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Prediction of blood volume pulse waveform
features using remote PPG

Ruben Sangers, Marian Bittner and Jan van Gemert

Delft University of Technology, The Netherlands

Abstract. Contactless measurement of changes in blood volume by ex-
ploiting the color fluctuations in the face is a technique commonly re-
ferred to as remote photoplethysmography (rPPG). Recent developments
show promising results for heart rate estimation from low-cost cameras,
making applications in remote healthcare possible. Remote PPG appli-
cations in at home diagnostics focus predominantly on heart rate esti-
mation, while other features of the blood volume pulse can provide valu-
able information as well, but have scarcely been studied using rPPG.
In this work, we aim to lay a foundation for rPPG feature prediction.
We study pulse wave prediction using a variety of input representations,
model architectures and datasets to thereby investigate which combined
approaches are the most promising. Our results show which input rep-
resentation is most suitable based on the feature of interest and demon-
strate the ability to predict pulse waveform features using rPPG. These
results take the first steps towards including the prediction of a wide
range of waveform properties to make more remote health monitoring
possible.

Keywords: remote photoplethysmography, blood volume pulse, wave-
form features, deep learning, input representations

1 Introduction

Monitoring of heart rate and heart rate related measures, in an at-home set-
ting, holds great and exciting opportunities for long-term care for infants or
elderly people as it allows for remote diagnosis, which can be more time effective
for doctors and reduce the risk of spreading contagious diseases. Traditionally,
contact based methods have been used for heart rate monitoring, such as pho-
toplethysmography (PPG), which aims to measure the blood volume pulse from
light absorption of the skin using a contact sensor at a finger or ear lobe, allow-
ing cardiovascular measurement of the patient. However, this way of measuring
blood volume changes has several disadvantages, as it requires specialized hard-
ware and direct skin contact to the patient, which might be uncomfortable or
even harmful [1][30]. In contrast to traditional PPG, remote PPG (rPPG) does
not rely on contact sensors but aims to measure the photoplethysmogram, or
blood volume changes, using a camera directed at the face. This has numerous
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advantages, as it does not rely on specialized sensors, enables at-home diagnos-
tics and prevents harmful skin-contact for infants and patients with a sensitive
skin.

Over the last decades, remote PPG has seen a huge increase in interest across
academic fields, however its focus has been primarily on the prediction of heart
rate, as it has many applications in healthcare. However , a wide range of other
features that characterise the photoplethysmography waveform exist, which have
barely been studied with remote PPG. These are features of the pulse waveform,
such as its amplitude and rise time (Figure 2), which can give insights into im-
portant cardiovascular properties that in turn are related to physiological condi-
tions and the well-being of the patient such as blood pressure [33], stroke volume
[23], arteriosclerosis [46] and anxiety [45]. Knowing these properties could aid
physicians in giving more accurate diagnoses via video chat or monitor longi-
tudinal difference in a home setting. However, as many of the features are less
pronounced than the peaks and valleys of individual heartbeats in the blood
volume pulse, an accurate non-contact way of measuring the pulse is necessary.

While the first rPPG methods were based on signal processing techniques,
in recent years deep learning techniques, which have already been successfully
applied to multiple problems in computer vision, have achieved state-of-the-art
performance on remote heart rate estimation. Recent advancements in remote
PPG research have made it possible to measure heart rate within error rates of
two pulses per minute [21]. Commonly one or multiple frames of the raw video
are pre-processed before being used as input for deep learning models. As the
influence of input representation and model architecture have only been investi-
gated in the context of heart rate, we will study how well other features of the
PPG waveform can be predicted to thereby get a more complete view of the
possibilities of remote PPG.

In this paper, we study the prediction of four different pulse waveform fea-
tures: the heart rate, rise time, pulse wave amplitude and the pulse area. More-
over, we hypothesize that feature estimation can be made easier when choosing
a suitable representation. We therefore study the effect of three input represen-
tations on the prediction, which differ in the region of interest that is used (the
complete frame or pre-selected parts of a face) and their domain (frequency- or
time-domain). We thereby aim to give a broad insight into the opportunities of
measuring a variety of pulse waveform features using deep learning techniques
and their relation with input representations (Figure 1).

Summarized, our contributions are as follows:

– We show that direct prediction of PPG pulse waveform features using deep
neural networks is possible, to the best of our knowledge we are the first to
do so.

– Our study gives insights into which waveform features have the most poten-
tial to be measured accurately.
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Fig. 1. Overview of our methodology. We investigate PPG waveform feature prediction
using three different ways of representing the input video files to our models. Two
different model-types are evaluated on direct prediction of a range of pulse waveform
features from these input representations to get insights into the possibilities of PPG
feature prediction.

– We show the influence of various input representations on the waveform
feature prediction performance.

2 Related work

2.1 PPG waveform features

Next to its use to track heart rate across multiple waves in the blood volume
pulse, the shape of a single wave holds important additional information. The
PPG waveform resulting from the blood volume pulse in general consists of two
peaks: the systolic and diastolic peak respectively. A study by Elgendi [15] was
one of the first to highlight the different PPG features to increase the under-
standing of the embedded information in the PPG curve. Current literature has
already shown the possibility of estimating blood pressure based on the full
morphology of the PPG waveform [33], but also individual features hold var-
ious correlations with underlying physiological conditions of the patient. The
rise time, the time between the pulse wave begin and the systolic peak, has for
example been shown to correlate with arterial stiffness [2] and cardiovascular
diseases such as hypertension [13] and arteriosclerosis [46], while the amplitude
of the systolic peak, also known as the pulse wave amplitude, is related with
stroke volume [23] and the local vascular distensibility [14], which can give im-
portant insight into cardiovascular health. Overall the most important waveform
features can be classified into temporal features, amplitude related features and
area related features. An overview of the most common pulse wave features and
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some of their correlations with physiological conditions can be found in Table 1.
These features can give valuable insight into the physiology of a patient, how-
ever, the main focus on current contact less vital sign research in recent years
has been on remote heart rate estimation.

Fig. 2. Schematic overview of the blood volume pulse waveform features we study. In
the figure, the change in blood volume over time is shown.

Table 1. Overview of pulse waveform features and their correlations with physiological
conditions. + and − indicate a positive or negative correlation respectively.

Class Feature Correlations

Temporal Pulse propagation time − Age [22]
+ Artery stiffness [28]

Diastolic time − Blood pressure [37]
Pulse width half-height + Systemic vascular resistance [4]

− Blood pressure [37][3]
Heart rate variability + Stress-levels and anxiety [10]
Rise time + Arteriosclerosis [2][13]

+ Hypertension [2][13]
Dicrotic notch time − Heavy exercise [42]

Amplitude Pulse wave amplitude + Stroke volume [23]
+ Local vascular distensibility [14]
+ Blood pressure [12]

Augmentation index + Arterial stiffness [9]
Stiffness index + Age [22]

Area Pulse area − Motor reaction to skin incision [31]
Inflection point area + Cardiovascular diseases [43]

2.2 Remote photoplethysmography

Verkruysse et al. [40] were one of the first to show the possibility of measuring the
PPG pulse using an RGB camera. Using low-cost equipment and natural lighting,
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they showed that it is possible to characterize vital signs such as heart rate by
measuring the color changes in the face over time. The underlying principle
causing these light reflection fluctuations of the skin follows the Beer-Lambert
law [35], which states that the light absorption of blood is proportional to the
hemoglobin concentration in the blood and the penetration of light into the
skin. The cardiac cycle results in varying hemoglobin concentrations of the blood,
leading to a varying light absorption by the skin. The remote PPG (rPPG) setup
commonly consists of three elements: a light source, a person, and a camera.
Based on Shafer’s dichromatic reflectance model [32], the reflection of a skin pixel
over time can be modelled by the specular reflection and the diffuse reflection
of the skin [44]. The specular reflection is a mirror-like light reflection by the
skin, while the diffuse reflection is associated with the absorption of light by
the skin tissue. As the specular reflection does not contain information of the
blood volume pulse, the goal of remote PPG methods is in general to focus on
the diffuse reflection using signal-processing or data-driven methods to thereby
measure the blood volume pulse.

2.3 Signal processing rPPG methods

The findings by Verkruysse et al. [40] sparked the development of specialized
signal processing pipelines and algorithms to increase the quality of the blood
volume pulse signal by removing noise. Existing algorithms for signal decomposi-
tion were used as blind-source signal separation techniques such as independent
component analysis (ICA) [29] and principal component analysis (PCA) [5],
which work especially well for removing noise small in amplitude and periodic.
Another commonly used type of methods relies on transformation of the RGB
signal to alternative color spaces to, for example, eliminate the influence of spec-
ular reflections on the signal. Examples of this are the hue channel of the HSV
color space, which does not depend on the intensity of the reflected light from
the surface [39], or the POS method, which defines a plane orthogonal to the skin
tone on which the pulsatile signal is projected, to remove influence of different
skin tones [44]. Additional commonly used operations for remote PPG are spa-
tial averaging to cancel out noise by camera quantisation, (band-pass) filtering
to remove signals that are not in the range of natural heart rate frequencies [36],
or transforming the rPPG signal to the frequency-domain, for example by us-
ing power spectral density estimation [29] or the Continuous Wavelet Transform
(CWT) [8]. These methods can be used on their own, or in combination with
data-driven methods to pre-process the rPPG signal.

2.4 Data-driven rPPG methods

In recent years, the shift has been made from the use of purely signal processing
methods to data-driven methods, usually involving deep learning. The strength
of these methods is that, by learning features from data instead of hand-coding
them, they can detect more complex features and are often better able to han-
dle a large variety in data. They are, however, often far more computationally
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expensive, and require a large amount of training data to be able to perform
well.

Deep-learning based rPPG methods for heart rate estimation can in general
be divided into two categories: direct heart rate estimation, or PPG wave es-
timation followed by post-processing to extract the heart rate. DeepPhys [11]
has been a very successful model for PPG wave estimation. It consists of two
branches, an appearance branch and a motion branch. The appearance branch
is trained on producing a spatial attention mask for the video, which is then
combined with the normalized frame differences to estimate the rPPG signal
by the motion branch. MTTS-CAN [20] builds onto DeepPhys, but improves
the time efficiency of the rPPG computation by introducing a temporal shift
module. This allows the sharing of temporal information without the need for
computationally expensive 3D convolutions, making real-time heart rate esti-
mation possible. The authors of the PhysFormer [47] architecture were one of
the few that have applied a Transformer model for PPG waveform estimation.
They claim that by using a Transformer they are able to learn the long-range
spatial-temporal interactions of the blood volume pulse more successfully.

One of the first attempts to attempt direct heart rate prediction is the HR-
CNN by Spetlik et al. [34]. It uses two convolutional neural networks (CNNs):
one functioning as an extractor to estimate the rPPG signal, which is then used
as the input to a second CNN which predicts the heart rate from this signal.
Rhythmnet [26] uses a different approach, as they use a spatial-temporal map
to represent the input, from which they then train a CNN to estimate the heart
rate from 10 second spatial-temporal maps. In a similar way, we will attempt to
directly predict PPG waveform features using remote PPG.

2.5 Region of interest selection

Most algorithms, whether signal processing based or data-driven, rely on the face
for extraction of the signal. A common first step is therefore often to define a
region of interest in the face from which the pulsatile signal is extracted. There
are several ways this is done. Early research into remote PPG relied on the
subject not moving such that a region of interest, usually around the cheeks and
forehead, could be selected to extract the pixel signal from. As this can not be
assumed in practice, later methods apply face detection methods such as the
Viola-Jones algorithm [41] to extract the pixel color from a fixed region of the
face. The main disadvantage of these methods however, is that by pre-defining
the region of interest you limit the amount of information you feed into the
algorithm: although the region of interest is chosen based on the visibility of
the blood volume pulse signal, other regions with only a weak signal or even
none can be relevant as well. Nowara et al. [27] for example developed a method
that learns an inverse attention mask, to thereby find the regions containing
no pulsatile signal which can then be used to estimate noise and illumination
changes. Niu et al. [26] uses face detection, but instead of pre-defining the region
of interest they divide the face into n regions of equal size, and then have their
model learn which of the ROIs to use to what extend in its prediction. IBIS [7] is
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a similar technique, but instead of dividing the video into n equal sized squares,
it divides pixels into regions that are closest in the spatial as well as in the color
domain. This thereby keeps the contours of the image intact, resulting in much
less distorted colour signals for each region [44]. However, as all of these input
representations focus on heart rate estimation, it is unclear if they work equally
well for the estimation of waveform properties.

3 Method

In this work, we explore direct-estimation methods for predicting PPG waveform
features using deep neural networks. We do this using different rPPG signal
representations, including pre-processing steps to reduce noise in the original
signal, and test multiple common deep learning architectures.

3.1 Data pre-processing

For simplicity, we cut each video into fragments of 10 seconds to serve as input
for our algorithms. For each fragment, we calculate the average value for each of
our waveform features within this 10 second time frame. We use contact-PPG
signals measured at the finger to train our algorithms. From these signals, we
obtain the ground truth pulse wave features using a derivative based peak- and
valley-detection algorithm [6].

The features characterising the pulse waveform can in general be divided
into three classes: temporal, amplitude and area features. To study the ability to
detect a wide range of waveform features, we chose to study at least one feature
from each of these categories. The features we will look at are the following:
the heart rate (HR), rise time (RT), pulse wave amplitude (PWA) and the area
under the pulse (AUP) (Figure 2).

3.2 Input representations

Different input representations present the input signal in an alternative way,
thereby affecting the way waveform features are presented. The effect of the
representation might differ based on the feature of interest, and therefore we
compare three different input representations (Figure 3) and their effect on the
capability of predicting waveform feature values.

Our first input representation is the 1D pre-processed signal. To generate this
representation, we start of with face finding using the Viola-Jones algorithm [41]
and facial landmarks detection using an active appearance model [19]. These fa-
cial landmarks are then used to select the upper region of the face (excluding the
eyes) over which we perform spatial averaging to capture a 1D RGB pixel signal
over time [16]. This step is then followed by projection to a plane orthogonal to
the skin tone using the POS method [44] and lastly a Butterworth band-pass
filter with cutoff frequencies 0.5 and 6 Hz.
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As we aim for consistency in processing all input representations, we use the
same pre-processing pipeline for the Continuous Wavelet Transform (CWT) rep-
resentation. The only difference is that after generating the one-dimensional sig-
nal, we apply a CWT using the Morlet mother wavelet to get a two-dimensional
representation of the frequencies present in the signal.

Our third representation is a spatial-temporal map (ST-map). For this, we
use the IBIS [7] method, for spatially segmenting the video into n superpixels
based on the location and colour of pixels. Here, we chose n = 240 and c = 20,
which defines the weighting between spatial and colour information on deter-
mining superpixel groupings. This gives us n temporal signals, each containing
the average RGB pixel values of each of the superpixels over time. Similar to
the other two representations, we project these signals using the POS method
followed by the same band-pass filter to remove unwanted noise.

Fig. 3.Visualisation of the different input representations we evaluate for waveform fea-
ture prediction. The representations differ based on their domain (time- or frequency-
domain) and region of interest that is used (the complete frame or pre-selected parts
of the face).

3.3 Models and training procedure

We use two different types of neural network architectures: a CNN, which uses
convolutional operations to extract features, and a Transformer, which uses self-
attention to learn the relations within the data. As these two models differ in
their fundamental operation to learn features, we expect that they might benefit
from different input representations. At the same time, by using two different
model types we can evaluate the suitability of the different representations in a
wider range of situations.

For the CNN, we use the widely used Resnet18 [17] and a one-dimensional
adaptation of this architecture for the 1D data [18] using the same hyperpa-
rameters but with 10 residual blocks. The Transformer model we use for the
two-dimensional data is the base model of the Data-efficient Image Transformer
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(DeIT) [38] while for the one-dimensional data, we use an architecture similar to
[24], where we use four convolutional layers to learn an embedding, four attention
heads, eight self-attention layers and a model dimension dm = 256.

Based on training curves, we use 200, 20 and 20 epochs for training on the the
VIPL-HR dataset for the 1D-, CWT- and ST-map- representations respectively,
while for the VicarPPGBeyond dataset, we use 200, 60 and 60 training epochs
respectively. After every epoch, we evaluate the performance on the model on the
validation set, and we chose the model with the best validation set performance
as our final model, which we evaluate on the test set. We train the models using
an L1-loss and they are evaluated using the Mean Absolute Error (MAE), Root
Mean Square Error (RMSE) and Pearson correlation coefficient (ρ).

3.4 Baseline

To be able to test if our models are capable of learning relevant features from the
input, we design a naive baseline algorithm that achieves in general the lowest
possible error without using any input features. It does this by calculating the
average of all target output values it has previously seen, and uses this value as
its prediction when presented a new input.

4 Experiments

4.1 Datasets

We test our method on two publicly available datasets VIPL-HR [25] and Vi-
carPPGBeyond (not published yet). VIPL-HR is a dataset commonly used for
heart rate estimation and was especially collected for the training of data-driven
rPPG methods. It was collected by the Institute of Computing Technology Chi-
nese Academy of Sciences, and is a dataset that presents scenarios that are much
less constrained than in previous databases. The dataset includes variations in
illumination, head movement and a diversity of camera devices to thereby mimic
a natural environment for remote PPG measurement. The data consists of 107
participants and 3130 videos in which the participants follow 9 different sce-
nario’s with respect to e.g. head movement and recording method. To reduce
the dataset size, videos are compressed using the MJPG codec. The videos have
a frame rate of 25 or 30 fps (depending on the camera device) and are on average
30 seconds in length.

The VicarPPGBeyond dataset has recently been acquired with the goal of
measuring a variety of vital signs such as respiration rate, blood oxygen satura-
tion and heart rate. The data consists of 15 subjects in natural light conditions,
recorded with a consumer-grade camera (Logitech C925e). Videos have been ac-
quired with a duration of 2-3 minutes, in which the participants perform various
tasks such as holding their breath for 30 seconds and performing small motions.
The recordings are acquired with a frame rate of 30 fps and are uncompressed.
This dataset will be made publicly available in a future publication. Distribu-
tions of the heart rate (HR), rise time (RT), pulse wave amplitude (PWA) and
pulse area (AUP) for both datasets can be found in Figure 4.
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Fig. 4. Distributions of the heart rate (HR), rise time (RT), pulse wave amplitude
(PWA) and area under pulse (AUP) for the 10-second clips of the VIPL-HR and Vi-
carPPGBeyond dataset. We see that the VIPL-HR dataset in general has distributions
that have a more Gaussian shape than the VicarPPGBeyond distributions, possibly
due to the higher number of participants included in the VIPL-HR dataset.

4.2 Evaluation methods on PPG signal

Experimental setup: The remote PPG signal can be regarded as an ex-
tremely noisy version of a PPG signal, with a varying distance between sensor
and skin, inconsistent composition of light-source and camera quantization as
potential sources of noise amongst others. The PPG ground truth provided with
the analyzed dataset can be thus regarded as the ‘cleanest’ version of the re-
mote PPG signal. We used these clean signals to design a toy-experiment to test
whether our methods are capable of predicting individual waveform features un-
der ideal circumstances. With the reasoning that if a method is not capable to
predict waveform features on the ground-truth signal, there is little hope that it
would be able to do this on the real signals which are far noisier.

The different model types are trained on predicting one of the waveform fea-
tures from the ground-truth signal for VicarPPGBeyond and VIPL-HR. Two
different input representations are tested: the 1D-signal representation and the
2D-CWT. The input representations are generated according to our described
methodology (section 3.2), excluding the filtering and POS-projection step. Mod-
els are trained using a subject-exclusive 70/15/15 train/validation/test split,
meaning that participants only appear in one of the three sets.

Results: Our results can be found in Figure 5. The true-vs-estimated graphs
can give us a clear insight into how well the different model-input combinations
are able to predict the value of the waveform features. We see that the 1D-CNN
is quite successful in predicting all four features: the predicted values follow the
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true-values line relatively well, except for the pulse wave amplitude prediction
on VicarPPGBeyond. The CWT-CNN performs comparable, although it seems
a bit worse on both PWA prediction tasks. The Transformer (TF) trained on
the CWT representations is less successful: on half of the features, it seems to
do reasonable well, while on others, it converges to predicting the same value for
every input. Lastly, the 1D-TF is not able to learn any of the waveform features,
predicting the same value regardless of the input.

Fig. 5. True-vs-estimated values for the different methods trained on predicting feature
values from PPG signals of VicarPPGBeyond and VIPL-HR. Pearson correlations are
shown as annotations. As can be seen, most methods perform well for all features
on the VIPL-HR dataset, while they struggle for predicting rise time (RT) and pulse
wave amplitude (PWA) on VicarPPGBeyond. Also notice that both Transformer (TF)
models are outperformed by the CNNs, especially the TF trained on 1D data.

4.3 Influence of input representation on waveform feature
prediction

Experimental setup: We train the different model types on predicting one
of the four waveform features using one of the three different input represen-
tations, to investigate whether it is possible to estimate individual waveform
features from the far more noisy rPPG signals and at the same time determine
which pipeline is best suited for which representation. We do this on both the
VicarPPGBeyond and the VIPL-HR dataset and use 7-fold subject-exclusive
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cross-validation. We take the average over all seven folds and report this as the
final performance.

Evaluation metrics: To compare the performance of the method-input
combinations for each of the waveform features, we use the Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and Pearson correlation co-
efficient between the predicted feature value and the ground-truth value for each
10-second signal clip.

Results: Our results are depicted in Table 2, 3 and 4, and have been visual-
ized in Figure 6. Based on MAE and RMSE (Table 2 and 3 respectively), we can
see that the best model-input combination differs based on the waveform feature
of interest. For predicting heart rate, the CNN trained on the one-dimensional
input representation seems to be the best choice as it outperforms the base-
line reasonably well. For rise time prediction, the best model-input combination
is less clear: overall, the 1D-Transformer seems best, though it is only slightly
better than the 1D-CNN and CWT-Transformer performance. For pulse wave
amplitude prediction, the Transformer trained on ST-maps performs the best
on VicarPPGBeyond, although the difference with the baseline is only marginal
and the baseline outperforms all methods on VIPL-HR. Lastly for pulse area
prediction, the 1D-CNN seems again the best choice.

If we consider the Pearson correlation coefficients (Table 4, Figure 6), how-
ever, we see that some models have not been able to learn any useful features,
achieving a correlation close to zero. Especially both spatial-temporal map meth-
ods perform bad, essentially predicting the same value for every input. The same
holds for the Transformer trained on 1D-input signals: although it achieved an
error well below baseline on predicting rise time for VicarPPGBeyond, this can
probably be attributed to mere chance as the average ρ-values indicate that it
does not learn any correlation.

If we combine the information from the error-values and Pearson correlation,
the results suggest that the 1D-CNN, CWT-CNN and CWT-TF are the most
successful in predicting waveform features. Especially the heart rate and pulse
area can be predicted fairly well, while the rise time and pulse wave amplitude
can not be predicted using the current experimental setup.

4.4 Influence of filtering on waveform feature prediction

Experimental setup: In the pre-processing of all three input representations,
we use the same band-pass filter to exclude high- and low-frequency signals from
the input. To evaluate the role of this filtering step in the final performance of
our methods and to identify if we do not filter out important information, we
have tested the performance of our methods with- and without band-pass filter
on the VIPL-HR dataset. For this, we use a fixed 70/15/15 participant-exclusive
train/validation/test split and denote the average performance over 5 different
training iterations to test for significance.
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Table 2. Mean absolute error for the different models and input representations on
prediction of waveform features on VicarPPGBeyond and VIPL-HR. Scores outper-
forming the baseline are underlined and best performing model per feature is shown
in bold. Error rates were obtained as the average using 7-fold cross-validation. Based
on the MAE, we see that there is at least one model for each waveform feature that
outperforms the baseline, except for PWA prediction on VIPL-HR.

MAE
VicarPPGBeyond VIPL-HR
HR RT PWA AUP HR RT PWA AUP

1D signal
CNN 4.38 17.7 0.156 2.00 7.94 32.3 0.121 0.854
TF 10.05 16.3 0.175 2.30 10.36 32.9 0.120 0.982

2D CWT
CNN 5.43 22.5 0.185 1.92 8.08 33.3 0.121 0.859
TF 14.69 16.8 0.162 2.02 10.78 33.5 0.125 0.887

2D ST-map
CNN 13.13 30.6 0.175 2.92 12.21 32.9 0.137 1.505
TF 12.76 19.8 0.151 2.67 10.63 32.7 0.125 1.397

Baseline 11.60 25.6 0.157 2.13 10.44 35.8 0.119 0.996

Table 3. Root mean square error for the different models and input representations
on prediction of waveform features on VicarPPGBeyond and VIPL-HR. Scores outper-
forming the baseline are underlined and best performing model per feature is shown
in bold. Error rates were obtained as the average using 7-fold cross-validation. We see
that there is at least one model for each waveform feature that outperforms the base-
line, except for PWA prediction on VIPL-HR, which is in accordance with the MAE
results.

RMSE
VicarPPGBeyond VIPL-HR
HR RT PWA AUP HR RT PWA AUP

1D signal
CNN 6.70 21.1 0.175 2.60 11.1 53.3 0.145 1.17
TF 12.46 19.8 0.191 2.97 13.3 51.2 0.142 1.32

2D CWT
CNN 7.74 26.1 0.203 2.67 11.1 53.8 0.145 1.17
TF 16.69 19.7 0.179 2.73 13.9 53.2 0.148 1.21

2D ST-map
CNN 15.66 34.2 0.193 3.64 39.7 54.2 0.439 4.26
TF 15.23 22.9 0.167 3.35 13.6 52.9 0.152 1.95

Baseline 13.67 27.9 0.172 2.80 13.4 51.5 0.140 1.31
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Fig. 6. Pearson correlation between the predicted and true values for the different
models and input representations on prediction of waveform features on VIPL-HR
(left) and VicarPPGBeyond (right). Pearson correlation coefficients were obtained as
the average using 7-fold cross-validation and standard deviations are shown as error
bars. We see that only for heart rate (HR) and area under pulse (AUP) prediction, there
are models that achieve a reasonable correlation. Moreover, the standard deviation
between folds is relatively high, indicating that the choice of fold greatly influences
model performance.

Table 4. Pearson correlation coefficient between the true and estimated values for
the different models and input representations on prediction of waveform features on
VicarPPGBeyond and VIPL-HR. Coefficients were obtained as the average using 7-fold
cross-validation and highest correlation per feature is shown in bold. Although some
models achieve a good MAE and RMSE, based on the Pearson correlation we see that
only the 1D-CNN and both models trained on CWT representations have learned a
reasonable correlation. Moreover, the rise time and pulse wave amplitude can not be
predicted using the current experimental setup.

Pearson ρ
VicarPPGBeyond VIPL-HR

HR RT PWA AUP HR RT PWA AUP

1D signal
CNN 0.73 -0.01 0.27 0.28 0.58 0.03 -0.02 0.49
TF 0.07 -0.11 0.02 0.03 0.02 0.00 -0.03 -0.02

2D CWT
CNN 0.67 0.04 -0.05 0.30 0.57 0.06 0.10 0.47
TF 0.46 -0.03 -0.06 0.30 0.21 0.09 0.06 0.39

2D ST-map
CNN 0.02 -0.01 0.05 0.12 0.01 0.00 0.02 0.08
TF 0.00 0.00 -0.08 0.08 -0.02 0.03 0.05 0.05
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Evaluation metrics: We evaluate the performance using the Mean Abso-
lute Error and we use an independent equal-variance two-sample t-test to test
for significant differences.

Results: From Table 5, we can see that the obtained MAE values do not
differ much upon removing the band-pass filter. In all cases, we see that the
unfiltered methods do not perform significantly better than their filtered variant,
indicating that our band-pass filter does not remove any information that would
be useful in prediction. For rise-time prediction we even see that the band-pass
filter results in a small but significant drop in MAE.

Table 5. Mean absolute error for the different models and input representations on
prediction of waveform features either with or without band-pass-filtering. Best per-
forming method scores per filtered-unfiltered category are shown in bold (∗ = p < 0.05
significance) and error rates show the average over five iterations. The results show
that using a band-pass filter gives at least as good performance as without a filter.

HR RT PWA AUP

1D CNN filtered 9.21 43.59* 0.12 0.34
1D CNN unfiltered 9.46 44.10 0.12 0.35

1D TF filtered 11.37 44.15 0.11 0.36
1D TF unfiltered 11.34 44.34 0.11 0.36

CWT CNN filtered 9.45 43.04* 0.11 0.35
CWT CNN unfiltered 9.62 43.42 0.11 0.35

CWT TF filtered 12.08 43.85* 0.11 0.39
CWT TF unfiltered 12.02 43.89 0.11 0.40

5 Discussion and Limitations

We have studied the ability to predict PPG waveform features for multiple
datasets, model-types and input representations, to thereby give a broad in-
sight into the possibility of pulse feature measurement. The MAE, RMSE and
Pearson correlation values that our methods obtain show the ability to predict
heart rate and pulse area, while the rise time and pulse wave amplitude seem to
be more challenging features, which our tested models were not able to predict.

As was expected compared to the toy problem, where we estimated waveform
features directly from the PPG waveform, the additional noise in the rPPG
signal makes the task of estimating waveform features a lot more difficult. In
the toy example the features that were predicted with the highest accuracy
were the heart rate and the area under the pulse, while the rise time and pulse
wave amplitude could only be predicted relatively well on the VIPL-HR dataset
(Figure 5). We show that while heart rate and area under the pulse still show
good correlation when trained on pre-processed rPPG signals, the same does not
hold true for the pulse wave amplitude and rise time prediction.
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Moreover, our results demonstrate the influence of input representation on
the prediction performance. In our method design, we have specifically not used
any specialized model architectures to thereby give a general overview of the
relation between input representations and waveform features. In general, the
one-dimensional input representation in combination with a CNN is the most
suitable based on our experimental set-up, although the models trained on the
CWT representation achieve a comparable Pearson correlation for pulse area
prediction.

One possible explanation of the bad performance of all tested pipelines on
the rise time prediction is the low sampling frequency of the rPPG signal. The
prediction of rise time and pulse wave amplitude depends on being able to detect
the start and peak of the systolic wave. In the datasets we study, the average
rise-time over 10-second time windows is approximately 205 ms in VIPL-HR,
and 160 ms in VicarPPGBeyond (Figure 4). As both datasets consist of videos
with a frame-rate of maximally 30 fps, this means that the rise-time often has
a duration of only 6 frames. If an rPPG method is only one frame off in its rise
time prediction, this thereby already gives it an error of 33 ms. If we want to
improve over the rise time prediction error below 33 ms that we obtain with our
methods, it is therefore important to collect datasets with a higher frame-rate as
otherwise the time-resolution will play a big role in the obtained performance.

Another notable detail is that the performance of our methods varies greatly
between folds, especially in the VicarPPGBeyond dataset. This makes cross-
validation important, as otherwise the obtained error is largely influenced by the
chosen data split. This can be seen in Figure 6, where the standard deviation of
the Pearson correlation is often higher than the average. An example is the pulse
wave amplitude prediction using the 1D-CNN, where the Pearson correlation
varies between -0.01 and 0.82. This indicates that the relatively low amount
of participants and data volume of VicarPPGBeyond makes it sensitive to the
chosen train/validation/test split.

If we compare the performance of our methods on both datasets, we would
expect to achieve better results on the VicarPPGBeyond dataset as it contains
videos that are uncompressed and contain only small motions with respect to
the VIPL-HR videos. However, the performance we achieve is not much better,
except for heart rate prediction. We think that this might be due to the lower
volume of the VicarPPGBeyond dataset. Our experiment where we train on the
PPG signals instead of rPPG signals (Figure 5) also supports this hypothesis, as
we see that even on the clean PPG signals, our methods struggle to predict the
rise-time and pulse wave amplitude for VicarPPGBeyond. We would therefore
suggest studying waveform features on large datasets, as the data volume might
highly impact the performance.

Although we aim to give a broad insight into methods for PPG waveform
feature estimation, there are still many possible methods that are out of the
scope of the current study. Based on successful results of direct heart-rate esti-
mation methods, we focus specifically on direct feature estimation methods in
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this study. However, there exist many rPPG methods that predict heart-rate
indirectly, by optimizing for predicting the PPG waveform and then extracting
the heart-rate by post-processing. Investigating how well these methods are able
to predict various waveform features might be interesting. Other possibilities
include the use of purely signal-processing based methods, or the use of purely
deep-learning based methods, for example by using a PPG waveform estimation
model in combination with our CNN model trained on predicting waveform fea-
tures from 1D-signals.

The results presented in this paper give first insights into the possibilities
of PPG waveform feature prediction using remote PPG. Although there is still
much progress to make, the insights we obtain can serve as indication of promis-
ing directions to develop more advanced waveform feature prediction models.
Ultimately, this can thereby allow further steps towards home-care robotics.
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2
Introduction

Photoplethysmography (PPG) is a technique to measure the blood volume pulse of a patient using
a contact sensor commonly placed around the finger or ear lobe [6]. Fluctuations in the hemoglobin
concentration of the blood due to the blood pulse result in changes in light absorption by the skin tissue
[17], which can be measured and used to derive the underlying pulse. Remote PPG (rPPG) attempts
to do the same, but using a camera directed at the face instead of making contact. Although the light
absorption fluctuations are small, they can be detected from several meters distance by a camera and
by using specialized techniques, the underlying blood volume pulse can be derived.

Remote photoplethysmography can have many positive applications. First of all, it makes it possible
to measure the blood volume pulse in patients that are harmed by the skin-contact of traditional PPG
devices, such as infants [3] and people with a sensitive skin [22]. Moreover, it allows for remote health
diagnosis, as rPPG can be done using a webcam or phone camera instead of specialized healthcare
devices, thereby largely decreasing the threshold for health checkups, especially in rural areas.

Currently, remote PPG methods have been developed for estimating the heart rate of a patient with
great success [15]. However, many other features can be derived from the blood volume pulse to de-
scribe its morphology, for example the pulse wave amplitude and the area under the pulse [9]. These
features have correlations with many underlying physiological conditions of the patient, e.g. its blood
pressure or the presence of cardiovascular diseases. Being able to measure these features using re-
mote PPG would therefore allow for a more detailed health screening of a patient.

In this work, we will investigate the possibility of measuring various blood volume pulse features
using remote PPG. As we are one of the first works to do this, we will attempt to do this using various
input pre-processing pipelines, which we call input representations, in combination with current state-
of-art deep learning architectures to predict pulse wave features from a facecam video. We thereby aim
to give insight into the possibilities of pulse feature measurement using remote PPG and the influence
of input representations on this prediction. We present our results in the form of a paper (Chapter 1),
background information (Chapter 3), additional experiments (Chapter 4) and conclude with an ethical
discussion and future recommendations (Chapter 5).
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3
Background

In this section, I will give background information of the Deep Learning and signal processing techniques
that I have used in my thesis. This chapter expects that the reader is familiar with the basics of neural
networks, such as activation functions, fully connected networks, convolutions and backpropagation.

3.1. Model architectures
3.1.1. Convolutional neural networks
Convolutional neural networks (CNNs) have been one of the most used types of deep learning models
in the last decade. First introduced in AlexNet [14], these models consist of several convolutional
layers to learn to extract features from an input. Although they were introduced for 2D data, specifically
images, they have also achieved success on 1D time series data [28], 3D data such as videos [12], and
could theoretically also be used on higher dimensionality input, although they exponentially increase
in size with increasing dimensions. These models have shown state-of-the-art performance in various
computer vision problems [16][29][21], and their application also extends to other domains such as
healthcare [18]. Although the CNN is in theory able to learn any complex non-linear relation, there
have been studies that suggest it generally relies on low-level features [4] such as textures [10] in its
decision making.

3.1.2. Residual connections
As deep learning architectures become deeper, they generally become harder to converge because of
exploding or vanishing gradients. Because of this issue, He et al. [11] introduced the residual- or skip
connection, most commonly known from their widely used Resnet architecture. Traditionally in neural
networks, data flows through each layer sequentially, where the output of one layer becomes the input
of the layer that follows. Residual connections, however, skip the subsequent layer, and are multiplied
instead with the identity matrix to keep the original information intact (Figure 3.1). There are various
theories why this is a good idea, one of which is that these residual connections make the network
behave as an ensemble of methods, thereby avoiding gradient problems by having shallower paths in
these ensembles [26].

Figure 3.1: Schematic view of a residual connection [11]
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3.1.3. The Transformer
More recently, the Transformer architecture has been introduced [25]. It has originally been designed
for the natural language processing field, especially for text translation. Traditionally, for these prob-
lems, recurrent neural network models have been the most appropriate model, as their ability to learn
temporal-dependencies from data allows them to learn relations between subsequent words in a sen-
tence. These models however where in practise not able to learn long-distance dependencies span-
ning more than several sentences, and this is the main issue that the Transformer model improves
on. The Transformer relies on self-attention to learn relationships between elements in a sequence. It
does this using query, key and value matrices based on the following equation: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾

𝑇

√𝑑𝑘
)𝑉.

Figure 3.2: Schematic overview of the
encoder architecture of the

Transformer by [25].

Without goingmuch into detail, the query-, key- and value-matrices
(Q, K and V respectively) are obtained using matrix-vector multi-
plication between a word embedding 𝑥 and a learned weight ma-
trix 𝑊𝑞, 𝑊𝑘 or 𝑊𝑣. By multiplying the key- and query matrices
as 𝑄𝐾𝑇, it returns the similarity of each word with each of the
other words in the sequence. After scaling this with the word em-
bedding dimensionality 𝑑𝑘, multiplication with value matrix 𝑉 then
results in an output that represents a weighted retrieval of the
value of the words in the sequence. Often, multiple ‘attention-
heads’ are used to be able to capture multiple relationships be-
tween words, where each head has different 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣 matri-
ces.

In the Transformer model, the self-attention operation described
above is combined with residual connections and fully connected lay-
ers into an encoder layer (Figure 3.2). Multiple encoder layers can be
stacked, where the output of each layer will be the input of the follow-
ing layer. The output of the encoder can then be used in combination
with a decoder architecture to then output a sequence (as in the orig-
inal Transformer implementation) or a scalar value in our case.

3.1.4. Vision Transformers
In theory, the same recipe for the Transformer could also be applied
on 2D data such as images: give every pixel a positional encoding and
treat the 𝑛 × 𝑛 image as a sequence with length 𝑛2. In reality how-
ever, this is infeasible as the self-attention operations have 𝒪(𝑁2𝑑)
complexity, with 𝑁 the sequence length. The solution to this which
Dosovitskiy et al. [8] propose in their Vision Transformer (ViT) is to compress 16 × 16 pixel patches
into one scalar, thereby greatly decreasing the computational complexity. Despite this compression,
the ViT performs really well in practise and has proven to outperform the CNN in many computer vision
tasks [24][8].

3.2. Model training
3.2.1. Adam optimizer
Supervised learning of a neural network in general involves three steps: present a sample from the
training set, calculate the loss based on output and target values, and back-propagate the loss to
update the network weights. Using stochastic gradient descent, weights 𝜃 are updated based on the
learning rate 𝜖 and a gradient approximated by mini-batches 𝑚′:

𝜃′ = 𝜃 − 𝜖 1𝑚′
𝑚′

∑
𝑖=1
∇𝜃𝐿(𝑦𝑖 , 𝑓(𝑥𝑖), 𝜃), (3.1)

with 𝑓(𝑥𝑖) the predicted value based on data 𝑖 in the mini-batch and 𝑦𝑖 its target value.
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Figure 3.3: Example of a stochastic
gradient descent weight update

trajectory in a two-dimensional weight
landscape.

However, because stochastic gradient descent uses an approx-
imated gradient based on mini-batches and only uses current esti-
mated gradients to update weights, it can have problems with con-
vergence. In Figure 3.3, an example is shown of a possible weight
update trajectory using stochastic gradient descent on two weight pa-
rameters 𝜃1 and 𝜃2. As can be seen, this trajectory is far from optimal,
as instead of going in a straight direction towards the optimum, it often
deviates from this direction due to the stochastic nature of the mini-
batches. Optimizers have therefore been designed that use a more
complex update step to overcome this issue. In my thesis, I have
used the widely adopted Adam optimizer [13], which combines two
different methods that both rely on the exponential weighted moving
average (EWMA) to use previous update steps in its current update:
Momentum and RMSprop.

Stochastic gradient descent with momentum uses the EWMA of
previous gradients combined with the current gradient to update the
weights: 𝜃′ = 𝜃 − 𝜖𝑣𝑖, with 𝑣𝑖 = 𝜌𝑣𝑖−1 + (1 − 𝜌)∇𝜃, where 𝜌 is a tuneable hyperparameter and ∇𝜃 is
the estimated gradient for the current weights. This thereby smooths the average over noisy gradient
approximations. RMSProp uses the EWMA to estimate the squared gradient: 𝑟𝑖 = 𝜌𝑟𝑖−1+(1−𝜌)∇2𝜃. It
then uses this to divide the current mini-batch gradient by, to thereby smooth the zero-centered variance
of noisy update steps: 𝜃′ = 𝜃 − 𝜖 ∇𝜃

√𝑟𝑖
. By combining momentum and RMSprop, Adam is thereby able

to accelerate model convergence and limit the stochastics caused by mini-batches.

3.2.2. K-fold cross-validation

Figure 3.4: K-fold cross-validation
visualized [1].

In a basic model training procedure, the dataset is split into three sets:
a training-set, validation-set and a test-set. The training-set is used,
as the name says, when training the model, followed by the validation
phase were each trained model is tested on a set of data it has not
previously seen to tune hyper-parameters and chose the model that
generalizes best. After this, the best performing model is chosen,
which is then finally evaluated on the data in the test-set.

If the dataset is low in volume however, it is often better to use a
more rigorous training procedure called cross-validation because of
two reasons: to increase the data that can be used for training, and to
decrease the dependency on the chosen test- and validation-set. The
procedure goes as follows: 1) shuffle the data, 2) divide the data into
𝑘 parts, also called folds, 3) train 𝑘 different models, were fold 𝑘 will
be divided into a test- and validation-set and all other folds will be the
training data for that model, 4) take the average of the performance
of all 𝑘 models as the final performance (Figure 3.4).

3.3. Remote PPG and signal processing
3.3.1. Skin reflection model
To get a good understanding of the remote photoplethysmography
problem, it is important to understand the basic principles of light reflection by the skin. Mathematically,
we can define the reflection of a skin pixel as an RGB-signal over time [27] using Shafer’s dichromatic
reflection model [23]:

𝐶𝑘(𝑡) = 𝐼(𝑡) ⋅ (𝑣𝑠(𝑡) + 𝑣𝑑(𝑡)) + 𝑣𝑛(𝑡), (3.2)

where 𝐶𝑘(𝑡) denotes the RGB values of pixel 𝑘 at timepoint 𝑡. This value is dependent on 𝐼(𝑡), which is
the illumination level affected by variations in the light intensity of the source as well as by changes in
the distance between skin, light-source and sensor. 𝐼(𝑡) is modulated by the specular reflection 𝑣𝑠(𝑡)
and the diffuse reflection 𝑣𝑑(𝑡). Lastly, 𝑣𝑛(𝑡) denotes the quantisation noise by the camera.

The specular reflection is light reflection by the skin comparable to a mirror (Figure 3.5): it is affected
by the geometric structure of the skin and does not contain any pulsatile information. Its value over
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time can be denoted as
𝑣𝑠(𝑡) = 𝑢𝑠 ⋅ (𝑠0 + 𝑠(𝑡)), (3.3)

where 𝑢𝑠 is the unit color vector of the light spectrum from the source, and 𝑠0 and 𝑠(𝑡) respectively
reflect the stationary and time dependent parts of specular light reflection.

Figure 3.5: Visualisation of the specular and
diffuse light reflection of the skin [27].

The diffuse reflection contains the relevant signal that
we aim to capture using remote photoplethysmography: it
reflects the light absorption by the skin tissue and is affected
by the blood volume pulse. The diffuse reflection 𝑣𝑑(𝑡) can
be denoted as:

𝑣𝑑(𝑡) = 𝑢𝑑 ⋅ 𝑑0 + 𝑢𝑝 ⋅ 𝑝(𝑡), (3.4)

with 𝑢𝑑 and 𝑑0 the color vector of the skin tissue and sta-
tionary strength of reflection respectively, 𝑢𝑝 the relative
strength in pulse of the RGB-channels and 𝑝(𝑡) the blood
pulse.

Substituting the above equations into the general for-
mula and some rewriting gives:

𝐶𝑘(𝑡) = 𝐼0 ⋅ (1 + 𝑖(𝑡)) ⋅ (𝑢𝑠 ⋅ (𝑠0 + 𝑠(𝑡)) + 𝑢𝑑 ⋅ 𝑑0 + 𝑢𝑝 ⋅ 𝑝(𝑡)) + 𝑣𝑛(𝑡). (3.5)

Thus, the color value of pixels over time can be expressed as the combination of a stationary part 𝐼0
and a time-dependent part 𝐼0 ⋅ 𝑖(𝑡). Our goal is the measure the pulsatile signal 𝑝(𝑡), but because the
specular reflection in general is a signal that is much higher in amplitude than the diffuse reflection, this
is oftentimes a challenging problem.

3.3.2. POS method
The Plane-Orthogonal-to-Skin (POS) method by Wang et al. [27] builds onto the skin reflection model
defined in the previous section. As we concluded there, the pixel color at some timepoint depends on
stationary components as well as time-dependent components of the specular and diffusion reflection.
As we are only interested in measuring the diffusion reflection which is affected by the blood volume
pulse, an optimal method would allow us to negate all the other effects. Wang et al. aim to do this
by estimating a plane orthogonal to the skin and projecting the pixel color signal onto this plane. As
the diffusion reflection is largely independent of the skin tone [7], projecting the signal onto this plane
allows the removal of a large part of the intensity variations and specular reflection while keeping the
signal of interest intact.

3.3.3. Butterworth filter

Figure 3.6: Comparison of the gain around the
cut-off frequency for different filter types[20].

Filtering is an operation that has often been used for remote
photoplethysmography, especially in combination with other
signal processing techniques. The reason behind this is that
there is only a range of desirable frequencies that we want
to include in photoplethysmography measurement: the blood
volume pulse of somebody at rest naturally has a frequency
between 60 and 100 bpm. To account for extreme cases, e.g.
heavy exercise and hearth disorders, in general a broader
passband is used such that no useful information is filtered
out, for example between 25 and 250 bpm.

The Butterworth-filter is one of the most popular methods
to perform band-pass filtering. It is especially designed to have
a frequency response that is as flat as possible in the pass-
band, meaning that it has a maximally uniform sensitivity to
all frequencies within the passband [5]. The disadvantage of
this filter is that it has a relatively broad roll-off around the cut-
off frequencies, which results in some frequencies out of the
passband being not completely filtered out (Figure 3.6). As long as we chose a broad range of frequen-
cies for the passband, the flat response of the Butterworth filter makes sure that we do not filter out any
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useful signals, and our neural networks can learn to negate the effects of the frequencies that are not
filtered out due to the broad roll-off of the filter. This makes the Butterworth filter a suitable choice for
our application.

3.3.4. Continuous wavelet transform

Figure 3.7: The Morlet wavelet [2].

The continuous wavelet transform (CWT) is by definition the convo-
lution of a one-dimensional input signal with a set of functions de-
rived from a chosen ’mother wavelet’. For this mother wavelet various
functions can be used, one of which is the Morlet wavelet 3.7. This
mother wavelet is used as a source function to derive a set of daugh-
ter wavelets by translation and scaling. The mathematical definition
for the continuous wavelet transform is thereby as follows:

𝑋𝑤(𝑎, 𝑏) =
1

|𝑎|1/2 ∫
∞

−∞
𝑥(𝑡)𝜓̄ 𝑡 − 𝑏𝑎 𝑑𝑡, (3.6)

with 𝜓 the mother wavelet, which is scaled by 𝑎 and translated by 𝑏,
𝑥(𝑡) is the original signal and 𝑋𝑤 its continuous wavelet transform.
Using a broad range of daughter wavelets, a representation of the frequencies present in the input
signal can thereby be generated consisting of a real and imaginary part as shown in Figure 3.8. The
original signal can also be derived from the CWT representation using the inverse continuous wavelet
transform.

Figure 3.8: An example of a one-dimensional signal (left) and its continuous wavelet transform representation (right).
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Additional experiments

In this chapter, we describe some of the additional experiments that did not make it into the paper to
give more insight in the underlying methods and possible alternatives.

4.1. Ground-truth evaluation
In my thesis, I aim to predict four different waveform features: the heart rate, rise time, pulse wave
amplitude and the pulse area. To be able to train a neural network on this task, we need ground-truth
values for these features. Fortunately, all four of these signals can be derived using annotations of the
start and the peak of the systolic phase as follows (Figure 4.1):

• Heart rate: time between consecutive systolic peaks, converted to the amount of peaks per
minute.

• Rise time: time between the start of the systolic phase and the systolic peak.

• Pulse wave amplitude: amplitude difference between the start of the systolic phase and the sys-
tolic peak.

• Area under pulse: area under the signal between two consecutive starts of the systolic phase.

Unfortunately, the start of the systolic phase has not been annotated for both datasets, and the
peak-annotations are only available for VIPL-HR. Therefore, a peak- and valley-detection algorithm
has been used to detect the peaks and valleys in the ground truth signal. This algorithm is based
on the first-derivative of the signal, and uses a threshold to account for noise and smaller peaks and
valleys in the signal. The pseudo-code of this algorithm can be found in Algorithm 1.

To evaluate the performance of this algorithm, I have annotated peaks and valleys for a part of the
ground-truth signals for the VIPL-HR and VicarPPGBeyond dataset (Figure 4.2). To be precise, the
following procedure was used:

Figure 4.1: Overview of the four pulse waveform features we study.

28
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Figure 4.2: Example annotation of peaks and valleys in a randomly chosen 10-second window of a Vicar ground-truth PPG
signal.

Algorithm 1 Pseudocode of peak- and valley-detection
1: procedure peaksAndValleys(signal, peak_delta)
2: norm_sig ← signal - 𝑀𝑒𝑎𝑛(signal) Normalize signal and peak delta
3: delta ← peak_delta ⋅ 𝑀𝑎𝑥(norm_sig)
4:
5: peaks ← {}, valleys ← {}
6: mxpos ← 0, mnpos ← 0
7: look_for_max ← 𝑇𝑟𝑢𝑒
8: mx ← −∞, mn ← ∞
9:

10: for idx, x ∈ 𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(norm_sig) do Go over consecutive datapoints
11: if x > mx then If a new max is found, save it
12: mx ← x
13: mxpos ← idx
14: if x < mn then If a new min is found, save it
15: mn ← x
16: mnpos ← idx
17: if look_for_max then
18: if x < mx - delta then If the current datapoint is lower than the threshold, save the peak
19: peaks ← peaks ⋃ x
20: mn ← x, mnpos ← idx
21: look_for_max ← False
22: else
23: if x > mn + delta then If the current datapoint is higher than the threshold, save the valley
24: valleys ← valleys ⋃ x
25: mx ← x, mxpos ← idx
26: look_for_max ← True
27: return peaks, valleys

• For VIPL-HR, only the valleys were not yet annotated. Therefore, for every participant (107 in
total), randomly one video out of the nine scenarios was chosen. From this video, we chose a
random 10-second window to be annotated. As the recordings are on average 30 seconds in
length, this accounts for approximately 1/27th of the total dataset randomly sampled.
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VicarPPGBeyond VIPL-HR
Peaks Valleys Peaks Valleys

Precision 0.960 0.992 0.975 0.918
Recall 0.989 0.957 0.988 0.891

Table 4.1: Precision and recall values for evaluation of the ground-truth annotation algorithm.

• For VicarPPGBeyond, we annotate both peaks and valleys using the following procedure: for
each of the 105 recordings (7 scenarios for all 15 participants), a random 10-second window
is chosen to be annotated. The VicarPPGBeyond recordings are on average approximate 130
seconds in length, making the annotation 1/13th of the complete dataset.

The peaks and valleys that were found using the peak- and valley-detection algorithm were then
compared with the ground truth values. For this, we use the following criterium: if the peak or valley
found by the algorithm is within 100 ms of the ground-truth peak/valley, it is correct, otherwise it is
considered incorrect. This 100 ms tolerance was chosen as within this range, it would not significantly
affect the calculation of the feature values for a 10-second time-window and to account for small errors
in the annotation.

The precision and recall were then used to evaluate the performance of the algorithm as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

, (4.1)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑛𝑡𝑟𝑢𝑒

, (4.2)

with 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 the amount of correctly detected peaks/valleys, 𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 the total amount of peaks/valleys
detected by the algorithm and 𝑛𝑡𝑟𝑢𝑒 the true total amount of peaks/valleys. The values that we obtain
are summarized in Table 4.1. We consider these values good enough for our application, and therefore
we have chosen to continue with using this algorithm.

4.2. Hyperparameter tuning
In this study, we use two model architecture types: the convolutional neural network (CNN) and the
Transformer. For the 2D input representations, we use a Resnet18 [26] and DeIT-base model [24]
(similar to the Vision Transformer described in Chapter 3.1.4) respectively, which have a predefined
size and amount of layers shown to perform well on a wide range of tasks. For the 1D input represen-
tation, we use similar model architectures but their optimal size and number of layers are more variable
and are a tuneable hyperparameter. We therefore perform a minor grid-search to tune their optimal
hyperparameters for our PPG waveform estimation task.

For the one-dimensional Resnet, there is one hyperparameter that we tune: the number of blocks
𝑛𝐵𝑙𝑜𝑐𝑘𝑠. The Resnet architecture is comprised of the following layers (disregarding any possible ac-
tivation functions or normalization layers): one convolution layer, followed by 𝑛 residual blocks, and
ending with a final fully-connected layer. Each residual block consists of a residual connection and
two convolution layers, which have a number of filters that doubles every two blocks. By changing
the number of blocks, we can thus increase the depth of the model and simultaneously increase the
number of filters in the final convolution layers.

We tune three hyperparameters for the one-dimensional Transformer, which are the number of
heads 𝑛𝐻𝑒𝑎𝑑𝑠, the number of self-attention blocks 𝑛𝐵𝑙𝑜𝑐𝑘𝑠 and the dimension of the feedforward
layers in the self-attention blocks 𝑑𝐻𝑖𝑑 (see Figure 3.2 for the Transformer building blocks). Increasing
the value of these hyperparameters will increase the complexity of the model.

We perform a small grid-search over hyperparameter values for both architectures by evaluating the
models on the MAE they obtain. We do this using a fixed subject-exclusive 70/15/15 train/validate/test
split on VIPL-HR. The results are shown in Table 4.2 and 4.3.

4.3. Training curves
Training curves are a well-known tool to keep track of model training and to check when your model
starts to overfit. A common train- and test-curve of themodel training on the waveform feature prediction
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nBlocks 2 4 6 8 10 12
MAE 9.79 16.89 9.18 7.49 7.01 8.80

Table 4.2: Hyperparameter tuning of the number of residual blocks in the 1D Resnet architecture based on the MAE on
VIPL-HR. Lowest MAE value is shown in bold.

nHeads 2 4 8
nBlocks 2 4 8 2 4 8 2 4 8

dHid 512 20.05 18.49 18.44 19.20 19.04 16.36 19.76 18.10 18.28
1024 21.00 16.58 18.50 19.67 19.10 18.67 19.35 19.71 17.80
2048 19.59 19.10 18.10 18.50 18.91 11.10 17.84 17.85 17.64

Table 4.3: Hyperparameter tuning of the number of self-attention blocks, the number of attention heads and the hidden
dimension of the feedforward layers in the 1D Transformer architecture based on the MAE on VIPL-HR. Lowest MAE value is

shown in bold.

task is shown in Figure 4.3. What can be seen from this, is that the performance on the training set is
relatively smooth: after the first few epochs, the difference in train-loss between consecutive epochs is
only marginal and the loss steadily decreases over time. The test-set performance is far from smooth
however, as we see large upward and downward spikes in test-loss between consecutive epochs, often
showing a more than 10% increase or decrease in performance. Moreover, the test-loss does not in
general decrease over time: in the first half, we can see that the loss on the test-set decreases but
hereafter, this is not the case anymore. We therefore can not simply use the training-set performance
as an indicator of the best model to use, as this often does not generalize. Therefore, an additional
validation-set has been used so that the validation-set performance can be utilized to chose the best
model, which we then evaluate on the test-set.

Figure 4.3: Example of a train- and test-curve for HR prediction on VIPL. As can be seen, a small training loss does not
necessarily correspond to a small test-loss.

4.4. Spatial-temporal map alternative
The spatial-temporal map representation that we use in this study has been inspired by the RhythmNet
model [19]. In their study, they use a 5x5 grid of square regions as ROIs, from which they extract the
average RGB value over time (comparable to our approach, but using different ROIs). They then project
the obtained RGB values to the YUV-space, which divides the signal into a luminance component (Y),
and two chrominance components (U, V).

In my thesis, I use a projection to a plane orthogonal to the skin in combination with filtering instead
of YUV-space projection. This method has shown to be successful for estimating heart rate using 1D
rPPG-signals [27] and by keeping all pre-processing steps consistent for all three input representations,
we can compare them without having to account for the effects of different pre-processing.

To test if this affects the performance of the models trained on the spatial-temporal map representa-
tions, I have tested both pre-processing methods (YUV-space projection or POS-projection + filtering)
on the VicarPPGBeyond dataset. For this, I have used a subject-exclusive 70/15/15 train/validate/test
split and trained both the CNN and the Transformer (TF) on predicting the four different waveform fea-
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tures from the spatial-temporal maps. We take the average over 5 different iterations to account for
randomness in training and use an independent equal-variance two-sample t-test to test for significant
differences.

Our results are summarized in Table 4.4. As can be seen, we do see a difference in performance
per method when they use the YUV-space instead of the POS-method. For four out of eight pairwise-
comparisons, these differences are significant as well. This means that the POS-projection method
outperforms the YUV-space for PWA and AUP prediction using a Transformer, while it is outperformed
for HR prediction in combination with a Transformer, and PWA prediction using a CNN. There is thus
no single-best choice that is best in all cases, but the results indicate that YUV-space projection might
be an interesting alternative option.

HR RT PWA AUP
CNN POS 6.39 25.8 0.237 0.119

YUV 8.24 19.67 0.144* 0.124
TF POS 5.88 20.9 0.120* 0.111*

YUV 5.48* 19.3 0.324 0.132

Table 4.4: Mean absolute error for the different models on prediction of waveform features either using POS and filtering or
using YUV-colorspace projection of the spatial-temporal map representations for VicarPPGBeyond. Best performing method
scores per POS-YUV pairwise-comparison are shown in bold (∗ = 𝑝 < 0.05 significance). Error rates show the average over

five iterations.
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Discussion

5.1. Ethical considerations
Aside from the technical possibilities of remote PPG, it is important to consider the ethical implications
the development of this technology entails. First of all, there are many positive effects that this technol-
ogy can bring. The possibility of remote measurement of the blood volume pulse can highly decrease
the threshold for checking the physiological health of someone, not only by making this measurement
possible without the need of specialized contact sensors, but also by making online diagnosis possible.
Especially in more rural areas, this can greatly decrease the effort of health diagnosis. The develop-
ment of remote photoplethysmography thereby also has the effect of allowing everyone, as long as
they have a camera, to daily check-up on their health, which will in particular benefit poorer people for
which this would normally be too costly.

However, there are other effects that remote PPG can have which can be detrimental if they are
disregarded. First of all, it is possible that this technology will be maliciously used. The medical data
that remote PPG can collect from someone should always be collected with consent of this individual
and should be handled properly. Companies or other authorities might have motives to collect your
medical data, for example to measure your emotions, to test if you speak the truth and to check if you
are in good health. Further development of remote PPG might make it possible to reveal more of your
medical health from a simple facecam video, especially if rPPG measurement will encompass more
than only your heart rate. Suitable measures should therefore be taken to make sure that this will not
be possible, although there is not much active research yet into disabling remote PPG measurement.
Technical solutions could for example filter out the blood volume pulse signal, as the pulse signal is
only minor and removing it would therefore not significantly affect the quality of the resulting video. It
is important to start research into this subject, as it might only be a matter of time until remote PPG will
be maliciously used.

Another, less obvious, adverse effect of remote PPG technology are the issues that the adoption
of this technology in healthcare can have. First, an online diagnosis cannot entirely replace physical
appointments with a general practitioner. In person, the doctor can often use subtle clues about the
behaviour of a patient to determine their diagnosis and in healthcare, people often also have the desire
to have face-contact, especially for people who are less familiar with technology. Relying on remote
PPG also has the danger of overestimating the qualities of such a system. This will especially be the
case if the user of the rPPG method, e.g. a doctor, is not familiar with the technology itself and the sit-
uations in which it might fail. Moreover, there is the danger of health anxiety for the patient undergoing
a remote PPG check. A detailed remote PPG screening might for example indicate that there is a tiny
chance of a cardiovascular disease because one’s blood values might have marginally changed over
the past few weeks. Although the chance of a disease is very low, users will constantly be confronted
with their health information, causing distress.

It is important that not only the advantages but also the negative effects of remote PPG technology
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are carefully considered before this technique will be used in practise. If used correctly, remote PPG
can provide a low-cost and easy method to give everyone the ability to have their health screened. It
is our shared responsibility as researchers on this topic that this technology will be used as intended.

5.2. Challenges and future work
In this work, we explore the possibilities of estimating PPG pulse waveform features using remote PPG.
In the experiment where we train on PPG signals we show that, with a clean enough signal, we are
able to estimate pulse waveform features with a relatively high correlation, while training on the rPPG
signals shows that some features are harder to predict than others in practise.

There are still many challenges before this technology can be used in practise. For example, the
high standard deviations between different folds when training on the VicarPPGBeyond dataset shows
the importance of a widely distributed training dataset, as the results otherwise do not generalize to
other persons. In our paper, we also address the importance of datasets with a high frame-rate, espe-
cially for measuring pulse waveform features, as the temporal resolution can play a big role for features
with a low time duration. Lastly, it is important to look into different method types to see how they
compare with the results we obtain and investigate their suitability for measuring waveform features.
Methods trained on PPG waveform prediction, e.g. MTTS-CAN [15], have shown to be very successful
for estimating heart rate. Although they do not directly optimize for predicting waveform features, it can
be interesting how well they are able to estimate those in combination with post-processing methods
to extract the feature values from the predicted wave.

The range of different possibilities to estimate PPGwaveform features using remote PPG is endless,
and there is no doubt that there will be methods that improve over the results we obtain in this study.
However, with the work we present in this paper, we hope to give insights into the possibilities of PPG
feature prediction and suitable methods to do so.
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