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Low-cost metal (e.g., PCB trace) shunts can be used to make accurate current sensors
(<1% gain error) [1-3]. However, their reported maximum operating temperature (85°C)
is not high enough for automotive applications, and at higher temperatures, shunt
resistance may exhibit increased drift, especially at high current levels. This paper
presents a metal-shunt-based current sensor with a wide temperature range and a stable
on-chip reference current (Ige) source for shunt self-calibration. By employing a
continuous-time (CT) front-end, it achieves an input noise density of 14nV/y/Hz while
consuming only 280pA, making it >10x more energy efficient than prior art [1,2], with
comparable gain error (+0.2%) over a wider current (+40A) and temperature (-40°C to
125°C) range.

The proposed sensor employs an ADC to digitize the IR drop Vg across a copper shunt
Sresistor Ry (Fig. 23.2.1), whose large temperature coefficient (TC, ~0.4%/°C) is
gcompensated by using a near-PTAT ADC reference (Vgge=VprartVerar/A). By tuning A, the
STC of Vg can be matched to that of the shunt [1,2], generating a temperature-
<sindependent digital output (ls-mode). However, Rg may still drift over time [4]. In this
gwork, by briefly disconnecting the shunt from the input current Ig, Rg can be calibrated

Swith a known Ine (Inge-mode). Since Rg is quite small (<1mQ), and lggr is practically
®I|m|ted to a few tens of mA, a low-noise ADC is needed to achieve the required sub-pQ
gresolutlon in a reasonable measurement time (seconds). ADC offset and Igg drift will also
Qcause residual errors. The former is mitigated by digital correlated-double-sampling
Q(CDS). The latter requires a time and temperature stable g, whose residual TC can
§be compensated by digitizing the ratio Vgrar/Verar to determine die temperature
g(TDIE, T-mode).

ZFigure 23.2.2 shows the block diagram of the proposed current sensor. It consists of a
a1-bit 2"-order AX modulator with a sampling frequency (f;) of 5.12MHz. The 1¢ stage is
wbased on a CT capacitively-coupled Gm-G integrator, which blocks the input common-
wimode voltage and avoids the KT/C noise limitations of the switched-capacitor (SC)
integrators used in [1,2]. However, Gm-C integrators typically suffer from poor linearity,
Qwhich either requires the use of source degeneration or complex multi-bit DACs to reduce

their input swing. In this work, since the maximum shunt voltage Vg and the required
SVeee are quite small (~£50mV at room temperature, RT), the use of a simple 4-tap FIR-
DAC is enough to reduce the input swing to less than 30mV over temperature, which is
Well within the linear range of a tail-resistor-linearized (TRL) current-reuse OTA [5] (Fig.
\23 2.2 bottom-left). To allow its NMOS and PMOS input pairs to be independently biased,
q>the input and feedback capacitors are split into two banks, which couple Vg and the FIR-
8.DAC outputs, respectively, to both pairs. However, DAC transitions will then be coupled
Shdirectly to the input pairs, overloading the OTA and causing quantization-noise (Q-noise)
$f0|ding. To mitigate this, dead-band (DB) switches briefly (~25ns) isolate the OTA from
the integration capacitor C,y; (40pF) during DAC transitions. Since its KT/C noise is
Ssuppressed by the gain (~70dB) of the CT 1+ integrator, the 2™ stage is built around an
—SC integrator with a sampling capacitor of 50fF. As in [5], it also serves as the summing
§node of the feedforward and FIR-DAC compensation paths.

%To sense DC inputs, the capacitively-coupled TRL OTA must be chopped. However, this
Salso creates a gain notch at the chopping frequency fy,. Since the 4-tap FIR-DAC creates
Lnotches at multiples of f/4, the TRL OTA can be chopped at f/4 without degrading the
cmodulator s noise-transfer function. Switched resistors are used to realize the large DC
Ub|as resistances (~40MQ) needed to ensure the highpass cut-off frequency (~1kHz) of
-gthe input network to well below fy, (CHH=1.28MHz). To further mitigate offset and 1/f
gnoise, low-frequency chopping (CHL=20kHz) is appliedto both integrators.

2Asin [1-3], atunable PTAT Vg can be generated by diode-connected NPNs that provide
GBAVge (Vprar) and Vge (Verar). However, due to their finite current gain g (~20), the base
Seurrent of the NPNs will degrade the linearity of AVy over temperature. In [6], this error
Sis mitigated by using a source follower (SF) to supply the base current. Its output
‘mimpedance must then be low enough to ensure rapid settling after the DAC transients,
.gwhich would otherwise cause DAC non-linearity and Q-noise folding. This work employs
ca flipped voltage follower (FVF), whose output impedance is reduced by a factor (gm,®ro;)
QJcompared to that of an SF [6] (Fig. 23.2.3 top-left). To improve the pull-up capability of
—the higher Vg (Vgey), an extra SF My is added in parallel to achieve a Class-AB output.
fThese measures reduce the settling time of Vgg: transients to less than 25ns (13% of a
esampling period) over PVT, allowing them to be blocked by the DB switches.

o

o~
Since the TC of a copper shunt is nearly PTAT, the tuning factor A needs to be quite large
(JN>90) to cover the target TC tuning range (0.33+0.1%/°C). Thanks to the low output
impedance of the FVF, part of this attenuation (<1/7) can be realized by a resistive divider

(Fig. 23.2.3 top-right). The rest (1/14) is then realized by the CDAC
(Cprar=14C¢rar=Ci\=4pF, in Fig. 23.2.2). To achieve a step of <10ppm/°C, Vrar/A should
be tuned with 7-bit resolution. By taking advantage of the differential nature of the CDAC,
this is achieved by combining a 4-bit coarse trim of Vrapand a 3-bit fine trim of Vepamy
with the resistive dividers.

To monitor Rg drift, Izer is generated by forcing AVge (~54mV at RT) across a silicided
diffusion resistor R, (~16kQ) (Fig. 23.2.3 bottom). AVg:and R, are both stable and have
similar TCs (~0.3%/°C) [5], which are cancelled in the generated current. The residual
TC (~60ppm/°C) can then be digitally compensated by sensing Ty in T-mode. Compared
to the bandgap and SC-resistor-based lg- generator used in [4], this approach avoids
the need for an external zero-TC clock. As in [4], the resulting current is amplified by a
current mirror (6x, ~20pA), and then boosted by an on-chip current driver with a
programmable gain (from 500 to 2000). To mitigate errors due to transistor mismatch,
chopping (at 625Hz) and DEM (at 1.25kHz) are applied to the amplifiers (A; and A,) and
current mirrors.

In T-mode, a fixed CTAT input (Vge/28) is applied to the modulator by using half of Cgrar,
while the input capacitor G, is shorted by the shunt. Then the bitstream average will be
proportional to X=Vge/AVge, which is a well-defined function of temperature. Due to the
small residual TC of Ixg, an inaccuracy of 1°C is acceptable, which can be achieved even
with the expected mismatch (~1%) of Cprarand Cgrar, and the required conversion time
(tens of ps) is negligible compared to that required in lge-mode (seconds).

The sensor is implemented in a 0.18ym CMOS process and occupies 0.38mm? (Fig.
23.2.7, top). The modulator and the Vg generator draw 280pA from a 1.8V supply, while
the lqer generator can output currents ranging from 11mA to 45maA. Its performance was
verified with a 0.83mQ PCB trace shunt (Fig. 23.2.7, bottom). Good thermal coupling
and galvanic isolation were achieved by bonding the chip to the shunt with non-
conductive glue.

Figure 23.2.4 (top) shows the measured output spectra of the modulator. With DB
disabled, its noise floor is limited to 23nV/y/Hz by Q-noise folding, which improves to
14nV/yHz after the DB is enabled. This results in a current-sensing resolution of 1.7mA,
in a 10kHz bandwidth. In lze-mode, with CHL enabled, the noise floor is flat down to
10mHz (Fig. 23.2.4 bottom), which is limited by ambient temperature drift and residual
1/f noise. This can be further suppressed by applying digital CDS to pairs of short (e.g.,
128ms) Izer measurements (45mA and 11mA). Then it achieves a resolution of ~9nVrms
in 5s, which corresponds to a gain error of less than 0.1% (3c0). Measurements on 10
samples show that the ADC’s offset is less than 35V without CHL and is below 4pV with
CHL.

The sensor was characterized in a current range of +40A from -40°C to 125°C. Figure
23.2.5 (left) shows the measured gain accuracy over temperature. With an optimal, but
fixed, A (~-200) obtained by batch calibration, it achieves a maximum gain error of +0.2%
after a single-current gain trim (at RT and 10A). Figure 23.2.5 (right) shows the measured
Izer from -40°C to 125°C. Its absolute value varies by +3% due to resistor spread. After
a 1-point correlated trim [5], both the nominal value and TC spread can be mitigated,
resulting in a normalized spread of +0.15% from -40°C to 125°C after digital TC
compensation. To verify the stability of Ig;, 10 samples were subjected to accelerated
aging at 150°C for one week. The resulting drift is less than 0.1% around RT, and less
than 0.15% over temperature, allowing a gain error of <0.3% for current sensing with
shunt-drift calibration.

The performance of the sensor is summarized and compared with the state-of-the-art in
Fig. 23.2.6. Compared to prior metal-shunt-based sensors [1-3], it achieves the highest
energy efficiency (+11dB) and a competitive gain error (£0.2%) over a wider current
(+40A) and temperature (-40°C to 125°C) range. The proposed self-calibration scheme
allows a gain error of 0.3% to be maintained even in the presence of shunt resistance
drift.
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Figure 23.2.2: Simplified circuit diagram of the Gm-C-based AZ modulator (top); The
Figure 23.2.1: A versatile readout for low-cost metal-shunt-based current sensor with capacitively-coupled tail-resistor-linearized OTA (bottom-left); its timing diagram

temperature and aging compensation. (bottom-right).
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Figure 23.2.7: Die micrograph (top); chip on a PCB shunt (bottom).
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