
Calculating Magnetic
Signatures using the
Method of Moments in
Julia
Lisette de Bruin

Calculating
Magnetic Signatures
using the Method of

Moments in Julia
by

Lisette de Bruin

to obtain the degree of Master of Science,

in Computational Science and Engineering,

at the Delft University of Technology,

to be defended publicly on Thursday August 1, 2024 at 13:00.

Student number: 4856821
Project duration: December 11, 2023 – August 1, 2024
Supervisors: Dr. ir. D.J.P. Lahaye, TU Delft

Dr. ir. A.R.P.J. Vijn, TU Delft
Dr. ir. E.S.A.M. Lepelaars, TNO

Thesis Committee: Dr. ir. M. Verlaan, TU Delft
Dr. ir. N.V. Budko, TU Delft

Cover image: Gajbhiye, S. (2024, 7 May). Weak magnetic field may have set the stage for life on
Earth. Earth.com.

https://www.earth.com/news/weak-magnetic-field-may-have-set-the-stage-for-life-on-earth/

Preface

A project is never completed alone, and I would like to take this opportunity to thank the people who
have supported me and have contributed to the completion of my thesis.
First of all, I would like to thank the committee members for dedicating their time to review and evalu-
ate my thesis. I would like to express my gratitude to Domenico for his enthusiasm, his assistance in
learning a new programming language, and his creative ideas. His support enabled me to gain under-
standing of Julia and successfully overcome numerous implementation challenges. Next, I would like
to thank Aad for his guidance throughout the project. I am grateful for the honest, personal involvement,
which has empowered me to complete the project smoothly. His support and flexibility, especially in
the final phase, were really valuable. I am also thankful to Eugene for his guidance and sharp insights
during our discussions. His detailed input and work were essential to raise this research to a higher
level. It was a pleasure to have supervisors who focus on opportunities rather than problems, creating
an inspiring environment for learning.
Finally, I would like to thank my friends and family for their encouragement and motivation.

Lisette de Bruin
The Hague, July 2024

i

Abstract

Magnetostatics play a crucial role in the detection and localisation of naval vessels. Also, minimising
a vessel’s magnetic signature is essential to reduce the risk posed by naval mines, which often rely
on magnetic detection. This research aims to improve the calculation of magnetic signatures using
the Method of Moments (MoM) by implementing it in Julia, a high-performance programming language.
A simplified version of TNO’s current MATLAB-based approach is implemented in Julia to establish a
baseline for the accuracy and efficiency. Linear basis functions and automatic differentiation (AD) are
incorporated into the methodology to explore potential improvements. These extended methods are
compared to the baseline to evaluate their performance.
Results show that Julia can be of great value, since it significantly improves the assembly time of the
interaction matrix. Point matching is not a suitable approach when using linear basis functions. The
Galerkin method shows promising results, though its computational performance remains a significant
drawback. Also, using AD shows potential to simplify the implementation of the MoM by eliminating
the need for analytical integral expressions. However, AD disappoints in terms of computational per-
formance. Moreover, the AD implementation relies on a mesh-dependent parameter.

ii

Contents

Preface i

Summary ii

Nomenclature viii

1 Introduction 1
1.1 Research Motivation . 1
1.2 Research Goals . 1
1.3 Outline . 2

2 Magnetostatics 3
2.1 Maxwell’s Equations . 3

2.1.1 Magnetisation . 3
2.1.2 Constitutive Relations . 4
2.1.3 Solution Based on a Vector Potential . 4

3 Derivation of Method of Moments for Magnetostatics 7
3.1 Meshing the Domain . 7
3.2 Derivation of Weak Formulation . 7
3.3 Point Matching . 9
3.4 Average Formulation . 10
3.5 Derivation of Interaction Matrix . 10

3.5.1 Numerical Integration in Julia . 11
3.6 Obtain B̃red . 12
3.7 Visualisation of M̃ and B̃red . 12

3.7.1 Visualisation of M̃ . 12
3.7.2 Visualisation of B̃red . 13

4 Method of Moments Using Linear Basis Functions 15
4.1 Meshing the Domain . 15
4.2 Derivation of the Weak Formulation . 16
4.3 Point Matching . 18

4.3.1 Evaluation Points . 18
4.3.2 Obtain Linear System . 21

4.4 Galerkin Method . 22
4.5 Derivation of Interaction Matrix . 22

4.5.1 Continuity Constraint . 23
4.6 Visualisation of M̃ and B̃red . 23

4.6.1 Visualisation of M̃ . 24
4.6.2 Visualisation of B̃red . 24

5 Performance Tips for Julia 26
5.1 Benchmarking . 26
5.2 Reducing Heap Allocations . 26
5.3 Type Stability . 28
5.4 Parallel Computing . 29

6 Computational Performance Analysis 31
6.1 Determine External Magnetic Flux Density . 31
6.2 Julia Implementation vs. TNO’s MATLAB Implementation 32

6.2.1 Obtained Solution for M̃ . 33

iii

6.2.2 Computation Speed . 34
6.2.3 Memory Usage . 35

6.3 Comparison of the Four Methods . 36

7 Verification 37
7.1 Accuracy . 37

7.1.1 Meshing of Spherical Shell . 37
7.1.2 Comparison for M̃ . 38
7.1.3 Comparison for B̃red . 39
7.1.4 Results . 39

7.2 Convergence . 41
7.2.1 Uniform Basis Functions . 41
7.2.2 Linear Basis Functions . 43

8 The Use of Automatic Differentiation in Method of Moments 46
8.1 Automatic Differentiation using Dual Numbers . 47

8.1.1 Example of Forward Automatic Differentiation . 47
8.2 Forward Automatic Differentiation in Julia . 48
8.3 Derivation of the Interaction Matrix Using Automatic Differentiation 49

9 Method of Moments using Automatic Differentiation 51
9.1 Meshing . 51
9.2 Implementation . 51
9.3 Results . 53

10 Conclusion and Recommendations 54

A Analytical Solution for a Spherical Shell 59
A.1 Laplace’s Equation and Associated Legendre Functions 60
A.2 Boundary Conditions . 63
A.3 Find M and Bred . 64

A.3.1 M and Bred in Spherical Coordinates . 64
A.3.2 M and Bred in Cartesian Coordinates . 65

A.4 Visualisation of Magnetisation and Magnetic Vector Potential 66

B Details of the Calculations of Coefficient Matrix C 68
B.1 Evaluate ∇Wf (r) . 69

B.1.1 Evaluate we(r) . 70

C Analytical Expressions for Ij and ∇Iij 73
C.1 Special Cases for Evaluating Ij . 73

C.1.1 Special Cases for Evaluating Ij - Triangular Surface 74
C.1.2 Special Cases for Evaluating Ij - Rectangular Surface 74

C.2 Special Cases for Evaluating ∇Iij . 75
C.2.1 Special Cases for Evaluating ∇Iij - Triangular Surface 75
C.2.2 Special Cases for Evaluating ∇Iij - Rectangular Surface 76

iv

List of Figures

3.1 Visualisations of the mesh of the plate for two different values of lc. 12
3.2 The approximated magnetisation using uniform basis functions within the plate. 13
3.3 Visualisation of the points in which B̃red is calculated. 13
3.4 The approximated reduced magnetic flux density using uniform basis functions. 14

4.1 Triangular Prism P [1]. 15
4.2 A visualization of the evaluation points E1 with a shift of ϵshift = 0.1 for one mesh element. 19
4.3 The x- and y-component of the magnetisation within a plate using linear basis functions

with E1 as evaluation points for various values of ϵshift 19
4.4 A visualization of the evaluation points E2 for one mesh element. 20
4.5 A visualization of the evaluation points E2 for a mesh consisting of two mesh elements. 20
4.6 The x- and y-component of the magnetisation within a plate using linear basis functions

with E2 as evaluation points . 21
4.7 A visualization of a mesh consisting of two mesh elements and four nodes 23
4.8 The approximated magnetisation using linear basis functions within the plate. 24
4.9 The approximated reduced magnetic flux density using linear basis functions. 25

6.1 Decomposition of Earth’s magnetic flux density [2]. 32
6.2 The difference between the obtained magnetisation using uniform basis functions and

point matching. 34
6.3 The assembly and solve time using uniform basis functions and point matching in Julia. 34
6.4 The assembly and solve time using uniform basis functions and point matching. 35
6.5 The heap memory usage using uniform basis functions and point matching in Julia . . . 36

7.1 Two points rk and r′k where the magnetisation is compared for an arbitrary mesh element. 38
7.2 Visualization of the points that are used to compare B̃red 39
7.3 The maximum error of the approximated magnetisation using uniform basis functions

and point matching. 40
7.4 The RMSE of the approximated magnetisation using uniform basis functions and point

matching. 40
7.5 The maximum error of the approximated reduced magnetic flux density using uniform

basis functions and point matching. 40
7.6 The RMSE of the estimated reduced magnetic flux density using uniform basis functions

and point matching. 41
7.7 Maximum error and relative maximum error of the solutions for consecutive meshes

using uniform basis functions. 42
7.8 Positions within the plate where the maximum error occurs between two consecutive

meshes using uniform basis functions. 42
7.9 RMSE and NRMSE of the solutions for consecutive meshes using uniform basis functions. 42
7.10 Maximum error of the solutions for consecutive meshes using linear basis functions. . . 43
7.11 Relative maximum error of the solutions for consecutive meshes using linear basis func-

tions. 43
7.12 Positions within the plate where the maximum error occurs between two consecutive

iterations using linear basis functions. 44
7.13 RMSE of the solutions for consecutive meshes using linear basis functions. 44
7.14 NRMSE of the solutions for consecutive meshes using linear basis functions. 44

9.1 Visualisation of the mesh of the plate using AD, consisting of 25 elements. 51
9.2 The impact of ϵ on the interaction matrix and the obtained solution. 52

v

9.3 The assembly and solve time using uniform basis functions and point matching in Julia. 53

A.1 Spherical shell in uniform background magnetic field. 59
A.2 Spherical coordinate system. 60
A.3 The r- and θ-component of the magnetisation within the spherical shell. 67
A.4 The ϕ-component of the magnetic vector potential within the spherical shell. 67

C.1 Sketch surface S1 . 76

vi

List of Tables

6.1 Table of the value of lc and the number of mesh elements per mesh of the plate. 33
6.2 Overview of the assembly and solve time of the different methods 36

7.1 Table of the value of lc and the number of mesh elements for the mesh of the spherical
shell. 39

vii

Nomenclature

Symbols
Symbol Definition Unit

A Magnetic vector potential [A·m]
B Magnetic flux density T
Bext External magnetic flux density T
Bred Reduced magnetic flux density T
B̃red Approximated reduced magnetic flux density T
H Magnetic field A/m
Hext External magnetic field A/m
Hred Reduced magnetic field A/m
J Electric current density A/m2

Jb Bound current density A/m2

Jf Electric current density of free charges A/m2

M Magnetisation A/m
M̃ Approximated magnetisation A/m
u Unit vector -

ϵshift Parameter to quantify the extent of evaluation point
shift

Dimensionless

χm Magnetic susceptibility -
µ0 Permeability of free space H/m

viii

1
Introduction

1.1. Research Motivation
Magnetic fields are widely used for detection and localization of naval vessels [3]. In 1920, Germany
started the development of sea mines that would remain inactive until it detected the magnetic field of a
target ship. When certain requirements have been met, it would detonate [p. 2][4]. Ships often operate
in conflict areas where the threat of naval mines is high. Naval vessels are mainly constructed of steel,
which leads to a disturbance in the Earth’s magnetic field. The magnetic distortion field surrounding
a naval vessel inside the Earth’s magnetic field is called the magnetic signature [5]. Thus, minimizing
the ship’s magnetic signature reduces the risk of naval mines and being detected. One way to reduce
the magnetic signature is using a degaussing system [6]. A degaussing system is a collection of coils
installed onboard the vessel, where the current in each of the coil is controlled. When these coils
are energised with proper currents, it generates a magnetic field opposite to the magnetic field of the
vessel to reduce the magnetic signature [3]. To be able to determine the values of the coil currents, the
vessel’s magnetic signature has to be estimated as accurately as possible. The Method of Moments
(MoM) is a well known method to describe the inter-coupling effects within a magnetic structure [6]. A
description of the MoM can be found in [7], [8]. TNO implemented this method to model naval vessel’s
magnetic signature.
Currently, TNO’s implementation of MoM is done in MATLAB. Due to long run times and big memory
uses, it is worth to investigate alternative implementations and programming languages, such as Julia.
Julia is a relatively new language for scientific computing. It is a dynamic language, which performs
comparable to C/C++ and Fortran and is significantly faster than MATLAB and Python [9].

1.2. Research Goals
The primary goal of this research is to calculate magnetic signatures using the MoM in Julia, aiming
for the highest accuracy and efficiency. Efficiency here means faster computation, less memory usage,
and simpler implementation. The research question is defined to be as follows:

How can can TNO’s current implementation of the assembly step in the MoM for modeling
magnetic signatures be improved in terms of accuracy and efficiency using Julia?

To be able to answer this research question, the following sub-questions are investigated:

1. What is the optimal implementation of a simplified version of the assembly step in TNO’s current
MoM in terms of accuracy, memory use, and computation speed using Julia?

2. What is the optimal choice of weighting functions using linear basis functions?
3. What is the effect on the accuracy of estimating magnetic signatures using linear basis functions?
4. How to use automatic differentiation such that the assembly step in the modeling process will be

simplified?

1

The research is structured in three main phases, First, TNO’s current approach will be implemented and
tested to establish a baseline. This involves reproducing TNO’s method and verifying its performance in
Julia. Next, linear basis functions will be introduced to improve the accuracy of the magnetic signature
estimations. Lastly, the focus will be on using automatic differentiation (AD) to make the computational
process simpler. Moreover, the use of AD has the potential to lead to a general framework for the MoM
in magnetostatics.

1.3. Outline
The research starts with an introductory chapter. This chapter provides an overview of the theory of
magnetostatics. Thereafter, an introduction to the MoM is given in Chapter 3. The approach described
in this chapter is comparable to TNO’s current implementation. The method described in Chapter 3
is extended in Chapter 4 by introducing linear basis functions. Chapter 5 gives an introduction to the
Julia programming language and elaborates on performance tips to optimise Julia code. In Chapter 6,
an analysis is conducted between TNO’s current implementation and the newly implemented MoM in
Julia. This chapter also evaluates the new approaches in terms of computational speed and memory
usage. The implementation of the different methods is verified in Chapter 7. Chapter 8 provides a brief
introduction to AD and its relevance to the research. Chapter 9 presents the results of applying AD in
the MoM. The implementation is compared to the previously described implementation that does not
include AD. Finally, Chapter 10 concludes the research and gives recommendations for future work.

2

2
Magnetostatics

This research focuses on the theory of magnetic fields that are constant in time, also known as mag-
netostatics [10, p. 24]. This chapter introduces the fundamentals of magnetostatics.

2.1. Maxwell's Equations
In the early 1860s, James Clerk Maxwell laid the foundation for what are now known as Maxwell’s equa-
tions. These four differential equations describe the relation and interaction of the magnetic induction
field intensity B [T] and the electric field intensity E [V/m]. The equations are given by [10, p. 3]

∇ ·E =
ρ

ϵ0
, (Gauss’ law)

∇ ·B = 0, (Gauss’ law)

∇×E = −∂B
∂t
, (Faraday’s law of induction)

∇×B = µ0

(
J+ ϵ0

∂E

∂t

)
. (Ampère’s law)

Here, ϵ0 and µ0 are constants. ϵ0 denotes the electric constant [F/m] and µ0 denotes the permeability
of free space [H/m]. The electric charge density [C/m3] is denoted by ρ and the electric current density
[A/m2] is denoted by J. In magnetostatic problems there is no time dependency [10, p. 24]. This
implies that the time derivatives equal zero. The magnetostatic equations simplify to

∇ ·B = 0, (2.1)
∇×B = µ0J. (2.2)

2.1.1. Magnetisation
When a magnetic field is present, matter may become magnetised [11, p. 262]. Magnetisation is the
magnetic dipole moment per unit volume of material and denoted byM [A/m2] [10, p. 8]. The magneti-
sation contributes to a bound current Jb by

Jb = ∇×M. (2.3)

In any situation, total current can be written as

J = Jf + Jb, (2.4)

where Jf is the electric current density of free charges [11, p. 279]. Substituting the expressions for
the current into Equation 2.2 gives

∇×B = µ0J, (2.5)
= µ0(Jf + Jb), (2.6)
= µ0(Jf +∇×M). (2.7)

3

In order to obtain Ampère’s law in terms of only free current, a new auxiliary field H [A/m] is defined
as

H =
1

µ0
B−M. (2.8)

In terms of H, Ampère’s law is written as

∇×H = Jf . (2.9)

Assuming that there are no free currents present, the following equations hold

∇ ·B = 0, (2.10)
∇×H = 0, (2.11)

B = µ0(H+M). (2.12)

Observe that in free space, M = 0 and Equation 2.12 reduces to

B = µ0H. (2.13)

2.1.2. Constitutive Relations
Constitutive relations are used to describe the material properties of the media involved. The relations
are also necessary to solve Equation 2.10 - 2.12. In this research, the material is linear, isotropic
and homogeneous. A material is isotropic if its properties are the same in all directions. A material is
homogeneous if its properties are the same at every point within the material [11, p. 189-190]. When
an object of this material is placed in a uniform magnetic background field Bext = µ0Hext, the external
field induces a magnetisation, M. The induced magnetisation causes a disturbance in H, known as
the reduced magnetic field. The total magnetic field and total magnetic flux density equal

H = Hext +Hred, (2.14)
B = Bext +Bred. (2.15)

Linear, isotropic and homogeneous materials are characterised by a linear relation between the mag-
netisation and the magnetic flux density and reads

M = χmH, (2.16)

where χm is a dimensionless quantity known as the magnetic susceptibility [11, p. 285]. Substituting
this into Equation 2.12, gives the following relation between B and H

B = µ0(H+M) = µ0(H+ χmH) = µ0(1 + χm)H = µH. (2.17)

The permeability of the material is described by µ = µ0(1+χm) and has unit [H/m] [12, p. 27]. Typical
values for χm range from 1 to 105.

2.1.3. Solution Based on a Vector Potential
Since B is a divergence-less field, the following theorem states that there exists a vector potential A,
such that B = ∇×A [11, p. 54].

Theorem 1 The following conditions are equivalent:

(a) ∇ · F = 0 everywhere.
(b) F is the curl of some vector function: F = ∇×A.

The solution of finding a vector potential A that corresponds to a given B is not unique. This is called
the gauge freedom of A [13]. Suppose that A is a solution of ∇ × A = B and let ϕ be a scalar field.
Then

∇× (A+∇ϕ) = ∇×A+∇×∇ϕ, (2.18)
= ∇×A+ 0, (2.19)
= B. (2.20)

4

As a result, A +∇ϕ is also a solution of the problem. To obtain a unique solution for A, the Coulomb
gauge is used. This gauge assumes that the vector potential is also divergence free [13]

∇ ·A = 0. (2.21)

From this assumption and Maxwell’s equations for magnetostatic problems, the following can be de-
rived

∇×B = ∇× (∇×A), (2.22)
∇× (µ0(H+M)) = ∇(∇ ·A)−∇2A, (2.23)

∇ ·A = 0 and ∇×H = 0 ⇒ ∇× µ0M = −∇2A, (2.24)
∇2A = −µ0∇×M. (2.25)

Theorem 1 can be applied again on A, because of the assumption ∇ · A = 0. Thus, there exists a
vector function C such that A = ∇×C. As a result,

∇2A = −µ0∇×M, (2.26)
∇2 (∇×C) = −µ0∇×M, (2.27)

∇2C = −µ0M. (2.28)

This equation is known as Poisson’s equation. A solution for C equals [11, p. 85]

C(r) =
µ0

4π

∫∫∫
V∞

M(r′)

||r− r′||
dr′, (2.29)

where V∞ represents the entire 3D space. As a result, the vector potential can be written as

A(r) = (∇×C) (r), (2.30)

=
µ0

4π
∇×

∫∫∫
V∞

M(r′)

||r− r′||
dr′. (2.31)

The curl of the product of some scalar function ϕ and vector field G reads [11, p. 21]

∇× (ϕG) = ϕ(∇×G)−G×∇ϕ. (2.32)

Using this identity, the following can be obtained

∇×
(

M(r′)

||r− r′||

)
=

1

||r− r′||
(∇×M) (r′)−M(r′)×∇ 1

||r− r′||
. (2.33)

Since ∇ operates on r, (∇×M) (r′) = 0 for all r′ ∈ R3. As a result, the expression reads

∇×
(

M(r′)

||r− r′||

)
= −M(r′)×∇ 1

||r− r′||
, (2.34)

∇ 1

||r− r′||
= − r− r′

||r− r′||3
⇒ =

M(r′)× (r− r′)

||r− r′||3
. (2.35)

Substituting this result into Equation 2.31 and using the fact that B = ∇×A, the magnetic flux density
can be written as

B(r) =
µ0

4π
∇×

∫∫∫
V∞

M(r′)× (r− r′)

||r− r′||3
dr′. (2.36)

5

There is also another approach to find an expression for B. Denote ∇′ as the nabla operator acting on
r′. Using the identity from Equation 2.32, the result in Equation 2.31 can be written as

∇′ ×
(

M(r′)

||r− r′||

)
=

1

||r− r′||
(∇′ ×M) (r′)−M(r′)×∇′ 1

||r− r′||
, (2.37)

=
(∇′ ×M) (r′)

||r− r′||
+M(r′)×∇ 1

||r− r′||
, (2.38)

=
(∇′ ×M) (r′)

||r− r′||
− ∇ ×

(
M(r′)

||r− r′||

)
, (2.39)

∇×
(

M(r′)

||r− r′||

)
=

(∇′ ×M) (r′)

||r− r′||
− ∇′ ×

(
M(r′)

||r− r′||

)
. (2.40)

Hence, the following expression for B can be obtained

B(r) = ∇×

µ0

4π

∫∫∫
V∞

(∇′ ×M) (r′)

||r− r′||
− ∇′ ×

(
M(r′)

||r− r′||

)
dr′

 . (2.41)

6

3
Derivation of Method of Moments for

Magnetostatics

The MoM is a magnetisation-based formulation of the volume integral equations method for 3-D mag-
netostatics. This chapter shows how this method is derived, primarily based on [7]. Section 3.2 focuses
on deriving the weak formulation. Consequently, two different sets of weighting functions are used to
obtain linear systems. Thereafter, the focus is on deriving the interaction matrix and how the reduced
magnetic flux density can be computed.

Consider a compact 3D-domain τM made of magnetic material exposed to an external magnetic flux
density. As mentioned in Section 2.1.2, the total magnetic flux density at a point r equals

B(r) = Bred(r) +Bext(r). (3.1)

When estimating magnetic signatures, Bext equals the Earth’s magnetic flux density. Therefore, the
external magnetic field in this study is assumed to be uniform in the vicinity of τM . The derivation of
the reduced magnetic flux density is given in Section 2.1.3 and is expressed in terms of the curl of the
vector potential

Bred(r) =
µ0

4π
∇×

∫∫∫
τM

M(r′)× (r− r′)

||r− r′||3
dr′. (3.2)

3.1. Meshing the Domain
The first step in the MoM is to create a mesh by discretising the magnetisable domain. The process of
meshing decomposes the domain τM ∈ R3 in a finite number of non-overlapping, open polyhedra, τh,
h = 1, . . . , N . Thus,

τM =

N∪
h=1

τh (3.3)

This partition is called the mesh and the polyhedra are called the mesh elements.

3.2. Derivation of Weak Formulation
When pulse functions are used as basis functions, the assumption is made that the magnetisation is
uniform in each element. The pulse functions are defined as [8, p. 45]

ϕh(r) =

{
1 if r ∈ τh,

0 elsewhere,
for h = 1, . . . , N. (3.4)

7

The function for the estimated magnetisation of the object is now defined as

M̃(r) =
N∑

h=1

M̃hϕh(r) (3.5)

=

N∑
h=1

(M̃h
xux + M̃h

y uy + M̃h
z uz)ϕ

h(r) (3.6)

Using this expression, the total flux density can be approximated at any point

B̃(r) = Bred(r) +Bext(r), (3.7)

= ∇×

µ0

4π

∫∫∫
τM

M̃(r′)× (r− r′)

||r− r′||3
dr′

+Bext(r), (3.8)

= ∇×
N∑

h=1

µ0

4π

∫∫∫
τh

M̃(r′)× (r− r′)

||r− r′||3
dr′ +Bext(r). (3.9)

The vector potential produced by the estimated magnetisation of an arbitrary element τk is worked out
below.

µ0

4π

∫∫∫
τk

M̃(r′)× (r− r′)

||r− r′||3
dr′ =

µ0

4π

∫∫∫
τk

(M̃k
xu1 + M̃k

y u2 + M̃k
z u3)× (r− r′)

||r− r′||3
dr′, (3.10)

=
µ0

4π

∫∫∫
τk

u1 × (r− r′)

||r− r′||3
dr′M̃k

x +

∫∫∫
τk

u2 × (r− r′)

||r− r′||3
dr′M̃k

y

+

∫∫∫
τk

u3 × (r− r′)

||r− r′||3
dr′M̃k

z

 , (3.11)

=

3∑
i=1

µ0

4π

∫∫∫
τk

ui × (r− r′)

||r− r′||3
dr′

uT
i

M̃k
x

M̃k
y

M̃k
z

 . (3.12)

Substituting this expression into Equation 3.9 gives

B̃(r) = ∇×

 N∑
h=1

3∑
i=1

µ0

4π

∫∫∫
τh

ui × (r− r′)

||r− r′||3
dr′

uT
i

M̃h
x

M̃h
y

M̃h
z

+Bext(r), (3.13)

=

N∑
h=1

3∑
i=1

∇×

µ0

4π

∫∫∫
τh

ui × (r− r′)

||r− r′||3
dr′

uT
i

M̃h
x

M̃h
y

M̃h
z

+Bext(r), (3.14)

=

N∑
h=1

[C(r)]hM̃
h +Bext(r), (3.15)

where [C(r)]h =

3∑
i=1

∇×

µ0

4π

∫∫∫
τh

ui × (r− r′)

||r− r′||3
dr′

uT
i

The weak formulation now reads∫∫∫
τM

wk(r)

(
B̃(r)−

N∑
h=1

[C(r)]hM̃
h −Bext(r)

)
dr = 0 for k = 1, . . . , N, (3.16)

where wk is a proper scalar weighting function defined within each element k.

8

3.3. Point Matching
In TNO’s current implementation, Equation 3.15 and the constitutive law of the material are satisfied at
the centres of each element of the mesh. In other words, the centres of the elements are the evaluation
points. This is equivalent to using Dirac delta functions centered at the centres of the elements as
weighting functions. Thus the weighting functions can be defined as

wk(r) = δ(r− rk) for k = 1, . . . , N, (3.17)

where rk is the centre of element k. This formulation is known as point matching formulation and is
widely mentioned in literature [14, p. 158] [8] [15]. The Dirac delta function satisfies the following relation
[16] ∫∫∫

τM

f(r)δ(r− rk) dr =

{
f(rk) if rk ∈ τM ,

0 otherwise.
(3.18)

As a result, the integral of the weak formulation becomes trivial and there is no integral over the range
of the weighting function required [17]. The weak formulation becomes∫∫∫

τM

δ(r− rk)

(
B̃(r)−

N∑
h=1

[C(r)]hM̃
h −Bext(r)

)
dr = 0, (3.19)

B̃k =

N∑
h=1

[Ck]hM̃
h +Bk

ext, (3.20)

where [Ck]h equals [C(rk)]h and Bk
ext = Bext(rk). The assumption is made that the magnetisation of

the element is related to the magnetic flux density at the centre of the element. Assembling for all N
elements, the system of the discretised problem equals

B̃ = [C]M̃+Bext, (3.21)

where the matrix C, and vectors M̃ and Bext are as follows

[C] =


[C(r1)]1 [C(r1)]2 . . . [C(r1)]N
[C(r2)]1 [C(r2)]2 . . . [C(r2)]N

...
... . . .

...
[C(rN)]1 [C(rN)]2 . . . [C(rN)]N

 , M̃ =


M̃1

M̃2

...
M̃N

 , Bext =


B1

ext
B2

ext
...

BN
ext

 . (3.22)

Note that [C] is a 3N × 3N matrix, where N is the number of mesh elements. From this point forward,
[C] will be referred to as the interaction matrix. Since B̃ = µ0(H̃+ M̃) and M̃ = χmH̃, a linear system
is obtained

B̃ = [C]M̃+Bext, (3.23)

µ0

(
H̃+ M̃

)
= [C]M̃+Bext, (3.24)

µ0

(
1

χm
M̃+ M̃

)
= [C]M̃+Bext, (3.25)

M̃ =
χm

µ0(1 + χm)
[C]M̃+

χm

µ0(1 + χm)
Bext, (3.26)(

[IN]− χm

µ0(1 + χm)
[C]

)
M̃ =

χm

µ0(1 + χm)
Bext, (3.27)

[A(χm)]M̃ =
χm

µ0(1 + χm)
Bext, (3.28)

where [A(χm)] = [IN] − χm

µ0(1+χm) [C]. Observe that [C] is a non-symmetric matrix for finite discretisa-
tions, which implies that [A(χm)] is also a non-symmetric matrix for finite discretisations.

9

3.4. Average Formulation
Alternatively, the weighting functions can be chosen as element-wise uniform functions, defined by the
reciprocal of the element’s volume. Taking the average represents a Galerkin formulation of the MoM
[18]. The weighting functions are mathematically expressed as

wk(r) =

{
1
Vk

if r ∈ τk,

0 otherwise,
for k = 1, . . . , N, (3.29)

where Vk equals the volume of element τk. Substituting this weighting function for an arbitrary k into
Equation 3.16 results∫∫∫

τk

1

Vk

(
B̃(r)−

N∑
h=1

[C(r)]hM̃
h −Bext(r)

)
dr = 0, (3.30)

⟨B̃⟩k =

N∑
h=1

[⟨C⟩k]hM̃
h + ⟨Bext⟩

k, (3.31)

where ⟨B̃⟩k is the average of the total magnetic flux density in element k, ⟨Bext⟩k is the averagemagnetic
flux density of the external field, and [⟨C⟩k]h is defined as

[⟨C⟩k]h =
1

Vk

∫∫∫
τk

[C(r)]h dr. (3.32)

Now, the assumption is made that the magnetisation within the element is related to the average mag-
netic flux density within the element. Assembling for all N elements, the system of the discretised
problem is obtained

B̃ = [⟨C⟩]M̃+ ⟨Bext⟩, (3.33)

where the matrix [⟨C⟩], and vectors M̃ and ⟨Bext⟩ are as follows

[⟨C⟩] =


[⟨C(r)⟩1]1 [⟨C(r)⟩1]2 . . . [⟨C(r)⟩1]N
[⟨C(r)⟩2]1 [⟨C(r)⟩2]2 . . . [⟨C(r)⟩2]N

...
... . . .

...
[⟨C(r)⟩N]1 [⟨C(r)⟩N]2 . . . [⟨C(r)⟩N]N

 , M̃ =


M̃1

M̃2

...
M̃N

 , ⟨Bext⟩ =


⟨Bext⟩1
⟨Bext⟩2

...
⟨Bext⟩N


(3.34)

Again, the 3N × 3N matrix [⟨C⟩] is not symmetric for finite discretisations.

3.5. Derivation of Interaction Matrix
For both point matching and the average formulation a function for the magnetic flux density reduced
by a uniformly magnetised prism has to be found. Details on the calculations can be found in Appendix
B. Suppose the uniform magnetisation of element τ is denoted by M̃. As mentioned in Chapter 2, the
magnetic vector potential produced can be calculated as follows

A(r) =
µ0

4π

∫∫∫
τ

M̃k × (r− r′)

||r− r||3
dr′. (3.35)

Since the assumption is made that M̃ is uniform, M̃ can be taken out of the integral, which gives

A(r) =
µ0

4π
M̃×

∫∫∫
τ

∇′ 1

||r− r||
dr′. (3.36)

By applying Gauss’ theorem, the integral over the volume can be written as

A(r) =
µ0

4π

∑
Sf∈∂τ

M̃× nfWf (r), (3.37)

10

where ∂τ is the boundary of τ , Sf is any of its faces, nf is the outward normal unit vector of face Sf ,
and the functionWf (r) is given by

Wf (r) =

∫∫
Sf

1

||r− r′||
dr′. (3.38)

To obtain the induced magnetic flux density, the curl of Equation 3.37 is taken. This results in

B̃red(r) = −µ0

4π

∑
Sf∈∂τ

(M̃× nf)×∇Wf (r). (3.39)

The gradient in the above expression can be found by using vector identities and Stokes’ theorem and
is defined as

∇Wf (r) =
∑

le∈∂Sf

nf × tewe(r) + nfΩf (r). (3.40)

where te is the unit vector tangent to edge le oriented accordingly by means of the right-hand rule. The
function Ωf (r) is the solid angle subtended by the face Sf , as seen from point r. When Sf is a triangular
face, the solid angle can be calculated as follows

Ωf (r) = 2 arctan2
(r1 − r) · (r2 − r)× (r3 − r)

D(r)
, (3.41)

with D(r) = ||r1 − r||||r2 − r||||r3 − r||+ ||r1 − r||(r2 − r) · (r3 − r) (3.42)
+ ||r2 − r||(r1 − r) · (r3 − r) + ||r3 − r||(r1 − r) · (r2 − r).

The function we(r) is given by

we(r) =

∫
le

1

||r− r′||
dr′, (3.43)

When the endpoints of the edge le are defined as r1 and r2, the solution of this integral is as follows

we(r) = ln
||r2 − r||+ ||r1 − r||+ ||r2 − r1||
||r2 − r||+ ||r1 − r|| − ||r2 − r1||

(3.44)

Note that both expressions for Ωf and we are singular for specific values of r. The solid angle becomes
singular when r coincides with one of the vertices of the face. Similarly, the function we becomes sin-
gular when r lies on the edge le. The singularities do not lead to issues for point matching, as the
functions are evaluated at the centres of the elements. However, when using the average formulation,
the singularities may become problematic. For computing [⟨[C]⟩k]h, the average flux density within
element k produced by uniform magnetisation in element h, integration over the volume of element k
is done. This integration is done numerically. When h = k, the numerical integration must be done
in a way that avoids evaluating the integrand at the boundary edges to prevent any singularities. The
following section elaborates on the implementation of the numerical integration using Julia.

The derivations of the sub-blocks are independent of each other for both the point matching and the
average formulation. Therefore, the process can be speed up by computing the sub-blocks of the
interaction matrix in parallel. This is done with help of the package Polyester.jl. Details how this
package is used, can be found in Chapter 5.

3.5.1. Numerical Integration in Julia
The integration is performed numerically with help of the Julia package HCubature.jl. This package
is designed for ”h-adaptive” multidimensional numerical integration, and is based on the algorithm de-
scribed by A.C. Genz and A.A. Malikin [19]. The hcubature() function calculates the integral by contin-
uously subdividing the integration domain into smaller sections in an adaptive manner until it reaches
convergence. The function ensures that the integrand is never evaluated at the boundaries of the inte-
gration domain. As a result, it is possible to calculate the integral of a functions that have singularities

11

at the boundaries. However, it is important to note that this approach may lead to slow convergence.
Among other variables, users can specify the relative tolerances [20]. A good choice of the relative
tolerance depends on the mesh. The default value equals the square root of the precision of the input
arguments [20]. If this default setting results in NaN values, the relative tolerance is adjusted to the
smallest possible value that avoids NaN values and does not lead to a memory error.

3.6. Obtain B̃red

With help of the approximatedmagnetisation M̃, an estimation for the reducedmagnetic flux density can
be calculated at any point r. The reduced magnetic flux density by an arbitrary element k is calculated
by substituting M̃k in Equation 3.39. By taking the sum over all the elements, the total magnetic flux
density in point r can be found.

3.7. Visualisation of M̃ and B̃red
In this section, the magnetisation and reduced magnetic flux density of a linearly reacting plate of
10× 10× 0.002 m, with magnetic susceptibility χm = 100, is visualised. Suppose the plate is placed in
an external uniform background field of 50 µT, which points in the positive x-direction. To create a 2D
mesh, Gmsh is used. Thereafter, the mesh is extruded by 0.001 m in both the positive and negative
z-direction. Thus, the mesh consists of a single layer of elements in the z-direction. Gmsh is an open-
source three-dimensional finite element mesh generator designed to be fast, light, and user-friendly
[21]. When a point of the geometry is defined, there is an optional parameter lc. This parameter
defines the average edge length around that point [22]. By decreasing this parameter, the size of the
mesh elements decreases and the mesh gets more refined. In the figure below, the mesh is visualised
for two different values of lc.

(a) lc = 5. (b) lc = 1.

Figure 3.1: Visualisations of the mesh of the plate for two different values of lc.

The parameter lc is set to 0.8. This results in a mesh consisting of 402 mesh elements and 228 nodes.
In the average formulation, the relative tolerance in the function hcubature() is set to 10−6.

3.7.1. Visualisation of M̃
In this subsection, the magnetisation at z = 0 m within the plate is visualised through a top-down
view. For this geometry and background field, the x-component of the magnetisation is expected to be
symmetric in x = 5 m and y = 5 m. The y-component of the magnetisation is expected to show 180-
degree rotational symmetry x-y plane. Additionally, the y-component of the magnetisation is expected
to be positive in the top-left and bottom-right regions of the plate, and negative in the remaining regions.
The magnetisation in the x- and y-direction are visualised in separate figures. The z-component of the
magnetisation is not shown because it is approximately zero throughout the plate, as expected. A total
of 200 points are uniformly distributed along both the x- and y-axes, resulting in 40,000 points. The
minimum and maximum value of the magnetisation at these points is calculated and displayed above
the visualisations.

12

(a) Approximated magnetisation using point matching. (b) Approximated magnetisation using the average formulation.

Figure 3.2: The approximated magnetisation using uniform basis functions within the plate.

From these figures, it can be concluded that the assumption of uniformmagnetisation within each mesh
element is made. The magnetisation within the plate shows a tile-like structure. By comparing the two
figures, it can be concluded that the magnetisation in the x-direction is lower near the boundaries of the
plate when using the average formulation compared to point matching. Also, the absolute minimum
and maximum values of the y-component of the magnetisation, occurring at the corners of the plate,
are higher with the average formulation than with point matching. Figure 3.2b shows an unexpected
pattern in M̃y near the right boundary of the plate.

3.7.2. Visualisation of B̃red
In this subsection, the reduced magnetic flux density due to the magnetisation of the plate is visualised.
The reduced magnetic flux density is calculated in the x-y plane at z = 5 m. Both x and y range from
−10 m to 20 m. 40 points are uniformly distributed along both the x- and y-direction, which results in a
total of 1600 points. The points are visualised in the figure below.

Figure 3.3: Visualisation of the points in which B̃red is calculated.

13

The x-, y-, and z-components of the reduced magnetic flux density are presented in separate plots.
Moreover, the norm of the reduced magnetic flux density, denoted as ||B̃red||, is shown. It is expected

(a) Approximated reduced magnetic flux density using point
matching.

(b) Approximated reduced magnetic flux density using average
formulation.

Figure 3.4: The approximated reduced magnetic flux density using uniform basis functions.

In both Figure 3.4a and 3.4b, the expected symmetries can be recognised.

14

4
Method of Moments Using Linear

Basis Functions

In practice, the magnetisation is not constant in a volume. Therefore, using linear basis functions
instead of uniform basis functions may improve the approximation of the magnetisation of the object
[8, p. 45]. In this chapter, MoM is extended to the use of linear basis functions. Firstly, it is explained
how the meshing is done. Thereafter, the weak formulation is derived for a mesh consisting of one
mesh element. Two different sets of weighting functions are used to obtain a linear system. Lastly, it
is explained how the interaction matrix is derived when a mesh consisting of more than one element is
used. This chapter is primarily based on [1].

4.1. Meshing the Domain
When using uniform basis functions, any polyhedron shape can be selected as mesh elements. How-
ever, the use of linear basis functions restricts the mesh elements to right triangular prisms. In other
words, prisms with two parallel and congruent triangular faces and three rectangular faces. A sketch
of one single element, denoted as P, is depicted below.

Figure 4.1: Triangular Prism P [1].

The points r1, r2 and r3 are referred to as the vertices of element P. Unit length tangential vectors
along the sides Si, i = 1, 2, 3 are introduced

τ1 =
r2 − r1

||r2 − r1||
, τ2 =

r3 − r2
||r3 − r2||

, τ3 =
r1 − r3

||r1 − r3||
. (4.1)

15

The outward pointing normal vector n0 can be calculated as follows

n0 =
(r2 − r1)× (r3 − r2)

||(r2 − r1)× (r3 − r2)||
. (4.2)

The remaining three normal vectors are defined as

ni = τi × n0 for i = 1, 2, 3. (4.3)

The derivation of the MoM using linear basis functions is explained using this element P as reference.
The same notation as shown Figure 4.1 is used throughout the chapter.

4.2. Derivation of the Weak Formulation
To get a better understanding how the weak formulation is derived, a mesh is considered with only one
mesh element P. The assumption is made that the magnetisation is uniform in the thickness direction
of P. Using the notation introduced in the previous section, Lepelaars defines three basis functions on
element P as

ϕ1(r) =

{
(r−r2)·n2

(r1−r2)·n2
if r ∈ P ,

0 elsewhere,
(4.4)

ϕ2(r) =

{
(r−r3)·n3

(r2−r3)·n3
if r ∈ P ,

0 elsewhere,
(4.5)

ϕ3(r) =

{
(r−r1)·n1

(r3−r1)·n1
, if r ∈ P ,

0 elsewhere.
(4.6)

The basis functions are linear on the triangle. Moreover, it can be verified that

ϕi(rj) =

{
1 if i = j,

0 otherwise,
for i, j = 1, 2, 3. (4.7)

Note that the basis functions are invariant under a translation of r in the n0-direction. The estimated
magnetisation of P can be written as

M̃(r) =

3∑
i=1

M̃iϕi(r), (4.8)

=

3∑
i=1

(M̃ixu1 + M̃iyu2 + M̃izu3)ϕi(r). (4.9)

To find the total magnetic flux density, the steps from Section 3.2 are repeated. By substituting the
expression for M̃ in Equation 2.41, the total magnetic flux density can be approximated at any point

B̃(r) = Bred(r) +Bext(r), (4.10)

= ∇×

µ0

4π

∫∫∫
P

(∇′ ×M) (r′)

||r− r′||
− ∇′ ×

(
M(r′)

||r− r′||

)
dr′

+Bext(r), (4.11)

= ∇× µ0

4π

∫∫∫
P

(∇′ ×M) (r′)

||r− r′||
dr′ −

∫∫∫
P

∇′ ×
(

M(r′)

||r− r′||

)
dr′

+Bext(r), (4.12)

(4.13)

16

Consider the first integral. Observe that inside P

(∇′ ×M) (r′) = ∇′ ×
3∑

i=1

M̃iϕi(r
′), (4.14)

= −
3∑

i=1

M̃i ×∇′ϕi(r
′), (4.15)

=
−M1 × n2

(r1 − r2) · n2
− M2 × n3

(r2 − r3) · n3
− M3 × n1

(r3 − r1) · n1
, (4.16)

=
n2 ×M1

(r1 − r2) · n2
+

n3 ×M2

(r2 − r3) · n3
+

n1 ×M3

(r3 − r1) · n1
= A1. (4.17)

Thus, the first integral can be simplified∫∫∫
P

(∇′ ×M) (r′)

||r− r′||
dr′ = A1

∫∫∫
P

1

||r− r′||
dr′. (4.18)

By applying Gauss’ theorem on the second integral, the integral can be written as∫∫∫
P

∇′ ×
(

M(r′)

||r− r′||

)
dr′ =

∫∫
∂P

n(r′)× M(r′)

||r− r′||
dr′. (4.19)

Remember that the boundary of P consists of five surfaces, denoted by Sj for j = 1, . . . , 5. The integral
equals ∫∫

∂P

n(r′)× M(r′)

||r− r′||
dr′ =

5∑
j=1

∫∫
Sj

nj ×
M(r′)

||r− r′||
dr′, (4.20)

=

5∑
j=1

nj ×
∫∫
Sj

∑3
i=1 M̃iϕi(r)

||r− r′||
dr′, (4.21)

=

5∑
j=1

3∑
i=1

(nj × M̃i)

∫∫
Sj

ϕi(r
′)

||r− r′||
dr′. (4.22)

The reduced magnetic flux density equals

Bred(r) = ∇× µ0

4π

A1

∫∫∫
P

1

||r− r′||
dr′ −

5∑
j=1

3∑
i=1

(nj × M̃i)

∫∫
Sj

ϕi(r
′)

||r− r′||
dr′

 , (4.23)

= −µ0

4π
A1 ×∇

∫∫∫
P

1

||r− r′||
dr′ +

µ0

4π

5∑
j=1

3∑
i=1

(nj × M̃i)×∇
∫∫
Sj

ϕi(r
′)

||r− r′||
dr′. (4.24)

Again using Gauss’ theorem on the first integral, expression simplifies

Bred(r) =
µ0

4π
A1 ×

5∑
j=1

njIj(r) +
µ0

4π

5∑
j=1

3∑
i=1

(nj × M̃i)×∇Iij(r), (4.25)

where Ij(r) =

∫∫
Sj

1

||r− r′||
dr′ and Iij(r) =

∫∫
Sj

ϕi(r
′)

||r− r′||
dr′. (4.26)

From Figure 4.1 can be concluded, that the surfaces Sj for j = 1, 2, 3 are rectangular, while the surfaces
Sj for j = 4, 5 are triangular. The analytical expressions of the solution of Ij and Iij depend on the

17

shape of the surface Sj . The following notation is introduced

LT (r, r1, r2, r3) =

∫∫
T

1

||r− r′||
dr′, LR(r, r1, r2, r3, r4) =

∫∫
R

1

||r− r′||
dr′, (4.27)

KT (r, r1, r2, r3) =

∫∫
T

ϕ1(r
′)

||r− r′||
dr′, KR(r, r1, r2, r3, r4) =

∫∫
R

ϕ12(r
′)

||r− r′||
dr′, (4.28)

where T is a triangle with vertices r1, r2 and r3 and R is a rectangle with vertices r1, r2, r3 and r4.
In this notation, the second argument of KT denotes where the linear function ϕ assumes the value 1.
For KR the second and third argument indicate the vertices where the linear function ϕ assumes the
value 1. Analytical expressions for these integrals can be found in Appendix C.
As a result, the approximated total magnetic flux density equals

B̃(r) = [C(r)]

M̃1

M̃2

M̃3

+Bext(r), (4.29)

=
(
[C1(r)] [C2(r)] [C3(r)]

)M̃1

M̃2

M̃3

+Bext(r), (4.30)

where [Ci(r)] =

∇ϕi(r)× u1 ×
∑5

j=1 njIj(r) +
∑5

j=1(nj × u1 ×∇Iij(r))
∇ϕi(r)× u2 ×

∑5
j=1 njIj(r) +

∑5
j=1(nj × u2 ×∇Iij(r))

∇ϕi(r)× u3 ×
∑5

j=1 njIj(r) +
∑5

j=1(nj × u3 ×∇Iij(r))


T

(4.31)

Note that [C(r)] is a 3× 9 matrix.
Now suppose there are N mesh elements. For an arbitrary element k, the basis functions are denoted
as ϕk1 , ϕk2 and ϕk3 . The estimated magnetisation on the object can be written as

M̃(r) =

N∑
h=1

3∑
i=1

M̃h
i ϕ

h
i (r). (4.32)

As a result, the total magnetic flux density is written as

B̃(r) =

N∑
h=1

[C(r)]h

M̃h
1

M̃h
2

M̃h
3

+Bext(r), (4.33)

=

N∑
h=1

[C(r)]hM̃
h +Bext(r), (4.34)

(4.35)

where [C(r)]h is derived as in Equation 4.31 The weak formulation can be obtained∫∫∫
PM

wk(r)

(
B̃(r)−

N∑
h=1

[C(r)]hM̃
h −Bext(r)

)
dr = 0 for k = 1, . . . , 3N. (4.36)

4.3. Point Matching
In this section, a point-matching formulation is considered, which implies that the weighting functions
are Dirac delta functions. First, the evaluation points used in this formulation are identified. Thereafter,
a linear system is derived from these evaluation points.

4.3.1. Evaluation Points
From Equation 4.8 can be derived that there are three unknown vectors per element. When the same
weighting functions are used as described in Chapter 3, the number of unknowns would exceed the

18

number of weighting functions, which gives an infinite number of solutions. Thus, three evaluation
points per element have to be chosen. In this section, two different sets of evaluation points are con-
sidered, denoted by E1 and E2.

Evaluation Points E1

The first set that is considered isE1 = {r1, r2, r3}, where r1, r2, r3 are as shown in Figure 4.1. However,
calculating KR is not always possible when considering the set E1 as evaluation points. Details on the
calculations that identify the causes of the problems can be found in Appendix C. To overcome these
challenges, the evaluation points are shifted to the center of one of the adjacent elements. A parameter
ϵshift is defined to quantify the extent to which the evaluation point is shifted towards the center. ϵshift
is a value between 0 and 1. For ϵshift = 1, evaluation point equals the center of the element and for
ϵshift = 0 the evaluation point is not shifted. To get a better understanding of the evaluation points, a
top view of a simple mesh, consisting of one mesh element, is depicted. Suppose that the vertices of
element 1 equal r1, r2 and r3. The evaluation points are indicated by the red crosses. On the left-hand
side the original evaluation points are shown, while on the right-hand side the evaluation points are
shifted with ϵshift = 0.1.

r1 r2

r3

r1 r2

r3

Figure 4.2: A visualization of the evaluation points E1 with a shift of ϵshift = 0.1 for one mesh element.

Considering these evaluation points, the three weighting functions equal

w1(r) = δ(r− (1 + ϵshift)r1 − ϵshiftrc), (4.37)
w2(r) = δ(r− (1 + ϵshift)r2 − ϵshiftrc), (4.38)
w3(r) = δ(r− (1 + ϵshift)r3 − ϵshiftrc), (4.39)

where rc is the center of element k and r1, r2 and r3 are the vertices of the element.
A disadvantage of this approach is the dependency of a parameter ϵshift. Different values of ϵshift
result in different outcomes for the magnetisation in the object. To explore the impact of ϵshift, the x-
and y-component at z = 0.0 is computed for the same geometry as described in Section 3.7. The mesh
contains 244 mesh elements. The background field is chosen to be 50 µT in the x-direction. A total
of 200 points are uniformly distributed along both the x- and y-axes, resulting in 40,000 points. The
minimum and maximum value of the magnetisation at these points is calculated and displayed above
the visualisations.

(a) ϵshift = 0.001 (b) ϵshift = 0.01 (c) ϵshift = 0.1

Figure 4.3: The x- and y-component of the magnetisation within a plate using linear basis functions with E1 as evaluation
points for various values of ϵshift

19

From Figure 4.3 can be derived that for ϵshift = 0.01 the x-component of the magnetisation satisfies
the expected symmetries. For a larger value of ϵshift the magnetisation deviates from the expected
behaviour. For a smaller value of ϵshift, the y-component of the magnetisation becomes positive in
regions where it should be negative.

Evaluation Points E2

To get rid of this dependency a second set of evaluation points is introduced,E2 = { r1+r2
2 , r2+r3

2 , r3+r1
2 }.

The calculations in Appendix C show that no problems arise for evaluating the integrals, when this set
of evaluation points is used. Figure 4.4 provides a top view of the evaluation points E2 of the previously
introduced simple mesh.

r1 r2

r3

Figure 4.4: A visualization of the evaluation points E2 for one mesh element.

Using the evaluation points from E2, the weighting functions equal

w1(r) = δ

(
r− (r1 + r2)

2

)
, (4.40)

w2(r) = δ

(
r− (r2 + r3)

2

)
, (4.41)

w3(r) = δ

(
r− (r3 + r1)

2

)
. (4.42)

Observe that when using E2 as evaluation points, the resulting linear system is not always a square
system of equation. An example of such a mesh is given in the sketch below.

r1 r2

r3r4

Figure 4.5: A visualization of the evaluation points E2 for a mesh consisting of two mesh elements.

The system for this mesh results in a 15× 12 system. A least squares solution is obtained. If there are
multiple solutions, the one with smallest norm is selected. For the same mesh and background field as
described in Section 4.3.1, the resulting magnetisation using E2 as evaluation points are shown in the
figure below.

20

Figure 4.6: The x- and y-component of the magnetisation within a plate using linear basis functions with E2 as evaluation
points

This figure shows that the x-component of the approximated magnetisation is the highest close to the
upper and lower boundary of the plate. Also, the minimum value is negative, while the magnetisation
in the x-component is always positive for this background field. Moreover, the y-component shows an
unexpected pattern. Based on Figure 4.3 and Figure 4.6, the set E1 is chosen as set of evaluation
points with ϵshift = 0.01.

4.3.2. Obtain Linear System
In this section, it is shown how the linear system is derived, considering one mesh element. The
decision is made to use the vertices of the prism as evaluation points, with ϵshift = 0.01. Remember
that the weight functions can be defined as follows

w1(r) = δ(r− (1 + ϵshift)r1 − ϵshiftrc), (4.43)
w2(r) = δ(r− (1 + ϵshift)r2 − ϵshiftrc), (4.44)
w3(r) = δ(r− (1 + ϵshift)r3 − ϵshiftrc). (4.45)

where rc is the center of element P and r1, r2 and r3 are the vertices of the element. The weak
formulation is worked out for a mesh with one element. The weak formulation for an arbitrary i = 1, 2, 3
simplifies to∫∫∫

P

δ(r− (1 + ϵshift)ri − ϵshiftrc)
(
B̃(r)− [C(r)]M̃−Bext(r)

)
dr = 0, (4.46)

B̃i = [Ci]M̃+Bi
ext, (4.47)

where [Ci] equals [C(ri)]. Observe that B̃i and Bi
ext represent the total and external magnetic flux

density at the point r− (1 + ϵshift)ri − ϵshiftrc. Assembling for all three evaluation points, the system
of the discretised problem equals

B̃ = [C]M̃+Bext, (4.48)

where the matrix [C], and vectors M̃ and Bext are as follows

[C] =

[C(r1)]
[C(r2)]
[C(r3)]

 , M̃ =

M̃1

M̃2

M̃3

 , Bext =

B1
ext

B2
ext

B3
ext

 . (4.49)

21

Note that [C] is a 9× 9 matrix and both M̃ and Bext are vectors of size 9. In a similar way as in Chapter
3, the linear system is obtained

[A(χm)]M̃ =
χm

µ0(1 + χm)
Bext, (4.50)

where [A(χm)] = [I9]− χm

µ0(1+χm) [C].

4.4. Galerkin Method
In this section, a Galerkin method is introduced. A Galerkin method offers two advantages. Firstly, as
shown in Section 4.3, the results on the approximatedmagnetisation depend on which evaluation points
are chosen. Secondly, and most importantly, the Galerkin method produces a symmetric interaction
matrix. This symmetry ensures that the resulting linear system is also symmetric, which simplifies the
solution process. In this formulation, the basis functions are used as weighting functions. Thus the
weighting functions equal

w1(r) =

{
ϕ1(r) if r ∈ P ,
0 otherwise,

(4.51)

w2(r) =

{
ϕ2(r) if r ∈ P ,
0 otherwise,

(4.52)

w3(r) =

{
ϕ3(r) if r ∈ P ,
0 otherwise,

(4.53)

The weak formulation for an arbitrary i = 1, 2, 3 results in∫∫∫
P

ϕi(r)
(
B̃(r)− [C(r)]M̃−Bext(r)

)
dr = 0, (4.54)

∫∫∫
P

ϕi(r)B̃(r) dr =

∫∫∫
P

ϕi(r)
(
[C(r)]M̃−Bext(r)

)
dr. (4.55)

Assembling for all three weighting functions, the discretised problem equals

{B̃} = [{C}]M̃+ {Bext}, (4.56)

where the matrix [{C}], and vectors M̃ and {Bext} are as follows

[{C}] =


∫∫∫
P

ϕ1(r)[C(r)] dr∫∫∫
P

ϕ2(r)[C(r)] dr∫∫∫
P

ϕ3(r)[C(r)] dr

 , M̃ =

M̃1

M̃2

M̃3

 , {Bext} =


∫∫∫
P

ϕ1(r)Bext(r) dr∫∫∫
P

ϕ2(r)Bext(r) dr∫∫∫
P

ϕ3(r)Bext(r) dr

 . (4.57)

The obtained linear system equals

[A(χm)]M̃ =
χm

µ0(1 + χm)
{Bext}, (4.58)

where [A(χm)] = [I9]− χm

µ0(1+χm) [{C}].

4.5. Derivation of Interaction Matrix
There are two challenges in finding the interaction matrix using linear basis functions. First of all, analyt-
ical expressions must be derived for the integral equations Ij and∇Iij . The derivations from Lepelaars
and Morandi are combined to obtain these analytical expressions [1] [7]. The analytical expressions
can be found in Appendix C. Second of all, it is required for the magnetisation to be continuous within
the object. Thus, a continuity constraint must be incorporated into the calculations.

22

4.5.1. Continuity Constraint
The derivation of the requirement for the continuity of the approximated magnetisation is explained
using a small example mesh. Before introducing this mesh, a distinction is made between global and
local nodes. The global node number is one which is unique to each node and differentiates it from
all other nodes. Additionally, each element has its own local numbering system. The sketch below
visualises a mesh with two mesh elements and four nodes. The global nodes are denoted by bold,
unique numbers, while the local nodes are labeled with numbers from one to three at each node.

1 2

34

e1

e2

1 2

3
12

3

Figure 4.7: A visualization of a mesh consisting of two mesh elements and four nodes

When the interaction matrix is assembled in a straightforward manner, an 18 × 18 linear system is
obtained

[A(χm)]M̃ =
χm

µ0(1 + χm)
Bext, (4.59)

where M̃ =



M̃1
1

M̃1
2

M̃1
3

M̃2
1

M̃2
2

M̃2
3


. (4.60)

When solving this system, the function for the magnetisation may be discontinuous across the shared
edge of the two mesh elements. However, the approximated magnetisation must be continuous within
the object. For this mesh, continuity implies that M̃1

1 = M̃2
3 and M̃1

3 = M̃2
1. These equations must hold

to achieve a continuous magnetisation throughout the object. Taking this into account, the objective is
to find a solution to the following problem

[A(χm)]M̃ =
χm

µ0(1 + χm)
Bext, (4.61)

s.t. [D]M̃ = 0, (4.62)

where [D] =

(
1 0 0 0 0 −1
1 0 0 −1 0 0

)
. (4.63)

Adding this constraint to the system reduces the number of unknowns, which in turn decreases the
number of weighting functions. The size of the resulting linear system is 12× 12.

4.6. Visualisation of M̃ and B̃red
In this section, the magnetisation and reduced magnetic flux density of a linearly reacting plate of
10× 10× 0.002 m, with magnetic susceptibility χm = 100, is visualised. Suppose the plate is placed in
an external uniform background field of 50 µT, which points in the positive x-direction. The same mesh
is considered as described in Section 3.7, which means the mesh consists of 402 mesh elements and
228 nodes. In the Galerkin method, the relative tolerance in the function hcubature() is set to 10−6.

23

4.6.1. Visualisation of M̃
In this subsection, the magnetisation at z = 0 m within the plate is visualised through a top-down view.
The magnetisation is calculated in a similar way as described in Section 3.7.1.

(a) Approximated magnetisation using point matching. (b) Approximated magnetisation using the Galerkin method.

Figure 4.8: The approximated magnetisation using linear basis functions within the plate.

It is observed that the minimum value of the x-component of the approximated magnetisation using
point matching is significantly lower than that obtained using the Galerkin method. Also, x-component
is lower compared to the results shown in Figure 3.2. The expected symmetry in the y-component of
the magnetisation is recognisable. However, there are regions where the magnetisation is estimated to
be negative, while in practice it would be positive, or vice versa. The visualisations of the approximated
magnetisation using the Galerkin method demonstrate the expected symmetries perfectly. However,
the absolute value of the extreme values of the y-component of the magnetisation are substantially
lower compared to the other methods.

4.6.2. Visualisation of B̃red
In this subsection, the reduced magnetic flux density due to the magnetisation of the plate is visualised.
The reduced magnetic flux density is calculated in a similar way as described in Section 3.7.2.

24

(a) Approximated reduced magnetic flux density using point
matching.

(b) Approximated reduced magnetic flux density using the
Galerkin method.

Figure 4.9: The approximated reduced magnetic flux density using linear basis functions.

25

5
Performance Tips for Julia

Programming languages can be categorised into two types. On the one hand, there are statically
compiled languages such as Fortran and C/C++. These languages run quickly and efficiently, but are
hard to learn and use. On the other hand, there are dynamic languages, such as Python and MATLAB.
These language are more user-friendly and have more intuitive syntax. However, they often struggle
with handling computationally intensive tasks efficiently. Therefore, developers often use a combination
of a statically compiled language and a dynamic language, also known as the two-language problem
[23]. Julia overcomes the two-language problem [24]. Julia is an open-source language created by
Bezanson, Karpinski, Shah, and Edelman, which launched its initial version in 2012 [25]. It promises
the ease of a dynamic language at the speed of a statically compiled language [26]. Julia achieves
performance comparable to C/C++ and Fortran and is significantly faster than MATLAB and Python
[9]. This is possible because Julia uses just-in-time (JIT) compilation [27]. Julia compiles code during
the execution and generates efficient, type-specialised code based on the types encountered [28]. To
make optimal use of Julia’s performance, this chapter provides a few useful techniques that optimise
Julia code in terms of computation speed.

5.1. Benchmarking
When writing code, it is interesting to benchmark the code. In this research, benchmarking will refer to
testing the time spent to execute code and the memory usage of the code and compare it to alternative
implementations. Julia has a built-in @time macro function, which returns the time it took to execute the
code, the number of heap allocations, and the total number of bytes its execution caused to be allocated
[27]. However, to get more accurate values it is recommended to use the package BenchmarkTools. On
it, there is a macro called @btime. This function executes the codemultiple times in order to reduce noise
and to obtain more accurate measurements. Thereafter, it prints the minimum run-time and memory
allocation [29]. The macro @belapsed returns the minimum time in seconds. The macro @ballocated is
comparable to @belapsed, but it returns the total number of bytes allocated on the heap corresponding
to the trial with the minimum elapsed time measured during the benchmark [30].

5.2. Reducing Heap Allocations
An operating system’s memory consists of different segments, among others, the stack and heap.
Stacks are regions of memory where data is stored in the order it gets them and removes the values in
the opposite order, also known as Last In, First Out (LIFO) manner. Moreover, all data stored on the
stack must have a predetermined, fixed size. As a result, stack allocation is very simple and typically
faster than heap-based memory allocation [31]. The heap is dynamic memory, which implies that it can
be allocated, resized and freed during program runtime. When data is put on the heap, the memory
allocator finds an empty spot in the heap that is big enough, marks it as being in use, and returns a
pointer. A pointer is a variable whose value is the address of another variable. This process is referred
to as allocating [32]. The allocating makes the heap allocations costly [33]. Pushing to the stack is
faster than allocating on the heap, since the data will always be placed at the top of the stack [32].

26

In general, new mutable values are stored in the heap, and new immutable values are stored in the
stack. In some situations, the implementation can be adjusted such that the data is stored on the stack
instead of the heap. An example from [33] is shown below.� �

using BenchmarkTools

A = rand(100,100)
B = rand(100,100)
C = rand(100,100)

function inner_alloc!(C,A,B)
for j in 1:100, i in 1:100

val = [A[i,j] + B[i,j]]
C[i,j] = val[1]

end
end
@btime inner_alloc!(C,A,B)

226.092 μs (10000 allocations: 625.00 KiB)

function inner_noalloc!(C,A,B)
for j in 1:100, i in 1:100

val = A[i,j] + B[i,j]
C[i,j] = val[1]

end
end
@btime inner_noalloc!(C,A,B)

6.540 μs (0 allocations: 0 bytes)� �
The arrays are created using rand(). When there is no type specified, the elements are of type Float64
by default [34]. Note that this code first loops over the rows and then over the columns. This approach is
faster in Julia, which uses column-major order, similar to MATLAB. In contrast, Python’s NumPy library
uses row-major order [33]. The difference between the two functions lies in the type of the variable
val. In the first function, val is an array, whereas in the second function, val is of the same type as the
elements of the arrays A and B. Specifically, in this case, val is a Float64. Since an array is a mutable
object, it is stored on the heap. As a result, in the first function, not only is the allocation inefficient, but
the code is also not optimal in terms of computation speed. In contrast, the size of a Float64 number is
known at compile-time, namely 64-bits. Therefore, in the second function, val is stored onto the stack,
resulting in less memory usage and faster computation.

An alternative to heap allocations is the package StaticArrays.jl. StaticArrays.jl provides a frame-
work for implementing statically sized arrays in Julia. Helpful macros from the package are SVector,
SMatrix and SArray [35]. These arrays have their size known at compile-time and are immutable. As a
result, these structures are stored on the stack [36]. An example from [33] illustrates how this package
can be used. � �

using StaticArrays

function static_inner_alloc!(C,A,B)
for j in 1:100, i in 1:100

val = @SVector [A[i,j] + B[i,j]]
C[i,j] = val[1]

end
end
@btime static_inner_alloc!(C,A,B)

6.544 μs (0 allocations: 0 bytes)� �
Important to note is that arrays can only be static if they are sufficiently small. Once the array reaches
a certain size, the array has to be allocated in the heap instead of the stack. It is recommended to not
use static arrays if the system requires more than around 100 variables [35].

27

5.3. Type Stability
One key to performance in Julia is due to the fact that the compiler determines the concrete return type
of any function call it encounters. An example of a concrete type is Int64. The compiler knows the value
and the size of that type. Abstract types, such as Number, have no concrete objects or values of their
own and the compiler has no information [37]. In Julia, a function can have multiple implementations,
called methods, each one for a different combination of argument types. At run-time, the language
will determine which specific method is most applicable to the types of the arguments. This is known
as multiple dispatch [26]. In order to write high-performance Julia code, it is important to write type
stable code. Type stable code means that the concrete type of its output is entirely determined by the
concrete types of its arguments [37]. In other words, the type of the output cannot vary depending on
the values of the inputs [27]. The code below shows an example of a function that is not type stable.� �

using BenchmarkTools

n = 10000
vfloat = rand(Float64, n)
vint = rand(Int64, n)

function sum(v, t)
res = v[1]
for i = 2:length(v)

elm = v[i] < t ? v[i] : t
res += elm

end
return res

end
@btime sum(vfloat, 0.5)
10.200 μs (1 allocation: 16 bytes)

@btime sum(vint, 0.5)
#52.900 μs (1 allocation: 16 bytes)� �

This function sums the elements of the vector v, but if any element exceeds the threshold t, it adds t
instead. Note there is a large difference in computation time. The Julia compiler is not able to deduce
a concrete return type of the method, since it can be either an Int64 or Float64. In more complex code,
it may be hard to understand the type behaviour of a function. Fortunately, Julia has a built-in macro,
@code_warntype, which shows types that are not concrete [37]. Although the macro returns extensive
output, the colored parts are the most important. When running� �

@code_warntype sum(vint, 0.5)� �
one of the output lines is Body::Union{Float64, Int64}, indicating that the return type may be either a
Float64 or Int64. Moreover, the line res::Union{Float64, Int64} shows that the type of res changes.
This type-related property will be referred to as type groundedness, indicating that the type of each
variable depends only on the types of the arguments [37]. To better understand the distinction between
these properties, an example is provided that is type stable, but not type grounded.� �

using BenchmarkTools

function sumofsins1(n)
r = 0
for i in 1:n

r += sin(3.4)
end
return r

end
@btime sumofsins1(100000)

244.400 μs (0 allocations: 0 bytes)

function sumofsins2(n)
r = 0.0
for i in 1:n

r += sin(3.4)
end

28

return r
end
@btime sumofsins2(100000)

72.900 μs (0 allocations: 0 bytes)� �
In the first function, the variable r is initialised as an integer. Thus, in the first iteration the type of r is
transformed from an Int64 to a Float64. The type of r is not stable over time. As a result, the compiler
cannot optimise the main loop, since it cannot guarantee that the type of the variable r will remain the
same throughout the loop. The compiler must check the type of r in every iteration. In the second
function, the variable is initialised as a float and the variable is type stable. Therefore, the execution
time of the second function is significantly shorter than the execution time of the first function.

5.4. Parallel Computing
Another key feature of Julia is the built-in parallel processing support. To create a language for parallel
computing, was one of the motivations to build Julia [38]. In this research, the package Polyester
.jl is used. This package provides low-overhead multithreading [39]. Julia operates with a single
thread for execution as its default configuration. When launching Julia via the Powershell on Win-
dows, the environment variable JULIA_NUM_THREADS governs the number of threads. For example, when
JULIA_NUM_THREADS is set as $env:JULIA_NUM_THREADS=4, there are four available threads after launching
Julia. Important to note is that JULIA_NUM_THREADSmust be defined before launching Julia. Configuring it
within the ~/.julia/config/startup.jl is ineffective, since it occurs too late in the startup process [40].
It is recommended to set the number of threads equal to the computer’s logical processors, which can
be found under system information. When the Julia extension in Studio Visual Code is used, the num-
ber of threads can be controlled in the settings. To enable the maximum number of threads available
on the machine, the line "julia.NumThreads": "auto" should be added to the file. The macro @batch
allows to evaluate a for-loop on multiple threads.
As an example of the application of @batch, the discretised Laplace operator is considered. In Julia, a
two-dimensional implementation with a finite-difference formula is implemented.� �

function lap2d!(u, unew)
M, N = size(u)
for j in 2:N-1

for i in 2:M-1
unew[i,j] = 0.25 * (u[i+1,j] + u[i-1,j] + u[i,j+1] + u[i,j-1])

end
end

end

M = 4096
N = 4096
u = zeros(M, N)

%# set boundary conditions
u[1,:] = u[end,:] = u[:,1] = u[:,end] .= 10.0
unew = copy(u);
@btime lap2d!(u, unew)

22.967 ms (0 allocations: 0 bytes)� �

29

The function is multithreaded by adding the macro @batch to the most outer loop. The parallelisation
results in a speed up as can be concluded from the following code.� �

function lap2d_parallel!(u, unew)
M, N = size(u)
@batch for j in 2:N-1

for i in 2:M-1
unew[i,j] = 0.25 * (u[i+1,j] + u[i-1,j] + u[i,j+1] + u[i,j-1])

end
end

end

M = 4096
N = 4096
u = zeros(M, N)

set boundary conditions
u[1,:] = u[end,:] = u[:,1] = u[:,end] .= 10.0
unew = copy(u);
@btime lap2d_parallel!(u, unew)

15.868 ms (0 allocations: 0 bytes)� �

30

6
Computational Performance Analysis

This chapter compares the previously described methodologies in terms of computation speed and
memory usage. Here, memory usage refers specifically to heapmemory usage. Recall that the different
approaches are:

1. Uniform basis functions with point matching at the centres of the mesh elements.
2. Uniform basis functions with the average formulation.
3. Linear basis functions with point matching at the vertices of the mesh elements, shifted to the

centre by ϵshift.
4. Linear basis functions with a Galerkin method.

Moreover, an in-depth analysis of the performance of the MoM implementation using uniform basis
functions and point matching is conducted. This analysis aims to estimate the potential benefits of
using Julia for TNO’s numerical simulations. Comparable to MATLAB, Julia has a built-in operator to
solve matrices, the ’\’-operator. Since this research does not dive into optimising the system-solving
process, this macro is used to obtain the solution. A distinction is made between the time required to
obtain the matrix and solution vector of the linear system and the time required to solve this system.
From now on, there will be referred to these times as ”assembly time” and ”solve time”, respectively. For
the other methods, the assembly and solve time will be compared for one mesh.The same geometry
is used as described in Section 3.7. Thus, a linearly reacting plate of 10× 10× 0.002 m, with magnetic
susceptibility χm = 100 is considered. The next section explains how the external magnetic flux density
is chosen. Following that, the results on the performance of the MoM implementation using uniform
basis functions and point matching are shown and compared to TNO’s current implementation. Lastly,
the computation speed and memory usage of the remaining three methods are presented.

6.1. Determine External Magnetic Flux Density
As mentioned in Chapter 3, Bext equals the Earth’s magnetic flux density. In the previous chapter, the
external flux density was chosen to be only nonzero in the x-component. To make the comparison as
accurate as possible, Bext equals Earth’s magnetic flux density in the Dutch North Sea. The magnitude
of the magnetic flux density in this region equals approximately 50 µT [41]. With help of the magnetic
declination and inclination, denoted by D and I respectively, the magnetic flux density in the x-, y-, and
z-direction can be found. The magnetic declination is the difference in direction between geographic
andmagnetic North [42]. Magnetic inclination is the angle at which the geomagnetic field is tilted relative
to the surface of the Earth [2]. Figure 6.1 visualises these angles. In this figure, F denotes the total
magnetic flux intensity and H denotes horizontal component of F .

31

Figure 6.1: Decomposition of Earth’s magnetic flux density [2].

At the Dutch North Sea, the magnetic declination and inclination equals approximately 2◦ and 68◦

respectively [43]. Using these angles and the fact that F = 50 µT, the external magnetic flux density
in the x-, y- and z-components can be calculated as follows

Bext =

Bextx
Bexty
Bextz

 , (6.1)

=

H cos(D)
H sin(D)
F sin(I)

 , (6.2)

H = F cos(I) ⇒ =

F cos(I) cos(D)
F cos(I) sin(D)

F sin(I)

 , (6.3)

≈

19
0.7
46

µT (6.4)

6.2. Julia Implementation vs. TNO's MATLAB Implementation
To evaluate the value of Julia for the MoM, TNO’s existing implementation is compared to the implemen-
tation in Julia. Remember that currently TNO uses uniform basis function and point matching. There-
fore, this section focuses on the implementation that uses uniform basis functions and point matching.
Various meshes of the geometry are analysed. The table below shows the corresponding number of
mesh elements for each value of lc.

32

Mesh k lc Number of mesh elements
1 10 4
2 1.0 244
3 0.70 544
4 0.60 690
5 0.50 936
6 0.40 1474
7 0.34 2122
8 0.32 2400
9 0.30 2738
10 0.28 3048
11 0.26 3536
12 0.24 4132
13 0.22 4912
14 0.20 5828
15 0.18 7322

Table 6.1: Table of the value of lc and the number of mesh elements per mesh of the plate.

Remember that the size of the obtained linear system equals 3N×3N , whereN is the number of mesh
elements. The external magnetic flux density is as described in the previous section.

6.2.1. Obtained Solution for M̃
Before the computational performance is analysed, it is verified that the solution for the magnetisation
using the implementation in Julia give similar results as TNO’s implementation in MATLAB. Two metrics
are used to measure the difference between the two vectors. Denote the difference vector as x ∈ Rn =
[x1, x2, . . . , xn]

T for some n ∈ N. First of all, the l∞-norm is used. This norm is also called the maximum
norm. It takes the form [44, p. 40]

||x||∞ = max(|x1|, |x2|, . . . , |xn|). (6.5)

Observe that this error metric provides the worst-case scenario by focusing on the largest absolute
value within the difference vector. To complement the maximum norm, the second error metric used is
the Root Mean Square Error (RMSE). It provides an overall picture of the difference by considering all
vector elements. The RMSE takes the form [45]

RMSE(x) =

√∑N
i=1(xi)

2

N
. (6.6)

33

The figure below shows both the maximum error and the RMSE between the solution for the magneti-
sation using the implementation in Julia and TNO’s implementation in MATLAB.

Figure 6.2: The difference between the obtained magnetisation using uniform basis functions and point matching.

Figure 6.2 shows that the difference between the solutions obtained using the Julia implementation and
TNO’s MATLAB implementation is negligibly small.

6.2.2. Computation Speed
The computation time of the assembly and solve step are found for various values of lc. Figure 6.3
shows the computation times of the implementation in Julia plotted against the number of elements in
the mesh. Since TNO does not use parallel computing, the computation times are presented for both
scenarios: with and without parallel computing. In Figure 6.3a, the sub-blocks of the interaction matrix
are computed in parallel, whereas Figure 6.3b shows the results without parallel computing.

(a) With parallel computing. (b) Without parallel computing.

Figure 6.3: The assembly and solve time using uniform basis functions and point matching in Julia.

34

A significant difference in assembly times can be observed between the parallel and non-parallel com-
puting scenarios. In both scenarios, there exists a point where the assembly of the matrix [C] becomes
faster than solving the linear system with the ’\’-operator. The use of parallel computing or not should
not have a significant influence on the solve time, since the macro @batch is not used to solve the linear
system. Therefore, there is not much of a difference expected between the solve time with and without
parallel computing, which is also shown in Figure 6.3.

The computation times for the Julia implementation are compared with TNO’s MATLAB implementation.
To minimise variability in TNO’s computation times, the MATLAB code is executed four times, and the
average times are recorded. The following figure shows the results.

(a) Assembly time. (b) Solve time.

Figure 6.4: The assembly and solve time using uniform basis functions and point matching.

From Figure 6.4a, it can be concluded that the implementation in Julia outperforms TNO’s current
implementation in terms of the computation speed of the assembly step, regardless of whether parallel
computing is used. For meshes up to approximately size 4000, the solve times are similar. However,
for larger meshes, MATLAB solves the system faster.

6.2.3. Memory Usage
Also, the number of heap allocations is measured for the meshes. Unfortunately, MATLAB does not
offer a straightforward method for benchmarking heap allocations during the simulation. Therefore, this
section only focuses on the implementation in Julia. Figure 6.5 shows the heap memory use for the
different meshes. The y-axis shows the memory use in kibibytes. Note that 1 kibibyte equals 1024 bit
[46].

35

Figure 6.5: The heap memory usage using uniform basis functions and point matching in Julia

This graph shows that the assembly step takes more heap memory than the solve step.

6.3. Comparison of the Four Methods
In this section, the four different approaches, discussed in the previous chapters, are compared in terms
of computation speed and memory use. To do so, only one mesh is considered, namely the plate as
described before with lc = 0.3. This mesh consists of 1438 nodes and 2878 elements. The relative
tolerance in the function hcubature() using uniform basis functions is set to 10−6 and using linear basis
functions is set to 10−5. The table below shows the computation time andmemory usage of the different
methods for this mesh.

Time [s] Memory Usage [KiB]
Assembly Solve Assembly Solve

Uniform - Point matching 1.41 4.95 1.6 · 106 5.3 · 105
Uniform - Average formulation 955.17 4.31 3.0 · 107 5.3 · 105
Linear - Point matching 225.83 0.68 4.0 · 107 1.5 · 105
Linear - Galerkin method 4248.49 0.66 2.1 · 109 1.5 · 105

Table 6.2: Overview of the assembly and solve time of the different methods

The implementation of the assembly of the interaction matrix using uniform basis functions and point
matching is the most efficient implementation in terms of computation speed and memory use. This
efficiency is expected since avoiding allocation speeds up the implementation. With linear basis func-
tions and point matching, heap memory allocation is affected by how the shift of evaluation points is
handled. In the average formulation and the Galerkin method, the high heap allocation is due to the
numerical integration process.
Note that the amount of memory use to solve the system, only depends on the size of the system. This
explains the comparable solve times between the methods when the same set of basis functions is
used. Since the number of nodes is less than the number of mesh elements, the linear system ob-
tained by using linear basis functions is smaller than the linear system obtained by using uniform basis
functions. This explains the difference in solve times. Due to the errors in the numerical integration
process, the Galerkin method does not lead to a symmetric system yet. When rounding down to a spe-
cific number of significant figures, the interaction matrix, and consequently the linear system, becomes
symmetric. This is advantageous as symmetric matrices possess properties that simplify the solving
process.

36

7
Verification

In this chapter, the four different methods are verified. Verification is the process of answering the ques-
tion whether the implementation is correct. For the implementation that uses uniform basis functions
and point matching it is checked that the computed solution converges to the analytical solution of the
spherical shell, which presented in Appendix A. For the remaining three methods, a mesh convergence
analysis is conducted .

7.1. Accuracy
In this section, the performance in terms of accuracy of one approach is analysed, namely using uniform
basis functions and point matching. The geometry is a spherical shell with outer radius 50 m and inner
radius 49.998 m. Denote the outer and inner radii as b and a respectively. In Appendix A, analytical
solutions for M and Bred are given when a spherical shell is placed in a uniform magnetic field in the
z-direction. The assumption is made that the external flux density equals

Bext(r) = 50 · 10−6uz. (7.1)

The analytical solutions for both M and Bred are compared to the numerical approximation for one
geometry with various meshes.

7.1.1. Meshing of Spherical Shell
With help of Gmsh, a hollow sphere with radius 50m is created. Thereafter, a 2D mesh is generated on
the spherical geometry. Again, the parameter lc is used to define the mesh size. The mesh is extruded
towards the centre of the sphere by h = b− a = 0.002 m.

Note that this meshing approach does not produce prisms with congruent triangular faces as mesh
elements. As a result, this complicates the integration over the volume. Additionally, the linear basis
functions defined in Chapter 4 are not applicable to these elements, as the functions lose their invari-
ance in the thickness direction of the element. Therefore, this section only focuses on the use of uniform
basis functions and point matching. After the meshing is done, the volume of the mesh is calculated,
which is denoted by Vmesh. Also, the volume of the shell is analytically calculated

Vanalytical = Vouter − Vinner, (7.2)

=
4

3
πb3 − 4

3
πa3, (7.3)

=
4

3
π(b3 − (b− h)3). (7.4)

To ensure an accurate comparison between the analytical and numerical solution, b is transformed to
b′, such that the volume of the mesh equals the volume of analytical spherical shell. b′ can be found as

37

follows

Vmesh =
4

3
π(b′3 − (b′ − h)3), (7.5)

Vmesh = 4πh(b′2 − b′h+
h2

3
), (7.6)

b′2 − b′h+
h2

3
− Vmesh

4πh
= 0, (7.7)

b′ =
h+

√
Vmesh

πh − h2

3

2
∨ b′ =

h−
√

Vmesh

πh − h2

3

2
, (7.8)

b′ must be positive and larger than h ⇒ b′ =
h+

√
Vmesh

πh − h2

3

2
. (7.9)

Denote the transformed inner radius as a′ = b′ − h.

7.1.2. Comparison for M̃
The approximated magnetisation at the centre of the mesh elements is compared to the analytical
magnetisation at the middle of the shell’s material. Suppose the mesh consists of N mesh elements.
First, the centres of the mesh elements are computed, denoted by rk for k = 1, . . . , N . A vector pointing
from the centre of the spherical shell to the centre of each mesh element is determined and normalised.
Observe that the distance from the centre of the shell to the centre of the material is given by a + h

2 .
By multiplying this vector by a + h

2 , the point inside the spherical shell is determined, denoted by r′k,
where the magnetisation is estimated by M̃(rk) for k = 1, . . . , N . Repeating this for every element, two
vectors of size 3N are obtained, M̃ and M. Figure 7.1 gives a clearer visualisation of the two points
that are compared for an arbitrary mesh element k. A cross-section of the spherical shell is depicted.
The red object represents the mesh element k.

r′k
rk

a′
b′

Figure 7.1: Two points rk and r′k where the magnetisation is compared for an arbitrary mesh element.

38

7.1.3. Comparison for B̃red
The estimated reduced magnetic flux density is compared to the analytical reduced magnetic flux den-
sity in the x-y plane at z = 100 m. Both x and y range from −60 m to 60 m. 120 points are uniformly
distributed along both the x- and y-direction, which results in a total of 14400 points. The points are
visualised in the figure below.

Figure 7.2: Visualization of the points that are used to compare B̃red

In this array of points, the reduced magnetic flux density resulting from the estimated magnetisation of
the spherical shell is compared to the analytical solution for the reduced flux density.

7.1.4. Results
The approximated magnetisation and reduced magnetic flux density, calculated using uniform basis
functions and point matching, is compared to the analytical solution for the magnetisation for multiple
meshes. Table 7.1 provides an overview of the meshes.

Mesh k lc Number of mesh elements
1 0.50 1138
2 0.40 1642
3 0.38 1792
4 0.36 2110
5 0.34 2258
6 0.32 2620
7 0.30 2970
8 0.28 3376
9 0.26 3790
10 0.24 4452
11 0.22 5452
12 0.20 6518

Table 7.1: Table of the value of lc and the number of mesh elements for the mesh of the spherical shell.

The vector M− M̃k is denoted by ek. The normalised RMSE (NRMSE) is calculated as follows

NRMSE(ek) =
RMSE(ek)

max(M)−min(M)
. (7.10)

39

Figure 7.3 and Figure 7.4 show the results on the accuracy.

(a) Maximum error. (b) Relative maximum error.

Figure 7.3: The maximum error of the approximated magnetisation using uniform basis functions and point matching.

(a) RMSE. (b) NRMSE.

Figure 7.4: The RMSE of the approximated magnetisation using uniform basis functions and point matching.

Based on these figures, it can be concluded that the numerical solution converges to the analytical
solution as the mesh becomes finer. The error, measured by the RMSE, shows a monotone decreasing
trend. Similar graphs are made for the approximation of the reduced magnetic flux density. Now, ek
denotes the vector Bred − B̃red.

(a) Maximum error. (b) Relative maximum error.

Figure 7.5: The maximum error of the approximated reduced magnetic flux density using uniform basis functions and point
matching.

40

(a) RMSE. (b) NRMSE.

Figure 7.6: The RMSE of the estimated reduced magnetic flux density using uniform basis functions and point matching.

Figure 7.5 and Figure 7.6 demonstrate that both the maximum error and the RMSE show a monotoni-
cally decreasing trend, converging towards zero.
These results validate the implementation of the MoM using point matching in Julia.

7.2. Convergence
Since verifying the performance in terms of accuracy using the analytical solution of a spherical shell
for all four methods was not possible, a mesh convergence analysis is conducted. Mesh convergence
analysis helps verify the accuracy of the numerical solution. By refining the mesh and observing how
the solution changes, it can be ensured that the results are approaching the true solution of the phys-
ical problem. The geometry is again the linearly reacting plate of 10 × 10 × 0.002 m, with magnetic
susceptibility χm = 100. The external uniform magnetic flux density equals

Bext(r) = 50 · 10−6ux. (7.11)

The mesh that is used to compute the approximation of the magnetisation in the plate is repeatedly re-
fined. The same meshes are used as mentioned in Section 6.2, with the exception of the finest mesh,
which is excluded from this analysis. Table 6.1 shows an overview of the iteration and the number of
mesh elements. Figure 3.1 visualises meshes for two values of lc. After each refinement k, the mag-
netisation, denoted as M̃k, is recalculated. For k > 1, the newly computed magnetisation is compared
to the approximated magnetisation obtained from the mesh of the previous iteration, which is denoted
by M̃k−1. On the plate, 50 points are uniformly distributed along both the x- and y-direction, excluding
the boundary. This results in a total of 2500 points, where the estimated magnetisation is computed.
The vector M̃k − M̃k−1 is denoted as ek. The difference between the estimated magnetisation from
two consecutive refinements is calculated using the maximum error and the RMSE. In this section the
RMSE is normalised as follows

NRMSE(ek) =
RMSE(ek)

max(|ek|)−min (|ek|)
. (7.12)

7.2.1. Uniform Basis Functions
In this subsection, the convergence of the MoM for finding M̃ using uniform basis functions is analysed.
Figure 7.7 displays both the maximum and the relative maximum error of the approximated magnetisa-
tion between two consecutive meshes.

41

(a) Maximum error. (b) Relative maximum error.

Figure 7.7: Maximum error and relative maximum error of the solutions for consecutive meshes using uniform basis functions.

From Figure 7.7, it can be concluded that the maximum norm of the difference in the solution between
two consecutive meshes does not converge for these meshes. To gain insight into this issue, the
positions on the plate where the maximum error occurs between two consecutive refinements are
illustrated in the following figure.

Figure 7.8: Positions within the plate where the maximum error occurs between two consecutive meshes using uniform basis
functions.

Observe that the maximum error occurs close to the boundary of the geometry. Experiments show that,
for this external field, the x-component of the magnetisation close to the boundary decreases as the
mesh refines. Figure 7.9 show both the RMSE and NRMSE between two consecutive meshes.

(a) RMSE. (b) NRMSE.

Figure 7.9: RMSE and NRMSE of the solutions for consecutive meshes using uniform basis functions.

42

Figure 7.9 demonstrates that both methods converge.

7.2.2. Linear Basis Functions
In this subsection, the convergence of the MoM for finding M̃ using linear basis functions is analysed.
The convergence of point matching and the Galerkin method are presented in separate figures. It
is important to note that the convergence analysis for the Galerkin method does not include all the
meshes.
Figure 7.10 and Figure 7.11 show the maximum error and relative maximum error, respectively, of the
difference in the solution between two consecutive meshes using both point matching and the Galerkin
method.

(a) Point matching. (b) Galerkin method.

Figure 7.10: Maximum error of the solutions for consecutive meshes using linear basis functions.

(a) Point matching. (b) Galerkin method.

Figure 7.11: Relative maximum error of the solutions for consecutive meshes using linear basis functions.

Even though Figure 7.10a and Figure 7.11a show a decrease in both the maximum error and relative
maximum error between two consecutive solutions as the mesh refines, the Galerkin method shows
a significantly smaller maximum error and relative maximum error. However, Figure 7.10b and 7.11b
show both errors do not converge to zero for these meshes. The positions on the plate where the
maximum error occurs between two consecutive refinements are illustrated in the figure below.

43

Figure 7.12: Positions within the plate where the maximum error occurs between two consecutive iterations using linear basis
functions.

Observe in Figure 7.12 that the maximum difference of the solutions of two consecutive refinements
using point matching also occurs occurs in the centre of the geometry. From a physical perspective, it
is known that for this external magnetic flux density, the magnetisation in the internal part of the plate
is uniform. Therefore, it is expected that the approximated magnetisation should not show significant
differences when the mesh is refined. The maximum difference in the solutions of two consecutive re-
finements using the Galerkin method occurs near the boundary. Therefore, Figure 7.13 and Figure 7.14
show the RMSE and NRMSE, respectively, of the difference in the solution between two consecutive
meshes using both point matching and the Galerkin method.

(a) Point matching. (b) Galerkin method.

Figure 7.13: RMSE of the solutions for consecutive meshes using linear basis functions.

(a) Point matching. (b) Galerkin method.

Figure 7.14: NRMSE of the solutions for consecutive meshes using linear basis functions.

44

Figure 7.13 and Figure 7.14 show that both the RMSE and the NRMSE of the difference in the solution
between two consecutive meshes using the Galerkin method is smaller than when using point matching.
Based on this mesh convergence analysis, the Galerkin method is preferred over point matching.

45

8
The Use of Automatic Differentiation

in Method of Moments

Consider a 3D-domain τM made of magnetic material exposed to an external magnetic flux density. To
determine the elements of the interaction matrix in the MoM, it is essential to derive an expression for
the following equation

B̃red(r) = ∇×

µ0

4π

∫∫∫
τM

M̃(r′)× (r− r′)

||r− r′||3
dr′

 , (8.1)

where M̃(r) =
∑N

i=1 M̃
iϕi(r) for a set of basis functions {ϕi}Ni=1 and coefficients {M̃i}Ni=1. The method-

ologies discussed thus far involve interchanging the integration and differentiation, followed by finding
an analytical expression. Differentiating the integrand increases its singularity. It is expected that first
integrating with respect to r′ and then differentiating with respect to r prevents an increase in the order
of singularity of the integration kernel. This approach simplifies the numerical integration with respect
to r′ using adaptive numerical methods. Therefore, it is beneficial to first derive an expression for the
integral and then determine the curl by taking its derivatives.
Three approaches can automate the calculation of derivatives: numerical differentiation using finite
difference approximations, symbolic differentiation, and automatic differentiation (AD) [47]. Finite dif-
ference methods are vulnerable for truncation and rounding errors, and instability [48]. Symbolic dif-
ferentiation may lead to costly evaluations of the derivative [49]. AD offers the benefits of precision
and user-friendliness, while the computation speed is comparable to hand-coding derivatives [47] [50].
Another advantage of using AD in the MoM is the potential to establish a more general framework. This
approach would make it easier to extend the MoM to different sets of basis functions and simplify the
implementation process.
This chapter introduces AD with the help of dual numbers. To get a better understanding, an example
of forward AD is provided. Next, the use of the Julia package ForwardDiff.jl, which enables automatic
differentiation, is demonstrated. Finally, the derivation of the interaction matrix in the MoM using AD is
presented.

46

8.1. Automatic Differentiation using Dual Numbers
One way to implement AD is using dual numbers. A dual number is a number of the form a+ ϵb, where
a, b ∈ R, ϵ ̸= 0 and ϵ2 = 0 [33]. The addition, multiplication and division operation are straightforward

z1 + z2 = (a+ ϵb) + (c+ ϵd), (8.2)
= a+ c+ ϵ(b+ d), (8.3)

z1 · z2 = (a+ ϵb) · (c+ ϵd), (8.4)
= ac+ ϵ(ad+ bc) + ϵ2bd, (8.5)
= ac+ ϵ(ad+ bc), (8.6)

z1
z2

=
a+ ϵb

c+ ϵd
(where c ̸= 0), (8.7)

=
(a+ ϵb)(c− ϵd)

(c+ ϵd)(c− ϵd)
, (8.8)

=
ac− ϵad+ ϵbc− ϵ2bd

c2 − ϵd2
, (8.9)

=
a

c
+ ϵ

bc− ad

c2
. (8.10)

The relation between dual numbers and differentiation becomes clear when looking at the Taylor ex-
pansion. Given an arbitrary real function f : R → R. The Taylor series for the function f(z1) at the
point a is given by [51, p. 159]

f(a+ ϵb) =

∞∑
n=0

f (n)(a)(a+ ϵb− a)n

n!
, (8.11)

=

∞∑
n=0

f (n)(a)ϵnbn

n!
, (8.12)

= f(a) + bf ′(a)ϵ. (8.13)

The same can be done for multi-variate functions. Given an arbitrary real function f : Rn → R. Several
ϵ are added to each component. These values are stored in ϵ ∈ R, where ϵ2i = ϵij = 0. The Taylor
expansion at point a is given by [51, p. 160]

f(a+ ϵb) = f(a) + b∇f(a)ϵ. (8.14)

For a function f : Rn → Rm, instead of using a vector ϵ, a matrix ϵ is used. For each row in the matrix,
Equation 8.14 is applied [33]. The Taylor expansions allows to extend the elementary functions to the
set of dual numbers. This equation allows to extend elementary functions to the set of dual numbers.
For example,

sin(z1) = sin(a+ ϵb) = sin(a) + b cos(a)ϵ. (8.15)

8.1.1. Example of Forward Automatic Differentiation
Consider an arbitrary function f : Rn → Rmfor which all elements of the Jacobian matrix need to be
computed. AD operates in two modes: forward mode and reverse mode. In [47] is mentioned, that
forward mode is more efficient when n ≤ m. Given that the integral shown in Equation 8.1 maps from
R3 to R3, forward mode is considered in this research. This section illustrates forward AD with an
example. Suppose that the gradient at (0, 1) of the following multivariate function has to be computed

f(x, y) = xy + sin(x) + 4. (8.16)

47

A series of arithmetic operations gives an equivalent representation of the function into a code list. The
code list for f(x, y) is [52]

s1 = x, (8.17)
s2 = y, (8.18)
s3 = s1 · s2, (8.19)
s4 = sin(s1), (8.20)
s5 = s3 + s4, (8.21)
s6 = s5 + 4. (8.22)

In [53], a method is described in which the primary AD variables are defined as

x = 0 + ϵ

(
1
0

)
, (8.23)

y = 1 + ϵ

(
0
1

)
. (8.24)

x and y are substituted for s1 and s2.

s1 = 0 + ϵ

(
1
0

)
, (8.25)

s2 = 1 + ϵ

(
0
1

)
, (8.26)

s3 = 0 + ϵ

(
1
0

)
, (8.27)

s4 = 0 + ϵ

(
1
0

)
, (8.28)

s5 = 0 + ϵ

(
2
0

)
, (8.29)

s6 = 4 + ϵ

(
2
0

)
. (8.30)

It can be concluded that f(0, 1) = 4 and∇f(0, 1) =
(
2
0

)
. By computing f(0, 1) and∇f(0, 1) analytically,

it can be verified that the results are correct.

8.2. Forward Automatic Differentiation in Julia
ForwardDiff.jl is a Julia package that provides tools for calculating derivatives, gradients, Jacobians,
Hessians, and higher-order derivatives using dual numbers as described in Section 8.1. For comput-
ing gradients and Jacobians, the package offers a version of vector-forward mode that eliminates the
need for costly heap allocations [48]. The code below returns the gradient of the multivariate function
displayed in Equation 8.16.� �

using ForwardDiff

function f(x)
return x[1]*x[2] + sin(x[1]) + 4

end

x = @SVector[0,1]
ForwardDiff.gradient(f, x)� �

48

The output of the code is� �
2-element SVector{2, Float64} with indices SOneTo(2):
2.0
0.0� �

To obtain the interaction matrix in MoM, the curl of a a vector-valued integral has to be computed.
First, the Jacobian of the integral is computed. Thereafter, the curl is derived using the entries of the
Jacobian. To get a better understanding how this is done in Julia an example is provided. Consider a
vector-valued function g : R3 → R3 defined as follows

g(x, y, z) =

xyyz
zx

 . (8.31)

For finding ∇× g(x, y, z) the following code can be used� �
using ForwardDiff

function g(x)
g1 = x[1]*x[2]
g2 = x[2]*x[3]
g3 = x[3]*x[1]
return @SVector[g1,g2,g3]

end

function compute_curl(J)
curl_x = J[3,2] - J[2,3]
curl_y = J[1,3] - J[3,1]
curl_z = J[2,1] - J[1,2]

return @SVector[curl_x, curl_y, curl_z]
end

x = @SVector[1.0, 1.0, 1.0]
J = ForwardDiff.jacobian(g, x)
compute_curl(J)� �

The output equals� �
3-element SVector{3, Float64} with indices SOneTo(3):
-1.0
-1.0
-1.0� �

For this minimal working example, it can easily be verified that ∇× g(1, 1, 1) =

−1
−1
−1

.

8.3. Derivation of the Interaction Matrix Using Automatic Differen-
tiation

This section describes the application of AD to determine the interactionmatrix in theMoM.Observe that
the coefficients {M̃i}Ni=1 in Equation 8.1 are unknown, indicating that the function for the approximated
reduced magnetic flux density is a function of M̃ and r. Considering point matching, it follows from the

49

derivations in Chapter 3 that the interaction matrix [C] is defined such that

[C]M̃ = B̃red, (8.32)

[C]

M̃1

...
M̃N

 =

 B̃red(M̃, r1)
...

B̃red(M̃, rN)

 . (8.33)

(8.34)

By taking the derivative with respect to M̃, the following expression for the interaction matrix can be
obtained

∂[C]M̃

∂M̃
=
∂B̃red

∂M̃
, (8.35)

[C] =


∂B̃red(M̃,r1)

∂M̃1

∂B̃red(M̃,r1)

∂M̃2
. . . ∂B̃red(M̃,r1)

∂M̃N

∂B̃red(M̃,r2)

∂M̃1

∂B̃red(M̃,r2)

∂M̃2
. . . ∂B̃red(M̃,r2)

∂M̃N

...
...

∂B̃red(M̃,rN)

∂M̃1

∂B̃red(M̃,rN)

∂M̃2
. . . ∂B̃red(M̃,rN)

∂M̃N

 . (8.36)

Observe that ∂B̃red(M̃,r)

∂M̃k
for k = 1, . . . , N , is a 3 × 3 matrix. Writing out this expression for some k =

1, . . . , N results in

∂B̃red(M̃, r)

∂M̃k
=

∂

∂M̃k

∇×

µ0

4π

∫∫∫
τM

M̃(r′)× (r− r′)

||r− r′||3
dr′

 , (8.37)

=
∂

∂M̃k

∇×

µ0

4π

∫∫∫
τM

∑N
i=1 M̃

iϕi(r
′)× (r− r′)

||r− r′||3
dr′

 , (8.38)

=
∂

∂M̃k

∇×

µ0

4π

∫∫∫
τk

M̃kϕk(r
′)× (r− r′)

||r− r′||3
dr′

 . (8.39)

An expression for the integral can be determined using the function hcubature(), as described in Section
3.5.1. Following this, AD comes into play. Firstly, the curl of the expression is taken with respect to r.
Secondly, the Jacobian with respect to M̃k is computed. These final two steps use built-in functions
from the Julia package ForwardDiff.jl. Observe that this approach simplifies the computation of the
magnetic vector potential at any point r, which gives more insight into the problem.

50

9
Method of Moments using Automatic

Differentiation

The MoM using AD is implemented in Julia. The implementation assumes uniform basis functions and
point matching. This implementation is compared to the implementation of the method as described
in Chapter 3, hereafter referred to as Morandi’s method, in terms of computation speed, memory use
and estimated magnetisation.

9.1. Meshing
The same geometry is used as the one described in Section 3.7. Thus, a linearly reacting plate of
10× 10× 0.002 m, with magnetic susceptibility χm = 100, is considered. However, instead of meshing
the 2D surface with triangles, squares are used. The geometry is uniformly meshed in both the x- and
y-direction. The squares are extruded in both the positive and negative z-direction, resulting in box-
shaped mesh elements. This approach simplifies the numerical integration over the mesh elements.
The figure below visualises the mesh consisting of 25 elements.

Figure 9.1: Visualisation of the mesh of the plate using AD, consisting of 25 elements.

9.2. Implementation
For now, only the approach that uses uniform basis functions and point matching is implemented. Re-
member that the weighting functions are the Dirac delta functions centered at the centres of mesh
elements. Observe that when we want to calculate the submatrices on the diagonal of the interaction

51

matrix, the following expressions are evaluated

∂B̃red(M̃, rk)

∂M̃k
=

∂

∂M̃k

∇×

µ0

4π

∫∫∫
τk

M̃kϕk(r
′)× (r− r′)

||rk − r′||3
dr′

 for k = 1, . . . , N, (9.1)

where N is the number of mesh elements. Note that this is a singular integral. The function hcubature
() can handle singular integrals, provided the singularity lies on the corner of the box-shaped integral
domain. Otherwise, the function will return NaN. In this case, the singularity is located at the centre of
the integration domain. Therefore, the domain is subdivided into eight smaller cubes, each with the
singularity at one of its corners. The function hcubature() is now able to evaluate the integral on every
subdomain and does not return NaN. However, test cases reveal that the results are not accurate. The
resulting interaction matrix does not match the one computed using Morandi’s method. Moreover, the
solution for M̃ is physically infeasible. A small value ϵ is added to the denominator of the integrand,
which gives

∂B̃red(M̃, rk)

∂M̃k
=

∂

∂M̃k

∇×

µ0

4π

∫∫∫
τk

M̃kϕk(r
′)× (r− r′)

||rk − r′||3 + ϵ
dr′

 for k = 1, . . . , N. (9.2)

To determine the value of ϵ, a geometry of a boxof 0.5 × 0.5 × 0.002 m is considered. Assuming the
mesh consists of only one element, the calculations based on Chapter 3 and physical analysis indicate
that the 3× 3 interaction matrix is a diagonal matrix is a diagonal matrix with identical elements on the
diagonal. From now on, the interaction matrix derived by Morandi’method will be denoted as [CMorandi]
and the interaction matrix derived by AD will be denoted as [CAD]. Remember that [CMorandi] does
not depend on a parameter ϵ. The figure below shows the differences between the two matrices for
various values of ϵ in both the Frobenius and the ∞-norm. The Frobenius norm and the ∞-norm of an
arbitrary matrix [A] ∈ Rm×n equal [54, p. 127, p. 130]

||[A]||F =

 m∑
i=1

n∑
j=1

a2ij

1/2

and ||[A]||∞ = max
1≤i≤m

n∑
j=1

|aij |. (9.3)

To assess the impact on the solution, the x- and y-components of the magnetisation for varying values
ϵ are plotted when the object is exposed to a uniform external field of 50 µT in the positive x-direction.

(a) Difference between [CAD] and [CMorandi]. (b) The x- and y- component of the magnetisation.

Figure 9.2: The impact of ϵ on the interaction matrix and the obtained solution.

Results indicate that adding an ϵ to the integration kernel, within a specific range, is harmless. In
this context, harmless means that the solution does not change significantly. Based on Figure 9.2
the decision is made to set ϵ = 10−13. Observe that a smaller value would not significantly change
the solution for the magnetisation. However, when the value of ϵ is smaller than approximately 10−35,
unexpected behaviour is observed in the interaction matrix [AAD] and the solution.

52

9.3. Results
In this section, the results obtained using AD to find the interaction matrix are presented. The results
are compared to the results using Morandi’s method. The plate is uniformly meshed with 20 square
elements in both the x- and y-directions, resulting in a total of 400 mesh elements. The uniform external
magnetic flux density equals 50 µT. The contour plots are made as explained in Section 3.7.

(a) Using AD. (b) Using Morandi.

Figure 9.3: The assembly and solve time using uniform basis functions and point matching in Julia.

Since the interaction matrices using AD and using Morandi are approximately the same, the magneti-
sation within the plate is expected to be similar. Figure 9.3 confirms this. Both figures show the same
pattern. Moreover, the minimum and maximum values of the x- and y-components of the magnetisation
using AD are comparable to those obtained using Morandi.
The implementation using AD uses significantly more heap memory than Morandi’s method due to the
numerical integration, resulting in slower performance.

53

10
Conclusion and Recommendations

The primary goal of this research is to calculate magnetic signatures using the MoM in Julia, aiming for
the highest accuracy and efficiency. Efficency is defined as faster computation, less memory usage,
and simpler implementation. The research question is defined as follows

How can can TNO’s current implementation of the assembly step in the MoM for modeling
magnetic signatures be improved in terms of accuracy and efficiency using Julia?

To answer this research question, the following sub-questions were investigated

1. What is the optimal implementation of a simplified version of the assembly step in TNO’s current
MoM in terms of accuracy, memory use, and computation speed using Julia?

2. What is the optimal choice of weighting functions using linear basis functions?
3. What is the effect on the accuracy of estimating magnetic signatures using linear basis functions?
4. How to use automatic differentiation such that the assembly step in the modeling process will be

simplified?

The results from Chapter 6 indicate that using Julia instead of MATLAB can significantly improve the
assembly time of the interaction matrix, regardless of whether parallel computing is used. Combined
with the user-friendliness of Julia, this demonstrates its potential value for TNO in assembling the inter-
action matrix as efficient as possible. Note that for these systems, MATLAB’s ’\’-operator is faster than
Julia’s ’\’-operator. Since MATLAB does not offer a straightforward method for benchmarking heap
allocations during the simulation, it is not possible to determine whether memory usage is improved.
Numerical experiment should be conducted to find out if using Julia improves the memory usage of the
assembly step.
Chapter 4 shows that point matching is not a suitable approach when using linear basis functions. If the
evaluation points are selected at the centre of the edges of the triangular surface, the resulting magneti-
sation is physically infeasible. When the shifted vertices of the mesh elements are used as evaluation
points, the solution heavily depends on the parameter ϵshift. It is necessary to investigate the optimal
value of ϵshift for each mesh. Experiments show that determining the optimal value of the parameter
is challenging. It can be concluded that the solution is highly sensitive to the chosen evaluation points,
which is a significant drawback of point matching. The visualisations on the obtained magnetisation
within a plate using a Galerkin method are promising. There is no dependency on a mesh-dependent
parameter and, more important, when rounding down to a specific number of significant figures the lin-
ear system is symmetric. This would simplify the solving process. However, future research is needed
to understand the effect of this rounding on the solution for the magnetisation. Also, the results in
Chapter 6 show that the implementation uses more heap memory than the other described methods,
which causes high computation times. It would be interesting to explore the possibility of developing a
Galerkin method that uses less memory.
The different methods are verified in Chapter 7. The results show that the methods using linear basis
functions converge for both point matching and the Galerkin method. However, the Galerkin method

54

shows faster converges than point matching. Based on the mesh convergence analysis, it is difficult
to draw a final conclusion regarding the effect on accuracy when using linear basis functions. Future
research is needed to provide more insights into the accuracy of the Galerkin method.
Chapter 9 demonstrates the potential of AD in the MoM. This research takes the first step by consider-
ing only uniform basis functions and point matching, showing that AD can simplify the implementation
of the MoM by eliminating the need for analytical expressions for integrals. Note that the AD implemen-
tation also relies on a parameter ϵ. While finding the optimal value of this parameter is not difficult, it
is dependent on the mesh, which is a limitation. Also, the behaviour of the solution when ϵ converges
to zero is unexpected and should be addressed in future work. Moreover, the AD implementation is
suboptimal in terms of computational speed and memory usage. Even though using AD simplifies
the implementation of the assembly step, its computational performance should be improved to be an
alternative to the methods described in previous literature.

55

References

[1] Eugene Lepelaars. personal communication.

[2] Alexei Gvishiani, Anatoly Soloviev, Roman Krasnoperov, and Renata Lukianova. Automated hard-
ware and software system for monitoring the earth’s magnetic environment. Data Science Journal,
15:18–18, 2016.

[3] RA Raveendra Varma. Design of degaussing system and demonstration of signature reduction
on ship model through laboratory experiments. Physics Procedia, 54:174–179, 2014.

[4] John J Holmes. Exploitation of a ship’s magnetic field signatures. Morgan & Claypool Publishers,
2006.

[5] Miroslaw Woloszyn and Jarosław Tarnawski. Magnetic signature reproduction of ferromagnetic
ships at arbitrary geographical position, direction and depth using a multi-dipole model. Scientific
Reports, 13(1):14601, 2023.

[6] A.R.P.J. Vijn. Development of a Closed-loop degaussing system: Towards magnetic unobservable
vessels. Dissertation (tu delft), Delft University of Technology, 2021.

[7] Antonio Morandi, Massimo Fabbri, and Pier Luigi Ribani. A modified formulation of the volume
integral equations method for 3-d magnetostatics. IEEE transactions on magnetics, 46(11):3848–
3859, 2010.

[8] Walton C Gibson. The method of moments in electromagnetics. Chapman and Hall/CRC, 2021.

[9] Lei Xiao, Gang Mei, Ning Xi, and Francesco Piccialli. Julia language in computational mechanics:
A new competitor. Archives of Computational Methods in Engineering, 29(3):1713–1726, 2022.

[10] John MD Coey. Magnetism and magnetic materials. Cambridge university press, 2010.

[11] David J Griffiths. Introduction to electrodynamics fourth edition. 2021.

[12] Richard Clinton Fernow. Principles of magnetostatics. Cambridge University Press, 2017.

[13] Zachary J Silberman, Thomas R Adams, Joshua A Faber, Zachariah B Etienne, and Ian Ruchlin.
Numerical generation of vector potentials from specified magnetic fields. Journal of Computational
Physics, 379:421–437, 2019.

[14] Anders Bondeson, Thomas Rylander, and Pär Ingelström. Computational electromagnetics.
Springer, 2012.

[15] Jian-Ming Jin and Weng Cho Chew. Computational electromagnetics: The method of moments.
Electrical Engineering Handbook, 1999.

[16] Sadri Hassani and Sadri Hassani. Dirac delta function. Mathematical Methods: For Students of
Physics and Related Fields, pages 139–170, 2009.

[17] Roger F Harrington. The method of moments in electromagnetics. Journal of Electromagnetic
waves and Applications, 1(3):181–200, 1987.

[18] Ross Howard and Steven Pekarek. Two-dimensional galerkin magnetostatic method of moments.
IEEE Transactions on Magnetics, 53(12):1–6, 2017.

[19] A. C. Genz and A. A. Malik. Remarks on algorithm 006: An adaptive algorithm for numerical
integration over an n-dimensional rectangular region. Journal of Computational and Applied Math-
ematics, 6:295–302, 1980. doi: 10.1016/0771-050x(80)90039-x.

56

[20] Steven G. Johnson. The HCubature.jl package for multi-dimensional adaptive integration in Julia.
https://github.com/JuliaMath/HCubature.jl, 2017.

[21] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh genera-
tor with built-in pre-and post-processing facilities. International journal for numerical methods in
engineering, 79(11):1309–1331, 2009.

[22] Wu Wang and Naoshi Nishimura. Calculation of shape derivatives with periodic fast multipole
method with application to shape optimization of metamaterials. Progress In Electromagnetics
Research, 127:49–64, 2012.

[23] Elisabeth Roesch, Joe G Greener, Adam L MacLean, Huda Nassar, Christopher Rackauckas,
Timothy E Holy, and Michael PH Stumpf. Julia for biologists. Nature methods, 20(5):655–664,
2023.

[24] Jonas Eschle, Tamás Gál, Mosè Giordano, Philippe Gras, Benedikt Hegner, Lukas Heinrich, Uwe
Hernandez Acosta, Stefan Kluth, Jerry Ling, Pere Mato, et al. Potential of the julia programming
language for high energy physics computing. Computing and Software for Big Science, 7(1):10,
2023.

[25] Soumen Pal, Manojit Bhattacharya, Snehasish Dash, Sang-Soo Lee, and Chiranjib Chakraborty.
A next-generation dynamic programming languagejulia: its features and applications in biological
science. Journal of Advanced Research, 2023.

[26] Jeff Bezanson, Jiahao Chen, Benjamin Chung, Stefan Karpinski, Viral B. Shah, Jan Vitek, and
Lionel Zoubritzky. Julia: dynamism and performance reconciled by design. 2(OOPSLA), oct 2018.
doi: 10.1145/3276490. URL https://doi.org/10.1145/3276490.

[27] Jeff Bezanson, Stefan Karpinski, Viral Shah, Alan Edelman, et al. Julia language documentation.
The Julia Manual, pages 1–261, 2014.

[28] Francesc Verdugo and Santiago Badia. The software design of gridap: a finite element package
based on the julia jit compiler. Computer Physics Communications, 276:108341, 2022.

[29] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy environments. arXiv preprint
arXiv:1608.04295, 2016.

[30] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy environments. arXiv e-prints, art.
arXiv:1608.04295, Aug 2016.

[31] Leo Ferres. Memory management in c: The heap and the stack. Universidad de Concepcion,
2010.

[32] Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press, 2023.

[33] Christopher Rackauckas. Parallel computing and scientific machine learning (sciml): Methods
and applications, 2022. URL https://github.com/SciML/SciMLBook.

[34] Random numbers. URL https://docs.julialang.org/en/v1/stdlib/Random/. (accessed: 13-
07-2024).

[35] Staticarrays. URL https://github.com/JuliaArrays/StaticArrays.jl. (accessed: 14-02-
2024).

[36] Christopher Rackauckas and Qing Nie. Differentialequations.jl – a performant and feature-rich
ecosystem for solving differential equations in julia. The Journal of Open Research Software, 5
(1), 2017. doi: 10.5334/jors.151. URL https://app.dimensions.ai/details/publication/pub.
1085583166andhttp://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/
galley/245/download/.

[37] Artem Pelenitsyn, Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek. Type stability in ju-
lia: avoiding performance pathologies in jit compilation. Proceedings of the ACM on Programming
Languages, 5(OOPSLA):1–26, 2021.

57

https://github.com/JuliaMath/HCubature.jl
https://doi.org/10.1145/3276490
https://github.com/SciML/SciMLBook
https://docs.julialang.org/en/v1/stdlib/Random/
https://github.com/JuliaArrays/StaticArrays.jl
https://app.dimensions.ai/details/publication/pub.1085583166 and http://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/galley/245/download/
https://app.dimensions.ai/details/publication/pub.1085583166 and http://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/galley/245/download/
https://app.dimensions.ai/details/publication/pub.1085583166 and http://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/galley/245/download/

[38] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[39] Polyester. URL https://github.com/JuliaSIMD/Polyester.jl. (accessed: 30-05-2024).
[40] The Julia Language.

[41] A. Hermans and van der Kamp. Current state of knowledge electromagnetic
fields, Sep 2022. URL https://www.noordzeeloket.nl/publish/pages/204320/
current-state-of-knowledge-electromagnetic-fields.pdf.

[42] Nikita Chernetsov, Alexander Pakhomov, Alexander Davydov, Fedor Cellarius, and Henrik Mourit-
sen. No evidence for the use of magnetic declination for migratory navigation in two songbird
species. PLoS One, 15(4):e0232136, 2020.

[43] Noaa magnetic field calculator. URL https://www.ngdc.noaa.gov/geomag/calculators/
mobileDeclination.shtml#WMM. (accessed: 12-07-2024).

[44] Neal L Carothers. Real analysis. Cambridge University Press, 2000.

[45] Charalampos Bratsas, Kleanthis Koupidis, Josep Maria Salanova Grau, Konstantinos Gian-
nakopoulos, Aristos Kaloudis, and Georgia Ayfantopoulou. A comparison of machine learning
methods for the prediction of traffic speed in urban places. Sustainability, 12:142, 12 2019. doi:
10.3390/su12010142.

[46] Peter Glavič. Review of the international systems of quantities and units usage. Standards, 1(1):
2–16, 2021.

[47] Charles C Margossian. A review of automatic differentiation and its efficient implementation. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 9(4):e1305, 2019.

[48] Jarrett Revels, Miles Lubin, and Theodore Papamarkou. Forward-mode automatic differentiation
in julia. arXiv preprint arXiv:1607.07892, 2016.

[49] Philipp HW Hoffmann. A hitchhiker’s guide to automatic differentiation. Numerical Algorithms, 72
(3):775–811, 2016.

[50] Parth Nobel. auto_diff: an automatic differentiation package for python. In 2020 Spring Simulation
Conference (SpringSim), pages 1–12. IEEE, 2020.

[51] Jerrold E Marsden and Anthony Tromba. Vector calculus. Macmillan, 2003.

[52] Louis B Rall. Perspectives on automatic differentiation: past, present, and future? In Automatic
Differentiation: Applications, Theory, and Implementations, pages 1–14. Springer, 2006.

[53] Richard D Neidinger. Introduction to automatic differentiation and matlab object-oriented program-
ming. SIAM review, 52(3):545–563, 2010.

[54] William Ford. Numerical linear algebra with applications: Using MATLAB. Academic Press, 2014.

[55] Eric W. Weisstein. Associated legendre differential equation. URL https://mathworld.wolfram.
com/AssociatedLegendreDifferentialEquation.html.

[56] George B. Arfken and Hans J. Weber. Mathematical Methods for Physicists. Elsevier Academic
Press, 2005.

[57] David A De Wolf. Essentials of electromagnetics for engineering. Cambridge University Press,
2001.

[58] Massimo Fabbri. Magnetic flux density and vector potential of uniform polyhedral sources. IEEE
Transactions on Magnetics, 44(1):32–36, 2007.

[59] John David Jackson. Classical electrodynamics. John Wiley & Sons, 2021.

[60] Adriaan Van Oosterom and Jan Strackee. The solid angle of a plane triangle. IEEE transactions
on Biomedical Engineering, (2):125–126, 1983.

58

https://github.com/JuliaSIMD/Polyester.jl
https://www.noordzeeloket.nl/publish/pages/204320/current-state-of-knowledge-electromagnetic-fields.pdf
https://www.noordzeeloket.nl/publish/pages/204320/current-state-of-knowledge-electromagnetic-fields.pdf
https://www.ngdc.noaa.gov/geomag/calculators/mobileDeclination.shtml#WMM
https://www.ngdc.noaa.gov/geomag/calculators/mobileDeclination.shtml#WMM
https://mathworld.wolfram.com/AssociatedLegendreDifferentialEquation.html
https://mathworld.wolfram.com/AssociatedLegendreDifferentialEquation.html

A
Analytical Solution for a Spherical

Shell

Consider a spherical shell made of material characterised by magnetic susceptibility χm, with inner
and outer radii a and b, respectively. The permeability is defined as µ = µ0(1 + χm). The object is
exposed to a uniform background magnetic field Bext = Bextuz. The following three regions, each with
homogeneous material properties, are distinguished:

1. The interior of the spherical shell.
2. The material of the spherical shell.
3. The exterior of the spherical shell.

Remember that in third region Bext = µ0Hext = µ0Hextuz holds. Thus, Bext = µ0Hext. A sketch of the
situation is depicted below.

x

y
z

1

2
3

a b

Bext

Figure A.1: Spherical shell in uniform background magnetic field.

59

First of all, magnetic scalar potentials for the three different regions are determined by solving Laplace’s
equation. With help of the boundary conditions, the coefficients for the scalar potentials in the different
regions are computed. Finally, expressions for M and Bred are found.

A.1. Laplace’s Equation and Associated Legendre Functions
Remember that when no free currents are present in a region, the curl of the H-field is zero. The
following theorem states that there exists a scalar function V , such that H = −∇V [11, p. 54].

Theorem 2 The following conditions are equivalent:

(a) ∇× F = 0 everywhere.
(b) F is the gradient of some scalar function: F = −∇V .

Using Maxwell’s equations of magnetostatic problems, it follows that the scalar potential satisfies the
Laplace equation [11, p. 84].

B = µH, (A.1)
= −∇µV, (A.2)

∇ ·B = µ∇ · ∇V, (A.3)
∇ ·B = 0 ⇒ ∇2V = 0. (A.4)

A spherical coordinate sytem is considered. The distance from the origin of the spherical shell to the
position vector r is denoted by r. The polar angle θ is measured between the z-axis and r. the azimuthal
angle ϕ is the angle between the x-axis and the orthogonal projection of r onto the x-y-plane. Figure
A.2 visualizes the angles and distance r.

Figure A.2: Spherical coordinate system.

The relation between spherical coordinates and Cartesian coordinates is as follows

x = r sin(θ) cos(ϕ), (A.5)
y = r sin(θ) sin(ϕ), (A.6)
z = r cos(θ). (A.7)

Laplace’s equation yields

1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂V

∂θ

)
+

1

r2 sin2(θ)

∂2V

∂ϕ2
= 0. (A.8)

60

The assumption is made that the problem has azimuthal symmetry. This implies that V is independent
of ϕ and Equation A.8 reduces to

∂

∂r

(
r2
∂V

∂r

)
+

1

sin(θ)

∂

∂θ

(
sin(θ)

∂V

∂θ

)
= 0. (A.9)

The assumption is made that the solution can be written as the sum over products of the following form

V (r, θ) = R(r)Θ(θ). (A.10)

Substituting this expression into Equation A.9 and dividing by V gives

1

R

d

dr

(
r2
dR

dr

)
+

1

Θ sin(θ)

d

dθ

(
sin(θ)

dΘ

dθ

)
= 0. (A.11)

Note that the first term only depends on r, while the second term only depends on θ. Since the equation
holds for all r and θ, each term equals a constant

1

R

d

dr

(
r2
dR

dr

)
= l(l + 1),

1

Θ sin(θ)

d

dθ

(
sin(θ)

dΘ

dθ

)
= −l(l + 1), (A.12)

where l(l+ 1) is a way to write the separation constant. A solution of the form R(r) = rα is substituted
in the first equation. This yields

r−α d

dr

(
r2αrα−1

)
= l(l + 1), (A.13)

r−αα(α+ 1)rα = l(l + 1), (A.14)
α(α+ 1) = l(l + 1), (A.15)

α = −(l + 1) ∨ α = l. (A.16)

The general solution equals
R(r) = Arl +

B

rl+1
, (A.17)

for some constants A and B. Now, a solution for Θ(θ) is found. The second expression in Equation
A.12 can be written as

d

dθ

(
sin(θ)

dΘ

dθ

)
+ l(l + 1)Θ sin(θ) = 0. (A.18)

The following change of variables is introduced

ψ = cos(θ). (A.19)

Recall that for any function f(ψ)

df

dθ
=

df

dψ

dψ

dθ
, (A.20)

= − sin(θ)
df

dψ
, (A.21)

= −
√
1− ψ2

df

ψ
. (A.22)

Thus, Equation A.18 simplifies

d

dθ

(
sin(θ)

dΘ

dθ

)
+ l(l + 1)Θ sin(θ) =

d

dθ

(
− sin(θ)

√
1− ψ2

dΘ

dψ

)
+ l(l + 1)Θ sin(θ), (A.23)

= −
√
1− ψ2

d

dθ

(
sin(θ)

dΘ

dψ

)
+ l(l + 1)Θ sin(θ), (A.24)

=
d

dψ

[
(1− ψ2)

dΘ

dψ

]
+ l(l + 1)Θ, (A.25)

d

dθ

(
sin(θ)

dΘ

dθ

)
+ l(l + 1)Θ sin(θ) = 0 ⇒ d

dψ

[
(1− ψ2)

dΘ

dψ

]
+ l(l + 1)Θ = 0. (A.26)

61

This equation is known as the Legendre differential equation. Its solutions are polynomials in cos(θ)
and are known as the associated Legendre polynomials. The solution for Θ(θ) is as follows [55]

Θ(θ) = ÂPl(ψ) + B̂Ql(ψ), (A.27)

= ÂPl (cos(θ)) + B̂Ql (cos(θ)) , (A.28)

for some constants Â and B̂. The functionsQl (cos(θ)) are unboundedwhenψ = 1 orψ = −1. Thus, the
constant B̂ equal zero. Since l is an integer, the function Pl (cos(θ)) reduces to the Legendre polynomial
[55]. The Legendre polynomials are orthogonal to each other. They satisfy the orthonormality condition
[56, p. 757] ∫ 1

−1

Pl(x)Pl′(x) dx =

∫ π

0

Pl(cos(θ))Pl′(cos(θ)) sin(θ) dθ (A.29)

=

{
0, if l ̸= l′,

2
2l+1 , if l = l′.

(A.30)

Also, the derivative of the Legendre polynomials can be written as

d

dx
Pl+1(x) =

2Pl(x)

||Pl||2
+

2Pl−2(x)

||Pl−2||2
+ . . . , (A.31)

where ||Pl|| =
√

2
2l+1 . The general solution for the potential is the linear combination of separable

solution. As a result, a general solution equals

V (r, θ) =

∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl (cos(θ)) . (A.32)

The potential for the problem must remain finite as r → ∞. Therefore, in the third region, Al = 0 for
all l. Moreover, the potentials satisfy the superposition principle. This implies that the potential at any
point is the sum of the potentials due to all the magnetic sources. Denote the potential of the uniform
background field as Vext. Remember that

Bext = Bextuz ⇒ Hext = Hextuz, (A.33)

Hext =

 0
0

Hext

 , (A.34)

−∇ (−Hextz) =

 0
0

Hext

⇒ Vext(r, θ) = −Hextr cos(θ). (A.35)

As a result, for r > b, the potential is of the form

V3(r, θ) = −Hextr cos(θ) +

∞∑
l=0

αl

rl+1
Pl (cos(θ)) . (A.36)

On the other hand, the potential must also remain finite as r → 0. For r < a, the potential has the form

V1(r, θ) =

∞∑
l=0

δlr
lPl (cos(θ)) . (A.37)

For a < r < b, the potential must be

V2(r, θ) =

∞∑
l=0

(
βlr

l +
γl
rl+1

)
Pl (cos(θ)) . (A.38)

62

A.2. Boundary Conditions
Hθ and Br should be continuous at r = a and r = b. The boundary conditions can be written in terms
of the potential V

∂V3
∂θ

(b+) =
∂V2
∂θ

(b−),
∂V2
∂θ

(a+) =
∂V1
∂θ

(a−), (A.39)

∂V3
∂r

(b+) = (1 + χm)
∂V2
∂r

(b−), (1 + χm)
∂V2
∂r

(a+) =
∂V1
∂r

(a−). (A.40)

With help of the boundary conditions, the coefficients for all l can be found. The boundary condition at
the surface r = b for the continuity of Br results in

Hext cos(θ) +

∞∑
l=0

−(l + 1)
αl

bl+2
Pl (cos(θ)) = (1 + χm)

∞∑
l=0

(
lβlb

l−1 − (l + 1)
γl
bl+2

)
Pl(cos(θ)), (A.41)

HextP1(cos(θ)) +

∞∑
l=0

−(l + 1)
αl

bl+2
Pl (cos(θ)) = (1 + χm)

∞∑
l=0

(
lβlb

l−1 − (l + 1)
γl
bl+2

)
Pl(cos(θ)), (A.42)

∞∑
l=0

(
−(l + 1)

αl

bl+2
− (1 + χm)lβlb

l−1 + (1 + χm)(l + 1)
γl
bl+2

)
Pl(cos(θ)) = −HextP1(cos(θ)). (A.43)

Both sides are multiplied by Pl′(cos(θ)) sin(θ) and integrated from 0 to π. Here two cases are distin-
guished, l′ = 1 and l′ ̸= 1. This results in{

−2α1

b3 − (1 + χm)β1 + 2(1 + χm)γ1

b3 = −Hext, if l′ = 1

−(l′ + 1) αl′

bl′+2 − (1 + χm)l′bl
′−1βl′ + (l′ + 1)(1 + χm) γl′

bl′+2 = 0, if l′ ̸= 1.
(A.44)

The continuity of Hθ is satisfied when

Hextb sin(θ) +

∞∑
l=0

αl

bl+1

∂Pl(cos(θ))

∂θ
=

∞∑
l=0

(
βlb

l +
γl
bl+1

) ∂Pl(cos(θ))

∂θ
,

(A.45)

−Hextb
∂P1(cos(θ))

∂θ
+

∞∑
l=0

αl

bl+1

∂Pl(cos(θ))

∂θ
=

∞∑
l=0

(
βlb

l +
γl
bl+1

) ∂Pl(cos(θ))

∂θ
,

(A.46)
∞∑
l=0

(αl

bl+1
+ βlb

l +
γl
bl+1

) ∂Pl(cos(θ))

∂θ
= Hextb

∂P1(cos(θ))

∂θ
, (A.47)

∞∑
l=0

(αl

bl+1
+ βlb

l +
γl
bl+1

)(2Pl−1(cos(θ))

||Pl−1||2
+

2Pl−3(cos(θ))

||Pl−3||2
+ . . .

)
= Hextb

2P0(cos(θ))

||P0||2
. (A.48)

Multiplying by Pl′(cos(θ)) sin(θ) and integrating from 0 to π gives{
α1

b2 + β1b+
γ1

b2 = Hextb, if l′ = 1,
αl′

bl′+1 + βl′b
l′ + γl′

bl′+1 = 0, if l′ ̸= 1
(A.49)

These steps can be repeated for the boundary conditions for the surface r = a. It can be concluded
that the coefficients l′ ̸= 1 satisfy the following equations

−(l′ + 1)
αl′

bl′+2
− (1 + χm)l′bl

′−1βl′ + (l′ + 1)(1 + χm)
γl′

bl′+2
= 0, (A.50)

αl′

bl′+1
+ βl′b

l′ +
γl′

bl′+1
= 0, (A.51)

al
′
βl′ +

γl′

al′+1
− al

′
δl′ = 0, (A.52)

(1 + χm)l′al
′−1βl′ − (1 + χm)(l′ + 1)

γl′

al′+2
− l′al

′−1δl′ = 0. (A.53)

63

By solving this system, it can be concluded that the four coefficients equal zero, regardless of the value
of l. The coefficients l = 1 satisfy the following equations

α1 − b3β1 − γ1 = b3Hext, (A.54)
2α1 + µ′b3β1 − 2µ′γ1 = −b3Hext, (A.55)

a3β1 + γ1 − a3δ1 = 0, (A.56)
µ′a3β1 − 2µ′γ1 − a3δ1 = 0, (A.57)

where µ′ = 1 + χm. The system is solved and the coefficients equal

α1 =

(
(2µ′ + 1)(µ′ − 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
(b3 − a3)Hext, (A.58)

β1 = −

(
3(2µ′ + 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
Hext, (A.59)

γ1 = −

(
3a3(µ′ − 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
Hext, (A.60)

δ1 = −

(
9µ′

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
Hext. (A.61)

A.3. Find M and Bred
The analytical solutions for M and Bred are expressed in both spherical and Cartesian coordinates.

A.3.1. M and Bred in Spherical Coordinates
To find the magnetisation inside the material, the magnetic potential for region 2 is used. Substituting
the coefficients in Equation A.38, gives the following

V2(r, θ) = β1r cos(θ) +
γ1
r2

cos(θ). (A.62)

For a < r < b, H = −∇V2(r, θ). Thus,

H(r, θ) =

Hr(r, θ)
Hθ(r, θ)
Hϕ(r, θ)

 , (A.63)

=

 −∂V2

∂r

− 1
r
∂V2

∂θ

− 1
r sin(θ)

∂V2

∂ϕ

 , (A.64)

=

cos(θ)(−β1 + 2γ1

r3)
sin(θ)(β1 +

γ1

r3)
0

 . (A.65)

64

Since M = χmH, M is as follows

M(r, θ) =

Mr(r, θ)
Mθ(r, θ)

0

 (A.66)

= χm

cos(θ)(−β1 + 2γ1

r3)
sin(θ)(β1 +

γ1

r3)
0

 , (A.67)

where β1 = −

(
3(2µ′ + 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
Hext,

γ1 = −

(
3a3(µ′ − 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
Hext,

and µ′ = χm + 1. (A.68)

Using the magnetic scalar potential of the first region, the auxiliary magnetic fieldH outside the shell is
found. Using the fact that B = µ0H in air, results in the following expression for the reduced magnetic
flux density in region 3 due to the magnetisation of the spherical shell

Bred(r, θ) =

Bredr (r, θ)
Bredθ (r, θ)
Bredϕ(r, θ)

 , (A.69)

= µ0

cos(θ)(Hext + 2α1

r3)
sin(θ)(−Hext +

γ1

r3)
0

 , (A.70)

where α1 =

(
(2µ′ + 1)(µ′ − 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
(b3 − a3)Hext (A.71)

and µ′ = χm + 1. (A.72)

A.3.2. M and Bred in Cartesian Coordinates
To obtain the magnetic field in Cartesian coordinates, the following relation is used [57, p. 30]

Hx = sin(θ) cos(ϕ)Hr + cos(θ) cos(ϕ)Hθ − sin(ϕ)Hϕ, (A.73)
Hy = sin(θ) sin(ϕ)Hr + cos(θ) sin(ϕ)Hθ + cos(ϕ)Hϕ, (A.74)
Hz = cos(θ)Hr − sin(θ)Hθ. (A.75)

65

Substituting Hr, Hθ, and Hϕ givesHx

Hy

Hz

 =

sin(θ) cos(ϕ) cos(θ)
(
−β1 + 2γ1

r3

)
+ cos(θ) cos(ϕ) sin(θ)

(
β1 +

γ1

r3

)
sin(θ) sin(ϕ) cos(θ)

(
−β1 + 2γ1

r3

)
+ cos(θ) sin(ϕ) sin(θ)

(
β1 +

γ1

r3

)
cos2(θ)

(
−β1 + 2γ1

r3

)
− sin2(θ)

(
β1 +

γ1

r3

)
 , (A.76)

=

 3γ1

r3 sin(θ) cos(ϕ) cos(θ)
3γ1

r3 sin(θ) sin(ϕ) cos(θ)
−β1 + cos2(θ)2γ1

r3 − sin2(θ)γ1

r3

 , (A.77)

=

 3γ1

r5 r sin(θ) cos(ϕ)r cos(θ)
3γ1

r5 r sin(θ) sin(ϕ)r cos(θ)
−β1 + 2r2 cos2(θ)γ1

r5 − r2 sin2(θ)γ1

r5 ,

 , (A.78)

=

 3γ1

r5 r sin(θ) cos(ϕ)r cos(θ)
3γ1

r5 r sin(θ) sin(ϕ)r cos(θ)
−β1 + 2r2 cos2(θ)γ1

r5 + r2 sin2(θ)
(
− sin2(ϕ)− cos2(ϕ)

)
γ1

r5 ,

 , (A.79)

=


3γ1xz

(x2+y2+z2)5/2
3γ1yz

(x2+y2+z2)5/2

−β1 + γ1(2z
2−y2−x2)

(x2+y2+z2)5/2

 , (A.80)

(A.81)

Therefore, M is as follows

M(x, y, z) = χm


3γ1xz

(x2+y2+z2)5/2
3γ1yz

(x2+y2+z2)5/2

−β1 + γ1(2z
2−y2−x2)

(x2+y2+z2)5/2

 , (A.82)

where β1 = −

(
3(2µ′ + 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
Hext,

γ1 = −

(
3a3(µ′ − 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
Hext

and µ′ = χm + 1.

Repeating these steps for the magnetic scalar potential of the third region, results in the following
expression for the reduced magnetic flux density in region 3 due to the magnetisation of the spherical
shell

Bred(x, y, z) = µ0α1


3xz

(x2+y2+z2)5/2
3yz

(x2+y2+z2)5/2

(2z2−x2−y2)
(x2+y2+z2)5/2

 , (A.83)

where α1 =

(
(2µ′ + 1)(µ′ − 1)

(2µ′ + 1)(µ′ + 2)− 2a3

b3 (µ
′ − 1)2

)
(b3 − a3)Hext

and µ′ = χm + 1.

A.4. Visualisation of Magnetisation and Magnetic Vector Potential
To gain better insight into the analytical solution for the magnetisation inside a spherical shell, consider
the following example. Suppose a spherical shell, with inner radius 19m and outer radius 20m, is placed
in an external uniform field Bext = 50uz µT. The figure below shows both the r- and θ-component of
the magnetisation within the spherical shell.

66

(a) Mr . (b) Mθ

Figure A.3: The r- and θ-component of the magnetisation within the spherical shell.

Moreover, an analytical expression for the magnetic vector potential is derived by [1]. It turns out that
A only has a ϕ-component. Visualising Aϕ for within the spherical shell gives the following result.

Figure A.4: The ϕ-component of the magnetic vector potential within the spherical shell.

67

B
Details of the Calculations of

Coefficient Matrix C

The magnetic vector potential produced by a uniform magnetisation, denoted by M̃k, of element τk can
be calculated as follows

A(r) =
µ0

4π

∫∫∫
τk

M̃k × (r− r′)

||r− r′||3
dr′, (B.1)

M̃k is uniform ⇒ =
µ0

4π
M̃k ×

∫∫∫
τk

(r− r′)

||r− r′||3
dr′. (B.2)

Introduce the vector identity [58]
r− r′

||r− r′||3
= ∇′ 1

||r′ − r||
(B.3)

and substitute in Equation B.2. This gives the following equation

A(r) =
µ0

4π
M̃k ×

∫∫∫
τk

∇′ 1

||r′ − r||
dr′. (B.4)

By applying Gauss’ theorem, the integral over the volume can be written as [11, p. 31]

A(r) =
µ0

4π
M̃k ×

∫∫
∂τk

1

||r− r′||
n(r′) dr′, (B.5)

=
µ0

4π
M̃k ×

∑
Sf∈∂τk

nf

∫∫
Sf

1

||r− r′||
dr′, (B.6)

=
µ0

4π
M̃k ×

∑
Sf∈∂τk

nfWf (r), (B.7)

where Sf is any face of the boundary of the polyhedron, nf is the outgoing normal unit vector of face
Sf , and the functionWf (r) is defined as

Wf (r) =

∫∫
Sf

1

||r− r′||
dr′. (B.8)

68

As described in Chapter 2, the reduced flux density, denoted by B̃k
red can be found by taking the curl

of the magnetic vector potential. Thus, the reduced flux density equals

B̃k
red(r) = ∇×A(r), (B.9)

= ∇×

µ0

4π

∑
Sf∈∂τk

M̃k × nfWf (r)

 , (B.10)

=
µ0

4π

∑
Sf∈∂τk

∇×
(
M̃k × nfWf (r)

)
. (B.11)

The following vector identity is introduced [59, p. 1]

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b. (B.12)

With help of this identity, the following is obtained

∇×
(
M̃k × nfWf (r)

)
= M̃k(∇ · nfWf (r))− nfWf (r)(∇ · M̃k) + (nfWf (r) · ∇)M̃k − (M̃k · ∇)nfWf (r),

(B.13)
M̃k is uniform ⇒ = M̃k(∇ · nfWf (r))− (M̃k · ∇)nfWf (r), (B.14)

= M̃k(Wf (r)(∇ · nf) + (∇Wf (r)) · nf)− M̃k · (∇nfWf (r)), (B.15)
∇ · nf = 0 ⇒ = M̃k(∇Wf (r) · nf)− nf (∇Wf (r) · M̃k), = −(M̃k × nf)×∇Wf (r).

(B.16)

Substituting this into Equation B.11 results in

B̃k
red(r) = −µ0

4π

∑
Sf∈τk

(
M̃k × nf

)
×∇Wf (r). (B.17)

B.1. Evaluate ∇Wf(r)
To rewrite ∇Wf (r), the following vector identity is used [58]

∇ 1

||r− r′||
= nf ×

(
nf ×∇′ 1

||r′ − r||

)
+ nf

(r′ − r) · nf

||r′ − r||3
. (B.18)

First, this vector identity will be proven. For the vector triple product, the following relationship holds

a× (b× c) = (a · c)b− (a · b)c. (B.19)

Using this relation, the first term on the right-hand side can be written as

nf ×
(
nf ×∇′ 1

||r′ − r||

)
= nf (nf · ∇′ 1

||r′ − r||
)−∇′ 1

||r′ − r||
(nf · nf), (B.20)

nf · nf = 1 ⇒ = nf (nf · ∇′ 1

||r′ − r||
)−∇′ 1

||r′ − r||
. (B.21)

Remember that
r′ − r

||r′ − r||3
= −∇′ 1

||r′ − r||
. (B.22)

Using this vector identity and substituting Equation B.21 into Equation B.18, the following is obtained

nf ×
(
nf ×∇′ 1

||r′ − r||

)
+ nf

(r′ − r) · nf

||r′ − r||3
= nf (nf · ∇′ 1

||r′ − r||
)−∇′ 1

||r′ − r||
− nf (∇′ 1

||r′ − r||
· nf),

(B.23)

= −∇′ 1

||r′ − r||
, (B.24)

= ∇ 1

||r′ − r||
. (B.25)

69

This proves the identity in Equation B.18. Using this vector identity,∇Wf (r) can be simplified as follows

∇Wf (r) = ∇
∫∫
Sf

1

||r− r′||
dr′, (B.26)

=

∫∫
Sf

∇ 1

||r− r′||
dr′, (B.27)

=

∫∫
Sf

nf ×
(
nf ×∇′ 1

||r′ − r||

)
+ nf

(r′ − r) · nf

||r′ − r||3
, (B.28)

= nf ×
∫∫
Sf

nf ×∇′ 1

||r′ − r||
dr′ + nf

∫∫
Sf

(r′ − r) · nf

||r′ − r||3
dr′. (B.29)

Suppose the face Sf is triangular with vertices r1, r2, r3. The solid angle subtended to face Sf as seen
from point r, denoted as Ω(r, r1, r2, r3), is recognised in the second expression [60]. Equation B.29
results in

∇Wf (r) = nf ×
∫∫
Sf

nf ×∇′ 1

||r′ − r||
dr′ + nfΩ(r, r1, r2, r3), (B.30)

with

Ω(r, r1, r2, r3) = 2 arctan2
(r1 − r) · (r2 − r)× (r3 − r)

D(r, r1, r2, r3)
, (B.31)

where D(r, r1, r2, r3) = ||r1 − r||||r2 − r||||r3 − r||+ ||r1 − r||(r2 − r) · (r3 − r) (B.32)
+ ||r2 − r||(r1 − r) · (r3 − r) + ||r3 − r||(r1 − r) · (r2 − r).

Using Stokes’ theorem, the first expression can be simplified as [11, p. 34]∫∫
Sf

nf ×∇′ 1

||r′ − r||
dr′ =

∑
le∈∂Sf

te

∫
le

1

||r′ − r||
dr′. (B.33)

Substituting this into the expression for ∇Wf (r) the following is obtained

∇Wf (r) =
∑

le∈∂Sf

nf × tewe(r) + nfΩ(r, r1, r2, r3), (B.34)

where we(r) =
∫
le

1
||r′−r|| dr

′. This expression is evaluated in the following section.

B.1.1. Evaluate we(r)
The calculations in this section are mostly based on [1]. The following integral is evaluated

we(r) =

∫
le

1

||r′ − r||
dr′ (B.35)

Assume that the three vertices of face Sf lie in the (x, y)-plane. As a result,

R = |r′ − r| =
√

(x′ − x)2 + (y′ − y)2 + z2. (B.36)

Thus, the integral equals ∫
le

1

R
dr′. (B.37)

The situation can be visualized as follows

70

s1 s2

r

h

s = 0

R

r′

Now, s1 and s2 note the distance from the orthogonal projection of r on the edge to the endpoints of
the edge. s is the distance from the orthogonal projection of r to r′. Note that

R =
√
h2 + s2. (B.38)

The integral is calculated as follows∫
le

dl′

||r′ − r||
=

∫
le

dl′

R
(B.39)

=

∫ s2

s1

ds

R
(B.40)

=

∫ s2

s1

ds√
h2 + s2

(B.41)

=
[
ln(s+

√
h2 + s2)

]s=s2

s=s1
(B.42)

= ln(
s2 +

√
h2 + s22

s1 +
√
h2 + s21

) (B.43)

= ln(
b+ q

−a+ p
) (B.44)

where b, q, a, p are distances as depicted in the following figure.

s1 s2

r

h

a b

p q

s = 0

Notice that

h2 = p2 − a2 = (p+ a)(p− a) (B.45)
= q2 − b2 = (q + b)(q − b) (B.46)

This implies

(p+ a)(p− a) = (q + b)(q − b) ⇒ q + b

p− a
=
p+ a

q − b
(B.47)

q + b

p− a
=
q + b+ p+ a

p− a+ q − b
(B.48)

=
q + p+ (a+ b)

p+ q − (a+ b)
(B.49)

Now, suppose that the orthogonal projection of r does not fall on the edge. The situations is visualized
below.

71

s1 s2

r

h

s = 0

R

Again, the integral can be calculated.∫
le

dl′

||r′ − r||
=

∫
le

dl′

R
(B.50)

=

∫ s2

s1

ds

R
(B.51)

=

∫ s2

s1

ds√
h2 + s2

(B.52)

=
[
ln(s+

√
h2 + s2)

]s=s2

s=s1
(B.53)

= ln(
s2 +

√
h2 + s22

s1 +
√
h2 + s21

) (B.54)

= ln(
b+ q

a+ p
) (B.55)

where b, q, a, p are distances as depicted in the following figure.

s1 s2

r

h

s = 0 a

p q

b

Again, it can be derived that

(p+ a)(p− a) = (q + b)(q − b) ⇒ q + b

p+ a
=
p− a

q − b
(B.56)

q + b

p+ a
=
q + b+ p− a

p+ a+ q − b
(B.57)

=
q + p+ (b− a)

p+ q − (b− a)
(B.58)

It can be concluded that for both situations∫
le

dl′

||r′ − r||
= ln(

|r1 − r|+ |r2 − r|+ |r1 − r2|
|r1 − r|+ |r2 − r| − |r1 − r2|

). (B.59)

72

C
Analytical Expressions for Ij and ∇Iij

In this appendix, the analytical expressions for the following integrals are presented

Ij(r) =

∫∫
Sj

1

||r− r′||
dr′ and ∇Iij(r) = ∇

∫∫
Sj

ϕi(r
′)

||r− r′||
dr′. (C.1)

The same notation as described in Chapter 4 is used. Remember that for both integrals, a distinguish
is made if surface Sj is triangular or rectangular. The analytical expressions are presented and special
cases are considered for both integrals.
Recall that the solid angle subtended to a triangular facewith vertices r1, r2, r3 is denoted byΩ(r, r1, r2, r3)
and equals

Ω(r, r1, r2, r3) = 2 arctan2
(r1 − r) · (r2 − r)× (r3 − r)

D(r, r1, r2, r3)
, (C.2)

where D(r, r1, r2, r3) = ||r1 − r||||r2 − r||||r3 − r||+ ||r1 − r||(r2 − r) · (r3 − r) (C.3)
+ ||r2 − r||(r1 − r) · (r3 − r) + ||r3 − r||(r1 − r) · (r2 − r).

C.1. Special Cases for Evaluating Ij
This section focuses on the analytical expression for the integral Ij . Remember the following notation

LT (r, r1, r2, r3) =

∫∫
T

1

||r− r′||
dr′, LR(r, r1, r2, r3, r4) =

∫∫
R

1

||r− r′||
dr′, (C.4)

(C.5)

where T is a triangle with vertices r1, r2 and r3 and R is a rectangle with vertices r1, r2, r3 and r4.
The analytical expressions for the integrals in this section are derived by [1]. This section shows the
analytical expression and addresses the special cases.

73

C.1.1. Special Cases for Evaluating Ij - Triangular Surface
When the surface Sj is an arbitrary triangular surface with vertices r̄1, r̄2, r̄3, the integral Ij can be
calculated as follows

LT (r, r̄1, r̄2, r̄3) = (n1 ·R1) ln

(
R2 + s12
R1 + s11

)
+ (n2 ·R2) ln

(
R3 + s23
R2 + s22

)
+ (n3 ·R3) ln

(
R1 + s31
R3 + s33

)
− |n0 ·R1|Ω(r, r̄1, r̄2, r̄3), (C.6)

where Ri = r̄i − r, Ri = ||Ri||, sij = τi ·Rj, ni = τi × n0, i, j = 1, 2, 3

τ1 =
r̄2 − r̄1

||̄r2 − r̄1||
, τ2 =

r̄3 − r̄2
||̄r3 − r̄2||

, τ3 =
r̄1 − r̄3

||̄r1 − r̄3||
,

n0 =
(r̄2 − r̄1)× (r̄3 − r̄2)

||(r̄2 − r̄1)× (r̄3 − r̄2)||
. (C.7)

Suppose r, r̄1 and r̄2 are colinear. r can be written in terms of r̄1 and r̄2 as r = r̄1 + aτ1 for some
a ∈ R. The denominator of the first logarithmic term in Equation C.6 equals

R1 + s11 = ||R1||+ τ1 ·R1, (C.8)

=
√

R1 ·R1 + τ1 ·R1, (C.9)

=
√

(r̄1 − r) · (r̄1 − r) + τ1 · (r̄1 − r), (C.10)

=
√

(r̄1 − (r̄1 + aτ1)) · (r̄1 − (r̄1 + aτ1)) + τ1 · (r̄1 − (r̄1 + aτ1)), (C.11)
=

√
−aτ1 · −aτ1 + τ1 · −aτ1, (C.12)

= a||τ1|| − a||τ1||2, (C.13)
= a− a, (C.14)
= 0. (C.15)

Thus, this term cannot be computed. However, when r, r̄1 and r̄2 are colinear, n1 and r̄1 − r are
perpendicular to each other. As a result, n1 ·R1 = 0, and LT reduces to

LT (r, r̄1, r̄2, r̄3) = (n2 ·R2) ln

(
R3 + s23
R2 + s22

)
+ (n3 ·R3) ln

(
R1 + s31
R3 + s33

)
. (C.16)

This situation occurs when the evaluation point is on one of the edges of surface Sj . When r, r̄1, r̄2
and r̄3 are colinear, both n1 ·R1 and n2 ·R2 equals zero. Now, LT reduces to

LT (r, r̄1, r̄2, r̄3) = (n3 ·R3) ln

(
R1 + s31
R3 + s33

)
. (C.17)

This is the case when the evaluation point equals one of the vertices of the surface Sj .

C.1.2. Special Cases for Evaluating Ij - Rectangular Surface
When the surface Sj is an arbitrary rectangular surface with vertices r̄1, r̄2, r̄3 and r̄4, the integral Ij
can be calculated as follows

LR(r, r̄1, r̄2, r̄3, r̄4) = (n1 ·R1) ln

(
R2 + s12
R1 + s11

)
+ (n2 ·R2) ln

(
R3 + s23
R2 + s22

)
+ (n3 ·R3) ln

(
R4 + s34
R3 + s33

)
+ (n4 ·R4) ln

(
R1 + s41
R4 + s44

)
− |n0 ·R1| (Ω(r, r̄1, r̄2, r̄3) + Ω(r, r̄1, r̄3, r̄4)) , (C.18)

where Ri = r̄i − r, Ri = ||Ri||, sij = τi ·Rj, ni = τi × n0, i, j = 1, 2, 3, 4

τ1 =
r̄2 − r̄1

||̄r2 − r̄1||
, τ2 =

r̄3 − r̄2
||̄r3 − r̄2||

, τ3 =
r̄4 − r̄3

||̄r4 − r̄3||
, τ4 =

r̄1 − r̄4
||̄r1 − r̄4||

,

n0 =
(r̄2 − r̄1)× (r̄3 − r̄2)

||(r̄2 − r̄1)× (r̄3 − r̄2)||
. (C.19)

74

The special cases are comparable to the cases mentioned in Section C.1.1. For example, when r, r̄1
and r̄2 are colinear, (n1 ·R1) = 0 and LR reduces to

LR(r, r̄1, r̄2, r̄3, r̄4) = (n2 ·R2) ln

(
R3 + s23
R2 + s22

)
+ (n3 ·R3) ln

(
R4 + s34
R3 + s33

)
+ (n4 ·R4) ln

(
R1 + s41
R4 + s44

)
(C.20)

C.2. Special Cases for Evaluating ∇Iij
This section focuses on the analytical expression for the integral∇Iij . Remember the following notation

KT (r, r1, r2, r3) =

∫∫
T

ϕ1(r
′)

||r− r′||
dr′, KR(r, r1, r2, r3, r4) =

∫∫
R

ϕ12(r
′)

||r− r′||
dr′, (C.21)

where T is a triangle with vertices r1, r2 and r3 and R is a rectangle with vertices r1, r2, r3 and r4.
In this notation, the second argument of KT denotes where the linear function ϕ assumes the value 1.
For KR the second and third argument indicate the vertices where the linear function ϕ assumes the
value 1. A detailed derivation of the integrals is done by [1]. Numerical experiments demonstrate that
when combining these expressions with those from [7], the function hcubature() returns finite values
and avoids NaN values at smaller relative tolerances compared to using only the expressions from [1].
This section shows how the expressions are combined and addresses the special cases.

C.2.1. Special Cases for Evaluating ∇Iij - Triangular Surface
When the surface Sj is an arbitrary triangular surface with vertices r̄1, r̄2, r̄3, the integral Iij can be
calculated as follows

∇KT (r, r̄1, r̄2, r̄3) =
n2LT (r, r̄1, r̄2, r̄3)

(r̄1 − r̄2) · n2
+ n0 sign(n0 ·R1)ϕ1(r)Ω(r, r̄1, r̄2, r̄3)

− n0(n0 ·R1)

n2 · (r̄1 − r̄2)

[
(n2 · n1) ln

(
R2 + s12
R1 + s11

)
+ ln

(
R3 + s23
R2 + s22

)
+(n2 · n3) ln

(
R1 + s31
R3 + s33

)]
− n1

s11 − s12

[
R2 −R1 − s12 ln

(
R2 +R1 + ||̄r2 − r̄1||
R2 +R1 − ||̄r2 − r̄1||

)]
− n3

s31 − s33

[
R1 −R3 − s33 ln

(
R1 +R3 + ||̄r1 − r̄3||
R1 +R3 − ||̄r1 − r̄3||

)]
, (C.22)

where Ri = r̄i − r, Ri = ||Ri||, sij = τi ·Rj, ni = τi × n0, i, j = 1, 2, 3

τ1 =
r̄2 − r̄1

||̄r2 − r̄1||
, τ2 =

r̄3 − r̄2
||̄r3 − r̄2||

, τ3 =
r̄1 − r̄3

||̄r1 − r̄3||
,

n0 =
(r̄2 − r̄1)× (r̄3 − r̄2)

||(r̄2 − r̄1)× (r̄3 − r̄2)||
. (C.23)

Suppose r, r̄1 and r̄2 are colinear, which implies that R1 + s11 = R2 + R1 − ||̄r2 − r̄1|| = 0. The
challenges encountered in the evaluation of LT are discussed in Section C.1.1. The first logarithmic
term that contains the expression vanishes, due to the fact that n0 ·R1 equals 0. However, the second
logarithmic term that contains the expression cannot be evaluated. The integral ∇Iij over a triangular
surface cannot be computed when the evaluation point lies on one of the edges of the surface or when
the evaluation point equals a vertex.

75

C.2.2. Special Cases for Evaluating ∇Iij - Rectangular Surface
When the surface Sj is an arbitrary rectangular surface with vertices r̄1, r̄2, r̄3 and r̄4, the integral Iij
can be calculated as follows

∇KR(r, r̄1, r̄2, r̄3, r̄4) = ∇KT (r, r̄2, r̄3, r̄4) +∇LT (r, r̄1, r̄2, r̄4)−∇KT (r, r̄4, r̄1, r̄2), (C.24)

where ∇KT (r, r̄1, r̄2, r̄3) =
n2LT (r, r̄1, r̄2, r̄3)

(r̄1 − r̄2) · n2
+ n0 sign(n0 ·R1)ϕ1(r)Ω(r, r̄1, r̄2, r̄3)

− n0(n0 ·R1)

n2 · (r̄1 − r̄2)

[
(n2 · n1) ln

(
R2 + s12
R1 + s11

)
+ ln

(
R3 + s23
R2 + s22

)
+(n2 · n3) ln

(
R1 + s31
R3 + s33

)]
− n1

s11 − s12

[
R2 −R1 − s12 ln

(
R2 +R1 + ||̄r2 − r̄1||
R2 +R1 − ||̄r2 − r̄1||

)]
− n3

s31 − s33

[
R1 −R3 − s33 ln

(
R1 +R3 + ||̄r1 − r̄3||
R1 +R3 − ||̄r1 − r̄3||

)]
, (C.25)

and ∇LT (r, r̄1, r̄2, r̄3) = −n1 ln

(
R2 +R1 + ||̄r2 − r̄1||
R2 +R1 − ||̄r2 − r̄1||

)
− n2 ln

(
R3 +R2 + ||̄r3 − r̄2||
R3 +R2 − ||̄r3 − r̄2||

)
− n3 ln

(
R1 +R3 + ||̄r1 − r̄3||
R1 +R3 − ||̄r1 − r̄3||

)
+ n0sign(n0 ·R1)Ω(r, r̄1, r̄2, r̄3),

(C.26)
where Ri = r̄i − r, Ri = ||Ri||, sij = τi ·Rj, ni = τi × n0, i, j = 1, 2, 3

τ1 =
r̄2 − r̄1

||̄r2 − r̄1||
, τ2 =

r̄3 − r̄2
||̄r3 − r̄2||

, τ3 =
r̄1 − r̄3

||̄r1 − r̄3||
,

n0 =
(r̄2 − r̄1)× (r̄3 − r̄2)

||(r̄2 − r̄1)× (r̄3 − r̄2)||
. (C.27)

Suppose that the vertices of S1 are r′1, r
′
2, r

′
3 and r′4. The evaluation points that are on this surface are

r1 and r2 for E1, and r1+r2
2 for E2. Note that for the calculation of ∇KR, the surface is split into two

triangles. The first triangle has vertices r′2, r
′
3, r

′
4 and the second triangle has vertices r′1, r

′
2, r

′
4. The

figure below shows a sketch of the situation.

r′1

r′2 r′3

r′4

2 1

Figure C.1: Sketch surface S1

The vector n0 is the same for both triangles. However, the other variables in the two expressions KT

depend on the triangle. The superscripts 1 or 2 denote the specific surface to which each variable
belongs. From now on, Ω(r, r′1, r′2, r′3) and Ω(r, r′4, r

′
1, r

′
2) will be denoted by Ω1 and Ω2, respectively.

76

Using this notation, the expressions for ∇KT for the two surfaces can be written as

∇KT (r, r
′
2, r

′
3, r

′
4) =

n1
2LT (r, r

′
2, r

′
3, r

′
4)

(r′2 − r′3) · n1
2

+ n0 sign(n0 ·R1
1)ϕ

1
1(r)Ω

1

− n0(n0 ·R1
1)

n1
2 · (r′2 − r′3)

[
(n1

2 · n1
1) ln

(
R1

2 + s112
R1

1 + s111

)
+ ln

(
R1

3 + s123
R1

2 + s122

)
+(n1

2 · n1
3) ln

(
R1

1 + s131
R1

3 + s133

)]
− n1

1

s111 − s112

[
R1

2 −R1
1 − s112 ln

(
R1

2 +R1
1 + ||r′3 − r′2||

R1
2 +R1

1 − ||r′3 − r′2||

)]
− n1

3

s131 − s133

[
R1

1 −R1
3 − s133 ln

(
R1

1 ++R1
3 + ||r′4 − r′2||

R1
1 +R1

3 − ||r′4 − r′2||

)]
, (C.28)

∇KT (r, r
′
4, r

′
1, r

′
2) =

n2
2LT (r, r

′
4, r

′
1, r

′
2)

(r′4 − r′1) · n2
2

+ n0 sign(n0 ·R2
1)ϕ

2
1(r)Ω

2

− n0(n0 ·R2
1)

n2
2 · (r′4 − r′1)

[
(n2

2 · n2
1) ln

(
R2

2 + s212
R2

1 + s211

)
+ ln

(
R2

3 + s223
R2

2 + s222

)
+(n2

2 · n2
3) ln

(
R2

1 + s231
R2

3 + s233

)]
− n2

1

s211 − s212

[
R2

2 −R2
1 − s212 ln

(
R2

2 +R2
1 + ||r′1 − r′4||

R2
2 +R2

1 − ||r′1 − r′4||

)]
− n2

3

s231 − s233

[
R2

1 −R2
3 − s233 ln

(
R2

1 +R2
3 + ||r′2 − r′4||

R2
1 +R2

3 + ||r′2 − r′4||

)]
, (C.29)

where the variables in the expressions can be calculated using the equations in C.27. Using this
notation, ∇LT (r, r

′
1, r

′
2, r

′
4) can be written as

∇LT (r, r
′
1, r

′
2, r

′
4) = −n2

2 ln

(
R2

3 +R2
2 + ||r′2 − r′1||

R2
3 +R2

2 − ||r′2 − r′1||

)
− n2

3 ln

(
R2

1 +R2
3 + ||r′4 − r′2||

R2
1 +R2

3 − ||r′4 − r′2||

)
− n2

1 ln

(
R2

2 +R2
1 + ||r′4 − r′1||

R2
2 +R2

1 + ||r′4 − r′1||

)
+ n0sign(n0 ·R2

2)Ω
2. (C.30)

When the evaluation point lies on one of the edges of the surface or equals a vertex, ∇KT cannot
be evaluated for one of the two triangles. As mentioned is Section C.2.1, one of the logarithmic term
cannot be evaluated. Thus, it is impossible to evaluate this expression for the evaluation points in E1.
Now, consider the case when r is colinear with r′2 and r′4. Note that this implies R1

1 + s133 = R2
3 + s233 =

R1
1+R

1
3−||r′4−r′2|| = R2

1+R
2
3−||r′4−r′2|| = 0. The logarithmic terms containing R1

1+s
1
33 and R2

3+s
2
33

77

disappear, since n0 ·R1
1 = n0 ·R2

1 = 0. Observe the following

n1
3 =

r′2 − r′4
||r′2 − r′4||

× n0, (C.31)

= − r′4 − r′2
||r′2 − r′4||

× n0 (C.32)

= −n2
3, (C.33)

s131 =
r′2 − r′4

||r′2 − r′4||
· (r′2 − r), (C.34)

=
r′2 − r′4

||r′2 − r′4||
· (1

2
r′2 − 1

2
r′4), (C.35)

= − r′2 − r′4
||r′2 − r′4||

· (1
2
r′4 − 1

2
r′2), (C.36)

= − r′2 − r′4
||r′2 − r′4||

· (r′4 − r), (C.37)

= −s133, (C.38)

s231 =
r′4 − r′2

||r′4 − r′2||
· (r′4 − r), (C.39)

=
r′2 − r′4

||r′2 − r′4||
· (r′2 − r), (C.40)

= −s233, (C.41)
⇒ s131 = s231 = −s133 = −s233, (C.42)

R1
1 = (r′2 − r), (C.43)
= R2

3, (C.44)
R1

3 = (r′4 − r), (C.45)
= R2

1. (C.46)

78

Taking this into account, KR reduces as follows
∇KR(r, r

′
1, r

′
2, r

′
3, r

′
4) = ∇KT (r, r

′
2, r

′
3, r

′
4) +∇LT (r, r1, r

′
2, r

′
4)−∇KT (r, r

′
4, r

′
1, r

′
2), (C.47)

=
n1
2LT (r, r

′
2, r

′
3, r

′
4)

(r′2 − r′3) · n1
2

+ n0 sign(n0 ·R1
1)ϕ

1
1(r)Ω

1

− n1
1

s111 − s112

[
R1

2 −R1
1 − s112 ln

(
R1

2 +R1
1 + ||r′3 − r′2||

R1
2 +R1

1 − ||r′3 − r′2||

)]
− n1

3

s131 − s133

[
R1

1 −R1
3 − s131 ln

(
R1

1 +R1
3 + ||r′4 − r′2||

R1
1 +R1

3 − ||r′4 − r′2||

)]
− n2

2 ln

(
R2

3 +R2
2 + ||r′2 − r′1||

R2
3 +R2

2 − ||r′2 − r′1||

)
− n2

3 ln

(
R2

1 +R2
3 + ||r′4 − r′2||

R2
1 +R2

3 − ||r′4 − r′2||

)
− n2

1 ln

(
R2

2 +R2
1 + ||r′4 − r′1||

R2
2 +R2

1 + ||r′4 − r′1||

)
+ n0sign(n0 ·R2

2)Ω
2

− n2
2LT (r, r

′
4, r

′
1, r

′
2)

(r′4 − r′1) · n2
2

− n0 sign(n0 ·R2
1)ϕ

2
1(r)Ω

2

+
n2
1

s211 − s212

[
R2

2 −R2
1 − s212 ln

(
R2

2 +R2
1 + ||r′1 − r′4||

R2
2 +R2

1 − ||r′1 − r′4||

)]
+

n2
3

s231 − s233

[
R2

1 −R2
3 − s233 ln

(
R2

1 +R2
3 + ||r′2 − r′4||

R2
1 +R2

3 + ||r′2 − r′4||

)]
, (C.48)

=
n1
2LT (r, r

′
2, r

′
3, r

′
4)

(r′2 − r′3) · n1
2

+ n0 sign(n0 ·R1
1)ϕ

1
1(r)Ω

1

− n1
1

s111 − s112

[
R1

2 −R1
1 − s112 ln

(
R1

2 +R1
1 + ||r′3 − r′2||

R1
2 +R1

1 − ||r′3 − r′2||

)]
− n2

2 ln

(
R2

3 +R2
2 + ||r′2 − r′1||

R2
3 +R2

2 − ||r′2 − r′1||

)
− n2

1 ln

(
R2

2 +R2
1 + ||r′4 − r′1||

R2
2 +R2

1 + ||r′4 − r′1||

)
+ n0sign(n0 ·R2

2)Ω
2

− n2
2LT (r, r

′
4, r

′
1, r

′
2)

(r′4 − r′1) · n2
2

− n0 sign(n0 ·R2
1)ϕ

2
1(r)Ω

2

+
n2
1

s211 − s212

[
R2

2 −R2
1 − s212 ln

(
R2

2 +R2
1 + ||r′1 − r′4||

R2
2 +R2

1 − ||r′1 − r′4||

)]
+

n2
3

s231 − s233

[
R2

3 −R2
1 − s233 ln

(
R2

1 ++R2
3 + ||r′4 − r′2||

R1
1 +R1

3 − ||r′4 − r′2||

)]
+

n2
3

s231 − s233

[
R2

1 −R2
3 − s233 ln

(
R2

1 +R2
3 + ||r′2 − r′4||

R2
1 +R2

3 + ||r′2 − r′4||

)]
− n2

3 ln

(
R2

1 +R2
3 + ||r′4 − r′2||

R2
1 +R2

3 − ||r′4 − r′2||

)
,

(C.49)

=
n1
2LT (r, r

′
2, r

′
3, r

′
4)

(r′2 − r′3) · n1
2

+ n0 sign(n0 ·R1
1)ϕ

1
1(r)Ω

1

− n1
1

s111 − s112

[
R1

2 −R1
1 − s112 ln

(
R1

2 +R1
1 + ||r′3 − r′2||

R1
2 +R1

1 − ||r′3 − r′2||

)]
− n2

2 ln

(
R2

3 +R2
2 + ||r′2 − r′1||

R2
3 +R2

2 − ||r′2 − r′1||

)
− n2

1 ln

(
R2

2 +R2
1 + ||r′4 − r′1||

R2
2 +R2

1 + ||r′4 − r′1||

)
+ n0sign(n0 ·R2

2)Ω
2

− n2
2LT (r, r

′
4, r

′
1, r

′
2)

(r′4 − r′1) · n2
2

− n0 sign(n0 ·R2
1)ϕ

2
1(r)Ω

2

+
n2
1

s211 − s212

[
R2

2 −R2
1 − s212 ln

(
R2

2 +R2
1 + ||r′1 − r′4||

R2
2 +R2

1 − ||r′1 − r′4||

)]
− (2s233 + s231 − s233)n

2
3

s231 − s233
ln

(
R2

1 +R2
3 + ||r′4 − r′2||

R2
1 +R2

3 − ||r′4 − r′2||

)
, (C.50)

2s233 + s231 − s233 = 0 ⇒ =
n1
2LT (r, r

′
2, r

′
3, r

′
4)

(r′2 − r′3) · n1
2

+ n0 sign(n0 ·R1
1)ϕ

1
1(r)Ω

1

− n1
1

s111 − s112

[
R1

2 −R1
1 − s112 ln

(
R1

2 +R1
1 + ||r′3 − r′2||

R1
2 +R1

1 − ||r′3 − r′2||

)]
− n2

2 ln

(
R2

3 +R2
2 + ||r′2 − r′1||

R2
3 +R2

2 − ||r′2 − r′1||

)
− n2

1 ln

(
R2

2 +R2
1 + ||r′4 − r′1||

R2
2 +R2

1 + ||r′4 − r′1||

)
+ n0sign(n0 ·R2

2)Ω
2

− n2
2LT (r, r

′
4, r

′
1, r

′
2)

(r′4 − r′1) · n2
2

− n0 sign(n0 ·R2
1)ϕ

2
1(r)Ω

2

+
n2
1

s211 − s212

[
R2

2 −R2
1 − s212 ln

(
R2

2 +R2
1 + ||r′1 − r′4||

R2
2 +R2

1 − ||r′1 − r′4||

)]
.

79

There are no problematic terms in the above expression. Without loss of generality, it can be concluded
that when r, r̄2 and r̄4 are colinear, KR can still be computed for all rectangular surfaces.

80

	Preface
	Summary
	Nomenclature
	Introduction
	Research Motivation
	Research Goals
	Outline

	Magnetostatics
	Maxwell's Equations
	Magnetisation
	Constitutive Relations
	Solution Based on a Vector Potential

	Derivation of Method of Moments for Magnetostatics
	Meshing the Domain
	Derivation of Weak Formulation
	Point Matching
	Average Formulation
	Derivation of Interaction Matrix
	Numerical Integration in Julia

	Obtain red
	Visualisation of and red
	Visualisation of
	Visualisation of red

	Method of Moments Using Linear Basis Functions
	Meshing the Domain
	Derivation of the Weak Formulation
	Point Matching
	Evaluation Points
	Obtain Linear System

	Galerkin Method
	Derivation of Interaction Matrix
	Continuity Constraint

	Visualisation of and red
	Visualisation of
	Visualisation of red

	Performance Tips for Julia
	Benchmarking
	Reducing Heap Allocations
	Type Stability
	Parallel Computing

	Computational Performance Analysis
	Determine External Magnetic Flux Density
	Julia Implementation vs. TNO's MATLAB Implementation
	Obtained Solution for
	Computation Speed
	Memory Usage

	Comparison of the Four Methods

	Verification
	Accuracy
	Meshing of Spherical Shell
	Comparison for
	Comparison for red
	Results

	Convergence
	Uniform Basis Functions
	Linear Basis Functions

	The Use of Automatic Differentiation in Method of Moments
	Automatic Differentiation using Dual Numbers
	Example of Forward Automatic Differentiation

	Forward Automatic Differentiation in Julia
	Derivation of the Interaction Matrix Using Automatic Differentiation

	Method of Moments using Automatic Differentiation
	Meshing
	Implementation
	Results

	Conclusion and Recommendations
	Analytical Solution for a Spherical Shell
	Laplace’s Equation and Associated Legendre Functions
	Boundary Conditions
	Find M and Bred
	M and Bred in Spherical Coordinates
	M and Bred in Cartesian Coordinates

	Visualisation of Magnetisation and Magnetic Vector Potential

	Details of the Calculations of Coefficient Matrix C
	Evaluate Wf(r)
	Evaluate we(r)

	Analytical Expressions for Ij and Iij
	Special Cases for Evaluating Ij
	Special Cases for Evaluating Ij - Triangular Surface
	Special Cases for Evaluating Ij - Rectangular Surface

	Special Cases for Evaluating Iij
	Special Cases for Evaluating Iij - Triangular Surface
	Special Cases for Evaluating Iij - Rectangular Surface

