly, the certification results over the learned policy 
for VI are higher than those obtained for HMC, but the results are comparable for the synthesized policies. In fact, it is known in 
the literature that VI tends to under-estimate uncertainty [47,50] and is more susceptible to model misspecification [45]. As such, 
being probabilistic, the bound obtained is tighter for VI where the uncertainty is lower than that of HMC which provides a more 
conservative representation of the agent dynamics. For example, we see in the first two rows of Table 2 that the average lower bound 
achieved for the variational inference posterior is 1.88 times higher than the bounds for HMC posterior. However, our synthesis 
method reduces this gap between HMC and VI, while still accounting for the higher uncertainty of the former, and hence the more 
conservative guarantees.

While HMC approximates the posterior by relying on a Monte Carlo estimate of it, VI is a gradient-based technique, where the 
number of training epochs (i.e., the number of full sweeps through the dataset) is a key hyper-parameter. We thus analyse the 
effect of training epochs in the quality of the dynamics obtained in Fig. 6, along with the effect on the synthesized policies and the 
certificates obtained for such policies. The left plot of the figure shows a set of predicted trajectories over a 10 time-step horizon 
for a varying number of training epochs, with the ground truth behaviour highlighted in red. The BNN trajectories are colour-coded 
based on the number of epochs each dynamics model was trained for. In yellow, we see that the BNN which has only been trained 
13

for 10 epochs displays considerable error in its iterative predictions. This is reduced considerably for a model trained for 50 epochs, 
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Fig. 6. Analysis for number of training epochs used in performing VI training on the V1 environment. Left: sample of 10-step agent trajectories obtained with BNNs 
trained with VI and different number of epochs (red: ground truth trajectory). Right: synthesis and certification results for a selection of training epochs.

Fig. 7. We vary the depth of the BNN used to learn the dynamics and observe its effects on our certified safety probabilities over the first half of the Puck-V1 state-
space. From left to right we plot the lower-bound reach-avoid probabilities for a one-layer BNN dynamics model, a two-layer BNN dynamics model, and a three-layer 
BNN dynamics model.

but the cumulative error after 10 epochs is still considerable. Finally, as expected, for models trained for 250 and 1500 epochs we 
empirically observe a trend toward convergence to the ground truth.

We notice that the policy and certifications directly reflect the quality of the approximation. In fact, as we increase the model 
fit, we see that there are significant improvements in both the intuitive behaviour of the synthesized policy as well as the resulting 
guarantees we are able to compute.

6.4. Depth experiments

In this section, we evaluate how our method performs when we vary the depth of the BNN dynamics model considered. In Fig. 7, 
we plot the certified reach-avoid probabilities for a learned policy and a one, two, and three-layer BNN dynamics model where each 
layer has a width of 12 neurons. Similar architectures are found in the BNNs studied in recent related work [41]. Other than the 
depth of the BNN, all the other variables in the experiment are held equal (e.g., number of episodes during learning, discretization 
14

of state-space, and number of BNN samples considered for the lower bound). The learning procedure results in BNN models with 
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roughly equivalent losses and in policies that are qualitatively similar, see Appendix A.3 for further visualizations. Given that the key 
factors of the system have been held equal, we notice a decrease in our certified lower bound as depth increases. Specifically, the 
average lower bound for the one-layer model is 0.811, for the two-layer model it is 0.763, and for the three-layer model it decreases 
further to 0.621. Fig. 7 clearly demonstrates that as the BNN dynamics model becomes deeper, then our lower bound becomes more 
conservative. This finding is consistent with existing results in certification of BNNs [10,63] and DNNs [29,48]. We note, however, 
that when the verification parameters are refined, i.e., more samples from the BNN are taken, we are able to certify the three-layer 
system with an average certified lower-bound of 0.867 (see Appendix A.3). These additional BNN samples increase the runtime of 
our certification procedure by 1.5 times.

7. Related work

Certification of machine learning models is a rapidly growing area [25,29,37,66]. While most of these methods have been 
designed for deterministic NNs, recently safety analysis of Bayesian machine learning models has been studied both for Gaussian 
processes (GPs) [12,17,30] and BNNs [5,16,63], including methods for adversarial training [43,64]. The above works, however, focus 
exclusively on the input-output behaviour of the models, that is, can only reason about static properties. Conversely, the problem we 
tackle in this work has additional complexity, as we aim to formally reason about iterative predictions, i.e., trajectory-level behaviour 
of a BNN interacting in a closed loop with a controller.

Iterative predictions have been widely studied for Gaussian processes [26] and safety guarantees have been proposed in this 
setting in the context of model-based RL with GPs [8,9,36,54]. However, all these works are specific to GPs and cannot be extended 
to BNNs, whose posterior predictive distribution is intractable and non-Gaussian even for the more commonly employed approximate 
Bayesian inference methods [51]. Recently, iterative prediction of neural network dynamic models have been studied [2,61] and 
methods to certify these models against temporal logic formulae have been derived [2]. However, these works only focus on standard 
(i.e., non-Bayesian) neural networks with additive Gaussian noise. Closed-loop systems with known (deterministic) models and 
control policies modelled as BNNs are considered in [41]. In contrast with our work, Lechner et al. [41] can only support deterministic 
models without noisy dynamics, only focus on the safety verification problem, and are limited to BNN posterior with unimodal weight 
distribution.

Various recent works consider verification or synthesis of RL schemes against reachability specifications [7,39,58]. None of these 
approaches, however, support both continuous state-action spaces and probabilistic models, as in this work. Continuous action spaces 
are supported in [33], where the authors provide RL schemes for the synthesis of policies maximising given temporal requirements, 
which is also extended to continuous state- and action-spaces in [32]. However, the guarantees resulting from these model-free 
algorithms are asymptotic and thus of a different nature than those in this work. The work of Haesaert et al. [31] integrates Bayesian 
inference and formal verification over control models, additionally proposing strategy synthesis approaches for active learning [67]. 
In contrast to our paper these works do not support unknown noisy models learned via BNNs.

A related line of work concerns the synthesis of runtime monitors for predicting the safety of the policy’s actions and, if necessary, 
correct them with fail-safe actions [3,6,14,22,53]. These approaches, however, do not support continuous state-action spaces or 
require some form of ground-truth mechanistic model for safety verification (as opposed to our data-driven BNN models).

8. Conclusions

In this paper, we considered the problem of computing the probability of time-bounded reach-avoid specifications for dynamic 
models described by iterative predictions of BNNs. We developed methods and algorithms to compute a lower bound of this reach-
avoid probability. Additionally, relying on techniques from dynamic programming and non-convex optimization, we synthesized 
certified controllers that maximize probabilistic reach-avoid. In a set of experiments, we showed that our framework enables certifi-
cation of strategies on non-trivial control tasks. A future research direction will be to investigate techniques to enhance the scalability 
of our methods so that they can be applied to state-of-the-art reinforcement learning environments. However, we emphasise that the 
benchmark considered in this work remains a challenging one for certification purposes, due to both the non-linearity and stochas-
ticity of the models, and the sequential, multi-step dependency of the predictions. Thus, this paper makes an important step toward 
the application of BNNs in safety-critical scenarios.
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Appendix A. Further experimental details

A.1. Agent dynamics

The puck agent is derived from a classical control problem of controlling a vehicle from an initial condition to a goal state or 
way point [4]. This scenario is more challenging than other standard benchmarks (i.e. inverted pendulum) due to both the increase 
state-space dimension and to the introduction of momentum which makes control more difficult. The state space of the unextended 
agent is a four vector containing the position in the plane as well as a vector representing the current velocity. The control signal 
is a two vector representing a change in the velocity (i.e. an acceleration vector). The dynamics of the puck can be given as the 
following system of equations where 𝜂 determines friction, 𝑚 determines the mass of the puck, and ℎ determines the size of the time 
discretization.

𝑞̇ =𝐴𝑞 +𝐵𝑐

𝐴 =
⎡⎢⎢⎢⎣

1 0 ℎ 0
0 1 0 ℎ

0 0 1 − ℎ𝜂∕𝑚 0
0 0 0 1 − ℎ𝜂∕𝑚

⎤⎥⎥⎥⎦

𝐵 =
⎡⎢⎢⎢⎣

0 0
0 0

ℎ∕𝑚 0
0 ℎ∕𝑚

⎤⎥⎥⎥⎦
The 𝑛 dimensional extension of the above dynamics is done by simply noting the structure of the matrices and generalizing them. 

In the upper-left of matrix 𝐴 we have the 2 ×2 identity matrix which is extended to 𝑛 × 𝑛. Similarly, the upper-right of 𝐴 is extended 
to ℎ times the 𝑛 × 𝑛 identity matrix, and the lower-right is 1 − ℎ𝜂∕𝑚 times the 𝑛 × 𝑛 identity matrix. For each environment and 
including the 𝑛 dimensional generalizations, time resolution, ℎ, is set to 0.35, the mass of the object, 𝑚, is fixed to 5.0, and the 
friction coefficient, 𝜂, is set to 1.0.

A.2. Learning parameters

In this section we provide the hyper-parameters used for learning an initial policy and for synthesizing NN policies. In particular, 
we give full parameters for the environmental interaction required to learn our policies, BNN parameters to perform approximate 
inference, and NN parameters for neural policy synthesis.

Episodic parameters In Table A.3 we give the parameters for our episodic learning set up. We provide the duration (number of 
episodes) and the amount of data collected for each episode (number of trajectories). We highlight that as this is a model-based 
set up, we require many fewer simulations of the system than corresponding model-free algorithms. Each environment also has 
an empirically tuned maximum horizon (maximum duration for each trajectory), policy size (discretization of the state-space), and 
obstacle aversion, 𝑐, as discussed in Section 5.

BNN architectures In Table A.4, we report the HMC learning parameters for our initial set up. We give details on NN architecture 
size, and highlight that our hidden layer uses sigmoid activation functions while the output is equipped with a linear activation 
function. The burn-in perior of the HMC chain is the number of samples which are automatically not included in the posterior 
but help initialize the chain prior to use of the Metropolis-Rosenbluth-Hastings correction step Neal [51]. For each environmental 
set up we employ a leap-frog numerical integrator with 10 steps. The prior for all NN architectures is selected based on 2 times the 
variance perscribed by Glorot and Bengio [27] which has shown to be an empirically well-performing prior in previous works Wicker 
et al. [63,64]. The likelihood used to fit the BNN dynamics model is a mean squared error (𝓁2) loss function.

When using variations inference, we use 1500 epochs to fit a posterior approximated by Stochastic Weight Averaging Guassian 
(SWAG) which does not admit a weight-space prior. We use a learning rate of 0.025 and a decay of 0.1.

Neural policy parameters In our experiments, we employ an NN policy, 𝜋𝜃 , comprised of a single hidden layer with 36 neurons. This 
is first trained to mimic actions that are sampled randomly at uniform. This training is done with SGD and is done for 15000 sampled 
states and actions. The NN policy is trained with 100 epochs of stochastic gradient descent with learning rate 0.00075 every time it 
is trained. This occurs after a BNN has been fit and used to update the actions according to loss presented in Section 5 save for no 
adversarial noise is taken into consideration. When we do perform synthesis, all of the same parameters are used: 15000 actions are 
considered and updated in parallel by SGD w.r.t. the adversarial loss defined in Section 5.

A.3. Further scalability experiments

In this section we provide further analysis and discussion of experiments on BNN depth in our framework and provide further 
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experiments exploring how our method scales with state-space dimensions.
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Table A.3

Episodic learning hyperparameter values corresponding to each problem setting we study.

Episodic Learning Parameters

# Episodes # Trajectories Max Horizon Policy Size 𝑐

V1 15 20 25 35 × 35 × 5 × 5 0.25

V2 10 15 45 35 × 35 × 5 × 5 0.25

Zigzag 25 15 35 25 × 25 × 3 × 3 0.125

Table A.4

Hyperparameters for learning BNN dynamics model with Hamiltonian Monte Carlo.

BNN Learning Parameters

# Layers # Neurons Activations Samps. Burn In LR Decay

V1 1 50 sigmoid 500 25 0.05 0.1

V2 1 50 sigmoid 500 5 0.05 0.1

Zigzag 1 50 sigmoid 250 15 0.1 0.1

Fig. A.8. Left: Certified lower bound for forward invariance with respect to an increasing number of state-space dimensions. Centre: Certified lower bound as a 
function of the width of the BNN Right: Comparison between synthesised policy and learned policy on the 12-dimensional puck problem.

Fig. A.9. We plot the learned policies corresponding to each of the dynamical systems whose certification is visualized in Fig. 7. The left plot is the policy learned 
along with a one-layer BNN, the centre plot is the policy learned along with a two-layer BNN, and the right plot is the policy learned along with a three-layer BNN.

A.3.1. Further detail on BNN depth experiments

In Fig. A.9 we plot the policies that correspond to each of the BNNs learned for our depth experiments discussed in Section 6.4
and visualized in Fig. 7. We highlight that each of the policies are qualitatively very similar, though they may have slight quantitative 
differences. In Fig. A.10 we plot the result of the more computationally expensive certification on the three-layer BNN. Though our 
method struggles to get strong certification for the system with a three-layer BNN in Fig. 7, by tuning the certification parameters 
we are able to get a much tighter lower-bound (average lower-bound safety probability 0.621 → 0.867). We notice that many of the 
previously uncertified (i.e., lower-bound probability 0.0) states have lower-bounds above 0.6 when more BNN samples are used in 
the certification procedure.

A.3.2. Scaling with state-space dimensionality

In this section, we evaluate how our method performs while varying the dimensionality of the environment and the size of the 
BNN architecture. In particular we perform the analyses using an 𝑛-dimensional generalizations of the v1 layout - described by 
3𝑛 continuous values, 𝑛 dimensions for position, velocity, and action spaces, respectively. For such high-dimensional state space, 
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full discretisation of the state space becomes infeasible. In order to overcome this, we consider a forward-invariance variant of the 
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Fig. A.10. Lower-bound reach-avoid probabilities for the three layer BNN after refining the certification parameters from the procedure in Fig. 7.

reach-avoid property from our previous experiments, where the agent goal is iteratively moved at each step in order to guide it to 
the global goal. In other words, here we consider one-step reachability (𝑁 = 1), which allows us to significantly reduce the set of 
discretised states to consider (by restricting to neighbour states that can be reached in one step only).

The results for these analyses are given in Fig. A.8. The left plot of the figure, shows how even for 48 dimensions we are still 
able to obtain non-vacous bounds at 0.5, but as expected, the quality of the bound decreases quickly with the size of the state 
space and actions. The centre plot depicts the certified bounds obtained for an increasing number of BNN hidden units, up until 
1000 for the 12-dimensional v1 scenario. Finally, the right plot of Fig. A.8 shows that our synthesis algorithm strongly improves 
on the initially learned policy, even in higher-dimensional settings. We accomplish this improvement by following the neural policy 
synthesis method presented in Section 5 where the worst-case 𝜖 for tuning our actions is set to 0.025.

This analysis of the forward invariance property allows us to understand how our algorithm, particularly the evaluation of the 𝑅
function, scales to larger NNs and state spaces. However, for state-space dimensions that are greater than the ones analyzed in the 
prior section of this paper, certification of the entire state-space is computationally infeasible due to the exponential nature of the 
discretization involved.

Appendix B. Proofs

Proof of Proposition 1. In what follows, we omit 𝜋 (which is given and held constant) from the probabilities for a more compact 
notation. The proof is by induction. The base case is 𝑘 =𝑁 , for which we have

𝑉 𝜋
𝑁
(𝑥) = 𝟏G(𝑥) = 𝑃𝑟𝑒𝑎𝑐ℎ(G,S, 𝑥, [𝑁,𝑁]),

which holds trivially. Under the assumption that, for any given 𝑘 ∈ [0, 𝑁 − 1], it holds that

𝑉 𝜋
𝑘+1(𝑥) = 𝑃𝑟𝑒𝑎𝑐ℎ(G,S, 𝑥, [𝑘+ 1,𝑁]), (B.1)

we show the induction step for time step 𝑘. In particular,

𝑃𝑟𝑒𝑎𝑐ℎ(G,S, 𝑥, [𝑘,𝑁]|𝜋) =
𝑃𝑟(𝐱𝑘 ∈G|𝐱𝑘 = 𝑥) +

𝑁∑
𝑗=𝑘+1

𝑃𝑟(𝐱𝑗 ∈G∧ ∀𝑗′ ∈ [𝑘, 𝑗),𝐱𝑗′ ∈ S|𝐱𝑘 = 𝑥) =

𝟏G(𝑥) + 𝟏S(𝑥)
𝑁∑

𝑗=𝑘+1
𝑃𝑟(𝐱𝑗 ∈G∧ ∀𝑗′ ∈ [𝑘, 𝑗),𝐱𝑗′ ∈ S|𝐱𝑘 = 𝑥)

Now in order to conclude the proof we want to show that

𝑁∑
𝑗=𝑘+1

𝑃𝑟(𝐱𝑗 ∈G∧ ∀𝑗′ ∈ [𝑘, 𝑗) + 1,𝐱𝑗′ ∈ S|𝐱𝑘 = 𝑥) = ∫ 𝑉 𝜋
𝑘+1(𝑥̄)𝑝(𝑥̄ ∣ (𝑥,𝜋𝑘(𝑥)),)𝑑𝑥̄.

This can be done as follows

𝑁∑
𝑗=𝑘+1

𝑃𝑟(𝐱𝑗 ∈G∧ ∀𝑗′ ∈ [𝑘+ 1, 𝑗),𝐱𝑗′ ∈ S|𝐱𝑘 = 𝑥) =
18

𝑃𝑟(𝐱𝑘+1 ∈ G|𝐱𝑘 = 𝑥)+
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𝑁∑
𝑗=𝑘+2

𝑃𝑟(𝐱𝑗 ∈G∧ ∀𝑗′ ∈ [𝑘+ 1, 𝑗),𝐱𝑗′ ∈ S|𝐱𝑘 = 𝑥) =

∫
G

𝑝(𝑥̄ ∣ (𝑥,𝜋𝑘(𝑥)),)𝑑𝑥̄+

𝑁∑
𝑗=𝑘+2

∫
S

𝑃𝑟(𝐱𝑗 ∈G∧ ∀𝑗′ ∈ [𝑘+ 2, 𝑗),𝐱𝑗′ ∈ S ∧ 𝐱𝑘+1 = 𝑥̄|𝐱𝑘 = 𝑥)𝑑𝑥̄ =

∫
G

𝑝(𝑥̄ ∣ (𝑥,𝜋𝑘(𝑥)),)𝑑𝑥̄+

𝑁∑
𝑗=𝑘+2

∫
S

𝑃𝑟(𝐱𝑗 ∈G∧ ∀𝑗′ ∈ [𝑘+ 2, 𝑗),𝐱𝑗′ ∈ S|𝐱𝑘+1 = 𝑥̄)𝑝(𝑥̄ ∣ (𝑥,𝜋𝑘(𝑥)),)𝑑𝑥̄ =

∫
(
𝟏G(𝑥̄)+

𝟏S(𝑥̄)
𝑁∑

𝑗=𝑘+2
𝑃𝑟(𝐱𝑗 ∈G∧ ∀𝑗′ ∈ [𝑘+ 2, 𝑗),𝐱𝑗′ ∈ S|𝐱𝑘+1 = 𝑥̄)

)
𝑝(𝑥̄ ∣ (𝑥,𝜋𝑘(𝑥)),)𝑑𝑥̄ =

∫ 𝑉 𝜋
𝑘+1(𝑥̄)𝑝(𝑥̄ ∣ (𝑥,𝜋𝑘(𝑥)),)𝑑𝑥̄

where the third step holds by application of Bayes rule over multiple events.

Proof of Theorem 1. The proof is by induction. The base case is 𝑘 =𝑁 , for which we have

inf
𝑥∈𝑞

𝑉 𝜋
𝑁
(𝑥) = inf

𝑥∈𝑞
𝟏G(𝑥) = 𝟏G(𝑞) =𝐾𝜋

𝑁
(𝑞).

Next, under the assumption that for any 𝑘 ∈ {0, 𝑁 − 1} it holds that

inf
𝑥∈𝑞

𝑉 𝜋
𝑘+1(𝑥) ≥𝐾𝜋

𝑘+1(𝑞),

we can work on the induction step: in order to derive it, it is enough to show that for any 𝜖 > 0

∫ 𝑉 𝜋
𝑘+1(𝑥̄)𝑝(𝑥̄ ∣ (𝑥,𝜋𝑘(𝑥)),)𝑑𝑥̄ ≥

𝐹 ([−𝜖, 𝜖]|𝜎2)𝑛
𝑛𝑝∑
𝑖=1

∫
𝐻

𝑞,𝜋
𝑘,𝑖

𝑣𝑖−1𝑝𝐰(𝑤|)𝑑𝑤,

where 𝐹 ([−𝜖, 𝜖]|𝜎2) = erf( 𝜖√
2𝜎2

) is the cumulative function distribution for a normal random variable with zero mean and variance 

𝜎2 being within [−𝜖, 𝜖]. This can be argued by rewriting the first term in parameter space (recall that the stochastic kernel 𝑇 is 
induced by 𝑝𝐰(𝑤|)) and providing a lower bound, as follows:

∫ 𝑉 𝜋
𝑘+1(𝑥̄)𝑝(𝑥̄ ∣ (𝑥,𝜋𝑘(𝑥)),)𝑑𝑥̄ =

(By definition of predictive distribution)

∫
(
∫ 𝑉 𝜋

𝑘+1(𝑥̄)𝑝(𝑥̄|(𝑥, 𝑢),𝑤)𝑑𝑥̄
)
𝑝𝐰(𝑤|)𝑑𝑤 ≥

(By 𝑉 𝑘
𝑘+1 being non negative everywhere and by the Gaussian likelihood)

∫
( 𝑓𝑤(𝑥,𝜋(𝑥,𝑘)−𝜖

∫
𝑓𝑤(𝑥,𝜋(𝑥,𝑘))+𝜖

𝑉 𝜋
𝑘+1(𝑥̄) (𝑥̄|𝑓𝑤(𝑥,𝜋(𝑥,𝑘)), 𝜎2 ⋅ 𝐼)𝑑𝑥̄)𝑝𝐰(𝑤|)𝑑𝑤 ≥

(By standard inequalities of integrals)

∫ inf
𝛾̄∈[−𝜖,𝜖]

𝑉 𝜋
𝑘+1(𝑓

𝑤(𝑥,𝜋(𝑥,𝑘) + 𝛾̄)
(

∫
[−𝜖,𝜖]𝑛

 (𝛾|0, 𝜎2)𝑑𝛾)𝑛𝑝𝐰(𝑤|)𝑑𝑤 ≥
19

(By the assumptions that for 𝑖 ≠ 𝑗 𝐻
𝑞,𝜋

𝑘,𝑖
and 𝐻

𝑞,𝜋

𝑘,𝑗
are non-overlapping)



Artificial Intelligence 334 (2024) 104132M. Wicker, L. Laurenti, A. Patane et al.

(
∫

[−𝜖,𝜖]

 (𝛾|0, 𝜎2)𝑑𝛾)𝑛
𝑛𝑝∑
𝑖=1

∫
𝐻

𝑞,𝜋,𝜖
𝑘,𝑖

inf
𝛾̄∈[−𝜖,𝜖]

𝑉 𝜋
𝑘+1(𝑓

𝑤(𝑥,𝜋(𝑥,𝑘) + 𝛾̄)𝑝𝐰(𝑤|)𝑑𝑤,

(By the fact that 𝑣𝑖 ≤ inf
𝑥∈𝑞

𝑉 𝜋
𝑘+1(𝑓

𝑤(𝑥,𝜋(𝑥,𝑘) + 𝛾̄) )

(
∫

[−𝜖,𝜖]

 (𝛾|0, 𝜎2)𝑑𝛾)𝑛
𝑛𝑝∑
𝑖=1

𝑣𝑖 ∫
𝐻

𝑞,𝜋,𝜖
𝑘,𝑖

𝑝𝐰(𝑤|)𝑑𝑤,

where the last step concludes the proof because, by the induction hypothesis, we know that for 𝑞′ ⊆ℝ𝑛

inf
𝑥̄∈𝑞′

𝑉 𝜋
𝑘+1(𝑥̄) ≥𝐾𝜋

𝑘+1(𝑞
′)

and by the construction of sets 𝐻𝑞,𝜋

𝑘,𝑖
for each of its weights 𝐾𝜋

𝑘+1(𝑓
𝑤(𝑥̄, 𝜋(𝑥, 𝑘)) is lower bounded by 𝑣𝑖−1.
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[41] Mathias Lechner, Ðord̄e Žikelić, Krishnendu Chatterjee, Thomas Henzinger, Infinite time horizon safety of Bayesian neural networks, Adv. Neural Inf. Process. 
Syst. 34 (2021).

[42] Faming Liang, Bayesian neural networks for nonlinear time series forecasting, Stat. Comput. 15 (1) (2005) 13–29.
[43] Xuanqing Liu, Yao Li, Chongruo Wu, Cho-Jui Hsieh, Adv-bnn: improved adversarial defense through robust Bayesian neural network, in: 7th International 

Conference on Learning Representations, ICLR 2019-Conference Track Proceedings, 2019.
[44] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, Towards deep learning models resistant to adversarial attacks, arXiv 

preprint, arXiv :1706 .06083, 2017.
[45] Andres Masegosa, Learning under model misspecification: applications to variational and ensemble methods, Adv. Neural Inf. Process. Syst. 33 (2020) 

5479–5491.
[46] Rowan McAllister, Carl Edward Rasmussen, Data-efficient reinforcement learning in continuous state-action Gaussian-pomdps, in: I. Guyon, U.V. Luxburg, S. 

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017.
[47] Rhiannon Michelmore, Matthew Wicker, Luca Laurenti, Luca Cardelli, Yarin Gal, Marta Kwiatkowska, Uncertainty quantification with statistical guarantees in 

end-to-end autonomous driving control, in: 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 7344–7350.
[48] Matthew Mirman, Timon Gehr, Martin Vechev, Differentiable abstract interpretation for provably robust neural networks, in: International Conference on 

Machine Learning, PMLR, 2018, pp. 3578–3586.
[49] Kevin P. Murphy, Machine Learning: a Probabilistic Perspective, MIT Press, 2012.
[50] Pavel Myshkov, Simon Julier, Posterior distribution analysis for Bayesian inference in neural networks, in: Workshop on Bayesian Deep Learning, NIPS, 2016.
[51] M. Radford Neal, Bayesian Learning for Neural Networks, vol. 118, Springer Science & Business Media, 2012.
[52] M. Radford Neal, et al., Mcmc using Hamiltonian dynamics, in: Handbook of Markov Chain Monte Carlo, vol. 2, 2011, p. 2.
[53] T. Dung Phan, Radu Grosu, Nils Jansen, Nicola Paoletti, Scott A. Smolka, Scott D. Stoller, Neural simplex architecture, in: NASA Formal Methods Symposium, 

Springer, 2020, pp. 97–114.
[54] Kyriakos Polymenakos, Alessandro Abate, Stephen Roberts, Safe policy search using Gaussian process models, in: Proceedings of the 18th International Confer-

ence on Autonomous Agents and Multi Agent Systems, IFAAMS, 2019, pp. 1565–1573.
[55] Kyriakos Polymenakos, Luca Laurenti, Andrea Patane, Jan-Peter Calliess, Luca Cardelli, Marta Kwiatkowska, Alessandro Abate, Stephen Roberts, Safety guaran-

tees for iterative predictions with Gaussian processes, in: 2020 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 3187–3193.
[56] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore 

Graepel, et al., Mastering Atari, Go, chess and shogi by planning with a learned model, arXiv preprint, arXiv :1911 .08265, 2019.
[57] S. Esmaeil Zadeh Soudjani, A. Abate, Probabilistic reach-avoid computation for partially-degenerate stochastic processes, IEEE Trans. Autom. Control 58 (12) 

(2013) 528–534.
[58] Xiaowu Sun, Haitham Khedr, Yasser Shoukry, Formal verification of neural network controlled autonomous systems, in: Proceedings of the 22nd ACM Interna-

tional Conference on Hybrid Systems: Computation and Control, 2019, pp. 147–156.
[59] Richard S. Sutton, Andrew G. Barto, Reinforcement Learning: An Introduction, 1998.
[60] Julia Vinogradska, Bastian Bischoff, Duy Nguyen-Tuong, Anne Romer, Henner Schmidt, Jan Peters, Stability of controllers for Gaussian process forward models, 

in: International Conference on Machine Learning, PMLR, 2016, pp. 545–554.
[61] Tianhao Wei, Changliu Liu, Safe control with neural network dynamic models, arXiv preprint, arXiv :2110 .01110, 2021.
[62] Matthew Wicker, Adversarial robustness of Bayesian neural networks, PhD thesis, University of Oxford, 2021.
[63] Matthew Wicker, Luca Laurenti, Andrea Patane, Marta Kwiatkowska, Probabilistic safety for Bayesian neural networks, in: Jonas Peters, David Sontag (Eds.), 

Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), in: Proceedings of Machine Learning Research, vol. 124, PMLR, 03–06 Aug 
2020, pp. 1198–1207.

[64] Matthew Wicker, Luca Laurenti, Andrea Patane, Zhuotong Chen, Zheng Zhang, Marta Kwiatkowska, Bayesian inference with certifiable adversarial robustness, in: 
Arindam Banerjee, Kenji Fukumizu (Eds.), Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, in: Proceedings of Machine 
Learning Research, vol. 130, PMLR, 13–15 Apr 2021, pp. 2431–2439.

[65] Matthew Wicker, Luca Laurenti, Andrea Patane, Nicola Paoletti, Alessandro Abate, Marta Kwiatkowska, Certification of iterative predictions in Bayesian neural 
networks, in: Uncertainty in Artificial Intelligence, PMLR, 2021, pp. 1713–1723.

[66] Matthew Robert Wicker, Juyeon Heo, Luca Costabello, Adrian Weller, Robust explanation constraints for neural networks, in: The Eleventh International 
Conference on Learning Representations, 2022.

[67] V. Wijesuriya, A. Abate, Bayes-adaptive planning for data-efficient verification of uncertain Markov decision processes, in: Proceedings of QEST, in: LNCS, 
21

vol. 11785, 2019, pp. 91–108.

http://refhub.elsevier.com/S0004-3702(24)00068-7/bibFCFA7026AA2FCD5FDAF627F34F55AA29s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibFCFA7026AA2FCD5FDAF627F34F55AA29s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib8D2CE80244A80AF5D98A866A1506B6D2s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib8D2CE80244A80AF5D98A866A1506B6D2s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib1121A6E2FF5030469A03CB20E5F34595s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib1121A6E2FF5030469A03CB20E5F34595s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibDEB162AE9468201C7C724BC673BDF6F9s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib7B91670985C8CC38BE1363E04551212Ds1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib3CC5C7F360B3108AF9A0183DEC0F029Fs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib3CC5C7F360B3108AF9A0183DEC0F029Fs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib218FD11DBBEE9718DA550ECD7599A5C1s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib218FD11DBBEE9718DA550ECD7599A5C1s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibEE47537BFDAFA9AF55BC2047153F26D6s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibEE47537BFDAFA9AF55BC2047153F26D6s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib6A408CEDD0ADF005C41C6C602E46B00Bs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib6A408CEDD0ADF005C41C6C602E46B00Bs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib188824559D4F542484095693AD15C208s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib797E63A6ED6EDEA3CD928CD669BFE50Fs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib797E63A6ED6EDEA3CD928CD669BFE50Fs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib797E63A6ED6EDEA3CD928CD669BFE50Fs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib3FE81AE360E76B9F4790CD7AD2A21AD6s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib3FE81AE360E76B9F4790CD7AD2A21AD6s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib8C811896B8D098DBC422285B1055B6DDs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib8C811896B8D098DBC422285B1055B6DDs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib2553EDBDA191DF205F790C163A0CB8DEs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibFE31D4E7DF526B8D92094E1E8B221186s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibFE31D4E7DF526B8D92094E1E8B221186s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibDE39DBB3CFEF4025DB9A5B1539634DBEs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibDE39DBB3CFEF4025DB9A5B1539634DBEs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibB39CEC10641C5118E5ED71EB7CD07B1Bs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibB39CEC10641C5118E5ED71EB7CD07B1Bs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib7F31C74FC2871E3DAE8753D2CCA0D041s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib7F31C74FC2871E3DAE8753D2CCA0D041s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibB1D14E71F54F8AA1C12566B017FD0FA2s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibB1D14E71F54F8AA1C12566B017FD0FA2s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibB72031791F22EE5C9E624B80F1BC289Cs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibB72031791F22EE5C9E624B80F1BC289Cs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib81048A7455CEA8C40DF788796886AE56s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibFA011787FA0001901403C8B5FC8F1926s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib298C2DA06E15722A68D613F76A4C109Es1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibB73CC3A534C6A9EC02CAA1D492A32AA9s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib8C342224599DEDCBEF5A80C52AB54091s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib8C342224599DEDCBEF5A80C52AB54091s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibF04C81DD3B36D81CAAF2B8DD12FA7452s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibF04C81DD3B36D81CAAF2B8DD12FA7452s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibA5D64385C92408F5D590B6562CAB0526s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibA5D64385C92408F5D590B6562CAB0526s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibBC033CD56BC87D5D0E3B72A55DE99A5Ds1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibBC033CD56BC87D5D0E3B72A55DE99A5Ds1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib947F0A8ABB963987354B086A4F5D7359s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib947F0A8ABB963987354B086A4F5D7359s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib2D28E5558B6DC6B6C83960AFE08E1CD6s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib2D28E5558B6DC6B6C83960AFE08E1CD6s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibC30223A4F74281CD56434259170DE4B6s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib2E177A04014F41FD99BC23CE81D75513s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib2E177A04014F41FD99BC23CE81D75513s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibA04E151BCA958F0762DB63260E732077s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib5F80D5F48AF97EEEF1902E0E6005D4CBs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib35D9D80AFAE8FED9E6D8C978F538EA55s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib35D9D80AFAE8FED9E6D8C978F538EA55s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib35D9D80AFAE8FED9E6D8C978F538EA55s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib77D3FA439CCFBEA065C706FDC237351Fs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib77D3FA439CCFBEA065C706FDC237351Fs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib77D3FA439CCFBEA065C706FDC237351Fs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib1145DF3126C6D601DD1350C7E7EC99D7s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib1145DF3126C6D601DD1350C7E7EC99D7s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibC0723173FFFAA09F827C73B7775D64EBs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bibC0723173FFFAA09F827C73B7775D64EBs1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib6C9A5E2046E7A1B675D36E950EEDFCB3s1
http://refhub.elsevier.com/S0004-3702(24)00068-7/bib6C9A5E2046E7A1B675D36E950EEDFCB3s1

	Probabilistic reach-avoid for Bayesian neural networks
	1 Introduction
	2 Bayesian neural networks
	3 Problem formulation
	3.1 Problem statements

	4 Methodology
	4.1 Certifying reach-avoid specifications
	4.2 Lower bound on Preach
	4.3 Lower bounding of the value functions
	4.4 Computation of projecting weight set
	4.5 Probabilistic reach-avoid algorithm

	5 Strategy synthesis
	5.1 An approach for strategy synthesis based on neural networks
	5.2 Discussion on the algorithms

	6 Experiments
	6.1 Experimental setting
	6.2 Comparing certification of learned and max-cert policies
	6.3 On the effect of approximate inference
	6.4 Depth experiments

	7 Related work
	8 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Further experimental details
	A.1 Agent dynamics
	A.2 Learning parameters
	A.3 Further scalability experiments
	A.3.1 Further detail on BNN depth experiments
	A.3.2 Scaling with state-space dimensionality


	Appendix B Proofs
	References


