
Rethinking log parsing in the
context of modern software
ecosystems
Master’s Thesis
Ștefan Petrescu





Rethinking log parsing in the context of
modern software ecosystems

by

Ștefan Petrescu

a dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science

at the
Delft University of Technology,

to be defended publicly onWednesday July 20, 2022 at 10:00 am.

Student number: 5352150
Thesis committee: Prof. dr. J.S. Rellermeyer, LUH and TU Delft, supervisor

Associate Prof. dr. L. Chen, TU Delft
Assistant Prof. dr. L.M. da Cruz, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

July, 2022

http://repository.tudelft.nl/




Abstract

Modern systems generate a tremendous amount of data, making manual investigations
infeasible, hence requiring automating the process of analysis. However, running au-
tomated log analysis pipelines is far from straightforward, due to the changing nature
of software ecosystems caused by the constant need to adapt to user requirements. In
practice, these are comprised of a series of steps that collectively aim at turning raw
logs into actionable insights. The first step is log parsing which aims to abstract away
from raw logs toward structured information. Log parsing is paramount, as it influ-
ences the performance of all subsequent downstream tasks that rely on its output.
Although previous works have investigated the performance of log parsing, given the
increase in data heterogeneity witnessed over the past decades, the validity of current
estimates is questionable, as there is a lack of understanding of how log parsing meth-
ods perform in modern contexts. Consequently, we investigate the field and, in the
process, we discover that misleading metrics are adopted, which produce incomplete
performance estimates. Furthermore, motivated by an industry use case within the in-
frastructure of a large international financial institution, we discover that the current
log parsing paradigm is not aligned with what is required in practice. Consequently, to
address these current limitations, in this work we contribute with the following. We (1)
evaluate the field of log parsing, (2) propose a new log parsing paradigm and create a
benchmark dataset to facilitate future research, and (3) propose and evaluate a machine
learning model that solves log parsing within the new paradigm.

iii





Acknowledgments

This thesis marks the end of two years of studying at TU Delft, which has been an in-
valuable experience, both from a personal and academic perspective. I have met smart,
talented, and hard-working people who pushed me to better myself and to see things
from a different perspective. You have made this experience truly unique, and I am
deeply indebted to you.

First and foremost, I would like to thank my supervisor, Jan Rellermeyer. You have
inspired me to always aim higher, and I could not have undertaken this project with-
out your guidance. I would also like to thank you for your constant support and fruit-
ful discussions throughout this year. Secondly, I would like to express my deepest ap-
preciation to Floris den Hengst, my daily supervisor. You have helped me tremendously
throughout this project, and I can say that your advice and ideas truly reshaped the
way I think. Thirdly, I would like to extend my sincere thanks to the AIOps I3 team
at ING, and to the people at the AI for Fintech Research lab for helping me shape
my research ideas and for providing an amazing working environment. Specifically, I
would like to thank Evert-Jan van Doorn, Pinar Kahraman, and Eileen Kapel for their
help.

Lastly, I would like to thank my family and friends. I would like to thank my sister,
for being my best friend and for always believing in me. Finally, I want to dedicate
this to my mother and father especially. Words cannot express my gratitude for the
unconditional love and support you have shown me through my journey.

Ștefan Petrescu
Delft, July 2022

v





Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background & Relatedwork 5
2.1 How has log parsing been tackled? . . . . . . . . . . . . . . . . . . . . . 7
2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Log parsing in the context of modern software ecosystems 17
3.1 Log parsing evaluations in literature . . . . . . . . . . . . . . . . . . . . . 18
3.2 Log parsing’s goal and its evaluation in literature . . . . . . . . . . . . . . 19
3.3 Log parsing’s evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Log parsing’s performance on publicly available data . . . . . . . . . . . . 21
3.5 Log parsing’s performance in modern software ecosystems . . . . . . . . . 22
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Entity parsing: a new paradigm for parsing log messages 28
4.1 Current limitations of log parsing . . . . . . . . . . . . . . . . . . . . . . 31
4.2 What is the entity parsing paradigm? . . . . . . . . . . . . . . . . . . . . 32
4.3 Representative fields in rich structured information . . . . . . . . . . . . . 33
4.4 A dataset that operates in the entity parsing paradigm . . . . . . . . . . . . 35
4.5 Generalisability of the entity parsing dataset . . . . . . . . . . . . . . . . 38
4.6 EntityLog - A method for tackling entity parsing . . . . . . . . . . . . . . 39
4.7 EntityLog’s performance . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.8 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



5 Discussion & FutureWork 44
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 51

viii





1
Introduction

Modern software systems have become vital to society, contributing toward improving the
quality of our lives, and enabling services that provide unprecedented benefits. These range
from systems that keep our infrastructure intact (e.g. railway systems software), to systems
intended for entertainment purposes (e.g. social media platforms). For example, payment
systems facilitate financial transactions and bring invaluable economic benefits, sustaining
a historically unprecedented paradigm for transferring monetary value. However, payment
systems involve financial institutions, instruments, technologies, etc. [47] which subsume a
huge amount of software components, creating a highly complex ecosystem. Thus, to ben-
efit from the wonders of modern software systems, it is paramount to tackle the challenges
associated with their ever-increasing complexity and data volume.

As the world becomes progressively more digital, the need to enable more and more ser-
vices brings forth new challenges, requiring designing solutions that match up market’s
needs. Consequently, modern systems are designed to move away from large-scale appli-
cations standardized on single technologies [5] (e.g., monolithic application) to flexible
and easy to evolve architectures [20] (e.g., microservices). However, this implies adopting
distributed architectures which are incomparably harder to maintain, making software sys-
tems’ complexity increase drastically. Furthermore, as a consequence of the vast number
of software components subsumed by these systems, the volume of data that they gener-
ate is unparalleled, reaching terabytes of log data daily [21]. Thus, automated data analysis
processes are required, as it is infeasible to analyze this volume of information manually.

1



Log generation

Runtime logs…

Runtime logs…

Real-world software system

… Collected logs

Log collection Log parsing Downstream tasks

Anomaly detection

System diagnosis

Incident prevention

Incident mitigation

Application security

Code coverage

…

…

Component 1

Subcomponent 1 1

Component N

Subcomponent N 1

Subcomponent 1 M

Subcomponent N P

…

…

Parsed logs

Real world software system

Possible downstream tasks

Figure 1.1: Example of a log cycle in practice. As we illustrate, the parsing step (in green) plays a crucial role in the
pipeline, consuming aggregated information from the entire software stack (in blue) and fueling a variety of downstream
tasks that have the goal of discovering critical insights about the behavior of the running systems.

Implementing processes that enable the ever-increasing market’s needs implies automat-
ing the analysis of the data generated by systems, and for that logs are by far the most valu-
able resource. Specifically, these provide the highest level of monitoring granularity, record-
ing the entire execution of the system. Thus, valuable information can be extracted from
logs, and used for various purposes, such as risk management, error analysis, incident pre-
diction, incident mitigation, anomaly detection, etc. [52]. For example, logs can be lever-
aged to predict incidents within the infrastructure of large financial institutions, as a result
of being distilled by automated processes that generate early warnings for engineers [51].
Thus, for maintaining services’ quality while keeping competitive edges, it is essential to
leverage the logs that they generate, by automating the processes of log analysis.

Automated log analysis processes are usually split into sequences of steps which collec-
tively aim at distilling actionable insights from raw logs. These sequences receive as input
data at the lowest level of abstraction, namely raw logs, and can provide various types of
output depending on the particular problem, such as regression, classification, etc. For ex-
ample, an automated log analysis process may have as input raw logs that contain details
about users’ authentication, and output alerts if anomalies are detected. However, imple-
menting such sequences is challenging, as these have to handle the tremendous complexity
of modern systems, providing solutions that are both accurate and scalable. Furthermore,
as a consequence of the need to adapt to user requirements, systems are constantly chang-
ing, making the problem of automating log analysis processes hard to constrain and solve.

In the literature, the first step in automated log analysis pipelines is known as log pars-
ing, which aims to transform raw logs into structured information. Specifically, it abstracts
away from raw logs toward a representation that can be used by other downstream pro-
cesses. We visualise its role in Figure 1.1. As it influences the performance of all subsequent
tasks, its importance is paramount and it has been categorised as one of the main five trends

2



in the logging field [10]. Log parsing separates the constant part from the variable part of
log messages. The former refers to the static parts in log messages, which correspond to the
textual logging statements written by developers in the software code, whereas the latter
refers to the dynamic information generated at runtime. Even though the problemmay
sound straightforward, the literature has yet to produce clear winners, as log parsing has
actually proved to be a hard problem to solve in practice.

As a consequence of the increase in complexity witnessed over the past decades, log data
heterogeneity makes automating the process of log analysis increasingly harder. Specifi-
cally, more and more diverse data are centralized, in turn making log parsing increasingly
more difficult to solve. These data are diverse in the sense that they are generated by a vast
number of software components subsumed by systems. It is desirable to centralize log col-
lection, to ensure that the causality between the various software components of systems
can still be identified during and after execution. However, as a consequence of the result-
ing heterogeneous log data, robust and scalable solutions are required for analysis, which
are difficult to implement.

Currently, the field lacks methods that are able to provide robust and scalable solutions
for log parsing, and it may even be that the existing ones are not aligned with what is actu-
ally required in practice. Motivated by an industry use-case within a large financial institu-
tion, we discover that applying log parsing methods in a highly diverse software ecosystem
proves to be harder than expected, and we find that there is a lack of understanding on how
the log parsing methods proposed in the literature perform in real-world scenarios. More-
over, we discover that the field lacks alignment with industry goals, as in practice it is desir-
able to have particular representations for the structured output of the log parsing process,
which is not the case within the current log parsing paradigm. Thus, to address these cur-
rent limitations, in the following section we present the research questions that we aim to
answer in this work.

1.1 Research questions

Currently, there is no clear understanding of how log parsing methods perform in industry
contexts; and howmethods can be evaluated, to best align with industry goals. Further-
more, the current log parsing paradigmmight have some limitations, which might make
applying it impractical. Thus, to address the current research gap, in this work, we aim to
answer the following research questions:

RQ1: How has log parsing been approached in literature?

RQ2: What is the goal of log parsing and how is that evaluated in literature?

3



RQ3: How do log parsing methods perform in the context of modern software
ecosystems?

RQ4: How is the log parsing paradigm aligned with industry goals, and how can
that be improved?

To address these research questions, we test log parsing methods on (1) publicly available
data, (2) on data that emulates modern-systems log data, and (3) on logs generated within
the infrastructure of a large international financial institution. Our findings indicate that
applying log parsing in practice is impractical, due to the subpar performance. Addition-
ally, the results indicate that the current log parsing paradigm is incomplete, as it is not fully
aligned with what is actually required in practice. Thus, we study the limitations of the
current log parsing paradigm and propose an alternative option, that aims to address the
incompleteness of the former. Furthermore, we propose a method able to operate in this
paradigm, and for this, we investigate three machine learning models and choose the one
that obtains the best performance, in terms of the accuracy-scalability trade-off. Lastly, we
propose a benchmark dataset for evaluating log parsing methods within the new paradigm,
comprised of (‘runtime log’, ‘ground truth logging statement’) entries.

1.2 Organization

Towards answeringRQ1, in Chapter 2 we study related work and different log parsing
methods proposed in the literature.

In Chapter 3 we answer research questionsRQ2 andRQ3 by analyzing how log parsing
methods are evaluated in the literature and by subsequently evaluating their performance in
the context of modern systems.

Finally, In Chapter 4 we answerRQ4, by discussing the current limitations of the cur-
rent log parsing paradigm and presenting ways in which these can be addressed. Subse-
quently, we propose and evaluate a method that aims to solve the paradigm resulted from
the answer of RQ4.

4



2
Background &Related work

Logs record runtime information of software systems for monitoring, auditing, and diag-
nosing problems [45]. For instance, system administrators primarily rely on logs to con-
duct investigations in an effort to understand and mitigate incidents. Additionally, in case
of errors or anomalies, log messages can facilitate the process of generating alerts [52] or
conducting root cause analyses [50].

Unfortunately, the complexity of modern software ecosystems produces a deluge of log
information that, due to the size and the low signal-to-noise ratio, often remains unused
even though critical information could be distilled from the log content. For example, some
systems can produce 30-50 Gigabytes of logs per hour [26], making it infeasible for humans
to manually investigate all messages in reasonable time. Consequently, automated log anal-
ysis techniques are necessary, as they extract information on software systems from log data
automatically [14].

To draw useful conclusions from large amounts of log data using automated log analysis,
a sequence of steps is required which collectively aim at translating the raw information in
actionable insights. The first step is to abstract away from raw log data to obtain meaning-
ful representations, as subsequent steps expect data to be in a particular structure. To do
that, most techniques require a basic syntax-derived exploration and interpretation of the
logs [32], known in the literature as log parsing*.

*Log parsing is sometimes used interchangeably with log abstraction or event template extraction.

5



LOG.info("Input size for job " + job.jobId + " = " + inputLength +
 ". Number of splits = " + splits.length);

Original logging statement

Input size for job job_1445062781478_0011 = 1256521728. Number of splits = 10

Runtime log

Input size for job <*> = <*>. Number of splits = <*>

Structured information

["job_1445062781478_0011", "1256521728", "10"]

Template

Variables

Figure 2.1: Example of how log parsing processes runtime logs, resulting in structured information that contains the
extracted log template and the list of variables discovered.

Log parsing is of utmost importance because it transforms the incoming logs into struc-
tured information, which in turn can directly influence the performance of automated log
analysis techniques [12]. Given its significance, it has been classified as one of the main five
trends in the logging field [10], providing input for a wide range of automated tasks, such as
anomaly detection [15], application security [32], root-cause analysis for failure diagnosis
[52], etc.

Log parsing structures raw log data into (1) the underlying log templates corresponding
to the static part of the logging statements in the software, (2) their respective parameters
corresponding to the dynamic part of the logging statements, and (3) log meta information.
Log meta information is usually added by a logging framework [14] and thus relatively easy
to obtain. Consequently, the main challenge of log parsing is to discover the log templates
and parameters, to obtain a better representation of the input data. An example of log pars-
ing is shown in Figure 2.1. Thus, after the constant and variable parts of a raw log message
are discovered, these combined represent the log template, where variables are replaced by
generic tokens, namely <*>. This type of transformation is challenging, especially if the
number of log messages is large and accuracy needs to be high, and tackling this optimally
remains an open issue.

Whilst there is a limited review of log parsing in general, recent work has been published
[52] [14] [10] [8], that created in-depth overviews of current approaches. These outlined
methods’ advantages and limitations, with respect to aspects, such as robustness, efficiency,
and scalability. Specifically, Zhu et al. [52] evaluated log parsing methods to provide a basis

6



for future research of the field, He et al. [14] included log parsing as a chapter in their sur-
vey on automated log analysis in reliability engineering, and Gholamian et al. [10] added
a log parsing chapter in their survey on logging in software. To the best of our knowledge,
the work by El-Masri et al. [8] is the only one that focused specifically on log parsing meth-
ods.

To build the foundation for understanding how log parsing performs in industry con-
texts, in this chapter we answer the following research question:

RQ1: How has log parsing been approached in literature?

In the following section we answer the research question by (1) mapping out log parsing
methods found in the literature, and (2) visualizing how log parsing methods cluster based
on their algorithmic approach.

2.1 Howhas log parsing been tackled?

Inspired by similar works [8] [14], we distinguish between the methods by using their
mode. This leads us into categorising the approaches in two main branches, offline and
online. The distinction between these two modes is very important, and it has to do with
the manner in which the log data is being processed.

Offline approaches process log data in batches, and discover templates given a static set
of log messages. They require a training phase, during which the templates are discovered.
After this, they parse incoming logs by matching with the templates found during training
in either batch or stream [8]. As changes/updates in software can introduce new log tem-
plates, one drawback of offline approaches is that it requires the training phase to be re-run
periodically.

Online approaches process log data item by item in a streaming manner, and do not re-
quire a batch of data to be available prior to executing. More specifically, these (approaches)
discover event templates without an offline training phase. Furthermore, as event templates
are being updated dynamically, such methods can be integrated seamlessly for downstream
tasks [14]. Online parsers are recommended when the decision time is relatively short (e.g.,
trying to predict incidents in a software system) and logs need to be processed on the fly.

As a general overview, Table 2.1 contains a list of the selected offline log parsing ap-
proaches, whereas Table 2.2 contains a list of the selected online approaches. We excluded
approaches for which the authors explicitly mentioned that their method was preliminary
(we only considered work that was feature complete), and did not consider approaches that
had their technical description insufficient to reproduce. In the following paragraphs, we
continue by describing the approaches found in literature, and by visualizing how these
methods cluster together.

7



Table 2.1: Overview of offline log parsing approaches found in the literature.

Year Method used

2003 SLCT [40]
2008 AEL [18]
2009 LKE [9]
2010 LFA [29]
2011 LogSig [37]
2012 IPLoM [24]
2013 HLAer [31]
2014 NLP-LTG [19]
2015 LogCluster [41]
2016 LogMine [11]
2017 NLM-FSE [39]
2017 POP [12]
2018 MoLFI [25]
2020 LPV [49]
2020 NuLog [30]
2020 ELA [36]
2021 AWSOM-LP [33]
2021 LogStamp [38]

Table 2.2: Overview of online log parsing approaches found in the literature.

Year Paper

2013 SHISO [28]
2016 LenMa [34]
2017 Drain [13]
2019 Spell [7]
2019 Logan [1]
2020 Logram [3]
2020 Paddy [16]

SLCT (Simple Logfile Clustering Tool) [40] uses a clustering algorithm to identify
log templates. A frequent pattern mining algorithm is applied, consisting of three steps.
During the first step, a table of frequent words is constructed. Whether a word occurs fre-
quently or not is determined by a user-specified threshold. In the second step, cluster can-

8



didates are formed. More specifically, log lines with at least one frequent word are added
to a candidate table. In the final step, the clusters with a support higher than a user-defined
threshold are returned as log templates.
AEL (Abstracting Execution Logs) [18] proposes a rule-based approach that consists of

three steps. The first step uses data-specific heuristics in order to replace the dynamic parts
of a log message with generic tokens†. All “word=value” pairs present in log messages are
regarded as containing dynamic information, thus replacing value with a generic token. For
example, the log message: “Data points amount to d=20” gets transformed into “Data
points amount to d=$v”. The second step clusters logs that are similar to each other in
different groups (bins). For this step, the authors consider logs to be similar in terms of
two aspects, namely the number of words and generic tokens in a log line. The third step
iterates through all of the previously created groups and returns the log templates. More
specifically, by using an unspecified similarity metric, every log line within a specific group
is compared against all the others. Logs that are similar to each other are considered to be
apart of the same template. One of AEL’s biggest disadvantages is that, if the first step can-
not be followed, the method cannot be used, as the similarity comparisons cannot be made
anymore.
LKE (Log Key Extraction) [9] proposes a three-step clustering approach. In the first

step, parameters are removed by leveraging domain specific knowledge (for example, IP
addresses, etc.). During the second step, log messages are clustered based on a weighted
edit string distance. During the third step, the clusters are refined by means of additional
heuristics. For example, authors consider two logs to have a different underlying template
if the frequency of a word at a specific position is lower than a certain threshold q. The
biggest disadvantage of this method is that it involves hand-crafted rules, such as regular
expressions and user-defined thresholds.
LFA (Log File Abstraction) [29] proposes a two-step algorithm. During the first step, a

word frequency table is built which registers words’ frequency. Compared to the first step
of SLCT, LFA also considers words’ positions within a log line. During the second step,
each log line is analyzed. Specifically, for each log message, each word is compared to its
frequency at its respective position. Lastly, log templates are returned.
LogSig [37] proposes a clustering algorithm, consisting of three main steps. It first splits

log lines into pairs of tokens‡ by extracting all pairs of terms in the log messages. During
its second stage, the pairs of tokens are partitioned into k groups, k being a support value
parameter. The third step involves creating the log templates from the resulting groups,
and returning them.

†AEL replaces the dynamic parts of a log message with “$v”.
‡Any sequence of characters separated by whitespace is considered to be a token – a word, a number, an

IP address etc. For example, “Connection from 120.0.0.1” has 3 tokens.

9



LogCluster

IPLoM

LKE

MoLFI

Frequent Pattern Mining

Neural Networks

Clustering

Evolutionary Algorithms

Iterative Partitioning

A        B means that a 
comparison between A and B 
exists. 

Legend

A        B means that A is 
based on B. 

AEL

Heuristics

NLP-LTG

Conditional Random Fields

POP

LFA

SLCT

LogStamp

NuLog

NLM-FSE

LogSig

ELA

HLAer

LogMineLPV

AWESOM-LP

Figure 2.2: Graphical representation of how the offline methods are clustered together based on their algorithmic ap‐
proach. The dotted lines represent connections between various methods. Specifically, a dotted line means that a
comparison exist between two connected methods.

IPLoM (Iterative Partitioning LogMining) [24] tackles log parsing with a four-step hi-
erarchical partitioning algorithm. During the first step, log lines are partitioned by their to-
ken count. This step assumes that log messages that have the same template are more likely
to have the same number of tokens. The second step involves partitioning by the token po-
sition. Here, the authors assume that, for a log message that has a length of n tokens, the
column with the least variability is most likely to contain the template. The third step par-
titions the messages by “search for bijection” – a mapping between the set of unique tokens
(suspected to be apart of the log template). During the fourth and final step, log templates
are returned.
HLAer (Heterogeneous Log Analyzer) [31] proposes a three-step log parsing approach.

During its first step, logs are tokenized (using the whitespace character as the delimiter).
More specifically, all words and special symbols (except numbers) are separated by an empty
space. For example, the log message: “GET /images/header/nav.gif” gets transformed
into “GET / images / header / nav . gif”. For the second step, the authors cluster logs
using theOPTICS§ [2] algorithm. During the third step, for each of the previously found

§Although theOPTICS algorithm has anO(n2)memory complexity [8], the authorsHLAer still claim
the method to be scalable as it can be parallelized.

10



clusters, a pattern recognition algorithm is applied such that event templates are found and
returned.
NLP-LTG (Natural Language Processing–Log Template Generation) [19] proposes an

approach based on a statistical modelling technique, namely Conditional random field [42]
(CRF). To leverage this technique, the authors construct a labeled dataset where words in
log messages are annotated as either being a ‘Description’ or a ‘Variable’. The former corre-
sponds to the content of the log template. The latter corresponds to the dynamic parts of a
log messages generated at runtime, intended to be removed.
LogCluster [41] is designed to overcome the shortcomings of SLCT and IPLoM, and

introduces a three-step frequent pattern mining algorithm. In contrast to SLCT and IPLoM,
LogCluster does not take words’ positions into account. During the first step, it discovers
frequent words in the log dataset. During the second step, it generates a set of candidate
clusters. During the third step, it drops all cluster candidates that have a counter value
lower than the selected support threshold, and subsequently reports the remaining can-
didates as log templates. An advantage of this method is that it finds templates for log mes-
sages with a variable parameter value length (which proved to be a problem for SLCT and
IPLoM). For example, “user Fiona workerEnv in error state 7” and “user Link End
workerEnv in error state 9” have the same event template “user <*> workerEnv in
error state <*>”, while the length of the parameter of the values “Fiona” and “Link End”
vary. An important observation is that if LogCluster is run with low support threshold val-
ues, the results are similar to the ones returned by SLCT.
LogMine [11] introduces a log parsing approach based on clustering, consisting of four

steps. The first step involves tokenization and type detection (for example, a type can be
a date, timestamp, IP address, number etc.). LogMine replaces detected variables, such as
numbers or dates with their type. For example, after the first step, the log message “session
opened for user anna uid = 10” becomes “session opened for user name uid =
number”. The second step involves a clustering of the logs, with an approach-specific dis-
tance metric. During the third step, an algorithm is used to recognize patterns in logs. For
each of the previously found clusters, a single pattern is representative of all other instances
of a cluster. As the fourth step, the authors use an algorithm that generates a hierarchy of
patterns, and returns the log templates.
NLM-FSE (Neural Language Model-For Signature Extraction) [39] proposes an ap-

proach that leverages the use of neural networks. Compared to all the other methods pre-
sented in this work, this approach analyzes log messages at character level, rather than at
token level. For training the network, the authors create a synthetic dataset, and annotate
each character of each log line, as either being mutable or non-mutable. The former means
that the character belongs to a a dynamic part of the logs. The latter means that the charac-
ter is apart of the log template. Although an interesting approach, its biggest disadvantage

11



is that it is not applicable as it achieves poor results (even on synthetic data).
POP [12] proposes a five-step iterative partitioning method. The first step involves pre-

processing log messages by domain knowledge. During this step the main goal is to exclude
variable parts that can be easily identified with domain knowledge by means of using regu-
lar expressions. During the second step log messages are clustered using a particular metric,
namely message length. Specifically, the length of a log message means the number of to-
kens. As it is possible for logs to have the same number of tokens, even though they might
belong to different templates, during the third step each group is recursively partitioned
into subgroups. The goal here is to obtain subgroups that contain log messages that be-
long to the same log template. For example, two messages are considered to belong to the
same log template, if the tokens in some positions are the same. During the fourth step, the
log templates are generated using the tokens’ frequency. Specifically, for a given position,
if a token appears in all log instances of that group, the token is considered to be apart of
the log template, and otherwise replaced with a wildcard. During the fifth and final step,
a hierarchical clustering algorithm is used to merge the previously formed subgroups. The
reason behind this is that it might be that some of the groups to contain over-parsed mes-
sages, causing the appearance of a higher number of false negatives. When the final clusters
are formed, they are merged into a single log template, facilitated by calculating the Longest
Common Subsequence [23]. POP’s main advantage is that it is very fast, allowing for parallel
computations. However, it relies on heuristics and its accuracy results are not surpassing
other approaches.
MoLFI [25] proposes a seven-step evolutionary algorithm for log parsing. During the

first step, preprocessing operations are followed, namely regular expressions are used to
remove variables based on domain knowledge. Specifically, the respective variables are re-
placed with #spec#, duplicates are removed, log messages are transformed into sequences
of tokens (using various separators), and messages are grouped into groups based on the
number of tokens (messages with the same number of tokens are grouped into the same
clusters). During the second step, an encoding schema is proposed for transforming the
preprocessed logs. The third step generates the initial population using a specific algo-
rithm. During the fourth step, crossover is implemented. During the fifth step, the authors
implement themutation operation. The sixth and seventh step are responsible for post-
processing and choosing a Pareto optimal solution. Lastly, log templates are returned.
LPV [49], uses a four-step algorithm that leverages vector embeddings to discover log

templates. During the first step, preprocessing operations are followed. Specifically, du-
plicates¶ are removed and common variables are substituted (for example, all IP addresses

¶For example, “2005-06-03-15.42.50 instruction cache parity error corrected” and
“2005-06-03-15.42.53 instruction cache parity error corrected” are considered to be duplicates,
even though they have different meta-level information (i.e., different timestamps).

12



are substituted with a special token, $$IPADDR$$). During the second step, the previously
substituted log messages are embedded into vectors, using word2vec [27]. Specifically, each
word token from a log message is mapped to a vector. Next, each sequence of tokens (log
message) is mapped to a vector – they sum all the tokens’ vectors and obtain a representa-
tion‖. During the third stage the log representations are clustered, based on their semantic
distance. During the fourth and final step, log templates are returned.
NuLog (Neural Log) [30] introduces an approach that tackles log parsing as a self-

supervised learning [48] task. The method has two operation modes, namely the train-
ing phase and execution phase. The former is used for training the model for log parsing,
whereas the latter is used for parsing logs. Training the model consists of two steps, namely
tokenization and masking. For tokenization, each log message is transformed into a se-
quence of tokens. For masking, the authors use a method from natural language processing
calledMasked LanguageModelling. Specifically, a random token is replaced by the special
<MASK> token for each sequence of tokens (log message). Then, each sequence is padded
with two delimiter tokens. Finally, after training, the model returns log templates.
ELA (Event Log Abstraction) [36] uses a five-step algorithm to parse logs. Compared to

other methods such asDrain or AELwhich rely heavily on heuristics, it is capable of pars-
ing logs without any user input or hard-coded rules. The first step consists of an automatic
preprocessing operation, namely running nerlogparser [35] and identifying all the unique
log messages. This procedure consists of splitting and labelling each field for each log entry
(nerlogparser), whereas the second simply means extracting all the different preprocessed
messages**. During its second step, the algorithm groups logs based on the word count –
the authors assume that logs that contain the same number of words are likely to belong to
the same underlying log template. As the third step, the authors construct a graph model
using the count-based word groups from the previous step, and, during its fourth step, the
authors cluster the log entries using an automatic approach (still, no user parameters are
required). During the fifth and final step, log templates are returned. The biggest advan-
tage of ELA is that it does not require any hyperparameters, nor any knowledge about log
datasets particularities.
AWSOM-LP [33] proposes an approach that tackles log parsing by using a frequency

analysis technique. Specifically, it is composed of three steps. During its first step, domain
specific pre-processing is applied by using regular expressions (user input). The second step
consists of grouping (clustering) log messages based on a string similarity metric. During
the third and final step, frequency analysis is applied in order to distinguish between con-

‖This way, they ensure that substituted logs that have the same template are close to each other in the
vector space.

**For ELA, during its first step, unique messages refer to messages that differ from all other previously
parsed log lines.

13



stants and variables, which means counting the number of occurrences of each term for all
log messages (that belong to a previously found cluster). Additionally, a post-processing
operation is conducted (all numbers that are still present are considered to be variables).
Lastly, the log templates are returned.
LogStamp [38] tackles log parsing as a sequence labelling task. More specifically, they

train a model able to classify the tokens of a log message as either being constant or vari-
ables. This is achieved by training a classifier that serves as a tagger. The training data is
obtained automatically, by using two different processes (both are aided by BERT [4],
which is used for feature representations of log messages). The first process is designed to
embed log messages at a coarse level††, and then, obtaining pseudo-labels for the input data
by means of clustering. The second process, embeds log messages at a fine-grained level,
which are then passed as input to the classifier. Thus, using the coarse and fine-grained level
representations, a classifier is trained to find log templates. Finally, the classifier is used for
extracting log templates.
SHISO [28] uses a two-step clustering approach to discover log templates. During the

first step, namely the Search Phase, log messages are split into a sequence of tokens based on
heuristics, with the intention of discovering log formats. During the second step, namely
the Adjustment Phase, existing log templates are refined, by means of applying a specific
algorithm. Specifically, SHISO uses a tree-form structure to guide the parsing process,
where each node is correlated with a log group and an log template. The number of chil-
dren nodes in all the layers is the same and is manually configured beforehand. SHISO’s
biggest disadvantages are its poor accuracy and poor efficiency, resulting from sensitivity to
path explosion [14].
LenMa [34] proposes a five-step log parsing method based on a clustering algorithm.

Specifically, the clustering algorithm uses a similarity metric based on the length of the
words in a log message. For each log message, it creates word length vector, and a word
vector of the message. Secondly, it calculates a similarity metric between the incoming mes-
sages and the clusters that have the same number of words. Based on a threshold value Tc, if
an incoming log message is not similar enough, a new cluster is created and returned. The
most similar clusters are updated as newly arrived messages come in, and returned.
Drain [13] proposed a five-step approach that relies heavily on heuristics. During its

first step, logs are preprocessed by leveraging domain knowledge – here, users have to pro-
††Representing logs at a coarse level means extracting features that encompass information about the entire

log message, rather than choosing a representation with too many details. Here, the coarse representation
means extracting features that allow for distinguishing between logs that are very different from each other.
For example, a coarse level representation would mean being able to tell that “authentication failure;
logname= uid=0” is different from “check pass; user unknown”. However, a coarse level representation is
not able to distinguish between messages that are similar, but apart of a different underlying log template.

14



Logram

Drain

Spell

LenMa

Frequent Pattern Mining

Heuristics

Clustering

Longest common subsequence

Paddy

Logan

SHISO

A        B means that a 
comparison between A and B 
exists. 

Legend

Figure 2.3: Graphical representation of how the online methods are clustered together based on their algorithmic
approach. The arrows represent connections between various methods. More specifically, an arrow means that the
method from which it originates, evaluated against the method towards which it points.

vide regular expressions. During the second, third, and fourth step, the authors construct
a “parse-tree” – a tree structure that allows logs to be parsed using a number of heuristics.
For example, log messages with the same number of tokens are more likely to have the same
log template, or the first token of a log message is always constant and apart of the log tem-
plate, etc. During its fifth step, logs’ tokens are compared using a similarity metric, and
lastly, the log templates are returned, and the parse-tree is updated. Drain can achieve high
accuracy for various datasets, and it is recommended for use-cases where log diversity is
relatively low. As the approach is highly dependent on hard-coded rules, accounting for
changes in the structure of log data can be error-prone and hard to maintain.
Spell [7] introduces an approach based on a longest common subsequence (LCS) algo-

rithm. During the first step, logs are parsed into a sequence of tokens using a pre-defined
set of delimiters. During the second step, the LCS of the incoming log is discovered. Dur-
ing the third step, a new LCS map is created. This method is similar to SHISO and LenMa,
as it maintains a list of log groups. To accelerate the parsing process, Spell uses specialized
data structures, namely prefix tree and inverted index. In addition, Spell provided a parallel
implementation [14].
Paddy (Parsing Approach with Dynamic Dictionary) [16] is a four-step log parsing al-

gorithm. During the first stage, log data is preprocessed using domain knowledge by means

15



of regular expressions (provided by users). During the second stage, using an inverted index
(implemented using a dictionary structure), log template candidates are retrieved. During
the third stage, these are ranked using a similarity metric. Specifically, the similarity metric
is a weighted sum (coefficients as hyper-parameters) of Similarity (Jaccard similarity [43] )
and LengthFeature (the length of a log message in terms of number of tokens). During the
fourth and final step, the log templates are returned and the inverted index is updated.

RQ1. We discover that in the literature there are currently 25 methods that propose solving
log parsing. We observe that these can be categorised in two main branches, online and
offline methods. Lastly, we study trends in the log parsing literature, by outlining the most
preferred underlying algorithms for the methods, namely clustering and frequent pattern
mining.

2.2 Discussion

Automated log analysis subsumes a sequence of steps which collectively aim at drawing ac-
tionable insights from large volumes of log data. One of the most important steps in this se-
quence is log parsing. We investigate this field, and discover 25 log parsing methods, which
are categorised in two main branches, online and offlinemethods. Subsequently, we ob-
serve trends in literature in terms of how log parsing has been approached, and we discover
that most used underlying algorithms for the methods are clustering and frequent pattern
mining. To summarize, in this chapter we have contributed by studying how log parsing
has been approached so far in literature, by mapping out proposed methods, and by creat-
ing visualisations of methods’ clustering based on their algorithmic approach.

16



3
Log parsing in the context of modern

software ecosystems

The trend of moving away from large-scale applications standardized on single technolo-
gies [5] (e.g., monolithic application) to flexible and easy to evolve architectures [20] (e.g.,
microservices) provided countless benefits [6], but also increased software complexity, as
it introduced challenges associated with distributed architectures which subsume incom-
parably more components. As a consequence of (1) the increase in size and complexity of
systems, and (2) because of the diversity of all subsumed infrastructure resources, the logs
generated by these systems have become increasingly more heterogeneous, which in turn
poses different challenges for applying log parsing and, subsequently, for automating the
log analysis process. These systems are expected to become more complex in the future
[17], thus making log parsing progressively harder.

We argue that log parsing methods have failed to adapt to this increased complexity over
the past decade. For instance, most methods evaluate on the same datasets, some of which
are even comprised of 15 year-old data which no longer reflect recent real-world systems.
Thus, it is paramount to test how log parsing methods perform in the context of modern
software ecosystems, as their current performance estimates might not hold in practice.

In this chapter, we close this gap by evaluating the performance of log parsers in the con-
text of modern software ecosystems as in the log parsing field, the lack of evaluation on
recent real-world systems, and the use of relatively old datasets for benchmarking make per-

17



formance estimates for current deployment questionable. To address this, we test the 14
most-recognized log parsing methods (1) on publicly available data, (2) on data that emu-
lates modern-systems log data, and (3) on industry data generated within the infrastructure
of a large international financial institution, and we investigate the performance in each
scenario. Specifically, we are tackling the following research questions:

RQ2What is the goal of log parsing and how is that evaluated in literature?

RQ2.1How can log parsers be evaluated to best align with the goal of log parsing?

RQ2.2What is the performance of log parsers on publicly available data?

RQ3: How do log parsing methods perform in the context of modern software
ecosystems?

To facilitate future works and reproducibility, we contribute code and a novel public bench-
mark dataset*. In the following sections, we answer the research questions.

3.1 Log parsing evaluations in literature

Works that evaluated log parsing approaches have been published recently. These outline
the various methods present in the literature, and evaluate them based on specific criteria.

Zhu et al. [52] evaluate 13 representative log parsers. They analyze the methods with
regards to three aspects, Accuracy,Robustness, and Efficiency. To do so, the authors run
experiments on 16 different homogeneous datasets between 17 and five years old. They
make the code and labeled datasets publicly available, with the aim of providing a basis for
further developments. While this marked an important step towards more robust and re-
producible insights about log parser performance, unfortunately the authors focused their
research entirely on isolated logs from single applications.

He et al. [14] survey automated log analysis methods in the area of reliability engineer-
ing. Their contribution is to classify the methods based on four aspects, namelymode,
coverage, preprocessing, technique. Gholamian et al. [10] survey the logging field, namely
by outlining main logging practices and trends. They include log parsing in one of their
chapters, and describe methods found in literature with respect to advantages and disad-
vantages.

To the best of our knowledge, the work by El-Masri et al. [8] is the only survey solely
intended to analyze log parsing approaches. This work aims to bridge the gap between in-
dustry and academia, and to do so, the authors use seven criteria that describe log parsing

*Code and dataset are available at https://github.com/spetrescu/are-log-parsers-ready-for-prime-time.

18

https://github.com/spetrescu/are-log-parsers-ready-for-prime-time


methods, namelymode, coverage, efficiency, scalability, system knowledge independence, de-
limiter independence, parameters tuning effort. Again, however, little attention is paid to
the problem of deriving insights about entire software stacks.

In contrast to all of these works, we discuss an important aspect that has not been suffi-
ciently researched, namely the performance of log parsing methods on heterogeneous data
as typically found in the logs of complex applications that encompass a full stack of soft-
ware. We consider previous evaluations found in existing studies to be incomplete, as they
reuse outdated homogeneous datasets in their evaluations, and do not consider current
data characteristics.

3.2 Log parsing’s goal and its evaluation in literature

In the literature, log parsing is formulated clearly as the task of mining the underlying soft-
ware logging statements that generate runtime logs, also known as log templates. However,
close inspection of the de-facto standard for evaluation reveals that the metrics used do not
reflect this goal. As a consequence, confusion arises around the role of log parsing, both
from research and industry perspectives.

Implementing data-driven processes such as automated log analysis requires leveraging
data to the fullest, and for such pipelines, each step has to provide input that maximizes
the chances of drawing actionable insights for subsequent tasks. Consequently, as log pars-
ing is the first step, it is paramount for it to prevent any feature-rich information loss in its
transformation, as that would result in hindering the performance of all subsequent tasks.
Specifically, it is of utmost importance to preserve possible latent features present in the
raw data, for log parsing to provide a maximally feature-rich representation for downstream
tasks. Thus, the desired representation for a raw log is one in which the discovered vari-
ables are replaced with generic tokens, and the rest of the initial log structure remains the
same. For example, considering the runtime log: ‘Received block blk_8829 of size 671
from 10.251.38.214’ with its respective ground truth template: ‘Received block <*>
of size <*> from <*>’, it is desirable to parse the log message such that the initial data
feature-richness is preserved after applying the transformation. In this case, the runtime log
would be parsed to: ‘Received block <*> of size <*> from <*>’, with the accompa-
nying list of discovered variables ‘[’blk_8829’, ‘671’, ’10.251.38.214’]’, which fully
matches the ground truth template from a textual perspective. However, the standard in
the field is to evaluate methods for solving a different problem, which in turn causes ambi-
guity for applying these in practice.

The standard evaluation metric used in the field actually assess parsers’ ability to classify
logs, rather than assessing the quality of the log templates that they generate. Specifically,
parsing accuracy, introduced by He et al. [14], measures parsers’ ability to identify types of

19



logs, which reflects the ability to group similar log messages rather than log parsing’s pri-
mary goal of separating static from variable content. Proof of its misalignment is that a per-
fect parsing accuracy can be obtained even if templates generated are entirely different from
the ground truth templates. Considering the previous example, the log message: ‘Received
block blk_8829 of size 671 from 10.251.38.214’ can be parsed to something entirely
different from the ground truth template, such as ‘Example template’ or ‘E v e n t t e
m p l a t e’ and a perfect parsing accuracy can still be obtained. Thus, we consider that,
as a consequence of adopting this metric, the field has drifted away from the goal of log
parsing and from obtaining realistic estimates of the quality of templates produced by the
parsers.

Another issue that is currently not addressed in the field has to do with the way in which
the evaluation design is setup. Not only are the standard evaluation metrics used incom-
plete, the methods are, more importantly, trained and tested on the same data, which
makes their claims questionable from the perspective of generalization. This is a very im-
portant observation, as applying these methods in a production context requires at least
some estimate of how they perform on unseen data. Here, having to deal with unseen data
is the default scenario, regardless of the production environment considered. Specifically,
the goal is to deploy software at a fast pace, and that means realising new versions of exist-
ing systems, which in turn can generate new logging statements and/or put the system in
new states to trigger previously unseen logging statements. Thus we argue that, as yard-
stick of practical relevance, log parsers should also be evaluated on unseen data, as that is
paramount for providing an estimate of their robustness and general applicability.

RQ2. To remove the ambiguity around the goal of log parsing once and for all and to an-
swer the first research question, we define log parsing as the task of identifying log tem-
plates in a runtime log message, to extract the static parts that were present in the original
software logging statements. In the next section we address the evaluation issue by propos-
ing metrics that are aligned with the goal of log parsing.

3.3 Log parsing’s evaluation metrics

RQ2.1. To ensure that evaluation reflects the goal of log parsing discussed in the previous
section, and to answer the second research question, we consider two evaluation metrics
that align best with the goal of log parsing, namely log template accuracy and edit-distance.
These are inspired by similar metrics that have been proposed in recent work by Nedolski et
al. [30] and Liu et al. [22], which also aim to address the problem of the incomplete evalua-
tion standard in the field.

Log template accuracy and edit-distance aim to asses the quality of templates generated,

20



as they are intended to compare parsed logs against their respective ground truth templates.
Consequently, as this aligns perfectly with the goal of log parsing, we adopt these metrics.
It is necessary for the field to adopt metrics based on textual similarity, as they quantify the
ability of parsers to produce templates, that are evaluated against the ground truth labels,
thus providing estimates for the quality of the output generated. Furthermore, we argue
that the field should adopt these metrics since they objectively quantify how similar tem-
plates generated from log data are to the templates that generated the log data.
Log template accuracy is defined as the ratio of the number of correctly parsed logs,

over the total number of logs. Specifically, a log message is parsed correctly if its textual
content matches the ground truth template (generated by human experts or mined from
software code). Log template accuracy can range from 0 to 1, zero meaning that a parser is
unable to match any of the corresponding ground truth templates, whereas one means that
the parser is able to match all of the corresponding ground truth templates. For example,
considering the following log messages: ‘Example log 1’ and ‘Log 2’ with their respective
ground truth templates: ‘Example log <*>’ and ‘Log <*>’, an accuracy of 1 can be ob-
tained only if both parsed logs match the ground truth templates. For a single log message,
log template accuracy can be either 1 or 0, for a successful or unsuccessful match respec-
tively. This metric is, compared to the state of the art in evaluation, strict, as parsed log have
to perfectly match their respective ground truth templates. Intuitively, a higher log template
accuracymeans better performance, and a lower accuracy means worse performance.
Edit-distance is defined as the Levenshtein distance [44]. As it is desirable to have an es-

timate of how close the parsed template is from its respective ground truth label, this metric
is as a more fine-grained alternative to log template accuracy. Specifically, it represents the
minimum number of operations required to transform a parsed log into its ground truth
correspondent. Compared to the log template accuracymetric, edit-distance is less strict,
and is able to provide a finer-grained estimate of how close the parsed template is from the
ground truth. Intuitively, a high edit-distancemeans poor performance, whereas, a low
edit-distance means good performance.

3.4 Log parsing’s performance on publicly available data

Based on the goals of log parsing and the performance metrics considered in the previous
section, parsers were tested on log data in the context of modern software ecosystems.

To test log parsers, experiments are run on nine publicly available datasets. These have
been used extensively in the field for evaluations and as a consequence, the log parsing
methods considered are expected to obtain the best log template accuracy and edit-distance
scores, compared to parsing combined data or industry data. Additionally, parsers are ex-
pected to obtain best scores on these datasets, as they contain logs generated within less

21



complex software environments, compared to modern large scale systems.
The results of our experiments are summarized in Table 3.1 and 3.2. The experiments

were run on a dual socket AMD Epyc2 machine with 64 cores in total (with a dual Nvidia
RTX 2080Ti graphics card setup for NuLog). Note that, across the different datasets and
methods, an average log template accuracy of 0.2 is obtained. In contrast, previous reports
obtained parsing accuracy average results of 0.67. However, parsing accuracy is not reflec-
tive of the log parsing goal, and previous results therefore misrepresent the quality of ex-
isting solutions. Specifically, one might think that an average 0.67 parsing accuracy repre-
sents matching 1200/2000 templates perfectly, whereas, the actual number of templates
matched, based on log template accuracy is 400/2000. Thus, our results differ from pre-
vious estimates by a large margin, and highlight the incompleteness and ambiguity of the
de-facto standard for evaluation in the field.

Furthermore, we observe that accuracies seem to correlate for particular datasets. For ex-
ample, most methods obtain accuracies of approximately 0.6 for the Apache dataset, 0.3 for
BGL, 0.6 forHPC, 0.1 for Spark, 0 forHDFS. This indicates that methods rely on dataset-
specific hard-coded rules and heuristics. NuLog, on the other hand, is (notably more) ro-
bust with an average accuracy of 0.47. Based on this observation, we argue that it is worth-
while to consider methods that are not heavily reliant on hard-coded rules and heuristics
but instead employ methods based on machine learning that, when trained well, have the
potential to generalize better in practical applications.

RQ2.2. Our findings indicate that parsers are not able to generate templates that match
their respective ground truth templates, and compared to the previous estimates in the
field, we discover that the actual performance differs by a large margin. We observeNuLog
as being the only exception, a method that proved to be robust to the various datasets, com-
pared to the rest of the methods. We believe that this is a consequence of being intrinsically
designed to move away from hand-crafted rules.

3.5 Log parsing’s performance in modern software ecosystems

To answer the research question, we test methods on a dataset that is intended to emulate
industry data, and on industry data generated within the software ecosystem of a large in-
ternational financial institution. The results can be found in the following sections.

3.5.1 Combined dataset

To test parsers on highly diverse log data, we create a dataset that represents a contemporary
software ecosystem. Specifically, we combine the nine publicly available datasets intro-

22



Table 3.1: Log template accuracy results after running each method 10 times, for each dataset. The measurements are
averaged over 10 runs.

Dataset Drain IPLoM LenMa LFA LKE LogCluster LogMine LogSig MoLFI NuLog SHISO SLCT Spell

Apache 0.694 0.694 0 0.688 0 0 0.694 0 0.270 0.560 0 0.424 0.694
BGL 0.341 0.292 0.082 0.230 0.057 0.067 0.220 0.081 0.324 0.853 0.064 0.207 0.196
HDFS 0 0 0 0 0 0 0 0 0.435 0 0 0

HealthApp 0.238 0.158 0.136 0.149 0.133 0.138 0.220 0.126 0.166 0.341 0.041 0.322 0.152
HPC 0.620 0.638 0.632 0.609 0.360 0.632 0.632 0.509 0.632 0.827 0.226 0.661 0.530
Mac 0.224 0.041 0.132 0.101 0.172 0.162 0.228 0.118 0.042 0.274 0.163 0.148 0.032

OpenStack 0.018 0 0.018 0.008 0.010 0.010 0.010 0.010 0 0.359 0.018 0.119 0
Spark 0.194 0.192 0.004 0.190 0.001 0.006 0.038 0 0.208 0.204 0.004 0.543 0.192

Windows 0.159 0.001 0.154 0.142 0.148 0.153 0.156 0.150 0.006 0.387 0.151 0.140 0.004

Avg. 0.276 0.276 0.128 0.235 0.128 0.129 0.244 0.110 0.183 0.471 0.074 0.284 0.200

Table 3.2: Edit‐distance results after running each method 10 times, for each dataset. The measurements are averaged
over 10 runs.

Dataset Drain IPLoM LenMa LFA LKE LogCluster LogMine LogSig MoLFI NuLog SHISO SLCT Spell

Apache 10.426 10.442 13.760 10.576 14.872 16.274 10.426 14.456 10.179 4.679 12.648 11.234 10.442
BGL 4.930 6.882 8.373 12.524 12.582 12.955 18.598 11.921 10.969 2.981 8.630 9.841 7.900
HDFS 8.820 16.208 10.762 30.819 17.940 28.340 16.524 18.989 19.843 2.867 10.114 13.641 9.274

HealthApp 18.502 11.882 16.540 20.277 28.422 16.844 19.598 17.088 21.859 11.595 24.430 13.840 8.540
HPC 2.015 2.323 2.906 3.182 7.649 3.580 3.218 4.419 4.845 1.275 7.854 2.625 5.129
Mac 19.882 20.928 19.984 41.804 26.260 21.328 17.048 28.043 28.273 21.417 19.810 34.560 22.593

OpenStack 28.386 23.330 18.535 28.138 29.173 31.486 23.980 21.881 67.894 5.605 18.582 20.986 27.984
Spark 3.532 5.246 10.945 9.178 18.116 17.082 16.004 12.968 14.146 2.921 7.910 6.028 6.129

Windows 6.172 15.758 20.662 10.238 11.834 6.967 6.919 7.667 11.943 6.067 5.624 7.006 4.406

Avg. 11.407 12.555 13.607 18.526 18.539 17.206 14.702 15.281 21.106 6.600 12.8445 13.307 11.377

Table 3.3: Log template accuracy results after running each method 10 times, for each dataset. The measurements are
averaged over 10 runs.

Dataset Drain IPLoM LenMa LFA LKE LogCluster LogMine LogSig MoLFI NuLog SHISO SLCT Spell

Combined 0.258 0.214 0.140 0.180 0.140 0.128 0.258 0.092 0.180 0.323 0.067 0.280 0.186
Industry 0.056 0.041 0.001 0.022 0.001 0.002 0.054 0 0.048 0.050 0.002 0.034 0.041

Table 3.4: Edit‐distance results after running each method 10 times, for each dataset. The measurements are averaged
over 10 runs.

Dataset Drain IPLoM LenMa LFA LKE LogCluster LogMine LogSig MoLFI NuLog SHISO SLCT Spell

Combined 17.302 14.094 18.559 24.144 27.633 21.306 15.858 24.756 19.021 8.721 21.791 22.274 17.454
Industry 27.201 24.122 32.280 41.960 68.551 47.006 23.506 37.911 49.145 23.239 31.908 46.690 24.664

duced in the previous section. This dataset is more reflective of industry because it is more
heterogeneous, which is something we expect in industry, due to howmodern software
subsumes various components that can generate different types of log data, for example,

23



logs that are produced within different programming languages and frameworks. Thus,
this dataset is considered as the baseline for estimating how log parsers perform in practi-
cal settings, and a combined dataset is created by drawing a uniform sample across the nine
datasets of 2k log messages†.

We repeated our previous experiment on this combined dataset, and the results can be
found in Table 3.3 and Table 3.4. A comparison between the homogeneous and the hetero-
geneous case indicates that methods show a marked performance drop. We attribute this
result to the limited variability of logs that originate from a specific system. Specifically, it
is expected for log parsers to separate between the constant and variable part of a message
by leveraging access to similar messages that are different only in terms of variables. For ex-
ample, considering the following log messages: ‘Template log 1’ and ‘Template log 2’, it
is expected for methods to leverage the similarity between these two, and to eventually dis-
cover the underlying template: ‘Template log <*>’. However, if log data has more diver-
sity and less logs that originate from the same system, the performance takes a substantial
hit in terms of log template accuracy and edit-distance, as methods are not able to discover
patterns in the data as easily. Consequently, as methods have to parse the same amount of
log data (2k) as in the previous experiment, but with less logs from the same distribution
(system), it becomes harder for parsers to recognize variables and to generate quality tem-
plates. We know that methods rely on having access to these types of features (similar logs
with different variables) to be able to discover patterns in data. However, this is not the case
with highly diverse logs. Thus, we argue that it is worthwhile creating methods that are able
distinguish between constants and variables in a general sense, without relying on heuris-
tics.

3.5.2 Industry dataset

A labeled dataset of 2k samples was gathered from the software infrastructure of a large in-
ternational bank. The performance obtained on industry data is subpar, and our findings
indicate that log parsing is in fact harder to apply in industry settings. The results for run-
ning log parsers on industry data can be found in Table 3.3 and Table 3.4. The highest log
template accuracy is roughly 0.05, which means that the best performing methods parse
only 100/2000 log messages correctly. Thus, applying such parsers in production settings is
problematic.
RQ3. Based on the experimental results and an error analysis, in the following para-

graphs, we answer the third research question by analyzing the reasons behind obtaining
†To obtain 2k log lines, we sampled two extra log lines from theMac dataset. We choose this dataset

for adding two extra samples because it contained the biggest log diversity, having the highest number of
underlying templates.

24



such poor performance scores on industry data.
Data heterogeneity/diversity. One of the factors that resulted in the poor results is

data heterogeneity. Specifically, data diversity in modern systems is a major problem for
parsers, making them unable to identify the underlying templates correctly. In our exper-
iments we discover that the properties of the data found in the industry dataset are very
similar with the properties of the combined dataset, as logs originate similarly from dif-
ferent data distributions (systems), as a consequence of being centralized. In comparison
to the combined dataset, the log diversity found in the industry dataset is higher, but the
properties of the dataset are intrinsically the same (clusters of log data generated by differ-
ent systems). Compared to the individual datasets, the log diversity found in the industry
dataset is incomparably higher, as it is generated by a incomparably larger number of soft-
ware components. Consequently, this makes it extremely difficult for parsers to discover
the underlying templates on industry data, which is reflected in the log template accuracy
results, and thus the problem is arguably harder than expected from the results obtained on
the combined dataset. In terms of edit-distance we observe a drop in performance, which
can also be attributed to the aspects discussed in the next paragraphs.
Jargon and high information denseness. Another factor that hinders parsers perfor-

mance is the jargon present in data, and the high information denseness. Compared to
publicly available data, for a production log, templates and parameters are hard to sepa-
rate and identify. For example, parameters can contain various alphanumeric characters,
but also symbols that make it hard for parsers to generate templates that match the corre-
sponding ground truth labels. Specifically, parsers rely on heuristics that prove not working
on industry data. Additionally, another troublesome aspect is the way in which log mes-
sages are cascaded. For example, it might be that an error occurs on a specific infrastructure
resource, which then sends that information to other resources which concatenate and dis-
play similar information. In these cases, parsers have to be robust against nested templates.
Labeling industry log data. Creating labeled industry data is a hard task, which in turn

affects negatively estimating the performance, as subjectivity is added during the labeling
process. Due to data heterogeneity and jargon, labeling industry log data is a harder task
than labeling publicly available data, even for experts, as getting access to the ground truth
code logging statements is something very difficult and, in some cases, even impossible.
Specifically, we found that the biggest issue with labeling industry log data is that its nature
makes deciding between what is a constant and variable in a log message very hard. Most
messages are formatted in ways that generate ambiguity when identifying the templates.
For example, messages can contain many concatenated symbols, or have duplicated text
concatenated, which makes it difficult to decide on a ground truth.

25



3.5.3 Generality of our findings

We analyze‡ the similarities and differences between the publicly available log datasets, the
combined dataset, and the industry dataset, and show how combined data is of the same
nature as industry data, in contrast to most publicly available data.

In Table 3.5 we present the different measurements used to quantify the heterogeneity
of the log datasets used in our experiments. We use three metrics to serve as a proxy for the
heterogeneity of log data, and we draw comparisons. Specifically, we choose three metrics
for the analysis of each dataset, namely: unique number of words, unique number of charac-
ters, unique number of log lines’ character length.

In Figure 3.1, Figure 3.2, and Figure 3.3 we see how the Combined and Industry data
are always toward the top right of each visualisation, proving that these data are inherently
more heterogeneous, as they combine more characters, words, etc. However, we also ob-
serve that a publicly available dataset also scores high in terms of the metrics considered.
The reason for this is that the nature of this particular dataset is actually similar to industry
data, being the only exception from the publicly available data.

Table 3.5: Statistics for the log datasets analyzed.

Dataset Apache BGL HDFS HealthApp HPC Mac OpenStack Spark Windows Combined Industry

Word level 874 2068 3599 1512 510 2981 1445 1970 1206 3123 4421
Character level 46 75 56 71 65 90 72 70 82 91 92
Log length level 9 114 59 55 50 186 50 63 66 157 181

0 20 40 60 80 100
Unique number of characters

0

1000

2000

3000

4000

Un
iq

ue
 n

um
be

r o
f w

or
ds

Apache
BGL
HDFS
HealthApp
HPC
Mac
OpenStack
Spark
Windows
Combined
Industry

Figure 3.1: Unique number of characters versus unique of
words.

0 25 50 75 100 125 150 175 200
Unique number of log lines' character length

0

1000

2000

3000

4000

Un
iq

ue
 n

um
be

r o
f w

or
ds

Apache
BGL
HDFS
HealthApp
HPC
Mac
OpenStack
Spark
Windows
Combined
Industry

Figure 3.2: Unique number of log lines’ character length
versus unique number of words.

‡Analysis’ code is available at https://github.com/spetrescu/analysis-data-heterogeneity.

26

https://github.com/spetrescu/analysis-data-heterogeneity


0 25 50 75 100 125 150 175 200
Unique number of log lines' character length

0

20

40

60

80

100

Un
iq

ue
 n

um
be

r o
f c

ha
ra

ct
er

s

Apache
BGL
HDFS
HealthApp
HPC
Mac
OpenStack
Spark
Windows
Combined
Industry

Figure 3.3: Unique number of log lines’ character length versus unique number of characters.

3.6 Discussion

The increase in data heterogeneity witnessed over the past decades makes applying current
log parsing methods in industry questionable. As in practice automated log analysis pro-
cesses rely on log parsing methods, we investigate their performance on heterogeneous data,
to decide if they are applicable. Thus, we investigate the log parsing field, and discover that
the field adopted incomplete evaluation strategies. To address this, we consider metrics that
are aligned with the goal of log parsing, and evaluate methods accordingly. We discover that
the methods perform poorly, which makes their applicability questionable for facilitating
quality input for downstream tasks. Furthermore, we combine publicly available logs into
a dataset that emulates industry data, and compare it to both publicly available data and
industry data. We evaluate methods on these datasets and discover that (1) the performance
is poor as methods are not designed to account for jargon-and-information-heavy data ,
(2) industry data may be harder to label than expected, and (3) the paradigm needs to be
shifted to align with industry requirements.

In this chapter, we contribute by answering research questions regarding (1) what is the
goal of log parsing, (2) how is log parsing currently evaluated, (3) what metrics can be con-
sidered for evaluating log parsing methods in a way that is aligned with its original goals,
(4) how do log parsing methods perform using the considered metrics, (5) what is the per-
formance of log parsers in the context of modern systems, and (6) what are the main chal-
lenges for applying log parsing in industry.

27



4
Entity parsing: a new paradigm for parsing

log messages

The log parsing literature claims to transform raw logs into “structured information”, but
at a closer look, this claim becomes questionable, as the structure generated by log parsing is
not necessarily the same as what might be reasonable to expect. Specifically, after an investi-
gation of the field, we discover that the claim holds only for a very restricted interpretation
of “structured”. In the current log parsing paradigm, the structure created from raw logs
only allows for a binary type of classification of logs’ textual content, namely only differen-
tiating between constants and variables. This creates unclarity, as it would be reasonable for
one to assume that “structured information” represents a data structure that encompasses
a variety of entities, rather than only two entities – the static and variable parts of logging
statements. Consequently, in light of this observation, the nature of the output provided
by log parsing makes its claimed benefits questionable.

For creating structured information, it is desirable to map various entities such as soft-
ware components’ identifiers, IP addresses, etc., and to add these as values to a data struc-
ture that contains key-value pairs for the various fields of interest. However, this type of
output is currently not supported by the log parsing paradigm, thus preventing the creation
of a maximally feature-rich representation for downstream tasks. To better understand
the current limitations of the field, in Figure 4.1 we visualize the difference between the
claimed benefits of log parsing versus its actual capabilities. We consider this comparison

28



Machine: “AbxHn”

“Machine AbxHn currently at 80% CPU”

Log parsing
(claimed)

Raw log

Log template: “Machine <*> currently at <*> CPU”

Structured information

CPU: “80%”

Variables: [“AbxHn”, “80%”]

Log template: “Machine <*> currently at <*> CPU”

Structured information

Log parsing
(actuality)

Figure 4.1: Comparison between the output claimed to be generated by log parsing versus the actual output. In reality,
log parsing separates between constants and variables, and generates a very limited type of structured information.
However, it is desirable to obtain actual structure from raw log data, such as the data structure on the left side of the
figure.

Block ID: “blk_358750814”

Log template: “Received block <BLOCK_ID> of size <SIZE> from <IP_MACHINE>”

Rich structured information

Size: “67108864”

“Received block blk_358750814 of size 67108864 from 10.251.42.84”

Raw log

IP machine: “10.251.42.84”

Figure 4.2: Example with an instance of rich structured information. For a given application, there is a predefined set
of fields, which are then identified in runtime logs. It can be the case that for a given log, certain entities need not be
matched, and for specific keys in the dictionary to remain empty.

to be of utmost importance, as it is misleading for both researchers and practitioners to
assume that log parsing is designed for transforming raw logs into actual structured infor-
mation. Thus, to remove the unclarity around the claimed “structured information”, we
define rich structured information as a dictionary that contains key-value pairs that corre-
spond to predefined fields of interest in a particular software system, and their respective
values matched in runtime logs. We visualize an instance of rich structured information in
Figure 4.2. Here, we observe that a raw log is transformed into a dictionary, where the keys
are predefined and the values are extracted from the raw log.

29



However, compared to only identifying variables and constants, it is harder to create rich
structured information, as this implies adding an extra layer of complexity to the problem of
log parsing, which has yet to be solved in the first place. Specifically, as the literature has yet
to produce clear winners for solving log parsing, the key question that begs to be asked is:
“why to tackle a problem that is actually more complex, instead of solving the less complex
one first?”. While this question is reasonable, we still believe that there is merit in trying to
generate rich structured information, instead of focusing on solving log parsing. Specifically,
we argue that solving the problem of generating rich structured informationwould bring
incomparably more benefits than solving log parsing, as it would allow for abstracting away
from raw logs, toward a representation that is incomparably more meaningful. Actually,
by solving the problem of generating rich structured information, log parsing would be
automatically solved, as the former encompasses the latter. Lastly, from the perspective of
generating rich structured information, there is no point in solving log parsing first, as that
would not move us closer to the initial goal of creating structure from raw log data.

Nevertheless, creating rich structured information involves great challenges, associated
with modern systems’ log data heterogeneity and difficulty in accessing systems’ source
code. Specifically, logs generated by modern systems are highly heterogeneous, and iden-
tifying fields of interest requires solutions that account for a tremendous number of log
formats. Secondly, to create solutions that are fine-tuned to systems’ intricacies, access to
source code might be required. However, accessing source code can be problematic for sys-
tems that have a highly complex underlying software infrastructure, and sometimes even in-
feasible as the subsumed software components are hard to identify and analyze. To address
these challenges, (1) solutions that are robust to log data heterogeneity have to be created,
and (2) source code access has to be provided, or potential ways to bypass that have to exist.

Tackling generating rich structured information is undoubtedly worthwhile, as long as
solutions consider leveraging (1) a general understanding of what entities are by means of
training on existing log corpora, and (2) source code, for fine-tuning to systems’ intricacies.
Specifically, to create solutions that are both robust and fine-tuned for particular use-cases,
we firmly believe that there is no way around tackling the tremendous log heterogeneity of
systems without leveraging (1) the tremendous amount of publicly available log data, and
(2) systems’ source code. Consequently, we would like to discuss addressing the limitations
of the previous log parsing paradigm by tackling the aforementioned challenges. Thus, in
this chapter we answer the following research questions:

RQ4: How is the log parsing paradigm aligned with industry goals, and how can
that be improved?

RQ4.1: How to discover representative entity types for variables present in logging
statements?

30



RQ4.2: How can we generate a dataset that operates in the entity parsing paradigm?

RQ4.3: How to create an entity parsing dataset that is representative of industry?

RQ4.4: How to tackle entity parsing to provide an accurate and scalable solution?

4.1 Current limitations of log parsing

The claim that log parsing transforms raw logs into structured information is misleading,
as in actuality the structure obtained is limited to a binary classification of logs’ textual con-
tent, namely only to identifying static and dynamic parts in log messages. Consequently,
log parsing is unable to provide rich structured information output, as the current paradigm
is not designed to account for differences between identified variables. Although there are
contexts where output that does not differentiate between types of variables can be useful,
for example, when mining frequent patterns in a given batch of data, downstream tasks
benefit from a feature-rich representation of the input data, and, as log parsing cannot facil-
itate that, the current paradigm is incomplete.
RQ4. Log parsing is not aligned with what is desirable in industry, namely abstract-

ing away from raw logs toward structured information. Specifically, the claim according
to which log parsing transforms raw logs into structured information is misleading, as its
output fails to provide actual structure, being unable to separate between the various enti-
ties present in log messages, and rather only being able to differentiate between their static
and variable textual content. For example, log parsing is not able differentiate between IP
addresses, integers, software components’ identifiers, etc., toward mapping entities that
are of interest in log messages. In industry, it is desirable to account for the differences be-
tween these, as this (1) generates a feature-rich representation of the input for downstream
tasks, and (2) may lead to acquiring critical insights from the logs. Thus, log parsing is not
aligned with what is necessary in practice, namely abstracting away from raw data toward
structured information. As a consequence, its output is incomplete, which makes its appli-
cability questionable.
Improving the current paradigmmeans addressing the limitations of log parsing’s out-

put. Specifically, improving log parsing means generating rich structured information out-
put, transforming raw logs into a structure that contains key-value pairs that correspond to
predefined fields of interest for a particular system, and their respective values matched in
runtime logs. We define this way of transforming raw logs into structured information as
entity parsing – a paradigm in which the focus is to identify various entities/fields of inter-
est, and in turn generating rich structured information.

31



Runtime log 3

…

Runtime log 2

Runtime log 1 Rich structured information 1

Rich structured information

Rich structured information

Runtime logs

…

Rich structured information

Input Output
Entity parser Rich structured information 2

Rich structured information 3

Figure 4.3: Entity parsing’s goal. Runtime logs are transformed into rich structured information.

4.2 What is the entity parsing paradigm?

Log parsing is not designed to generate rich structured information from raw logs, making
the nature of its output incomplete. Furthermore, log parsing fails to provide quality log
templates for downstream tasks, demonstrated by the poor performance obtained on pub-
lic and industry data. To address these limitations, we introduce entity parsing, a paradigm
that abstracts away from raw logs, generating rich structured information, while assuring
high quality log templates. We visualize entity parsing’s main goal in Figure 4.3.
Entity parsingmay leverage (1) a general understanding of what entities are by means

of using existing log datasets for pretraining, and (2) systems’ source code for fine-tuning
to their intricacies. Specifically, methods that operate in the entity parsing paradigmmay
leverage (1) public log data, and (2) systems’ log data, to create solutions that are able to
generate rich structured information. We visualize the entity parsing paradigm in Figure
4.4. Here, an “entity parser”* leverages both (1) a dataset intended for acquiring a general
understanding of entities in log messages, and (2) a dataset intended for fine-tuning, com-
prised of logs generated by a particular system. To generate the latter, access is required to
both (1) runtime logs generated by the particular system and (2) the system’s source code
for generating ground truth labels.

System source code

Dataset for fine-tuningSystem runtime logs

General entity parsing dataset

Entity parsing training dataSystem-related data

Training
Entity parser

Figure 4.4: Entity parsing paradigm. An entity parser can operate in this paradigm by pretraining on a general entity
parsing dataset, and subsequently fine‐tuning to the intricacies of a system by means of using a dataset that contains log
data generated within its infrastructure.

*“Entity parser” refers to a method that operates in the entity parsing paradigm.

32



N variables

variable_types_discovery

”Affinity Propagation”

1. ”blockFile”
2. ”responseId”
3. ”container.getState()”
4. ”Joiner.on(", “).join(targets)”
. . .
N. ”nodes[j]”

M types (clusters)
1. [”responseId”, ”targetId”, …]
2. [”request”, ”manifest”, …]
. . .
M. [”p”, ”i”, …]

Figure 4.5: Discovering types of variables using Affinity Propagation. We mine variables from software repositories, and
subsequently cluster these together to discover generalizable entity types.

4.3 Representative fields in rich structured information

Generating rich structured informationwithin the entity parsing paradigm implies recog-
nizing various entities in log messages, such as IP addresses, software components’ identi-
fiers, system paths, etc. However, considering generalizable entities is challenging, as entity
types in log messages are something inherently subjective, thus open to interpretation. For
example, it might be reasonable for one to consider “system path” as an entity type, as this
type of variable can generally be found in software systems’ logging statements, whereas for
another person to consider it irrelevant. Nevertheless, there is merit in deciding on general
types of variables to generate rich structured information, and, in case particular types are
not applicable in the context of a specific application, allowing for reconsidering entities.

Defining relevant types is challenging, as the right trade-off between generality and speci-
ficity has to be considered. However, if the right trade-off is considered, the benefits of rec-
ognizing entities are tremendous, enabling downstream tasks to use rich structured infor-
mation. Thus, to tackle this, we mine variables’ names logged in publicly available software
code, and analyze them by means of clustering, assuming that there is a connection be-
tween variables’ names and entity types. However, as the clustering of variables’ names may
change with the inclusion or exclusion of data, this means that one might be influenced in
dropping/adding types that were initially relevant/irrelevant. Furthermore, as it might be
the case for specific types to be irrelevant for particular systems, there needs to exist the pos-
sibility of reconsidering types if (1) more data is added to the analysis, or if (2) specific types
are not applicable to the particularities of an application.

To cluster variables’ names, we leverage an unsupervised clustering algorithm, designed
for clustering textual data, namely Affinity Propagation. We choose this algorithm as (1) the
desired number of clusters is not known beforehand, and (2) as the objective is to cluster
words, instead of sentences, or large pieces of text. In Figure 4.5 we visualize Affinity Prop-
agation’s workflow, namely for a given list ofN words it is able to generateM types, which
are called “exemplars”. Consequently, after mining variables in software repositories, we
run Affinity Propagation, and analyze† its output to decide on types that might generalize

†Code and data are publicly available at https://github.com/spetrescu/affinity-propagation-entity-types.

33

https://github.com/spetrescu/affinity-propagation-entity-types


0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Exemplar size

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80

Nu
m

be
r o

f o
cc

ur
en

ce
s

Affinity propagation clustering

Figure 4.6: Example of clustering of variables example using Affinity Propagation. The results seem to follow a power
law distribution, which means that only a few clusters have a large size, in comparison to a high number clusters
which have a rather low size. To generate this histogram we used the following hyper‐parameters: random_state=5,
affinity=“precomputed”, damping=0.5, max_iter=200.

Table 4.1: Types of log templates identified.

No. Entity type Example(s)
1 Generic Type specs, range, targetAddr, nnc, kvstart, avg
2 Path basePath, dataPath, filePath, filePath2, fileSrcPath, fullPath
3 Id reduceId, resID1, responseId, , results, , shellId, threadId
4 File destFiles, editFile, hostsFile, keytabFile, outputFile
5 Priority avgRespTimePriority, callVolumePriority, appPriority, priority

to other systems.
After analyzing the exemplars with a high number of variables, we decide on five en-

tity types, and display these in Table 4.1. In Figure 4.6 we plot the distributions of unique
number of exemplar sizes and number of occurrences. Many exemplars are rather low in
size, whereas there a rather low number of exemplars are high in size – being representative
of a high number of variables.
RQ4.1. To discover representative entity types for variables present in logging state-

ments, the variables of seven software code repositories have been analyzed. Specifically,
we have tackled the problem of finding entity types by leveraging Affinity Propagation. We
consider five variable types and assume these to generalize across other systems.

34



mine_logging_statements()

logmapping

Code repository

mine_variables()

list of variables:

[“idComponent”, “number”, . . .]

Output

list of logging statements:

[“LOG.info("Unit " + id);”,
 “LOG.info("Call " + compCode);”,
  . . .]

Input

Runtime logs map_runtime_to_logging_statements()

list of (runtime log, logging statement) tuples:

[(“LOG.info("Unit " + id);”, “Unit 1“),
 (“LOG.info(“Call " + compCode);”, “Call xxD“),
. . .]

Figure 4.7: Workflow of out tool that creates (‘runtime log’, ‘ground truth logging statement’)
mappings.

4.4 A dataset that operates in the entity parsing paradigm

Creating a dataset – the Entity dataset – that operates in the entity parsing paradigm, im-
plies mapping runtime logs to their underlying logging statements. For humans, it might
be straightforward to analyze a logging statement and decide if a particular runtime log
could have been generated by it, but the process would be too slow, thus requiring au-
tomating it. However, mapping runtime logs automatically to their underlying logging
statements is challenging, because of the various number of formats and types of logs that
systems contain. As a consequence, we need to address the challenges associated with (1)
creating a mapping between runtime logs and their underlying software code logging state-
ments, and (2) generating the ground truth labels for the mapped (‘runtime log’, ‘logging
statement’) tuples. To tackle these challenges, we create a tool able to (1) create a represen-
tation of the logging statements that allows for comparisons with runtime logs, (2) generate
the ground truth templates for runtime logs based on the discovered mapping. In Figure
4.7 we visualize the functionality of the tool, namely (1) mining logging statements, (2)
mining variables present in logging statements, and (3) creating the mapping from runtime
logs the underlying logging statements. Specifically, the tool is created as a Python library‡,
and in Figure 4.8 we display its design, in terms of separation of concerns.

‡Code is available at https://github.com/spetrescu/logmapping.

35

https://github.com/spetrescu/logmapping


Solution log parsing dataset

Fetch code & runtime 
logs

Discover logging 
statements & variables

Generate enriched 
logging statements

src.fetch_mapping_data src.discover src.postprocessing

Map logging 
statements to runtime 

logs

logmapping v1.0

src.logmapping

Dataset Remove META 
information Generate enriched 

logging statements

src.postprocessing

Map enriched logging 
statements to runtime 

logs

logmapping

src.mapping

Figure 4.8: Tool’s design in terms of separation of concerns.

Table 4.2: Structure of each entry in the Entity dataset.

Runtime log Log template Entity log template (Array) Variable-Entity tuples

Consequently, after running the tool’s processes, each (‘runtime log’, ‘logging statement’)
tuple discovered is saved, and appended to the Entity§ dataset. The dataset is comprised
of entries that contain four attributes, namely (1) the runtime log, (2) the ground truth
logging statement, (3) the entity log template (that replaces variables with specific entity
types), and (4) an array of (“variable’s name in logging statement”, “variable’s
entity type”). For creating the Entity dataset, we mine six available systems, for which
runtime logs are publicly available, and we display these in Table 4.3.

Table 4.3: Systems to be identified.

System Type Code available

Hadoop Distributed System GitHub
Spark Distributed System GitHub

Zookeeper Distributed System GitHub
OpenStack Distributed System GitHub
Linux Operating System GitHub

Apache HTTP Server Server Application GitHub

4.4.1 mine_logging_statements()

To create a mapping with runtime logs, we identify all the logging statements in a given
software repository. Specifically, we analyze the software code repository and iterate through

§The Entity dataset is available at https://github.com/spetrescu/entity-dataset.git

36

https://github.com/apache/hadoop
https://github.com/apache/spark
https://github.com/apache/zookeeper
https://github.com/openstack/
https://github.com/torvalds/linux
https://github.com/apache/httpd
https://github.com/spetrescu/entity-dataset.git


all the files to discover logging statements. Based on the specific programming language of
the software codebase, we leverage a series of regular expressions to mine the logging state-
ments. As most logging statements span over multiple lines, we ensure that we capture en-
tire logging statements. Lastly, the output of this function is a list of discovered logging
statements.

4.4.2 mine_variables()

For the analysis of representative fields in rich structured information, we create a function
responsible with mining all the variables found in a given list of software code logging state-
ments. Specifically, it discovers variable names present in logging statements. For example,
for the logging statement: ”LOG.info(”Call ” + compCode);” it extracts ”compCode”.
Thus, the output of this function is a list of discovered variables.

4.4.3 map_runtime_to_logging_statements()

For mapping runtime logs to logging statements, we tokenize logging statements, and lever-
age this representation for discovering potential candidates. Specifically, for each runtime
log, we check for matching all tokens of a particular logging statement, and subsequently,
based on heuristics, decide if the runtime log belongs to the underlying logging statement
or not. Below, inAlgorithm 1, we list the steps followed for mapping a runtime log to its
underlying logging statement.

Algorithm 1 Procedure for mapping runtime logs to their underlying logging statements
1. Discover raw logging statements in a software code repository
2. Process the discovered raw logging statements (remove syntax)
3. Tokenize the transformed raw logging statements
4. RemoveMETA information from runtime log messages and tokenize
5. Check for match between logging statements’ tokens and current runtime logs
6. Choose match (if applicable) from a potential list of candidates

RQ4.2. A dataset that operates in the log parsing paradigm can be generated by creating
a tool that automatically creates a mapping between logging statements and runtime logs.
Specifically, by mining the logging statements in a given software repository and by using
the respective runtime logs, using a series of transformations, a mapping between these two
can be found, and then appended as an entry to the dataset.

37



4.5 Generalisability of the entity parsing dataset

As demonstrated in the previous chapter, combining various homogeneous data (generated
by standalone applications) results in obtaining similar properties to industry data. Subse-
quently, we apply a similar strategy to construct the Entity dataset, namely to combine logs
from the systems analyzed. In Figure 4.9, Figure 4.10, and Figure 4.11 we visualise how the
proposed Entity dataset clusters together with the previously analyzed log datasets, and as
the datasets considered in the previous analysis¶ contain 2k entries, we subsequently match
that number by randomly sampling 2k entries from the Entity dataset. For sampling, to
enable reproducibility, we use a random_state=1, for pandas.DataFrame.sample.

0 20 40 60 80 100
Unique number of characters

0

1000

2000

3000

4000

Un
iq

ue
 n

um
be

r o
f w

or
ds

Apache
BGL
HDFS
HealthApp
HPC
Mac
OpenStack
Spark
Windows
Combined
Industry
Entity

Figure 4.9: Unique number of log lines’ character length versus unique number of characters.

We observe that in terms of the unique number of words, unique number of characters,
unique number of log lines’ character length, the dataset is closely aligned with the Industry
and Combined datasets, confirming once again that combining data from various systems
resulting in obtaining similar properties to industry data. To understand the differences, in
Table 4.4 we display the measurements.

Table 4.4: Statistics for the log dataset analyzed, with the addition of the 2k randomly sampled entries from the Entity
dataset.

Dataset Apache BGL HDFS HealthApp HPC Mac OpenStack Spark Windows Combined Industry Entity

Word level 874 2068 3599 1512 510 2981 1445 1970 1206 3123 4421 3429
Character level 46 75 56 71 65 90 72 70 82 91 92 93
Log length level 9 114 59 55 50 186 50 63 66 157 181 181

¶See Chapter 3, section 3.5.3.

38



0 25 50 75 100 125 150 175 200
Unique number of log lines' character length

0

1000

2000

3000

4000

Un
iq

ue
 n

um
be

r o
f w

or
ds

Apache
BGL
HDFS
HealthApp
HPC
Mac
OpenStack
Spark
Windows
Combined
Industry
Entity

Figure 4.10: Unique number of characters versus unique of
words.

0 25 50 75 100 125 150 175 200
Unique number of log lines' character length

0

20

40

60

80

100

Un
iq

ue
 n

um
be

r o
f c

ha
ra

ct
er

s

Apache
BGL
HDFS
HealthApp
HPC
Mac
OpenStack
Spark
Windows
Combined
Industry
Entity

Figure 4.11: Unique number of log lines’ character length
versus unique number of words.

RQ4.3. Modern systems subsume a tremendous amount of software components that
generate heterogeneous log data. During the log collection phase, these systems centralize a
variety of log formats, which are then subjected to analysis to distil critical insights. Conse-
quently, creating a dataset that is representative of industry implies using a similar strategy,
namely centralizing logs from various systems. As a consequence, the resulting data is het-
erogeneous, confirmed by the rather high number of unique characters, unique number of
words, and unique number of log lines’ character length, compared to public and industry
data. Thus, we would expect that if more and more logs produced by different systems
would be added to the dataset, its generalisability would increase, in turn enabling training
on more and more log formats, thus increasing possible methods’ robustness.

4.6 EntityLog - A method for tackling entity parsing

Entity parsing transforms raw logs into rich structured information, facilitating input for
downstream tasks. However, (1) log data heterogeneity and (2) the tremendous data vol-
ume generated make it challenging for creating accurate and scalable entity parsing solu-
tions. Nevertheless, for drawing actionable insights in real world scenarios, solutions need
to move away from hard-coded rules and heuristics, while parsing input data in real time
for downstream tasks. To contribute toward creating such solutions, we study the perfor-
mance of three machine learning models on the data gathered in the previous chapter, in
terms of accuracy and scalability.

We tackle entity parsing as a Named Entity Recognition (NER) [46] task. NER is typi-
cally applied in natural language processing, where supervised models are able to recognize
named entities in unstructured text. Although logs are not natural language, they still need

39



Person

Organization

LocationAlex enjoys working for Dacia in Paris.

Figure 4.12: NER in natural language.

to be interpreted by humans, and their structure resembles it (natural language) closely,
thus making it feasible to formulate the entity parsing as NER task. In Figure 4.12 we pro-
vide an example of NER’s capabilities, namely identifying a predefined set of entities in
unstructured text, and in Figure 4.13 we display the EntityLog’s‖ workflow, namely trans-
forming raw logs into rich structured information. Instead of accounting for entities that
are usually present in natural language, such as names, locations, organizations, country,
etc. we account for the entities of interest in software systems. Thus, we leverage the En-
tity dataset which allows for recognizing five entity types, namely Generic Type, Path, Id,
File, Priority. Consequently, we consider three machine learning models that are used
usually in NER, and train them to solve entity parsing. Subsequently, we evaluate their per-
formance in terms of accuracy and scalability. The experiments were run on a dual socket
AMD Epyc2 machine with 64 cores in total (with a dual Nvidia RTX 2080Ti graphics card
setup for NuLog)

"Waiting for RM" EntityLog

Log template: …

Type 1: …

Type 2: …

…

Type N: …

Rich structured information

Raw log

Figure 4.13: EntityLog’s workflow. Each incoming raw log is parsed into rich structured information.

‖Code for EntityLog is available at https://github.com/spetrescu/entity-log

40

https://github.com/spetrescu/entity-log


4.7 EntityLog’s performance

We implemented three machine learning models, namely a Linear Chain CRF, a shallow
Long short-termmemory (LSTM) neural network, and a shallow Bidirectional LSTM. The
code for these models has been made publicly available**††‡‡. We visualize the architecture
of the shallow LSTMmodel in Figure 4.14, and in Figure 4.15 we visualize the architecture
of the shallow Bi-LSTMmodel.

embedding_1_input

InputLayer

input:

output:
[(128, None)] [(128, None)]

embedding_1

Embedding

input:

output:
(128, None) (128, None, 256)

lstm_1

LSTM

input:

output:
(128, None, 256) (128, None, 1024)

dense_1

Dense

input:

output:
(128, None, 1024) (128, None, 3)

Figure 4.14: Shallow LSTM architecture used in our experiments.

embedding_input

InputLayer

input:

output:
[(128, None)] [(128, None)]

embedding

Embedding

input:

output:
(128, None) (128, None, 256)

bidirectional(lstm)

Bidirectional(LSTM)

input:

output:
(128, None, 256) (128, None, 2048)

dense

Dense

input:

output:
(128, None, 2048) (128, None, 3)

Figure 4.15: Bi‐LSTM architecture used in our experiments.

**Code for the LSTMmodel is available at https://github.com/spetrescu/lstm-ner-log-parsing
††Code for the Bi-LSTMmodel is available at https://github.com/spetrescu/bi-lstm-ner-log-parsing
‡‡Code for the CRFmodel is available at https://github.com/spetrescu/crf-ner-log-parsing

41

https://github.com/spetrescu/lstm-ner-log-parsing
https://github.com/spetrescu/bi-lstm-ner-log-parsing
https://github.com/spetrescu/crf-ner-log-parsing


In Table 4.5 we display the results of our experiments. We observe that the CRFmodel
obtains better results in terms of accuracy, compared to the LSTM and Bi-LSTMmodels.
However, it scales poorly in comparison to the other two models.

Table 4.5: Models’ performance. We used an 80/20 train/test split. Batch size is 128, except for the CRF model as it
cannot do batch inference due to its Viterbi decoding.

Model Accuracy Throughput

LSTM 0.64 13890 pred/s
Bi-LSTM 0.77 7172 pred/s
CRF 0.94 100 pred/s

We consider the Bi-LSTMmodel to be the “winner”, as it obtains a better accuracy
than the LSTMmodel, while still being able to process a relatively high number of logs.
Specifically, when evaluated on the Entity dataset, with a 80/20 train/test split, the chosen
model achieves an accuracy of 77% in terms of correctly identified entities, and the model’s
throughput is 7172 predictions per second. Thus, for using EntityLog in practice, one can
either use the already trained model, or fine tune by providing more data. In comparison
to how log parsing methods were previously evaluated, namely without a train/test split,
we address this and test on unseen data that was not used during training. Consequently,
in terms of the generalizability of our results, we believe that estimates for solving entity
parsing are strictly dependent to the data used for training.

4.8 Discussion.

Log parsing methods perform poorly, which makes their output unusable for downstream
tasks. Additionally, log parsing is not designed to generate templates that contain vari-
able types, which is something desirable in practice. To address this, we propose a novel
paradigm, within which the goal is to (1) identify entity types, whilst (2) generating high
quality templates. Entity types are defined by leveraging variables found in logging state-
ments, in various software repositories. Subsequently, we construct a dataset by mapping
logging statements to their respective runtime logs. This dataset – the Entity dataset – can
serve as benchmark for training and evaluating future methods that wish to operate within
this paradigm. Specifically, the dataset is comprised of entries that contain (1) the run-
time log, (2) the ground truth logging statement, (3) the entity log template (that replaces
variables with specific entity types), and (4) an array of (“variable’s name in logging
statement”, “variable’s entity type”) tuples.

Subsequently, as parsing log data within modern systems is infeasible using hard coded
rules and heuristics, it is desirable to parse logs using a method that is robust to logs’ het-

42



erogeneity. To do so, we propose a method that leverages a neural network architecture
to parse logs, and that has the ability to operate within the entity parsing paradigm, hence
able to differentiate between different types of variables in log messages in a general sense.
To decide on which model to use for the proposed method – EntityLog, we tested three
models, namely an LSTM, an Bi-LSTM, and a CRF. Subsequently, we chose the one that
yielded the best performance in terms of accuracy and scalability (throughput, namely
predictions per second), as we have leveraged the dataset created in the previous chapter
to train and evaluate the model. Specifically, after running experiments, we chose the Bi-
LSTM, as it was able to obtain the best performance in terms of accuracy and scalability,
namely 77% accuracy and 7172 predictions per second.

To summarize, in this chapter, we have presented the entity parsing paradigm and have
contributed by answering research questions regarding (1) how to consider types of log
template variables that are general enough and also specific enough, (2) how can a dataset
that operates within this paradigm be generated, (3) how generalizable is the dataset, (4)
how can entity parsing be tackled by evaluating three machine learning models in terms of
accuracy and scalability.

43



5
Discussion & Future Work

In this work we have discovered research gaps within the field of log parsing, and pro-
posed solutions to address these. In the following sections we (1) summarize our contri-
butions, (2) provide answers to the research questions that were tackled throughout this
manuscript, and (3) discuss future work.

5.1 Discussion

The amount of data generated within modern software systems is tremendous, making it
infeasible to rely only on manual analyses. Thus, implementing automated log analyses is
necessary to distil actionable insights from these low signal-to-noise ratio data. Thus, to
contribute toward tackling automating the log analysis processes, we have looked at one
of its most important steps, namely log parsing. We have investigated the various ways in
which it has been approached, and evaluated the 14 most recognized log parsing methods
found in literature. In the process, we have discovered that the field has adopted incom-
plete evaluation metrics, and in turn we have considered metrics that address the limita-
tions of the former. Furthermore, in an attempt to apply log parsing within the infras-
tructure of large international financial institution, we have conducted an investigation
of how log parsing methods perform on industry data. As a consequence, we have discov-
ered that log parsing is not ready for industry, as its paradigm is not aligned with industry’s
requirements. To address this, we have proposed a novel log parsing paradigm, namely en-

44



tity parsing, which aims to identify entities in log messages, toward generating structured
information from raw logs. Subsequently, we have constructed a dataset intended to serve
as a benchmark for the field, for training and evaluating possible entity parsing methods.
Lastly, we have proposed a method able to operate in the entity parsing paradigm, designed
to move away from hand-crafted rules and heuristics. Specifically, we have proposed En-
tityLog, a method that uses a Bi-LSTM to transform raw logs into structured information,
able to obtain an accuracy of 77% (for identifying entities) and a throughput of 7172 pre-
dictions per second.

To summarize our conclusions, we present the answers to the research questions tackled
throughout this manuscript.

RQ1: How has log parsing been approached?

We discover that in the literature there are currently 25 methods that propose solving
log parsing. We observe that these can be categorised in two main branches, online
and offline methods. By studying the trends in the log parsing literature, we outline
the most preferred underlying algorithms for log parsing methods, namely clustering
and frequent pattern mining.

RQ2: What is the goal of log parsing and how is that evaluated in literature?

To remove the ambiguity around the goal of log parsing once and for all, we define
log parsing as the task of identifying log templates in a runtime log message, to ex-
tract the static parts that were present in the original software logging statements.
Specifically, log parsing structures raw log data into (1) the underlying log templates
corresponding to the static part of the logging statements in the software, (2) their
respective parameters corresponding to the dynamic part of the logging statements,
and (3) log meta information.
However, in the literature, evaluation metrics have a somewhat different focus.
Specifically, instead of evaluating the quality of the output produced by log parsing,
the main trend is to evaluate log parsing’s ability to classify logs. Thus, in the liter-
ature there is a misalignment between log parsing’s goal and the way it is currently
evaluated.

RQ2.1: How can log parsers be evaluated to best align with the goal of log parsing?

To ensure that evaluation reflects the goal of log parsing, we consider two evaluation
metrics that align best with the goal of log parsing, namely log template accuracy and
edit-distance. Log template accuracy is defined as the ratio of the number of correctly

45



parsed logs, over the total number of logs, and edit-distance is defined as the Leven-
shtein distance. Log template accuracy and edit-distance aim to asses the quality of
templates generated, as they are intended to compare parsed logs against their respec-
tive ground truth templates. Consequently, this aligns perfectly with the goal of log
parsing. Finally, we argue that it is necessary for the field to adopt metrics based on
textual similarity, as they quantify the ability of parsers to produce templates that are
evaluated against the ground truth labels, thus providing estimates for the quality of
the output generated.

RQ2.2: What is the performance of log parsers on publicly available data?

Our findings indicate that parsers are not able to generate templates that match their
respective ground truth templates, and compared to the previous estimates in the
field, we discover that the actual performance differs by a large margin, making ap-
plying current log parsing methods impractical. We observeNuLog as being the only
exception, an approach that proved to be robust to the various datasets considered
for the experiments, compared to the rest of the methods. We argue that this is a
consequence of being intrinsically designed to move away from hand-crafted rules,
which is something that the field should adopt moving forward.

RQ3: What is the performance of log parsing methods in the context of modern soft-
ware ecosystems?

The performance of log parsing methods in the context of modern software ecosys-
tems is subpar, and in the following paragraphs we outline an error analysis of the
results. sData heterogeneity/diversity. One of the factors that generated the poor
results is data heterogeneity. Specifically, we find data diversity in modern systems to
be a significant issue for parsers, and makes them unable to identify underlying tem-
plates correctly. We discover that the similarity between the industry dataset and the
combined dataset is higher than the similarity between the industry dataset and the
individual homogeneous datasets. Specifically, the properties of the data found in
the industry dataset are very similar with the properties of the combined dataset, as
logs originate similarly from different data distributions (systems), as a consequence
of being centralized. In comparison to the combined dataset, the log diversity found
in the industry dataset is higher, but the properties of the dataset are intrinsically the
same (clusters of log data generated by different systems). Compared to the individ-
ual datasets, the log diversity found in the industry dataset is incomparably higher,
as it is generated by a incomparably larger number of software components. Conse-
quently, this makes it extremely difficult for parsers to discover the underlying tem-
plates on industry data, which is reflected in the log template accuracy results. Thus

46



the problem is arguably harder than expected from the results obtained on the com-
bined dataset. In terms of edit-distance we observe a drop in performance, which can
also be attributed to the aspects discussed in the next paragraphs.
Jargon and high information denseness. Another factor that hinders parsers’ per-
formance is the jargon present in data, and the high information denseness. Com-
pared to publicly available data, for a production log, templates and parameters
are hard to separate and identify. For example, parameters can contain various al-
phanumeric characters, but also symbols that make it hard for parsers to generate
templates that match the corresponding ground truth labels. Specifically, parsers rely
on heuristics that prove not working on industry data. Additionally, another trou-
blesome aspect is the way in which log messages are cascaded. For example, it might
be that an error occurs on a specific infrastructure resource, which then sends that
information to other resources which concatenate and display similar information.
In these cases, parsers would have to be robust against nested templates.
Labeling industry log data. Creating labeled industry data is a hard task, which in
turn affects negatively estimating the performance, as subjectivity is added during
the labeling process. Due to data heterogeneity and jargon, labeling industry log data
is a harder task than labeling publicly available data, even for experts, as getting ac-
cess to the ground truth code logging statements is something very difficult and, in
some cases, even impossible. Specifically, we found that the biggest issue with label-
ing industry log data is that its nature makes deciding between what is a constant and
variable in a log message very hard. Most messages are formatted in ways that gen-
erate ambiguity when identifying the templates. For example, messages can contain
many concatenated symbols, or have duplicated text concatenated, which makes it
difficult to decide on a ground truth.

RQ4: How is the log parsing paradigm aligned with industry goals, and how can that
potentially be improved?

Log parsing is not aligned with what is desirable in industry, namely abstracting
away from raw logs toward structured information. Specifically, the claim according
to which log parsing transforms raw logs into structured information is misleading,
as its output fails to provide actual structure, being unable to separate between the
various entities present in log messages, and rather only being able to differentiate
between their static and variable textual content. For example, log parsing is not able
differentiate between IP addresses, integers, software components’ identifiers, etc.,
toward mapping entities that are of interest in log messages. In industry, it is desir-
able to account for the differences between these, as this (1) generates a feature-rich

47



representation of the input for downstream tasks, and (2) may lead to acquiring crit-
ical insights from the logs. Thus, log parsing is not aligned with what is necessary in
practice, namely abstracting away from raw data toward structured information. As
a consequence, its output is incomplete, which makes its applicability questionable.
Improving the current paradigmmeans addressing the limitations of log parsing’s
output. Specifically, improving log parsing means generating rich structured infor-
mation output, transforming raw logs into a structure that contains key-value pairs
that correspond to predefined fields of interest for a particular system, and their re-
spective values matched in runtime logs. We define this way of transforming raw logs
into structured information as entity parsing – a paradigm in which the focus is to
identify various entities/fields of interest, in turn generating rich structured informa-
tion.

RQ4.1: How to discover representative entity types for variables present in logging
statements?

To discover representative entity types for variables present in logging statements, the
variables of seven software code repositories have been analyzed. Specifically, we have
tackled the problem of finding entity types by leveraging Affinity Propagation. We
consider five variable types, namelyGeneric Type, Path, Id, File, Priority), and assume
these to generalize across other systems.

RQ4.2: How can we generate a dataset that operates in the entity parsing paradigm?

A dataset that operates in the log parsing paradigm can be generated by creating a
tool that automatically creates a mapping between logging statements and runtime
logs. Specifically, by mining the logging statements in a given software repository
and by using the respective runtime logs, using a series of transformations, a map-
ping between these two can be found, and then appended as an entry to the dataset.

RQ4.3: How to create an entity parsing dataset that is representative of industry?

Modern systems subsume a tremendous amount of software components that gener-
ate heterogeneous log data. During the log collection phase, these systems centralize
a variety of log formats, which are then subjected to analysis to distil critical insights.
Consequently, creating a dataset that is representative of industry implies using a
similar strategy, namely centralizing logs from various systems. As a consequence,
the resulting data is heterogeneous, confirmed by the rather high number of unique
characters, unique number of words, and unique number of log lines’ character length,
compared to public and industry data. Thus, we would expect that if more and more

48



logs produced by different systems would be added to the dataset, its generalisabil-
ity would increase, in turn enabling training on more and more log formats, thus
increasing possible methods’ robustness.

RQ4.4: How to tackle entity parsing to provide an accurate and scalable solution?

Entity parsing can be tackled by formulating it as a We tackle as a Named Entity
Recognition (NER) task. NER is typically applied in natural language processing,
where supervised models are able to recognize named entities in unstructured text.
Although logs are not natural language, their structure resembles it closely, thus
making it feasible to formulate the entity parsing as NER task. Instead of account-
ing for entities that are usually present in natural language, such as names, locations,
organizations, country, etc. we account for the entities of interest in software sys-
tems. Thus, we leverage the Entity dataset which allows for recognizing five entity
types, namely Generic Type, Path, Id, File, Priority. Consequently, for discover-
ing the best solution in terms of accuracy and scalability, we consider three machine
learning models that are used usually in NER, and train them to solve entity parsing.
Subsequently, the best performance is obtained by a Bi-LSTMmodel, namely 77%
accuracy and 7172 predictions per second.

5.2 Future work

Given that we are moving toward a more and more digital world, systems complexity will
continue to increase, thus requiring improving the current ways of automating the log
analysis process.

For future work, we believe that is important to consolidate the Entity dataset created,
by (1) augmenting the existing data, and (2) analyzing more systems to create more map-
pings from runtime logs to underlying logging statements. Furthermore, we believe that
more functionalities could be added to our proposed tool, for example enabling the pos-
sibility of removing specific entities from training data, or enabling data augmentation
processes for training data. Moreover, it would be beneficial to investigate other machine
learning models, for optimizing the accuracy and scalability results of our method, thus in-
vestigating other potential solutions that move away from hard-coded rules and heuristics.
Additionally, we believe that it would be beneficial to test the paradigm in various industry
scenarios, to investigate if there are any additional challenges ahead for generating structure
from raw logs. Lastly, it would be interesting to test with other data representations, for ex-
ample, discovering ways in which raw logs can be represented, that might be of more value
to downstream tasks, compared to only extracting fields of interest.

49





Bibliography

[1] Agrawal, A., Karlupia, R., & Gupta, R. (2019). Logan: A distributed online log
parser. In 2019 IEEE 35th International Conference on Data Engineering (ICDE)
(pp. 1946–1951).

[2] Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). Optics: Order-
ing points to identify the clustering structure. In Proceedings of the 1999 ACM
SIGMOD International Conference onManagement of Data, SIGMOD ’99 (pp.
49–60). New York, NY, USA: Association for ComputingMachinery.

[3] Dai, H., Li, H., Shang, W., Chen, T.-H., & Chen, C.-S. (2020). Logram: Efficient
log parsing using n-gram dictionaries.

[4] Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805.

[5] Di Francesco, P., Lago, P., &Malavolta, I. (2019). Architecting with microservices:
A systematic mapping study. Journal of Systems and Software, 150, 77–97.

[6] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin,
R., & Safina, L. (2017). Microservices: Yesterday, Today, and Tomorrow, (pp. 195–
216). Springer International Publishing: Cham.

[7] Du, M. & Li, F. (2019). Spell: Online streaming parsing of large unstructured sys-
tem logs. IEEE Transactions on Knowledge and Data Engineering, 31(11), 2213–
2227.

[8] El-Masri, D., Petrillo, F., Guéhéneuc, Y.-G., Hamou-Lhadj, A., & Bouziane, A.
(2020). A systematic literature review on automated log abstraction techniques.
Information and Software Technology, 122, 106276.

[9] Fu, Q., Lou, J.-G., Wang, Y., & Li, J. (2009). Execution anomaly detection in dis-
tributed systems through unstructured log analysis. In 2009 Ninth IEEE Interna-
tional Conference on DataMining (pp. 149–158).

51



[10] Gholamian, S. &Ward, P. A. S. (2021). A comprehensive survey of logging in soft-
ware: From logging statements automation to log mining and analysis. CoRR,
abs/2110.12489.

[11] Hamooni, H., Debnath, B., Xu, J., Zhang, H., Jiang, G., &Mueen, A. (2016). Log-
mine: Fast pattern recognition for log analytics. In Proceedings of the 25th ACM
International on Conference on Information and KnowledgeManagement, CIKM
’16 (pp. 1573–1582). New York, NY, USA: Association for ComputingMachinery.

[12] He, P., Zhu, J., He, S., Li, J., & Lyu, M. R. (2018). Towards automated log pars-
ing for large-scale log data analysis. IEEE Transactions on Dependable and Secure
Computing, 15(6), 931–944.

[13] He, P., Zhu, J., Zheng, Z., & Lyu, M. R. (2017). Drain: An online log parsing ap-
proach with fixed depth tree. In 2017 IEEE International Conference onWeb Ser-
vices (ICWS) (pp. 33–40).

[14] He, S., He, P., Chen, Z., Yang, T., Su, Y., & Lyu, M. R. (2021). A survey on auto-
mated log analysis for reliability engineering. ACMComput. Surv., 54(6).

[15] He, S., Zhu, J., He, P., & Lyu, M. R. (2016). Experience report: System log analysis
for anomaly detection. In 2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE) (pp. 207–218).

[16] Huang, S., Liu, Y., Fung, C., He, R., Zhao, Y., Yang, H., & Luan, Z. (2020). Paddy:
An event log parsing approach using dynamic dictionary. InNOMS 2020 - 2020
IEEE/IFIP Network Operations andManagement Symposium (pp. 1–8).

[17] Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J., & Tilkov, S. (2018). Microser-
vices: The journey so far and challenges ahead. IEEE Software, 35(3), 24–35.

[18] Jiang, Z. M., Hassan, A. E., Flora, P., & Hamann, G. (2008). Abstracting execution
logs to execution events for enterprise applications (short paper). In 2008 The Eighth
International Conference on Quality Software (pp. 181–186).

[19] Kobayashi, S., Fukuda, K., & Esaki, H. (2014). Towards an nlp-based log template
generation algorithm for system log analysis. In Proceedings of The Ninth Inter-
national Conference on Future Internet Technologies, CFI ’14 New York, NY, USA:
Association for ComputingMachinery.

[20] Lewis, J. & Fowler, M. (2014). Microservices: a definition of this new architectural
term. MartinFowler. com, 25, 14–26.

52



[21] Liu, J., Zhu, J., He, S., He, P., Zheng, Z., & Lyu, M. R. (2019). Logzip: Extracting
hidden structures via iterative clustering for log compression.

[22] Liu, Y., Zhang, X., He, S., Zhang, H., Li, L., Kang, Y., Xu, Y., Ma, M., Lin, Q.,
Dang, Y., Rajmohan, S., & Zhang, D. (2022). UniParser: A unified log parser for
heterogeneous log data. In Proceedings of the ACMWeb Conference 2022: ACM.

[23] Maier, D. (1978). The complexity of some problems on subsequences and superse-
quences. J. ACM, 25(2), 322–336.

[24] Makanju, A., Zincir-Heywood, A. N., &Milios, E. E. (2012). A lightweight algo-
rithm for message type extraction in system application logs. IEEE Transactions on
Knowledge and Data Engineering, 24(11), 1921–1936.

[25] Messaoudi, S., Panichella, A., Bianculli, D., Briand, L., & Sasnauskas, R. (2018). A
search-based approach for accurate identification of log message formats. In Proceed-
ings of the 26th Conference on Program Comprehension, ICPC ’18 (pp. 167–177).
New York, NY, USA: Association for ComputingMachinery.

[26] Mi, H., Wang, H., Zhou, Y., Lyu, M. R.-T., & Cai, H. (2013). Toward fine-grained,
unsupervised, scalable performance diagnosis for production cloud computing sys-
tems. IEEE Transactions on Parallel and Distributed Systems, 24(6), 1245–1255.

[27] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. In Y. Bengio & Y. LeCun (Eds.), 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,May
2-4, 2013,Workshop Track Proceedings.

[28] Mizutani, M. (2013). Incremental mining of system log format. In 2013 IEEE
International Conference on Services Computing (pp. 595–602).

[29] Nagappan, M. & Vouk, M. A. (2010). Abstracting log lines to log event types for
mining software system logs. In 2010 7th IEEEWorking Conference onMining
Software Repositories (MSR 2010) (pp. 114–117).

[30] Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J., & Kao, O. (2020). Self-
supervised log parsing. CoRR, abs/2003.07905.

[31] Ning, X., Jiang, G., Chen, H., & Yoshihira, K. (2013). Hlaer : a system for heteroge-
neous log analysis.

53



[32] Oprea, A., Li, Z., Yen, T.-F., Chin, S. H., & Alrwais, S. (2015). Detection of early-
stage enterprise infection by mining large-scale log data. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (pp. 45–
56).

[33] Sedki, I., Hamou-Lhadj, A., &Mohamed, O. A. (2021). AWSOM-LP: an effective
log parsing technique using pattern recognition and frequency analysis. CoRR,
abs/2110.15473.

[34] Shima, K. (2016). Length matters: Clustering system log messages using length of
words.

[35] Studiawan, H., Sohel, F., & Payne, C. (2018). Automatic log parser to support
forensic analysis. In 16th Australian Digital Forensics Conference.

[36] Studiawan, H., Sohel, F., & Payne, C. (2020). Automatic event log abstraction to
support forensic investigation. In Proceedings of the Australasian Computer Science
WeekMulticonference, ACSW ’20 New York, NY, USA: Association for Computing
Machinery.

[37] Tang, L., Li, T., & Perng, C.-S. (2011). Logsig: Generating system events from raw
textual logs. In Proceedings of the 20th ACM International Conference on Informa-
tion and KnowledgeManagement, CIKM ’11 (pp. 785–794). New York, NY, USA:
Association for ComputingMachinery.

[38] Tao, S., Meng, W., Chen, Y., Zhu, Y., Liu, Y., Du, C., Han, T., Zhao, Y., Wang, X.,
& Yang, H. (2021). Logstamp: Automatic online log parsing based on sequence
labelling. Interface, 19(03), 03.

[39] Thaler, S., Menkonvski, V., & Petkovic, M. (2017). Towards a neural language
model for signature extraction from forensic logs. In 2017 5th International Sympo-
sium on Digital Forensic and Security (ISDFS) (pp. 1–6).

[40] Vaarandi, R. (2003). A data clustering algorithm for mining patterns from event
logs. In Proceedings of the 3rd IEEEWorkshop on IP OperationsManagement
(IPOM 2003) (IEEE Cat. No.03EX764) (pp. 119–126).

[41] Vaarandi, R. & Pihelgas, M. (2015). Logcluster - a data clustering and pattern min-
ing algorithm for event logs. In 2015 11th International Conference on Network and
ServiceManagement (CNSM) (pp. 1–7).

54



[42] Wikipedia contributors (2022a). Conditional random field—Wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/Conditional_random_field.
[Online; accessed 12-July-2022].

[43] Wikipedia contributors (2022b). Jaccard index—Wikipedia, the free encyclopedia.
https://en.wikipedia.org/wiki/Jaccard_index. [Online; accessed 12-July-2022].

[44] Wikipedia contributors (2022c). Levenshtein distance—Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/wiki/Levenshtein_distance. [Online;
accessed 12-July-2022].

[45] Wikipedia contributors (2022d). Logging (software) —Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/wiki/Logging_(software). [Online; accessed
12-July-2022].

[46] Wikipedia contributors (2022e). Named-entity recognition—Wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/Named-entity_recognition.
[Online; accessed 12-July-2022].

[47] Wikipedia contributors (2022f). Payment system—Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/wiki/Payment_system. [Online; accessed
12-July-2022].

[48] Wikipedia contributors (2022g). Self-supervised learning—Wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/Self-supervised_learning.
[Online; accessed 12-July-2022].

[49] Xiao, T., Quan, Z., Wang, Z.-J., Zhao, K., & Liao, X. (2020). Lpv: A log parser based
on vectorization for offline and online log parsing. In 2020 IEEE International
Conference on DataMining (ICDM) (pp. 1346–1351).

[50] Zawawy, H., Kontogiannis, K., &Mylopoulos, J. (2010). Log filtering and interpre-
tation for root cause analysis. In 2010 IEEE International Conference on Software
Maintenance (pp. 1–5).

[51] Zhao, N., Chen, J., Wang, Z., Peng, X., Wang, G., Wu, Y., Zhou, F., Feng, Z., Nie,
X., Zhang, W., Sui, K., & Pei, D. (2020). Real-Time Incident Prediction for Online
Service Systems, (pp. 315–326). Association for ComputingMachinery: New York,
NY, USA.

55

https://en.wikipedia.org/wiki/Conditional_random_field
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Logging_(software)
https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Payment_system
https://en.wikipedia.org/wiki/Self-supervised_learning


[52] Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., & Lyu, M. R. (2019). Tools and
benchmarks for automated log parsing. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
(pp. 121–130).

56


	Abstract
	Acknowledgments
	Introduction
	Research questions
	Organization

	Background & Related work
	How has log parsing been tackled?
	Discussion

	Log parsing in the context of modern software ecosystems
	Log parsing evaluations in literature
	Log parsing's goal and its evaluation in literature
	Log parsing's evaluation metrics
	Log parsing's performance on publicly available data
	Log parsing's performance in modern software ecosystems
	Discussion

	Entity parsing: a new paradigm for parsing log messages
	Current limitations of log parsing
	What is the entity parsing paradigm?
	Representative fields in rich structured information
	A dataset that operates in the entity parsing paradigm
	Generalisability of the entity parsing dataset
	EntityLog - A method for tackling entity parsing
	EntityLog's performance
	Discussion.

	Discussion & Future Work
	Discussion
	Future work

	Bibliography

