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Sensitivity Analysis to Define Guidelines
for Predictive Control Design

M. C. Poelman1, A. Hegyi1, A. Verbraeck2, and J. W. C. van Lint1

Abstract
Signalized traffic control is important in traffic management to reduce congestion in urban areas. With recent technological
developments, more data have become available to the controllers and advanced state estimation and prediction methods
have been developed that use these data. To fully benefit from these techniques in the design of signalized traffic controllers,
it is important to look at the quality of the estimated and predicted input quantities in relation to the performance of the
controllers. Therefore, in this paper, a general framework for sensitivity analysis is proposed, to analyze the effect of erro-
neous input quantities on the performance of different types of signalized traffic control. The framework is illustrated for pre-
dictive control with different adaptivity levels. Experimental relations between the performance of the control system and
the prediction horizon are obtained for perfect and erroneous predictions. The results show that prediction improves the
performance of a signalized traffic controller, even in most of the cases with erroneous input data. Moreover, controllers with
high adaptivity seem to outperform controllers with low adaptivity, under both perfect and erroneous predictions. The out-
come of the sensitivity analysis contributes to understanding the relations between information quality and performance of
signalized traffic control. In the design phase of a controller, this insight can be used to make choices on the length of the pre-
diction horizon, the level of adaptivity of the controller, the representativeness of the objective of the control system, and
the input quantities that need to be estimated and predicted the most accurately.

Signalized traffic control is important in traffic manage-
ment to reduce congestion in urban regions. With recent
technological developments, more data have become
available to the controllers, varying from historical to
real-time data, and from location-based data (like loop
detectors) to floating-car data. Advanced state estima-
tion and prediction methods have been developed that
use these data (1, 2). Some of these methods have already
been applied in controllers to optimize traffic conditions
proactively (3, 4). To benefit fully from these techniques
in signalized traffic controllers, it is important to look at
the quality of the estimated and predicted input quanti-
ties in relation to the performance of the controllers. For
the development of estimation and prediction methods
on the one hand, and the design of traffic controllers on
the other, it is important to have insight into the extent
to which the accuracy of estimation and prediction will
affect the performance of the controller.

Therefore, in this paper, the sensitivity of signalized
traffic control for erroneous input quantities is
addressed. A general framework for sensitivity analysis
is proposed, to analyze the effect of errors in the mea-
sured, estimated, and predicted input quantities on the
performance of different types of signalized traffic

control. The framework is applied to predictive control,
to analyze to what extent a prediction increases the per-
formance of the controller, considering that the predic-
tion contains errors. The results of the sensitivity
analysis framework are used to set up design guidelines
for predictive control.

In this paper, the following section gives a problem
description followed by a short discussion of the state of
the art on traffic control and sensitivity to input quanti-
ties. Then the sensitivity analysis framework is outlined,
and demonstrated for predictive control. The results of
the sensitivity analysis are presented and translated into
design guidelines, and the paper is concluded with direc-
tions for future research.

This paper is a follow-up of the authors’ earlier work
(5). The presented sensitivity analysis framework is the
same, however, the presented case on predictive control
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is extended by considering a much longer prediction hor-
izon, comparing the sensitivity to different input quanti-
ties, and looking into the influence of the degrees of
freedom of the predictive controller. This gives new
insights into the sensitivity of predictive controllers for
errors in input quantities. Moreover, the experimental
results in this paper are translated into guidelines for the
design of such controllers.

Problem Description

In Figure 1, the process of signalized traffic control is
outlined in relation to control theory. The controller
influences the traffic process by its control signal. The
traffic process is evolving in time, based on the internal
traffic relations and external disturbances (demand, route
choices). The traffic process can be monitored in real
time by sensors, resulting in observed quantities. The
observed quantities can be used to estimate the actual
state of the traffic system expressed in derived quantities
(like queue lengths). Likewise, the observed quantities
can also be used to estimate (and predict) the distur-
bances. Based on the estimated state of the traffic system
and a prediction of the disturbances, the future state of
the traffic system can be predicted. Information on his-
torical, actual, and future traffic states (combined with

information on disturbances) is used as input for the con-
troller. Based on this information, the controller deter-
mines the control scheme that implicitly or explicitly
optimizes the performance of the traffic system.

In this control process, errors may arise that can
influence the control decision. In general, errors in the
input quantities will eventually decrease the perfor-
mance of the controller. Therefore, it is important to
look at all elements in the control process where errors
may occur. In monitoring the traffic system, an obser-
vation error will occur, caused by the inaccuracy of the
sensor and observation method that is used. In the esti-
mation of the traffic state (and disturbances) an estima-
tion error is introduced, which may represent errors
introduced by the estimation method itself or errors
that were already present in the observed quantities. In
the prediction of the traffic state (and disturbances), a
prediction error is introduced. This error depends on
the original error of the estimated state, and the predic-
tion method. This prediction error will increase with
the prediction horizon.

In the design of the controller as well as the estimation
and prediction methods, it is important to know to what
extent these errors influence the control decision and the
performance of the controller. In this paper, this ques-
tion is addressed by proposing a framework for

Figure 1. Process scheme of signalized traffic control with errors (e) arising in the control process.
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sensitivity analysis on the observed, estimated, and pre-
dicted input quantities of signalized traffic control.

State of the Art

There is a wide variety of types of signalized traffic con-
trol (3, 4, 6). Signalized traffic control methods can be
divided into two general categories: fixed-time control
and traffic-responsive control. In fixed-time control, the
control is optimized off-line, based on historical demand
data. In traffic-responsive (or adaptive) control, the con-
trol is adapted in real time based on on-line data. The
controller can react to the currently measured or esti-
mated traffic situation, or it can proactively anticipate
predicted traffic conditions. In general, the more detailed
information is used, the more sensitive the controller per-
formance is expected to be for errors in this information.
Fixed-time control is quite robust for errors in the input
quantities containing margins by design (implicitly in
Webster-based cycle times, explicitly in robust control
[7]). Traffic-responsive (or adaptive) control will be more
sensitive to information errors, depending on the degrees
of freedom of the controller.

Different levels of adaptive control can be distinguished
by the degrees of freedom in the controller (3). In the first
level, predefined control schemes are selected from a
library based on the actual traffic conditions. In the sec-
ond level, the control schemes are assumed to be cyclic,
and cyclic parameters (like green splits) are adapted, based
on information about the traffic conditions for current
and upcoming cycles. In the third level, the control scheme
is considered structure-free (no cycles). The combination
and the order of movements can be adapted, together with
the green times. In general, the more degrees of freedom
there are in the controller, the better performance can be
reached, the more sensitive the controller will likely be for
errors in the estimated or predicted traffic conditions. In
this paper this sensitivity will be analyzed for controllers
with different degrees of freedom, varying from cyclic to
structure-free control.

In the field of traffic management, sensitivity analysis
on information errors has not yet received much atten-
tion. This holds not only for signalized control, but also
for dynamic traffic management in general (8). The atten-
tion to this kind of analysis seems to have increased
because of the introduction of floating-car data in the
field of dynamic traffic management. For signalized con-
trol based on floating-car data, evaluating the influence
of penetration rates and additional data errors is essential
for a well-functioning system (9). With the increase of
adaptivity of traffic controllers and the availability of
more detailed information, the need for these sensitivity
analyses on information errors is still increasing. This
paper contributes to research on this issue.

Experimental Framework

In this section, a general framework for sensitivity analy-
sis is proposed to analyze the effect of errors in the mea-
sured, estimated, and predicted input quantities on the
performance of different types of signalized traffic con-
trol. Assuming perfect information, the ideal situation
for a signalized traffic controller is created. Perfect infor-
mation can be perfectly observed historical or real-time
data, a perfect state estimation, or perfect prediction (no
errors). Using a Monte Carlo approach, the perfect infor-
mation is randomly disturbed, and the degeneration in
performance of the controller is evaluated. The outcome
of the sensitivity analysis will be an experimental relation
between the level of information quality and the perfor-
mance of signalized traffic control in the traffic system.
The experimental framework is outlined in Figure 2.

The framework makes use of a simulation environment
to represent the real world. In an additional Application
Programming Interface (API) the controller of interest is
interacting with the simulation environment. A network
configuration and a relevant demand scenario is chosen.
Since the main goal of the sensitivity analysis is to deter-
mine the effect of errors in the input quantities of a con-
troller and not to determine the effects of fluctuations in
demand, the realization of the demand pattern is fixed
during the sensitivity analysis. However, the sensitivity
analysis can be repeated for different demand patterns
(and network configurations) to compare the sensitivity
to control input errors in different traffic conditions.

The main input to the sensitivity analysis is the infor-
mation quality of the input quantities for the traffic con-
troller. Information quality may consist of many aspects.
In this framework, information accuracy of the input
quantities is considered, expressed in a structural bias, a
random noise, and a percentage of missing data,
described by a random error distribution (of a properly
chosen form). It is assumed that the information accu-
racy depends only on the observation, estimation, or pre-
diction method, and does not depend on location and
time, resulting in the same error distribution for each
location and time. The realizations of the errors, how-
ever, differ over locations and time instances, and are
independently drawn from the distributions. The effect
of the errors can be simulated as follows:

0. Initialize the input error to no bias, no noise, no
missing data (no error distribution yet) and simu-
late the situation with perfect information for the
scenario. In this way, the ideal performance for the
traffic controller is measured and set as a reference.

1. Increase the error by increasing the bias, noise, or
percentage of missing vehicles. Adapt the random
distributions for the control input errors
accordingly.
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2. Simulate multiple realizations of the errors to level
out random variations over different locations
and times. For each realized error pattern, for
each control interval:
- Retrieve for each location the perfect input

quantities from the simulation.
- Disturb the input quantities by the random

realization of the error.
- Determine the control scheme based on the

disturbed input quantities.
3. Measure the performance (note that it is assumed

that the performance is measured perfectly in the
simulation) and average over the simulated error
realizations. Repeat the process from 1.

The output of the sensitivity analysis will be an experi-
mental relation between the error in the input quantities
and the performance of signalized traffic control in the
traffic system for a given scenario.

Case: Predictive Control

The sensitivity analysis framework is in principle suitable
for all types of signalized traffic control. However, in this
paper, the framework is applied to traffic-responsive con-
trol with a predictive component. The main goal of the
sensitivity analysis is to analyze to what extent a predic-
tion improves the performance of the controller, consid-
ering that the prediction contains errors. The influence of
the prediction horizon is studied, assuming errors

accumulate for longer horizons. Different predictive con-
trollers are considered with increasing degrees of free-
dom, varying from cyclic to structure-free control, to
investigate the relation between adaptivity and perfor-
mance, especially under erroneous predictions. A com-
parison is made with non-predictive control as well.
Assuming a very short prediction horizon, predictive
control can be considered as non-predictive control,
where the controller only reacts to the current traffic situ-
ation. This is equivalent to a (conventional) vehicle-
actuated control where a movement is given a green sig-
nal when vehicles are present. Since control behavior
may depend on the demand, different demand scenarios
are considered, that is, undersaturated, saturated, and
oversaturated conditions. The sensitivity analysis is lim-
ited to a single intersection.

In the sensitivity analysis, different relations are tested,
all related to design aspects of a predictive controller.
For the different demand scenarios, it is verified:

- Whether prediction improves the performance of a
controller when perfect information is available.
The relationship between prediction horizon and
performance will be analyzed, and the prediction
horizon length is identified beyond which perfor-
mance does not improve any more.

- Whether prediction still improves the performance
of a controller, when errors are present in the pre-
dicted input data.

- Whether a controller with high degrees of freedom,
having a high adaptivity to anticipate fluctuating

Figure 2. Experimental framework.
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traffic patterns, is also more sensitive to errors in
the predicted input quantities.

- Which input quantity of the controller is the most
sensitive to errors and therefore the most important
to estimate or predict accurately.

- Whether there are any unforeseen effects that need
consideration in the design of predictive control.

In the next sections, first the predictive control model
is specified in detail. Subsequently, the experimental set-
tings of the control scenario are explained, concerning
the intersection configuration, demand scenarios, and
type of predictive controllers, then the results of the sensi-
tivity analysis are presented. Finally, the results are trans-
lated into design guidelines for predictive control.

Predictive Control Model

The sensitivity analysis framework is specified for a
predictive controller for a single intersection. The basis
of the framework is the micro-simulation model
Aimsun (Version 8.2.0), representing the ideal world.
On top of this simulation framework, a predictive con-
troller is implemented (using API). Based on the inter-
section configuration, the combinations and the
possible order of the movements are predefined. The
free control parameters, that is, the green times of the
movements, are optimized based on a prediction of the
traffic conditions.

A rolling horizon approach is used. At each control
interval, the control sequence is updated in real time con-
sidering a new planning horizon. The objective of the
controller is to minimize the total delay over the upcom-
ing planning horizon, based on the current state (queues)
and a prediction of the upcoming demand (arrival pat-
tern). In the ideal simulation world, assuming perfect
knowledge of the upcoming traffic situation, the expected
delay could be determined by playing the simulation fast-
forward for each candidate controller. To save computa-
tion time, however, a simple store-and-forward model
with vertical queueing is used as a prediction model.
Note that in this simplified prediction model, the pre-
dicted arrivals are perfectly known beforehand (since a
single intersection is considered, the arrivals do not
depend on control decisions). In the simulation environ-
ment, the non-delayed arrivals are stored and considered
as the perfect predicted arrival pattern. The current state
(queues) is also perfectly known from the simulation
environment. Only the predicted departures are approxi-
mated by estimating vehicle passages through green,
based on the state of the candidate control scheme and
an approximation of the saturation flow rate. The satura-
tion flow rate is experimentally obtained by measuring
the queue discharge in the simulation environment

(considering equal vehicles with the same average driving
behavior).

The predictive controller can be expressed as a dis-
crete mathematical programming problem. To this end,
define the discrete time index k with duration T (s). Let i
denote the index of a movement. Define movement
group with index j, as a group of non-conflicting move-
ments that can have green at the same time, and let I(j)
be the set of movements belonging to movement group j.
Let J(j) be the set of possible movement group indexes
that can follow movement group j. Introduce signal
states si kð Þ 2 0 redð Þ; 1 greenð Þf g and movement group
states pj kð Þ 2 0 redð Þ; 1 greenð Þf g; for all movements i,
movement groups j, and time indexes k for the prediction
horizon [k0,k0+K]. The states should satisfy a prede-
fined combination and order of the movements, forming
the constraints of the optimization problem:

- Composition of movement groups is respected:

si kð Þ= pj kð Þ 8i 2 I jð Þ ð1Þ

- Exactly one movement group is active:

X
j
pj kð Þ= 1 8k ð2Þ

- Order of the movement groups is respected:

p~j k + 1ð Þ= 0 8~j 62 J jð Þ 8j : pj kð Þ= 1 ð3Þ

The objective of the controller is to find the con-
strained signal states si kð Þ 2 0; 1f g 8i8k, and corre-
sponding movement group states pj kð Þ 2 0; 1f g 8j8k,
that minimize the total delay over the prediction horizon
[k0,k0+K], that is,

min si kð Þf g
X

i

Xk0 +K

k = k0

xi kð Þ*T ð4Þ

with queue xi(k) (vehicles) per movement i defined as:

xi kð Þ= xi k � 1ð Þ+ ai kð Þ � di kð Þ 8k 8i ð5Þ

with arrivals ai(k) (vehicles) and departures di(k) (vehi-
cles) per movement i, where di(k) is approximated by an
experimentally derived saturation flow curve r(k) (vehi-
cles), that is,

di kð Þ= min r kð Þ; xi k � 1ð Þ+ ai kð Þð Þ if si kð Þ= 1ðgreenÞ
0 if si kð Þ= 0ðredÞ

�
8k 8i

ð6Þ

The discrete mathematical programming problem is
solved following a branch-and-bound approach using
decision trees. The pseudo code of the branch-and-
bound process is given in Figure 3. Each node n in the
decision tree is formed by the signal states si

(n)(k) and
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corresponding movement group states pj
(n)(k) at time k,

starting in the current state at the beginning of the plan-
ning horizon, k=k0 (Initialization). The most promising
node of the decision tree is selected to expand (Step 1). If
the end of the planning horizon is reached, the sequence
of movement groups is checked for its optimality (Step
2). While the end of the planning horizon is not yet
reached, the node is branched to the next time interval of
the planning horizon (Step 3). To this end, for each pos-
sible movement group transition, the new signal states
are calculated (Step 3.1), and the queues and delay are
updated (Step 3.2). Based on this new state information,
it is decided if the new node is added to the search tree
(branched) or is discarded (bounded). It is checked
whether the state violates additional control constraints
(Step 3.4), whether the state is already present in the
decision tree with comparable or lower delay (Step 3.5),
whether the delay is larger than the minimum delay so
far (Step 3.6), if so, the node is discarded, otherwise, it is
branched. Branched nodes are added to a search list
(Step 3.8), from which the algorithm can continue the
search process (Step 1).

The depth of the decision tree is determined by the
length of the prediction horizon, the width of the tree by
the possible movement group transitions. The width of
the decision tree can become quite large for increasing

prediction horizons, especially if the set of movement
group transitions J(j) is large. To be able to solve in real
time, additional bound criteria are introduced that limit
the size of the search space but still guarantee optimality.
When the state and delay of a new node is updated, an
underestimation of the entire delay to the end of the plan-
ning horizon is made (Step 3.3). This underestimation is
used to check if the node can already be bounded (Step
3.7). Moreover, greedy initial solutions are used to speed
up the search process. If a node is added (Step 3.8), and it
has the minimum increase in delay in relation to the pre-
vious node, the node is chosen to be searched from in the
next iteration (Step 1). This speeds up the algorithm con-
siderably (and assures that there always is a (suboptimal)
decision available, even if the algorithm is not ready yet).

The controller described so far uses perfect informa-
tion. Now, however, in the sensitivity analysis, the input
quantities are structurally disturbed and the mathemati-
cal programming problem is solved considering these
erroneous input quantities and their influence on the
delay of the control system is evaluated. The different
input quantities, that is, predicted arrivals ai(k), pre-
dicted departures (saturation flow) di(k), and current
queue length xi(k0), are disturbed one by one, leaving
the others untouched, to see which input quantity is most
sensitive to errors. For this paper, it is assumed that the

Figure 3. Pseudo code of branch-and-bound algorithm.
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estimation or prediction method of the disturbed input
quantity is biased (but no additional random noise is
considered). For each input quantity a different indepen-
dent structural error is introduced ex, ea, ed 2 �1,‘ð Þ for
the queues xi(k0), arrivals ai(k), and departures di(k),
respectively. The disturbed quantities are defined by:

~xi k0ð Þ= xi k0ð Þ 1+ exð Þ 8i ð7Þ

~ai kð Þ= ai kð Þ 1+ eað Þ 8i8k ð8Þ
~di kð Þ= di kð Þ 1+ edð Þ 8i8k ð9Þ

Note that the considered quantities cannot have nega-
tive values. Therefore ex, ea, ed should be considered in
the range �1,‘ð Þ. For errors ex, ea, ed\0, the disturbed
quantities become smaller than their original value,
approaching 0 for errors approaching 21. For errors
ex, ea, ed.0, the disturbed quantities become larger than
their original value. In this way, the error is varied in
both directions, covering the whole possible range of val-
ues of the considered quantities. Further, note that the
arrivals ai(k) and departures di(k) are disturbed for the
entire prediction horizon 8k 2 [k0,k0+K]. The queue
information is only disturbed for the current state k =
k0, and the queue values for the remaining horizon fol-
low from Equation 5. Finally, note that the structural
errors are equal for each time interval and movement.
Since the introduction of relative errors may result in
non-integer values, the disturbed quantities are rounded
downwards to the nearest integer, and the remaining
part is transferred to the next time interval or movement,
to assure on average the specified error percentages.

Experimental Settings Control Scenario

The predictive control model is applied to a four-legged
intersection with configuration as displayed in Figure 4a.
The lanes are long enough, such that there is enough stor-
age space for each direction and there is no spill-back to
the network entrances. Three different demand scenarios
are chosen, representing the undersaturated (almost no
queues present), saturated (queues present but mostly
solved after green phase), and oversaturated case (queues
remain after green phase). The saturated case will proba-
bly be the most interesting, since errors in the input quan-
tities of the controller can result in insufficient green
times, resulting in a collapsing system with high delays.
The undersaturated and oversaturated cases are chosen
for the purposes of comparison, to see if the control is
indeed most sensitive in saturated cases. The demand sce-
narios are simulated for 30min (time-step 0.2 s). The arri-
vals are randomly distributed following an exponential
arrival pattern with a constant mean (see Figure 4a for
demand per movement). Each demand scenario is fixed
to one repeatable realization.

Different types of predictive controllers are considered,
varying in the degrees of freedom in the controller. The
controllers all use (a subset of) the same fixed predefined
movement groups but vary in the set of possible move-
ment group transitions (Equation 3). The basic structures
of the controllers are depicted in Figure 4, b–d:

- Cyclic control with four movement groups. The
main movement groups (1, 2, 5, 6) are predefined
and are only allowed in the cyclic predefined order.
The cycle time differs per cycle resulting from the
optimization process.

- Cyclic control with alternatives, that is, four main
movement groups and four additional movement
groups. Next to the four main movement groups (1,
2, 5, 6), more flexibility is added to the predefined
cycle by considering four additional movement
groups (3, 4, 7, 8) that form an intermediate step
between the main movement groups. The additional
movement groups are optional, usage follows from
the optimization process. The cycle time differs per
cycle resulting from the optimization process.

- Structure-free control with all eight movement
groups. Main movement groups and additional
movement groups are considered equal. There is a
free choice in the order of all the eight movement
groups. The order of the movement groups follows
from the optimization process. No cycles are
imposed anymore (although they can arise from
the optimization process).

For all control types, additional constraints are applied
on lost times (all-red time of 3 s), minimum green times
(3 s), maximum green times (30 s for through and left
movements and 60 s for right movements).

As outlined in the predictive control model, the con-
trollers are based on a rolling horizon approach. Signal
states (and the active movement group) can change each
time interval (6 s). Each new control interval (12 s), the
control sequence is updated in real time considering a
new planning horizon. The planning horizon is varied
from 0 to 120 s. In this case five short cycles of 24 s of
the main movement groups with a minimum duration of
6 s each (3 s lost time + 3 s minimum green) can be eval-
uated, or one long cycle of 120 s of the main movement
groups is possible with maximum green durations of 30 s
(3 s lost time included). This gives the cyclic controllers
the possibility to adapt to fluctuations in the arrival pat-
tern. Note that a very short planning horizon (0 s) coin-
cides with non-predictive control, where the controller
only reacts to already arrived vehicles.

As explained in the section about the predictive con-
trol model, the arrivals are perfectly known beforehand,
and can be fixed and stored in a preprocessing step for
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each demand scenario. The departures are approximated
by experimentally derived saturation flow curves by mea-
suring the queue discharge. The long-term saturation
flow rate is one vehicle per 2 s. Using time intervals of 6 s,
and an initial lost time of 3 s in the first interval, the dis-
crete saturation flow curve is 1,2,2,3,3,3,3,. vehicles per
time interval for increasing green duration. Using this
preprocessed information, the controllers are all opti-
mized on the fly, using the branch-and-bound solution
method. The optimization problem is solved in real time,
in 12 s, to come up with the new decision. In this time
frame, exact solutions can be found for the cyclic control-
ler and cyclic controller with alternatives for all planning
horizons up to 120 s. For the structure-free controller,

exact solutions can be found up to planning horizon of
60 s, after that, the computation time becomes too long,
and therefore suboptimal solutions are used.

Experimental Results Sensitivity Analysis

Before the sensitivity analysis, as a reference, the perfor-
mance of the control system is measured under perfect
information. For the predictive controllers with increas-
ing degrees of freedom (Figure 4), the performance of
the system is analyzed for increasing prediction horizons.
The results are presented in Figure 5 for the different
demand scenarios. Note that the performance is
expressed in delay per vehicle, obtained by dividing the

Figure 4. (a) Intersection configuration and demand scenarios, (b) cyclic control, (c) cyclic control with alternatives, and (d) structure-
free control.
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total delay (objective) of the system by the number of
vehicles, to get a more intuitive measure to compare the
different demand scenarios. As Figure 5 shows, predic-
tion improves the control system under perfect informa-
tion. For all demand scenarios, the delay of the control
system decreases for an increasing prediction horizon,
and the performance is significantly better than for non-
predictive control (considering a very short prediction
horizon near zero). The structure-free controller with the
highest degree of freedom achieves better performance in
relation to delay and outperforms the cyclic controllers.
There is a clear trade-off between adaptivity (degrees of
freedom) and prediction horizon. The structure-free con-
troller with high adaptivity can reach the same perfor-
mance level with a short horizon, for which the cyclic
controller with low adaptivity needs a much longer hori-
zon. The gain of increasing the prediction horizon for
the structure-free controller is less than for the more con-
strained cyclic controllers.

In general, there is a gain in performance by increas-
ing the prediction horizon, although the gain in perfor-
mance is less for longer horizons. For undersaturated
conditions (Figure 5a), the line becomes flat from a cer-
tain prediction horizon. This point can be considered as
the ideal prediction horizon length, that is, the best per-
formance can be obtained using this prediction horizon,
and (almost) no additional performance can be gained
when looking further ahead in the future. For saturated
conditions, there is no monotone decreasing behavior
(Figure 5b). Since finite prediction horizons are used, a
suboptimal control optimum is reached if actions in the
control horizon influence the traffic condition after the
end of the prediction horizon (especially the case in
highly saturated conditions). For different horizon
lengths, the suboptimal solution is suboptimal in a

different way, resulting in fluctuating performance levels.
The ideal prediction horizon is less obvious in such situa-
tions and is approximated visually. For each demand
scenario, the performance with perfect data is set as a
reference (indexed to 100 for the structure-free
controller).

In the sensitivity analysis, the different input quanti-
ties, that is, predicted arrivals, predicted departures
(saturation flow), and current queue state, are one by one
structurally disturbed to see which input quantity of the
controller is most sensitive to errors. For the disturbed
quantity, the errors ex, ea, ed (Equations 7–9) are taken
from the set {21, 20.5, 20.2, 20.1, 0, 0.1, 0.2, 0.5, 1},
and the performance of the controller is measured.
Additionally, the relation between the performance and
the horizon length is analyzed for the different error lev-
els, and the ideal prediction horizon is determined to see
if prediction still improves the performance of the system.
In Table 1, this ideal prediction horizon and the perfor-
mance are compared with the situation with perfect infor-
mation. This is done for the different types of controllers,
to see which controller is most sensitive, and for the dif-
ferent demand scenarios, to see if the results differ in
undersaturated, saturated, and oversaturated conditions.

As can be seen in Table 1, in general, increasing errors
in the input quantities result in an increase in the total
delay of the control system. In the end, an error in the
input data results in too short or too long green times,
yielding a drop in the performance of the control system.
To be able to look in more detail into the behavior of the
decrease of performance of the controllers, experimental
relations between the delay and the prediction horizon
for the different error levels are drawn. The results are
presented in Figure 6 for the different control types and
different demand scenarios. Only the sensitivity of the

Figure 5. Performance of predictive controllers with perfect information on input quantities, for different demand scenarios:
(a) undersaturated, (b) saturated, (c) oversaturated.
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cyclic and structure-free controller are presented graphi-
cally, the results for the cyclic controller with alternatives
can be found in Table 1. As expected, the results of the
controller with alternatives lie in general between the
results of the cyclic controller (fewer degrees of freedom)
and structure-free controller (more degrees of freedom).
Note that the experimental relations are presented for
the 50% error levels, being extreme, however giving clear
insight in the behavior of the system under errors. The
behavior is similar for the lower error levels of 10% or

20%, but less extreme, giving less additional delay (see
Table 1). The following relations can be observed from
the sensitivity analysis (answering the research questions
at the beginning of this section):

Role of the Prediction Horizon. In most of the cases with
erroneous input quantities (see Figure 6), prediction still
leads to a better performance, that is, the delay is
decreasing for increasing prediction horizons. Increasing

Figure 6. Performance of predictive controllers with errors in the input quantities: queues (left: a, d, g), arrivals (middle: b, e, h), and
departures (right: c, f, i), for different demand scenarios: undersaturated (top: a, b, c), saturated (middle: d, e, f), oversaturated (bottom:
g, h, i).
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the prediction horizon can reduce the effect of errors. As
can be seen in Figure 6a, in the undersaturated case, the
effect of a disturbance in the queue of +50% is elimi-
nated completely for the structure-free controller (and
partly for the cyclic controller). This can be explained by
the fact that, in the undersaturated case, there are hardly
any queues, so an error in the queue information has no
large influence (except when completely ignoring the
queues as in the 2100% case in Table 1).

A reduction of errors for increasing prediction hori-
zons is not guaranteed, however. As can be seen in
Figure 6b, in which for the structure-free controller an
underestimation in the arrival pattern of 250%, results
in a remaining high delay for the larger prediction hori-
zons. In this case, it is better to use no predicted arrivals
at all, and purely react to arrived vehicles. Since in the
undersaturated case there are hardly any queues, the
arrivals are the most important information source.
Therefore, errors in the arrival pattern will indeed influ-
ence the performance and these errors are accumulated
for longer horizons.

Role of the Type of Controller. As can be noticed from
Figure 6, in all demand scenarios and for all disturbed
quantities, the structure-free controller is not more sensi-
tive to errors in the input data than the cyclic controller.
In most cases, the cyclic controller even seems to have a
greater drop in performance. There seems to be a trade-
off between sensitivity and adaptivity. The structure-free
controller, with a high degree of freedom, can adapt bet-
ter to fluctuations in the traffic conditions than the more
constrained cyclic controller. Although a structure-free
controller relies more on the erroneous information,
because of its adaptivity it can also react and correct mis-
takes more easily. Therefore, controllers with high adap-
tivity seem to outperform controllers with low adaptivity,
even under erroneous predictions.

Role of the Different Input Quantities. The control system is
most sensitive for an error in the saturation flow (depar-
ture pattern), especially for an underestimation (–50%
error) of the saturation flow, in saturated and oversatu-
rated conditions when queues are present (Figure 6f).
Note that in the undersaturated case with hardly any
queues an error in the saturation flow can also have a
large influence, building up queues quickly (Figure 6c).
This sensitivity for the underestimation of the saturation
flow can already be noticed at the lower error levels of
210% and 220%, see Table 1.

The system is less sensitive for errors in the current
queues and the predicted arrivals. This can be explained
by compensating quantities, especially in the saturated
case with moderate queues. If there are errors in the
queue (Figure 6d), the system can rely on the perfect

information on arrivals, and, the other way around, if
there are errors in the arrivals (Figure 6e), the system can
use the perfect information of the queues. In general, an
error in a quantity does not need to be a problem, as
long as other information can compensate for this error.

Role of Objective of the Control System. In Figure 6, d–f,
especially for the cyclic controller in the saturated case,
some counter-intuitive effects can be noticed. For a
+50% error in the queues (Figure 6d), or a 250% error
in the arrivals (Figure 6e), for short prediction horizons
the performance is better than for the reference case of
perfect information. This can be explained by the fact
that, for short horizons, the total delay costs do not fully
represent the real costs encountered when considering
the entire horizon. The contribution of queues, espe-
cially, is not fully incorporated for short horizons. When
there is an overestimation of the queues, or an underesti-
mation of the arrivals, implicitly weights are given to the
vehicles in the queue, resulting in more representative
costs. This results in an overall decrease in the delay of
the control system.

Design Guidelines

From the results of the sensitivity analysis, it becomes
clear that prediction indeed improves the performance of
a controller if perfect information on predicted quantities
is available. The delay of the system decreases for an
increasing prediction horizon, and the performance is
significantly better than for non-predictive control (con-
sidering a very short prediction horizon near zero).
Therefore, adding a predictive component is of added
value to the control system. However, in real life, the
predictive information will never be perfect, and will con-
tain errors. From the behavior of the control system
under these errors, as studied in the sensitivity analysis,
design guidelines can be defined. The following aspects
need to be considered when designing predictive control.

Choice of Prediction Horizon. The choice of the prediction
horizon strongly depends on the degrees of freedom of
the controller. A more constrained controller asks for a
longer prediction horizon to gain the full potential per-
formance out of the controller. The choice of the predic-
tion horizon also depends on the level of saturation. If
there are more queues present, control actions have a
longer effect in time on the traffic conditions (large time
delay of the dynamics in the control system). In this case
a longer prediction horizon is needed to consider these
effects in the optimization of the performance of the
controller.

The choice of the prediction horizon also depends on
the quality of the estimated and predicted input
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quantities of the controller. The use of a longer predic-
tion horizon can reduce the effect of the input errors of
the control system, resulting in a better performance.
However, there is no guarantee that a longer horizon will
automatically reduce the error and not amplify it (see
previous section for examples of both effects). Therefore,
in the design phase of a controller, using sensitivity anal-
ysis can give more insight into the behavior under errors
of the controller for increasing prediction horizons, to
choose the most convenient length of the prediction
horizon.

Choice of Type of Predictive Controller (Degrees of
Freedom). Under perfect information, a predictive con-
troller with a high degree of freedom outperforms the
more constrained controllers. There is a trade-off
between adaptivity and prediction horizon. A controller
with high adaptivity (a high degree of freedom) performs
for a short horizon equally well as a controller with low
adaptivity and a longer prediction horizon. In the design
of the control system, the choice of a more adaptive con-
troller with short prediction horizon or a more con-
strained controller with a longer prediction horizon can
both increase the performance of the system.

Under disturbed conditions, although the controller
with a high adaptivity relies more on the erroneous pre-
dictions, the controller is also more able to correct its
mistakes more easily. There is a trade-off between sensi-
tivity and adaptivity. In the design phase of a predictive
controller, sensitivity analysis gives more insight into this
interchanging behavior, to be able to choose the most
convenient level of adaptivity of the controller.

Note that the choice of the type of predictive control-
ler will also depend on practical implementation issues.
A high degree of freedom means a wider decision tree,
resulting in longer computation times. A more con-
strained controller has a smaller decision tree; however,
it needs a longer horizon, increasing the depth of the
decision tree, which also finally results in longer compu-
tation times.

Choice and Quality of Input Quantities. Less accurate predic-
tions do not have to be a problem if another quantity
with enough accuracy is available that can be used to
compensate the erroneous information. This makes the
control system less sensitive for the predicted arrivals and
the current queues, as these quantities contain compen-
sating information. The control system is most sensitive
for errors in the saturation flow that cannot be compen-
sated by other information.

From the results of the sensitivity analysis, it can also
be underlined that it is more important to predict that
there is traffic waiting or arriving than how many vehi-
cles are waiting or arriving (especially in undersaturated

conditions). As presented in the authors’ earlier work
(5), predicting the arrival times (and probably also the
planned turning direction of the vehicles) is more impor-
tant than an accurate prediction of the number of arri-
vals. This does not necessarily mean that simplified
models that focus more on vehicle presence instead of
vehicle numbers (e.g., simplified queue prediction mod-
els) achieve a similar control performance, however, to a
lesser extent, the errors in vehicle numbers do influence
the performance. To what extent a prediction model can
be simplified before a substantial decrease in the perfor-
mance occurs needs to be investigated in more detail.

Choice of Objective of the Control System. The results in this
paper are obtained for a predictive controller optimizing
the delay of the traffic system. The choice of the control
objective may influence the control decision and there-
fore the performance of the control system. However,
most control strategies and objectives depend on the
same quantities of the traffic system, like delay, number
of stops, number of vehicles in the queue, and so on.
Also, the traffic dynamics (queue formation) plays an
important role in practically all formulations of perfor-
mance of the control system, which is independent of the
specific objective function. Therefore, mostly similar
behavior for these control systems is expected in the sen-
sitivity of the considered input quantities in this paper
(predicted arrivals, predicted departures, measured
queues).

In any case, it is important that the objective of the
control system should represent the true costs of the con-
trol system for the entire horizon. If not, this can lead to
counter-intuitive effects for shorter prediction horizons
when input quantities are disturbed. Therefore, it may be
helpful to include end costs in the objective function,
reflecting the additional costs that vehicles will encounter
beyond the limited prediction horizon (e.g., include end
costs for queues that are still present at the end of the
prediction horizon). It is left for further research to deter-
mine if this really limits the influence of information
errors and leads to more robust controllers.

Conclusions and Recommendations

In this paper, an experimental framework was proposed
to investigate the sensitivity of signalized traffic control-
lers for erroneous input quantities. The framework was
illustrated for predictive control on a single intersection
under different demand scenarios. Experimental relations
between the performance of the control system and the
prediction horizon were obtained for perfect information
and erroneous input data. Different input quantities were
structurally disturbed, concerning queue lengths (current
state), number of predicted arrivals, and departures
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(saturation flow). These relations were studied for differ-
ent types of predictive controllers with increasing levels
of adaptivity (degrees of freedom), varying from cyclic to
structure-free control.

The results show that prediction improves the perfor-
mance of a signalized traffic controller, even in most of
the cases with erroneous prediction information.
Increasing the prediction horizon reduces the effect of
errors and compensates errors with the information
available from undisturbed predicted quantities (e.g.,
arrivals compensate queue information and vice versa).
Therefore, controllers seem to be more sensitive to errors
in stand-alone quantities (saturation flow in particular)
that cannot be compensated by other information.
Furthermore, controllers with a high adaptivity, and
therefore a high ability to anticipate fluctuating traffic
patterns, are not necessarily more sensitive to prediction
errors. Although these controllers rely more on the erro-
neous information, controllers with high adaptivity can
also react and correct mistakes more easily. Therefore,
controllers with high adaptivity seem to outperform con-
trollers with low adaptivity, even under erroneous
predictions.

The outcome of the sensitivity analysis contributes to
understanding the relations between information quality
and performance of signalized traffic control. In the
design phase of a controller, this insight can be used to
make choices on the length of the prediction horizon, the
level of adaptivity of the controller, the representative-
ness of the objective of the control system, and the input
quantities that need to be estimated and predicted the
most accurately.

The final goal of future research will be, on the one
hand, to decide how accurate estimation and prediction
methods should be to be of added value for signalized
traffic control, and on the other hand, to be able to
develop signalized traffic controllers that are robust to
input errors. To this end, more experiments in this frame-
work need to be done to analyze the effect of errors in
the estimated and predicted input quantities on the per-
formance of the controller. The experiments will be
extended by disturbing quantities in different and more
realistic ways as will be encountered in real life, like shifts
in arrival times and directions, by introducing a random
noise, and by combining errors of different quantities
simultaneously. The experiments will be extended from a
single intersection to coordinated intersections and
finally a network context to represent real-life cases.
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