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a b s t r a c t

This work is concerned with the design of a two-step distributed state estimation scheme for large-
scale systems in the presence of unknown-but-bounded disturbances and noise. The set-membership
approach is employed to construct a compact set containing the states consistent with system
measurements and bounded noise and disturbances. The tightened feasible region is then provided to
a moving horizon estimator that determines the optimal state estimates. Partitioning of the overall
problem and coordination of the resulting subproblems are achieved using decomposition of the
optimality conditions and community detection. The proposed strategy is tested on a case study based
on a reactor–separator system widely used in the literature. Its performance is compared to those
of centralized and distributed (without set-membership) implementations, allowing to highlight its
effectiveness.
© 2021 The Authors. Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

State estimation is of paramount importance in engineering,
nd has received considerable attention from the research com-
unity for many decades. Research on the topic builds upon

he seminal results on Kalman filtering, which uses probabilistic
ssumptions on disturbances and noise to minimize the error
ariance of the state estimate [1,2]. Nevertheless, these assump-
ions might be unrealistic and difficult to validate in real appli-
ations [3]. In this context, the set-membership approach does
ot resort to assumptions on statistical properties, and norm-
ounded uncertainty can be considered instead [4]. Its main
rinciple consists in building compact sets that bound the system
tates consistent with the norm-bounded uncertainty and the
easurements [5]. On the other hand, Kalman filtering is not
oncerned with the issue of constraints, thus not making use
f available physical and operational insight [6]. Moving horizon
stimation (MHE), an approach that is deemed to be the dual of
odel predictive control (MPC), provides a framework that can
eal with constraints in a straightforward manner [7]. The main
rinciple consists in using an estimation window of constant
ize, which is shifted in time, so as to process only the most
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019-0578/© 2021 The Authors. Published by Elsevier Ltd on behalf of ISA. This is

licenses/by/4.0/).
recent information and thus keep the problem computationally
tractable [8,9].

Regardless of the choice of state estimation approach, techno-
logical developments have resulted in large-scale systems, which
usually consist of multiple interacting subsystems and are charac-
terized by a growing complexity of operation [10]. Therefore, cen-
tralized implementations present several important drawbacks in
the case of large-scale systems, such as reliability (single point
of failure) and non-scalability [11]. However, as a result of ad-
vances in information and communication technologies, non-
centralized strategies are possible nowadays, thus improving tra-
ditional plant-wide model-based control and monitoring [12].

Non-centralized approaches assume that a set of agents is
deployed, each in charge of a subsystem, or part of the overall
system. Moreover, they are usually categorized into two main
groups, depending on information availability and interactions
among the local agents. On the one hand, decentralized ap-
proaches ignore interactions among subsystems, which might
yield poor overall performances [13]. On the other hand, dis-
tributed approaches account for interactions in the design of the
subproblems, introducing cooperation and negotiation mecha-
nisms so as to achieve optimal global performance [14]. Given
the superior performance of distributed over decentralized ap-
proaches, the former are usually preferred when the degree of
coupling is not negligible, although this is achieved at the expense
an open access article under the CC BY license (http://creativecommons.org/
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f computation time. Distributed state estimation has been ex-
ensively studied, considering both set membership [15–18] and
HE [19–22] approaches.
Distributed state estimation approaches require, first of all,

o split the problem into smaller subproblems. However, de-
omposition is a sensitive issue, as different decompositions can
ead to rather different overall performances and computation
imes [23]. In this regard, graph theory and network science
ave recently examined the property of community structure
n networked systems, where systems with higher community
tructures exhibit nodes in tight clusters among which there are
ewer links [24]. Metrics to quantify this property have been
efined, and algorithms to generate system decompositions that
aximize such metrics have been devised. These tools can be of

nterest to decompose state estimation problems, as the result-
ng subproblems are loosely coupled, thus keeping information
xchanges to a minimum.
Once the subproblems have been generated, these can be

olved in a distributed fashion. There exist multiple distributed
ptimization techniques, which may be categorized into two
ain classes: on the one hand, approaches based on augmented
agrangian decomposition; on the other hand, techniques that
mploy the decentralized solution of the Karush–Kuhn–Tucker
KKT) optimality conditions [25]. Examples of the former and
he latter are the alternating direction method of multipliers
ADMM) [26] and the optimality condition decomposition (OCD)
ethod [27], respectively. The main differences between these

wo approaches reside in the construction of the Lagrangian func-
ion and the management of coupled variables. On the one hand,
he Lagrangian function used in ADMM is augmented with sup-
lementary terms that are linked to the constraint residuals [26],
hile OCD keeps complicating constraints, i.e., constraints includ-

ng coupled variables, in the assigned subproblem but also relaxes
hem in the coupled subproblems [28]. On the other hand, ADMM
reates copies of coupled variables in all coupled subproblems
hile adding equality constraints to guarantee solution compati-
ility among subproblems, thus requiring a central coordinator. In
ontrast, each variable is assigned in OCD to exactly one subprob-
em and optimizes its value in that subproblem, thus overriding
he need for a central coordinator [25]. Despite this, the literature
eview reveals that ADMM has been more widely applied than
CD to solve distributed state estimation problems. Indeed, while
he former has been used in, e.g., [22,29–31], no reference making
n explicit use of the latter has been found, although it shares
ome similarities with the method reported in [32].
The combination of the aforementioned set-membership and

HE allows for robust state estimation, a problem has been ad-
ressed from multiple different perspectives. The authors of [33]
ade use of multi-parametric methods to generate the dynamic
quations and estimation error bounds for a linear constrained
HE. An initial high-gain observer was proposed in [34] to com-
ute confidence regions that contain the actual system state,
eeding this information to an MHE. The authors of [35] designed
n MHE that uses the convex hull to compute guaranteed bounds
or the state estimates. The design of an MHE with real-time
daptive update of error variances was tackled in [36].
The results reported in the previous references were designed

onsidering a centralized architecture. Non-centralized imple-
entations of robust state estimators based on MHE can also
e found in the literature, although it must be noted that none
mploys the set-membership approach. A robust distributed MHE
DMHE) for nonlinear constrained systems was proposed in [37],
dding a consensus term to propagate information regarding
ocal estimates. The authors of [29] designed a DMHE for joint
dentification of corrupted SCADA measurements (as a result

f unintentional metering faults) and state estimation solving o

403
the relaxed ℓ1-norm problem. Another approach considering the
1-norm was devised in [31], also under the assumption of com-
ressed sensing. The authors of [38] designed local MHE featuring
omplementary nonlinear observers to track the nominal states. A
artitioned MHE using the method of largest normalized residuals
as conceived in [30] to deal with outliers. Another DMHE with
uaranteed robustness to outliers introduced in cyberattacks was
eveloped in [22] using total-variation denoising and ℓ1 trend
iltering.

ummary of the paper and contribution

This work reports the derivation of a two-step distributed
tate estimation algorithm considering an unknown-but-bounded
escription of disturbances and noise. As a first step,
et-membership is used to tighten the physical and operational
ounds on states, making use of information regarding measure-
ents and uncertainty. These results are then provided to the
HE, which benefits from the reduced feasible region computed

n the previous step, and whose solution yields the optimal state
stimates. Moreover, a community detection algorithm and OCD
re used to generate the subproblems and coordinate the solu-
ions. The performance is then tested on a case study based on a
arge-scale reactor–separator plant widely used in the literature.

Contributions of the paper with regard to the state of the art
re detailed next:

• The current paper builds on previous results reported in [39]
concerning the design of a distributed control approach
using OCD and community detection. Indeed, the main find-
ings are used to consider a different problem, i.e., state
estimation. To the best knowledge of the authors, the com-
bined use of OCD and community detection for distributed
state estimation is a novel approach.
• Moreover, the effect of disturbances and noise was not

studied in [39]. In contrast, this issue is explicitly addressed
in this paper, using the set-membership approach to tighten
the feasible region considering only the states that are con-
sistent with measurements and the level of uncertainty. This
facilitates the task of the MHE afterward. The review of the
literature confirms that a robust distributed state estimation
approach based on the combination of set-membership and
moving horizon estimation has not been proposed before.
• While the goal of bound tightening is shared with other

works [40–43], these references consider the output feed-
back control problem. Therefore, results on bound tighten-
ing are used to estimate the future evolution of the sys-
tem by means of a Luenberger observer, which introduces
the additional issue of appropriately tuning an observer
gain [44]. In contrast, this paper makes use of bound tighten-
ing results for a different purpose, i.e., state estimation using
an MHE, which overrides the need to tune the observer gain.
• Furthermore, the previous references propose centralized

implementations. Conversely, this is carried out in a dis-
tributed manner in this work, which gives rise to a dis-
tributed set-membership-based MHE algorithm, hereinafter
referred to as DMHE-SM.

The structure of the paper is as follows: Section 2 describes
he problem and presents the rationale behind the proposed
pproach. Section 3 details the overall problem decomposition
nd coordination approach, which allows to devise the two-step
istributed state estimation algorithm in Section 4. Finally, Sec-
ion 5 introduces the case study that is used to test and validate
he approach, thus allowing to derive conclusions and elaborate

n possible research directions in Section 6.
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otation

Let Z≥0, Rn and Rn×m denote the set of natural non-negative
scalars, the space of n-dimensional real column vectors and the
space of n-by-m real matrices, respectively. Moreover, Ai de-
notes the ith row of matrix A. Scalars, vectors and matrices
are represented by either lowercase or uppercase letters, bold
lowercase letters and bold uppercase letters, respectively, while
sets are denoted with calligraphic symbols. Furthermore, let G =
(N , E) represent an undirected and connected graph, where N =
{1, 2...,N} and E = {(i, j) : i, j ∈ N } ⊆ N × N denote the sets of
nodes and edges, respectively. Then, the set of neighbors of node
i is denoted by N (i)

= {j : (i, j) ∈ E}.

2. Problem statement

The problem tackled in this work regards the class of discrete-
time invariant linear uncertain systems

xk+1 = Axk + Buk +wk, (1a)

yk = Cxk + vk, (1b)

where xk ∈ Rnx , uk ∈ R
nu and yk ∈ Rny represent the state,

input and output vectors, respectively, with k ∈ Z≥0 the sample
ime. Moreover, wk ∈ R

nx and vk ∈ Rny denote disturbance and
oise vectors, respectively, and are considered to be unknown but
ounded by known compact sets wk ∈ W and vk ∈ V that contain
he respective origins. Furthermore, the state-space matrices A, B
nd C are of appropriate dimensions.
Given (1) and a set of input–output data, the goal consists

n designing a state estimation strategy that allows to fully re-
onstruct the vector of states at each time instant, as they are
eldom completely available for measurement. It should be noted
hat data generation is assumed to be out of the scope of the
roblem. Then, a centralized MHE (CMHE) can be designed for
1) as follows:

min
{x̂i|k}ki=k−N+1

(
x̂k−N+1|k − xk−N+1

)⊺ P−1 (x̂k−N+1|k − xk−N+1
)
+ (2a)

k−1∑
i=k−N+1

(
w⊺

i|kQ
−1wi|k + v⊺

i|kR
−1vi|k

)
ubject to

i|k = x̂i+1|k −
(
Ax̂i|k + Bui

)
, i ∈ {k− N + 1, . . . , k}, (2b)

i|k = yi − Cx̂i|k, i ∈ {k− N + 1, . . . , k}, (2c)

ˆ i|k ∈ X , i ∈ {k− N + 1, . . . , k}, (2d)

here
{
x̂i|k
}k
i=k−N+1 denotes the sequence of state estimates1

or (1) that are most consistent with the provided input–output
ata2 {(ui, yi)}ki=k−N+1, with N the length of the moving esti-
ation window. Moreover, xk−N+1 denotes the most reasonable

nitial state (which may be selected based on knowledge of the
ystem), while X represents the feasible set of states according
o operational and physical constraints. Furthermore, P−1, Q−1
nd R−1 are weighting matrices inverses, and indicate confidence
n the initial state, quality of the model and the measurements,
espectively [7].

The last component of the optimal sequence
{
x̂i|k
}k
i=k−N+1,

.e., x̂k|k, is retained, and the rest are discarded. The window is
hen shifted forward in time to utilize updated information, hence
onverting the initial open-loop approach into a closed-loop one.

1 {
x̂i|k
}k
i=k−N+1 ≜

{
x̂k−N+1|k, x̂k−N+2|k, . . . , x̂k|k

}
2 { u , y }k−1 ≜ { u , y , u , y , . . . , u , y }
( i i) i=k−N+1 ( k−N+1 k−N+1) ( k−N+2 k−N+2) ( k k)
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Despite the fact that (1) describes a broad class of systems,
state estimation of large-scale systems is specifically addressed.
Then, and owing to the particular features of large-scale systems,
non-centralized implementations are preferred over their cen-
tralized counterparts. In particular, distributed schemes allow for
interactions among local agents, each in charge of only a part of
the overall system. These local agents exchange information with
each other in an iterative manner until convergence.

Distributed schemes offer an interesting alternative to central-
ized approaches given the minor loss of performance that comes
at the benefit of reduced computation times. Indeed, performing
a single iteration in a distributed approach is usually much faster
than solving the overall problem. As the subproblems can be
solved in parallel, the duration of a single iteration amounts to
the time required to solve the largest subproblem. However, the
choice of the convergence error threshold has implications on
the amount of iterations needed. Although this number could be
reduced by increasing the threshold, this is not desirable as it
leads to a degraded performance. Instead, the physical feasible
region can be further constrained by eliminating solutions that
are inconsistent with the measured outputs and the noise bounds.
Such strategy is known as the set-membership approach.

With all this, the proposed solution consists in designing a
DMHE enhanced with a set-membership scheme that computes
tightened bounds at each time instant (DMHE-SM). Nevertheless,
overall problem decomposition into subproblems and definition
of the coordination policy need to be carried out first. Hence,
these are discussed in the next section. The derivation of the
DMHE-SM will be tackled afterward.

3. Decomposition and coordination via OCD and community
detection

3.1. Optimality condition decomposition

The OCD is considered to be a particular Lagrangian relax-
ation implementation. As its name suggests, it makes use of
the optimality conditions of a problem to divide it into smaller
subproblems. Moreover, not only does it allow for overall system
partitioning, but also determines the coordination policy among
subproblems [25,45].

The centralized estimation problem (2) is restated for conve-
nience:

min
x̂

f (x̂) (3a)

subject to

a
(
x̂
)
= 0, (3b)

b
(
x̂
)
≤ 0, (3c)

where x̂ ∈ Rnx , f
(
x̂
)
: Rnx → R, a

(
x̂
)
: Rnx → Rna and

b
(
x̂
)
: Rnx → Rnb .

Without loss of generality, (3) can be further simplified by
only retaining the inequality constraints. Indeed, those cases fea-
turing equality constraints can be dealt with in an analogous
fashion [45]. The problem is restated as shown below:

min
x̂

f (x̂) (4a)

subject to

b
(
x̂
)
≤ 0. (4b)

The OCD assumes that (4) can be divided into subproblems. To
illustrate this, the following reformulation is introduced:

min
(i) L

L∑
f (i)
(
x̂(i)
)

(5a)

{x̂ }i=1 i=1
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ubject to

h
(
x̂(1), . . . , x̂(L)

)
≤ 0, (5b)

g(i) (x̂(i)) ≤ 0, i ∈ {1, . . . , L}, (5c)

here L represents the total number of subproblems into which
4) decomposes, x̂(i) represents the subset of states to be esti-
ated in the ith subproblem and f (i)(x̂(i)) denotes the cost func-

tion associated with the ith subproblem. Furthermore, (5b) com-
prises the complicating constraints, i.e., constraints that feature
variables pertaining to different subproblems, and whose exis-
tence prevents the overall problem from decomposing into L
completely independent subproblems.

The method of Lagrange multipliers can be used to simplify the
resolution of a problem. Therefore, (5) can be relaxed as follows:

min
{x̂(i)}Li=1

L∑
i=1

f (i)
(
x̂(i)
)
+

L∑
i=1

λ(i)h(i) (x̂(1), . . . , x̂(L)) (6a)

subject to

h(i) (x̂(1), . . . , x̂(L)) ≤ 0, i ∈ {1, . . . , L},
(6b)

g(i) (x̂(i)) ≤ 0, i ∈ {1, . . . , L},
(6c)

where λ(i) is the vector of Lagrange multipliers associated to h(i),
with i = 1, . . . , L.

The relaxed overall problem (6) can be decomposed in L sub-
problems if the values of those variables pertaining to the rest of
subproblems are fixed. Then, the ith subproblem can be posed in
the following manner:

min
x̂(i)

f (i)
(
x̂(i)
)
+

L∑
j=1,j̸=i

f (j)
(
¯̂x(j)
)

(7a)

+

L∑
j=1,j̸=i

λ̄
(j)h(j)

(
¯̂x(1), . . . , ¯̂x(i−1), x̂(i), ¯̂x(i+1), . . . , ¯̂x(L)

)
subject to

h(i)
(
¯̂x(1), . . . , ¯̂x(i−1), x̂(i), ¯̂x(i+1), . . . , ¯̂x(L)

)
≤ 0, (7b)

g(i) (x̂(i)) ≤ 0, (7c)

and the variables with an overline represent fixed values. More-
over, note that different distributions of complicating constraints
among the subproblems yield the same solution.

The OCD achieves coordination among subproblems by relax-
ing those complicating constraints of the jth block that include
variables from the ith subproblem in the ith subproblem. In this
way, the effect of the solution of the ith subproblem on the
jth subproblem is directly accounted for in the cost function of
the ith subproblem. Thus, coordination of subproblems regarding
complicating constraints is straightforward, and is accomplished
by performing the multiplier updates as

λi ← λi + αhi, i ∈ {1, . . . , L}, (8)

with α an appropriate constant and hi is evaluated using the
latest solution.

The methodology performs decomposition of the global prob-
lem by means of the manipulation of the KKT conditions, which
can be expressed as [46]:

∇x̂(i) fi
(
x̂(i)
∗

)
+

L∑
∇

⊺

x̂(i)h
(i) (x̂(1)

∗
, . . . , x̂(L)

∗

)
λ(i)
∗

(9a)

i=1

405
+

L∑
i=1

∇
⊺

x̂(i)g
(i) (x̂(i)

∗

)
ν(i)
∗
= 0, i ∈ {1, . . . , L},

h(i) (x̂(1)
∗
, . . . , x̂(L)

∗

)
≤ 0, i ∈ {1, . . . , L}, (9b)(

h(i) (x̂(1)
∗
, . . . , x̂(L)

∗

))⊺
λ(i)
∗
= 0, i ∈ {1, . . . , L}, (9c)

λ(i)
∗
≥ 0, i ∈ {1, . . . , L}, (9d)

(i) (x̂(i)
∗

)
≤ 0, i ∈ {1, . . . , L}, (9e)(

g(i) (x̂(i)
∗

))⊺
ν(i)
∗
= 0, i ∈ {1, . . . , L}, (9f)

(i)
∗
≥ 0, i ∈ {1, . . . , L}, (9g)

here ∗ indicates optimal value.
All in all, OCD is a decomposition and coordination approach

hat resorts to the generation and manipulation of the KKT matrix
ssociated to the overall problem. As a result, a suitable set of sub-
roblems can be determined. However, the OCD does not yield
he optimal decomposition; nor is it concerned with identifying
he subproblems. Hence, a complementary method to the OCD
hat provides the optimal partitioning is discussed next.

.2. Community-detection-based optimal partitioning

The KKT matrix contains information regarding the system
tructure and connections among variables. The same information
an be expressed by means of the graph G = (N , E). In the
ase of an estimation problem, G captures the connections among
utputs, system states and unmeasurable system states [47].
Partitioning the KKT matrix can thus be approached using

raph theory techniques. Traditional methods have generally
imed at determining block-diagonal or block-triangular struc-
ures [23]. A different approach known as community detection
as emerged more recently, and is concerned with identifying
ommunity structures within networks, i.e., clusters of densely
onnected nodes which are more sparsely connected to other
lusters [24]. A metric called modularity is employed to assess
his property for a certain network decomposition, and is defined
s [48]

=
1
2m

∑
i,j

(
Aij −

kikj
2m

)
δ
(
ci, cj

)
, (10)

here M quantifies the resulting decomposition modularity, m
denotes the sum of weights of the edges, Aij is the weight of the
edge connecting the ith and jth nodes, ki and kj denote the sum
of weights of all edges that connect the ith and jth nodes with the
remaining nodes, respectively, ci and cj indicate the communities
that the ith and jth nodes belong to, respectively, and δ

(
ci, cj

)
is

he Kronecker delta function:(
ci, cj

)
=

{
1 if the ith and jth belong to identical communities,
0 otherwise.

(11)

In the light of the above information, community detection
eeks to determine the decomposition for which a maximal mod-
larity is attained [49]. Although modularity maximization is an
P-hard problem [50], various approaches that provide near-
ptimal performances have been developed, such as fast unfold-
ng [51] and spectral clustering [52]. Fast unfolding is selected
n this work to determine communities into which the overall
ystem decomposes. It consists of two phases that are reiterated
ntil no further improvement is possible, hence generating the
ptimal partitioning. An initial partition consisting of a single
ode per community is considered. The first phase (modularity
ptimization) requires to compute the modularity gain obtained
f the ith node is assigned to a neighboring community. This is
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Algorithm 1 The fast unfolding algorithm

Require: graph G
1: Initialization: assign each node in N to a different community

2: Evaluate modularity gain∆M resulting from allocating the ith
node in the jth community ∀i, j ∈ N and j ∈ N (i), as

∆M =

(∑
in+ki,in
2m

−

(∑
tot +ki
2m

)2
)

−

(∑
in

2m
−

(∑
tot

2m

)2

−

(
ki
2m

)2
)
,

with
∑

in the total weight of edges in the community of
destination,

∑
tot the total weight of edges connected with

the community of destination, ki the sum of weights of edges
incident to the ith node, ki,in the total weight of edges linking
the ith node to the jth community and m the total weight of
all edges in the network

3: Place ith node in the community for which ∆M is maximum
4: Repeat 2–3 for all nodes until no additional improvement is

possible
5: Build a new network with identified communities as nodes
6: Repeat 2–5 until communities remain invariable and a

maximum M is achieved

Algorithm 2 OCD-based decomposition and coordination scheme
Require: overall MHE problem (2)
1: Formulate KKT matrix for (2) using (9)
2: Determine graph G equivalent to the KKT matrix
3: Execute Algorithm 1
4: Rearrange matrix of KKT conditions according to final

communities
5: Formulate MHE local subproblems based on rearranged KKT

matrix

done for each node in the graph. The second phase (community
aggregation) involves adding each node to the neighboring com-
munity that yields the maximal modularity gain. This procedure
is repeated iteratively on the resulting network, in which the
communities formed in the prior phase are the new nodes, and
the new weights of the edges can be obtained as the sums of all
edges among communities. Algorithm 1 summarizes these steps
and provides additional insight.

Finally, the partitioning approach is incorporated into the final
CD-based decomposition and coordination scheme sketched in
lgorithm 2.

. Distributed state estimation

The approach described in the previous section allows to de-
ompose (2) into a set of minimally coupled subproblems and
ddress coordination of the solutions. Building on these results, a
MHE-SM algorithm is introduced to deal with the subproblems.
The overall state estimation strategy can be thought of as a

wo-step approach. In a first stage, the feasible region (according
o physical and operational constraints) of state estimates is
ightened by using the consistency between the system outputs
nd the disturbance and noise bounds. Then, the DMHE solves a
istributed estimation problem with tightened bounds that yields
he optimal state estimates.
406
4.1. Bound tightening using the set-membership approach

Physical bounds on the states can be tightened considering
the measured system outputs and known noise bounds. The set-
membership approach constructs a compact set that bounds the
system states that are compatible with the measurements and the
noise bounds [5]. These sets can be represented using different
geometric figures, e.g., ellipsoids, polytopes and zonotopes [53].
While general polytopes yield tighter enclosures than ellipsoids,
efficient results can only be obtained in those cases with a rea-
sonable amount of observations and order of the system [4].
Conversely, the use of ellipsoids might yield rough enclosures of
the consistent state sets [54]. Zonotopes constitute an interest-
ing trade-off, as they are characterized by superior compactness
over ellipsoids, and offer reduced complexity with respect to
polytopes [3].

Zonotopes are described by a center and a generator matrix
(also referred to as matrix of segments), and can be used to
represent sets W and V introduced in Section 2 as follows:

= ⟨cw, Ew⟩, (12a)

V = ⟨cv, Ev⟩, (12b)

here cw ∈ Rnx and cv ∈ Rny are the centers, and Ew ∈ Rnx×nx

and Ev ∈ Rny×ny are the generator matrices. Moreover, Ew and Ev
re diagonal matrices whose entries correspond to disturbance
nd noise bounds, respectively.
The zonotopic set-membership approach employed in this

ork follows the design reported in [4]. The main steps per-
ormed at each time instant are summarized in Algorithm 3. It
hould be noted that, with some abuse of notation, the second
tep is carried out by successively updating the center and seg-
ents considering one measurement from the output vector at
time. Moreover, it can be observed that the computation of

(c)
k results in matrices of increasing dimensions. To this end,
he reduction operations given by [54, Eqs. (8)–(10)] must be
erformed.
Algorithm 3 needs to be adapted so that it can provide an

ppropriate input to the DMHE. Indeed, states are estimated in
ach subproblem for a certain input–output data window, hence
ounds should be computed for the same whole window. To this
nd, some ideas presented in [17] to compute tightened bounds
n a distributed manner are used. Then, Algorithm 4 provides the
ntegration of the set-membership approach within the DMHE
ramework, sketching the steps followed by the lth agent at every
time instant within the window, with l = 1, . . . , L, and L is the
otal number of subproblems. The result is a set of tightened
ounds for all subproblems for the corresponding window.

.2. The DMHE-SM algorithm

The final solution combines the CMHE (2), Algorithms 1 and
for decomposition of (2) and determination of the coordination
olicy for the identified subproblems, and Algorithms 3 and 4 for
ound tightening using the set-membership approach. Note that
lgorithms 1 and 2 can be solved offline, and their solution should
e available before the start of online computations.
The DMHE problem solved by the lth agent can be formulated

ased on (2) and (7) as follows:

min
{x̂(l)i|k}

k
i=k−N+1

J (l)
(
x̂(l)i|k
)
+

∑
m∈N (l)

J (m)
(
x̂(m)
i|k

)
+ (13a)

λ(m)
[(

w(m)
i|k −

(
x̂(m)
i+1|k − A(m)x̂(m)

i|k − B(m)u(m)
i

))
+
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Algorithm 3 The zonotopic set-membership approach [4]

Require: A, B, C, Ew , Ev , c
(c)
k−1, R

(c)
k−1, input–output data

1: Step 1 (prediction). Use the corrected zonotope
⟨
c(c)k−1,R

(c)
k−1

⟩
at

the previous time instant to compute

c(p)k = Ac(c)k−1 + Buk−1,

R(p)
k = [AR

(c)
k−1 Ew],

where c(p)k and R(p)
k are the predicted center and segments of

the zonotope at current time instant k.
2: Step 2 (update). Update

⟨
c(p)k ,R

(p)
k

⟩
using the ith output as

follows:
3: for i = 1 : ny do
4: Compute the free vector λi ∈ R

nx as

λi =

(
R(c)
k−1

(
R(c)
k−1

)⊺

C⊺
i

)(
CiR

(c)
k−1

(
R(c)
k−1

)⊺

C⊺
i + EviE

⊺
vi

)−1
such that λi minimizes the Frobenius norm of the zonotope.

5: Correct the zonotope as

c(c)k = c(p)k + λi

(
yi − Cic

(p)
k

)
,

R(c)
k = [(I− λiCi)R

(p)
k − λiEvi ],

and construct tightened bounds at time instant k using⟨
c(c)k ,R

(c)
k

⟩
.

6: end for

Algorithm 4 Set-membership bound tightening in the DMHE
framework
Require: parameters in Algorithm 3
1: for i = (k− N + 1) : k do
2: Send

⟨
c(c,l)i−1 ,R

(c,l)
i−1

⟩
to all neighbors

3: Receive
⟨
c(c,m)
i−1 ,R

(c,m)
i−1

⟩
, ∀m ∈ N (l)

4: Obtain input–output data pair
(
u(l)
k , y

(l)
i

)
5: Compute

⟨
c(c,l)i ,R(c,l)

i

⟩
using Algorithm 3 and [17,

Eqs. (6) and (23)]
6: end for
7: Obtain tightened bounds X (l)

SM for the considered time window

(
v(m)
i|k −

(
y(m)
i − C(m)x̂(m)

i|k

))]
ubject to
(l)
i|k = x̂(l)i+1|k −

(
A(l)x̂(l)i|k + B(l)u(l)

i

)
, i ∈ {k− N + 1, . . . , k− 1},

(13b)
(l)
i|k = y(l)i − C(l)x̂(l)i|k, i ∈ {k− N + 1, . . . , k− 1}, (13c)

ˆ
(l)
j|k ∈ X (l)

SM , j ∈ {k− N + 1, . . . , k}, (13d)

here l and m represent information pertaining to the lth and
th subsystems, respectively. It is recalled that the values of
he variables with the superscript m are determined in the mth
ubsystem, and are thus regarded as parameters in the lth sub-
ystem. Note also that the lth and mth problems are coupled
or equivalently, neighbors) if one or more variables appear in
407
Algorithm 5 Online DMHE-SM algorithm

Require: Subproblems (13);
{(

u(l)
i , y

(l)
i

)}
, l = 1, ..., L

1: while k ≤ tsim do
2: Initialize Lagrange multipliers in all subproblems

3: Provide
{(

u(l)
i , y

(l)
i

)}k
i=k−N+1

to the lth subproblem, l =

1, ..., L
4: Execute Algorithm 4 and obtain tightened bounds
5: Perform one iteration for each subproblem
6: while stop criterion not satisfied do
7: Exchange last solution among coupled subproblems
8: Update Lagrange multipliers using (8)
9: Perform a new iteration for each subproblem
0: end while
1: Extract x̂(l)k|k, l = 1, ..., L
2: k← k+ 1
3: end while

the equations of both subproblems, which may be expressed as
m ∈ N (l). Moreover, J (l) and J (m) are as in (2a), but adapted to the
lth and mth subsystems, respectively.

With all this, Algorithm 5 describes the main steps that must
be followed to carry out the online DMHE-SM approach. As men-
tioned before, the solutions of Algorithms 1 and 2 need to be
available before online computations can start.

4.3. Convergence analysis of the DMHE-SM

Algorithm 5 can be employed for the purpose of state estima-
tion for any system that can be described by (1), provided that
input–output data is available. Then, convergence of the proposed
approach can be examined in two steps:

1. The first part is concerned with the set-membership ap-
proach. The methodology devised in [4] is followed, which
determines a guaranteed bound of the uncertain system
trajectory at every sampling instant [4, Property 3].

2. The second part examines the convergence of the DMHE,
which can be analyzed with independence of the set-
membership results. Indeed, the set-membership approach
only tightens the original bounds, hence the MHE formu-
lation remains invariable. Then, its convergence can be
discussed at two different levels:

2.1. Convergence of the decomposition algorithm (OCD)
is guaranteed by [45, Eqs. (5.97)–(5.100)].

2.2. The choice and update of certain weighting matri-
ces guarantees convergence of the DMHE [19, Theo-
rem 1]. In particular, the initial penalty matrix, which
is denoted with P−1 in this paper, can be updated as
described in [19, Eqs. (26)–(28)]. Another possibility
consists in using the tightened bounds (computed
in the set-membership step detailed in Algorithm
4) to update the initial penalty matrix as in [54,
Definition 4], where a procedure to generate this co-
variance matrix from the zonotope generator matrix
is provided.

5. Case study

The efficacy of the proposed distributed state estimation
methodology is assessed by means of a typical reactor–separator
process. This benchmark case study has been widely employed
in the literature to illustrate many control and state estimation
approaches [12,38,55–63].
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.1. System description

The reactor–separator system, depicted in Fig. 1, features two
ontinuously stirred tank reactors and a vapor–liquid separa-
or [12,57]. Two streams of pure reactant A, denoted by Ff1 and
Ff2 , are fed to both reactors and transformed into desired product
B according to the first-order reaction A

r1
−→ B. A second parallel

first-order reaction B
r2
−→ C causes B to be lost to side product

C , where r1 and r2 represent the reaction rates [56]. The stream
leaving the first reactor, i.e., F1, is fed to the second reactor,
and contains all components A, B and C . In turn, the outlet
stream of the second reactor, i.e., F2, is supplied to the separator,
which works at equilibrium conditions to isolate B from the
mixture [62]. A recycle stream Fr is supplied by the separator
to the first reactor, while simultaneously purging a small ratio,
denoted by ϵ, to prevent accumulation of C [58]. Furthermore,
the heat flows Q1, Q2 and Q3 are supplied by the jackets to the
two reactors and the separator, respectively.

The subsequent model characterizes the holdup, temperature
and concentration dynamics of species A and B:
dV1

dt
= Ff1 + Fr − F1, (14a)

dV2

dt
= Ff2 + F1 − F2, (14b)

dV3

dt
= F2 − (1+ ϵ) Fr − F3, (14c)

dT1
dt
=

Ff1
V1
(T0 − T1)+

Fr
V1
(T3 − T1)+

Q1

ρCpV1
(14d)

−
µ

Cp

(
∆Hr1k

0
1 exp

(
−E1
RT1

)
xA1 +∆Hr2k

0
2 exp

(
−E2
RT1

)
xB1

)
,

dT2
dt
=

Ff2
V2
(T0 − T2)+

F1
V2
(T1 − T2)+

Q2

ρCpV2
(14e)

−
µ

Cp

(
∆Hr1k

0
1 exp

(
−E1
RT2

)
xA2 +∆Hr2k

0
2 exp

(
−E2
RT2

)
xB2

)
,

dT3
dt
=

F2
V3
(T2 − T3)+

Q3

ρCpV3
, (14f)

dxA1
dt
=

Fr
V1

(
αAxA3

αAxA3 + αBxB3 + αC
(
1− xA3 − xB3

) − xA1

)
(14g)

+
Ff1
V1
(xA0 − xA1)− k01 exp

(
−E1
RT1

)
xA1,

dxB1
dt
=

Fr
V1

(
αBxB3

αAxA3 + αBxB3 + αC
(
1− xA3 − xB3

) − xB1

)
(14h)

−
Ff1 xB1 + k01 exp

(
−E1

)
xA1 − k02 exp

(
−E2

)
xB1,
V1 RT1 RT1

408
dxA2
dt
=

Ff2
V2
(xA0 − xA2)+

F1
V2
(xA1 − xA2)− k01 exp

(
−E1
RT2

)
xA2,

(14i)
dxB2
dt
=

F1
V2
(xB1 − xB2)−

Ff2
V2

xB2 + k01 exp
(
−E1
RT2

)
xA2 (14j)

− k02 exp
(
−E2
RT2

)
xB2,

dxA3
dt
=

F2
V3
(xA2 − xA3) (14k)

−
(1+ ϵ)Fr

V3

(
αAxA3

αAxA3 + αBxB3 + αC
(
1− xA3 − xB3

) − xA3

)
,

dxB3
dt
=

F2
V3
(xB2 − xB3) (14l)

−
(1+ ϵ)Fr

V3

(
αBxB3

αAxA3 + αBxB3 + αC
(
1− xA3 − xB3

) − xB3

)
,

here V , T , xA and xB are the system variables and denote vol-
metric holdup, temperature and mole fractions of A and B,
espectively. Moreover, the subscripts 1, 2 and 3 denote magni-
udes associated with the outlet stream of the first and second
eactors and the separator, respectively. Furthermore, Ff1 , Ff2 , F1,
2, F3, Fr , Q1, Q2 and Q3 are the manipulated inputs. The remaining
erms in (14) are physical parameters described in Table 1.

.2. Experimental design

Testing the effectiveness of the set-membership based dis-
ributed state estimation approach requires input–output process
ata to be available. To this end, the output tracking problem
esigned in [62] is implemented. This regulation problem consid-
rs three tracking zones, which correspond to intermediate, low
nd high overall conversion of A into B. The reference values of
he states and the corresponding steady state inputs are given in
ables 2 and 3, respectively. Moreover, the initial state values are
rovided in Table 4.
It should be noted that the output tracking problem is solved

n the presence of measurement and process noise. Hence, white
oise with a signal-to-noise ratio of 40 dB is added to each
ample, following the approach presented in [62]. Note that this
nformation allows to define numerical values for (12).

Once the input–output data has been generated for the whole
uration of the simulation, appropriate truncated data sequences
re supplied to the DMHE-SM at every sampling instant. How-
ver, only a subset of the states are assumed to be measurable,
hile the rest must be estimated. The choice of measured states

n this work is aligned with that of [64], thus considering that
nly holdup volumes and temperatures can be measured online.
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Table 1
Description of the process parameters.

Parameter Description Value Unit

ρ Flow stream density 1000 kg/m3

Cp Flow stream heat capacity 4.2 kJ/kgK
xA0 Mole fraction of A in pure reactant stream 1 –
T0 Temperature of pure reactant streams 359.1 K
{k01, k

0
2} Pre-exponential factors for reactions 1, 2 {2.77, 2.5} × 103 1/s

{E1, E2} Activation energies of reactions 1, 2 {5, 6} × 104 kJ/kmol
{∆H1,∆H2} Enthalpies of reactions 1, 2 −{6, 7} × 104 kJ/kmol
{αA, αB, αC } Relative volatilities of A, B, C {5, 1, 0.5} –
R Universal gas constant 8.314 kJ/kmolK
ϵ Purge ratio 0.02 –
µ Flow stream molality 0.00279 kmol/kg
n

o

Table 2
Reference values of each state.

State Tracking zone I Tracking zone II Tracking zone III

V ref
1 [m3] 1 1.6 1.2

V ref
2 [m3] 0.5 0.8 0.6

V ref
3 [m3] 1 1.4 1.1

T ref
1 [K] 432.4 410.2 447.1

T ref
2 [K] 427.1 407.5 442.3

T ref
3 [K] 432.1 411.0 447.4

xrefA1
0.536 0.733 0.265

xrefB1
0.448 0.264 0.657

xrefA2
0.545 0.724 0.287

xrefB2
0.438 0.272 0.636

xrefA3
0.298 0.507 0.103

xrefB3
0.670 0.485 0.765

Table 3
Steady-state input values.
Input Tracking zone I Tracking zone II Tracking zone III

F ss
f1

[m3/h] 5.04 8.06 4.03

F ss
f2

[m3/h] 5.04 7.05 3.53

F ss
1 [m3/h] 22.04 35.26 17.63

F ss
2 [m3/h] 27.08 42.31 21.16

F ss
3 [m3/h] 9.74 14.57 7.29

F ss
r [m3/h] 17 27.2 13.6

Q ss
1 [kJ/h] 715.3 ×103 786.8 ×103 572.2 ×103

Q ss
2 [kJ/h] 579.8 ×103 637.8 ×103 463.8 ×103

Q ss
3 [kJ/h] 568.7 ×103 625.6 ×103 455.0 ×103

Table 4
Initial state values.

State Value State Value

V 0
1 [m3] 0.7 T 0

1 [K] 400

V 0
2 [m3] 0.7 T 0

2 [K] 400

V 0
3 [m3] 1.5 T 0

3 [K] 400

x0A1 0.65 x0B1 0.3

x0A2 0.65 x0B2 0.3

x0A3 0.65 x0B3 0.3
409
The estimation problem is solved considering the same sam-
pling time and prediction horizon reported in [62] for the output
tracking problem, i.e., Ts = 180 s and N = 15 samples. Sim-
ulations are then performed in a computer with an Intel Core
i7-8665U processor running at 1.9 GHz with 8 GB RAM. Further-
more, simulation results are obtained in Matlab R2020b3 using
IBM ILOG CPLEX Optimization Studio V12.10.04 and the YALMIP
toolbox [65].

5.3. Results and discussion

Before proceeding with the analysis of results, it should be
mentioned that the issue of input–output data generation via
MPC is not addressed in this paper. Indeed, the proposed ap-
proach assumes that suitable data sequences are provided at reg-
ular time intervals. The interested reader is advised to check [62]
for a comprehensive control problem description and analysis of
results.

As a first step, the CMHE problem for the reactor–separator
system is formulated as in (2). Choice of physical bounds and
weighting matrices is as follows [47]:

• Physical bounds on state estimates are chosen to be the
same as those considered in the MPC. Therefore, a ±80%
bound on the states (with respect to reference values) is
selected.
• Diagonal weighting matrices are defined so as to compen-

sate the different magnitudes of the states, thus assigning
equal priorities. Therefore, inverse values of the correspond-
ing reference values are selected.

The KKT conditions associated to the resulting CMHE can be
formulated using (9). Since the objective function is completely
separable, its associated graph can be constructed following the
procedure reported in [60]. Then, the fast unfolding algorithm5

allows to identify three communities, one per vessel, thus match-
ing the results reported in [64]. More precisely, the ith commu-
ity consists of states Vi, Ti, xAi and xBi , with i = 1, 2, 3. Hence,

the following couplings among subsystems can be identified:

ψ1,2 = {T1, xA1 , xB1},
ψ2,3 = {T2, xA2 , xB2},
ψ3,1 = {T3, xA3 , xB3},

where ψi,j represents the states that are associated with (and
hence optimized in) the ith subproblem, and at the same time

3 https://nl.mathworks.com/products/new_products/release2020b.html
4 https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-
ptimization-studio-v12100
5 https://perso.uclouvain.be/vincent.blondel/research/louvain.html

https://nl.mathworks.com/products/new_products/release2020b.html
https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization-studio-v12100
https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization-studio-v12100
https://perso.uclouvain.be/vincent.blondel/research/louvain.html
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Fig. 2. State estimation results for the first subsystem: CMHE (blue solid line), DMHE (red solid line), SM bounds (gray solid line) and references (black dashed line).
influence the jth subproblem, with i, j = 1, 2, 3. Then, three local
roblems are derived from the overall problem using (13), and
he DMHE-SM approach is executed as in Algorithm 5.

The solutions obtained using three different MHE schemes are
resented and compared next, namely the centralized (CMHE)
nd two distributed approaches, one with (DMHE-SM) and an-
ther without set-membership bound tightening (thus removing
ine 4 in Algorithm 5). Then, the state estimates computed using
ach approach for the first, second and third subsystems are
epicted in Figs. 2–4, respectively. It is worth noting that there
s no significant difference in terms of performance between the
MHE-SM and the DMHE with physical bounds, which in turn
oes not seem to deviate much from the CMHE results. Moreover,
t can be observed that the set-membership approach allows for
ound tightening with respect to physical bounds (which are not
ven reproduced to offer better visualization of the results).
In the light of the results, the DMHE schemes appear to per-

orm only slightly worse than the CMHE. To ascertain whether
his is the case, centralized and distributed performances can
e further compared using the cumulative cost over the entire
imulation duration. This information is presented in Fig. 5, and
llows to conclude that both DMHE lead to a minor decrease of
erformance, which amounts to less than 3% with respect to that
f the CMHE. This issue is directly linked to the stop criterion
entioned in Algorithm 5, which is formulated following the

deas in [39,45] as

3∑
l=1

(
max

(⏐⏐⏐h(l)
∗

⏐⏐⏐))2

≤ 10−2, (15)

here h(l)
∗ denotes the values of the complicating constraints

nce the solutions are substituted, and the threshold is selected
earing in mind the trade-off between accuracy of the solution
nd computational burden.
Even though centralized implementations result in optimal

erformances, distributed strategies can lead to lower computa-
ion times (among other advantages), thus offering an interesting
rade-off. This issue is examined by determining the total com-

utation times of the three approaches, which are depicted in

410
Fig. 6. It can be noted that the distributed architectures re-
quire lower computation times with respect to the centralized
scheme. Although the subproblems solved by the former ap-
proaches are smaller than the overall problem, several itera-
tions are often needed to ensure convergence as defined in (15).
Regarding the comparison between distributed schemes, bound
tightening carried out in the DMHE-SM approach results in less
iterations than the DMHE with physical bounds. Furthermore, ad-
ditional overhead derived from computation of tightened bounds
is compensated by the reduction of number of iterations.

A summary of computation times and required number of
iterations is provided in Table 5. It can then be resolved that the
DMHE-SM ultimately constitutes the most suitable approach, as
it is almost 25% faster than the CMHE with a mere relative loss
of performance below 3%.

6. Conclusions

This work has presented a two-step state estimation approach
for large-scale systems, combining set-membership and moving
horizon estimation. The former is used at the initial stage, tight-
ening physical bounds on states using the consistency between
the model, the measured outputs and the disturbance and noise
bounds. An MHE is then employed to determine the optimal state
estimates, benefiting from a tightened feasible region. Although
not explicitly considered in this paper, the methodology could
be further enhanced to tackle the case of systems character-
ized by parametric uncertainty, using results available in the
literature [66,67].

The state estimation strategy is implemented and solved in
a distributed manner. To this end, the set of subproblems is
coordinated using the OCD. This is a particular implementation of
Lagrangian relaxation, and consists in manipulating the KKT opti-
mality conditions to yield subproblems whose solution converges
to the optimal centralized solution. However, system partitioning
needs to be determined separately, as the OCD addresses the co-
ordination but not the decomposition. Hence, system partitioning
is determined using community detection techniques, as close-to-
optimal modularity decompositions are obtained. While this step
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Fig. 3. State estimation results for the second subsystem: CMHE (blue solid line), DMHE (red solid line), SM bounds (gray solid line) and references (black dashed
line).
Fig. 4. State estimation results for the third subsystem: CMHE (blue solid line), DMHE (red solid line), SM bounds (gray solid line) and references (black dashed
line).
Table 5
Summary of average computation times.
Approach Nr. iterations Bound tightening [s] Total comp. time per sample [s] Time reduction w.r.t. CMHE [%]

CMHE 1 – 0.1794 –
DMHE ≤ 4 – 0.1533 14.55
DMHE-SM ≤ 2 0.0586 0.1352 24.61
is carried out in an offline manner, future research could regard
the issue of online re-partitioning. Then, the initial partitioning,
which would still be computed offline, could evolve based on
411
time-varying coupling conditions. The complete approach is then
tested considering a typical reactor–separator system employed
in the process industry, comparing its performance to those of a
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Fig. 5. Cost function evaluation for CMHE and DMHE (blue: zone I; red: zone II; yellow: zone III).
Fig. 6. Evaluation of total computation times for CMHE and DMHE (blue: zone I; red: zone II; yellow: zone III).
CMHE and a DMHE without set-membership. The results allow
to validate the approach and highlight its performance, as it
improves computational time while keeping loss of performance
at a minimum with respect to the CMHE.

The distributed state estimation approach derived in this work
complements and extends the results reported in [39], which
mainly dealt with distributed control of large-scale systems with-
out explicit consideration of the effect of disturbance and noise.
The combination of the two algorithms would allow for robust
distributed control and state estimation of large-scale systems,
which is stated to be the main motivation behind the develop-
ments in [39]. Indeed, the aim is that of developing a method-
ology that enables to manage inland waterways in an optimal
manner, and which is robust to natural and operational distur-
bances, e.g., unknown flows and lock operations, thus extending
the centralized results provided in [68]. However, inland water-
ways models belong to the class of time-delay systems. Therefore,
the application of the methodology to inland waterways would
require an in-depth theoretical analysis, as it has been developed
for systems that are not characterized by system delays. Another
extension could regard the integration of the scheme within
the hierarchical architecture presented in [69], thus allowing to
tackle other features, e.g., the effect of tides and the existence of
controlled infrastructure that can only apply actions from a set of
discrete values.
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