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ABSTRACT 4D-scans of dynamic deformable human body parts help researchers have a better understand-
ing of spatiotemporal features. However, reconstructing 4D-scans utilizing multiple asynchronous cameras
encounters two main challenges: 1) finding dynamic correspondences among different frames captured by
each camera at the timestamps of the camera in terms of dynamic feature recognition, and 2) reconstructing
3D-shapes from the combined point clouds captured by different cameras at asynchronous timestamps in
terms of multi-view fusion. Here, we introduce a generic framework able to 1) find and align dynamic features
in the 3D-scans captured by each camera using the nonrigid-iterative-closest-farthest-points algorithm; 2)
synchronize scans captured by asynchronous cameras through a novel ADGC-LSTM-based-network capable
of aligning 3D-scans captured by different cameras to the timeline of a specific camera; and 3) register a
high-quality template to synchronized scans at each timestamp to form a high-quality 3D-mesh model using
a non-rigid registration method. With a newly developed 4D-foot-scanner, we validate the framework and
create the first open-access data-set, namely the 4D-feet. It includes 4D-shapes (15 fps) of the right and left
feet of 58 participants (116 feet including 5147 3D-frames), covering significant phases of the gait cycle. The
results demonstrate the effectiveness of the proposed framework, especially in synchronizing asynchronous
4D-scans.

INDEX TERMS 4D foot scanner, dynamic feature recognition, synchronized scans, LSTM network, non-
rigid registration.

I. INTRODUCTION
Human movements often result in significant shape deforma-
tions of various body parts. The emergence and advancement
of 4D scanning, capable of capturing 3D geometric shapes
over time, have enhanced our understanding of this dy-
namic anthropometry [4], [8] and human body deformation
while performing different types of activities. These insights
can be valuable in a wide range of applications [36], [44].

Outcomes of research on 4D scans can be applied in many
areas, e.g. building virtual avatars, performing (virtual) er-
gonomics evaluations, developing computer games, designing
personal protective equipment, workwear, sportswear, and
other practical garments [3].

To acquire 4D scans, multiple (depth) cameras are often
used, a setup that presents several complications that need
to be addressed for reliable results. These challenges include
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FIGURE 1. The TU Delft 4D foot Scanner with six Microsoft Azure Kinect
DK cameras to capture the 4D foot shape.

temporal synchronization of captured frames to account for
the asynchrony in data capture, accurate 3D space alignment,
establishing feature correspondences across frames taken by
different cameras and at different times, effectively fusing the
data from multiple sources, and ensuring data consistency and
accuracy throughout the reconstruction process. One solution
to overcome this challenge may involve with hardware syn-
chronisation approach; however, it is challenging to balance
the needed resolutions of the images, the needed time dura-
tion, the buffer of the depth cameras, the data transfer rate,
the computing power, and the storage [2]. For instance, it is
difficult to balance the needed resolutions of the images, the
needed time duration, the buffer of the depth cameras, the data
transfer rate, the computing power, and the storage [2]. For
instance, to capture 640 × 576 depth images by 6 cameras at
30 frames per second (fps), the needed bandwidth is about
2 Gb/s. This poses challenges in the design of a 4D scan-
ning system, especially for a low-cost system. In addition,
“dropped frames” are frequently observed in the captured
data, mainly due to that the huge amount of to-be-transferred
data leads to a nonlinear accumulative delay regarding each
camera [30]. Relevant literature on 3D reconstruction from
asynchronise multi-views studied in [20], [29], [31] show the
importance of a general time-synchroniser method for collect-
ing any 4D data-set through multiple cameras. In a practical
case of using 6 Azure Kinect DK cameras for 15 fps 4D
scanning, as in Fig. 1, even when all cameras are hardware
synchronized, we found that there are on average 2 ms delays
for each frame acquired by those cameras in a 3-seconds
scanning session. Note that the delay is accumulative, i.e. at
the beginning of the scanning all the cameras’ outputs are
well-aligned based on their clocks; however, the longer the
duration of the scanning is, the more the delay accrues, result-
ing in a divergence of the geometry in each frame regarding
the timestamps.

Therefore, a robust software synchronization algorithm is
necessary to mitigate the mentioned complications. In the con-
text of scanning human body (parts), a potential approach is to
leverage the prior knowledge of human actions and the associ-
ated dynamic features to synchronize the captured frames. In
the past decades, recognizing human dynamics features has

attracted a lot of attention in the field of computer vision.
The developed 3D human action recognition methods can be
roughly classified as the RGB video-based approaches [54],
[56], skeleton-based methods [39], [40], depth image-based
methods [61], [63] and the point cloud-based method [58].
Although the existing methods are proven to be effective in
many applications, e.g., video surveillance, human-computer
interaction, sports analysis [36], [44], most of them are limited
to employ (depth) images as the input, and the recognized
3D actions as the output. Extracting point-to-point correspon-
dences among sequential point clouds from multiple views
e.g., cameras, is rarely investigated [27], [38], [58] with core
study on non-rigid tracking using depth cameras [25]. In this
regard, a key constraint arises from the inherent limitation
of a single-view range sensor, which hinders the acquisition
of data in occluded regions, thereby yielding incomplete ob-
servations of 3D environments [25]. Consequently, prevalent
non-rigid motion tracking techniques are confined to process-
ing only the visible portions of a scene. Nevertheless, the
imperative to deduce comprehensive motion patterns from
partial observations is crucial for various high-level tasks.
Thus, regarding 3D human action recognition, there are two
fundamental challenges: 1) establishing the dynamic con-
nectivity among asynchronous images (scans) captured by
different cameras in terms of dynamic feature synchronization
i.e. temporal correspondence, and 2) extracting meaningful
dynamic features from the combined camera views for accu-
rate analysis of deformation, i.e. multi-view fusion.

In this article, using a newly developed low-cost 4D foot
scanner based on 6 Microsoft Azure Kinect DK depth cam-
eras, we developed a framework to synchronize and register
the captured asynchronous images on significant phases of the
gait cycle, resulting in a new open-access 4D Feet data-set of
58 subjects (116 feet). Our main contributions are:
� Introducing a framework to synchronized spatiotemporal

asynchronous scans captured from multiple cameras and
to track a point’s correspondences in all the frames to
extract dynamic features of each vertex e.g, velocity;

� Establishing an adaptive correspondence point selection
approach based on a nonrigid-Iterative-Closest-Farthest-
Points (ICFP) algorithm between the 3D frames of one
camera guarantees convergence to highest probability of
finding useful points, known as “Synchronised Graph”.

� Developing a novel Attention Enhanced Dynamic-
Synchronised Graph Convolutional (ADGC)-LSTM net-
work to synchronize the dynamic features extracted from
different cameras besides existing algorithms;

� Presenting the first 4D mesh-morphed walking foot
open-access data-set (4D Feet), as a validation of the
proposed framework.

II. RELATED WORK
A. SKELETON-AND-DEPTH-BASED ACTION RECOGNITION
The skeleton-based approach and the depth-based approach
are often used in recognizing dynamic features of human
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actions based on prior knowledge [27]. Regarding skeleton-
based 3D action recognition, sequence-based approaches,
and graph-based approaches are often used. Via describing
the skeleton as a sequence of joints, the sequence-based
approaches [39], [40] employed the RNN (Recurrent Neu-
ral Network) based methods to extract temporal connec-
tivity among those featured points. The graph-based ap-
proaches [23], [64] often utilized GCN (Graph Convolution
Network) to exploit spatiotemporal connectivity by consider-
ing the skeletal structure as a graph, where the featured points
are considered as the points of the graph. Regarding depth-
based 3D action recognition, the available methods [33], [55]
mainly use the visualization features through 2.5D depth
maps. Although both approaches are able to give a reason-
ably good estimation of the 3D actions that the target subject
performed, it is difficult to form a generic framework to fully
extract dynamic features based on a few featured points of the
moving object, which may cause a reduction in the perfor-
mance of 3D action recognition.

B. 3D POINT CLOUDS ACTION RECOGNITION
Deep learning tools play a key role in extracting human ac-
tions via 3D point clouds, which is widely employed in recent
studies [9], [12], [13], [16], [28], [37], [51], [57], [60]. Among
them, C3D [51] utilizes a deep 3D CNN trained on extensive
video datasets for spatial-temporal feature acquisition. I3D [9]
utilizes 3D CNN for acquiring spatial-temporal features ef-
fectively. X3D [12] demonstrates comparable efficiency and
efficacy in recognizing actions in videos. SlowFast [13] rep-
resents a 3D architecture integrating both slow and fast
pathways to capture motion details. PointNet [37] employs a
set of MLPs on each of the individual vertices to identify the
unique features. Next, it utilizes a max-pooling layer to gen-
erate the global identifier for each point cloud which does not
use any geometry-based connectivity of the local neighboring
structure. Contrary to these single-frame-based point cloud
analysis approaches, in this article, we present a simple and
effective framework for time series 3D shape reconstruction
and action recognition, in which we explicitly use temporal
information in the motion stream to identify dynamic features.

C. NON-RIGID TRACKING USING DEPTH CAMERAS
Various techniques exist for tracking non-rigid objects, em-
ploying different adaptations of the Non-rigid Iterative Closest
Point (N-ICP) algorithm [1], [45], [46], [47], [49], [66]. In
this approach, the iterative minimization of point-to-point
or point-to-plane distances for corresponding points is a
common practice. To address issues like uncontrolled de-
formations and motion ambiguities, deformation regularizers
such as As-Rigid-As Possible (ARAP) [43] or embedded
deformation are often incorporated into the N-ICP opti-
mization process. DynamicFusion [32] was among the early
real-time methods that simultaneously tracked and recon-
structed non-rigid surfaces. Building upon DynamicFusion,

VolumeDeform [19] enhanced tracking robustness by in-
troducing sparse SIFT feature matches. DeepDeform [7]
leverages deep learning to replace classical feature matching
with CNN-based correspondence matching. Li et al. [24] took
a step further by differentiating through the N-ICP algorithm,
yielding a dense feature matching term. Neural Non-Rigid
Tracking [6] shares a similar approach but emphasizes end-to-
end robust correspondence estimation. For handling topology
changes, KillingFusion [41] directly estimates the motion
field based on a pair of Signed Distance Fields (SDF).
While existing methodologies predominantly focus on the
visible closest features shared in all scenes, our approach
takes a stride beyond by converging to highest probability
of finding useful features that are not necessarily the closets
ones.

III. MATERIALS AND DATA COLLECTION
A 4D foot scanner was developed at TU Delft [22] for ac-
quiring dynamic foot shape data. Fig. 1 presents the next
generation of the 4D foot scanner which utilizes six Microsoft
Azure Kinect DK cameras to capture the 4D foot shapes,
where four cameras are installed on the top (id 1, 2, 3, and
4) and two cameras are at the bottom (id 5, and 6). To adapt
to the minimal focal distance (∼ 50 cm) of the cameras at the
bottom, two first-surface mirrors (id 7 and 8) were placed on
the floor to “fold” the optical path for lowering the height of
the scanner for a better user experience. A 9 mm thickness
plexglass (id 9) was installed on the footpath to enable cap-
turing the shape of the bottom of the foot while a subject is
walking.

The spatial positions and orientations of all cameras were
optimized to maximize the resolutions of the captured scans
and the intersections of effective view volumes of 6 cam-
eras [22]. To transform the captured data to a global coor-
dinate system, we used a two-sided checkerboard shown in
Fig. 1, and the code in [15] is utilized.

IV. METHODOLOGY
In this section, we present the overall workflow of our pro-
posed framework for synchronizing captured frames from
different cameras, as depicted in Fig. 2. The first step in-
volves establishing correspondences for dynamic features.
After scanning, each camera generates a set of time series
3D point clouds, and initially, there are no logical corre-
spondences among them. To address this issue, we have
developed a novel extended version of the Nonrigid Itera-
tive Closest-Farthest Points (ICFP) scheme to establish these
correspondences. Subsequently, after aligning the data from
all cameras, we have designed a new network called ADGC-
LSTM to synchronize the aligned data from different cameras
with each other. Finally, we introduce the mesh registration
method to along synchronized scans of different cameras at
each timestamp. We provide detailed information about these
algorithms in the subsequent sections.
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FIGURE 2. The overall proposed workflow for time synchronization. The
framework includes establishing correspondence for dynamic features,
synchronizing correspondences from different cameras, and mesh
registration of them.

A. CONSTRUCTION OF THE DYNAMIC-SYNCHRONISED
GRAPH BASED ON THE DYNAMIC POINTS
After scanning, each camera gives a set of time series 3D point
clouds, and there are no logical correspondences among them.
This prevents us from explain any dynamic features between
the frames as the correspondence of points from one frame
to the other frame, known as dynamic points, does not exist.
Fig. 3 (the first row of each sub-figure) presents this “lack of
correspondence”, where we selected two points (highlighted
with red and green colors) in the first frame of each camera,
and tracked these points in the rest frames using point IDs
in the acquired point clouds. To be able to have meaningful
dynamic features between frames of a camera needed as the
key nodes used for the ADGC-LSTM network in Section 2,
we established the correspondences of points using a novel
extended version of the Nonrigid Iterative Closest-Farthest
Points (ICFP) scheme [48] which guarantees to find proper
corresponded points in a limited number of iterations from a
Source mesh (S) to a Target mesh (T).

In the process of finding correspondences from each point
on T to S, initially, each point on S may have multiple cor-
responding points on the T. In this case, we logically select
either the closest or the farthest point. In each iteration of the
registration process, a boundary distance (l) in (1) is defined
as the corresponding distance matrix from T to S.

l = m + ζσ (1)

FIGURE 3. (a) to (f) show data from 6 cameras and for each camera, Top:
Raw data; Bottom: Dynamic-Synchronised Graph as the key nodes.

where m and σ are the mean and standard deviation of the
counted distances for the correspondences from T to S, re-
spectively. ζ is the probability indicator in [48] regulates the
closest-farthest point selection and has an acceptable range in
[0, 3.09] refer to Table 3 of the book in [14]. In [48], the ζ

is a predefined constant variable that is numerically defined
based on registering a source foot on only one target foot to
minimise a concave parabolic cost function (J) including two
terms of percentage of mean mesh quality loss and percentage
of the target vertices involved in the nonrigid registration.
However, there is no guarantee that the selected ζ results in
the minimization of the cost function for any other target foot.
Thus, here we extend the corresponding selection criterion by
designing an adaptive ζ finds the minimum cost function by
iterations and can be implemented on any other registering
shapes. Assuming J from [48]

minJ =
∑ |Q̄ f inal − Q̄0|

Q̄0
+ NT

in

NT
tot

(2)

where Q̄ f inal and Q̄0 are the average of mesh quality for
all vertices on the source mesh before and after registration
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FIGURE 4. Assumed J − ζ shape.

respectively. Also, NT
in is the number of vertices from target

employed as corresponding points during the nonrigid regis-
tration process, and NT

tot is the total number of vertices on the
target mesh.

1) ASSUMPTION
For the design of the estimator, we formulate a parabolic J −
ζ relationship. In particular, we employ the following function
describing the J − ζ relationship, also depicted in Fig. 4,

J = aζ 2 + bζ + c, (3)

where a ∈ R>0 and b ∈ R>0 are unknown parameters, and
C is equal to J (0) defined as initial condition of J which is
assumed known; function (3) has a minimum point (ζ �, J�) as

ζ � = −b

2a
; J� = −b2

4a
+ J (0). (4)

2) ADAPTIVE ζ DESIGN
By replacing the nominal values of J� and ζ � in (3), the error
of J from J� is

J − J� = a
(
ζ 2 − ζ �2

)
+ b

(
ζ − ζ �

)
. (5)

Now, we introduce the integral error states

EJ =
∫ (

J − J�
)

dt; Eζ =
∫ (

ζ − ζ �
)

dt, (6)

allowing to define the integral error system

ĖJ = J − J�; Ėζ = ζ − ζ �, (7)

that can be reformulated as

ẋ = Beue + re, (8)

where

x =
[∫

J dt∫
ζ dt

]
, ue =

[
u1

u2

]
=
[
ζ 2 − ζ �2

ζ − ζ �

]
(9)

Be =
[

a b
0 1

]
, re =

[
J�

ζ �

]
. (10)

We propose controlling system (8) using MRAC [42], which
let us simultaneously identify the unknown parameters a and
b (both appearing in Be) and minimise the tracking error. In
order to proceed, we introduce the feedback control law (see,
e.g., Chapter 1 in [53])

ue = −�̂(x − re), (11)

where �̂ is an unknown matrix that needs to be estimated. We
then introduce a model reference

ẋM = −AMxM + BMre, (12)

where AM is designed as a positive definite matrix and BM is
an arbitrarily defined matrix in which they guarantee stable
model reference dynamics. Let us define the error between
the integral states and the model reference e = x − xM , whose
dynamics are defined as (see [42])

ė = ẋ − ẋM

= Be
(−�̂x + �̂re

)+ re + AMxM − BMre + AMx − AMx

= − AM (x − xM) + Be
(−�̂ + AM

)
x + Be

(
�̂ − BM − I

Be

)
re

= − AMe + Be
(−�̂ + AM

)
x + Be

(
�̂ − BM − I

Be

)
re

(13)

Knowing v =
[

x
re

]
∈ R

4×1, the error dynamic system is

e = −AMe + [−Be�̂ + BeAM Be�̂ − BM + I
]
v

= −AMe + φ̃v (14)

where φ̃ = [−Be�̂ + BeAM Be�̂ − BM + I] ∈ R
2×4. We

assume that φ̃ = φ̂ − φ, where φ̂ ∈ R
2×4 is an estimating

matrix, namely φ̂ = [−Be�̂ Be�̂] and φ ∈ R
2×4 is the

unknown constant matrix, namely φ = [−BeAM BM − I]
defines φ̇ = 02×4. Thus,

˙̃φ = ˙̂φ. (15)

We can observe that the error dynamic of (14) is bounded
over time if φ̃ is bounded, and the error is asymptotically
stable if φ̃ converges to zero, considering that −AM is selected
as a stable matrix with negative eigenvalues, while BM and Be

are constant matrices.
In order to study the convergence of φ̃ to zero, a Lyapunov

function V ∈ R
2×2 is employed as follows:

V = ePe� + φ̃�−1φ̃�, (16)

where P ∈ R>0 and � ∈ R
4×4
>0 imply that V > 0. In order to

guarantee stability, it is sufficient if V̇ ≤ 0, then

dV
dt

= ėPe� + eP ė� + ˙̃φ�−1φ̃� + φ̃�−1 ˙̃φ�. (17)

By replacing ė from (14), and considering (15), we obtain

dV
dt

= −AMePe� − ePe�A�
M + 2ePv�φ̃� + 2 ˙̂φ�−1φ̃�.

(18)

As AM is positive definite, −AMePe� − ePe�A�
M is negative

semi-definite matrix, thus dV
dt ≤ 0 if and only if

2ePv�φ̃ + 2 ˙̂φ�−1φ̃� = 0, (19)
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which is a sufficient condition for stability where the changes
in the estimating unknown matrix φ̂ is

˙̂φ = −ePv��, (20)

where � is known as the growth rate of the estimation law.
Using (20), the instruction of φ and φ̂, and φ̃ → 0, we may
conclude that �̂ → AM , and Be → (BM − I )�̂−1, which re-

sults in ζ̂ → ζ � = −Be1,2
2Be1,1

from (4), and (10). Thus, having

ζ̂ → ζ � and for a point on S, if a number of points on T

are selected, we consider the point with the largest distance
among the selection, if all the distance for the population is
greater than the l . Otherwise, we select the closest point as
the corresponding point to the point on S. The ICFP scheme
was used to find the available correspondences for all frames
captured by a single camera e.g. top-rows of the sub-figures
in Fig. 3. In the implementation, we use the ICFP to match
each consequent pair of frames (e.g. ith frame and (i + 1)th

frame), starting from the first frame to the last frame, e.g.
for 100 captured frames, 99 pairs were used to generate the
correspondences matrix. Apparently, not all points in a frame
have correspondences in the neighboring frames, as a new
frame may not be able to capture all the points captured in
the previous frame e.g. from comparing Fig. 3(d)-top with
Fig. 3(d)-bottom after the 42th frame (F42) the density of
Dynamic-Synchronised Graph is reduced. Thus, some frames
with very low density point-clouds are skipped due to the lack
of correspondences.

B. TIME SYNCHRONIZATION
After establishing the correspondences of dynamic features
in previous section, an end-to-end network based on ADGC-
LSTM for points-network-based action behavior recognition,
is explained provided to time synchronization. At first, we
review the general architecture of the network and then in
the next subsection provide our suggested ADGC-LSTM net-
work.

1) ADGC-LSTM NETWORK
In the analysis of sequential geometric shapes, many studies
suggested that the LSTM, as a transformation of RNN, has a
strong capability to understand long-term time dependency of
the phenomenons e.g., understanding temporal dynamics of
limited points-network (skeleton) sequences. However, using
LSTM alone is difficult for incorporating spatial relations
in the limited points-network-based action recognition. To
this end, AGC-LSTM [40], as an extension of LSTM, was
developed to incorporate not only unique features of spatial
configuration and temporal dynamics but also the coincident
relationships between the spatial domain and temporal do-
main.

In the process of capturing moving objects (4D scanning),
the requirements of the needed movement ranges and the
limited views of the cameras are always contradictory fac-
tors. This often results in a compromise in the design of
the 4D scanner, either with a very small working envelope

FIGURE 5. The structure. (a) One ADGC-LSTM layer; (b) One ADGC-LSTM
unit adapted from [40].

with limited movements or with sparse points in some of
the captured point clouds. Commercial systems may employ
more camera modules in 4D scanning; however, at the cost
of investment and increased complexity. As the human move-
ments are part of nature and cannot be constrained in a limited
range, we target at building correspondences between/among
sparse point clouds. Therefore the principles of the graph
convolution model which has been broadly employed in se-
quential data with limited points-network nodes were adopted.
Establishing the graph model plays a fundamental role in
the graph convolution algorithm. Available graph convolution
models e.g, AGC-LSTM, have several limitations for example
using single graph structures, illed-correspondences among
points, and inadequate discrimination of dissimilar actions.
Here we develop a graphic model according to the Dynamic-
Synchronised Graph based on the dynamic points, aiming at
generating more sparse dynamic features to enhance the capa-
bility of the AGC-LSTM model in classifying spatiotemporal
features and improve the precision of the action recognitions.
The proposed novel method presented here is named Atten-
tion Enhanced Dynamic-Synchronized Graph Convolutional
(ADGC)-LSTM network. The details of the method are pre-
sented below.

Following the structure of LSTM, the ADGC-LSTM in-
cludes three gates: the input gate it , forgetting gate ft , and
output gate ot . The input Xt , hidden state Ht , and cell memory
Ct are graph structure data, and the graph structure is gener-
ated by the ICFP (Nonrigid Iterative Closest-Farthest Points)
algorithm explained in Section IV-A. The graph convolution
operator in the ADGC-LSTM, cell memory Ct , and hidden
state Ht can be used to extract temporal dynamics, and include
spatial structure information. Fig. 5(a) describes the structure
of an ADGC-LSTM layer. Fig. 5(b) describes the structure of
the ADGC-LSTM unit. Equation (21) describes the functions
of the ADGC-LSTM unit.

it = σ (Wxi � gXt + Whi � gHt−1 + bi )

ft = σ
(
Wx f � gXt + Wh f � gHt−1 + b f

)
ot = σ (Wxo � gXt + Who � gHt−1 + bo)

ut = tanh (Wxc � gXt + Whc � gHt−1 + bc)

Ct = ft � Ct−1 + it � ut
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FIGURE 6. Illustration of spatial attention mechanism principal adapted
from [40].

Ĥt = ot � tanh(Ct )

Ht = fatt
(
Ĥt
)+ Ĥt (21)

where �g defines the graph convolution operator and � defines
the Hadamard product. σ (.) denotes the sigmoid activation
function. ut denotes the modulated input. Ĥt explains an in-
termediate hidden state. Wxi � gXt defines a graph convolution
of Xt with Wxi. The used graph convolution is the same as
the graph convolution employed for the Graph Convolutional
Neural (GCN) network in [62] with K number of labels. fatt (.)
is an attention network that can select the diverse information
of key nodes. The output Ht reinforces the information of key
nodes, without neglecting the information of non-focus nodes,
aiming at better integrity of spatial information.

The ADGC-LSTM network logically insists on key nodes
by using a soft attention mechanism that automatically quan-
tifies the emphasis level of the key nodes. The importance of
the spatial attention network is depicted in Fig. 6. The inter-
mediate hidden state (Ĥt ) of ADGC-LSTM contains persistent
spatial structure information and temporal dynamics. The
state practically improves the selection of the key nodes pro-
cedure. In order to guarantee that independent degree weights
are established and reinforce the significance of dissimilar
nodes for dissimilar types of actions, we employed a query
feature as:

qt = relu

(
N∑

i=1

W Ĥti

)
(22)

where W defines the trainable parameter matrix, and N is the
number of nodes in the graph. Thus the attention scores of all
nodes would be specified as:

αt = sigmoid
(
Us tanh

(
WhĤt + Wqqt + bs

)+ bu
)

(23)

where αt = (αt1, αt2 , . . . , αtN ), and Us, Wh, and Wq are the
trainable matrices. bs and bu are the bias. A non-linear func-
tion sigmoid is employed regarding the probability of selected
key joints. The hidden state Hti of node vti is considered as
(1 + αti )Ĥti . The attention enhanced hidden state Ht is con-
sidered as an input for the next ADGC-LSTM layer. In the
final layer of the ADGC-LSTM network, the accumulation of
all node features is classified as a global feature F g

t , and the
weighted sum of focused nodes is classified as a local feature

F l
t :

F g
t =

N∑
i=1

Hti ; F l
t =

N∑
i=1

αti Ĥti . (24)

For Graph Model Based on Human feet dynamic points,
firstly a linear layer and LSTM layer were employed to
convert the 3D coordinate of each key node into a high-
dimensional feature space regarding the key node-network
sequence. The preliminary linear layer maps the 3D coordi-
nates onto a 256-dimensional vector, as the geometric features
Pt , i.e., Pti defines the geometry feature of key node i. As it
includes only geometry information, Pti is effective to proceed
with the learning process regarding spatial structure features
in graph models. The differential feature Vti between two
sequential frames, facilitates the dynamic feature understand-
ing used to train the ADGC-LSTM. The sequential group of
features is able to explain a more sparse domain of feature
information better, while the differential of the features is
more sensitive to the changes of the feature vectors. Thus, the
LSTM layer was utilized to avoid having unnecessary sen-
sitivity between the sequential feature groups. Equation (25)
presents this proposition.

Eti = flstm (concat (Pti,Vti ))

= flstm
(
concat

(
Pti, P(t−1)i

))
(25)

where Eti is the augmented featured of key node i at time t .
Finally, the global feature F g

t and local features F l
t at each

timestamp were converted to scores og
t and ol

t of each class.
According to (21), the predicted probability of the ith class
can be obtained as:

ŷt i = eoti∑C
j=1 eoti

, i = 1, . . . ,C (26)

In the training process, taking into account the hidden state
of each time interval, the ADGC-LSTM includes short-term
dynamics and the loss function with the structure in (27),
extracted to the train model as:

L = −
T3∑

t=1

C∑
i=1

yilogŷg
t i −

T3∑
t=1

C∑
i=1

yilogŷl
t i

+ λ̄

3∑
j=1

N∑
n=1

(
1 −

∑Tj
t=1 αtn j

Tj

)2

+ β̄

3∑
j=1

1

Tj

Tj∑
t=1

(
N∑

n=1

αtn j

)2

(27)

where y = (y1, . . . , yc) is the ground-truth label. Tj denotes
the number of time intervals on the jth ADGC-LSTM layer.
The third term is considered to emphasize equally to variation
of featured points. The final term is to restrict the number of
interested nodes. λ̄ and β̄ are weight decaying coefficients. We
performed thorough parameter adjustment during the design
process of our ADGC-LSTM network in order to optimize its
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FIGURE 7. Hierarchical learning-synchronization process.

performance. The number of layers, units per layer, learning
rate, and dropout rate were among the hyperparameter combi-
nations that we experimented with Section V-C. By applying
this iterative process, we identified that a network architecture
comprising three ADGC-LSTM layers with 512 units each, a
learning rate of 0.001, and dropout regularization consistently
outperformed other configurations on our validation set. This
choice was further supported by our review of previous stud-
ies, which indicated that similar architectures had achieved
promising results in related tasks e.g., [40].

2) ADGC-LSTM NETWORK FOR 4D FOOT SCANNING
To synchronize the captured frames between each pair of
cameras, we use the generated Dynamic-Synchronised Graph
of each camera. We use one camera’s Dynamic-Synchronised
Graph as the supervisor to train our ADGC-LSTM Network
and the other one for validation. In this case, we use a hierar-
chical learning process to have the maximum overlap between
cameras with the shown framework in Fig. 7. In the figure,
firstly we synchronize Camera 2 with Camera 1 (where the
corresponding frames of Camera 2 to Camera 1 is F2−1) and
name the overall point cloud as Camera 12 (Camera 1 with
synchronized Camera 2). Then synchronize Camera 3 with
Camera 12 (with frame set of F3−12) and name it as Camera
123. Then we continue with Camera 4, Camera 5, and finally
Camera 6, to have all the cameras synchronized based on
Camera 1.

C. MESH REGISTRATION
Based on the established correspondences, a cost function
based on Tajdari et al. [47] is defined for registering meshed at
each time step. Tajdari et al. [47] proposed the non-rigid reg-
istration formulation as a combination of distance (W, D,U ),
stiffness (M, G), and semi-curvature (Wc, Ac, Bc) terms sum-
marised in the following formula

E (X ) =
∥∥∥∥∥∥
⎡
⎣αM ⊗ G

W D
βWcAc

⎤
⎦X −

⎡
⎣ 0

WU
βWcBc

⎤
⎦
∥∥∥∥∥∥

2

F

= ‖AX − B‖2
F (28)

where, The sparse matrix D is formed to facilitate the
transformation of the source vertices with the individual trans-
formations contained in X via matrix multiplication, and
denoted as D = diag(vT

1 , vT
2 , . . . , vT

n ), where vi ∈ S and i =
1, . . ., n, and n is the number of vertices on the S. W is
a diagonal matrix consisting of weights wi. α is the stiff-
ness constraint. To regularise the deformation, an additional
stiffness term is introduced. Using the Frobenius norm ‖.‖F ,
the stiffness term penalizes the difference of the transforma-
tions of neighboring vertices, through a weighting matrix G =
diag(1, 1, 1, γ ). During the deformation, γ is a parameter to
stress differences in the skew and rotational part against the
translation part of the deformation. The value of γ can be
specified based on data units and the types of deformation [1].
The node-arc incidence matrix M (e.g. Dekker [11]) of the
template mesh topology is employed to convert the stiffness
term into the matrix form. As the matrix is fixed for directed
graphs, the construction is one row for each edge of the
mesh and one column per vertex. To establish the node-arc
incidence matrix of the source topology, the indices (i.e. the
subscripts) of edges and vertices are addressed, for any edge
of r which is connected to vertices (i, j), in rth row of M, and
the nonzero entries are Mri = −1 and Mr j = 1.

V. EXPERIMENT SETUP
A. DATA-SET
1) OUR DATA-SET
Using the proposed 4D scanner and the novel framework, we
tried to build an open-access data-set of 4D feet data regarding
significant phases of the gait cycle such as initial contact,
foot flat, midstance, heel lift, and toe-off. An experiment was
designed and approved by the local human research ethical
committee. In the experiment, after a brief explanation, par-
ticipants first read and signed the consent forms. Subjects
under 18 had their consent forms signed by their parents/legal
guardians. Then each subject was guided to walk through the
glass bridge with his/her bare feet twice regarding the left
and the right feet, respectively. Both feet of 59 subjects (26
females (♀) and 33 males (♂)) were scanned while the data
of participant 53 was not saved and was excluded from the
data-set, resulting in a data-set with 58 subjects. Among them,
55 subjects are right-handed and the rest are left-handed. The
age of the population ranges from 6 to 50 years old where
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TABLE 1. The Anthropometric Data

the mean age is 24 for females (♀) and 26.2 for males (♂).
Their normal shoe sizes range from 32 to 46 (European sizes,
20-29.3 CM). To be more inclusive and address the diversity
of the population, we invited subjects from different countries
such as The Netherlands, Belgium, Italy, Spain, Latvia, Slove-
nia, Swaziland, Turkey, Iran, India, Thai, China, Japan, Costa
Rica, Mexico, Cameroon, Nigeria. The anthropometric data
of the population can be found in Table 1.

2) DATA-SET FOR REGISTRATION
In the experiment, both the right and the left feet shapes
in data-set number 25 in the SHREC’14 data-set [35] were
selected as the source surface. Before the experiment, the
meshes of both feet were pre-processed for a more uniform
mesh using ACVD, a freely available software provided by
Valette et al. [52]. The acquired two meshes, each has 5000
vertices, were used as the inputs of the experiment as the
source meshes for the nonrigid registration regarding the left
and the right foot, respectively.

B. METHODS FOR COMPARISON
We compare the proposed methods in the framework with the
following methods with similar state-of-the-art [17]:
� ARIMA [59]: Auto-Regressive Integrated Moving Av-

erage method is one of the well-known methods to
anticipate the future values in a time sequential data-set.

� VAR [65]: Vector Auto-Regressive finds the pairwise
connectivity between time-sequential data-sets.

� LSTM [18]: Long-Short Term Memory network, is a
variant of RNN network.

� GRU [10]: Gated Recurrent Unit network, is a specific
RNN network.

� STGCN [62]: A Spatial-Temporal Graph Convolution
model is developed based on automatic learning of both
the spatial and temporal patterns.

� GeoMAN [26]: A multi-level attention-based RNN
model aimed for the geo-sensory time sequential antici-
pation problem.

Root mean square error (RMSE) of the geometry based on
closest points is used as the metric.

C. ADGC-LSTM PARAMETERS’ CONFIGURATION
In the experiments, a fixed length of T = 40 is used in (27)
from each graph sequence as the input. Regarding the ADGC-
LSTM, we assumed the neighbor set of each node includes
only nodes directly connected with itself. Regarding a fair
comparison with ST-GCN [62], the graph labeling function
in ADGC-LSTM divides the neighbor set into K = 3 subsets

TABLE 2. RMSE Results of the Comparison Based on Closest Points
Geometry Distance (CPGD), and Percent of Improvement (PI) Comparing to
the Raw Data, for the Left and Right Foot

according to [62]. In the training process, the Adam opti-
mizer [21] is employed to optimize the network. Dropout with
a probability of 0.5 is employed to prevent over-fitting on each
participant’s dataset. The parameters of λ̄ and β̄ are set to
0.01 and 0.001, respectively. We set the initial learning rate to
0.0005 which is reduced in every 15 epochs by multiplying 0.1
to the learning rate. In addition, we discretize the parameter

estimation formula in (20) by considering ˙̂φ = φ̂(k+1)−φ̂(k)
�k ,

k ∈ Z≥0; then, knowing that �k = 1 as k is a sequentially
increasing index (the index of intervals in the registration
process), the estimation rule (20) turns into

φ̂(k + 1) = φ̂(k) − e(k)Pv�(k)�, (29)

where we assumed � = 0.8I4×4, and P = 1. Regarding the
used mesh registration method in Section IV-C, we use the
same parameter values in [47] regarding (28).

VI. RESULTS
A. MOTION SYNCHRONISATION
To evaluate the effectiveness of the synchronization, we de-
veloped a K-fold-like scheme where: 1) we used the mean
Closest Points Geometry Distance (CPGD) [1] values be-
tween adjacent point clouds as the metric and 2) for each
camera, we compared its synchronized scans to the merged
results of other 5 cameras at each timestamp. That is, in the
ith frame and after synchronization with each of the afore-
mentioned methods in Section V-B, we exclude the jth camera
points from the complete foot and calculate the CPGD of the
camera jth points with the remaining points. We repeat this
process for all other cameras and the average values of errors
are presented in Table 2. According to the table, our proposed
method outperforms all the other methods for the both the left
and right feet in the data-sets.

According to Table 2 and Fig. 8, one can be seen is that
generally the output of the non-deep learning methods e.g.,
ARIMA and VAR, demonstrate a higher error than the deep
learning methods e.g., LSTM, GRU, STGCN, GeoMAN. This
is investigated numerically and the results are presented in
Table 2, which shows that the deep-learning methods could
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FIGURE 8. Results of time synchronisation with different methods.

averagely improve the performance for about 80% in terms
of PI, revealing the limited abilities of the non-deep-learning
methods to tackle non-linearity and complexity in time series
analysis. Among the deep-learning methods, the models that
simultaneously consider temporal and spatial correlations,
e.g. STGCN, GeoMAN, and the proposed method, outper-
form other deep-learning-based methods including LSTM
and GRU for about 11% in terms of PI. Where, GeoMAN
slightly outperforms STGCN in terms of PI, defining that
the multi-level attention mechanisms employed in GeoMAN
enhance finding the correlation among dynamic features of the
feet. Our ADGC-LSTM network, achieved better results than
other included state-of-the-art methods, confirming the perfor-
mance of the proposed method in describing spatial-temporal
features of the walking foot.

B. ESTABLISHING REGISTRATION-BASED DATA-SET
Through the explained method in Section IV-C, we register
the synchronised frames in Section V-A2 at each time step to
establish a mesh morphed 3D geometry as Fig. 9.

In this regard, we can track not only the geometry of any
point but also the dynamic features of the point such as
velocity, and acceleration. In addition, we can compare the
geometry or dynamic features of any points among all cap-
tured feet shapes. To this end, we numerically investigated the
deformation variation of a few well-known foot dimensions
in Table 3. The dimensions are length (L f ), width (Wf ), and
ball width (BWf ) according to [50] used in [48], and their
variations are �L f , �Wf , and �BWf . Where the operator �

defines the differences between the maximum and minimum

FIGURE 9. 4D Feet. We present a new 4D data-set of 58 Participants (P1,
· · · , P58 in the figure), including 5147 frames of 3D scans. The raw 3D
scans (meshes) were collected at 15 fps through a novel 4D foot scanner
including 6 Azure Kinect DK cameras. Then we showed how to synchronize
the cameras through a novel deep-learning-based framework, and
establish a mesh-morphed data-set.

TABLE 3. Foot Dimensions Variation Results

value of the dimension for a participant during walking. By
calculating the average foot length (Lave) of all the feet in
our data-set (both left and right feet) as 24.3 cm, we can see
from Table 3 that the variation of L f is about 3% of Lave, and
Wf and BWf are about 5% of Lave, which are a considerable
variation and highlights the importance of 4D scanning, and
4D studying of human actions.

Our algorithm and our dataset are available in Sec-
tion VII of the dataset in https://doi.org/10.4121/3a5eb5a8-
bbae-4dd9-9a8d-d621bc1e36d2.v1. The algorithm was im-
plemented using MatlabR2022a on a computing platform with
an Intel Core-i5 9600 K 4.6 GHz processor.

C. DATA-SET COMPARISON
To the best of our knowledge and referring to Sections I and II,
there are few articles that developed a 4D data-set based on a
software-based frame time-synchroniser, while we recognised
a few works with similar state-of-the-art results summarised
in Table 4 as Walking Foot [48], 4DComplete [25], Dynamic
foot [5], and SURP [34]. According to the table, we compare
the presented data-sets in the works with the results of our
work in this article using several matrices: Number of objects,
Number of cameras, speed, total frames, time-delay synchro-
nisation, and accuracy.

Briefly, the work in [48] presents a step-by-step semi-
automated framework to reconstruct a full walking foot using
7 RealSense cameras, 4DComplete [25] includes animation
sequences of animals and humans body, the work in [5] intro-
duced a human feet data-set based on a parametric statistical
shape model, and SURP [34] is a data-set including different
human body part and full human body shapes.

According to Table 4, the work in [48] presents more ac-
curacy than our work (due to manual filtering and time-delay
synchronisation), Dynamic foot [5] shows higher speed than
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TABLE 4. Comparison of Available Data-Sets

our work, and SURP [34] has more total frames than our work;
however, the framework we introduced is fully automated
especially fro time-delay synchronisation which is completely
novel, and the data-set we presented is comparatively in-
cluding more than four times objects than the other works.
In addition, excluding the semi-automated work in [48], our
work outperforms the other compared works in accuracy for
an average of 45% which is a considerable achievement.

VII. CONCLUSION
In this article, we proposed a generic framework to syn-
chronize and register asynchronously captured point clouds
of a moving and deforming object, namely the human foot,
through a novel ADGC-LSTM-based network and a non-rigid
registration algorithm. We implemented the framework on
the data captured from a novel 4D foot scanner to acquire
the first 4D open-access feet data-set with the focuses on 1)
finding the dynamic connectivity among 3D scans captured
at different timestamps of each camera in terms of dynamic
feature synchronization and 2) extracting meaningful dynamic
features from the combined views of multiple cameras for es-
timating the amplitude of the deformation. Experiment results
show that our method improved the synchronization process
on average by about 30% compared to other state-of-the-art
methods. Meanwhile, the quality of the acquired 4D scan was
comparatively high regarding the deformation of each part
of the foot, and such information can be useful in different
applications, e.g. footwear design. Further developments in-
clude establishing a 4D Statistical Shape Model (SSM) of
human foot as a tool to study the gait and foot deformations.
Also, due to inconsistency in capturing speeds of different
cameras, there are differences in the resolutions of the frames,
which might be improved by using temporal super-resolution
repetitive motion methods.
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