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Suppressing torsional buckling in auxetic
meta-shells

Aref Ghorbani 1 , Mohammad J. Mirzaali 2, Tobias Roebroek 1,
Corentin Coulais3, Daniel Bonn 3, Erik van der Linden1 & Mehdi Habibi 1

Take a thin cylindrical shell and twist it; it will buckle immediately. Such una-
voidable torsional buckling can lead to systemic failure, for example by dis-
rupting the blood flow through arteries. In this study, we prevent this torsional
buckling instability using a combination of auxeticity and orthotropy in
cylindricalmetamaterial shells with a holey pattern.When the principal axes of
the orthotropic meta-shell are relatively aligned with that of the compressive
component of the applied stress during twisting, the meta-shell uniformly
shrinks in the radial direction as a result of a local buckling instability. This
shrinkage coincides with a softening-stiffening transition that leads to ordered
stacking of unit cells along the compressive component of the applied stress.
These transitions due to local instabilities circumvent the usual torsional
instability even under a large twist angle. This study highlights the potential of
tailoring anisotropy and programming instabilities in metamaterials, with
potential applications in designing mechanical elements for soft robotics,
biomechanics or fluidics. As an example of such applications, we demonstrate
soft torsional compressor for generating pulsatile flows through a torsion
release mechanism.

Compressing a cylindrical shell along its long axis beyond a certain
threshold leads to an often unwanted structural failure known as
buckling. The abundance of cylindrical shells in natural and artificial
systems such as veins, silos, and cans, has motivated many efforts to
predict their buckling behavior and stability landscape under
compression1–4.

In addition to axial compression, cylindrical systems are often
subject to torsional loads that can also lead to structural failure, known
as torsional buckling5–8. Torsional buckling is abundant in nature and
everyday life, and can for example threaten the blood flow through
arteries9–11 or damage aircraft wings. Twisting an empty beverage can is a
familiar example of torsional buckling that leads to the emergence of
creases in the shell (Fig. 1a)5,12. A thin cylindrical shell made of rubber
buckles similarly, involving multiple creases. Preventing the buckling of
soft materials is usually challenging. In the case of a rubber shell, like a
garden hose, even increasing the shell thickness does not necessarily

prevent its bucklingunder torsionbut changes thebuckled shell’s shape,
with collapsed cross-section in the middle of the cylinder (Fig. 1b).

Here, we aim to explore the possibility of controlling or even
preventing buckling by using metamaterials. Mechanical metamater-
ials often exploit local instabilities to induce unusual functionalities
and exotic mechanical properties such as negative Poisson’s ratio in
auxetic metamaterials13–15. We introduce a strategy to employ local
instabilities in metamaterials in order to suppress the torsional buck-
ling instability.

Through experiments and Finite Element (FE) simulations, we
demonstrate that auxetic cylindrical shells with periodicity along
helical paths are able to prevent torsional buckling, exhibiting radial
contraction upon torsion (Fig. 1c). The anisotropy in thesemeta-shells
is associated with a nonmonotonic axial strain that changes from
positive under low torsion to negative in case of a large torsional
deformation, representing a sign-switching Poynting effect. In
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isotropic systems, shear deformation usually leads to perpendicular
dilation (Poynting effect16) or to contraction (reversed Poynting
effect17). However, an anisotropic system can exhibit a sign-switching
Poynting response18, where shear-induceddilation and contraction can
be realized in different deformation ranges.We introduce the negative
Poisson’s ratio and anisotropy associatedwith sign-switching Poynting
response as two essential ingredients to design cylindrical shells
resistant to torsional buckling.

We use the well-known auxetic holey sheet19,20 to design our
cylindrical metamaterials (meta-shells). The holey sheet consists of a
2D array of closely packed circular voids in an elastic sheet. The
negative Poisson’s ratio of such holey sheets is due to the distinct
reconfiguration of their unit cells upon uniaxial loading along their
principal axis21 that coincides with a nonlinear mechanical
response22,23. Holey sheet patterns have in the past inspired shape-
transforming 2D auxetic metamaterials with thermally tunable
auxeticity24, hierarchical folding25, and global bistability26. Additionally,
the holey sheet pattern has been used to design uniformly collapsible
spherical shells when actuated by reducing the pressure inside the
shell27. Holey sheet patterns can also be exploited for engineering
cylindrical shells that display auxeticity upon axial loading28,29 or deli-
ver bending or twisting upon actuation by reducing the inner
pressure30. Various deformationmodes and auxeticity can be achieved

by employing local rotations in soft network structures31, which can
give rise to a global twist via stretching in cylindrical systems32–34. More
in general, the coupling between torsion and compression and the sign
of the Poynting effect is programmable in non-auxetic cylindrical
metamaterials35.

Previous studies of auxetic structures focused on mechanical
properties under uniaxial loading in a relatively small deformation
range where an out-of-plane buckling is forbidden. Some studies
unraveled novel global buckling behaviors such as discontinuous
buckling of auxetic beams36 and porosity-depended buckling in holey
cylindrical shells28. Here, we focus on preventing torsional buckling in
auxetic meta-shells subjected to large torsional deformations.

We tune the orthotropy orientation of the meta-shells by rotating
the principal axes of the network grid, and consequently all the unit
cells with respect to the main axis of the cylinder. By rotating the
principal axis, we design cylindrical meta-shells whose unit cells are
asymmetric with respect to the vertical axis, and periodic along helical
paths. We find that these helical meta-shells behave differently
depending on the torsional direction. Twisting a helical meta-shell
triggers a unique structural reconfiguration with a significant uniform
negative radial strain (radial contraction) and nonmonotonic axial
strain. The structural reconfiguration occurs via a snap-through soft-
ening followed by stiffening due to the ordered stacking of unit cells

cw
torsion

ccw
torsion

θ = 0

d)

θ = π/6

e)

θ = π/4

f)

a) Thin shell

b) Thick shell

c) Meta-shell

Fig. 1 | Buckling versus radial contraction in cylindrical shells. Under counter-
clockwise (ccw) and clockwise (cw) torsion, a very thin shell, like a beverage can (a),
is shrunk and randomly buckled, while a thicker shell (b) shows both buckling and
radial contraction. In contrast, a designed meta-shell (c) shows a more uniform

radial contractionunder torsion instead of buckling. Varying theorientations of the
meta-shell unit cells results in different types of deformation under torsion (d–f).
The helical meta-shell radially contracts under cw torsion (e, right).
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that coincides with a radial contraction and that prevents torsional
buckling. The absence of torsional buckling and torsion-tunable
cylinder radii are unique features exploitable in soft robotics, bio-
mechanics, and material engineering for designing functional soft
systems such aspumps, valves, and actuators. Here,weexplore auxetic
cylindrical shells for designing a cylinder with localized contraction
under torsion and a soft pulsatile compressor.

Results and discussion
System definition
A square arrangement of four circular voids in a 2D sheet shaped into a
cylinder can be described by a square-like unit cell along two principal
axes, as shown in Fig. 1d, left. Themechanical properties of the system
can be altered by rotating the orientation of the principal axes with
respect to the vertical axis over an angle θ. Setting θ = 0 aligns one
principal axis with the cylinder’s vertical axis (Fig. 1d, left). The
mechanical properties of this 2D system have been studied compre-
hensively. Byvarying the void shape fromcircular to elliptical shapes, it
was shown to be an orthotropic system22. We find that a cylindrical
meta-shell based on such a unit-cell arrangement behaves similarly
under clockwise (cw) or counterclockwise (ccw) torsions since it is
symmetric concerning the torsional deformation around the z-axis of
the shell (Fig. 1d).

We rotate the principal axes of the auxetic lattice, and therefore
the orthotropy orientation, with respect to the loading direction
(torsion around themain axis of the cylinder) to createmeta-shells that
behave differently depending on the direction of the torsional (shear)
deformation. If the rotation angle θ is between 0 and π/4 (or between
π/4 < and π), the mirror symmetry of the unit cells with respect to the
vertical axis is broken. As a result, initially horizontal and vertical lines
that connect the unit cells become helices with opposite handedness
(growing with opposite rotations) and different pitch values on the
cylindrical shell (Fig. 1e, left). Therefore, we refer to these shells as
helical meta-shells. Similar helical geometries have been shown to
provide a flexible platform for designing soft robot arms that can
exhibit various modes of deformation and perform complex tasks37.

Periodicity along helical paths reflects a global chirality in the
cylindrical structure. A system is chiral if it cannot be mapped to its
image under parity inversion (mirroring) via any transition and/or
rotation. Chirality in metamaterials is often implemented locally in the
unit-cell design38–42. Even though the unit cells in our systems are not
chiral, themeta-shells that break symmetry exhibit global chirality. The
mirror image of our meta-shells whose unit cells are rotated by θ is
equivalent to a meta-shell created by a − θ rotation, which cannot be
superimposed onto each other. However, the meta-shell created by
θ =π/4 (Fig. 1f, left) is not chiral as the helical paths connecting the unit
cells along the principal axes have the opposite handedness but the
same pitch values. Consequently, the behavior of this meta-shell
remains insensitive to the direction of torsion, andwe do not classify it
as a helical meta-shell. Our results below highlight the significant dif-
ferences between the helical and non-helical meta-shells in their
mechanical characteristics. Our meta-shells have initial height of
h0 = 53.3 mm and inner and outer radii of R0,min = 7.5 mm and
R0,max = 12.5 mm, respectively. Thus, the shell thickness is 5mm for all
meta-shells. The critical shell thickness, below which the meta-shells
become incapable of demonstrating the desired behavior is discussed
in the Supplementary Information (SI, Critical shell thickness). Further
details regarding the meta-shells’ design and fabrication process can
be found in the Methods section.

We investigate the meta-shells experimentally and using compu-
tational modeling performed by finite element (FE) simulations. The
simulations are described in the Methods section. To experimentally
study the properties of our meta-shells, we apply clockwise (cw) and
counterclockwise (ccw) torsion on each cylinder. During torsion, the
cylinders are axially free (axial force is 0 ± 0.1N), whichmeans that the

cylinders can freely dilate or contract depending on their normal force
response. Similarly, a soda can is free to contract while manually
twisting it, and becomes shorter due to the application of torsion
(Fig. 1a). The applied torsion and torque around the main axis of the
meta-shells are designated by φ and τ, respectively. We calculate the
axial strain induced by torsion by δn = ∣h − h0∣/h0, where h is the height
after the applied compression. This strain should not be confusedwith
the applied compression strain, δ. The compression stress is given by
σ = F/As, where F is the compression force, and As =πðR2

max � R2
minÞ is

the area of a horizontal cross-section of the cylindrical shell. Since the
thickness of our meta-shells is significantly smaller than their height
and perimeter, twisting them is assumed to be equivalent to shearing a
thin plate. Therefore, the shear strain is defined as γ = φR/h0, and the
shear force is represented by Fs = τ/R, where R= ðRmax +RminÞ=2 is the
average radius. Furthermore, the radial strain of the cylinders is
defined by er = ðr � RmaxÞ=Rmax, where r is the outer radius of the
deformed shells at height z = h/2. Response of the meta-shells under
compression is discussed in the SI: Buckling under compression.

Contraction versus buckling under torsion
We apply cw and ccw torsion on the meta-shells under zero axial load,
where the shells can freely dilate or contract in the axial direction
during torsion. As can be seen in Fig. 1d–f, we observe various beha-
viors depending on the unit-cell rotation angle with respect to the
radial direction, θ. In the symmetric structures (θ = 0 and π/4), we
observe torsional buckling although upon different critical torsional
angles, as shown in Fig. 1d and f for cw and ccw torsion, respectively. It
can also be seen that, since the designs are symmetric, cw torsion leads
to the samebuckling behavior as ccw torsion, but with an inverse twist.
For helical meta-shells with 0 < θ < π/4, the deformation strongly
depends on the direction of applied torsion, as exemplified by Fig. 1e,
left, where θ = 31° ≈ π/6. In case of ccw torsion, buckling is inevitable
(Fig. 1e, middle), while under cw torsion, this is not the case, and the
meta-shell uniformly contracts in the radial direction (Fig. 1e, right).
The origin of this radial contraction (negative radial strain) is rooted in
the auxeticity of the structure.

Torsion-induced negative radial strain
Next, for a meta-shell with θ = π/6 (Fig. 2a), we investigate the radial
contraction as a function of cw torsion angle φ, exemplified in
Fig. 2b–d. We find that the folding mechanism underlying the radial
contraction in this scenario is entirely different from that of a structure
with θ = 0 under compression.

In the latter case, which is themost familiar one19, the unit cells on
the principal axes along the compression direction fold on each other
by oppositely rotating around their out-of-plane axis (corresponding
to the radial direction in the cylinder)19,28. This is illustrated in the top
panels of Fig. 2e, where the unit cells are labeled as the elements of a
2 × 2 grid, i.e. 1;1, 1;2, 2;1, and 2;2. During buckling, unit cell 2;1 folds on
1;1, and 2;2 folds on 2;119. However, in themeta-shell with θ = π/6 under
torsion (bottom panels of Fig. 2e), the unit cells in the diagonal of the
grid (1;1 and 2;2) fold on each other by rotating in the same direction
around their out-of-plane axis. This folding mechanism under torsion
leads to a negative radial strain due to compaction and filling of the
voids. FE analysis confirms the torsion-induced radial shrinkage. The
same stages of deformation of Fig. 2a–c are simulated in Fig. 2f–h,
where the color scale represents the local equivalent stress, Seqv
(known as von Mises stress). The vertical cross-section of the
deformed meta-shell (Fig. 2h, right) reveals the symmetry of the
deformation along themeta-shell. The horizontal cross-sections of the
meta-shell of height h, taken in the middle (z = h/2), illustrate the
azimuthal symmetry and uniformity of the contraction (Fig. 2i).

To further investigate the contraction, we quantitatively study the
radial strain as a function of cw torsion. In our experiments, we only
consider the helical meta-shells (θ ≃ π/12, π/6). In our FE simulations,
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we include additional meta-shells (θ ≃ 0, π/12, π/8, π/6, 5π/24, π/4) to
obtain a comprehensive understanding of the phenomenon. The
values of θ are approximately integer multiplies of π/24, and the exact
values are reported in the Methods section. For simplicity, we refer to
the approximate values.

In Fig. 2j, we show the negative of the radial strain, − er, or radial
contraction as a function of the shear strain, γ = ϕR/h0 for different
values of θ. The radial contraction in the middle of the meta-shell
increases linearly as a function of the applied shear strain for γ < 0.4.
We define the slope of er versus γ as the shear-induced contraction
ratio μ, which is constant in the low shear strain regime (γ < 0.4) and
depends on θ. Its magnitude is comparable to the Poisson’s ratio, ν,
which is defined as the ratio of the induced lateral strain to the
applied axial strain. The minimum Poisson’s ratio in our designed
meta-shells, representing the compression-induced contraction of the
shell, is obtained for themeta-shell with θ =0 as ν≃ −0.5, in agreement
with previous studies19,43. Surprisingly, the shear-induced contraction
is significantly more prominent for the meta-shell with θ ≥π/6, where
μ < −0.9. This is shown in Fig. 2k, wherewe plotμ versus θbased on the
FE results. Even though the contraction ratio is higher for meta-shells
with θ = 5π/24 and π/4, their contraction is small (∣er∣ < 0.1) as they only
remain stable at the low-shear limit (γ < 0.1).

The origin of this substantial difference between the compres-
sion- and shear-induced contraction, respectively for the meta-shells
with θ = 0 and helical meta-shells, is the difference in folding
mechanism of the unit cells (Fig. 2e). The folding mechanism under

shearing (torsion) in the helical meta-shells allows higher compaction
of the unit-cells upon torsion.

The radial contraction as observed in experiments reaches a pla-
teau where the radius remains almost constant at r ’ 0:6Rmax

(Fig. 2c,d). This occurs due to the extreme compaction of the structure,
resulting in the deformed unit cells filling the voids and touching the
neighboring unit-cells, sharing a large contact area. This level of com-
paction first emerges around z = h/2 (Fig. 2c), and with increasing tor-
sion, it symmetrically extends towards the top and bottom boundaries
of the cylinders (Fig. 2d). For the structurewithθ=π/12,wedonot reach
the compaction regime (2f). Under extreme torsion, the cylinders
become highly squeezed (Fig. 2d) but still resist buckling (see supple-
mentaryVideo 1). Note that the FE simulations only reproduce the linear
contraction results, showing no plateau as observed in experiments.

Nonmonotonic axial deformation under torsion and sign
switching Poynting response
We next study the axial response to torsion, which is a fundamental
feature of nonlinearmaterials44,45. The axial stress perpendicular to the
shearing direction is present in all elastic and viscoelastic systems. It is
rooted in the elastic nonlinearity of isotropic solids and viscoelastic
materials. In isotropic systems, the shear-induced axial stress is usually
positive, which leads to the dilation of the material when sheared,
known as the Poynting effect16. Negative axial stress is also observed in
some isotropic biopolymer systems17,46,47. However, the Poynting
response can be significantly different in anisotropic systems.

a) b) c) d)φ=0 φ>2πφ≈π/2 φ≈π
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S
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π/6
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Fig. 2 | Negative radial strain under torsion. a–d A helical meta-shell with θ = π/6
is deformed at increasing cw torsion angles. e Non-sheared (left) and sheared
(right) unit-cell configuration, for ameta-shellwith θ =0 (top) and θ =π/6 (bottom).
Unit cells are labeled as 1;1, 1;2, 2;1, and 2;2, as they are part of a 2 × 2 grid. f–h FE
simulations of the deformation of a helical meta-shell with θ = π/6 upon cw torsion,
where the color scale indicates the equivalent stress (Seqv). Image (h, right) displays
the vertical cross-section of the deformedmeta-shell. iHorizontal cross-sections of

themeta-shell in different stages of deformation. j Induced negative radial strain as
a function of the shear strain for meta-shells with different unit-cell orientations.
Circles indicate the experimental values and solid lines represent the FE results.
k The negative of the contraction ratio as a function of unit-cell orientation.
lNonmonotonic axial strain of the helical meta-shells with θ = π/12 and θ = π/6, as a
function of the applied shear strain.
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Our helical meta-shells, in addition to the monotonic negative
radial strain, exhibit a nonmonotonic axial strain representing the
complex Poynting behavior of the system (Fig. 2l). The meta-shells
initially show a positive Poynting response by dilating under torsion
(Fig. 2b,g). After the axial strain reaches a maximum value (δn ≈ 0.05),
the Poynting response is reversed, and the meta-shells contract and
finally become shorter than their initial height (Fig. 2c,d). FE results
also reproduce the axial strain of the meta-shells (Fig. 2f–h), in excel-
lent agreement with experiments. The nonmonotonic axial strain is a
result of the sign-switching normal stress that emerges due to the
particulardesign of anisotropy associatedwith thehelicity of themeta-
shell. Similarly, anisotropic systems with intrinsic helicity have been
shown to display a sign-switching axial response18.

We recently presented a metamaterial in which the sign and
magnitude of the Poynting response are programmable via a pre-
compression step35. In contrast to these materials, our helical meta-
shells induce a switch in axial stress frompositive at low shear strain to
negative at high shear strain. A normal response with a sign reversal
transition has also been observed in pantographic structures48. On the
other hand, the shear-inducednegative radial stress is only observed in
viscoelastic systems but is usually negligible compared to the axial
stress49. The radial stress in viscoelastic systems emerges as a result of
the coupling between non-linear elasticity and flow. Here, we show the
emergence of significant radial stress in purely elastic materials.

It should be noted that the axial strain can only be nonzero if the
system is axially free to deform, with the axial force kept zero during
torsion. In analternative scenario, the torsion experiment is performed

under a fixed gap, where the height of the meta-shell is kept constant
during torsion. Torsion in this scenario leads to similar radial con-
traction, which is employed in the “Pulsatile torsional compressor”
subsection.

Small deformations and pre-buckling regime
Tuning the orthotropy via the unit-cell orientation angle θ highly
influences the mechanical responses of the meta-shells under torsion.
In Fig. 3a, the torque response is shown as a function of the torsional
angleφ for differentmeta-shellswith various values of θ. The FE results
are initially obtained using a hyperelastic materials model based on
Ogden strain energy (see Methods section for details). The results of
the FE analysis (solid lines in Fig. 3a) closely reproduce the experi-
mental results (data points).

For small torsional deflections, φ < ± 0.2 rad, all meta-shells are in
thepre-buckling regime, and the responses are almost linear.Weuse the
slope of the linear fit of this pre-buckling regime to obtain the shear
modulus (shear stiffness) Gs, by considering τ = Gs Jφ/h where τ is the
torque around the axis of the shell, and J = π

2 ðR4
max � R4

minÞ is the second
momentof areaof the shell35. In Fig. 3b,we showGs as a functionofθ.We
observe that the shear stiffness is lowest for themeta-shellwith a straight
unit-cell orientation (θ = 0), and increases to a maximum for the meta-
shell with θ = π/4. Consequently, setting θ = π/4 leads to the highest
shear stiffness, where the principal axes of the pattern are aligned with
the diagonal directions. Since the unit cells have a rotational symmetry
with respect to the axial direction, variation of the shear stiffness must
be insensitive to the directionof theunit-cell rotation, i.e.Gs(θ) =Gs(−θ).
We use this symmetry to include the values of Gs for negative unit-cell
rotations ( −θ) in the Figure. Additionally, we estimate the shear stiffness
using a quadratic fit (Gs ∝ θ2; dashed curve in Fig. 3b). The quadratic
relation is verified analytically using a simple tilted beammodel (see SI,
Shear modulus of a tilted beam). The FE results confirm identical
behavior in excellent agreement with the experimental results.

Large deformation and torsional buckling
In Fig. 3a, we show the torque response of the meta-shells upon cw
(ϕ > 0) and ccw (ϕ < 0) torsion. By increasing the ccw torsion, the
torque response of most meta-shells changes dramatically due to
torsional buckling. However, the torque response of the helical meta-
shells monotonically increases under a cw torsion, implying that tor-
sional buckling is circumvented in helical meta-shells. Asmentioned in
the previous paragraph, the meta-shells with θ and − θ unit-cell
orientations aremirror symmetries around the z-axis of themeta-shell.
Therefore, twisting our meta-shell with θ in the ccw direction is
equivalent to twisting ameta-shellwith a −θunit-cell orientation in the
cw direction. Thus, we present data under ccw torsions as cw torsion
with a − θ unit-cell orientation to obtain a comprehensive under-
standing of the effects of unit-cell orientation on the buckling of the
meta-shells. In Fig. 3c and d, we show the buckling torsional angle φc

and torque τc of the meta-shells as a function of the unit-cell orienta-
tion θ. As helical meta-shells with θ = π/12 and θ = π/6 do not show
buckling under cw torsions, the highest experimental values ofφ and τ
are shaded in gray in Fig. 3c andd. The experimental limitation is set by
themaximum torque that our setup can apply (150mNm).Within this
limit, half of the hinges are aligned and strongly pulled, and two finally
break (Supplementary Video 1), but torsional buckling is not observed
and the torque value does not drop.

The FE results predict similar values for the onset of buckling in
systems that undergo buckling. The buckling torsional angles predicted
by FEAare in excellent agreementwith the experimental results (Fig. 6c).
However, the buckling torques derived from the FE results exhibit a
larger deviation from the experimental data (Fig. 6d). Nonetheless, this
deviation remains within an acceptable range, with the largest deviation
being only 19%, observed for the meta-shell with − θ = π/12. This dis-
crepancy primarily stems from inaccuracies in thematerialmodel under
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Fig. 3 | Pre-buckling stiffness and the onset of torsional buckling. a Torque
responses of the meta-shells of varying θ's as a function of the torsional angle φ

around the shell axis. Solid lines and circles indicate the FE and experimental
results, respectively.b Pre-buckling shearmodulusGs rescaled by Young’smodulus
of the elastomer Y, as a function of the unit-cell orientation, θ. Since Gs for − θ is
mirrored with respect to θ = 0, we calculate the values of Gs for the unit cell with
opposite rotation using Gs( − θ) = Gs(θ). (c, d) Buckling torsional angle (c) and
buckling torque (d) as a function of unit-cell orientation upon cw torsion. The
buckling values for the meta-shells with θ < 0 are obtained from the ccw torsion
experiments since twisting a meta-shell with − θ unit-cell orientation in the cw
direction is equivalent to twisting ameta-shellwith θunit-cell orientation in the ccw
direction. No torsional buckling is observed in the shaded area, but we display the
maximum torque values reached during the test by open symbols.
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extreme deformation conditions. Moreover, our assumption in defining
the contact properties in FE simulations (e.g., friction coefficient of 0.1)
may differ from the real system, which could result in deviations from
the obtained buckling torque values in the experiments.

In scenarios with no buckling, namely formeta-shells with θ =π/12
and θ = π/6 under cw torsion (indicated by the shaded area in Fig. 6c
and d), FE simulations are unable to reproduce the results due to the
complexity of deformation events involving elaborate contact
mechanisms. Additional information must be incorporated to predict
meta-shells’ behavior through FE simulations under such a large
deformation range. This includes accurate data on the friction coeffi-
cient during self-contact and the incorporation of hyperelastic prop-
erties for larger deformations. Moreover, employing elements with
high-order interpolation (e.g., brick elements with a higher number of
integration points) and afinermeshmaybenecessary to capturemeta-
shells behavior under significant deformation adequately.

Structural reconfiguration and shear softening-stiffening
The above results show the potential of the helical meta-shells in pre-
venting torsional buckling even under more than a full turn (2π) twist
(Fig. 3c). Similarly, the energy stored by twisting the cylinders before
buckling (or until themaximum torque is reached) depends on the unit-
cell orientation and is considerably higher for helical meta-shells with
θ = π/12 and π/6 (see SI: Energy perspective). To understand the origin
of the torsional buckling circumvention, we investigate the structural
reconfiguration and shape-changing of the meta-shells upon torsion.

As themeta-shell is very thin compared to its height and perimeter,
twisting it is comparable with shearing a 2D plate. Therefore, the
deformation of a small section of themeta-shell can be represented by a
shearing, equivalent to the torsion of thewholemeta-shell. In Fig. 4a and
b, we show the rearrangement of the unit cells under shear deformation
for a section of a meta-shell with θ = π/6 and θ = 0, respectively.
Underneath the experimental images, color-coded images based on FE
simulations are presented, with a color scale representing the local
equivalent stress. Essentially, shear deformation (full black arrow vector)
is a combination of compression (dashed green vector) and extension
(dot-dashed blue vector), which are perpendicular to each other.

Under low shear deformations, we observe softening due to
snap-through buckling of hinges for the meta-shell with θ = π/6, but
stiffening due to stretching of hinges for the meta-shell with θ = 0.
This difference leads to significant differences in the rearrangement
of the two meta-shells’ unit cells under large shear deformations. In
the meta-shell with θ = π/6 (Fig. 4a), the reconfiguration ultimately
leads to the stacking of unit cells, roughly aligned with the com-
pression contribution of shear (green vectors), which results in the
stiffening of the system.Meanwhile, in this state, half of the hinges are
stretched along the extension line (blue vector). This structural
reconfiguration coincides with a negative radial strain that results in a
cylindrical shell with the same thickness but a smaller radius. In
Fig. 4c, we show the squeezed structure under torsion (θ = π/6) with
the solid lines highlighting the unit-cell stacking direction. Based on
these results, we argue that the softening-stiffening transition with a
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favorable stacking of unit cells and contraction of the meta-shell
increases its stability rather than provoking buckling. However, in the
meta-shell with θ = 0 (Fig. 4b), the reconfiguration does not help the
stability of the meta-shell, and initial stiffening immediately leads to
buckling.

Next, we investigate the softening-stiffening transitions in the
mechanical responseof the systembyplotting the stiffnessmodulus as
a function of torsional deflection in Fig. 4d. The local stiffness is cal-
culated numerically using gs = (h/J)(dτ/dφ). The meta-shell with θ = 0
stiffens by increasing the shear deformation (orange arrows) and
buckles at certain points (red arrows). The helical meta-shell (φ = π/6)
similarly stiffens and quickly buckles under ccw torsion. However,
under cw torsion, it softens initially (green arrow) and slowly stiffens
by increasing the torsion. The FE results closely reproduce the stiffness
values for meta-shells as a function of torsion, predicting identical
behavior. Fluctuations in the experimental local stiffness values arise
from experimental inaccuracies in the torque measurements, which
are not relevant for the FE results (see Supplementary Information,
Local stiffness calculation). We also show the softening and stiffening
regimes upon the structural reconfigurations in Fig. 4a and b, which
confirm our visual observations of a snap-through transition and
stretching of hinges as the origin of softening and stiffening in meta-
shells with θ = π/6 and θ = 0, respectively.

In Fig. 4e we demonstrate the evolution of the orientation θ of a
unit-cell, at the middle of the shell (measured manually), as a function
of the global torsional angle φ. Differences between these evolutions
provide insights into the differences in local deformations of themeta-
shells. For the helical meta-shell (i.e., θ = π/6), the initial trend of the
unit-cell angle is relatively constant, associated with the snap-through
transition at the onset of the softening regime. In the softening regime,
initially, it decreases before reaching a relatively constant state
towards the end of this phase. Subsequently, during the stiffening

phase, which coincides with self-contact and compaction, the unit-cell
orientation continues to decrease steadily as a function of the applied
torsional angle, but at a lower rate compared to the decrease observed
in the softening regime. For the helical meta-shell (i.e., θ = π/6), initi-
ally, the unit-cell angle exhibits a relatively constant trend, indicative of
the snap-through transition at the commencement of the softening
regime. Subsequently, it decreases, followed by another period of
relatively constant behavior within the softening regime. On the other
hand, the unit-cell angle for themeta-shell with θ=0 steadily decreases
as a function of φ, exhibiting a stiffening behavior until the meta-shell
eventually buckles. These observations provide a qualitative descrip-
tion with the distinct structural reconfigurations and morphological
transformations of the helical meta-shells as critical factors in pre-
venting torsional buckling.

Herewe propose exploiting torsion-induced localized or pulsatile
contractions for designing pumps and compressors.

Localized radial contraction
Based on our observations of coupling between shear-induced nega-
tive radial strain and orthotropy orientation in meta-shells, we next
design meta-shells with varying orthotropy that exhibit localized
deformations under torsion. We create a cylindrical metamaterial,
shown in Fig. 5a, left, using two half-length meta-shells with opposite
unit-cell orientations (θ = + π/6 and θ = − π/6), to obtain opposite
chirality. These two meta-shells are mirror images and cannot be
mapped, indicating the chirality of the system. Twisting in the cw
direction leads to the radial contraction of the top half (Fig. 5a, mid-
dle), while twisting in the ccw direction induces a radial contraction of
the bottom half of the meta-shell (Fig. 5a, right); see supplementary
Video 2. This meta-shell can be used as a transportation or locomotion
platform for soft robotic applications or a soft compartment to control
and create flow.
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Fig. 5 | Potential applications. a Meta-shell consisting of two half-shells of
opposite chirality (cross-sections shown on the left) exhibits local contraction in
the upper or lower half under clockwise and counterclockwise torsions, respec-
tively, with potential applications in the transportation of yield stress fluids (sup-
plementary Video 2). b Demonstration of a torsional compressor used to pump a
liquid (colored water) into a measuring syringe. A pulsatile flow can be achieved

upon twisting and releasing cycles. The inner surface of the meta-shell is sealed
using a thin rubberfilm (SupplementaryVideo 3). cPumpedvolume as a functionof
torsional deflection over two torsion cycles. d Pumping unit capacity C, defined as
the ratio of the pumped volume to energy input, as a function of torsional
deflection φ.
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Pulsatile torsional compressor
A single helical meta-shell can also be used as a torsional compressor
to create a pulsatile flow, as demonstrated in Fig. 5b. We use a meta-
shell with θ = π/6, whose voids are sealed by a rubbermembrane glued
to the inner surface of themeta-shell, and equippedwith one-way inlet
and outlet gates. The outlet is connected to an open syringe used for
measuring the amount of pumped liquid (colored water), V. This
parameter increases nonlinearly as a function of the torsional deflec-
tion, shown in Fig. 5c for two cycles; also see supplementary Video 3.
Here, the cylinder height is kept constant during torsion.

To determine the optimal torsional deflection amplitude for
pumping, we define the unit capacityC as the pumped volume per unit
of energy required for twisting. The unit capacity as a function of the
applied torsional deflection, presented in Fig. 5d, shows a clear max-
imum at ϕ = 1.3 rad, after which it decreases linearly with increasing
torsion. The maximum unit capacity provides an indication of the
amplitude of torsion in each cycle needed to obtain the highest effi-
ciency. Finally, a pulsatile flow is created via a cyclic clockwise twisting
and releasing mechanism upon relatively fast deformation with the
frequency of one cycle per second (Supplementary Video 3). There-
fore, the torsion-induced contractionmechanismprovides newdesign
opportunities for converting a torsional (rotational) movement into
pulsatile flow or squeezing a container containing yield stress liquids
that are not easy to pump. The proposed applications could be of
potential interest in soft robotics specifically when a limited cylindrical
space is available which should be efficiently used. This system could
obtain high precision on the flow rate and pressure by tuning the
rotation angle and rotation rate.

In summarywe showed that, particular orthotropy orientations in
negative Poisson’s ratio (auxetic) cylindrical shells can circumvent
torsional buckling. Auxetic cylindrical shells with periodicities along
helical paths trigger a negative radial strain when twisted and ulti-
mately circumvent the torsional buckling under large torsional
deformation. We revealed that contraction of the helical meta-shells
under torsion coincides with softening followed by stiffening of the
meta-shell, due respectively to a snap-through instability and ordered
unit-cell stacking. These phenomena account for the cylinder’s
extreme resistance against buckling. The auxetic meta-shells display a
sign-switching axial strain, from positive to negative, during the tor-
sion, representing a transition from positive to reversed Poynting
effect. We highlighted auxeticity and orthotropy orientation asso-
ciated with a sign-switching Poynting response as two essential fea-
tures in controlling the torsional buckling instability. As preventing
torsional buckling is crucial in many mechanical systems functioning
under torsion and compression, from robotic arms to biological sys-
tems like blood vessels, this study provides pathways to designing
robust mechanical components for a wide range of applications. The
radial contraction mechanism introduced here can offer a novel
strategy for designing torsional compressors and valves, which
potentially can be used to mimic the pumping of blood in the heart
that happens through complex twisting-contraction mechanisms50,51.

Methods
Design principles and parameters
Our auxetic metamaterial sheets consist of 2D arrays of holes of radius
r. The holes are separated by so-called hinges spanning a distance t, as
shown in Fig. 6. We show straight (Fig. 6a) and rotated (Fig. 6b) unit
cells and their geometrical parameters. To realize this design in a
cylindrical structure, circles were initially placed at the outer radius of
the cylindrical shell and then extruded in the radial direction toward
the main axis of the cylinder to create the void volumes (Fig. 6c, left).
We mapped the void network on cylindrical coordinates to describe
the auxetic cylindrical shells (Fig. 6c, right).

First, we created a symmetric cylinder with n = 12 ’straight’ unit
cells around the circumference and 8 unit cells over the height of a

cylinder with an initial inner and outer radii of R0,min = 7.5mm and
R0,max = 12.5mm, respectively (Fig. 2d). The hinge thickness is set to
t = 0.6mm at the outer radius, and the initial height of the cylinder is
h0 = 53.3mm. We clamp the structure using two disks with the same
inner and outer radii and a height of 3mm. Experimental data are
based on one sample for each meta-shell design. However, to ensure
that the results are reproducible, a limited number of additional
samples (with θ = π/6) were tested and compared qualitatively, con-
firming the reproducibility of the experimental results. Moreover, the
FE results are in excellent agreement with experimental results, indi-
cating the reliability of the experiments.

Cylindrical boundary condition
To map the tilted unit-cell network on cylindrical coordinates, we
considered the periodic boundary condition in the circumferential
direction. In other words, unit cells with clockwise (cw) and counter-
clockwise (ccw) helical tiling must precisely overlap where they meet.
If unit cell n in the cw helix overlaps with unit cell m in the ccw helix
(counting from 0), the unit cell’s rotation angle is given by
θ= arctanðn=mÞ. Since n and m are integers, practically, we can only
create rotated designs with specific rotation angles. We fabricated
meta-shells with θ= arctanð0=12Þ=0, θ= arctanð3=12Þ≈π=12,
θ= arctanð5=11Þ≈π=8, θ= arctanð6=10Þ≈π=6, θ= arctanð7=9Þ≈5π=24
and θ= arctanð8=8Þ=π=4.

A pattern of voids with given (φi, zi) coordinates for the cw and
(φj, zj) coordinates for the ccw directions creates the helical network of
unit cells on the cylindrical shells (Fig. 6b). The pitch values of the cw
and ccw helices can be calculated by 2πR cotðθÞ and 2πR tanðθÞ,
respectively. Likewise, for these unit cells, corresponding void volumes
overlap in helical arrays with opposite pitch values, an example of
which is shown in Fig. 6d and e. This is satisfied by mφm + nφn = 2π,

where φn = arccos½1� ð2r0 + tÞ2sin2θ
2R2

max
� and φm = arccos½1� ð2r0 + tÞ2cos2θ
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Fig. 6 | Cylinder design and parameters. a Contour of the unit cell, as created by
creating circular voids in a sheet that form a diamond-like shape with a diagonal
along the z-axis of the cylinder. b Same unit cell rotated by θ = π/6, showing the
positions of the voids in 2D coordinates. c Void shape in a cylindrical coordinate
system, created by extruding circular voids towards the shell axis.d, eHelicalmeta-
shell with θ = π/6. The 6th void in clockwise and the 10th void in counterclockwise
helical tiling fully overlap, shown from the x-view (d) and y-view (e).
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these equations, t is the hinge thickness, and Rmax is the maximum
radius of the meta-shell. The parameter r0 is the radius of the void
circle, vertically placed at the outer shell surface while fully inside the
meta-shell and touching it at the sides. However, for a precise design,
we placed a circle touching the outer surface at the top and bottom
(outlined in Fig. 6d and e), which is slightly bigger, given by

r = r0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðr0=RmaxÞ2
q

. The values of zi and zj are calculated by

zi = ð2r + tÞ cosθ and zj = ð2r + tÞ sin θ, respectively. The discussed
boundary condition imposes a limitation on the void size given by the
radius of the outer circle, r, or thickness of the hinges, t (the minimum
gap between two neighboring voids). We kept the hinge thickness
constant for all cylinders at t = 0.6 to assure consistency among dif-
ferent cylinders. To achieve this constant value, the radii of the outer
contour of the voids were varied within the small range of
r = 3.1 ± 0.2mm. STL files for 3D printing and 3D visualization of the
designs were created using Blender, and STEP files for FE simulations
using FreeCAD.

Fabrication and experiments
We 3D printed the designed structures using a Formlab Form2 3D
printer and elastic resin v1 with a 0.1mm printing resolution. A bulk
cylinder, 3D printed using the same machine and under the same con-
ditions as the cylindricalmetamaterials, has a Young’smodulus of Y = 2.7
MPa. We applied the deformations using an Anton Paar 300 rheometer
and measure the torque, normal force, torsion, and axial deformations.
We did so at low strain rates of ≈ 0.25 mm/min compression and ≈ 0.1
rad/min torsion to obtain a quasi-static deformation process.

Finite element simulations
A nonlinear Finite Element (FE) solver (Abaqus 2023.HF2, Dassault
Systèmes Simulia Corp.) is used for FE simulations. Simulations are
performed under the same conditions as the experiments. The 3D
geometries ofmeta-shells with various hole configurations are directly
imported into Abaqus. The gripping o-rings to clamp the top and
bottom of the meta-shells are designed directly in Abaqus, and then
integrated with the cylinder geometry using the “tie” option.

The Ogden hyperelastic material model (strain energy potential,
n = 1) is used to describe the non-linear stress-strain behavior of the
base material, as determined from uniaxial compression test on bulk
and dogbone tensile test (For more information, read SI: Uniaxial
experiments on the bulk samples). However, the elasticmodulus of the
FE results are calibrated according to the experimental effective
Young’smodulus in the range of small deformations (−0.2 rad <φ<0.2
rad) of the meta-shells. Therefore, the torque responses are rescaled,
where the scaling factor is the same for all samples, obtained as 2.06. A
standard self-contact is defined using a surface-to-surface discretiza-
tion method, incorporating tangential behavior with a penalty friction
coefficient of 0.1, normal behavior with a ”hard” contact pressure
threshold, and allowing separation after contact. In order to apply the
boundary conditions, two reference points are defined at the top and
bottom centers of the gripping o-rings, which were attached to the
cylinder. These reference points are kinematically coupled to the top
and bottom surfaces of the gripping o-ring clams. The bottom refer-
ence point was fully constrained, while the top reference point had the
freedom tomove and rotate along and around the longitudinal axis of
the cylinder. We applied a rotation of π on the top node. The top
reference point was constrained in the other directions. We employed
quadratic tetrahedral elements (C3D10H, 10-node quadratic tetra-
hedron, hybrid, constant pressure) elements to mesh the geometries.

Data availability
The data that support the findings of this study are available are
available on the public repository https://doi.org/10.5281/zenodo.
12800503

Code availability
The codes that support the findings of this study are available on the
public repository https://doi.org/10.5281/zenodo.12800503
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