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Dilational Triangulated Shells Using Pantographs

F.G.J. Broeren1,2; W.W.P.J. van de Sande1; V. van der Wijk1 and J.L. Herder1

Abstract— Dilational structures are one degree of freedom
structures able to change their size without changing their
global shape. In this paper, we present a method to create
dilational shells with arbitrary curvature. For this, we designed
triangular tiles, which can be placed on a triangulation of
the desired surface. We present the method and illustrate it
with the example of a dilational octahedron. Using this regular
polygon, we demonstrate that the whole structure has a single
degree of freedom, and that the maximum obtainable scaling
factor is directly linked to the range of motion of the individual
triangular tiles.

I. INTRODUCTION

Dilational structures expand in all directions when actu-

ated, changing their size but keeping their global shape[1],

[2]. These structures have been applied in many fields, for

example architecture[3], space[4] and medicine[5]. A well-

known example of a dilational structure is the Hoberman

Sphere [6], [7]. This structure uses scissor-linkages to expand

or contract radially when actuated. Dilational structures are

often used for their ability to be compacted into a small vol-

ume and expanded on-site into a bigger, functional structure.

Recently, research into mechanical metamaterials has

sprung renewed interest in dilational properties of structures,

specifically for use as material structures with negative

Poisson’s ratios[8]. Dilation is obtained within this class of

structures if the Poisson’s ratio is -1.

Mechanical metamaterials are constructed out of a periodic

array of unit cells; identical mechanical sub-units that make

up the bulk of the structure. The material properties are

governed by these unit cells, and therefore, the dimension of

the metamaterial is equal to the dimension of the unit cell.

Consequently, materials constructed out of 3D unit cells can

not be used to form thin shells.

Alternatively, metamaterials constructed out of 2D unit

cells are designed to be planar[9], [10]. These materials

are made with planar periodicity in mind, which can not

generally be fullfilled for arbitrarily curved surfaces.

Structures such as the Hoberman Sphere, which form a

curved surface, rely on a mechanism that protrudes out of the

surface when it is actuated, changing the effective thickness

of the shell during motion.

In this paper, we present a method to create dilational

shells with arbitrary curvature of which the mechanism stays

locally in-plane throughout the range of motion, i.e. no parts

of the mechanism protrude out of the shell. We propose to

construct these shells from triangular tiles with an internal
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mechanism based on the (skew) pantograph linkage[11],

[12], [13]. Each tile has a single, dilating degree of freedom

and we will show how such tiles can be coupled with revolute

pairs such that a dilating surface with a single degree of

freedom is formed.

The mechanisms formed in this method fall into the cate-

gory of general dilational polyhedra [14]. Our method stands

out in this larger family of linkages because it can work for

any polyhedral shape, without restrictions on regularity or

convexity.

The dilational structures proposed in this paper form thin,

hollow structures that have near-constant thickness through-

out the range of motion, with no parts protruding into the

enclosed volume. This makes our method suitable for ap-

plications where the dilational structure encloses a sensitive

object, such as is, for example, the case in exoskeletons.

In the Methods section, we introduce the triangular tiles,

show the conditions under which these are dilational, and

present the necessary considerations for the coupling of these

tiles. We then apply this method to the case of an octahedron.

We show how the triangular tiles can be fitted on the trian-

gular faces of the octahedron and determine the theoretical

boundaries for its volume change. Finally, we investigate

the feasibility and manufacturability of these structures by

constructing the dilating octahedron and investigating the

scaling properties of the structure under actuation.

We conclude the paper with a Discussion and Conclusion

section, in which we discuss the usability and limitations of

this technique for other cases than the octahedron presented

here.

II. METHOD

A. Dilation of structures

Our goal is to obtain uniform scaling or dilation of any

structure. Uniform scaling shrinks or enlarges a structure

by a certain scaling factor. The resulting global structure is

similar to the original in the geometric sense; the orientation

is also preserved. Dilation is a special case of a homothetic

transformation[15]:

A�B� = λAB (1)

A dilation transforms a line segment AB into a line A�B�
whose length is scaled by a factor λ . A dilation transforms

all lines into parallel lines[16]. In addition, the lines joining

the points with their transformed versions are concurrent in

a point O, such that for a structure, consisting out of points

A,B,C and D, we can write:
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Fig. 1: Uniform scaling of a tetrahedron: all faces and edges

remain similar and the orientations of the faces remain equal.−→
OA� = λ

−→
OA,−−→

OB� = λ
−→
OB,−−→

OC� = λ
−→
OC, and−−→

OD� = λ
−→
OD, (2)

as is shown in fig. 1 for the example of a tetrahedron.

To create a dilational structure, eq. 2 must hold for any set

of points in the structure. For practical purposes, we choose

to approximate the desired structure by a triangulation. We

choose subset of points on the surface which will follow

eq. 2, and replace the rest of the structure with planar

triangular tiles between the chosen points. The result is a

polyhedron that is an approximation of the structure and this

approximation becomes more accurate when more points on

the original surface are considered. Taking point O to be the

origin, we can write for a chosen set of points V

v� : λv ∀v ∈V. (3)

All edges and faces of the resulting polyhedra must be

similar and homothetic. Therefore, the vector normal to any

face can not change under dilation.

B. Triangular tiles

To construct a dilating structure from our triangulated sur-

face, we propose to use triangular tiles based on Sylvester’s

plagiograph or skew pantograph [11], [17]. This mechanism

is drawn in fig. 2. It is a reduced case of the general

pantograph and consists of two similar triangular bodies and

two links. They construct a planar parallelogram linkage with

one degree of freedom. For our application, we choose the

rigid triangles to have the same size.

This mechanism has the following properties that are

useful for our application:

• it has only one degree of freedom

• it is planar

• three points of the mechanism span a triangle that

remains similar while subject to motion (this property

will be proven in the next subsection)

Fig. 2: Sylvester’s plagiograph, the mechanism is defined by

the lengths, a,b and the angle γ . Revolute joints are shown as

circles and equal sides by hatches. The dotted line indicates

the triangle spanned by this mechanism, which stays similar

when the angle θ changes.

At each face of the triangulated surface, one pantograph

mechanism will be placed such that points p0, p1, p2 coincide

with the vertices of the triangular face. At each edge, two

neighboring tiles meet and share two vertices. At these

vertices, the links of the two pantograph mechanisms are

joined by revolute pairs, such that the relative orientation of

the two pantographs is fixed. Effectively this creates a two-

sided sarrus linkage[18] coupling the motion of two adjacent

faces, creating a 1-DOF structure.

C. Similarity proof

In order for a polyhedron constructed from these triangular

tiles to be dilational, each of the triangular tiles should

undergo a dilation when actuated. We take the triangle

spanned by the pantograph mechanism to be spanned by

p0, p1, p2 and write their positions as

p0 =
�

0 0
�T

p1 =
�

2a 0
�T

p2 = 2b
�

cos(−γ) sin(γ)
�T

(4)

When actuated, the rigid triangles will rotate with respect

to each other. We take the point p0 to be fixed, and constrain

p1 to lie on the x-axis. Then, when the left rigid triangle

rotates by an angle θ around p0, the right rigid triangle

rotates by an angle −θ around p1. This transforms the points

p1, p2 in to the points p�1, p�2:



Fig. 3: Motion of the triangular tile as a function of the rota-

tion θ ; in all poses the opposite angles of the parallelogram

will be equal

p�1 = �

cos(θ)a+ cos(−θ)a sin(θ)a+ sin(−θ)a
�T

=
�

cos(θ)2a 0
�T

(5)

= cos(θ)
�

2a 0
�T

= cos(θ)p1

p�2 =�

cos(γ +θ)b+ cos(γ −θ)b
sin(γ +θ)b+ sin(γ −θ)b

�

= 2b

�

cos(γ)cos(θ)
sin(γ)cos(θ)

�

(6)

= 2bcos(θ)

�

cos(γ)
sin(γ)

�

= cos(θ)p2.

In the above, the angle sum and difference trigonometric

identities are used to simplify the expressions. The points

p1 and p2 are scaled by the same factor λ = cos(θ) and

the point p0 was assumed to be fixed. Therefore, the whole

triangle scales isotropically with the factor λ and �p0 p1 p2 ∼�p0 p�1 p�2.

This way, we have proven that, when the pantograph

mechanism is actuated, the triangle spanned by the points

p0, p�1, p�2 stays similar to the original triangle p0, p1, p2 and

that the triangle is scaled by a factor λ = cos(θ).

D. Range of Motion

All parts of the triangular tile move in the same plane;

consequently, the tile has limits in its range of motion

at the points where its geometry will intersect. This will

happen when the area of the parallelogram becomes zero.

This equates to two opposite angles of the parallelogram

becoming zero. There are two possibilities for this: when the

angle φ in fig. 3 becomes zero, or when it becomes equal to

π .

We call the top angle of the spanned triangle α . When the

area of this spanned triangle is maximal, φ = α . This angle

can be deduced using the dimensions of the triangle and the

cosine law.

As one of the links rotates clockwise, the other turns

counter-clockwise. The included angle between the two links

in motion is as follows:

φ(θ) = α +2θ . (7)

One limit of motion is found for θ1 =−α
2

. At this point,

de angle φ becomes zero.

Fig. 4: Scaling of the triangular tile as a function of the

rotation θ , the range of motion is indicated by the dots, the

corresponding branch of motion is also illustrated

The other limit of the motion is found for φ = π , in this

case, we have θ2 =
π−α

2
.

The range of motion of the rotation θ is defined as the

difference of the limits of motion.

ROM = θ2 −θ1 =
π −α

2
+

α

2
=

π

2
(8)

The movement and the scaling of the triangular tile is

illustrated in fig. 4.

All triangular tiles share the same degree of freedom;

therefore they share the same scaling parameter λ 2 =
cos2(θ). The range of motion of each triangle is π

2
; this

would indicate a maximum scaling of:

λ 2(±
π

2
) = cos2(±

π

2
) = 0. (9)

This solution effectively sacrifices one branch of motion to

maximise the motion in the other. This is not feasible since

the top angle of the spanned triangle would then become π or

zero; which is a triangle without area. Another solution is to

divide the range of motion over the branches evenly: θ =±
π
4

.

In this case the maximum area change of the triangle is as

follows:

λ 2(±
π

4
) = cos2(±

π

4
) =

1

2
. (10)

This has the effect that the top angle α is a right angle,

which can be deduced from equation 7 . If every polygon in

the polyhedron is a right triangle, maximum volume change

of the polyhedron is as follows:

λ 3 =

�

1

2

3

=
1

2
√

2
≈ 0.354. (11)

This scaling is irrespective of the branches of motion of

the triangular tiles. In polyhedra of non-similar triangles the

scaling of the polyhedron is dependent on the branches of

the tiles and the corresponding scaling parameter. The degree

of freedom is shared by all tiles. Therefore the polyhedron

also has two branches. In each of the branches, the scaling

of the polyhedron will be limited by the tile (or set of tiles)

that reaches its limit first.



Fig. 5: Uniform scaling of an octahedron with dilation center

indicated in the center of the polyhedron

Fig. 6: The two possible motions of a triangular unit cell.

The red arrows indicate the directions of the motion at three

hinge positions.

III. CASE: OCTAHEDRON

We apply the method to a simple polyhedron: a regular

octahedron. This is a Platonic solid made up out of 8

equilateral triangles. Four faces meet at every vertex of which

there are six. The mid-plane is a square. The center of this

square will be the dilation center of the mechanism. It can

be seen from fig. 5 that all vectors from the dilation center

to all vertices scale uniformly. Every edge and face remains

similar; consequently all faces can be replaced by triangular

tiles to enable uniform scaling.

A. Placement of the tiles on an octahedron

At the base of the triangular tiles lies a four-bar linkage.

As a result, two sides of the triangular tile will move in an

opposite direction of the third one under actuation (fig. 6).

All equilateral triangular tiles have the same range of motion,

parametrized by θ : θ = [−π/3,π/6]; this can be seen from

the shape of the four-bar linkage at θ = 0.

When joining the triangles at their shared corners, the

motion directions of the sides of the triangular tiles need

to be considered to avoid collisions between the tiles.

For the octahedron, we chose the configuration shown

in fig. 7. This has been determined to be a collision-free

orientation by drawing the arrows onto the tiles by hand.

Note that, in this figure, all arrows can be reversed without

breaking the tiling pattern. This reflects the fact that there

are two branches of motion for this mechanism.

Fig. 7: The orientation of the triangular tiles on the net of

the octahedron.

B. Dilational properties of the octahedron

When the above described orientation of the triangular

tiles is used, each of the tiles has the same mobility,

parametrized by θ : θ = [−π/6,π/6]. This is due to the

fact that the described orientation contains both branches of

motion of the triangular tile; this limits the motion of the

mechanism. All triangles have the same dimensions and are

equilateral, therefore we can express the side lengths as

L = 2acos(θ), (12)

where a is half the side length of the triangles at θ = 0.

This means that the side lengths of the triangles are at most

L = 2a, for θ = 0, and at a minimum at θ = ±π/6, where

L =
√

3a. Using this, we can determine the ratio of volume

change:

V (θ =±
pi
6
)

V (θ = 0
= λ 3

= cos3(±
π

6
)

=
9

8
√

3
≈ 0.65 (13)

So, under perfect conditions, the octahedron could undergo

a volume change of 35% and the scaling parameter would

be λ =
√

3
2

≈ 0.866.

C. Experimental analysis

We constructed the dilational octahedron by laser-cutting

triangles and bars from 5mm PMMA sheet and assembling

them onto 3D printed connectors with M6 bolts. The tiles

were placed according to the orientation shown in fig. 7.

The octahedral structure was actuated manually and the

distance between two opposing vertices was measured in

both the fully extended and the fully compacted state (see

fig. 8). Dividing the height in the compacted state by the

height of the octahedron in the extended state gave us a

scaling parameter λ = 0.937, which is substantially higher

compared to the ideal case.

The difference in scaling factor can be explained when we

look at a single unit cell, as shown in fig. 9. Because of the

thickness of the bars, the range of motion of the mechanism



(a) H = 253mm (b) H = 270mm

Fig. 8: Measurements of the distance between two opposing

vertices of the octahedral structure. The measured heights

are given in the subcaptions.

is smaller than in the ideal case. We measured the range of

motion in φ to be

ROMφ = [13◦,102◦] (14)

corresponding to

ROMθ = [23.5◦,−21◦]. (15)

For this range of motion, we can calculate the scaling

factor:

λ (23.5◦) = cos(23.5◦)≈ 0.917 (16)

λ (−21.0◦) = cos(−21◦)≈ 0.934 (17)

These scaling factors are much closer to the scaling factor

we measured from the height of the octahedron, indicating

that the thickness of the bars is indeed the predominant factor

in limiting the range of motion of the dilating octahedron.

Because the octahedral linkage was constructed in its

expanded state, all of the linkages on the faces were in their

singular position. When actuating the octahedron, we had

to take special care to make every face follow the correct

motion branch for the tiling pattern. We solved this problem

by attaching rubber bands to the links of the mechanism,

making the lowest energy configuration non-singular and

following the desired motion branch. This solution is shown

in fig. 10.

IV. DISCUSSION

As mentioned in the Methods section, our goal was to

obtain uniform scaling, or dilation, of any shell-like structure.

In the Experimental part of this paper, however, we have

only shown that the method works for a relatively simple

polyhedron. Although this polyhedron is regular and has all

equal and equilaterial triangular faces, the way in which the

octahedron was constructed contained all the steps necessary

to construct a dilating structure from an arbitrarily curved

surface using our methodology. In this section we would

like to highlight how the steps in the construction of the

octahedron relate to the construction of a general dilational

surface.

(a) φ = 13◦ (b) φ = 102◦
Fig. 9: Two faces of the octahedron in the compacted state.

The lines drawn on top were used to estimate the angle φ
in this configuration, the labels p0, p1, p2 refer to the points

drawn in fig. 2

(a) (b)

Fig. 10: Two faces of the octahedron with rubber bands

applied to change the lowest-energy configuration to a non-

singular one.

First, for an arbitrary curved surface, the surface needs to

be triangulated. In the case of the octahedron this was not

necessary, since the surface already existed out of triangles.

Alternatively, the octahedron could be viewed as a, very

coarse, triangulation of a sphere.

Secondly, a possible orientation of the triangular tiles on

the surface needs to be found that preserves mobility using

the method shown in fig. 7. Although the difficulty of this

step will increase with the size of the net, the method of

drawing in the arrows to find a suitable orientation still

applies.

Lastly, the triangular tiles are designed to fit the faces of

the triangulation and are connected rigidly to each other. In

the general case, this would involve constructing each face

individually and keeping track of the correct placement of all

the tiles. For the octahedron, only one equilateral triangular

face had to be designed, since all faces are equal. The only

thing to take into account is the orientation of the tiles.

In the Methods section, we showed that the skew pan-

tograph can can be constructed for any general triangle, so

the construction of the triangular tiles is possible for any

triangulation. However, if the triangulation contains triangles

with very sharp corners, the range of motion of the entire



mechanism will be small. This effect needs to be taken into

account when triangulating the desired surface.

In the experimental section, we also noted that, although a

fitting orientation of the triangular tiles was used, it was still

possible for individual faces to follow a colliding branch of

motion due to a singularity of the mechanism in the expanded

state. This caused collisions between parts of the mechanism,

thereby severely impacting the range of motion. We solved

this by the addition of potential energy in the form of rubber

bands, shifting the lowest energy state to a non-singular one.

For larger, more complex structures, a different method of

achieving this, involving less manual labour, will be required.

V. CONCLUSION

In this paper, we have shown a method to create thin,

dilational structures with an arbitrarily curved surface. This

method consists out of triangulating the surface, and replac-

ing the triangular faces with a one degree of freedom mech-

anism based on the skew pantograph. These mechanisms

are then coupled at the corners of the triangular faces such

that a single degree of freedom is shared by all triangular

mechanisms.

We have shown that the permitted motion of the skew

pantograph dilates the triangle described by its three corners,

and that the dilating properties of the individual triangles

translates into an overall dilation of the structure when

the triangles are coupled by revolute pairs at their corners.

To illustrate this method, we have constructed a dilational

octahedron, and highlighted the most prominent pitfalls and

considerations in doing so. We constructed the dilational

octahedron from laser-cut PMMA and 3D printed connectors

and experimentally determined its scaling factor to be 0.937.

This work presents a first step towards the creation of

dilating shell-like structures with arbitrary curvature. Many

applications exist for such structures, from deployable sculp-

tures, that can be shrunk or enlarged to fit a space or for

transportation purposes, to exoskeletons, where the auxetic

properties of the shell can help in better fitting around the

body.
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