

Delft University of Technology

PIE
A Domain-Specific Language for Interactive Software Development Pipelines
Konat, Gabriël; Steindorfer, Michael; Erdweg, Sebastian; Visser, Eelco

DOI
10.22152/programming-journal.org/2018/2/9
Publication date
2018

Published in
Art, Science, and Engineering of Programming

Citation (APA)
Konat, G., Steindorfer, M., Erdweg, S., & Visser, E. (2018). PIE: A Domain-Specific Language for Interactive
Software Development Pipelines. Art, Science, and Engineering of Programming, 2(3), 1-31. Article 9.
https://doi.org/10.22152/programming-journal.org/2018/2/9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/10.22152/programming-journal.org/2018/2/9

PIE: A Domain-Specific Language for Interactive Software
Development Pipelines

Gabriël Konata, Michael J. Steindorfera, Sebastian Erdwega, and Eelco
Vissera
a Delft University of Technology, The Netherlands

Abstract
Context. Software development pipelines are used for automating essential parts of software engineering
processes, such as build automation and continuous integration testing. In particular, interactive pipelines,
which process events in a live environment such as an IDE, require timely results for low-latency feedback,
and persistence to retain low-latency feedback between restarts.
Inquiry. Developing an incrementalized and persistent version of a pipeline is one way to reduce feedback
latency, but requires implementation of dependency tracking, cache invalidation, and other complicated and
error-prone techniques. Therefore, interactivity complicates pipeline development if timeliness and persis-
tence become responsibilities of the pipeline programmer, rather than being supported by the underlying
system. Systems for programming incremental and persistent pipelines exist, but do not focus on ease of de-
velopment, requiring a high degree of boilerplate, increasing development and maintenance effort.
Approach.We develop Pipelines for Interactive Environments (PIE), a Domain-Specific Language (DSL), API,
and runtime for developing interactive software development pipelines, where ease of development is a fo-
cus. The PIE DSL is a statically typed and lexically scoped language. PIE programs are compiled to programs
implementing the API, which the PIE runtime executes in an incremental and persistent way.
Knowledge. PIE provides a straightforward programming model that enables direct and concise expression
of pipelines without boilerplate, reducing the development and maintenance effort of pipelines. Compiled
pipeline programs can be embedded into interactive environments such as code editors and IDEs, enabling
timely feedback at a low cost.
Grounding. Compared to the state of the art, PIE reduces the code required to express an interactive pipeline
by a factor of 6 in a case study on syntax-aware editors. Furthermore, we evaluate PIE in two case studies of
complex interactive software development scenarios, demonstrating that PIE can handle complex interactive
pipelines in a straightforward and concise way.
Importance. Interactive pipelines are complicated software artifacts that power many important systems
such as continuous feedback cycles in IDEs and code editors, and live language development in language
workbenches. New pipelines, and evolution of existing pipelines, is frequently necessary. Therefore, a system
for easily developing and maintaining interactive pipelines, such as PIE, is important.

ACM CCS 2012
Software and its engineering → Domain specific languages; Development frameworks and
environments; Source code generation; Runtime environments;

Keywords domain-specific language, pipeline, interactive software development, incremental

The Art, Science, and Engineering of Programming

Submitted December 1, 2017

Published March 29, 2018

doi 10.22152/programming-journal.org/2018/2/9
© Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 2, no. 3, 2018, article 9; 31 pages.

https://doi.org/10.22152/programming-journal.org/2018/2/9
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

PIE: A DSL for Interactive Software Development Pipelines

1 Introduction

A pipeline is a directed acyclic graph of processors in which data flows from the output
of one processor to the input of its succeeding processors. Pipelines are ubiquitously
used in computer hardware and software. E.g., in hardware, CPUs contain instruction
pipelines that allow interleaved execution of multiple instructions that are split into
fixed stages. Software pipelines compose software components by programmatically
connecting their input and output ports (e.g., UNIX pipes).

In software development, pipelines are used to automate parts of the software en-
gineering process, such as building software systems via build scripts, or continuously
testing and integrating the composition of subsystems. Such pipelines are suitable for
batch-processing, and often run isolated on remote servers without user interaction.

Interactive software development pipelines build software artifacts, but react in-
stantly to changes in input data and provide timely feedback to the user. Typical ex-
amples are continuous editing of source code in an Integrated Development Environ-
ment (IDE), providing feedback through editor services such as syntax highlighting;
selective re-execution of failing test cases in the interactive mode of a build system
during development; or development of languages in a language workbench [14].

Interactive pipelines focus on delivering timely results when processing an event,
such that the user can subsequently act on the results. Furthermore, an interactive
software development pipeline should persist its state on non-volatile memory so that
a session can be restarted without re-execution. Especially in the context of an IDE,
restarting the development environment should not trigger re-execution of the entire
pipeline, especially if pipeline steps are costly, such as advanced static analyses [42].

Interactivity complicates the development of pipelines, if timeliness and persistency
become responsibilities of the pipeline programmer, rather than being supported by
the underlying system. Developing an incrementalized version of an expensive op-
eration is one way to reduce the turnaround time when re-executing the operation.
However, implementing support for incrementality in a pipeline is typically compli-
cated and error-prone. Similarly, persisting the result of expensive operations reduces
the turnaround time when restarting a session, but requires tedious management of
files or a database. Furthermore, when persistency is combined with incremental-
ity, dependency tracking and invalidation is required, which is also complicated and
error-prone. Therefore, an expressive system for easily developing correct incremen-
tal and persistent interactive software development pipelines is required.
One system that partially achieves this is Pluto [12], a sound and optimal incremen-

tal build system. Pluto supports dynamic dependencies, meaning that dependencies
to files and other build steps are created during build execution (as opposed to be-
fore or after building), enabling both increased incrementality through finer-grained
dependencies, and increased expressiveness. While Pluto focusses on build systems,
it is well suited for expressing correct incremental and persistent pipelines. However,
ease of development is not a focus of Pluto, as pipelines are implemented as Java
classes, requiring significant boilerplate which leads to an increase in development
and maintenance effort. Furthermore, persistence in Pluto is not fully automated
because pipeline developers need to manually thread objects through pipelines to

9:2

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

prevent hidden dependencies, and domain-specific features such as file operations
are not first class. These are open problems that we would like to address.

In this paper, we introduce Pipelines for Interactive Environments (PIE), a Domain-
Specific Language (DSL), Application Program Interface (API), and runtime for pro-
gramming interactive software development pipelines, where ease of development
is a focus. The PIE DSL provides a straightforward programming model that enables
direct and concise expression of pipelines, without the boilerplate of encoding incre-
mentality and persistence in a general-purpose language, reducing development and
maintenance effort. The PIE compiler transforms high-level pipeline programs into
programs implementing the PIE API, resulting in pipeline programs that can be incre-
mentally executed and persisted to non-volatile memory to survive restarts with the
PIE runtime. Compiled pipeline programs can be embedded in an interactive environ-
ment such as an IDE, combining coarse grained build operations with fine-grained
event processing.
To summarize, the paper makes the following contributions:
The PIE language, a DSL with high-level abstractions for developing interactive
software development pipelines without boilerplate.
The PIE API for implementing foreign pipeline functions, and as a compilation
target for the DSL, with reduced boilerplate.
The PIE runtime that executes pipelines implemented in the API in an incremental
and persistent way, which fully automates persistence and automatically infers
hidden dependencies.
An evaluation of PIE in two critical case studies: (1) modeling of the pipeline of a
language workbench in an IDE setting, and (2) a pipeline for incremental perfor-
mance testing.

The PIE implementation is available as open source software [26].

Outline The paper continues as follows. In Section 2 we describe requirements for
interactive software development pipelines, review the state of the art, and list open
problems. In Section 3 we illustrate PIE by example. In Section 4 we describe the PIE
API and runtime. In Section 5 we describe the syntax, static semantics, and compila-
tion of the PIE DSL in more detail. In Sections 6 and 7 we present critical case studies
of the application of PIE in an interactive language workbench and an interactive
benchmarking setting. In Section 8 we discuss related work. In Section 9 we discuss
directions for future work. Finally, we conclude in Section 10.

2 Problem Analysis

In this section, we first describe requirements for interactive software development
pipelines, review the state of the art, and list open problems.

Requirements We first describe the requirements for interactive software develop-
ment pipelines. In order to do so, we use the example pipeline from Figure 1 as the

9:3

PIE: A DSL for Interactive Software Development Pipelines

Text

Generate
Parse Table Parse

Code
Editor

Error
messages

Figure 1 Example of an interactive software development pipeline, where text from a code
editor is parsed, and parse error messages are displayed in the editor.

running example in this section. In this pipeline, a code editor parses its text buffers
in order to display error messages interactively to the programmer. Parsing requires
a parse table, which is generated by an external process and may change when a
new version of a language is deployed, with new syntax that requires regeneration
of the parse table. We identify the following requirements for interactive software
development pipelines:

Incrementality. A pipeline should attempt to recompute only what has been af-
fected by a change. For example, when only a text buffer in the code editor changes,
the pipeline reparses the text and new error messages are displayed, but the gen-
erated parse table is reused because it did not change.
Correctness. Incremental pipeline executions must have the same results as from-
scratch batch executions. For example, if the parse table does change, the pipeline
also reparses text and displays new error messages.
Persistence. Results of computation should be persisted to disk in order to enable
incrementality after a restart of the pipeline. For example, if we restart the code
editor, the parse table is retrieved from disk instead of requiring a lengthy recom-
putation.
Expressiveness. In practice, pipelines are a lot more complex than the simple ex-
ample shown here. It should be possible to express more complex pipelines as
well.
Ease of development. Pipelines are complex pieces of software, especially when the
previous requirements are involved. Therefore, the development and maintenance
effort of pipelines should be low.

State of the Art We now review the state of the art in interactive software develop-
ment pipelines, and determine to what extent existing tools meet the requirements,
focussing on build systems.

Make [38], and systems with similar dependency management (e.g., Ninja, SCons,
MSBuild, CloudMake, Ant), are tools for developing build systems based on declar-
ative rules operating on files. These tools support incremental builds, but incremen-
tality is limited to static file dependencies which are specified up front in the build
rules. Because dependencies cannot be the result of computation, the dependencies
must either be soundly overapproximated, which limits incrementality, or underap-
proximated, which is unsound. For example, a Makefile that determines the version
of a Java source file, in order to parse it with the corresponding parse table file, must

9:4

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

Text (buffer 1)
requires file
provides file

requires build

Text (buffer 2)

Generate
Parse Table

Parse

Code
Editorsyntax.tblsyntax.sdf3

Parse

Error
messages

Error
messages

Figure 2 Pluto dependency graph created by executing the pipeline from Figure 1, where
the code editor has 2 open text buffers.

depend on all parse table files instead of a single one. Therefore, a system that sup-
ports a more expressive dependency mechanism is required. A detailed discussion of
dependency expressiveness can be found in Section 8, but in this section, we focus
on the system with the highest dependency expressivity: Pluto.
Pluto [11] is a sound and optimal incremental build system with support for dy-

namic dependencies. A build system in Pluto is implemented in terms of builders,
which are functions that perform arbitrary computations and dynamically record de-
pendencies to files and other builders during execution. Executing a builder with an
input produces a build, containing an output object and recorded dependencies.

Figure 2 illustrates the dependency graph Pluto produces when it executes the
pipeline of Figure 1 where the code editor has two open text buffers. The depen-
dency graph differs from the pipeline by containing builds (function calls) instead of
builders (function definitions). For example, the pipeline has one parse builder, but
two parse builds, one for each text buffer. We use this dependency graph to illustrate
Pluto’s adherence to requirements for interactive pipelines.

Incrementality. The code editor has two text buffers open, which have separate de-
pendencies to a parse build. When one text buffer changes, only the corresponding
parse build is recomputed. Therefore, Pluto supports fine-grained incrementality.
Correctness. The parse builds depend on the parse table build, such that when
the parse table is regenerated, the parse builds are re-executed, and new error
messages are displayed in the editor. Pluto enforces this by performing hidden
dependency detection. That is, if a build requires a file, without requiring the build
that provides that file, Pluto marks this as an error and aborts execution.
Persistence. While not shown in the dependency graph, builds are persisted to disk
to survive restarts.
Expressiveness. Dependencies are recorded during build execution, allowing builds
to depend on files or call other builds, based on results of computation. For exam-
ple, when parsing Java code, the parse builder may choose to depend on a different
parse table, based on whether we want to parse text of version 8 or 9 of Java. This
greatly increases the expressiveness required for interactive software development
pipelines.
Ease of development. Pluto build systems are implemented in Java, requiring sig-
nificant boilerplate.

9:5

PIE: A DSL for Interactive Software Development Pipelines

Listing 1 The parsing pipeline implemented as Java classes in Pluto.

class GenerateTable extends Builder<File, Out<File>> {
static BuilderFactory<File, Out<File>, GenerateTable> factory =

BuilderFactoryFactory.of(GenerateTable.class, File.class);
GenerateTable(File syntaxFile) { super(syntaxFile); }
@Override File persistentPath(File syntaxFile) {
return new File("generate-table-" + hash(syntaxFile));

}
@Override Out<File> build(File syntaxFile) throws IOException {
require(syntaxFile); File tblFile = generateTable(syntaxFile);
provide(tblFile); return OutputPersisted.of(tblFile);

} }
class Parse extends Builder<Parse.Input, Out<ParseResult>> {
static class Input implements Serializable {
File tblFile; String text; BuildRequest tblReq;
Input(File tblFile, String text, BuildRequest tblReq) {
this.tblFile = tblFile; this.text = text; this.tblReq = tblReq;

}
boolean equals(Object o) {/* omitted */} int hashCode() {/* omitted */}

}
@Override Out<ParseResult> build(Input input) throws IOException {
requireBuild(input.tblReq); require(input.tblFile);
return OutputPersisted.of(parse(input.tblFile, input.text));

} } /* ... other required code omitted ... */
class UpdateEditor extends Builder<String, Out<ParseResult>> {
@Override Out<ParseResult> build(String text) throws IOException {
File syntaxFile = new File("syntax.sdf3");
File tblFile = requireBuild(GenerateTable.factory, syntaxFile).val;
BuildRequest tblReq = new BuildRequest(GenerateTable.factory, syntaxFile);
return requireBuild(Parse.factory, new Parse.Input(tblReq, tblFile, text));

} } /* ... other required code omitted ... */

To summarize, Pluto provides a great foundation for implementing interactive soft-
ware development pipelines, but does not cater to the pipeline developer because
ease of development is not a focus, leading to a higher implementation and mainte-
nance effort than necessary.

Open Problems Themain problem is that Pluto build systems are not easy to develop.
We list four concrete open problems:

Boilerplate. Pipelines in Pluto are written in Java, which has a rigid and verbose
syntax, requiring significant boilerplate. Pipelines are implemented as classes ex-
tending the Builder abstract class, as seen in Listing 1. Such a class requires gener-
ics for specifying the input and output type, a factory and constructor enabling
other builders to create instances of this builder to execute it, a persistentPath
method for persistence, and finally a buildmethod that performs the actual build
computation. The Parse builder requires an inner class for representing multiple
input values, which must correctly implement equals and hashCode, which Pluto
uses to detect if an input has changed for incrementality. Finally, calling other

9:6

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

builders through requireBuild is verbose, because the factory is referenced, and
the result is unwrapped with .val.
Semi-automated persistence. Pipeline developers need to implement the persis-
tentPath method of a builder and return a unique and deterministic filesystem
path where the result of the builder and its input are persisted. It must be unique
to prevent overlap with other builders or other inputs. For example, if the Parse
builder persists results to the same file for different text buffers, it overwrites the
persisted result of other builds. It must be deterministic such that the persisted
file can later be found again. Since the OS filesystem is used for persistence, there
are also limitations to which characters can be used in paths, and to how long a
path can be. For example, onWindows, the current practical limit is 260 characters
which is frequently reached with deeply nested paths, causing persistence to fail.
Hidden dependencies. Hidden dependency detection is crucial for sound incremen-
tal builds, but is also cumbersome. In the pipeline in Listing 1, we must construct
a build request object for the parse table generator, pass that object to the Parse
builder, and require it to depend on the parse table generator. This becomes te-
dious especially in larger and more complicated pipelines.
Missing domain-specific features. Path (handle to file or directory) and list opera-
tions, which are prevalent in software development pipelines, are not first class in
general-purpose languages such as Java.

Solving these concrete problems requires a proper abstraction over interactive soft-
ware development pipelines, which we present in subsequent sections.

3 PIE by Example

To solve the open problems from the previous section, we introduce PIE: a DSL,
API, and runtime for developing and executing interactive software development
pipelines. Pipelines in PIE have minimal boilerplate, fully automated persistence, au-
tomatically infer hidden dependencies, and have domain-specific features such as
path and list operations. In this section we illustrate PIE by means of an example
that combines building and interaction. We discuss the example and the require-
ments for this pipeline, present the pipeline in the PIE DSL, and discuss its features
and execution.

Example Pipeline: Syntax-Aware Editors As example we consider a code editor with
syntax styling based on a syntax definition. The pipeline to support this use case is
depicted by the diagram in Figure 3. It generates a parse table from a syntax defini-
tion, parses the program text of an editor, computes syntax styling for each token,
and finally applies the computed syntax styling to the text in the editor. We want this
pipeline to be interactive by embedding it into the IDE such that changes to the syntax
definition as well as changes to the text in an editor are reflected in updates to syntax
styling. The example in Figure 3 is representative for language workbenches [13, 14],

9:7

PIE: A DSL for Interactive Software Development Pipelines

Text

lexical.sdf

contextfree.sdf

lexical.norm

contextfree.norm
parse.tbl

AST

normalize

normalize

generate
table parse

Editor

Tokens style Styling

(1)
(5)

(2) (3)

(4)Messages

Figure 3 The example pipeline: (1) normalization of SDF syntax definition source mod-
ules, (2) generation of a parse table from the normalized modules comprising
the definition for a language, (3) parsing the text of an editor using the parse
table, (4) computing the styles for the parsed tokens, and (5) displaying the
styling and error messages in an editor.

which support edits on a language definition that are immediately reflected in the
programming environment that is derived from it.

Concretely, we instantiate the pipeline with components from the Spoofax lan-
guage workbench [24]. We process an SDF [45, 46] syntax definition in two stages.
First, syntax definition modules are separately transformed (normalized) to a core
language. Next, the normalized modules comprising the syntax definition for a lan-
guage are transformed to a parse table. The parse table is interpreted by a scanner-
less parser [6, 44] to parse the contents of an editor, returning an Abstract Syntax
Tree (AST), token stream, and error messages. A syntax highlighter annotates tokens
in the token stream with styles.

Integrated Pipelines with the PIE DSL Listing 2 shows the pipeline program in the PIE
DSL. We first explain what each function does, and then discuss the features and
execution of PIE in more detail.
The normalize function executes a command-line tool to normalize an SDF source

file into a normalized version that is ready for parse table generation, and retrieves
(dynamic) dependencies from the generated dependency (.dep) file, implemented by
the extract-deps foreign function. The generate-table function executes a command-
line tool on normalized files, creating a parse table file. The parse function, when
given a parse table object, parses text into an AST, token stream, and error messages.
The style function produces a styling based on a token stream, which can be used in
source code editors for styling the text of the source code. Finally, the update-editor
function defines the complete pipeline by composing all previously defined functions.

Composing Pipelines with Functions In PIE, pipelines are defined in terms of function
definitions which are the reusable processors of the pipeline, and function calls that
compose these processors to form a pipeline. Function calls register a dynamic call
dependency from caller to callee.

Domain-Specific Types and Dependencies Since build pipelines often interact with
files and directories, PIE has native support for path types and several operations on
paths. Path literals such as ./lexical.sdf provide an easy way to instantiate relative
or absolute paths. The requires operation dynamically registers a path dependency
from the current function call to the path, indicating that the function reads the path,

9:8

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

Listing 2 PIE DSL program for the pipeline illustrated in Figure 3. Identifiers of foreign
functions and data types are omitted for brevity.

func normalize(file: path, includeDirs: path*) -> path = {
requires file; [requires dir with extension "sdf" | dir <- includeDirs];
val normFile = file.replaceExtension("norm");
val depFile = file.replaceExtension("dep");
exec(["sdf2normalized"] + "$file" + ["-I$dir" | dir <- includeDirs] +
"-o$normFile" + "-d$depFile");

[requires dep by hash | dep <- extract-deps(depFile)];
generates normFile; normFile

}
func extract-deps(depFile: path) -> path* = foreign
func generate-table(normFiles: path*, outputFile: path) -> path = {
[requires file by hash | file <- normFiles];
exec(["sdf2table"] + ["$file" | file <- normFiles] + "-o$outputFile");
generates outputFile; outputFile

}
func exec(arguments: string*) -> (string, string) = foreign

data Ast = foreign {} data Token = foreign {} data Msg = foreign {}
data ParseTable = foreign {} data Styling = foreign {}
func table2object(text: string) -> ParseTable = foreign
func parse(text: string, table: ParseTable) -> (Ast, Token*, Msg*) = foreign
func style(tokenStream: Token*) -> Styling = foreign
func update-editor(text: string) -> (Styling, Msg*) = {
val sdfFiles = [./lexical.sdf, ./contextfree.sdf];
val normFiles = [normalize(file, [./include]) | file <- sdfFiles];
val parseTableFile = generate-table(normFiles, ./parse.tbl);
val (ast, tokenStream, msgs) = parse(text, table2object(read parseTableFile));
(style(tokenStream), msgs)

}

whereas generates records a dependency indicating the function creates or writes to
the path. The read operation reads the text of a given path, and also registers a path
dependency.
Path dependencies to directories can specify a filter such as with extension "sdf"

to only create dependencies to files inside the directory that match the filter. Finally,
path dependencies can specify how changes are detected. For example requires dep
by hash indicates that a change is only detected when the hash of the file changes,
instead of the (default) modification date, providing more fine grained dependency
tracking.

Foreign Functions and Types Some functions are foreign, indicating that they are
implemented outside of the PIE DSL, either because they are outside of the scope of
the DSL (e.g., text processing required for extract-deps), or because they require
system calls. For example, exec is a foreign function that takes a list of command-line
arguments, executes a process with those arguments, and returns its standard output

9:9

PIE: A DSL for Interactive Software Development Pipelines

and error text. Unlike read, exec is not first class, because it does not induce special
(path) dependencies.

PIE contains several built-in types such as string and bool, but foreign types can be
defined to interface with existing types. Foreign data types are required to integrate
with existing code, such as an editor that expects objects of type Styling and Msg,
returned by foreign functions parse and style.

Comprehensions Pipelines frequently work with lists, which are natively supported
in PIE by annotating a type with * multiplicity. Lists are instantiated with list literals
between [], and concatenated using +. List comprehensions such as [f(elem) |
elem <- elems] transform a list into a new list by applying a function f to each
element of the list.

Execution and IDE Integration To execute a pipeline, we compile it into a program
implementing the PIE API. We embed the compiled pipeline, together with the PIE
runtime, into an IDE such as Eclipse. When an editor in Eclipse is opened or changed,
it calls the update-editor function through the PIE runtime with the text from the
editor. The PIE runtime then incrementally executes (and persists the results of) the
pipeline and returns Styling and Msgs objects, which Eclipse displays in the editor.
Because the results of the pipeline are persisted, a restart of Eclipse does not require
re-execution of the pipeline. This becomes especially important with larger pipelines.

Solutions to Open Problems PIE solves the open problems listed in Section 2. First
of all, PIE minimizes boilerplate by enabling direct expression of pipelines in the PIE
DSL through function definitions, function calls, foreign data types and functions,
and path dependencies. The compiler of the DSL generates the corresponding boil-
erplate. Furthermore, PIE supports fully automated persistence. There is no need
to specify where the result of a function call is stored. The PIE runtime stores re-
sults automatically based on the function name and input arguments. It persists the
function arguments, return value, and dependencies in a key-value store, preventing
filesystem issues.
Hidden call dependencies are automatically inferred. In other words, when a func-

tion requires files that are generated by another function, the first function does not
explicitly need to call the latter. For example, generate-table requires files that
normalize generates, but does not need to explicitly call normalize to record a call
dependency which keeps the required files up-to-date. The PIE runtime infers these
dependencies by keeping track of which function call generated a file, further reduc-
ing boilerplate. Note that this only infers call dependencies, not path dependencies,
which still need to be declared by the pipeline programmer.

Finally, the PIE DSL caters to the pipeline developer by including domain-specific
features – such as path type and operations, list type and comprehensions, string and
path interpolation, and tuples – to make pipeline development convenient.

Solving these problems reduces the implementation and maintenance effort. The
equivalent Pluto implementation for this pipeline requires 396 lines of Java code
in 8 files (excluding comments and newlines), whereas the PIE implementation is

9:10

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

Listing 3 The PIE Func API and implementation of a parsing pipeline in that API.

typealias In = Serializable; typealias Out = Serializable
interface Func<in I:In, out O:Out> {
fun ExecContext.exec(input: I): O

}
interface ExecContext {
fun <I:In, O:Out, F:Func<I, O>> requireCall(clazz: KClass<F>, input: I,

stamper: OutputStamper = OutputStampers.equals): O
fun require(path: PPath, stamper: PathStamper = PathStampers.modified)
fun generate(path: PPath, stamper: PathStamper = PathStampers.hash)

}

class GenerateTable: Func<PPath, PPath> {
override fun ExecContext.exec(syntaxFile: PPath): PPath {
require(syntaxFile); val tableFile = generateTable(syntaxFile);
generate(tableFile); return tableFile

} }
class Parse: Func<Parse.Input, ParseResult> {
data class Input(val tableFile: PPath, val text: String): Serializable
override fun ExecContext.exec(input: Input): ParseResult {
require(input.tableFile); return parse(input.tableFile, input.text)

} }
class UpdateEditor: Func<String, ParseResult> {
override fun ExecContext.exec(text: String): ParseResult {
val tableFile = requireCall(GenerateTable::class, path("syntax.sdf3"))
return requireCall(Parse::class, Parse.Input(tableFile, text))

} }

over 6 times shorter by only requiring 62 lines of code in 2 files. The PIE code consists
of 34 lines of PIE DSL code, and 28 lines of PIE API code for interfacing with foreign
functions.

4 PIE API and Runtime

In this section, we review the PIE API and runtime, and our reasons for not directly
reusing the Pluto runtime.

API The PIE API is a Kotlin [23] library for implementing PIE function definitions
on the Java Virtual Machine (JVM). Kotlin is a programming language with a focus
on reducing verbosity and increasing extensibility compared to Java, while maintain-
ing fully compatible with Java by running on the JVM. It shares many goals with
Scala [10], but additionally focusses on fast compile times and simplicity. We chose
to specify the API in Kotlin instead of Java, because it has a more flexible and concise
syntax. The PIE API is heavily based on the Pluto API, but uses terminology from the
pipeline domain (functions instead of builders), and requires less boilerplate.

Listing 3 illustrates the parsing pipeline implemented in the PIE API. A pipeline
function definition is implemented by creating a class which subtypes the Func inter-

9:11

PIE: A DSL for Interactive Software Development Pipelines

face and overrides the exec function. The exec function takes an input, is executed
in an execution context ExecContext, and produces an output. The execution con-
text enables calling other pipeline functions through the requireCall function, and
recording of path dependencies through the require and generate functions, using
Kotlin’s extension functions to make these functions accessible without a qualifier.
The PIE runtime uses this execution context for dependency tracking and hidden
dependency inference.
Inputs of Func implementations must be immutable, Serializable, and have an

equals and hashCode implementation. These properties are required so that the PIE
runtime can assume objects do not change inside a cache, can persist objects to non-
volatile memory, and can detect if an object has changed for incrementality. The
types used in Listing 3 all adhere to these properties. Furthermore, Kotlin’s data
classes automatically implement equals and hashCode, reducing boilerplate for mul-
tiple input arguments.
Outputs of functions must adhere to the same properties, with the exception that

outputs can opt-out of serialization. Some outputs are in-memory object representa-
tions and cannot be serialized, are too large to be serialized, or are not immutable.
PIE supports these kind of objects as outputs of function calls, by wrapping the output
in a special class (OutTransient) which prevents serialization. PIE still caches these
outputs in volatile memory. However, when the runtime is restarted (thus clearing
the in-memory cache), and such an output is requested by calling the function, PIE
re-executes the function to recreate the output.
Although it is possible to implement a full pipeline directly in this API, there is more

boilerplate involved compared to writing the pipeline in the PIE DSL. Therefore, the
API should only be used for implementing foreign functions, such as interfacing with
a parse table generator and parser, or for executing system calls such as executing
command-line tools. However, reduced boilerplate for implementing foreign func-
tions reduces implementation and maintenance effort.

Runtime The job of the PIE runtime is to execute a pipeline – represented as a set
of Func implementations, from compiled PIE DSL code, and from foreign function
implementations against the PIE API – in an incremental and persistent way. The
runtime is largely based on the Pluto runtime, from which we inherit the sound and
optimal incremental and persistent build algorithm. However, we incorporate fully
automated persistence and hidden dependency inference in the PIE runtime.

The runtime calls a Func by calling its exec function with an input argument, un-
der an execution context. During execution, a function may call other functions, and
record path dependencies, through the execution context, and finally return a value.
After a function has been executed, the runtime persists the returned value and re-
corded dependency information in a key-value store, by mapping the function call
(Func instance and input argument) to the returned value and dependency infor-
mation. This mapping is used by the incremental build algorithm as a cache and for
retrieving dependency information. We use the LMDB [41] key-value database, which
persists to a single file on the filesystem, and is memory-mapped for fast read access.

9:12

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

Therefore, we fully automate persistence, meaning that pipeline developers are freed
from reasoning about persistence.

To infer hidden dependencies, whenever a path (handle to file or directory) is gen-
erated, the runtime maps (in the key-value store) the path to the function call that
generated the path. Whenever a path is required, the runtime consults the mapping
to look up if that path was generated by a function call. If it was, then a function call
dependency is inferred from the current executing function call to the function call
that generated the path. For example, in Listing 3, a call of GenerateTable generates
the parse table file, which a call of Parse requires. The runtime then infers a depen-
dency from the Parse call to the GenerateTable call. This is sound, because there may
be at most one function call that generates a single path. We validate this property
and abort execution when multiple function calls generate a single path. Therefore,
we automatically infer hidden dependencies.

Reusing the Pluto Runtime We have implemented our own API and runtime, instead
of reusing the Pluto runtime, for the following three reasons. First of all, we reimple-
mented parts of the Pluto runtime in order to better understand Pluto’s incremental
rebuild algorithm and concrete implementation. Second, we wanted to reduce boil-
erplate for writing foreign functions. Third, automated persistence would be hard
to implement in Pluto, because Pluto requires every pipeline function to implement
a persistentPath function (as seen in Listing 1), which returns a unique filesystem
path for persisting the result of executing a function with a particular input. We could
generate a persistentPath implementation from the PIE DSL, but then foreign func-
tions still need to manually implement this functions. Furthermore, filesystem paths
may not contain certain characters, and have size limits (e.g., 260 characters onmany
Windows systems), which makes using files as a persistent storage complicated and
error prone. Therefore, in the PIE runtime, we persist to amemory-mapped database.

5 PIE Language

In this section, we present PIE’s language definition. We present PIE’s syntax spec-
ification, describe domain-specific language constructs, and briefly look at static se-
mantics. Finally, we describe compilation from the PIE language to the API, providing
incremental and persistent pipeline execution when executed with the PIE runtime.

Syntax Listing 4 shows PIE’s syntax through an EBNF grammar specification. PIE
programs are composed of (foreign) function definitions and foreign data types at
the top level. Its constructs can be categorized into base constructs that can be directly
translated to a general purpose language, and special constructs for the domain of
interactive software development pipelines that require a special translation. Base
constructs include regular unary and binary operations, control flow, list comprehen-
sions, value declarations and references, function definitions and calls, early return or
failure, literals, and string interpolation. Special constructs include path types, path

9:13

PIE: A DSL for Interactive Software Development Pipelines

Listing 4 PIE’s syntax definition in a dialect of EBNF.

idchr = ?[a-zA-Z0-9-_]?; id = {idchr}; qid = {idchr|"."}; int = ["-"]{?[0-9]?};
(* top-level definitions *)
func_head = id "(" {id ":" t, ","} ")" "->" t;
func_def = "func" func_head "=" ("foreign" id | "foreign java" qid "#" id | e);
data_def = "data" id [":" id] "foreign java" id "{" {"func" func_head} "}";
program = {func_def | data_def};
(* types and expressions *)
t = "unit"|"bool"|"int"|"string"|"path" | id | t "?" | t "*" | "(" {t, ","} ")";
e = "{" {e, ";"} "}" | "(" e ")"
| "!" e | e "!" | e ("==" | "!=" | "||" | "&&" | "+") e
| "if" "(" e ")" e ["else" e] | "[" e "|" binder "<-" e "]" | "val" binder "=" e
| id | id "(" {e, ","} ")" | e "." id "(" {e, ","} ")"
| "requires" e ["with" filter] ["by" stamper] | "generates" e ["by" stamper]
| "exists" e | "read" e | "list" e ["with" filter] | "walk" e ["with" filter]
| "return" e | "fail" e
| "unit" | "true" | "false" | int | "null" | "(" {e, ","} ")" | "[" {e, ","} "]"
| '"' {?~[\"\$\n\r]? | '\\$' | '\\"' | "$" id | "${" e "}"} '"'
| ["."] "/" {?~[\n\r\$\,\;\]\)\]? | '\\ ' | '\\$' | "$" id | "${" e "}"};

binder = bind | "(" {bind, ","} ")"; bind = id | id ":" t;
filter = ("regex" | "pattern" ["s"] | "extension" ["s"]) e;
stamper = "exists" | "modified" | "hash";

literals, dependencies (requires and generates), and operations (exists, read, list,
and walk); foreign function definitions and calls; and foreign data definitions.

We intentionally keep PIE’s constructs simple in order to support incrementality
and persistence, with concise expression of pipelines, while still supporting a wide
range of different pipelines. For example, PIE does not allow assignment or other
forms of mutation, because mutation complicates incrementality support. Instead,
immutability allows the dynamic semantics to perform caching for improved incre-
mentality.

Static Semantics PIE is a statically typed and lexically scoped language. As base
types, PIE has the unit type, booleans, integer, strings, paths, and user-defined for-
eign data types. Types can be made optional (t?), into a list (t*), and composed
into tuples ((t1, t2)). All data type and function definitions are explicitly typed,
but types are inferred inside function bodies. Static type checks prevent mistakes
in the pipeline from appearing at runtime. For example, it is not possible to call a
pipeline function with an argument of the wrong type, as PIE’s type checker will cor-
rectly mark this as a type error. Name binding prevents mistakes such as duplicate
definitions and unresolved references.

Compilation To execute a PIE program with the PIE runtime, we compile it to a
Kotlin program implementing the PIE API. We compile every function definition in
the program to a class implementing Func, with corresponding input and output
types, and compile its function to the exec method. Multiple function arguments, as
well as tuple types, are translated into an immutable data class, implementing the

9:14

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

required equals, and hashCode functions, and the Serializable interface. Function
calls are compiled to requireOutput calls on the execution context, which records a
function call dependency and incrementally executes that function.
Path dependencies are translated to require and generate calls on the execution

context, which records path dependencies, and which infers hidden dependencies
when requiring a generated file. Path dependencies can use different stampers, which
instruct the PIE runtime as to how generated and required paths are checked for
changes during incremental execution. The exists stamper checks that a file or di-
rectory exists, modified compares the modification date of a file or directory, and
hash compares the hash of a file, or the hashes of all files in a directory. The exists,
read, list, and walk path operations are translated to function calls of built-in func-
tions that perform these tasks and register the corresponding path dependencies. For
example, the walk construct recursively walks over files and directories in a top-down
fashion, returns them, and registers dependencies for each visited directory. Some
path constructs also accept a filter which filter down which files and directories are
visited. For example, a requires on a directory with a filter only creates path depen-
dencies for files and directories which are accepted by the filter. A regular expression,
ANT pattern, or file extension filter can be used.

Other constructs (ones that do not affect incrementality or persistence) are com-
piled directly to Kotlin expressions. For example, list comprehensions are translated
to maps.

6 Case Study: Spoofax Language Workbench

We evaluate PIE using two critical [15] case studies that are representative for the
domain of interactive software development pipelines. In this section we discuss a
case study in the domain of language workbenches. In the next section we discuss a
case study in the domain of benchmarking.
Spoofax [24] is a language workbench for developing textual programming lan-

guages. Spoofax supports simultaneous development of a language definition and
testing the programming environment generated from that language definition. This
requires complex pipelines, including bootstrapping of languages [28]. In this case
study we evaluate the feasibility of implementing the Spoofax pipeline using PIE.
In the Spoofax ecosystem, a programming language is specified in terms of mul-

tiple high-level declarative meta-language definitions, where each meta-language
covers a language-independent aspect (e.g., separate syntax definition [45], name
binding rules [3, 29, 35], or the dynamic semantics definition of a programming lan-
guage [43]). Subsequently, Spoofax generates a complete implementation of a pro-
gramming language, given all the meta-language definitions. Dividing a program-
ming language implementation into linguistic abstractions in terms high-level meta-
language definitions is the key enabler for maintainability of a language, however it
complicates the necessary (interactive) software development pipelines.
Spoofax supports interactive language development in the Eclipse IDE, including

developing multiple language specifications side-by-side. In contrast to a regular IDE

9:15

PIE: A DSL for Interactive Software Development Pipelines

that solely processes changes of source files in the source language, Spoofax addi-
tionally comes with support for interactive software development pipelines that re-
spond to language specification changes. For example, changes to the syntax specifi-
cation are reflected by reparsing source files of the language. In order to achieve this
goal, Spoofax will: (1) execute a pipeline to regenerate the language implementation
based on the language specification, (2) reload the updated language implementa-
tion into the language registry, and (3) execute a pipeline for all open source files of
the changed language.

The pipeline for source files will: (1) parse the source file into an AST and token
stream, (2) generate syntax styling based on the token stream, (3) show parse errors
(if any) and apply syntax styling, and (4) analyze and transform the source file.

6.1 Pipeline Re-Implementation

We have implemented Spoofax’ management of multiple languages, parsing, and
syntax-based styling with the PIE pipeline that is illustrated in Listing 5. This is an
extension to the example pipeline of Section 3, but is still a subset of the complete
pipeline due to space constraints. We omit the foreign keyword for brevity.

Language Specification Management The first part of the pipeline is used to manage
multiple language specifications. The LangSpec data type represents a language spec-
ification, which has a file extension and configuration required for syntax specifica-
tion and styling. The Workspace type represents a workspace with multiple language
specifications, which has a list of relevant file extensions, and a function to get the
LangSpec for a path based on its extension. The aforementioned data types are sim-
ilar to classes by binding function definitions to them. In this particular case their
implementations are foreign (i.e., implemented in a JVM language), but registered
in PIE in order for using them in an interactive software development pipeline. An in-
stance of the Workspace (which contains LangSpecs) is created by the getWorkspace
function from a configuration file. Interfacing with foreign functions and data types
is a key enabler for embedding PIE pipelines in other programs, while still benefiting
from domain-specific features such as dependency tracking.

Parse TableGeneration, Parsing, andStyling The second part implements parsing. There
are several foreign data and function definitions which bind to Spoofax’s tools. For
example, sdf2table takes a specification in the SDF meta-language, and produces
a ParseTable which can be used to parse programs with the jsglrParse function.
The parse function takes as input the text to parse and the language specification
containing the syntax specification mainFile to derive a parser from, creates a parse
table for the language specification, and uses that to parse the input text. Parsing
returns a product type containing the Ast, Tokens, and error Messages. Since parsing
can fail, the AST and tokens are annotated with ? multiplicity to indicate that they
are nullable (optional). The third part implements syntax-based styling, similarly to
parsing.

9:16

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

Listing 5 Spoofax pipeline in PIE, with support for developing multiple language specifi-
cations, parsing, syntax styling, and embedding into the Eclipse IDE.

// 1) Language specification and workspace management
data LangSpec = {
func syntax() -> path; func startSymbol() -> string; func styling() -> path

}
data Workspace = {
func extensions() -> string*; func langSpec(path) -> LangSpec

}
func createWorkspace(string, path) -> Workspace
func getWorkspace(root: path) -> Workspace = {
val text = read(root + "/workspace.cfg"); createWorkspace(text, root)

}
// 2) Creating parse tables and parsing
data ParseTable {} data Ast {} data Token {} data Msg {}
func sdf2table(path) -> ParseTable
func jsglrParse(string, string, ParseTable) -> (Ast?, Token*?, Msg*)
func parse(text: string, langSpec: LangSpec) -> (Ast?, Token*?, Msg*) = {
val mainFile = langSpec.syntax(); requires mainFile;
val startSymbol = langSpec.startSymbol();
val table = sdf2table(mainFile); jsglrParse(text, startSymbol, table)

}
// 3) Syntax-based styling
data SyntaxStyler {} data Styling {}
func esv2styler(path) -> SyntaxStyler
func esvStyle(Token*, SyntaxStyler) -> Styling
func style(tokens: Token*, langSpec: LangSpec) -> Styling = {
val mainFile = langSpec.styling(); requires mainFile;
val styler = esv2styler(mainFile); esvStyle(tokens, styler)

}
// 4) Combine parsing and styling to process strings and files
func processString(text: string, langSpec: LangSpec) -> (Msg*, Styling?) = {
val (ast, tokens, msgs) = parse(text, langSpec);
val styling = if(tokens != null) style(tokens, langSpec) else null;
(msgs, styling)

}
func processFile(file: path, langSpec: LangSpec) -> (Msg*, Styling?) =
processString(read file, langSpec)

// 5) Keep files of an Eclipse project up-to-date
func updateProject(root: path, project: path) -> (path, Msg*, Styling?)* = {
val workspace = getWorkspace(root);
val relevantFiles = walk project with extensions workspace.extensions();
[updateFile(file, workspace) | file <- relevantFiles]

}
func updateFile(file: path, workspace: Workspace) -> (path, Msg*, Styling?) = {
val langSpec = workspace.langSpec(file);
val (msgs, styling) = processFile(file, langSpec); (file, msgs, styling)

}
// 6) Keep an Eclipse editor up-to-date
func updateEditor(text: string, file: path, root: path) -> (Msg*, Styling?) = {
val workspace = getWorkspace(root); val langSpec = workspace.langSpec(file);
processString(text, langSpec)

}

9:17

PIE: A DSL for Interactive Software Development Pipelines

Processing Files in the IDE The fourth part combines parsing and styling to process a
single string or file and return the error messages and styling, which we can display in
the Eclipse IDE. The fifth and sixth parts interface with the Eclipse IDE, by providing
functions to keep an Eclipse project and editor up-to-date. A project is kept up-to-
date by walking over the relevant files of the project, and returning the messages
and styling for each file which are displayed in Eclipse. An editor is kept up-to-date
by processing the text in the editor.

6.2 Analysis

In this section we discuss the observations we made while re-implementing the
incremental software development pipeline of Spoofax in PIE. Overall, the re-
implementation improves on the areas mentioned below.

Canonical Pipeline Formalism The main benefit over the old pipeline of Spoofax is
that the PIE re-implementation is written in a single and concise formalism that is
easier to understand and maintain. The old pipeline of Spoofax is comprised of code
and configuration in four different formalisms: 1) Maven Project Object Model (POM)
file that describes the compilation of Java source code, 2) an incremental build sys-
tem using the Pluto [12] Java API and runtime that builds language specifications, 3)
a custom (partially incremental) build system for building and bootstrapping meta-
languages, and 4) a custom language registry that manages multiple language spec-
ifications. Incrementality and persistence are only partially supported, and imple-
mented and maintained explicitly.

In contrast, the PIE pipeline is specified as a single formalism in a readable, con-
cise, and precise way, without having to implement incrementality and persistence
explicitly.

Exact (Dynamic) Dependencies Spoofax’s old pipeline emits dependencies that are ei-
ther overapproximated or underapproximated, resulting in poor incrementality and
therefore longer execution times. For example, in Spoofax, changing the styling spec-
ification will trigger parsing, analysis, compilation, and styling for all editors, even
though only recomputation of the styling is required (i.e., sound overapproximation).
On the other hand, changing the syntax specification will not trigger reparsing of files
that are not open in editors (i.e., unsound underapproximation). In the PIE pipeline,
these problems do not occur because of the implicit incrementality of function calls,
and the right path dependencies.
For example, the parse function creates several dependencies which enable incre-

mental recomputation. When the input text, mainFile path, contents of the main-
File, or the startSymbol changes, the function is recomputed. Furthermore, the func-
tion creates a parse table, which is a long-running operation. However, because of
incremental recomputation and persistence, the parse table is computed once, and
after that only when the syntax specification changes.

9:18

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

Listing 6 Incremental performance benchmarking pipeline in PIE.

func main(jmhArgs: string*) -> path* = {
val jar = build(); val pkg = "io.usethesource.criterion";
val javaSrcDir = ./src/main/java/io/usethesource/criterion;
val benchs: (string, string, path*)* = [// Benchmarks name, pattern, classes
("set","$pkg.JmhSetBenchmarks.(*)\$",[javaSrcDir+"/JmhSetBenchmarks.java"])

, ("map","$pkg.JmhMapBenchmarks.(*)\$",[javaSrcDir+"/JmhMapBenchmarks.java"])
];
val subjs: (string, string, path*)* = [// Subjects name, identifier, libs
("clojure" , "VF_CLOJURE" , [./lib/clojure.jar])

, ("champ" , "VF_CHAMP" , [./lib/champ.jar])
, ("scala" , "VF_SCALA" , [./lib/scala.jar])
, ("javaslang" , "VF_JAVASLANG" , [./lib/javaslang.jar])
, ("unclejim" , "VF_UNCLEJIM" , [./lib/unclejim.jar])
, ("dexx" , "VF_DEXX" , [./lib/dexx.jar])
, ("pcollections", "VF_PCOLLECTIONS", [./lib/pcollections.jar])
];
[run_benchmark(jar, jmhArgs, bench, subj) | bench <- benchs, subj <- subjs]

}
func build() -> path = {
val pomFile = ./pom.xml; requires pomFile;
[requires file | file <- walk ./src with extensions ["java", "scala"]];
exec(["mvn", "verify", "-f", "$pomFile"]);
val jar = ./target/benchmarks.jar;
generates jar; jar

}
func run_benchmark(jar: path, jmhArgs: string*, bench: (string, string, path*),
subj: (string, string, path*)) -> path = {
val (bName, bId, bDeps) = bench; [requires dep | dep <- bDeps];
val (sName, sId, sDeps) = subj; [requires dep | dep <- sDeps];
val csv = ./results/${bName}_${sName}.csv;
requires jar by hash;
exec(["java", "-jar", "$jar"] + bId + ["-p", "subject=$sId"] + jmhArgs +
["-rff", "$csv"]);

generates csv; csv
}

Support for Complex Pipeline Patterns Due to space constraints, the code listing in
Listing 5 omits the parts necessary for using Spoofax’s name binding language and
constraint solver, interfacing with existing Spoofax languages, and bootstrapping lan-
guages, but our re-implementation does support the aforementioned features. The
full implementation can be found online [27].

7 Case Study: Live Performance Testing

In this section we evaluate PIE on a case study for continuously monitoring the perfor-
mance of a set of libraries. Specifically we use a snapshot of the Criterion benchmark
suite [39] that measures the performance of immutable hash-set/map data structures

9:19

PIE: A DSL for Interactive Software Development Pipelines

on the JVM. The snapshot of Criterion was submitted as a well-documented artifact
to accompany the findings of a research paper [40].

Under the hood, Criterion uses the JavaMicrobenchmarking Harness (JMH) [21] to
execute benchmark suites against seven data structure libraries, producing Comma-
Separated Values (CSV) files with statistical-relevant benchmarking data. Criterion
uses bash scripts for orchestration, requiring to re-run all benchmarks whenever a
benchmark or subject library changes. Those scripts are not able to exploit incremen-
tality, which is tedious since benchmarking all combinations takes roughly two days,
to produce statistically significant outputs.
We re-engineered the pipeline such that initially each subject and benchmark com-

bination is tested in isolation, and then incrementally re-execute all benchmarks for
a particular subject if and only if that subject changes. In case the implementation of
a benchmark changes, all subjects are re-tested for that benchmark. Regardless of the
scenario, the CSV result files are kept up-to-date for subsequent data visualization.
We can apply such a pipeline on a local machine while developing the benchmarks

for timely performance test results, or on a remote benchmarking server to minimize
the amount of benchmarking work when something changes. While it is technically
possible to write such an incremental pipeline in bash scripts, it would require a lot
of manual work to implement, and will likely result in error-prone code. Fortunately,
it is straightforward to write this pipeline in PIE.

7.1 Pipeline Re-Implementation

Listing 6 illustrates the benchmarking pipeline in PIE. The build function builds the
benchmark and yields an executable JAR file ./target/benchmarks.jar, by invok-
ing Maven on the POM file ./pom.xml. The build function requires all Java and
Scala source files, to ensure that the JAR file is rebuilt as soon as a single source files
changes.
To produce a CSV result file, the run_benchmark function executes the JAR file

with the necessary command-line arguments for the JMH library, including the com-
bination of benchmark and subject. The tuples benchmark and subject both store
unique name identifiers —that are later used for naming the CSV file— and refer-
ences to files they are comprised of. These file references are used by PIE to create
dependencies for incremental re-execution.
Finally, main glues everything together by creating a list of benchmarks and sub-

jects, running the benchmark with each combination of those, and by returning the
up-to-date CSV files for subsequent data visualization.

7.2 Analysis

Compared to the existing bash script, the PIE pipeline provides incremental and per-
sistent execution, and static analysis. The main benefit of the PIE pipeline over the
bash script is that it provides incremental execution by function calls and path depen-
dency annotations. In bash, implementing an incremental pipeline requires the pipe-
line developer to explicitly encode dependency tracking, change detection, caching,

9:20

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

Table 1 Feature overview of PIE and related work (= full support, = partial/limited
support, = no support).

M
ak

e

Au
to
m
ak

e

O
M
ak

e
Tu

p

PR
O
M

N
ix

M
av
en

An
t

G
ra
dl
e

Je
nk

in
s

Sh
ak

e

Pl
ut
o

Fa
br
ic
at
e

Sp
ar
k

Re
ac
tiv

e
Pr
og

ra
m
m
in
g

W
or
kfl

ow
La

ng
ua

ge
s

PI
E

Low Boilerplate
Static Analysis
Dynamic File Dependencies
Implicit Incrementality
Embeddable
Restartable
Cross-platform

and more, which is why the existing bash script is not incremental. In the PIE pipe-
line, incrementality comes from stating the requires and generates dependencies
in each function, which is straightforward because it is clear what the dependencies
of each function are.
Furthermore, PIE performs static name and type analysis, before executing the

pipeline, whereas bash has no static checks at all. This means that errors such as
simple typographical errors, or appending a value of a wrong type to a list of strings,
result in a static error in PIE which is easily fixed, but result in run-time errors in
bash.

8 Related Work

In this section we discuss related work with a focus on build systems. Table 1 provides
a feature overview of the systems we discuss throughout this section.

Partial Domain-Specific Build Abstractions Make [38] is a build automation tool based
on declarative rules. Make extracts a static dependency graph from these rules, and
executes the commands according to the dependency graph. Upon re-execution,Make
is able to detect unchanged files that do not require regeneration based on time-
stamps. Make supports a limited form of dynamic dependencies that does not gener-
alize, i.e., an include directive that allows loading other Makefiles.
Automake [30] alleviates many of Make’s shortcoming by introducing a formalism

on top of Make that generates Makefiles. Automake is mostly geared towards C com-
pilation and other compilation processes that follow similar patterns, but cannot be
used to write arbitrary interactive pipelines, making it less flexible than PIE. Due to a
lack of static checking, ill-typed Automake scripts may propagate defects — that are
only detectable at run time — to the generated Makefiles. In contrast, PIE catches
such errors statically before pipeline execution.

9:21

PIE: A DSL for Interactive Software Development Pipelines

OMake [18] is a build tool with a Make-like syntax, but with a richer dependency
tracking mechanism. PIE is similar to OMake in that both supports a form of dynamic
path dependencies (called side-effects in OMake), and incrementality based on these
dependencies. However, likeMake, OMakeworks exclusively with files and command-
line processes, meaning that it is not possible to depend on the result of a function call,
or to interface with foreign functions and types, making it unsuitable for interactive
pipelines which require embedding into an interactive system.

Tup [37] is a build tool with Make-like rules. Tup automatically infers required
file dependencies by instrumenting the build process, providing more fine-grained
dependencies than Make. However, the dependency on the input file and generated
file must still be declared statically upfront.

PROM [25] is a Prolog-based make tool where Make-like builds are specified declar-
atively and executed as Prolog terms, increasing expressiveness and ease of develop-
ment. PROM’s update algorithm executes in two phases, where first a file-dependency
graph is created, after which creation rules are executed to create new files, or to
update out-of-date files. Because of these phases, PROM does not support dynamic
discovery of dependencies during build execution.

Nix [7, 9] is a purely functional language for building and deploying software,
aimed to manage configurations of the operating system NixOS [8]. Nix supports in-
cremental execution of pipelines through cryptographic hashes of attributes and files,
but must be explicitly initiated by the developer through the use of the mkDeriva-
tion function. While incrementality becomes explicit, Nix puts the burden on pipe-
line developers, whereas PIE supports incrementality implicitly. Furthermore, Nix is
dynamically checked, meaning that name and type defects are reported at runtime,
as opposed to before runtime with static checking in PIE.

Maven [17] is a software dependency management and build tool, popular in the
Java ecosystem. It features a fixed sequence of pipeline steps such as compile, pack-
age, and deploy, which are configured through an XML file. Maven is neither incre-
mental nor interactive, requiring a full batch re-execution every time data in the
pipeline changes.

Ant [16] is a build automation tool, using XML configuration files for defining
software development pipelines. Ant supports incrementality by inserting uptodate
statements that check if a source file is up to date with its target file, making incre-
mentality explicit, at the cost of burdening the developer. Ant does not provide static
analysis.
Gradle [20] is a build automation tool, programmable with the Groovy language,

featuring domain-specific library functions to specify builds declaratively. Gradle sup-
ports incremental task execution through annotations that specify a task’s input/out-
put variables, files, and directories. Like Make, dependencies have to be specified
statically up-front, causing an overapproximation of dependencies.
Jenkins is a continuous integration server which can be programmedwith its Groovy

pipeline and a set of domain-specific library functions [22]. Jenkins can detect changes
to a (remote) source code repository to trigger re-execution of an entire build pipe-
line, however without support for incrementality.

9:22

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

Software Development Pipelines as a Library Subsequently discussed software pipe-
line solutions are available as a library (i.e., internal DSL) implemented in a general-
purpose programming language. Unlike an external DSL solution such as PIE, those
libraries do not support domain-specific syntax or error reporting in terms of the do-
main, instead requiring encoding of domain concepts. Furthermore, it is hard, if not
impossible, to restrict features of a programming language via a library, that heavily
influence incrementality, such as mutable state. Finally, the compiler of the PIE DSL
can be retargeted to a different environment or programming language, enabling
a PIE pipeline to be embedded into different interactive environments without (or
minimal) alteration.
Shake [33, 34] is a Haskell library for specifying build systems. Unlike Make, re-

quired file dependencies can be specified during builds in Shake, supporting more
complex dependencies and reducing overapproximation of dependencies. However,
like Make, targets (generated file dependencies) have to be specified up-front. This
means that it is not possible to specify builds where the names of generated files are
decided dynamically. For example, the Java compiler generates a class file for each
inner class in a source file, where its file names are based on the inner and outer class
name. Therefore, the generated file dependencies of the Java compiler are decided
dynamically, and cannot be specified in Shake.
Pluto [12] is a Java library for developing incremental builds, which we have al-

ready discussed extensively in Section 2. One difference between Pluto and PIE is
that Pluto supports incremental cyclic builders, whereas PIE does not. We have opted
not to implicitly support cycles for simplicity of the build algorithm, and because cy-
cles typically do not appear in pipelines. Cycles can be handled explicitly in PIE by
programming the cyclic computation inside a single pipeline function.
Fabricate [19] is a Python library for developing incremental and parallel builds,

that aims to automatically infer all file dependencies by tracing system calls. System
call tracing is not cross-platform, only fully supporting Linux at the moment. PIE in
contrast is cross-platform, because its runtime works on any operating system the
JVM runs on.

Apache Spark [4] is a big data processing framework where distributed datasets
are transformed by higher-order functions. PIE is similar to Spark in that both create
dependency graphs between calculations. For example, when transforming a dataset
with Spark (e.g., with map or filter), the derived dataset depends on the parent
dataset, such that the derived dataset is rederived when the parent changes. PIE dif-
fers from Spark in that PIE works with local data only, whereas Spark works with a
distributed storage system required for big data processing. However, PIE supports
arbitrary computations (as opposed to a fixed set of higher-order functions in Spark),
and dynamic file dependencies.

General-Purpose Languages Reusing an existing general-purpose language, such as
Java or Haskell, and giving it an incremental and persistent interpretation is not feasi-
ble for several reasons. It requires adding additional constructs to the language, such
as path dependencies and operations, which require changes to the syntax, static se-
mantics, dynamic semantics (compiler or interpreter) of the language. That requires

9:23

PIE: A DSL for Interactive Software Development Pipelines

at the very least being able to change the language, which is not always possible.
Even when it is possible, language parsers, checkers, and compilers are often large
codebases that require significant effort to change. Furthermore, we also need to en-
sure that existing constructs work under incrementality. For example, mutable state
in Java interferes with incrementality.

Reactive Programming Reactive programming is characterized by asynchronous data
stream processing, where data streams form a pipeline by composing streams with a
set of stream combinators. Reactive programming approaches come in the form of li-
braries implemented in general-purpose languages, such as Reactive Extensions [31],
or as an extended language such as REScala [36]. Reactive programming approaches
provide a form of incrementality where the reactive pipeline will rerun if any input
signal changes. However, they do not cache outputs or prevent re-execution of pipe-
line steps when there are no changes. Note that reactive programming approaches
operate in volatile memory only, whereas PIE’s runtime supports persistence (i.e.,
pause and resume) of pipeline executions. Preserving a pipeline’s state is of special
importance in interactive environments such as IDEs, to support restarting the pro-
gramming environment without re-triggering potentially expensive calculations. Fur-
thermore, reactive programming approaches do not support (dynamic) file depen-
dencies.

Workflow Languages Workflows, like pipelines, describe components (processors)
and how data flows between these components. Workflow languages are DSLs which
are used to model data analysis workflows [2], business process management [1],
and model-to-model transformations [5], among others. The crucial differentiation
between many workflow systems and software development pipelines, is that the for-
mer model manual steps that require human interaction, whereas the latter focuses
on processors that perform general purpose computations.

9 Future Work

We now discuss directions for future work.

First-Class Functions and Closures Currently, the PIE DSL does not support first-class
functions and closures, for simplicity. The PIE runtime does support first-class func-
tions, since function calls are immutable and serializable values which can be passed
between functions and called. However, closures are not yet supported, because (again
for simplicity), functions must be registered with the runtime before a pipeline is ex-
ecuted.
To fully support first-class functions and closures, wemust add them to the PIE DSL,

and support closures in the runtime and API. This requires closures to be serializable,
which the JVM supports. Closures from foreign functions must ensure not to capture
mutable state, non-serializable values, or large objects graphs, as these can break
incrementality. Spores [32] could be used to guarantee these properties for closures.

9:24

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

Live Pipelines PIE pipelines can dynamically evolve through the inputs into the pipe-
line: files on the filesystem such as configuration files, and objects passed through
function calls such as editor text. However, the pipeline code itself currently cannot
dynamically evolve at runtime. When the pipeline code itself is changed, the pipeline
must be recompiled and reloaded. This process is relatively fast, because compiling
PIE DSL code and restarting the JVM is fast, but can be improved nevertheless. Fur-
thermore, dynamic evolution of pipelines at runtime is especially important if we
want to apply PIE to live programming environments.

While there are known solutions for compiling and reloading code in the JVM,
such as using class loaders, it is unclear how to handle incrementality in the face
of changes to the pipeline program. For example, if the normalize function in List-
ing 2 is changed, all calls of normalize are potentially out-of-date and need to be
re-executed, as well as all function calls that (transitively) call normalize. Similarly,
foreign functions and data types can be changed, which require re-execution or even
data migrations in the persistent storage.

10 Conclusion

We have presented PIE: a DSL, API, and runtime for developing interactive software
development pipelines. PIE provides a straightforward programming model that en-
ables direct and concise expression of pipelines with minimal boilerplate, reducing
the development and maintenance effort of pipelines. Compared to the state of the
art, PIE reduces the code required to express an interactive pipeline by a factor of
6 in a case study on syntax-aware editors. Furthermore, we have evaluated PIE on
two complex interactive software development pipelines, showing that the domain-
specific integration of features in PIE enable concise expression of pipelines, which
are normally cumbersome to express with a combination of traditional build systems
and general-purpose languages.

Acknowledgements

This researchwas supported by NWO/EWFree Competition Project 612.001.114 (Deep
Integration of Domain-Specific Languages) andNWOVICI Project (639.023.206) (Lan-
guage Designer’s Workbench).

References

[1] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. “YAWL: yet another
workflow language”. In: Information Systems 30.4 (2005), pages 245–275. doi:
10.1016/j.is.2004.02.002.

[2] Peter Amstutz, Michael R. Crusoe, Nebojša Tijanić, Brad Chapman, John Chilton,
Michael Heuer, Andrey Kartashov, Dan Leehr, HervéMénager,Maya Nedeljkovich,

9:25

https://doi.org/10.1016/j.is.2004.02.002

PIE: A DSL for Interactive Software Development Pipelines

Matt Scales, Stian Soiland-Reyes, and Luka Stojanovic. CommonWorkflow Lan-
guage, v1.0. 2016. doi: 10.6084/m9.figshare.3115156.v2.

[3] Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and
Guido Wachsmuth. “A constraint language for static semantic analysis based
on scope graphs”. In: Proceedings of the 2016 ACM SIGPLAN Workshop on Par-
tial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. Edited by Martin Erwig and Tiark Rompf. ACM, 2016,
pages 49–60. isbn: 978-1-4503-4097-7. doi: 10.1145/2847538.2847543.

[4] Apache. Spark. https://spark.apache.org/. [Online; accessed 01-Dec-2017].

[5] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
2nd. Packt Publishing, 2016. isbn: 978-1782160304.

[6] Mark G. J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser.
“Disambiguation Filters for Scannerless Generalized LR Parsers”. In: Compiler
Construction, 11th International Conference, CC 2002, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble,
France, April 8-12, 2002, Proceedings. Edited by R. Nigel Horspool. Volume 2304.
Lecture Notes in Computer Science. Springer, 2002, pages 143–158. isbn: 3-
540-43369-4. doi: 10.1007/3-540-45937-5_12.

[7] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. “Nix: A Safe and Policy-Free
System for Software Deployment”. In: Proceedings of the 18th Conference on Sys-
tems Administration (LISA 2004), Atlanta, USA, November 14-19, 2004. USENIX,
2004, pages 79–92. url: http://www.usenix.org/publications/library/proceedi
ngs/lisa04/tech/dolstra.html.

[8] Eelco Dolstra and Andres Löh. “NixOS: a purely functional Linux distribution”.
In: Proceeding of the 13th ACM SIGPLAN international conference on Functional
programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008. Edited
by James Hook and Peter Thiemann. ACM, 2008, pages 367–378. isbn: 978-1-
59593-919-7. doi: 10.1145/1411204.1411255.

[9] Eelco Dolstra, Eelco Visser, and Merijn de Jonge. “Imposing a Memory Man-
agement Discipline on Software Deployment”. In: 26th International Confer-
ence on Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United
Kingdom. IEEE Computer Society, 2004, pages 583–592. isbn: 0-7695-2163-0.
doi: 10.1109/ICSE.2004.1317480.

[10] EPFL. The Scala Programming Language. https://www.scala-lang.org/. [Online;
accessed 01-Dec-2017].

[11] Sebastian Erdweg, Martin Erwig, Richard F. Paige, and Eelco Visser. “Domain-
Specific Languages (Dagstuhl Seminar 15062)”. In: Dagstuhl Reports 5.2 (2015),
pages 26–43. doi: 10.4230/DagRep.5.2.26.

9:26

https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1145/2847538.2847543
https://spark.apache.org/
https://doi.org/10.1007/3-540-45937-5_12
http://www.usenix.org/publications/library/proceedings/lisa04/tech/dolstra.html
http://www.usenix.org/publications/library/proceedings/lisa04/tech/dolstra.html
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1109/ICSE.2004.1317480
https://www.scala-lang.org/
https://doi.org/10.4230/DagRep.5.2.26

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

[12] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. “A sound and optimal
incremental build system with dynamic dependencies”. In: Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pitts-
burgh, PA, USA, October 25-30, 2015. Edited by Jonathan Aldrich and Patrick
Eugster. ACM, 2015, pages 89–106. isbn: 978-1-4503-3689-5. doi: 10 . 1145/
2814270.2814316.

[13] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly,
Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen,
Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco
Visser, Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Woning. “The
State of the Art in Language Workbenches - Conclusions from the Language
Workbench Challenge”. In: Software Language Engineering - 6th International
Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings.
Edited by Martin Erwig, Richard F. Paige, and Eric Van Wyk. Volume 8225.
Lecture Notes in Computer Science. Springer, 2013, pages 197–217. isbn: 978-
3-319-02653-4. doi: 10.1007/978-3-319-02654-1_11.

[14] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly,
Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eu-
gen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser,
Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Woning. “Evaluating
and comparing language workbenches: Existing results and benchmarks for
the future”. In: Computer Languages, Systems & Structures 44 (2015), pages 24–
47. doi: 10.1016/j.cl.2015.08.007.

[15] Bent Flyvbjerg. “FiveMisunderstandings About Case-Study Research”. In:Qual-
itative Inquiry 12.2 (2006), pages 219–245. doi: 10.1177/1077800405284363.

[16] Apache Software Foundation. Ant. https://ant.apache.org/. [Online; accessed
01-Dec-2017].

[17] Apache Software Foundation. Maven. https ://maven .apache .org/. [Online;
accessed 01-Dec-2017].

[18] Jason Hickey and Aleksey Nogin. “OMake: Designing a Scalable Build Pro-
cess”. In: Fundamental Approaches to Software Engineering. Edited by Luciano
Baresi and Reiko Heckel. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pages 63–78. isbn: 978-3-540-33094-3. doi: 10.1007/11693017_7.

[19] B. Hoyts and Simon Alford. fabricate. https://github.com/SimonAlfie/fabricate.
[Online; accessed 01-Dec-2017]. 2009.

[20] Gradle Inc. Gradle Build Tool. https://gradle.org/. [Online; accessed 01-Dec-
2017].

[21] Java Microbenchmarking Harness (JMH). http ://openjdk . java .net/projects/
code-tools/jmh/. [Online; accessed 01-Dec-2017].

9:27

https://doi.org/10.1145/2814270.2814316
https://doi.org/10.1145/2814270.2814316
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1177/1077800405284363
https://ant.apache.org/
https://maven.apache.org/
https://doi.org/10.1007/11693017_7
https://github.com/SimonAlfie/fabricate
https://gradle.org/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

PIE: A DSL for Interactive Software Development Pipelines

[22] Jenkins Pipeline syntax. https://jenkins.io/doc/book/pipeline/syntax/. [Online;
accessed 01-Dec-2017].

[23] JetBrains. Kotlin Programming Language. https://kotlinlang.org/. [Online; ac-
cessed 01-Dec-2017].

[24] Lennart C. L. Kats and Eelco Visser. “The Spoofax language workbench: rules
for declarative specification of languages and IDEs”. In: Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010. Edited by William R. Cook, Siob-
hán Clarke, andMartin C. Rinard. Reno/Tahoe, Nevada: ACM, 2010, pages 444–
463. isbn: 978-1-4503-0203-6. doi: 10.1145/1869459.1869497.

[25] Thilo Kielmann. PROM: A flexible, PROLOG-based make tool. Technical Report
Report TI-4/91. Darmstadt, Germany: Institute of Theoretical Computer Sci-
ence, Darmstadt University of Technology, 1991. url: http://www.few.vu.nl/
~kielmann/papers/THD-SP-1991-04.pdf.

[26] Gabriel Konat. PIE implementation for <Programming> 2018. Mar. 2018. doi:
10.5281/zenodo.1199192.

[27] Gabriel Konat. Spoofax-PIE implementation for<Programming> 2018. Mar. 2018.
doi: 10.5281/zenodo.1199194.

[28] Gabriël Konat, Sebastian Erdweg, and Eelco Visser. “Bootstrapping domain-
specific meta-languages in language workbenches”. In: Proceedings of the 2016
ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2016, Amsterdam, The Netherlands, October 31 - Novem-
ber 1, 2016. Edited by Bernd Fischer and Ina Schaefer. ACM, 2016, pages 47–58.
isbn: 978-1-4503-4446-3. doi: 10.1145/2993236.2993242.

[29] Gabriël Konat, Lennart C. L. Kats, GuidoWachsmuth, and Eelco Visser. “Declar-
ative Name Binding and Scope Rules”. In: Software Language Engineering, 5th
International Conference, SLE 2012, Dresden, Germany, September 26-28, 2012,
Revised Selected Papers. Edited by Krzysztof Czarnecki and Görel Hedin. Vol-
ume 7745. Lecture Notes in Computer Science. Springer, 2012, pages 311–331.
isbn: 978-3-642-36089-3. doi: 10.1007/978-3-642-36089-3_18.

[30] David MacKenzie, Tom Tromey, Alexandre Duret-Lutz, Ralf Wildenhues, and
Stefano Lattarini. GNU Automake. 2018. url: https://www.gnu.org/software/
automake/manual/.

[31] Erik Meijer. “Reactive extensions (Rx): curing your asynchronous program-
ming blues”. In: ACM SIGPLAN Commercial Users of Functional Programming.
ACM. 2010, page 11. doi: 10.1145/1900160.1900173.

[32] Heather Miller, Philipp Haller, and Martin Odersky. “Spores: A Type-Based
Foundation for Closures in the Age of Concurrency and Distribution”. In: Pro-
ceedings of the 28th European Conference on ECOOP 2014 — Object-Oriented
Programming - Volume 8586. New York, NY, USA: Springer-Verlag New York,
Inc., 2014, pages 308–333. isbn: 978-3-662-44201-2. doi: 10.1007/978-3-662-
44202-9_13.

9:28

https://jenkins.io/doc/book/pipeline/syntax/
https://kotlinlang.org/
https://doi.org/10.1145/1869459.1869497
http://www.few.vu.nl/~kielmann/papers/THD-SP-1991-04.pdf
http://www.few.vu.nl/~kielmann/papers/THD-SP-1991-04.pdf
https://doi.org/10.5281/zenodo.1199192
https://doi.org/10.5281/zenodo.1199194
https://doi.org/10.1145/2993236.2993242
https://doi.org/10.1007/978-3-642-36089-3_18
https://www.gnu.org/software/automake/manual/
https://www.gnu.org/software/automake/manual/
https://doi.org/10.1145/1900160.1900173
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1007/978-3-662-44202-9_13

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

[33] Neil Mitchell. “Shake Before Building: Replacing Make with Haskell”. In: ACM
SIGPLAN International Conference on Functional Programming, ICFP’12, Copen-
hagen, Denmark, September 9-15, 2012. Edited by Peter Thiemann and Robby
Bruce Findler. ACM, 2012, pages 55–66. isbn: 978-1-4503-1054-3. doi: 10.1145/
2364527.2364538.

[34] Andrey Mokhov, Neil Mitchell, Simon Peyton Jones, and Simon Marlow. “Non-
recursive make considered harmful: build systems at scale”. In: Proceedings of
the 9th International Symposium on Haskell, Haskell 2016, Nara, Japan, Septem-
ber 22-23, 2016. Edited by Geoffrey Mainland. ACM, 2016, pages 170–181. isbn:
978-1-4503-4434-0. doi: 10.1145/2976002.2976011.

[35] Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. “A
Theory of Name Resolution”. In: Programming Languages and Systems - 24th
European Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. Edited by Jan Vitek. Volume 9032. Lecture Notes
in Computer Science. Springer, 2015, pages 205–231. isbn: 978-3-662-46668-1.
doi: 10.1007/978-3-662-46669-8_9.

[36] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. “REScala: bridging be-
tween object-oriented and functional style in reactive applications”. In: 13th
International Conference on Modularity, MODULARITY ’14, Lugano, Switzerland,
April 22-26, 2014. Edited by Walter Binder, Erik Ernst, Achille Peternier, and
Robert Hirschfeld. ACM, 2014, pages 25–36. isbn: 978-1-4503-2772-5. doi: 10.
1145/2577080.2577083.

[37] Mike Shal. “Build System Rules and Algorithms”. http://gittup.org/tup/build_
system_rules_and_algorithms.pdf. [Online; accessed 01-Dec-2017]. 2009.

[38] Richard M. Stallman, Roland McGrath, and Paul D. Smith. GNU Make. 2016.
url: https://www.gnu.org/software/make/manual/.

[39] Michael J. Steindorfer and Jurgen J. Vinju. Artifact for [40]. https://github.
com/msteindorfer/oopsla15-artifact. [Online; accessed 01-Dec-2017]. 2015.

[40] Michael J. Steindorfer and Jurgen J. Vinju. “Optimizing hash-array mapped
tries for fast and lean immutable JVM collections”. In: Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pitts-
burgh, PA, USA, October 25-30, 2015. Edited by Jonathan Aldrich and Patrick
Eugster. ACM, 2015, pages 783–800. isbn: 978-1-4503-3689-5. doi: 10.1145/
2814270.2814312.

[41] Symas. Lightning Memory-mapped Database. https://symas.com/lmdb/. [On-
line; accessed 01-Dec-2017].

[42] Tamás Szabó, Sebastian Erdweg, andMarkus Voelter. “IncA: A DSL for the Defi-
nition of Incremental Program Analyses”. In: Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ASE 2016. Sin-
gapore: ACM, 2016, pages 320–331. isbn: 978-1-4503-3845-5. doi: 10 . 1145/
2970276.2970298.

9:29

https://doi.org/10.1145/2364527.2364538
https://doi.org/10.1145/2364527.2364538
https://doi.org/10.1145/2976002.2976011
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2577080.2577083
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
https://www.gnu.org/software/make/manual/
https://github.com/msteindorfer/oopsla15-artifact
https://github.com/msteindorfer/oopsla15-artifact
https://doi.org/10.1145/2814270.2814312
https://doi.org/10.1145/2814270.2814312
https://symas.com/lmdb/
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/2970276.2970298

PIE: A DSL for Interactive Software Development Pipelines

[43] Vlad A. Vergu, Pierre Néron, and Eelco Visser. “DynSem: A DSL for Dynamic
Semantics Specification”. In: 26th International Conference on Rewriting Tech-
niques and Applications, RTA 2015, June 29 to July 1, 2015, Warsaw, Poland.
Edited by Maribel Fernández. Volume 36. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015, pages 365–378. isbn: 978-3-939897-85-9. doi:
10.4230/LIPIcs.RTA.2015.365.

[44] Eelco Visser. Scannerless Generalized-LR Parsing. Technical report P9707. Pro-
gramming Research Group, University of Amsterdam, July 1997. url: https:
//pdfs.semanticscholar.org/90f2/8a411455fb783da17ad4b4efdda4464606c4.pdf.

[45] Eelco Visser. “Syntax Definition for Language Prototyping”. PhD thesis. Uni-
versity of Amsterdam, Sept. 1997.

[46] Tobi Vollebregt, Lennart C. L. Kats, and Eelco Visser. “Declarative specification
of template-based textual editors”. In: International Workshop on Language
Descriptions, Tools, and Applications, LDTA ’12, Tallinn, Estonia, March 31 - April
1, 2012. Edited by Anthony Sloane and Suzana Andova. ACM, 2012, page 8.
isbn: 978-1-4503-1536-4. doi: 10.1145/2427048.2427056.

9:30

https://doi.org/10.4230/LIPIcs.RTA.2015.365
https://pdfs.semanticscholar.org/90f2/8a411455fb783da17ad4b4efdda4464606c4.pdf
https://pdfs.semanticscholar.org/90f2/8a411455fb783da17ad4b4efdda4464606c4.pdf
https://doi.org/10.1145/2427048.2427056

Gabriël Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser

About the authors

Gabriël Konat is a PhD candidate at Delft University of Tech-
nology, where he works on domain-specific languages, language
workbenches, bootstrapping, and incrementalization. His current
work includes designing a DSL for programming incremental
pipelines, improving the scalability of incremental pipeline al-
gorithms, and applying incremental pipelines to language work-
benches. You can contact him at g.d.p.konat@tudelft.nl.

Michael J. Steindorfer is a senior software engineer working
in industry and a guest researcher at the Delft University of
Technology. His research and engineering efforts focus on opti-
mizing functional data structures, the design and implementa-
tion of programming languages, and improving big data process-
ing runtimes for cloud infrastructures. You can contact him at
michael@steindorfer.name.

Sebastian Erdweg is an assistant professor at Delft University
of Technology, where he works on the foundation and applica-
tion of programming languages. His current work includes in-
cremental static analysis and build systems, modernizing legacy
code to adopt new language features, and safe refactorings, anal-
yses, type systems, and program transformations. You can con-
tact him at s.t.erdweg@tudelft.nl and find further information at
http://erdweg.org.

Eelco Visser is Antoni van Leeuwenhoek Professor of Computer
Science and chair of the Programming Languages Group at Delft
University of Technology. His current research is on the founda-
tion and implementation of declarative specification of program-
ming languages. You can contact him at e.visser@tudelft.nl and
find further information at http://eelcovisser.org.

9:31

mailto:g.d.p.konat@tudelft.nl
mailto:michael@steindorfer.name
mailto:s.t.erdweg@tudelft.nl
http://erdweg.org
mailto:e.visser@tudelft.nl
http://eelcovisser.org

	1 Introduction
	2 Problem Analysis
	3 PIE by Example
	4 PIE API and Runtime
	5 PIE Language
	6 Case Study: Spoofax Language Workbench
	6.1 Pipeline Re-Implementation
	6.2 Analysis

	7 Case Study: Live Performance Testing
	7.1 Pipeline Re-Implementation
	7.2 Analysis

	8 Related Work
	9 Future Work
	10 Conclusion
	About the authors

