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COSMOCHEMISTRY

Formation and evolution of carbonaceous asteroid
Ryugu: Direct evidence from returned samples
T. Nakamura* et al.

INTRODUCTION:Observations of asteroidRyugu
by the Hayabusa2 spacecraft found that it is a
rubble pile, formed from fragments of a parent
asteroid. Samples retrieved from Ryugu by the
spacecraft were expected to contain a record of
this history, including the formation and early
evolution of the parent body, the subsequent im-
pact destruction andpartial reaccretion, and later
spaceweathering. The composition ofRyuguwas
expected to be similar to that of Ivuna-type car-
bonaceous chondritemeteorites (CI chondrites).

RATIONALE:We investigated the formation his-
tory of Ryugu through laboratory analysis of
the samples. Specifically, we sought to deter-
mine (i) when and where in the Solar System
the parent asteroid formed; (ii) the original
mineralogy, elemental abundances as a whole,
and chemical compositions of the accreted
materials, including their ice content; (iii)

how these materials evolved through chem-
ical reactions; and (iv) how the material was
ejected from the parent body in an impact.
To address these issues, we analyzed 17 Ryugu
particles of 1 to ~8 mm in size.

RESULTS: We found carbon dioxide (CO2)–
bearing water in an iron-nickel (Fe–Ni) sulfide
crystal, indicating that the parent body formed
in the outer Solar System. Remanent magne-
tization was detected, implying that the solar
nebula might still have been present when
magnetite crystals formed on the parent body.
We used muon analysis to determine the

abundances of light elements, including car-
bon (C), nitrogen (N), sodium (Na), and mag-
nesium (Mg), whose abundances relative to
silicon (Si) are similar to those in CI chondrites,
whereas oxygen (O) is deficient compared with
that in CI chondrites. X-ray computed tomog-

raphy analysis shows that all our Ryugu sam-
ples consist of fine-grainedmaterial. There are
only rare objects of high-temperature origin,
such as melted silicate-rich particles, all being
smaller than 100 mm.
Electron microscope observations showed

that the samples are breccias, assemblies of
numerous small rock fragments with different
compositions,mineralogies, and histories. The
most common mineralogy contains Mg-rich
hydrous silicates, MgCa andMgFe carbonates,
hydroxyapatite, Fe sulfides, and Fe oxides. The
mineralogy of this major lithology is consistent
with classification as a CI chondrite. It also in-
dicates widespread aqueous alteration (reac-
tions with liquid water) on the parent body.
Some Ryugu fragments have a different

mineralogy, containing anhydrous silicates
(olivine and pyroxene), amorphous silicates,
Ca carbonate, phosphides, Fe–Ni sulfide, Fe
oxide, and poorly crystalline phyllosilicates.
Some small objects (<~30 mm) that formed at
high temperatures were also found. This min-
eralogy suggests that these fragments expe-
rienced less aqueous alteration.
Wemeasured mechanical and thermal prop-

erties from the Ryugu samples. We found that
they are similar, but not identical, to hydratedCI
chondrites. Numerical simulations of the ther-
mal history and impact disruption processes of
the Ryugu parent asteroid were performed by
incorporating the physical and mineralogical
properties and appropriate water/rock ratios.

CONCLUSION:We propose that Ryugu’s parent
asteroid formed~1.8million to 2.9million years
after the beginning of Solar System formation,
in the outer Solar System, wherewater and CO2

were present as ice. It acquired a water ice/rock
mass ratio in the range of 0.2 to 0.9. In this
region, material formed at low temperatures
is dominant, whereas material of high tem-
perature origin is rare. In the interior of the
parent asteroid, radioactive heating caused the
water ice to melt at ~3 million years; water-
rock reactions then gradually changed the ini-
tial anhydrousmineralogy to a largely hydrous
mineralogy. At shallow depths, the original
material was less altered, at a lowwater/rock
ratio of <0.2. At ~5million years, all material in
the parent asteroid experienced its peak tem-
perature, and aqueous alteration continued. An
impact occurred~1 billion years ago, disrupting
the parent asteroid. Some fragments, originat-
ing away from the impact point, then reassem-
bled to form Ryugu.▪
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Proposed model of Ryugu’s formation history. (1) A parent body asteroid forms in the outer Solar System,
containing abundant ice. (2 and 3) Radioactive heating causes the ice to melt, which modifies the mineralogy
through aqueous alteration reactions. (4 and 5) An impact then disrupts the parent body but does not cause
widespread heating. (6) Ryugu formed from reaccumulation of ejected material that originated away from
the impact point. All times were measured from the start of Solar System formation. Colors indicate
estimated temperatures from our thermal interior and impact models.
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Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed
17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide–bearing water inclusions are present within
a pyrrhotite crystal, indicating that Ryugu’s parent asteroid formed in the outer Solar System. The samples
contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and
aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through
aqueous alteration reactions at low temperature, high pH, and water/rock ratios of <1 (by mass). Less altered
fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations,
based on the mineralogical and physical properties of the samples, indicate that Ryugu’s parent body formed
~2 million years after the beginning of Solar System formation.

T
he carbonaceous asteroid (162173) Ryugu
is a rubble pile formed by the reaccumu-
lation of material ejected from a parent
asteroid by a large impact (1). Remote
sensing observations have shown that

Ryugu is related to hydrous carbonaceous
chondrite meteorites (2). However, there are
some differences with those meteorites, sug-
gesting later heating and partial dehydration
of Ryugu (2, 3). Reflectance spectra are nearly
uniform across Ryugu’s surface, indicating
minimal compositional diversity at its sur-
face (2, 3), except for some boulders (3–5).

We expect samples of Ryugu to retain a rec-
ord of the formation and early evolution of the
parent body and Ryugu itself. We analyzed
samples collected by theHayabusa2 spacecraft
(6), seeking to determine (i) when and where
in the solar nebula Ryugu’s parent asteroid
formed, (ii) the initial mineralogy and water
ice content, (iii) how these original materials
evolved throughwater-rock reactions, (iv) how
the asteroid was heated by the decay of short-
lived radionuclides, and (v) how the material
was ejected from the parent body by an impact
and reaccumulated to form Ryugu.

We analyzed 17 Ryugu particles ranging
from 1 to 8 mm in size (the largest particle,
C0002, is shown in Fig. 1A, and all particles
are shown in fig. S1), consisting of seven par-
ticles from chamber A, collected at the first
touchdown site (TD1), and 10 particles from
chamber C, collected at the second touchdown
site (TD2) (6). We refer to these millimeter-
sized particles as coarse samples. Finer-grained
powder samples (<1 mm in size) (fig. S2) ob-
tained from TD1 and TD2 were also used for
reflectance spectroscopy.

Reflectance spectra

Visible (Vis), near-infrared (NIR), and mid-
infrared (MIR) reflectance spectra (wavelength
range, 0.4 to 18 mm) were measured from
coarse Ryugu samples packed together (seven
particles from TD1 and seven particles from
TD2) (fig. S2), from the powder samples (fig.
S2), and from samples of the meteorites
Orgueil and Tagish Lake. The samples were
not exposed to air in the entire analysis
procedure (7). MIR and far-infrared (FIR; 17
to 100 mm) reflectance spectra were also mea-
sured in air for sample A0026 and samples of
themeteorites Orgueil, Alais, Tagish Lake, and
Murchison.
All analyzed Ryugu samples exhibit similar

Vis-NIR spectra (Fig. 2A). They have ~2.0 to
2.5% reflectance (at 550 nm), with a slightly
red slope of ~0.1 to 0.3% mm−1 (0.48 to 0.86 mm)
and ~0.2 to 0.3% mm−1 (2.0 to 2.5 mm). There
are no strong absorption features blueward of
2.7 mm (Fig. 2A). No 0.7 mm absorption, be-
cause of Fe3+-rich phyllosilicates (8), was
detected. The Ryugu samples have an ab-
sorption band (~20% in depth) centered at
~2.71 mm(Fig. 2B), which is due toO–Hstretch-
ing vibrations in Mg-rich phyllosilicates (9, 10).
A weaker absorption band at ~3.1 mm is pos-
sibly due to ammoniated salts or other nitro-
gen (N)–bearing compounds (11). Absorptions
at ~3.4 to 3.5 mm are due to aliphatic organics
and carbonates, and those at ~3.8 to 3.95 mm
are due to carbonates. In the MIR-FIR, the
Christiansen feature (a reflectance minimum
characteristic of the chemical composition) is
present at ~9.1 mm. Reststrahlen bands (reflec-
tance peaks associated with Si–O stretching
and bendingmodes) appear as strong peaks at
~9.8 mm, with a shoulder at ~10.75 mm, and as
a doublet at ~22.3 mm (Fig. 2C).
Visible spectra of the touchdown sites were

previously obtained with the Optical Naviga-
tion Camera Telescope (ONC-T) (3) on the
Hayabusa2 spacecraft, at spatial resolution of
0.3 to 0.5 m per pixel, before and after the
sample collection. The location of TD1 showed
higher reflectance than that of TD2 (Fig. 2D).
We found similar results: The coarse and
powder Ryugu samples from TD1 both exhibit
higher reflectance than those from TD2 (Fig.
2A). The surface reflectance decreased after
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the touchdowns because the spacecraft thrust-
ers removed powder from the surface of Ryugu
during ascent (Fig. 2D) (12). Visible spectra of
the coarse and powder Ryugu samples have
similar reflectance values to those of theONC-T
spectra of the landing sites (7) and to the glo-
bal average (Fig. 2A); the reflectance ratios of
ONC-T to the powder samples at 0.55 mm are
~0.9 for both TD1 and TD2 (Fig. 2D). This in-
dicates that the samples are representative of
the global reflectance properties of Ryugu.
Spectra of the Ryugu samples are generally

consistent with Ryugu average spectra mea-
sured with Hayabusa2’s ONC-T (3) and Near
Infrared Spectrometer (NIRS3) (2) instruments.
There are some differences between the NIRS3
and laboratory spectra (Fig. 2A), even after con-
verting both to the samewavelength resolution
(Fig. 2B). The NIRS3 spectra have lower reflec-
tanceR relative to sample (RNIRS3/Rsample = 0.7
at 2.0 mm) and a shallower 2.7 mm absorption
depth (ratio of ~0.5 at 2.7 mm), which is con-

sistent with analysis of other Ryugu samples
(13). This could be due to differences in par-
ticle size distribution and porosity between
the laboratory samples and Ryugu’s surface or
to the much larger field of view of NIRS3 (13).
Spectra of Ryugu and the laboratory sam-

ples have similar reflectances to that of aste-
roid Bennu (14) at visible wavelengths, but
opposite spectral slopes (Fig. 2A). The 2.7 mm
feature (Fig. 2B) and the bands in theMIR-FIR
spectrum (Fig. 2C) of Bennu (15) also differ
from Ryugu.
The Ryugu samples are much darker and

have a flatter spectral slope than the meteor-
ites Orgueil and Tagish Lake (Fig. 2A). Orgueil
is classified as a CI1 meteorite, meaning an
aqueously altered (modified by reactions with
water) Ivuna-type carbonaceous chondrite,
whereas Tagish Lake is a C2, a carbonaceous
chondrite that was less altered so retains an-
hydrous minerals. The position of the OH ab-
sorption band in the Ryugu sample spectra is

consistent with that in Orgueil, Tagish Lake,
and Flensburg. Flensburg is an ungrouped C1
chondrite, in which chondrules (submillimeter
anhydrous aggregates made of silicate and
glass) are totally replaced by phyllosilicates
(16). The same feature appears at longer wave-
lengths in Murchison, which is classified as
CM2 (carbonaceous chondrite meteorites of
Mighei type), and in asteroid Bennu (Fig. 2B)
(2, 14). The position of this band is known to
correlate with the Mg/Fe ratio in phyllosili-
cates, so we infer that Ryugu, Orgueil, Tagish
Lake, and Flensburg contain Mg-rich phyllo-
silicates, whereas Murchison and Bennu con-
tain Fe-rich phyllosilicates (9, 10).

Three-dimensional structure and density

All but one of our coarse Ryugu samples (the
exception was sample A0058) were character-
ized by using synchrotron x-ray computed
tomography (SR-CT) (7), with a resolution
of 0.85 mm per voxel (table S1). Most of the
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samples had an irregular shape, but some ex-
hibited one or two broad flat surfaces. Par-
ticles with flat surfaces were also observed
during the sample collection process (6). The
particle interiors have cracks; most are irreg-
ular, but some particles (such as C0055) con-
tain parallel cracks with spacings of tens to
hundreds of micrometers (fig. S3).
Themass of each coarse sample particle was

measured under dry conditions in a glove box,
and the density was calculated from the sam-
ple volume determined by using SR-CT (table
S1). The bulk density (mass per total volume,
including cracks and pores) ranged from 1.7 to
1.9 g cm–3 with an average of 1.79 ± 0.08 g cm–3

(table S1), which is higher than was estimated
from earlier measurements in the curation
facility (1.3 g cm–3) (17), which did not consider
the full three-dimensional (3D) structure. These
densities are higher than the measured aver-
age density of Ryugu (1.2 g cm–3) (1), indicating

that the asteroid has high internal macro-
porosity. The average bulk densities of CI
(Ivuna-type) and CM (Mighei-type) chondrite
meteorites are 2.12 and 2.21 g cm–3, respec-
tively (18), whereas the ungrouped C1 chon-
drite Flensburg has a density of 1.98 g cm–3

(16). Because Ryugu has mineralogical sim-
ilarities to CI chondrites, the lower density of
the Ryugu samples indicates a higher porosity
than that of CI chondrites.

Mechanical, thermal, electrical, and
magnetic properties

The Ryugu samples A0026 (TD1) and C0002
(TD2; our largest particle) were measured (7)
to determine mechanical, thermal, electrical,
and magnetic properties (Table 1) to compare
with carbonaceous chondrites (table S2) and
for use in numerical simulations.
The resulting physical properties of theRyugu

samples are not identical to any knownmeteor-

ite. Most properties are similar to hydrous CI
and CM chondrites but differ from anhydrous
CV (Vigarano-type) andCO (Ornans-type) chon-
drites (Table 1 and table S2). The mechanical
properties show that Ryugu samples are
weaker in strength, especially their Young’s
modulus and Poisson’s ratio, than hydrous
carbonaceous chondrites (table S2) and have
a larger volume change upon deformation
(such as compression or impact). The thermal
expansivity of the Ryugu samples differs from
the nonlinear temperature-dependent results
measured for some carbonaceous chondrites
(19) but is linear in the temperature range of
220 to 370 K (fig. S4).
The thermal properties (Table 1) could be

responsible for the low thermal inertia of
Ryugu (20, 21). The thermal diffusivity (Table
1) and the bulk density of sample C0002 (table
S1) were used to calculate the thermal con-
ductivity of 0.5 Wm−1 K−1 and thermal inertia
of 890 J m−2 s−0.5 K−1 [hereafter thermal in-
ertia units (TIU)] at a temperature of 298 K.
The thermal inertia of the sample is higher
than themean of the asteroid surface observed
by Hayabusa2 [225 ± 45 TIU (22)] and mea-
sured in situ by the Mobile Asteroid Surface
Scout (MASCOT) [295 ± 18 TIU (21)]. Remote
sensing is sensitive to a thermal skin depth of
~10 mm, whereas the thickness of the sample
measured in the laboratory is <1 mm, so a
thermal shielding effect could arise on inter-
mediate scales (for example, cracks of several
millimeters in length).
Thin sections of magnetite framboids (ag-

gregates of equidimensional microcrystals of
magnetite) with diameters of 300 to 1100 nm
were observed with electron holography at a
spatial resolution of 14 nm (7). These magnet-
ite inclusions have vortex magnetic structures
and magnetic flux leakage out of the particles
(Fig. 3, A to C, and fig. S5). The externally
leaking magnetic flux was detected as rema-
nent magnetization in macroscopic measure-
ments. Mössbauer spectra showed that half
of the iron in these samples is in magnetite,
and the magnetic hysteresis parameter values
(Table 1) are similar to those of carbonaceous
chondrites that contain submicrometer mag-
netite framboids (23, 24). Therefore, the mag-
netite framboids dominate the natural remanent
magnetization (NRM) of asteroid Ryugu. Two
Ryugu particles from different sampling sites
(A0026 from TD1 and C0002 from TD2) rec-
ord magnetic fields of 31 to 260 mT and 18 to
704 mT (fig. S6), respectively. We suggest that
the source magnetic field was homogeneous
on Ryugu’s parent body.

Elemental abundances

We used muon x-ray emission spectroscopy to
measure the abundances of major chemical
elements in 10 coarse Ryugu samples, includ-
ing the largest sample C0002 (126.6mg in total)
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Fig. 1. Morphology and internal
texture of C0002. (A) Optical
micrograph of entire C0002 sample.
(B) CT image of the largest
cross section, showing the
absence of chondrules and CAIs.
(C) Back-scattered electron
(BSE) image of typical internal
texture. Dolomite (Dol),
breunnerite (Br), pyrrhotite
(Po), and magnetite framboids
(Mag) are labeled; these are
embedded in a fine-grained
phyllosilicate matrix.
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(7, 25, 26). Because the muon beam is >3 cm in
diameter, we analyzed all 10 samples together
to obtain a mean bulk elemental abundance.
Pellets of the meteorites Murray (type CM2;

306.5 mg) and Orgueil (type CI1; 195 mg) were
measured for comparison.
We detected carbon (C), N, oxygen (O), so-

dium (Na), magnesium (Mg), silicon (Si), sul-

fur (S), iron (Fe), and nickel (Ni) (Fig. 4A). The
Ryugu and Orgueil spectra are very similar,
indicating similar major elemental abundan-
ces. However, the Ryugu samples contain less
O than that in Orgueil.
We calculated elemental mass ratios M/Si

(M = C, N, O, Na, Mg, S, and Fe) from the
muon x-ray data (7).M/Si has previously been
measured for the Murray meteorite (table S3),
so it was used as a standard. We determined
Ryugu mass ratios of C/Si = 0.338 ± 0.008, N/
Si = 0.019 ± 0.009, O/Si = 3.152 ± 0.099, Na/
Si = 0.039±0.006,Mg/Si = 0.890±0.021, S/Si =
0.510 ± 0.019, and Fe/Si = 1.620 ± 0.040. These
elemental ratios are consistent with those of
CI chondrites (27) and the Sun (28), except O/
Si is 25% lower in Ryugu than in CIs (table S3
and fig. S7). These abundances are never-
theless sufficiently similar to classify Ryugu
as a CI chondrite, which is consistent with
other lines of evidence (29).
CI chondrites contain 45 wt % oxygen

(27); Ryugu is therefore depleted in oxygen by
11.3 wt %, given its similar Si concentration to
CI chondrites (29). The Ryugu samples were
prepared and analyzed in low-oxygen condi-
tions (<0.1%) and in dry atmosphere (dew
points < –50°C), so the results indicate the
indigenous oxygen abundance of Ryugu. The
lower water content and sulfate abundance
of Ryugu samples than CI chondrites (29)
are probably the cause of the low oxygen
abundance.
Nitrogen-bearing molecules such as NH3,

CN, and N2 have low freezing points and
could only have been incorporated into aste-
roids in the outer Solar System (30). The N/C
ratio can therefore be used to infer the dis-
tance from the Sun of Ryugu’s parent body
during its formation.Wemeasured an average
N/C atomic ratio of 0.047 ± 0.022 from the
10 coarse samples. This is higher than that
of primitive anhydrous chondrites (N/C =
0.001 to 0.02), which is consistent with hy-
drated chondrites such CM and CI (N/C = 0.02
to 0.06) and lower than ultracarbonaceous
micrometeorites of probable cometary origin
(N/C = 0.06 to 0.2) (30). We conclude that
Ryugu’s parent body formed at heliocentric
distances similar to those of hydrated car-
bonaceous chondrites.

Mineralogy and mineral chemistry

The SR-CT image of C0002 (Fig. 1B) shows
that it consists almost entirely of fine-grained
matrix material. We searched for distinct ob-
jects formed at high temperatures (>1000°C)
in the early solar nebula, such as chondrules
(formed by melting of precursor silicate-rich
dust) or Ca-, aluminum (Al)–rich inclusions
(CAIs; formed through condensation from hot
nebular gas and the earliest solids to form in
the Solar System). We found no examples
more than 100 mm in diameter in any of the
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Fig. 2. Reflectance spectra of coarse and powder samples of Ryugu. (A) Vis-NIR reflectance spectra of
coarse (dotted lines) and powder (solid lines) samples from the TD1 (red) and TD2 (blue) sites on Ryugu,
compared with hydrated carbonaceous chondrites (dashed and dotted black lines), Hayabusa2 remote sensing
observations of Ryugu (solid green lines) (2, 3), and remote sensing observations of Bennu (solid black line)
(14). The vertical gray lines are at 2.71, 3.1, 3.4, and 3.95 mm. (B) Same data as (A), but normalized at 2.595 mm
and shifted arbitrarily in the NIR wavelength region to aid comparison. (C) MIR-FIR spectra of TD1 and TD2 coarse
and powder samples, the flat surface of sample A0026, remote sensing observations of Bennu (95), pressed
powders of meteorites (Alais and Tagish Lake), and meteorite coarse samples (Orgueil and Murchison). All spectra
are scaled to have the same difference between reflectance minimum and maximum, then shifted arbitrarily
for comparison. The vertical gray lines at 9.1, 9.8, 10.75, and 22.3 mm indicate, respectively, the Christiansen
feature, an Si–O stretching peak, an additional shoulder of the main Si-O peak, and a peak of the doublet
from saponite (96). The peaks at 10.5 mm in the powder samples are scattered light from the sample dish (7).
(D) Visible reflectance spectra of Ryugu TD1 and TD2 powder samples measured in the laboratory compared with
the TD1 and TD2 sites before and after the touchdowns (7).
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coarse samples, but there are smaller exam-
ples. CI chondrites also lack large chondrules.
We produced 31 polished sections cut from

11 samples (table S4), including two plates
from the largest sample C0002. Observations
with field-emission electronmicroscopes show
that most of the coarse samples are breccias—
rocks that consist of fragments ranging in size
from ~10 to ~500 mm. Elemental abundance
maps of Na and Mg show compositional dif-
ferences between fragments (fig. S8), usually
with sharp boundaries. Most of the fragments
consist primarily of fine-grained matrix mate-
rial, with similar (although not identical) mi-
neralogy and mineral chemistry, which we
refer to as Ryugu’s major lithology. CI1 chon-
drites have similar properties, with Orgueil
being the most brecciated (31, 32). The Ryugu
samples have similar levels of brecciation to
that of Orgueil.
The major lithology of Ryugu (Fig. 1C) con-

sists of minerals formed through aqueous
alteration: The dominant phase is a phyllosilicate-
rich matrix that contains minerals including
abundant iron sulfides (pyrrhotite and pent-
landite), carbonates (breunnerite and dolomite),
magnetite, and hydroxyapatite. The phyllosili-
cates consist of the minerals saponite and
serpentine. Chlorite was only detected in a lim-
ited area in C0076. Mg–Na phosphate occurs
in some places and appears to have shrunk in
volume since its formation, probably owing to
degassing of volatile species, such aswater (fig.

S9). Dolomite is the most abundant carbonate
mineral; breunnerite is less abundant but oc-
curs as larger crystals, with one in C0002mea-
suring 940 by 450 by 262 mm (movie S1). Ca
carbonate is rare. Pyrrhotite crystals with a
pseudohexagonal shape (1 to 100 mm) are
abundant and sometimes include pentlandite.
Nano- to submicrometer-size pyrrhotite and
pentlandite crystals occur ubiquitously in the
phyllosilicate matrix (fig. S10). Magnetite is
present in diverse morphologies (fig. S11),
which is typical of CI1 chondrites (31). The car-
bonates often contain small (<10 mm) crystals
of magnetite and pyrrhotite. Small (<10 mm)
olivine and low-Ca pyroxene crystals are pres-
ent but rare; they are completely absent from
some of the coarse samples.
Ferrihydrite was not observed, despite being

amajor component of Orgueil (33, 34). Nor was
magnesium sulfate. Calcium sulfate [gypsum;
CaSO42(H2O)] was detected only as very small
grains around larger crystals of calcite (fig.
S12); it probably formed after sample recov-
ery on Earth, through reactions of calcite with
sulfuric acid, produced by oxidation of small
pyrrhotite crystals within the Ryugu samples
(35, 36). Small crystals of sodium sulfate grew
on the surface of polished sections of Ryugu
samples (fig. S13) so are of terrestrial origin.
We infer that sulfates are likely absent on
Ryugu, implying that sulfates in CI1 chondrites
are terrestrial contamination (37). Additional
minor minerals include chromite, manganese

(Mn)–rich ilmenite, spinel, zinc sulfide (ZnS),
cubanite, and daubréelite. Carbonaceous mate-
rial occurs as globules and diffuse objects em-
bedded in the matrix.
Phyllosilicates in the major lithology have

Mg# [defined as the atomic ratio Mg/(Mg+Fe)
× 100)] mostly in the range of 75 to 90, which
is similar to that in Orgueil. However, Ryugu
phyllosilicates have more Mg-rich varieties
than in Orgueil, with some locations having
Mg# > 85 (Fig. 4B). The compositions of the
carbonates are very similar to those of CI1
chondrites (Fig. 4C). Breunnerite and dolo-
mite contain 1 to 10 wt % and 2 to 5 wt %
MnO, respectively. Hydroxyapatite contains
a small amount of fluorine (<1 wt %), which
is typical of chondrites (38). We performed
high-energy synchrotron x-ray fluorescence
(XRF) tomographic analysis (39) and found
enrichment of rare-earth elements (REEs) in
hydroxyapatite, with mutually consistent levels
of each REE (fig. S14). This is unlike apatite
grains in ordinary chondrites (40) and Orgueil
(32), which have higher levels of europium
(Eu) and gadolinium (Gd), respectively, than
thosse of other REEs. Ordinary chondrites and
CK (Karoonda-type carbonaceous) chondrites
have REE abundances that decrease from light
to heavy atomic masses (40), unlike Ryugu.
The magnetite does not contain detectable
trace elements, whereas ilmenite contains var-
ious concentrations ofMnOup to 10wt%, both
of which are typical of CIs (34, 41). Pyrrhotite
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Table 1. Summary of the physical properties measured from the Ryugu samples (7).

Value Uncertainty Unit Measurement condition Measured sample(s)

Mechanical properties
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Compressive hardness 0.18 0.1 GPa Ambient C0002 plate 3*
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Young’s modulus 5.3 1.6 GPa Ambient C0002 plate 3*
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Bending strength 4.9 1.9 MPa Ambient C0002 plate 3 and 4
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Longitudinal velocity 2.08 0.13 km/s Ambient Average of C0002 plate 3 and 4†
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Shear velocity 1.37 0.15 km/s Ambient Average of C0002 plate 3 and 4†
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Thermal expansivity 2.6 × 10−5 2 × 10−6 /K 210 to 400 K, nitrogen gas C0002 plate 3
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Cohesive force 0.17 0.02 mN Ambient C0002 plate 4
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Thermal properties
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Heat capacity at 298K 865 16 J/kg/K 213 to 373 K, nitrogen gas Average of C0002 plate 4 and A0026
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Thermal diffusivity 3.2 × 10−7 0.3 × 10−7 m2/s 300 K, vacuum Average of C0002 plate 3 and 4
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Electrical properties
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Resistivity 2.5 × 106 0.3 × 10−6 ohm·m 300 K, vacuum Average of C0002 plate 3 and 4
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Relative permittivity 6.8 0.8 — 300 K, vacuum Average of C0002 plate 3 and 4
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Magnetic properties
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Magnetic susceptibility 8.39 × 10−5 4.0 × 10−6 m3/kg 300 K, direct current, alternating current (1 to 1000 Hz) Average of C0002 and A0026
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Saturation magnetization 11.6 5.1 × 10−3 Am2/kg 300 K Average of C0002 and A0026
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Saturation remanence 1.05 6.3 × 10−3 Am2/kg 300 K Average of C0002 and A0026
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Coercivity 12.2 9.3 × 10−2 mT 300 K Average of C0002 and A0026
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Coercivity of remanence 61.3 4.1 × 10−1 mT 300 K Average of C0002 and A0026
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

*Average is of 26 analyses of fine-grained matrix. †Two fragments from plate 4 were used.

ASTEROID SAMPLES



contains Ni up to 2 wt %. The Ni/Fe atomic
ratios of pentlandite range from 1 to 1.2 in
most cases. Representative compositions are
listed in table S5.
Relativemineral abundances were estimated

from two element maps of C0002 (~9.0 and
~8.6 mm2 area) composed primarily of the
major lithology. The abundances (table S6) are
broadly consistent with those of Orgueil
(31, 32, 42).

We performed x-ray diffraction (XRD) anal-
ysis of a whole sample of C0002 (fig. S15) and
found a large, broad peak at ~10 Å and a dis-
tinct peak at 7.45 Å, which we identified as
being due to saponite and serpentine, respec-
tively. The 10-Å peak indicates a low abundance
of interlayer H2O in saponite, as previously
inferred from use of other techniques (29). To
characterize the phyllosilicates, we applied
ethylene glycol to 10 small particles separated

from several coarse samples (7) and observed
peak shifts in the XRD patterns, indicating
expansion of interlayer spacings due to incor-
poration of glycol (fig. S16). We identified
reflections at 16.8 and 13.3 Å as being due to
saponite-serpentine mixed-layer minerals, and
at 7.28 Å as being due to pure serpentine (7).
The saponite-rich mixed-layer mineral is the
most abundant, followed by serpentine, but
the relative abundances differ between sam-
ples. Similar results have previously been ob-
tained for Orgueil (43).
Although the bulkmineralogy of Ryugu sam-

ples is similar to that of Orgueil, we found that
the Ryugu samples are much darker. Possible
explanations are the presence of bright Mg-
sulfate epsomite in Orgueil (37), or a lower Fe3+

abundance in phyllosilicates in the Ryugu sam-
ples (Fe3+/Fe total is 0.4 for Ryugu and 0.9 for
Orgueil). Mg-rich smectite becomes brighter
as Fe3+/Fe total increases from0.40 to 0.97 (44).
The oxidation of phyllosilicates and the forma-
tion of epsomite can occur on Earth because
of weathering, which we infer is the likely
origin of the brightness of Orgueil. Ryugu sam-
ples also contain a high abundance of opaque,
nano-size pyrrhotite (fig. S10), which acts as a
darkening agent; Orgueil lacks these (34), pos-
sibly also because of oxidation on Earth (45).
Themineralogy, mineral chemistry, and rel-

ative mineral abundances of the major lithol-
ogy indicate that Ryugu (or its parent body)
experienced pervasive aqueous alteration. Ex-
cept for the lack of sulfate and ferrihydrite, the
petrological and mineralogical properties of
Ryugu are consistent with the five CI chon-
drites (31, 32, 34, 46–48); we therefore classi-
fied the Ryugu samples as CI chondrites.

Less altered fragments

Although most Ryugu fragments have ex-
perienced extensive aqueous alteration, some
fragments in samples of C0002, C0033, C0023,
C0025, C0040, C0046, C0076, and C0103 show
considerably lesser degrees of alteration.
Electron-microprobe analysis (7) indicates
that these fragments contain higher abundan-
ces of olivine and pyroxene (table S6). Electron
diffraction (fig. S17) shows that they also con-
tain calcite or aragonite (not dolomite or breun-
nerite) and phosphides [schreibersite (Fe, Ni)3P
and allabogdanite (Fe, Ni)2P], not hydroxy-
apatite. These are characteristic features of a
less-altered lithology. These less-altered frag-
ments are enriched in Na, with Na/Si ratios
roughly twice that of the Sun (table S7).
We identified five less altered fragments in

one of the thin sections of C0002. TheMgmap
of C0002 (fig. S8B, fragment 1 to 5) indicates a
high abundance of olivine and low-Ca pyrox-
ene only in the fragments. These minerals are
rich in Mg relative to the surrounding phyllo-
silicates; we confirmed their presence using an
electron microprobe. We also identified spinel
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Fig. 3. Characteristic textures, magnetic structures, and embedded objects in the Ryugu samples.
(A) TEM image of typical magnetite framboids (dark gray rounded objects) from A0064. The light gray
area is phyllosilicate from the major lithology, and the upper black area is tungsten contamination. (B and
C) Color maps of the magnetic flux direction obtained from the reconstruction of remanent magnetism,
for the magnetite framboids in red boxes in (A) observed by using electron holography (7). Each particle
has a concentric circular magnetic field (vortex structure) indicated with white arrows, which show the
direction of the magnetic flux as shown in the color-wheel in (C). The composition and electron diffraction
data for this region are shown in fig. S5. (D) Enlarged view of the least-altered fragment 4 in sample C0002,
showing high porosity. (E) Compositional map of (D), showing high abundances of Mg-rich olivine and
Mg-rich, low-Ca pyroxene (magenta); magnetite and pyrrhotite (green); and minor Ca carbonate (light blue).
(F) TEM image of a part of the least-altered fragment 5 in C0002, showing a very porous aggregate
with labeled GEMS-like objects, Fe sulfide (Fe-sul), Mg-rich olivine (Ol), and tochilinite (Toch). (G to
I) Chondrule-like objects. Objects in (G) and (H), both from C0002, show textures similar to those of type I
chondrules, consisting of Mg-rich olivine (Ol) and an FeNi metal inclusion. An FeS inclusion occurs only in
(H). The object in (I), from C0076, shows a barred-olivine texture, consisting of several sets of parallel olivine
bars and an olivine rim. (J) TEM–energy-dispersive spectrometer (EDS) color map of a porous olivine (yellow)
from C0076, including a small Al-, Ti-rich diopside crystal (green). Red-green-blue (RGB) colors indicate
the concentrations of Mg, Si, and Fe, respectively. (K and L) Small CAI-like objects. The object in (K), from
C0040, consists of Al spinel (Sp), hibonite (Hb), and a small inclusion of perovskite (Pv). The object in (L), from
C0002, consists of Al spinel (Sp), hibonite (Hb), a small inclusion of perovskite (Pv), and phyllosilicate (Ph).
(A), (F), and (I) are bright-field TEM images, and (D), (G), (H), (K), and (L) are BSE images.

RESEARCH | ASTEROID SAMPLES



grains with sizes of <30 mm (fig. S18 and table
S6). Most olivine in the Ryugu samples occurs
in these less altered fragments; the olivine has
Mg# > 97 (corresponding to FeO < 3 wt % in
Fig. 4D), which is similar to the olivine in CI
chondrites (49–51). A similar, butmore altered,
fragment has previously been reported in
Orgueil [(52), their clast 1].
We identified the two fragments that ex-

hibit the least alteration among our samples,

labeled fragments 4 and 5 in fig. S8B. The frag-
ments are small (130 by 50 mm and 200 by
90 mm for fragments 4 and 5, respectively) (fig.
S19) and embedded within the major lithol-
ogy. They have a very porous texture, domi-
nated by submicrometer particles of olivine,
pyroxene, and other smaller silicate phases
with numerous iron sulfide inclusions (Fig. 3, D
and E). They also contain micrometer-sized Ca
carbonate, pyrrhotite, Al spinel,magnetite spher-

ules, small quantities of phosphides, Mg-Na
phosphate, pentlandite, chromium (Cr) spinel,
and tochilinite [a hydrous sulfide that is abun-
dant in CM2 chondrites (53)] (fig. S20). These
mineral assemblages are similar to fragment
1 (fig. S18), but the abundance of olivine and
pyroxene is much higher (12.8 and 14.1 vol %
for olivine in fragments 4 and 5, respectively)
(table S6). Most of the olivine and pyroxene is
enriched inMg, but examples of Fe-rich olivine
(Mg# < 44) are also present. Several small areas
in fragment 4 contain Na-rich phyllosilicate,
indicating that aqueous alteration fluids were
enriched in Na. The high abundance of anhy-
drous silicates leads us to classify the least
altered fragments as CI2 (a CI chondrite that
was altered but still retains anhydrousminerals)
rather than CI1 (in which almost all anhydrous
silicates are replaced with phyllosilicates).
We observed the least-altered fragments

using transmission electron microscopy (TEM)
(7) and found that the least-altered fragments
also contain numerous partially rounded,most-
ly 100 to 500 nm, amorphous silicate objects
that contain abundant Fe sulfides (mainly
<50 nm pyrrhotite and minor pentlandite)
(Fig. 3F and fig. S21A). These objects are simi-
lar in texture and composition (fig. S21, A and
B) to glass with embedded metal and sulfides
(GEMS) that occur in anhydrous chondritic
interplanetary dust particles (IDPs) of prob-
able cometary origin (54). The silicates are
mostly amorphous or very poorly crystalline
material (the latter possibly phyllosilicates),
with lattice spacings close to 2.6 and 1.5 Å
(fig. S21A). This is similar to fine-grained fib-
rous material reported in the GEMS-like ob-
jects in the Paris CM chondrite (55, 56).
However, there are differences between the

least-altered Ryugu fragments and GEMS in
IDPs. The GEMS-like objects we identified in
Ryugu lack Fe metal, instead containing pyr-
rhotite, pentlandite, and tochilinite. The sili-
cates have signs of incipient alteration to
phyllosilicates (fig. S21A). The Mg-rich silicate
composition of the GEMS-like objects in Ryugu
is similar to that of the silicates in GEMS in
IDPs (fig. S21B) but also to the phyllosilicate
composition in the major lithology (Fig. 4B).
This indicates that the GEMS-like objects in
Ryugu are at least partially altered, which is
similar to the primitive clasts in the Paris
CM chondrite (55–57).

Chondrules, CAIs, and porous olivine

We did not identify any normal-sized chon-
drules (100 to 1000 mm) in the Ryugu samples
analyzed by using SR-CT. However, some
smaller objects and fragments (Fig. 3, G to I)
have features characteristic of chondrules. Some
of these (Fig. 3, G and H) contain FeNi metal
spheres embedded inMg-rich olivine (Mg#>98),
which is indicative of melting in very chemically
reduced conditions. This is typical of type-I
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Fig. 4. Results of chemical analyses using muon, electron, and x-ray spectroscopy. (A) Muonic x-ray
spectra for Ryugu (red) and Orgueil (blue), normalized by means of mSi 3d-2p x-ray (76 keV) intensities
(the muonic Si x-ray emitted by transition of 3d to 2p muon atomic orbit). (B) Ternary diagrams of Mg,
Fe, and Si+Al, showing the chemical composition of Ryugu phyllosilicates (cyan; 774 analyses), compared
with Orgueil (yellow). The blue line corresponds to Mg# = 85. The contribution from FeS was corrected
according to S content (7). (C) Ternary diagrams of Mg, Ca, and Fe+Mn showing the chemical composition of
Ryugu carbonates (653 analyses), compared with CI chondrites (48, 52). (D) MnO and FeO abundances
measured from Ryugu olivine (611 analyses). (Inset) An enlargement of the blue box area in the range from
0 to 5 FeO wt %. The blue line indicates MnO/FeO = 1; most olivine data have MnO/FeO < 1. (E) XANES
spectra [at Fe L2-edge (706.8 eV) and L3-edge (719.9 eV) regions] of a saponite-rich layer (blue),
phyllosilicates of the major lithology (red), and pyrrhotite (green). (F) XANES color map of the region
shown in Fig. 6B. Three Fe species were identified by means of decomposition analysis (97), including Fe
in saponite (blue), in serpentine-saponite (pink), and in pyrrhotite (green).
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chondrules, which are defined as those that
consist mainly of olivine with Mg# >90. One
object has a barred olivine texture in TEM
observations (Fig. 3I)—a thin rim and many
bars constituting a single crystal of Mg-rich
olivine—so we classified this object as a type-I
barred olivine chondrule. No glass is present
between the olivine bars, only pores, which
probably indicates that glass was originally
present but dissolved during the early stages
of aqueous alteration. We also identified a
small (~30 mm in size) chondrule that has been
completely replaced by phyllosilicates (fig.
S22 and movie S2). Similar completely altered
chondrules have previously been found in the
ungrouped C1 chondrite Flensburg, although
they are larger (>300 mm) (16). The small sizes
and low abundance of the chondrules in Ryugu
are similar to those found in samples of the
short-period comet 81P/Wild2 (58).
We also identified a few small (<30 mm) CAIs

in the Ryugu samples (Fig. 3, K and L). Their
sizes are smaller than CAIs in the Ivuna CI1
chondrite (~100 mm) (59). One of the CAIs
(Fig. 3K) consists of half hibonite and half
Al-rich Fe-free spinel, with a small perovskite
inclusion. Another (Fig. 3L) consists of Al-rich
Fe-free spinel, with a small hibonite and a
perovskite inclusion, and phyllosilicates. We
interpreted this as evidence that CAI material
that is susceptible to aqueous alteration, such
as melilite (60), was replaced with phyllosili-
cates. Several CAI-related spinel-rich aggre-
gates, together with forsteritic olivine, were
also observed (fig. S18).
Forsterite (Mg# 98 to 99) grains occur in the

less-altered lithology, being <30 mm in size
with numerous micrometer-size pores. One
(Fig. 3J) contains diopside, an Al-, titanium
(Ti)–bearing and Ca-, Mg-rich pyroxene. We
analyzed 20 grains of porous forsterite by use
of an electronmicroprobe and found that they
all contain ~0.5 wt % MnO. Atomic ratios of
Mn/Fe do not exceed 1 in most cases, so the
grains are not low-iron manganese-enriched
(LIME) olivine (61). The pores suggest partial
dissolution during aqueous alteration. The
origin of this porous olivine is unclear; they
could be condensation products, similar to
amoeboid olivine aggregates (AOAs) found
in carbonaceous chondrites (62), although
the texture of the olivine crystals in Ryugu is
different from AOAs (63).

Fluid inclusions in pyrrhotite

We performed higher-resolution (~50 nm per
voxel) synchrotron nano-computed tomogra-
phy (SR-nanoCT) of a large pyrrhotite crystal
taken from sample C0002. This crystal showed
probable fluid inclusions in the center (Fig. 5,
A and B), which suggests that the fluids were
trapped in the early stages of crystal growth.
These inclusions were completely encapsuled
in pyrrhotite and filled with a light-element

material (fig. S23). We performed time-of-
flight–secondary ion mass spectrometry
(TOF-SIMS) depth profiling and lateral map-
ping (<80 nm per pixel) at a temperature of
–120°C to expose and measure, respectively,
the composition of the (now frozen) fluids in
five inclusions.
The TOF-SIMS measurements show that the

trapped fluids were solutions containing H2O,
CO2, sulfur species, and N- and chlorine (Cl)–
bearing organic compounds. These were iden-
tified by their representative secondary ion
species, including O–, OH–, CO–, C2

–, C2H
–, Cl–,

S–, and CN– (Fig. 5C). The detection of CO–,
C2

–, C2H
–, and C3

– indicates that organicmole-
cules were dissolved in the aqueous solution.
Electron microscope observations of the largest
inclusion show no phyllosilicates or other OH–-
bearing phases that could have contributed
to the signal (Fig. 5D). The presence of CO2-
bearing water in a crystal of pyrrhotite indi-
cates that the Ryugu parent body formed
beyond the CO2 and H2O snow lines (bounda-

ries between gas and ice in the early Solar
System), whichwere >3 to 4 astronomical units
(au) from the Sun (64).

Flat surfaces and CuS tabular
coral-shaped object

We identified some features of the Ryugu sam-
ples that have not been observed inmeteorites.
These include the very flat surfaces of some
coarse samples (Fig. 6A). We cut five slices
(each 10 by 10 by 0.1 mm) from the flat surface
of A0067 to perform depth profiles. TEM ob-
servations show a 2-mm-thick saponite-rich
layer with high Mg# ~90 running along the
flat surface (Fig. 6B). The saponite layer is
superposed on an irregular surface of the
major lithology, indicating that it formed later.
All five slices show similar features, which we
infer are present across the whole flat surface.
The formation of the saponite layer requires
that fluids were present. Pyrrhotite crystals
on the flat surface are aligned with their pseu-
dohexagonal facets parallel to the saponite
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Fig. 5. A fluid inclusion in a Ryugu pyrrhotite crystal. TOF-SIMS and SR-nanoCT measurements were
performed on a crystal separated from sample C0002. (A and B) Slices through the SR-nanoCT scan,
showing that the fluid inclusion (indicated with arrows) is unconnected to the surface, with a minimum depth
of ~1.5 mm in (A). (C) TOF-SIMS maps (arbitrary color scale) of the fluid inclusion after being frozen (–120°C)
and opened. Representative secondary ion species are labeled on each image pair, which are measured at
the top (left images) and the mid-plane (right images) of the fluid inclusion. OH– and CO– are secondary
ions of water and CO2, respectively. S

– is an ion in the aqueous solution. The presence of CN– indicates
N-bearing organic compounds in the fluid, and Cl– indicates that the trapped fluid was a brine. Differences in
the distribution of each species within the inclusion, both within each map and between the top and midplane
maps, are a result of the distribution of the various fluid components between the different solid phases
(solid carbon dioxide, carbon dioxide clathrate, and H2O ice) that form during cooling of the fluid inclusion to
–120°C. (D) BSE image of the final surface following the TOF-SIMS measurements, with the opened fluid
inclusion in the yellow box. (Insets) Fe, S, Si, and O element maps, measured with EDS, of the region within
the box. These indicate that FeS is the host phase.
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layer (fig. S24), which implies a compressive
force during formation. One possible expla-
nation is ice lensing, the formation and growth
of subsurface ice crystals (65, 66), as occurs in
permafrost soils. At the final stage of aqueous
alteration, fluids could have been segregated
in thin cracks as they froze. Ice in the cracks
could then have grown to form ice lenses. The
pressure exerted by the expanding ice lens
could have squeezed the adjacent regolith,

compacting and aligning phyllosilicates, espe-
cially expandable clays such as saponite (66).
Wealso identified table coral–shapedgrowths

of a copper sulfide (CuS) phase on the flat
surface of A0067 (Fig. 6C). A thin section was
made by cutting the CuS object perpendicu-
lar to the flat surface, which was then ob-
served with TEM. The CuS has amorphology
that resembles a table coral, with a root, several
branches, and many disk-shaped crystals on

top (Fig. 6D). Electron diffraction measure-
ments indicate that the CuS phase is probably
digenite (Cu9S5), which is of hydrothermal
origin (67). We cannot determine the forma-
tion mechanism, but it might have grown
from a solution that filled a crack exposed on
the flat surface.

Shock effects

Most of our samples show no features that
indicate strong deformation or shock melting,
indicating that the collectedmaterial generally
did not experience any intense shock.However,
C0055 shows evidence of uniaxial compression
and sets of parallel fractures perpendicular to
the compaction axis (fig. S3). Such features
are common in shocked hydrous carbonaceous
chondrites (68) and appear in experiments that
shocked the Murchison CM2 chondrite to a
pressure of 20 GPa (69). Therefore, C0055 ex-
perienced a shock, whereas the other 16 sam-
ples contain no evidence of shock effects.

Aqueous alteration conditions

The low abundance of Mg-chlorite suggests
that aqueous alteration occurred at low tem-
perature, below the ~100°C (70) required to
stabilize Mg-chlorite. All 10 pyrrhotite crystals
observed with x-ray and electron diffraction
have a monoclinic 4C structure (one of the
crystal structures of pyrrhotite, having three
unequal crystal axes with one oblique inter-
section), which indicates that they formed
below 254°C (71). The Ryugu pentlandite and
pyrrhotite compositions are most consistent
with formation at 25°C (fig. S25) (67, 72, 73).
The site occupancy by Fe and Ni in pentlandite
and its lattice constants are a function of tem-
perature (74). We measured the pentlandite
lattice constant of 10.0643 ± 0.0009 Å; using
XRD analysis of a single pentlandite crystal,
5 mmin size, whichwas separated from sample
C0040, following established methods (75).
This lattice spacing and the chemical compo-
sition indicate an equilibrium temperature of
20 ± 29.5°C (table S9). O isotopes in dolomite
indicate formation at 37 ± 10°C (29). All of these
temperature estimates are consistent.
Mössbauer spectra (conventional and syn-

chrotron) were collected from 1-mm-size frag-
ments, taken from C0061 and A0026 under N2

gas. These show that magnetite is not oxidized
(table S9). The Fe2+/Fetotal ratios measured
from the phyllosilicates are approximately
0.61 for C0061 and 0.48 for A0026 (fig. S26).
Magnetite, pyrrhotite, and silicates contain 40
to 50%, 15 to 30%, and 25 to 40% total iron,
respectively (by atom) (table S9).We performed
micro-x-ray fluorescence x-ray absorption near-
edge structure (m-XRF-XANES) analysis of the
Fe K-edge (a sudden increase of x-ray absorp-
tion just beyond the binding energy of the
K-shell electrons of the Fe atom), using a 1.0-
by 1.0-mm x-ray beam (76). Measurements were
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Fig. 6. Flat surface structures and a CuS table coral–shaped object. (A) Optical microscope images of
flat surfaces (arrows) from two Ryugu samples. (B) Depth profile from a TEM image of a slice cut from
the flat surface of A0067 to 5 mm depth. The black layer is contamination from Pt coating. A layer of saponite
(interlayer spacing d = ~10 Å) makes the surface flat. (C) Secondary-electron image of a tabular coral–
shaped CuS object on the flat surface of A0067, formed of a stack of submicrometer-sized disk-like
crystals. (D) Scanning TEM dark-field image of a slice taken from the white box in (C), perpendicular to the
surface to a depth of 10 mm by use of a focused-ion beam. The object has morphologies similar to that
of a root, several branches, and a stack of disk-like crystals on top. The thin white layer on the top surface of
the object is contamination from a Pt coating.
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performed under N2 gas, using a 150-mm-size
particle separated from sample C0025. They
showed that the Fe2+/Fetotal ratio in phyllosi-
licates is 0.6 to 0.7 (fig. S27), which is consist-
ent with the Mössbauer data.
The determination of Fe2+/Fetotal ratio in

other minerals, specifically saponite and ser-
pentine, is required to determine the redox
conditions during formation because the sta-
bility of Fe2+ in each phase can be different.
We used scanning transmission x-ray micros-
copy (STXM) (77) analysis with a ~50-nm spa-
tial resolution to measure Fe2+/Fetotal in the
saponite layers in A0067 (Fig. 6B), finding

0.68 ± 0.05 (Fig. 4, E and F). The sample must
have been oxidized to some degree during its
storage in a desiccator for more than 5months,
so we regard this ratio as a lower limit. On the
basis of (i) the relationship between Fe2+/Fetotal
ratio and oxidation reduction potential Eh

determined for the minerals nontronite and
high-Fe-bearing montmorillonite (78) and
(ii) a reduction experiment we performed on
terrestrial saponite with Fe2+/Fe3+ ratio deter-
mined by means of XANES (fig. S28), we infer
that the Fe2+/Fetotal (> 0.68) obtained from
A0067 indicates that the Eh of saponite for-
mation was likely lower than –0.45 V. If we

assume that this Eh value is valid at neutral
to alkaline pH conditions and combine it with
other m-XRF-XANES data on a dominant oxi-
dized arsenic form (As3+) in As-bearing species
in A0067 (fig. S29), we infer fluid pH > ~9 on
the basis of the Eh-pH diagram of As com-
pounds at 25°C (79). The presence of sapo-
nite on Ryugu also indicates an alkaline fluid
(pH > 8) on the basis of (i) the stability field of
saponite in the Eh-pH diagram of Fe and (ii)
the pH condition of terrestrial lakes where
saponite has been found (80). We conclude
that aqueous alteration proceeded at ~25°C
in alkaline conditions.
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Fig. 7. Calculated models of the aqueous altera-
tion, thermal history, and impact. (A to D) Model
chemical equilibrium of solid, solution, and gas
phases during aqueous alteration on the Ryugu
parent body at 40°C, assuming the pressure of water
saturation (7.4 × 10−2 bar), and 10% chemically
active organic matter. Each line indicates a different
species or the pH, as labeled. The vertical dashed
lines indicate boundaries between aqueous and
water-free conditions. The two horizontal scales
indicate ratios of melted ice/rock and W/R. The ice
includes CO2 and HCl in addition to water, so W/R is
smaller than melted ice/rock by a factor of 0.835.
(E) Temperature evolution of the Ryugu parent
body. The calculation assumes a 65-km radius with
W/R = 0.6 and formation time 2.23 miilion years
after CAI formation. The color scale shows the
temperature at each location and time. The black
dashed line indicates the boundary between hydrous
rock and anhydrous rock, where the highly altered
lithology shifts to the less altered lithology.
(F) Impact shock model (7), with coordinates
measured from the center of the impact point. The
images show peak temperature (left) and peak
pressure (right) during the impact. The grid of tracer
points, placed at multiples of the impactor radius,
is shown as gray lines. Isotherms of the peak
temperatures are shown as colored curves at
500°, 300°, 100°, and 0°C. Isobaric lines of the peak
pressures are shown at 9, 5, 3, and 1 GPa. We
infer that the material that later accumulated
to form Ryugu was further from the impact than
the 100°C isotherm and the 1 GPa isobar.
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Chemical equilibrium modeling
of aqueous alteration
Aqueous alteration cannot have begun until
accreted ices melted in the interior of Ryugu’s
parent body and likely continued until tem-
peratures reached ~40°C [this study and (29)].
We therefore performed chemical equilibrium
modeling of a water-gas-solid system at 0° to
40°C (7). Consistent with the muon analysis
(table S3), we assumed the initial accreted
rock had the elemental composition of CI
chondrites, but with modified amounts of H,
C, O, S, and Cl. Our model mixes this rock in
different proportions with a water-ice–rich
component, which contains CO2 and HCl, re-
flecting the presence of CO2 and Cl in the fluid
inclusion (Fig. 5) and the inferred C and Cl
sources in carbonaceous chondrites (81, 82).
Although Ryugu material might not have
reached chemical equilibrium during altera-
tion, we ran our calculations to that stage.
Our calculated equilibrium composition of

the water-gas-solid system at 40°C is shown
in Fig. 7, A to D, as a function of the initial
melted ice/rock and the water/rock (W/R)
mass ratios. Only 10% of organic matter is
allowed to react (7). The modeled mineralogy
(Fig. 7A) at initial W/R of 0.06 to 0.1 repro-
duces the least-altered lithologywe found in the
Ryugu samples (table S6). These (and lower)
W/R ratios permit stable reduced phases (such
as Fe-rich metal, and phosphides), which could
remain unaltered or form through alteration
under water-poor and H2-rich conditions. A
higher W/R ratio of 0.1 to 0.2 matches the
less-altered lithology, and W/R of 0.2 to 0.9
with pH>~8.5 (Fig. 7C)matcheswith themore
extensively altered major lithology (table S6).
Analogous calculations were performed at tem-
peratures below 40°C (0° and 20°C), and the
results are similar to those at 40°C (7).
Our calculations show high Na concentra-

tions at lower W/R, both in the fluid and in
saponite (Fig. 7, A and B), which are consistent
with the Na-rich composition of the least- and
less-altered lithologies of Ryugu (table S7). The
modeling suggests an initial Mg–Na–Cl solu-
tion with H2O–CO2 in the gas phase, which
evolved toward a more reduced and Na–Cl
alkaline brine that coexisted with a H2-rich
gas phase (Fig. 7, B to D). No sulfates formed in
the model because of the reduced conditions,
which is consistent with our observations of
the Ryugu samples. The formation of sulfates
requires strong oxidants—such as O2, H2O2,
and H2SO4—in ices accreted on asteroids (83).

Formation of Ryugu’s parent asteroid

Ryugu’s parent body formed in a different
orbit than Ryugu’s current near-Earth orbit.
Orbital dynamics calculations have shown that
the most likely origin of Ryugu is two asteroid
families (Eulalia or Polana) in the inner main
asteroid belt (3, 4, 84, 85). However, our ob-

servation of CO2-bearing aqueous fluid in
Ryugu pyrrhotite is consistent with the parent
asteroid having formed beyond the H2O and
CO2 snow lines of the early Solar System,more
than 3 to 4 au from the Sun. This must have
been followed by scattering inward, to the cur-
rent orbit of the Polana and Eulalia families
(<2.5 au).We foundmany similarities between
the Ryugu samples and CI chondrites, which
suggests that CI chondrites might have a sim-
ilar origin.
The Ryugu samples record a magnetic field

(fig. S6), which could have arisen from the
nebular magnetic field or the dynamo fields
generated by differentiated objects (such as
Jupiter), although magnetization effects on
Earth are to be corrected. The homogeneous
global reflectance spectra of Ryugu indicate that
its parent body was not differentiated (2, 3).
The stable component of NRM is likely carried
by the framboidal magnetite (Fig. 3, A to C). If
the source was the nebular field (86), then
the solar nebula had not yet dispersed when
magnetite formed on Ryugu’s parent body.
Our interpretation that Ryugu’s parent as-

teroid formed far from the Sun is supported by
(i) the rarity and very small size of chondrules
and CAIs in the samples (Fig. 3, G to L), which
are similar to those observed in comets (58);
(ii) the high abundance of carbonate (table S6);
and (iii) the presence of GEMS-like objects (Fig.
3F). However, the C/Si abundance ratio is not
as high as those of comets (table S3), according
to measurements of cometary IDPs and ultra-
carbonaceous micrometeorites (30, 87, 88).
This indicates that the parent body of Ryugu
did not originate from comets themselves but
formed in the same region as CI chondrites, at
a large heliocentric distance, possibly outside
the orbit of Jupiter (89).

Thermal model of Ryugu’s parent asteroid

Weused the physical properties obtained from
the sample analysis (Table 1) to calculate a ther-
mal model of Ryugu’s parent body. The radius
of the parent body was chosen on the basis of
an estimate of the total mass of the Eulalia
family (85). We set a radius of 50 km for the
rocky part of the parent body then added ad-
ditional size according to the amount of water
ice in each model. The initial internal and sur-
face temperatures were set to –200°C [70 K;
rationale provided in (7)]. The temperature
was then allowed to increase through heat-
ing by radioactive decay of 26Al, whichmelted
the water ice at 0°C. Subsequent formation of
hydrous minerals (assumed to occur at 20°C)
released energy that caused further heating.
We ran simulations for ranges of formation
age (ts) and initial W/R ratio.
Mn-Cr dating of Ryugu samples has indi-

cated that carbonates formed at 37 ± 10°C,
5.2million years after the formation of the first
solidmaterials in the solar system (CAIs) (29).

That temperature is consistent with our miner-
alogical constraints (mostly ≲50°C). Our chem-
ical modeling of the aqueous alteration found
that a W/R ratio of 0.2 to 0.9 reproduces the
mineralogy of the major lithology (Fig. 7A). An
example thermal model that satisfies these
constraints (ts ~2.2 million years and W/R =
0.6) is shown in Fig. 7E. Inside the parent body
(~51 km radius from the center), the icemelts,
hydrousminerals form, and carbonate mine-
rals precipitate at ~4.8million years. Although
hydrous and carbonateminerals form through-
out, the subsequent temperature increase is
limited (reaching a peak of ~75°C), and there-
fore, dehydration of the hydrous minerals does
not occur. Within 14 km of the cold surface, ice
melting is limited, so the initial mineralogy
experiences very little alteration at low W/R
ratios and low temperature (~0°C). Therefore,
the least-altered lithology (Fig. 3, D to F) that
we found in the Ryugu samples might have
been located close to the surface of Ryugu’s
parent body.
The formation age in the model required to

satisfy the constraints from the sample anal-
ysis varies depending on the initialW/R. The
major lithology is consistent with W/R = 0.2
to 0.9 (Fig. 7A), which corresponds to a range of
formation ages from 1.8 million years (W/R =
0.9) to 2.9 million years (W/R = 0.2) after CAI
formation (conventionally taken to be the be-
ginning of Solar System formation) (fig. S30).
We assume instantaneous accretion of the
parent body at the time of formation; if the
parent body accreted slowly, then the forma-
tion must have started earlier.

Impact on Ryugu’s parent body

Ryugu’s parent body was disrupted by a large-
scale impact to form the Eulalia or Polana as-
teroid family, including Ryugu itself (3, 90).
Using the physical properties measured from
the samples (Table 1), we constructed an equa-
tion of state consistentwith the Ryugumaterial
and used it to calculate a destructive collision
with the parent body (7) by use of the impact-
simplified arbitrary Lagrangian Eulerian
(ISALE) software (91–93). Shown in Fig. 7F is
the head-on collision of a 6-km-radius impac-
tor onto a 50-km-radius parent body at an im-
pact speed of 5 km s–1, which is typical for the
main asteroid belt (94). In this simulation, the
parent body is mostly destroyed, with the di-
ameter (D) of the largest surviving body being
~50 km (fig. S31). This is consistent with the
measured sizes of Eulalia (D=40km) or Polana
(D = 55 km) (85).
Only limited volumes experienced high shock

pressure and temperature during the impact
(Fig. 7F); we found that 10 and 0.2 vol % of the
parent body experienced pressures higher
than 1 and 10 GPa, respectively. The temper-
ature near the impact site (approximated as
the size of the impactor) rises above 700°C,
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whereas regions away from the impact site
do not rise above 90°C. The latter temperature
is consistent with the amount of interlayer
water found in Ryugu saponite (29). With this
temperature limitation and the absence of
evidence for shocks in most of our samples,
we propose that Ryugu might have formed
from fragments excavated from areas far from
the impact site, such as on the far side. It is
likely that some of the reaccumulatedmaterial
originated from the surface and subsurface
layer of the parent body; such material would
have experienced limited degrees of aqueous
alteration at low temperature and low W/R
ratio, which is consistent with the least-altered
and the less-altered fragments found in our
samples.
We conclude that the samples collected by

the Hayabusa2 mission originated from mul-
tiple depths within Ryugu’s parent body, which
formed beyond the H2O and CO2 snow lines,
possibly beyond the orbit of Jupiter.
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