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Abstract—Current and future radio telescopes deal with large
volumes of data and are expected to generate high resolution
gigapixel-size images. The imaging problem in radio interferom-
etry is highly ill-posed and the choice of prior model of the sky
is of utmost importance to guarantee a reliable reconstruction.
Traditionally, one or more regularization terms (e.g. sparsity and
positivity) are applied for the complete image. However, radio
sky images can often contain individual source facets in a large
empty background. More precisely, we propose to divide radio
images into source occupancy regions (facets) and apply relevant
regularizing assumptions for each facet. Leveraging a stochastic
primal dual algorithm, we show the potential merits of applying
facet-based regularization on the radio-interferometric images
which results in both computation time and memory requirement
savings.

I. INTRODUCTION

In radio interferometry (RI), the radio emissions from the
sky are observed via a telescope array with the objective of
constructing radio sky images over the Field of View (FoV)
of the radio telescope. Radio telescope arrays probe the sky
through incomplete sampling of the sky image of interest in the
Fourier domain, leading to an ill-posed inverse deconvolution
problem for image recovery. Any attempt to image reconstruc-
tion requires the regularization of this problem by postulating
an appropriate signal model. Point sources and extended emis-
sions can coexist in a radio image and require different models
to obtain the best reconstruction performance as studied in [1].
Among the most famous deconvolution algorithms, CLEAN [2]
models the radio sky as a collection of point sources and is
more adequate when the sky is composed of a number of
distinct point sources, Multi-Scale CLEAN (MS-CLEAN) [3]
improves the performance of CLEAN in retrieving extended
emissions by modeling the sky brightness via a collection
of components with different scales. More recently, convex
optimization approaches have been proposed, leveraging the
versatility of optimization theory in incorporating complex sig-
nal models into the image recovery. The ”Sparsity Averaging
Re-weighted Analysis” approach (SARA) has been extensively
shown to provide significant improvements in imaging quality
in comparison to CLEAN [4]–[7].

The design of the imaging algorithms for the next generation
radio telescopes faces extreme challenges due to the unprece-
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dented data volumes and the demand for recovery of sky
images at a new range of resolutions and sensitivities. In this
context, modern convex optimization algorithmic structures
such as the primal dual algorithm [8]–[11] enable to split
both data and image into an arbitrary number of blocks
which can be handled in parallel. An additional randomization
functionality of the primal-dual algorithm enables to visit a
subset of the blocks at each iteration. A recent work has
studied the benefits of the primal-dual algorithm for radio-
interferometric imaging by splitting the data into blocks, and
randomizing over the data blocks [6].

The present work is a preliminary attempt to investigate the
computational benefit of splitting the image under scrutiny into
blocks as well, here called facets, using optimization theory.
Faceting is a common technique in RI. Traditionally, they have
been introduced to handle the so-called direction-dependent
effects (DDEs) [12]. Recently, Tasse et al. [13] proposed a
faceting approach to parallelize the facet computation, and
accelerate the global image reconstruction. This method is
a CLEAN-based technique, assuming sparsity in the image
domain (e.g. `1 regularization). The method we develop in
this article is similar to [13] in the parallelization of facet
computation, but leverages advanced stochastic optimization
techniques rather than greedy approaches. Moreover, opti-
mization theory allows to use versatile regularization terms
and benefits from convergence guaranties [10]. In fact, the
proposed method can be seen as a multi-facet generalization
of the data-block SARA method developed in [6]. In particular,
beyond the obvious benefit of parallelization of the facet
computation at each iteration, we focus on the following two
aspects. Firstly, our work stems from the realization that a
large class of radio images of interest are mostly empty,
with few structured sources appearing in distinct facets. In
this context, it should be computationally more efficient to
apply a very simple prior model (i.e. `1) on the background,
and confine sophisticated regularization priors (i.e. sparsity
averaging) to specific source regions (facets). We assume prior
knowledge of the facet decomposition, which can for example
be obtained from low-resolution reconstruction. Secondly, we
investigate how the computation can be further lightened by
relying on a stochastic functionality and propose a procedure
to process only a fraction of the facets.

The remainder of the manuscript is organized as follows.
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In Section II we describe the RI imaging problem and recall
the data splitting approach developed in [6]. We introduce our
facet-based approach and our algorithm in Section III. We
illustrate the performance of our approach on simulated data
in Section IV. Finally, we draw our conclusions in Section V.

II. RADIO-INTERFEROMETRIC IMAGING

A. Problem description
Starting from an array processing perspective [14], the

telescope array contains distinct antennas that capture radio
signals that are split into narrow frequency bands. The FoV
of the radio telescope is decomposed into Q pixels that
can be independently treated as the source signals impinging
on the array. The received signals are contaminated by the
receiver noise modeled as mutually independent zero mean
Gaussian signals. The objective is to find an estimate x? of
the original unknown sky brightness distribution x ∈ RQ from
the degraded measurement y ∈ CM (also called visibilities),
corresponding to the pairwise correlation of the signals output
from the telescope array. This results in a linear measurement
model

y = Φx + e (1)

where Φ ∈ CM×Q is the linear measurement operator and
e ∈ CM is a realization of an additive random noise with
bounded energy, i.e. there exists ε > 0 such that ‖e‖2 ≤
ε. We assume that the measurement operator Φ is perfectly
known, such that no calibration is needed [15]. It is modeled as
the product between a matrix G and an oversampled Fourier
operator F (implemented using the Fast Fourier Transform
- FFT). The matrix G contains the compact support kernels
enabling the computation of the continuous Fourier samples
from the discrete Fourier coefficients provided by the FFT
[16], [17].

B. Compressive sensing and data splitting
In [5], the authors have proposed to define the estimate of

x as a solution to a convex minimization problem, leveraging
compressive sensing theory [18], [19]. In this context, the
sky image is assumed to have a sparse representation into
a given basis Ψ ∈ CQ×L, with L ≥ Q. In other words,
it is assumed that Ψ†x has only few non-zero coefficients,
where Ψ† denotes the Hermitian transpose matrix of Ψ. This
sparsity-aware approach has been adopted in multiple works
such as [5], [6], [20], [21] with different choices of sparsity
basis Ψ. In [5], the authors proposed to promote average
sparsity by choosing Ψ to be the concatenation of the Dirac
basis with the first 8 Daubechies wavelet transforms [22].
More recently, to achieve a highly parallelizable algorithmic
structure, it has been proposed in [6] to split the visibilities into
nd > 0 blocks. Formally, y = (yj)1≤j≤nd

where yj ∈ CMj

is the jth data block of dimension Mj . In this context, the
linear system (1) can be rewritten as follows:

(∀j ∈ {1, . . . , nd}) yj = Φjx + ej (2)

where Φj = GjF ∈ CMj×Q is the associated block of the
measurement matrix and ej ∈ CMj is the jth block of the
additive noise e. Since the additive noise is assumed to have a

Fig. 1. Top: Image of Cygnus A (Q = 512 × 1024) in log scale. Bottom:
Image showing the 4 considered facets (3 facets with structures, and 1 facet
for the background).

bounded energy, for every j ∈ {1, . . . , nd}, there exists εj > 0
such that ‖ej‖2 ≤ εj . Using this structure, the authors have
proposed to define the estimate of the sky image as a solution
to

minimize
x∈RQ

+

‖ Ψ†x ‖1 +

nd∑
j=1

ιB2(yj ,εj)(Φjx), (3)

where ιB2(yj ,εj) denotes the indicator function of the `2 ball
B2(yj , εj) centered in yj with radius εj . The indicator function
at a point z is equal to 0 if z ∈ B2(yj , εj), and +∞ otherwise.

III. PROPOSED APPROACH

A. Facet-based Imaging

Giga-pixel images of the radio sky x usually consist of a
large black background which is mostly empty and separate
extended structures which can be clustered together. An exam-
ple of this type of radio image is shown in Fig. 1(top) which
shows the radio emission from the Cygnus A radio galaxy
image with separate emissions and a large emission-free back-
ground. We propose to take advantage of this particular sky
image structure and split these images into non-overlapping
nc facets. Formally, we define x = (xk)1≤k≤nc

where, for
every k ∈ {1, . . . , nc}, xk ∈ RQk consists of a subpart of the
image, and Q = Q1 + . . .+Qnc

. In Fig. 1(bottom), we show
an example of the image splitting of the Cygnus A image. We
can see that 3 main facets are identified, corresponding to the
3 main structures of the image. In addition, the background
(in black in Fig. 1(bottom)) is considered to be a 4-th facet.
In this work, we assume that a pre-processing clustering step
has been performed (e.g. using a low resolution estimate), and
that we have access to the support of each facet.

In this context, problem (1) can be rewritten for the jth data
block as

yj =

nc∑
k=1

[Φjx]k + ej , (4)

where [.]k denotes the kth block of its argument. Since the
considered facets can contain either complex structures, or al-
most only zero coefficients for the background, we propose to
choose different sparsity regularization terms for the different
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facets. In particular, the facet associated with the background,
chosen to be the last facet k = nc, is mostly empty in the
image domain. To avoid losing any weak emission that might
be present in the background, we propose to choose a simple
regularization, the `1 norm, to regularize this particular facet.
For all the other facets containing sophisticated structures, we
use the average sparsity regularization introduced in [5]. The
associated minimization problem can be formulated as

minimize
x=(x1,...,xnc )∈R

Q
+

nc∑
k=1

γk‖Ψ†kxk‖1

+

nd∑
j=1

ιB2(yj ,εj)

( nc∑
k=1

Φj,kxk
)
, (5)

where, for every k ∈ {1, . . . , nc}, γk > 0 is a regularization
parameter, associated with the kth facet. In this formulation,
for every k ∈ {1, . . . , nc − 1}, Ψk ∈ RLk×Q corresponds to
the concatenation of the Dirac basis and the first 8 Daubechies
wavelet transforms associated to the kth facet xk. The last
facet xnc

being dedicated to the background, Ψk is chosen to
be the Dirac basis (i.e. identity matrix with Lk = Q).

B. Proposed algorithm

Problem (5) consists in minimizing a sum of compos-
ite non-differentiable convex functions. Primal-dual proximal
algorithms are particularly efficient to solve such problems
[11]. This class of iterative optimization algorithms have been
already used during the last decade in the context of RI, when
sparsity-based regularization terms are considered [4]–[6]. In
particular, in [6], the authors proposed to leverage the stochas-
tic primal-dual proximal algorithm developed in [10], to solve
problem (3). Basically, in this work, the authors proposed to
utilize the stochastic properties to reduce the computational
complexity of the algorithm by activating, randomly, only a
subset of the data blocks per iteration.

In the proposed facet-based imaging approach, not only the
data are divided into blocks, but also the the image is divided
into facets. We propose to use the block-coordinate structure
of the stochastic primal-dual proximal algorithms developed in
[10] to handle efficiently the block data terms and the facet-
based regularization terms. The resulting faceting primal dual
algorithm, to solve problem (5), is described in Algorithm 1.

In Algorithm 1, we can distinguish three main parallel
loops. The first loop (step 6) is used to update the facets.
The second loop (step 10) is used to handle the `1 facet-based
regularization terms. Finally, the third loop (step 21) is used
to handle the `2-ball constraints related to the data blocks.

To handle the positivity and the `2-ball constraints, in
steps 7 and 24 respectively, projection steps are performed.
The projection onto a convex, closed, non-empty subset C of
RQ of c ∈ RP , is defined as ΠC(c) = argmin

ϑ∈RP

‖ϑ − c‖2.

On the one hand, in the case when C = RQ+, this projection
reduces to

(∀x ∈ RQ) ΠRQ
+

(x) = max
{
0,x

}
, (6)

Algorithm 1: Faceting primal-dual algorithm

1 Initialization: x0 ∈ RQ, ς0 ∈ RQ, υ0 ∈ RQ,
ν ∈]0,+∞[, τ ∈]0,+∞[, (∀k ∈ {1, . . . , nc})
vk,0 ∈ RLk , and γk ∈]0,+∞[, and
(∀j ∈ {1, . . . , nd}) zj,0 ∈ RMj

2 Iterations:
3 for n = 0, 1, . . . do
4 Choose randomly Sn ⊂ {1, . . . , nc}
5 Choose randomly Dn ⊂ {1, . . . , nd}
6 for k ∈ {1, . . . , nc} (facet parallel update) do
7 xk,n+1 = ΠRQ

+

(
xk,n − τ(ςk,n + υk,n)

)
8 x̃k,n = 2xk,n+1 − xk,n
9 end

10 for k ∈ {1, . . . , nc} (regularization parallel step)
do

11 if k ∈ Sn then
12 uk,n = vk,n + γkΨ

†
kx̃k,n

13 vk,n+1 = uk,n − γkTγ−1
k

(
γ−1k uk,n

)
14 υk,n = Ψkvk,n
15 else
16 vk,n+1 = vk,n
17 υk,n+1 = υk,n
18 end
19 end
20 bn = Fx̃n
21 for j ∈ {1, . . . , nd} (data parallel step) do
22 if j ∈ Dn then
23 sj,n = zj,n + νGjbj,n
24 zj,n+1 = sj,n − νΠB2(yj ,εj)(ν

−1sj,n)

25 gj,n+1 = G†jzj,n+1

26 else
27 zj,n+1 = zj,n
28 gj,n+1 = gj,n
29 end
30 end
31 ςn+1 = F†gn+1

32 end

where the max operation is performed component-wise. On
the other hand, in the case when C = B2(yj , εj), for every
j ∈ {1, . . . , nd}, we have, for every sj ∈ CMj ,

ΠB2(yj ,εj)(sj) =

sj if sj ∈ B2(yj , εj),

yj + εj
sj − yj
‖sj − yj‖2

otherwise.

(7)

Similarly, to handle the `1 regularization terms, soft-
thresholding operations are performed in step 13. For every
facet k ∈ {1, . . . , nc}, for every γk > 0 and uk ∈ RLk , this
operator is defined as follows [23]:

Tγ−1
k

(uk) =


−u

(i)
k + γ−1k if uk < −γ−1k ,

0 if − γ−1k < uk < γ−1k ,

uk − γ−1k otherwise.
(8)
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Algorithm 1 is a stochastic algorithm in the sense that,
at each iteration n ∈ N, a subset Sn of the nc facet-based
regularization terms and a subset Dn of the nd data terms
are selected randomly (steps 4 and 5, respectively), and only
the related variables are updated. It is in particular interesting
to notice that the sparsifying operator Ψk is only applied if
the facet k ∈ {1, . . . , nc} is selected (see parallel loop in
step 10). Similarly, as proposed in [6], the gridding matrix
Gj is only applied if the data block j ∈ {1, . . . , nd} is
selected (see parallel step 21). However, the oversampled FFT
operator F and its adjoint must be performed at each iteration
(steps 20 and 31, respectively). Note that when nc = 1,
then the algorithm proposed in [6] is recovered. In addition,
if, at each iteration n ∈ N, we choose Sn = {1, . . . , nc}
and Dn = {1, . . . , nd}, then the algorithm reduces to a
deterministic primal dual algorithm [8], [9].

Finally, it is important to emphasize that the proposed
algorithm benefits from the convergence properties of the
general stochastic primal dual algorithms developed in [10].
Let ν > 0, τ > 0 and, for every k ∈ {1, . . . , nc}, let
γk > 0 satisfying τ−1 > ν‖Φ‖2S +

∑nc

k=1 γk‖Ψk‖2S , where
‖.‖S denotes the spectral norm. Then, the sequence (xn)n∈N
generated by Algorithm 1 converges almost surely to a random
variable x? solution to Problem (5).

IV. SIMULATION RESULTS

We evaluate the performance of Algorithm 1 on simulated
radio-interferometric data. We choose as the test image the
Cygnus A radio galaxy image of size Q = 512× 1024 shown
in in Fig. 1(top), in log scale. The image is manually split
into the nc = 4 facets shown in Fig. 1(bottom). In this image,
the black facet represents the background, indexed by k = nc.
The visibilities are generated according to model 1, using a
random Gaussian undersampling u−v coverage, with M = Q.
The u − v coverage, split into nd = 16 blocks, is shown in
Fig. 2. In model 1, the additive noise is generated following
to a zero-mean complex Gaussian distribution, considering an
input signal-to-noise ratio (iSNR) of 20 dB, where iSNR =
20log10

( ‖y‖2√
Mσ

)
, σ2 being the variance of the noise. For the

details of data generation and the estimation of the bounds
(εj)1≤j≤nd

the reader is referred to [6].
We compare the performances of the proposed faceting

primal-dual algorithm, with and without randomization over
the facet-based regularization terms, with the primal-dual
algorithm developed in [6] to judge the benefit of faceting.
Since the data blocks are handled exactly in the same manner
in Algorithm 1 and [6], in our simulations, we focus on
the interest of using a facet-based approach, with possible
randomization. Consequently, in our simulations, we choose,
for every n ∈ N, Dn = {1, . . . , nd} (i.e. no randomization
over the data terms). The reader is referred to [6] for a
complete investigation of randomizing the primal dual algo-
rithm over the data blocks. Concerning Sn, we investigate
two cases. In the first case, at each iteration n ∈ N, we
choose Sn = {1, . . . , nc}. It corresponds to a deterministic
version of Algorithm 1 where all the facet-based regularization
terms are selected at each iteration. This first configuration is

Fig. 2. Normalized random Gaussian u − v coverage. The light blue and
dark blue colors emphasize the different nd data blocks

used to emphasize the advantage of the proposed facet-based
approach, considering the simple `1 regularization term on
the background. In the second case, we use the randomization
property of Algorithm 1. In this case, we choose to activate,
at each iteration n ∈ N the complete background (i.e. facet
k = nc = 4) and select randomly one of the three other facets.
In this context, we choose Sn = {kn, 4}, where kn ∈ {1, 2, 3}
is chosen following a uniform distribution.

We present in Fig. 3 the results of our simulations. Fig. 3(a)
shows the signal-to-noise ratio (SNR) as a function of the
iterations n ∈ N. The SNR (in dB), for the current iterate xn
is defined as

SNR = 20 log10

(
‖x‖2

‖x− xn‖2

)
. (9)

These curves emphasize that the proposed facet-based reg-
ularization term is not affecting the reconstruction quality.
In Figs. 3(b) and (c), for the three considered algorithms,
we give the time necessary to compute each global iteration,
and the % of time spent to perform the regularization steps
(i.e. step 10 in Algorithm 1) per global iteration, respectively.
By comparing the black curve ( [6]) and the blue curve
(Algorithm 1 without randomization), we can conclude that
the proposed facet-based regularization term reduces the total
computational time. This is due to the fact that the wavelet
transforms are only performed on the facets with complex
structures. In particular, the theoretical complexity to per-
form the wavelet decomposition with Algorithm 1 (without
randomization) is

∑nc−1
k=1 O(Lk), which is smaller than the

complexity of performing a wavelet decomposition on the
global image (which is equal to O(L)). The red curves are
associated with the randomized version of Algorithm 1. It
can be observed that leveraging the stochastic properties of
this algorithm allows to divide by 2 the computation time per
iteration (w.r.t. [6]). In addition, with the randomized version,
performing the regularization steps only requires ∼ 30%
of the iteration computation time, while it requires ∼ 60%
without randomization and ∼ 70% for [6]. We note that
in this comparison, the facets being identified manually, the
computational contribution from the facet-selection procedure
is not included in Fig. 3.

V. CONCLUSION AND FUTURE WORKS

We have reported our attempts to achieve a facet-based
regularization for scalable interferometric imaging. Firstly, we

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2681



(a) (b) (c)

Fig. 3. Results obtained using the primal dual algorithm from [6] (black - diamond marks), Algorithm 1 without randomization (blue - circle marks), and
Algorithm 1 with randomization on the facet-based regularization terms (red - cross marks). (a) SNR (dB) as a function of iterations. The SNR is an averaged
SNR for 10 realizations of noise and under-sample distributions. (b) Computation time per global iteration. (c) Computation time to handle the regularization
term (i.e. step 10 in Algorithm 1), as a % of the time necessary to perform a complete iteration. For (b)-(c), the computation time is an averaged computation
time for 10 realizations of noise and under-sample distributions, with 10 runs on each setting.

have extended the primal-dual algorithm developed in [6]
to incorporate image facets and enable randomization of the
facet computation at each iteration. Secondly, we have shown
that based on the nature of radio images where individual
source facets exist in a sea of mostly-empty background, we
can apply the regularization more wisely in order to save
computations without sacrificing the reconstruction quality.
Thirdly, we have shown that randomization over facets further
saves computations.

For future works, we plan to implement an automated
faceting schemes based on a low resolution initial image
and integrate general faceting schemes which also include
overlapping facets in the algorithm by introducing consensus
steps as presented in [10]. In addition, similar to the faceting
approach proposed in [13], we will perform splitting of the
measurement operator over the facets. Finally, we plan to
develop a facet-based DDE calibration version of the proposed
method, by leveraging a block-coordinate approach [21], [24].
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