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Abstract
Univalent categories constitute a well-behaved and useful notion of category in univalent foundations.
The notion of univalence has subsequently been generalized to bicategories and other structures in
(higher) category theory. Here, we zoom in on monoidal categories and study them in a univalent
setting. Specifically, we show that the bicategory of univalent monoidal categories is univalent.
Furthermore, we construct a Rezk completion for monoidal categories: we show how any monoidal
category is weakly equivalent to a univalent monoidal category, universally. We have fully formalized
these results in UniMath, a library of univalent mathematics in the Coq proof assistant.
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1 Introduction

When working in univalent foundations (see [15]), definitions have to be designed carefully
in order to correspond, via the intended semantics, to the expected notions in set-theoretic
foundations. The notion of univalent category [2] has been shown to be a good notion, in
the sense that it corresponds to the usual notion of category under Voevodsky’s model in
simplicial sets [9].1 Examples of univalent categories are plentiful, but not all categories
arising in practice – for instance when studying categorical semantics of type theory – are
univalent. In [2], the authors give a construction of a “free” univalent category from any
category C, which they call the Rezk completion of C.

Since then, the univalence condition and completion operation have been studied further.

1 To emphasize that univalent categories are the right notion of category in univalent foundations, they
are just called “categories” in [2].
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15:2 Univalent Monoidal Categories

Firstly, in [16], Van der Weide constructs a class of higher inductive types using the
groupoid quotient. It is shown that the groupoid quotient gives rise to a biadjunction
between the bicategory of groupoids and the bicategory of 1-types (which is isomorphic to the
bicategory of univalent groupoids); the left adjoint thus yields a univalent completion operation
for groupoids. Van der Weide furthermore lifts this completion to “structured groupoids”,
that is, to groupoids equipped with an algebra structure for some endo-pseudofunctor on
(univalent) groupoids.

Secondly, the univalence condition on categories was extended to bicategories in [1] and
to other (higher-)categorical structures in [4]. In more detail, [4] develops a notion of theory
for mathematical structures, and a notion of univalence for models of such theories.

Thirdly, univalent displayed graphs are used in [5] to define and study higher groups.
In the present paper, we continue the study of univalent (higher-)categorical structures,

focusing on monoidal categories. Monoidal categories are very useful in a variety of contexts,
such as quantum mechanics [7] and computing [6], modeling concurrency [11], probability
theory [13] and probabilistic programming [12], and neural networks [10]. We present two
results on monoidal categories:
1. We show that the bicategory of univalent monoidal categories is univalent. Here, a

univalent monoidal category is a univalent category with a monoidal structure.
2. We construct, for any monoidal category, a monoidal Rezk completion. It is, in particular,

a univalent monoidal category; the challenge lies in establishing the universal property of
a Rezk completion, here modified for monoidal categories.

Both results have been formalized in the UniMath library of univalent mathematics, based
on the Coq proof assistant.

The first of these results may be considered to be a basic sanity check; failing to prove this
would question the validity of our definitions. However, its proof is technically difficult, and,
in our experience, only feasible through the disciplined application of “displayed” technology
as developed in [3] and [1].

The second result consists, more specifically, of a lifting of the Rezk completion for
categories as constructed in [2] to the monoidal structure. As such, it also relies on dis-
played technology: the equivalence expressing the universal property of our monoidal Rezk
completion is given as a displayed equivalence on top of the equivalence constructed in [2].

Our work is strongly related to some of the work mentioned above.
Firstly, an instance of Van der Weide’s work covers monoidal groupoids; see [16, Sec-

tion 6.7.4]. Compared to that work, our work discusses monoidal categories rather than
groupoids, but does not cover general structures. In particular, we also provide a completion
operation for lax and oplax monoidal categories. Work on the “pushout” of our and Van der
Weide’s work, a Rezk completion for structured categories, is ongoing (see also Section 5).

Secondly, [4, Example 8.7] studies monoidal categories. It is shown there that the general
univalence condition on a model of the theory of monoidal categories defined in that work
simplifies, in the case of monoidal categories, to the underlying category being univalent.
Thus, the univalent monoidal categories of [4, Example 8.7] are the same as the ones studied
in the present work.

In the remainder of the introduction, we review the Rezk completion and displayed
(bi)categories, respectively. We also give some details about the formalization.

▶ Notation 1. In order to stay consistent with the notation used in UniMath , we write the
composition in diagrammatic order, i. e., the composition of f : x → y and g : y → z is
denoted as f · g : x → z.

https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
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There are different notions of sameness between categories:

▶ Definition 2. A functor F : C → D is called
1. a weak equivalence if it is fully faithful and essentially surjective;
2. a (strong) equivalence if it is fully faithful and split essentially surjective. Equivalently,

this means that F is invertible up to a natural isomorphism;
3. an adjoint equivalence is a (strong) equivalence F whose inverse (up to a natural

isomorphism) is the right adjoint of F ;
4. an isomorphism if it is fully faithful and the function on objects is an equivalence of

types.

Even though these four concepts are closely related, they enjoy different properties. The
Rezk completion is, in general, only a weak equivalence; categorical structure does not
necessarily transfer along a weak equivalence. For strict categories (i. e., categories whose
type of objects is a set), the statement that every weak equivalence is an (adjoint) equivalence
is equivalent to the axiom of choice. However, if one restricts to univalent categories, these
four notions are always equivalent (without using the axiom of choice).

1.1 Review of the Rezk completion for categories
The Rezk completion for categories was constructed in [2]. In essence, given a category
C, its Rezk completion is given by a univalent category RC(C) and a weak equivalence
H : C → RC(C). This weak equivalence has the following property: any functor F : C → E ,
with E a univalent category, factors uniquely via H, as depicted in the following diagram.

C

RC(C) E

FH

∃!

(1)

▶ Remark 3. The universal property satisfied by the Rezk completion is a bicategorical one,
see Definition 5. From a purely category-theoretic viewpoint, the factorization in Equation (1)
is unique up to natural isomorphism. However, since E is univalent, the functor category
[RC(C), E ] is also univalent. Therefore, the factorization of such a functor is unique.

In [2], it is said that the construction gives a universal way to replace a category by a
univalent category. This construction is indeed universal in a bicategorical sense, according
to the following lemma:

▶ Lemma 4 ([2, Thm. 8.4], precomp_adjoint_equivalence). Let H : C → D be a weak
equivalence between categories. For any univalent category E, the functor H · (−) : [D, E ] →
[C, E ] is an adjoint equivalence of categories.

Lemma 4, when applied to the Rezk completion, provides an instance of a “(left) universal
arrow”:

▶ Definition 5 (left_universal_arrow). Let R : B2 → B1 be a pseudo-functor. A left
universal arrow from an object x : (B1)0 to R is given by:
1. an object L x : (B2)0,
2. a morphism ηx : B1(x, R(L x));
3. for any y : (B2)0, the functor

ηx · (R −) : B2(L x, y) → B1(x, R y) ,

which acts on morphisms by applying R and whiskering with ηx, is an adjoint equivalence
of categories.

TYPES 2022
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▶ Remark 6. Writing Cat for the bicategory of categories, functors, and natural transform-
ations, and Catuniv for the full sub-bicategory of Cat consisting of univalent categories,
functors, and natural transformations, Lemma 4 applied to the Rezk completion of C provides
a universal arrow from C to the inclusion Catuniv ↪→ Cat. We expect the following to
hold: if we have, for any object x, a left universal arrow to R with object part L x, then
the assignment x 7→ L x induces a pseudo-functor L : B1 → B2 which is a left biadjoint
to R. Hence, Lemma 4 applied to the Rezk completion would yield a left bi-adjoint to
the inclusion Catuniv ↪→ Cat. However, we have not found a reference for the connection
between universal arrows and biadjunctions. As we do not need this correspondence, we do
not develop it further.

▶ Remark 7. In [2], the Rezk completion has been constructed as the co-restriction of the
Yoneda embedding to its image. It is already known how the Yoneda embedding transports
the monoidal structure; more details on the connection between these approaches are given
in Section 4.5. However, this construction raises the universe level of the type of objects
and morphisms. In https://1lab.dev/Cat.Univalent.Rezk.html, the authors show how
to decrease the universe level of the type of objects by one, using the construction of small
images (and, in particular, higher inductive types). One can also construct (the type of
objects of) the Rezk completion as a higher inductive type. This has been done in [15].

In this paper, we work with an abstract Rezk completion of a category instead of a
concrete implementation. Consequently, the approach presented here can be applied to any
of those constructions.

1.2 Review of displayed (bi)categories
In this section, we recall the basic concepts of displayed bicategories and their univalence.
More information can be found in [1].

Let us first briefly recall the idea of displayed categories.
Many concrete examples of categories are given by structured sets and structure-preserving

functions. An example of this is the category Mon of monoids and monoid homomorphisms.
In particular, an identity morphism is an identity function (i. e., the identity morphism in
Set) and the composition of monoid homomorphisms is given by the composition of the
underlying functions (i. e., the composition in Set). Therefore, working in a category of
structured sets often means lifting structure of the category Set to the additional structure.
An example of this phenomenon is the product of monoids: the underlying set of a product
of monoids can be constructed as the product of the underlying sets (Example 8).

The notion of displayed category formalizes the process of creating a new category out
of an old category by adding structure and/or properties on the objects and/or morphisms in
the following way: a displayed category ([3, Def. 3.1]) specifies precisely the extra structure
and the extra laws needed to build the new category out of the old one. This new category
is then called the total category of the displayed category ([3, Def. 3.2]).

▶ Example 8. The category Mon of monoids can be constructed as a total category over
Set as follows:
1. For X : Set, the type of displayed objects over X is the type of monoid structures on X:∑

m:X×X→X

∑
e:X

isAssociative(m) ×
∏
x:X

(e · x = x × x · e = x) ,

where isAssociative(m) is the proposition stating that m is associative.

https://1lab.dev/Cat.Univalent.Rezk.html
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2. Assume given X, Y : Set, f : Set(X, Y ) and (mX , eX , pX) (resp. (mY , eY , pY )) a dis-
played object over X (resp. Y ), i. e., the structure of a monoid. The type of displayed
morphisms over f is the proposition stating that f is a monoid homomorphism from
(mX , eX , pX) to (mY , eY , pY ):

(f eX = eY ) ×
∏

x1,x2:X
f (mX(x1, x2)) = mY (f x1, f x2) .

Analogously, there is also the notion of a displayed bicategory:

▶ Definition 9 ([1, Def. 6.1], disp_bicat). Let B be a bicategory. A displayed bicategory
D over B consists of:
1. for any x : B, a type Dx of displayed objects over x,
2. for any f : B(x, y) and x̄ : Dx and ȳ : Dy, a type Df (x̄, ȳ) of displayed morphisms over f ,
3. for any α : B(x, y)(f, g) and f̄ : Df (x̄, ȳ) and ḡ : Dg(x̄, ȳ), a set f̄

α=⇒ ḡ of displayed
2-cells over α;

together with a composition of displayed morphisms and displayed 2-cells (over the composition
in B) and a displayed identity morphism and 2-cell (over the identity morphism resp. 2-cell
in B). The axioms of a bicategory have corresponding displayed axioms (over those axioms
in B).

▶ Definition 10 ([1, Def. 6.2], total_bicat). Let D be a displayed bicategory over B. The
total bicategory of D, denoted as

∫
D, has as i-cells (with i = 0, 1, 2), pairs (x, x̄) where x

is an i-cell of B and x̄ is a displayed i-cell of D over x.

▶ Example 11. The bicategory whose objects are categories equipped with a terminal object,
whose morphisms are functors preserving the terminal objects (strongly) and whose 2-cells
are natural transformations, can be constructed as a total bicategory over Cat as follows:
1. For C : Cat, the type of displayed objects over Cat is the type expressing that C has a

terminal object:∑
X: C

isTerminal(X) .

2. Assume given C, D : Cat, F : Cat(C, D) and (TC , pC) (resp. (TD, pD)) displayed objects
over C (resp. D). The type of displayed morphisms over F is the proposition stating that
F preserves the terminal object:

isIsomorphism(!) ,

where ! is the unique morphism F TC → TD given by the universal property of the terminal
object TD.

3. Let F, G : Cat(C, D) be functors between categories C and D and assume:
a. (TC , pC) (resp. (TD, pD)) a witness that C (resp. D) has a terminal object, i. e., it is a

displayed object over C (resp. D),
b. µF (resp. µG) a proof witnessing that F (resp. G) preserves the terminal object

strongly, i. e., µF (resp. µG) is a displayed morphism over F (resp. G).
For any natural transformation α : F ⇒ G, the type of displayed 2-cells over α is the
unit type.

Given displayed bicategories D1 and D2 over a bicategory B, we construct the product
D1×D2 over B. The displayed objects, morphisms, and 2-cells are pairs of objects, morphisms,
and 2-cells, respectively (disp_dirprod_bicat).

TYPES 2022
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A displayed bicategory is locally univalent if the function of type

f̄ =p ḡ → f̄ ∼=idtoiso2,1
f,g

(p) ḡ ,

sending refl to the identity displayed isomorphism, is an equivalence of types for all morphisms
f and g of the same type, p : f = g and f̄ (resp. ḡ) displayed morphisms over f (resp. g).

A displayed bicategory is globally univalent if the function of type

x̄ =p ȳ → x̄ ≃idtoiso2,0
x,y(p) ȳ ,

sending refl to the identity displayed adjoint equivalence, is an equivalence of types for all
objects x and y, p : x = y and x̄ (resp. ȳ) displayed objects over x (resp. y).

A displayed bicategory is univalent if it is both locally and globally univalent (disp_
univalent_2, disp_univalent_2_1, disp_univalent_2_0).

▶ Lemma 12 ([1, Thm. 7.4], total_is_univalent_2). Let D be a displayed bicategory
over B and q ∈ {locally, globally}. Then

∫
D is q-univalent if B is q-univalent and D is

q-univalent.

▶ Remark 13. As witnessed by Lemma 12, certain properties of the total bicategory can be
expressed in terms of the base bicategory and the displayed bicategory. This allows one to
divide a problem, in this case showing univalence, into multiple steps.

Therefore, while we are interested in studying the total bicategory, we usually only
describe the displayed bicategory.

▶ Definition 14 ([1, Defs. 7.7, 7.8], disp_locally_groupoid, disp_2cells_isaprop). A
displayed bicategory D over a bicategory B is called
1. Locally groupoidal if all displayed 2-cells over invertible 2-cells are invertible;
2. Locally propositional if each type of displayed 2-cells is a proposition.

We will also need the displayed analogue of the concept of a functor being essentially
surjective:

▶ Definition 15 (disp_functor_disp_ess_split_surj). A displayed functor F̄ : D1 → D2
over a functor F : C1 → C2 is displayed split essentially surjective if for any x : C
and ȳ : (D2)F x, a displayed object x̄ : (D1)x is given together with a displayed isomorphism
between F̄ x̄ and ȳ over the identity isomorphism IdF x.

1.3 Formalization in UniMath
The results presented here are formulated inside intensional dependent type theory. We
carefully distinguish between data and properties, i. e., data is always explicitly given which
avoids the use of the axiom of choice and the law of excluded middle. The results presented
here are formalized and checked in the library UniMath [17] of univalent mathematics, based
on the proof assistant Coq [14].

The formalization referred to in this paper is presented in the UniMath commit 6d2d288
(more precisely, the given link leads to the source code repository right after merging this
commit). A generated HTML documentation of the sources at this commit is hosted online.
Most of our definitions, lemmas, and theorems are accompanied by a link which leads to the
corresponding definition, lemma, and theorem in the documentation.

The formalization is built upon the existing library of (bi)category theory and the theory
of displayed (bi)categories. The (1-)categorical formulation of displayed categories has been
developed in [3] and the bicategorical formulation has been developed in [1].

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2_1
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2_0
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#total_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispBicat.html#disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispBicat.html#disp_2cells_isaprop
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.DisplayedCats.Functors.html#disp_functor_disp_ess_split_surj
https://github.com/UniMath/UniMath
https://coq.inria.fr
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath/tree/6d2d288264d28f2d1966bb518de180d73e1c5e47
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CatS

CatP

CatUA

CatLU CatRU CatA

CatT U

CatU Cat CatT

Def.23

Def.22

Def.19
Def.20

Def.21

Def.18 Def.17

(2)

Figure 1 Overview of construction steps towards MonCat and MonCatstg.

The accompanying code, specific to this work, consists of approximately 7000 lines of
code. However, the formalisation also made it necessary to contribute to the UniMath library
on monoidal categories more generally.

2 The bicategory of monoidal categories

In this section we construct the bicategory MonCat (resp. MonCatstg) of monoidal
categories, lax (resp. strong) monoidal functors and monoidal natural transformations. We
construct this bicategory as the total bicategory of a displayed bicategory over the bicategory
Cat of categories, functors, and natural transformations.

This displayed bicategory in itself is constructed by stacking different displayed bicatego-
ries. First, we construct a displayed bicategory CatT (resp. CatU ) over Cat that adds a
tensor (resp. a unit). Then, we construct displayed bicategories CatLU , CatRU and CatA

over the total bicategory of CatT U := CatT × CatU that add the left unitor, right unitor
and the associator, respectively. The product of these displayed bicategories is denoted
by CatUA and the laws that relate the unitors and the associator, e. g., the triangle and
pentagon identities, are represented by a full (displayed) sub-bicategory CatP of CatUA.
Lastly, we also have a displayed (sub)bicategory CatS of CatP that enforces the strongness
of the monoidal functors.

The construction is summarized in Figure 1. The precise meaning of this diagram is
explained in the rest of this section and further explained in Remark 24.
▶ Remark 16. Although the construction of MonCat (resp. MonCatstg) is standard (when
working in univalent foundations), we explain the construction in quite some detail because
both Section 3 and Section 4 heavily depend on the construction of monoidal categories
(resp. lax/strong monoidal functors and natural transformations) in this displayed way. In
particular, this allows us to fix notation and allows for the big picture of the constructions
to become more visible.

The first displayed bicategory we construct adds the structure of a tensor and a unit.
Since the unit and tensor are (without the unitors) independent of each other, we can define
this as the product of displayed bicategories, the first representing the tensor and the second
representing the unit.

TYPES 2022
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15:8 Univalent Monoidal Categories

▶ Definition 17 (bidisp_tensor_disp_bicat). The displayed bicategory CatT over Cat
is defined as follows:
1. The displayed objects over a category C : Cat are the functors of type C × C → C, called

tensors over C and are denoted by ⊗C.
2. The displayed morphisms over a functor F : C → D from ⊗C to ⊗D are the natural

transformations of type (F × F ) · ⊗D ⇒ ⊗C · F , called witnesses of tensor-preservation of
F and are denoted by µF .

3. The displayed 2-cells over a natural transformation α : F ⇒ G from µF to µG are the
proofs of the proposition∏

x,y:C
(αx ⊗D αy) · µG

x,y = µF
x,y · αx⊗Cy .

▶ Definition 18 (bidisp_unit_disp_bicat). The displayed bicategory CatU over Cat is
defined such that:
1. The displayed objects over a category C : Cat are the objects of C, called units over C and

are denoted by IC.
2. The displayed morphisms over a functor F : C → D from IC to ID are the morphisms of

type D(ID, F IC), called witnesses of unit-preservation of F and are denoted by ϵF .
3. The displayed 2-cells over a natural transformation α : F ⇒ G from ϵF to ϵG are the

proofs of the proposition

ϵF · αIC = ϵG .

We denote by CatT U the displayed bicategory which is the product of CatT and CatU

(bidisp_tensor_unit).
To fix some notation: The total bicategory

∫
CatT U has as objects triples (C, ⊗C , IC)

where C is a category, ⊗C a tensor on C and IC a unit on C. A morphism from (C, ⊗C , IC)
to (D, ⊗D, ID) is a triple (F, µF , ϵF ) where F is a functor of type C → D, µF a witness of
tensor-preservation of F and ϵF a witness of unit-preservation of F .

We now add the unitors and the associator. Since they are independent of each other
(before adding the triangle and pentagon equalities), we can again define them as a product
of displayed bicategories. These displayed bicategories have trivial displayed 2-cells since
monoidal natural transformations only use the data of the tensor and the unit. Thus we
define these displayed bicategories as displayed categories. The formal construction of
turning a displayed category into a displayed bicategory with trivial 2-cells is formalized as
disp_cell_unit_bicat.

▶ Definition 19 (bidisp_lu_disp_bicat). The displayed bicategory CatLU over
∫

CatT U

is defined as the displayed category (with trivial 2-cells) such that:
1. The displayed objects over a triple (C, ⊗C , IC) are the natural isomorphisms of type

(IC ⊗C −) ⇒ IdC, called left unitors over (C, ⊗C , IC) and are denoted by λC.
2. The displayed morphisms over a triple (F, µF , ϵF ) from λC to λD are proofs of the

proposition:∏
x:C

(ϵF ⊗D IdF x) · µF
IC,x · FλC

x = λD
F x .

▶ Definition 20 (bidisp_ru_disp_bicat). The displayed bicategory CatRU over
∫

CatT U

is defined as the displayed category (with trivial 2-cells) such that:
1. The displayed objects over a triple (C, ⊗C , IC) are the natural isomorphisms of type

(− ⊗C IC) ⇒ IdC, called right unitors over (C, ⊗C , IC) and are denoted as ρC.

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer.html#bidisp_tensor_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer.html#bidisp_unit_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorUnitLayer.html#bidisp_tensor_unit
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.html#disp_cell_unit_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_lu_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_ru_disp_bicat
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2. The displayed morphisms over a triple (F, µF , ϵF ) from ρC to ρD are proofs of the propo-
sition:∏

x:C
(IdF x ⊗D ϵF ) · µF

x,IC
· FρC

x = ρD
F x .

▶ Definition 21 (bidisp_associator_disp_bicat). The displayed bicategory CatA over∫
CatT U is defined as the displayed category (with trivial 2-cells) such that:

1. The displayed objects over a triple (C, ⊗C , IC) are the natural isomorphisms of type
((− ⊗C −) ⊗C −) ⇒ (− ⊗C (− ⊗C −)), called associators over (C, ⊗C , IC) and are denoted
as αC.

2. The displayed morphisms over a triple (F, µF , ϵF ) from αC to αD are proofs of the
proposition:∏

x,y,z:C
(µF

x,y ⊗D IdF z) · µF
x⊗Cy,z · FαC

x,y,z = αD
F x,F y,F z · (IdF x ⊗D µF

y,z) · µF
x,y⊗Cz .

We denote by CatUA the displayed bicategory over
∫

CatT U which is the product of
CatLU , CatRU and CatA (bidisp_assunitors_disp_bicat).

▶ Definition 22 (disp_bicat_univmon). The displayed bicategory CatP is the full displayed
sub-bicategory of CatUA specified by the product of the following predicates:
1. Triangle equality:∏

x,y:C
αx,I,y · Idx ⊗ λy = ρx ⊗ Idy .

2. Pentagon equality:∏
w,x,y,z:C

(αw,x,y ⊗ Idz) · αw,x⊗y,z · Idw ⊗ αx,y,z = αw⊗x,y,z · αw,x,y⊗z .

▶ Definition 23 (disp_bicat_univstrongfunctor). The displayed bicategory CatS is the
(non-full) displayed sub-bicategory of CatP where the displayed morphisms are proofs of the
proposition

isIso(ϵ) ×
∏

x,y:C
isIso(µx,y) .

The bicategory of monoidal categories, lax (resp. strong) monoidal functors, and monoidal
natural transformations is denoted by MonCat :=

∫
CatP (resp. MonCatstg :=

∫
CatS).

▶ Remark 24. The constructions are summarized in Figure 2. The dashed arrows correspond
to the projection induced by the product of the displayed bicategories to any of the compo-
nents. In particular, this means that the dashed arrows induce a (bi)pullback (of displayed
bicategories). The filled arrows represent that we have a forgetful pseudofunctor (given by
the projection of a total bicategory to its base bicategory). Lastly, the hooked arrows mean
that the domain is constructed as a (displayed) full sub-bicategory.
▶ Remark 25. An object in MonCat is of the form (((C, ⊗, I), λ, ρ, α), tri, pent). Usually,
one wants to consider an object in MonCat to be of the form (C, (((⊗, I), λ, ρ, α), tri, pent)),
i. e., as a category equipped with a monoidal structure. The displayed bicategory whose
objects are categories equipped with a monoidal structure can be constructed by applying
the sigma construction ([1, Definition 6.6(2)], sigma_bicat). Furthermore, this displayed
bicategory is univalent by a criterion presented in [1]. As this does not change the message
of the paper, we refer the reader to [1] for the precise statements, but we do show that the
criteria are satisfied in Lemmas 31, 33, and 35.
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▶ Remark 26. In the formalization of CatLU (resp. CatRU , CatA), we do not yet require a
left unitor (resp. right unitor, associator) to be an isomorphism. Since being an isomorphism is
a proposition, we could and did add these three (indexed) conditions only in the formalization
of CatP . This simplifies the proof of univalence of the bicategory of univalent monoidal
categories that is built from MonCat.

In Section 4, we construct a Rezk completion for monoidal categories. We are interested
in studying the hom-categories of MonCat and thus, in particular, the displayed hom-
categories. We now introduce some notations. Let B be a bicategory and x, y : B objects.
The hom-category from x to y is denoted by B(x, y). Any morphism f : B(x, y) induces a
functor between hom-categories, more precisely:

▶ Definition 27. Let B be a bicategory, f : B(x, y) a morphism and z : B an object. The
functor given by precomposition with f and target object z is the functor

f · (−) : B(y, z) → B(x, z) ,

where the action on the objects is given by precomposition, i. e., g 7→ f · g, and the action on
the morphisms is given by left whiskering, i. e., α 7→ f ◁ α.

We also refer to the functor given by precomposition with f as the precomposition functor
with f .

Let D be a displayed bicategory over B and x̄ ∈ Dx and ȳ ∈ Dy be displayed objects. The
(total) hom-category

∫
D((x, x̄), (y, ȳ)) can be constructed as a total category of a displayed

category over B(x, y). We denote this displayed category by D(x̄, ȳ) (so we use the same
notation for the hom-categories and displayed hom-categories).

In particular, the precomposition functor w. r. t. the total bicategory
∫

D of a morphism
(f, f̄) can be defined as a displayed functor over the precomposition functor f · (−) (w. r. t.
B) where we precompose/left whisker (in the displayed sense) with f̄ :

▶ Definition 28. Let D be a displayed bicategory over a bicategory B, x̄ : Dx, ȳ : Dy displayed
objects, f̄ : Df (x̄, ȳ) a displayed morphism and z̄ : Dz a displayed object. The displayed
functor given by precomposition with f̄ and target displayed object z̄ is the displayed
functor

f̄ · (−) : D(ȳ, z̄) → D(x̄, z̄)

over the functor given by precomposition with f and target object z.

We also refer to the displayed functor given by precomposition with f̄ as the displayed
precomposition functor with f̄ .

3 The univalent bicategory of monoidal categories

In this section we present our proof of univalence of the bicategory MonCatuniv of univalent
monoidal categories, with Theorem 37 as the main result. (We also obtain a version with
strong monoidal functors in place of lax monoidal functors.) In this proof, we rely heavily on
the displayed machinery built in [1], for modular construction of bicategories, and proofs of
their univalence.

In the formalization of this univalence proof, we have not used the formalization of a
monoidal category as presented above. Instead, we have changed the definition of a tensor
from being a functor to a more explicit, unfolded definition. It is not necessarily obvious that
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the resulting bicategory is indeed that of monoidal categories, lax (resp. strong) monoidal
functors, and monoidal natural transformations. Therefore, we construct an equivalence of
types of monoidal categories as presented above on the one hand and using this explicit
definition on the other hand (cmonoidal_to_noncurriedmonoidal, cmonoidal_adjequiv_
noncurried_hom).

Recall from Lemma 12 that the total bicategory of a displayed bicategory is univalent if
both the base bicategory and the displayed bicategory are univalent. Since Catuniv is uni-
valent [[1, Prop. 3.19], univalent_cat_is_univalent_2], the task of proving MonCatuniv
univalent therefore reduces to showing that ΣΣCatT U

CatUACatP from the previous section is
univalent, restricted to the full sub-bicategory Catuniv of Cat. (This is to be read modulo
the repackaging hinted to in Remark 25.)

The sigma construction of univalent displayed bicategories is univalent provided that
both displayed bicategories are locally groupoidal and locally propositional [[1, Prop. 7.9],
sigma_disp_univalent_2_with_props]. The previously defined displayed bicategories are
locally propositional since they either express an (indexed) equality of morphisms or the
type of 2-cells is the unit type. Thus in this section, we show that the displayed bicategories
from Section 2 are univalent and locally groupoidal.
▶ Remark 29. In this section we restrict the displayed bicategories to the bicategory Catuniv of
univalent categories. For example, the restriction of CatT U is considered as the pullback of the
displayed bicategory CatT U along the inclusion of Catuniv into Cat. We denote the restric-
tion of the displayed bicategory Catℓ by Catℓ|univ for ℓ ∈ {T, U, TU, LU, RU, A, UA, P, S}.

▶ Lemma 30 (tensor_disp_is_univalent_2). CatT |univ is univalent.

Proof. CatT |univ is locally univalent by a straightforward calculation, we therefore only
discuss that it is globally univalent.

Let ⊗1, ⊗2 be two tensors on C. We have to show that idtoiso2,0
⊗1,⊗2

is an equivalence of
types. In order to show this, we factorize this function as follows:

⊗1 = ⊗2 DispAdjEquiv(⊗1, ⊗2)

tensorEq(⊗1, ⊗2) tensorIso(⊗1, ⊗2)

idtoeq

idtoiso2,0
⊗1,⊗2

eqtoiso

,

where tensorEq(⊗1, ⊗2) is the type∑
α:

∏
x,y:C

,x⊗1y=x⊗2y

∏
f :C(x1,x2)

∏
g:C(y1,y2)

f ⊗1 g = f ⊗2 g ,

where the equality f ⊗1 g = f ⊗2 g is dependent over αx1,y1 and αx2,y2 .
The type tensorIso(⊗1, ⊗2) is the same as tensorEq(⊗1, ⊗2) where we replaced the first

equality by an isomorphism (and the dependent equality of morphisms is replaced by pre-
and post-composing with the isomorphism).

The function idtoeq : ⊗1 = ⊗2 → tensorEq(⊗1, ⊗2) maps equality to pointwise equality
(on both the objects and morphisms). Because our hom-types are sets, this is an equivalence.
The function eqtoiso : tensorEq(⊗1, ⊗2) → tensorIso(⊗1, ⊗2) replaces identity by isomorphism.
Since C is a univalent category, eqtoiso is indeed an equivalence. Since a displayed adjoint
equivalence in CatT translates into the notion of tensorIso(⊗1, ⊗2), we construct in a
straightforward manner a function from tensorIso(⊗1, ⊗2) to DispAdjEquiv(⊗1, ⊗2), which is
for the same reason an equivalence. ◀

TYPES 2022

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_to_noncurriedmonoidal
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_adjequiv_noncurried_hom
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_adjequiv_noncurried_hom
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.Core.Examples.BicatOfUnivCats.html#univalent_cat_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.Examples.Sigma.html#sigma_disp_univalent_2_with_props
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer.html#bidisp_tensor_disp_prebicat_is_univalent_2


15:12 Univalent Monoidal Categories

Each type of (displayed) 2-cells in CatU is contractible, hence:

▶ Lemma 31 (tensor_disp_locally_groupoidal). CatT |univ is locally groupoidal.

Proof. CatT |univ being locally groupoidal means that if a natural isomorphism α preserves
the tensor, then so does its inverse. This is immediate since the tensor product of isomorphisms
is again an isomorphism (by functoriality of the tensor). ◀

▶ Lemma 32 (unit_disp_is_univalent_2). CatU |univ is univalent.

Proof. CatU |univ is locally univalent by a straightforward calculation. Therefore, we only
discuss why it is globally univalent.

Let I, J : C be objects representing a unit object. As with the tensor layer, we factorize
idtoiso2,0

I,J and show that each function in the factorization is an equivalence. The factorization
is given by:

I = J DispAdjEquiv(I, J)

I ∼= J

idtoiso2,0
I,J

The definition of a displayed adjoint equivalence in this displayed bicategory translates
precisely to an isomorphism in the underlying category C, which gives us the arrow to the
right and a proof that it is an equivalence. The left arrow is given by idtoisoI,J and is an
equivalence precisely because C is a univalent category. ◀

▶ Lemma 33 (unit_disp_locally_groupoidal). CatU |univ is locally groupoidal.

▶ Lemma 34 (assunitors_disp_is_univalent_2). CatUA|univ is univalent.

Proof. Since the product of univalent displayed bicategories is univalent, it remains to show
that CatLU |univ,CatRU |univ and CatA|univ are univalent.

These displayed bicategories are locally univalent because the type of (displayed) 2-cells
is the unit type and the type of (displayed) 1-cells is a proposition.

Since the type of objects (resp. morphisms, 2-cells) is a set (resp. proposition, contractible)
and the base category is locally univalent, we can apply [1, Prop. 7.10]. This proposition
asserts that a displayed bicategory is univalent if a function of type (a ≃idtoiso2,0(p) b) →
(a =p b) can be constructed. The latter means precisely that we have to construct displayed
morphisms over an identity morphism. In the case of the left unitor, this means that we
have to construct a term of type (λ1 = λ2) provided that the identity morphism on (C, ⊗, I)
preserves the left unitor (as in Definition 19.2). The proofs that CatRU |univ and CatA|univ
are univalent is analogous. ◀

▶ Lemma 35 (assunitors_disp_locally_groupoidal). CatUA|univ is locally groupoidal.

Proof. This follows from the following lemmas:
1. The product of locally groupoidal displayed bicategories is locally groupoidal.
2. A displayed bicategory whose type of displayed 2-cells is the unit is locally groupoidal.

◀

A full displayed sub-bicategory of a univalent displayed bicategory is univalent, hence:

▶ Lemma 36 (tripent_disp_is_univalent_2). CatP |univ is univalent.

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer.html#bidisp_tensor_disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer.html#bidisp_unit_disp_prebicat_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer.html#bidisp_unit_disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_assunitors_is_disp_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_assunitors_disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#disp_bicat_tripent_is_univalent_2


K. Wullaert, R. Matthes, and B. Ahrens 15:13

Since a full displayed sub-bicategory of a displayed locally groupoidal bicategory is locally
groupoidal, we have that CatP |univ is locally groupoidal.

▶ Theorem 37 (UMONCAT_is_univalent_2). The bicategory of univalent monoidal categories,
lax monoidal functors, and monoidal natural transformations is univalent.

▶ Lemma 38 (UMONCAT_disp_strong_is_univalent_2). CatS |univ is univalent.

Proof. This follows immediately from Lemma 36 since the type of displayed 1-cells is a mere
proposition. ◀

▶ Theorem 39 (UMONCAT_strong_is_univalent_2). The bicategory of univalent monoidal
categories, strong monoidal functors, and monoidal natural transformations is univalent.

4 The Rezk completion for monoidal categories

Some constructions of (monoidal) categories do not yield univalent (monoidal) categories. For
instance, categories built from syntax usually have sets of objects; the presence of non-trivial
isomorphisms in such a category hence entails that it is not univalent. Another example
is when constructing colimits of univalent monoidal categories; the usual construction of
such a colimit often yields a non-univalent monoidal category. In such cases, a “completion
operation”, turning a monoidal category into a univalent one, is handy.

In this section we construct, for each monoidal category, a free univalent monoidal
category, which we call the monoidal Rezk completion. More precisely, we solve the following
problem:

▶ Problem 40. Given a Rezk completion H : C → D of a category C and a monoidal structure
M := (⊗, I, λ, ρ, α) on C, construct a monoidal structure M̂ := (⊗̂, Î, λ̂, ρ̂, α̂) on D and a
strong monoidal structure for H w. r. t. M and M̂ , such that for any univalent monoidal
category (E , N), the isomorphism of categories

H · (−) : Cat(D, E) → Cat(C, E)

lifts to the category of lax (resp. strong) monoidal functors:

H · (−) : MonCat((D, M̂), (E , N)) → MonCat((C, M), (E , N)) .

Once solved, we call (D, M̂) the monoidal Rezk completion of (C, M). Analogous to
the Rezk completion for categories, the monoidal Rezk completion exhibits the bicategory
MonCatuniv (resp. MonCatstg

univ) as a reflective full sub-bicategory of MonCat (resp.
MonCatstg).

Although any categorical structure on a category can be transported along an equivalence
of categories such that they become equivalent in the corresponding bicategory of structured
categories, this might not be the case if one considers a weak equivalence. On the way
towards solving Problem 40, we show, in particular, how to transport a monoidal structure
along a weak equivalence of categories (see Remark 61), provided that the target category
is univalent. That construction is not limited to the specific weak equivalence given by the
Rezk completion.

Analogous to the univalence proof of MonCatuniv (resp. MonCatstg
univ) given in Section 3,

we rely on the theory of displayed categories in order to solve this problem by dividing it
into subgoals. In each of the subgoals, we use the same strategy. In Section 4.1, we explain
the strategy in detail for the subgoal of equipping D (resp. H : C → D) with a tensor (resp.
tensor-preserving structure).
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4.1 The Rezk completion of a category with a tensor
Let C be a category and H : C → D a Rezk completion of C. Let ⊗ : C × C → C be a functor.

In this section we equip D with a functor ⊗̂ : D × D → D such that
1. H has the structure of a strong tensor-preserving functor, i. e., we have a natural iso-

morphism µH : (H × H) · ⊗̂ ⇒ ⊗ · H.
2. The precomposition functor of (H, µH) is an isomorphism of categories.

▶ Definition 41 (TransportedTensor, TransportedTensorComm). The lifted tensor ⊗̂ on D
is the (unique) functor ⊗̂ : D × D → D such that there is a natural isomorphism as depicted
in the following diagram:

D × D

C × C D

C

µH

⊗̂H×H

⊗ H

▶ Remark 42. The functor ⊗̂ is given by applying Lemma 4 to the weak equivalence
H × H : C × C → D × D.
▶ Remark 43. The natural isomorphism is labelled as µH because this natural isomorphism
is precisely the structure we need to have that H is a (strong) tensor-preserving functor.

▶ Lemma 44 (HT_eso). Let E be a univalent category and ⊗E : E × E → E be a functor.
The displayed precomposition functor (Definition 28) µH · (−) with target displayed object ⊗E
(as a displayed object in CatT ) is displayed split essentially surjective. Consequently, the
precomposition functor

(H, µH) · (−) :
∫

CatT ((D, ⊗̂), (E , ⊗E)) →
∫

CatT ((C, ⊗), (E , ⊗E))

is essentially surjective.

Proof. Let G : D → E be a functor and µH·G a natural transformation of type

(H × H) · (G × G) · ⊗E ⇒ ⊗ · H · G .

witnessing that H · G is a lax tensor-preserving functor. We have to construct a natural
transformation witnessing that G is a lax tensor-preserving functor, i. e., we have to define a
natural transformation

µG : (G × G) · ⊗E ⇒ ⊗̂ · G .

Since H × H is a weak equivalence and E is univalent, it suffices to define a natural
transformation of type

(H × H) · (G × G) · ⊗E ⇒ (H × H) · ⊗̂ · G .

which we define as:

D × D E × E

C × C C D E

D × D

G×G

µH·G ⊗EH×H

⊗

H×H

H
(µH)−1

G

⊗̂

For a detailed proof that µH·G is (displayed) isomorphic to the (displayed) composition of
µH and µG, we refer the reader to the formalization. ◀

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor.html#TransportedTensor
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▶ Lemma 45 (HT_ff). Let E be a univalent category and ⊗E : E × E → E be a functor.
The displayed precomposition functor µH · (−) is displayed fully faithful. Consequently, the
precomposition functor (H, µH) · (−) between the tensor-preserving functor categories is fully
faithful.

Proof. It is displayed faithful because the type stating that a natural transformation preserves
a tensor is a mere proposition. In order to show that it is displayed full, notice that we have
to show an equality of morphisms, i. e., a proposition. Therefore, we are able to use that
H × H is essentially surjective which allows us to work with objects in C instead of D which
leads to the result. ◀

▶ Theorem 46 (precomp_tensor_catiso). A category equipped with a tensor admits a Rezk
completion: Let (E , ⊗E) :

∫
CatT . If E is univalent, then

(H, µH) · (−) :
∫

CatT ((D, ⊗̂), (E , ⊗E)) →
∫

CatT ((C, ⊗), (E , ⊗E))

is an isomorphism of categories.

Proof. First notice that both categories are univalent, indeed: since E is univalent, so are
Cat(D, E) and Cat(C, E) and in Section 3, we have proven that the displayed bicategory
CatT |univ is locally univalent, i. e., the displayed hom-categories are univalent. Hence, it
suffices to show that this functor is a weak equivalence, i. e., fully faithful and essentially
surjective. Fully faithfulness can always be concluded if both the functor on the base
categories and the displayed functor are. The total functor is essentially surjective if this
holds on the base and at the displayed level, provided extra information: it suffices that
the base category and the displayed category are univalent. So we conclude the result from
combining the assumption that H is a weak equivalence and lemmas 45 and 44. ◀

▶ Remark 47. The strategy introduced in this section will be repeated in the next section, so
we refer back to this section for the necessary details (if needed).

4.2 The Rezk completion of a category with a tensor and unit
In Section 4.1, we have shown how the structure of a tensor ⊗ on C transports along a weak
equivalence H : C → D to a tensor on a univalent category D. Furthermore, H has the
structure of a strong tensor-preserving functor and that (D, ⊗̂) is universal in the sense that
objects in

∫
CatT admit a Rezk completion.

In this section, we show that the same result holds when we add the choice of an object
to a category, playing the role of the tensorial unit. This construction is trivial, but we will
also discuss how we can conclude that objects in

∫
CatT U admit a Rezk completion.

As before, let H : C → D be a weak equivalence from a category C to a univalent category
D. Let I : C, thus (C, I) :

∫
CatU . Clearly we have (H, IdH I) :

∫
CatU ((C, I), (D, H I)).

To conclude that (D, H I) is universal, we apply the same reasoning as in Section 4.1.
We have to show that for any (E , IE) : CatU with E univalent, the displayed precomposition
functor

IdH I · (−) : CatU (H I, IE) → CatU (I, IE)

is displayed fully faithful and displayed split essentially surjective. We denote Î := (H I) and
ϵH := IdÎ .
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▶ Lemma 48 (HU_eso). The displayed precomposition functor (Definition 28) ϵH · (−)
with target displayed object IE is displayed split essentially surjective. Consequently, the
precomposition functor (H, ϵH) · (−) with target object (E , IE) between unit tensor-preserving
functor categories is essentially surjective.

Proof. It is merely surjective since the witness, expressing that the weak equivalence preserves
the unit, is an identity morphism. ◀

▶ Lemma 49 (HU_ff). The displayed precomposition functor ϵH · (−) is displayed fully
faithful. Consequently, the precomposition functor (H, ϵH) · (−) between the unit-preserving
functor categories is fully faithful.

Proof. It is displayed faithful since the type of 2-cells is a property. The witness expressing
that the weak equivalence preserves the unit is an identity morphism. Hence, it is displayed
full. ◀

Using the exact same reasoning used in Theorem 46, we conclude:

▶ Theorem 50 (precomp_unit_catiso). A category equipped with a unit admits a Rezk
completion: Let (E , IE) :

∫
CatU . If E is univalent, then

(H, ϵH) · (−) :
∫

CatU ((D, Î), (E , IE)) →
∫

CatU ((C, I), (E , IE))

is an isomorphism of categories.

So we have proven that objects in CatT and CatU admit a Rezk completion. From these
results, we conclude that objects in CatT U admit a Rezk completion:

▶ Theorem 51 (precomp_tensorunit_catiso). Let (E , ⊗E , IE) : CatT U . If E is univalent,
then

(H, µH, ϵH) · (−) :
∫

CatT U ((D, ⊗̂, Î), (E , ⊗E , IE)) →
∫

CatT U ((C, ⊗, I), (E , ⊗E , IE))

is an isomorphism of categories, i. e., objects in
∫

CatT U admit a Rezk completion.

Proof. The product of univalent displayed bicategories is again univalent. Thus, both the
domain and codomain of this functor are univalent. Hence, by the same argument as in
Theorem 46, it reduces to proving that the displayed precomposition functor is a displayed
weak equivalence. The displayed precomposition functor is the product of the displayed
precomposition functors of µH resp. ϵH. Since the product of displayed weak equivalences is
again a weak equivalence, the result now follows. ◀

4.3 The Rezk completion of a category with a tensor, unit, unitors and
associator

In this section, we prove that every object in
∫

CatLU (resp.
∫

CatRU and
∫

CatA) has a
Rezk completion.

As above, we let H : C → D be a weak equivalence from a category C to a univalent
category D, and let C be equipped with a tensor ⊗ and a unit I. The lifted tensor on D is
denoted by ⊗̂ and Î := H I. The witness that H preserves the tensor (resp. unit) (strongly)
is denoted by µH (resp. ϵH = IdH I).

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensorUnit.html#HU_eso
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▶ Remark 52. In all the constructions of this section, we use the lifted tensor ⊗̂ and unit
Î. The specific shape of these lifts does not matter; we could state the constructions for
an arbitrary Rezk completion of CatT U . However, by univalence we have uniqueness of the
tensor and unit on D under the proviso that H preserves them both.

Before lifting a left unitor from C to D, we first define a natural isomorphism witnessing
that the weak equivalence preserves tensoring with the unit object (on the left):

▶ Lemma 53 (LiftPreservesPretensor). There is a natural isomorphism H · (Î ⊗̂ −) ⇒
(I ⊗ −) · H.

Proof. This is given by the following composition:

C D

C × C D × D

C D

H

(I,−) (Î,−)
H×H

⊗ ⊗̂

H

µH

where the upper square is given by a trivial equality of functors. ◀

▶ Definition 54 (TransportedLeftUnitor). Let λ be a left unitor on (C, ⊗, I), that is,
(C, ⊗, I, λ) :

∫
CatLU . The lifted left unitor λ̂ on (D, ⊗̂, Î) is the unique natural isomorphism

that maps to the vertical composition of the natural isomorphism (defined in Lemma 53) and
λ ▷ H, under the precomposition functor with H.

An immediate calculation shows:

▶ Lemma 55 (H_plu). H preserves the left unitor.

▶ Theorem 56 (precomp_lunitor_catiso). The objects in
∫

CatLU admit a Rezk comple-
tion:

Let (E , ⊗E , IE , λE) :
∫

CatLU . If E is univalent, then (H, µH, ϵH, pluH) · (−) of type∫
CatLU ((D, ⊗̂, Î, λ̂), (E , ⊗E , IE , λE)) →

∫
CatLU ((C, ⊗, I, λ), (E , ⊗E , IE , λE))

is an isomorphism of categories, where pluH is a witness that H preserves the left unitor (as
provided by Lemma 55).

Proof. As before, it reduces to show that the displayed precomposition functor (Definition 28)
is a displayed weak equivalence. It is displayed fully faithful since the type of 2-cells in
CatLU is the unit type. We now show that it is displayed split essentially surjective. Let
G : D → E be a lax tensor and unit preserving functor such that H · G preserves the left
unitor. We have to show that G also preserves the left unitor. Since we have to show a
proposition, the claim now follows from combining the essential surjectivity of H and then
applying the assumption on H · G. ◀

Completely analogous is the case of right unitor:

▶ Theorem 57 (precomp_runitor_catiso). The objects in
∫

CatRU admit a Rezk comple-
tion.
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In order to prove that every object in
∫

CatA has a Rezk completion, we use an analogous
trick as is used for objects in, e. g.,

∫
CatLU . An associator for (D, ⊗̂) is a natural isomorphism

between functors of type (D × D) × D → D. Since the product of weak equivalences is
again a weak equivalence, such a natural isomorphism corresponds uniquely to a natural
isomorphism between functors of type (C × C) × C → D. Analogous to the constructions of
the left and right unitor, the natural isomorphism (of type (C × C) × C → D) is not given by
α ▷ H as this does not give us the correct type of functors. In the case of the left unitor, we
only had to provide a natural isomorphism to match the domain, but for the associator, we
furthermore need a natural isomorphism to match the codomain.

▶ Theorem 58 (precomp_associator_catiso). The objects in
∫

CatA admit a Rezk com-
pletion.

4.4 The Rezk completion of a monoidal category
In this section, we are able to conclude that the objects in MonCat and MonCatstg admit
a Rezk completion.

In the previous sections, we have lifted all the structure of a monoidal category to a
weakly equivalent univalent category.

However, it still remains to show that the lifted structure (D, ⊗̂, Î, λ̂, ρ̂, α̂) satisfies the
properties of a monoidal category if (C, ⊗, I, λ, ρ, α) does.

▶ Lemma 59 (TransportedTriangleEq, TransportedPentagonEq). The lifted monoidal
structure satisfies the pentagon and triangle equalities: If the triangle (resp. pentagon)
equality holds for (C, ⊗, I, λ, ρ, α), then it also holds for (D, ⊗̂, Î, λ̂, ρ̂, α̂).

▶ Theorem 60 (precomp_monoidal_catiso). Any monoidal category admits a Rezk com-
pletion (considered in the bicategory of lax monoidal functors).

Proof. In Theorem 56, Theorem 57 and Theorem 58 we have shown how the categories∫
CatLU ,

∫
CatRU and

∫
CatA admit a Rezk completion. Hence,

∫
(CatLU ×CatRU ×CatA)

admits a Rezk completion.
Thus, to conclude that the total bicategory of CatP (over

∫
(CatLU × CatRU × CatA))

admits a Rezk completion, it suffices to show that the displayed precomposition functor
with respect to CatP is displayed fully faithful and displayed split essentially surjective.
The displayed hom-categories of CatP are the terminal categories. Hence, the displayed
precomposition functor must be the displayed identity functor. Consequently, this displayed
precomposition functor is a weak equivalence. ◀

▶ Remark 61 (RezkCompletion_monoidal_cat, RezkCompletion_monoidal_functor). As
part of the proof of Theorem 60, we have shown how to transfer a monoidal structure along a
weak equivalence of categories, provided that the target category is univalent. More precisely,
for any monoidal category C, univalent category D, and weak equivalence H : C → D, we
construct a monoidal structure M on D, and a structure of a (strong) monoidal functor on
H with respect to C and M .

Next, we prove that any monoidal category admits a Rezk completion in the bicategory
of strong monoidal functors. Concretely, we show the following theorem:

▶ Theorem 62 (precomp_strongmonoidal_catiso). Let C be a monoidal category and
H : C → D the Rezk completion of C as constructed in Theorem 60. If E is a univalent
monoidal category, then

H · (−) : MonCatstg(D, E) → MonCatstg(C, E)

is an isomorphism of categories.

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_associator_catiso
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Proof. First note that H is indeed strong monoidal by the definition of µH and ϵH. Hence,
the statement is well-defined.

As before, we have to conclude that the displayed precomposition functor (Definition 28)
((µH)−1, (ϵH)−1) · (−) is fully faithful and displayed split essentially surjective.

The displayed precomposition functor is fully faithful since every type of displayed 2-cells
in MonCatstg is the unit type.

The displayed precomposition functor is split essentially surjective since the lift of a
natural isomorphism is a natural isomorphism. ◀

4.5 The Rezk completion of a monoidal category using Day convolution
A concrete implementation of the Rezk completion of a category C is given by restricting the
Yoneda embedding to its full image [2, Thm. 8.5]. It is well-known that any monoidal structure
on C induces a monoidal structure on its category of presheaves [Cop, Set] [8, Prop. 4.1]. The
tensor product of two presheaves F, G is given by the Day convolution F ⊗Day G. Furthermore,
the Day convolution of representable presheaves is again representable, i. e., for any two
objects x, y : C, one can construct a natural isomorphism

C(−, x) ⊗Day C(−, y) ∼= C(−, x ⊗ y) .

Consequently, the Yoneda embedding has the structure of a strong monoidal functor. As one
would expect, the full subcategory of representable presheaves becomes the monoidal Rezk
completion. One way to show this result is to show that the universal property of monoidal
Rezk completion holds. However, we already know that the full subcategory of representable
presheaves has a monoidal structure (induced by the monoidal Rezk completion). Therefore,
it suffices to show that the Rezk monoidal structure is equal to the Day monoidal structure.

Each piece of data of the Rezk monoidal structure is defined using a universal property in
the sense that it is a unique lifting of some functor or natural transformation. For example,
the (lifted) tensor product ⊗̂ is the unique functor satisfying the equation

⊗ ·よ= (よ×よ) · ⊗̂ ,

where よ is the Yoneda embedding restricted to its full image, i. e., the concrete weak
equivalence. Using that a category of presheaves is univalent, the Day tensor product also
satisfies this equation. Hence, the Day tensor product and the lifted tensor coincide. The
lifted unit is by definition equal to the unit of the Day monoidal structure. Analogously, one
can argue that the Day unitors and associator also satisfy the universal property of the lifted
unitors resp. associator.

This shows that, for the concrete implementation of the Rezk completion using represen-
table presheaves, the monoidal Rezk completion is given by the Day convolution.
▶ Remark 63. This section has briefly explained what one needs to do in order to work with
a specific implementation of the Rezk completion of a category. Indeed, Let (C, ⊗, I, λ, ρ, α)
be a monoidal category and a specific univalent category D which is weakly equivalent to C
as witnessed by H : C → D. Furthermore, assume we have a functor ⊗̂ : D × D → D and
natural isomorphisms λ̂, ρ̂ and α̂ which have the types of a left unitor, right unitor and the
associator (w. r. t. ⊗̂ as the tensor and H I as the unit).

Then, in order to show that (D, ⊗̂, H I, λ̂, ρ̂, α̂) is the monoidal Rezk completion, it suffices
to show that the pieces of data satisfy the property of the lifted tensor, lifted left unitor,
lifted right unitor and the lifted associator. In particular, one does not have to show manually
that (D, ⊗̂, H I, λ̂, ρ̂, α̂) is a monoidal category, H becomes a (strong) monoidal functor and
that it satisfies the universal property of the monoidal Rezk completion; this all follows from
the argument above.
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5 Conclusion

We have studied (the bicategory of) monoidal categories in univalent foundations. First,
we showed that the bicategory of univalent monoidal categories is univalent. Second, we
constructed a Rezk completion for monoidal categories; specifically, we lifted the Rezk
completion for categories to the monoidal structure. Our technique also works for lax and
oplax monoidal categories, with minimal modifications. We have not presented this work
here, but the UniMath code is available online.2

The second result provides a blueprint for constructing completion operations for “cate-
gories with structure”. By “structure”, we mean categorical structure such as functors and
natural transformations. Here, the main challenge is to define a suitable notion of signature
that allows us to specify structure on a category. Such a signature should translate into a
suitable “tower” of displayed (bi)categories and come with the necessary boilerplate code for
using it. Work on this topic will be reported elsewhere.
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