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Summary

This thesis focuses on the development and application of an entropy-corrected full potential
flow solver (EC-Flow) within a finite element framework, designed to improve the represen-
tation of shock waves in transonic flow regimes. By addressing the limitations of traditional
isentropic full potential flow solvers, this research aims to enhance the accuracy of aerody-
namic predictions at low computational cost, making it suitable for early design phases in
aeroelastic analysis.

The work begins with an overview of the theoretical background of transonic aerodynamics
and the hierarchy of numerical solutions to the Navier-Stokes equations. It identifies the full
potential flow model as a computationally efficient alternative, enhanced with an entropy
correction to address its inherent weaknesses in capturing entropy effects across shock waves.

Key components of the methodology include the numerical implementation of the entropy
correction within the Flow solver to obtain the EC-Flow solver, the use of gradient-based and
normal Mach number methods for shock detection, and an iterative downstream approach
to apply the correction consistently across the domain that is influenced by the shock. The
entropy correction is formulated using the Rankine-Hugoniot relations to account for the
entropy change across shocks.

The results are demonstrated for two airfoil cases: the symmetric NACA0012 airfoil and
the non-symmetric, supercritical RAE2822 airfoil. Convergence analyses show that EC-Flow
achieves smoother and more stable solutions compared to the uncorrected solver, with a no-
table reduction in shock strength and improved shock localization. Comparisons with results
from the Euler equations validate the effectiveness of the entropy correction in improving so-
lution accuracy without significant computational overhead. Besides improving results, there
is also a significant improvement in computational performance.

The analysis concludes with a discussion of the limitations and applicability of the solver,
particularly its performance for varying angles of attack. While the entropy correction be-
comes more pronounced at more extreme angles of attack, the results in these cases should
be taken with care, as EC-Flow also begins to diverge from the Euler solutions. Recommen-
dations for future work include enhancing the shock detection algorithm, further improving
computational efficiency, and extending the solver to three-dimensional transonic flow fields.
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Chapter 1

Introduction

”Make everything as simple as possible, but not simpler.” These words, famously attributed to
Albert Einstein, serve as a reminder that progress often lies in the balance between simplicity
and complexity. This idea resonates deeply with the principles of this thesis, which will
explore the connection between reality and mathematics to tackle the challenges of transonic
flow. Just as Einstein’s wisdom encourages us to avoid over-simplification, the methods and
insights presented here strive to capture the essential complexity of the problem.

In today’s aviation industry, there is an endless surge for more sustainable aircraft. A key
factor in achieving this goal is to minimise the structural mass of aircraft, leading to more
efficient and lightweight designs that reduce energy consumption during flight. A result of this
continuous search for more lightweight aircraft structures is that they become increasingly
flexible and elastic in response to the aerodynamic forces encountered in flight.

This trend led to the emergence of the relatively new field of aeroelasticity, which is a mul-
tidisciplinary area between structural mechanics and aerodynamics. Aeroelasticity not only
considers these fields individually but, more importantly, addresses the coupling between
them. The increased flexibility of modern aircraft makes aeroelasticity a critical considera-
tion during the early design phases when significant structural and aerodynamic changes can
occur. In this context, numerical simulations must be efficient and require low computational
costs to support rapid design iterations.

To satisfy the need for computational efficiency, this research focuses on analysis of existing
aerodynamic frameworks and exploring potential improvements. Although the emphasis is
placed on aerodynamics, the goal is to develop a framework that can be expanded to include
aeroelastic analysis. This research specifically targets transonic and high subsonic, as these
are the operating conditions for most commercial aircraft. It should be noted that this will be
done in a steady framework, meaning that time variations are not included in this research.
A detailed discussion of these flight regimes and their challenges can be found in chapter 2.
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2 Introduction

In aerodynamics, the conservation of mass, momentum, and energy in a continuum form the
foundation for solving aerodynamic problems (Bendiksen (2011)). Although there are some
exact solutions for specific case problems, to date there is no general solution to these equations
(Anderson (2017)). Consequently, numerical methods are used to simulate flow patterns.
These methods vary in fidelity, with higher-fidelity approaches, such as Direct Numerical
Simulation (DNS) and Reynolds-Averaged Navier-Stokes (RANS), offering greater accuracy,
but at a higher computational cost. Through several possible simplifying assumptions, one
ends up on the other side of the fidelity spectrum, with solutions like linearised potential
flows (Bendiksen (2011)). Depending on the requirements and design phase of a project, an
appropriate solution method is chosen.

Balancing the two requirements of low computational cost and accurate modelling of transonic
flow problems presents a complex problem. The transonic flow itself is particularly challeng-
ing, as it contains mixed subsonic-supersonic flow. This often means it includes shock wave
formation within the domain, which introduces non-linear mathematical behaviour and loss
of feasibility of multiple simplifying assumptions. The full potential flow model, when com-
bined with an entropy correction across shock waves, offers a promising solution. The full
potential flow assumes inviscid, isentropic and irrotational flow. After the entropy correction
is implemented across the shock wave, an approximate solution is obtained which tries to lift
the isentropic assumption of the full potential flow equations. A more detailed explanation
on transonic flow, the hierarchy of the assumptions that can be made, and an explanation on
shock wave detection can be found in chapter 2.

Although the full potential flow model poses possible low-cost solutions of transonic flow
regimes, it seems that it is not used in that regard in current literature. This is mainly because
of its low accuracy in capturing shock effects, which is an effect that is intrinsically connected
to transonic aerodynamics, and thus very important to model accurately. However, as it seems
from the current literature, a full potential flow solver with a corresponding entropy correction
along the shock wave promises good solution accuracy with comparatively low computational
costs with regards to the Euler equations and RANS solutions Whitlow (1988). Therefore,
this thesis aims to contribute to the aeroelastic analysis of aircraft in early design phases by
developing a transonic full potential flow solver with an entropy correction across shock waves,
designed to improve shock wave prediction and analysis. More information on the theoretical
background of the entropy correction can be found in chapter 3, with its implementation
discussed in chapter 4.

The results that the entropy corrected solver, called EC-Flow, produces compared to the stan-
dard model and Euler equations, can be found in chapter 5. These results are discussed in
chapter 6, after which a conclusion is drawn in chapter 7. Finally, chapter 8 discusses the cur-
rent developments of the entropy correction in three dimensions, and some recommendations
for future work.
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Chapter 2

Literature Review

To establish an understanding of transonic aerodynamics, it is important to analyse the
governing equations. In aerodynamics, the continuity, momentum (also Navier-Stokes (NS))
and energy equations form the governing equations for flow problems which are modelled as
a continuum. Although they form a solid model for a variety of fluid flow problems, there
is no general analytical solution, making numerical methods necessary. In addition to this,
often simplifying assumptions are made to allow for less resource-intensive analyses (Anderson
(2017)).

Given the variety of simplifying assumptions, section 2.2 provides an overview of the different
approaches to solving aerodynamic problems. As mentioned in chapter 1, the emphasis of
this study lies on low-computational cost solutions within the context of transonic flight.
Consequently, the current state of literature within this scope is briefly analysed to conclude
if there are possible gaps that can be exploited to improve the aeroelastic design process.
Again, it should be noted that although this section focuses on aerodynamic models, it is the
context of aeroelasticity in which these models are used that is of interest.

Before discussing the different solution methods, section 2.1 introduces the characteristics
of transonic flow. Understanding these complex flow behaviours is critical to identify the
requirements of an effective numerical solver.

From the literature review, it becomes evident that an entropy-corrected full potential flow
model is a promising candidate for further exploration. The model has been used a few times
in previous research, but only in finite-difference models and in application to two-dimensional
airfoils. Hence, its intended novelty is to implement it in a finite-element solver and to apply
the model on three-dimensional wings.

However, a significant challenge arises from the entropy correction: the need to numerically
determine the location of the shock. Determining the location of the shock is not a trivial
task, and the numerical methods to find the location of the shock are discussed in section 2.3.

MSc. Thesis Vincent Hoogeboom



4 Literature Review

2.1 Transonic Flow Regimes

In chapter 1, it was explained that this text is mainly concerned with low-computational-
cost solutions within the framework of transonic flow. To understand what transonic flow
entails and what is needed to solve problems within this context, this section provides a small
analysis on the characteristics of this flow regime.

Transonic flow owes its name to the fact that it is concerned with flow around an aerodynamic
body that includes both subsonic and supersonic regions. Although free-stream velocities may
be below sonic speeds, it is possible that through flow acceleration on, for example, an aircraft
wing, local supersonic speeds are encountered. This is also visualised in Figure 2.1, where
the supersonic region is denoted by a Mach number larger than 1 (M > 1). Hence, these
problems are related to mixed subsonic-supersonic flow.

Figure 2.1: Overview of how local supersonic flow exists on an aircraft wing (Anderson (2017)).

As the local supersonic flow decelerates through the speed of sound again, often a shock wave
occurs. This is characterised by the solid line at the end of the supersonic region. These
shock waves cause abrupt changes in pressure, density, and temperature.

Mixed subsonic-supersonic flow has inherently non-linear behaviour, especially in unsteady
aeroelastic problems such as flutter (Bendiksen (2011)). Now, since this regime is highly
non-linear, non-linear equations are required to model this phenomenon.

One of the primary challenges in modelling transonic flow is the sensitivity of shock waves
to small variations in flow conditions, such as Mach number or angle of attack. Even minor
changes in these parameters can result in significant shifts in the shock location and strength,
which in turn affect aerodynamic performance. Shock waves cause a sharp increase in wave
drag, reducing the aerodynamic efficiency of an aircraft.

Now, in aeroelasticity, accurately modelling flow phenomena has a great influence on the
solution quality for aeroelastic parameters. Crawley et al. (1995) notes that the location of
the shock and its motion are central to understanding the behaviour in transonic regimes. In
this work, steady flow is analysed, meaning that the motion need not be tracked. Therefore,
the focus lies on the location of the shock. To fully quantify the implications of the possible
improvements in this work, the resulting aerodynamic model should be used in a concurrent
aeroelastic analysis. This is outside the scope of the current work. However, the model that
is applied will be such that subsequent aeroelastic analysis can be performed.

Vincent Hoogeboom M.Sc. Thesis



2.2 Hierarchy of Different Solutions to the Navier-Stokes Equations 5

2.2 Hierarchy of Different Solutions to the Navier-Stokes
Equations

In section 2.1, the main characteristics of transonic flow were explained, to which this section
provides a guide on the different ways to aerodynamic problem solving. Here, it is explained
how the Navier-Stokes equations are transformed, through simplifying assumptions, into prob-
lems that have reduced complexity. The differences between these solutions are mainly in the
fidelity with which one requires to solve the equations. For example, early design phases
generally focus on low-fidelity solutions because of low-cost requirements and rapid change
of design. Later design phases, however, require higher quality solutions, therefore opting for
the higher-fidelity solutions.

However, it should be kept in mind that theoretical transonic aerodynamics is often considered
challenging and sophisticated. Hence, a good trade-off between the low-cost requirement,
whilst keeping the complexity and therefore the fidelity of the solution, is in place.

In Figure 2.2, one can see a rough schematic of the solution hierarchy to solve the Navier-
Stokes equations (Bendiksen (2011)). This overview does not contain all possible methods,
only roughly the ones that are more useful in aeroelastic sense. The Navier-Stokes equations
are at the top of the hierarchy, and through using several assumptions (described in the
round-edged boxes) one ends up with the lowest fidelity solution in the linearized potential
equation.

Figure 2.2: An overview of the different paths towards aerodynamic problem solving (Bendiksen
(2011)).

The Reynolds Averaged Navier-Stokes (RANS) equations that are depicted are considered

MSc. Thesis Vincent Hoogeboom



6 Literature Review

some of the highest fidelity options, though being computationally expensive, especially in
changing environments like design optimisation. As this research is focused on less expensive
solutions, this leaves one with the other branch of options that are shown in Figure 2.2.

As mentioned in section 2.1, transonic flow exhibits inherently non-linear effects. Therefore,
linearized equations such as the Linearized Potential Equation break down, making these
methods insufficient in describing the physics of the flow. Not to mention that classical
mathematical models for linear theory have a singularity at Mach numbers equal to 1, which
is insufficient for transonic regimes.

Now, Bendiksen (2011) mentions that the Full Potential Equation estimates shock waves being
too strong and placed too far aft on the airfoil with regard to real solutions, since the solution
only accommodates isentropic shocks. Despite these concerns, it is not considered that the
FPE can be used alongside an entropy correction or a vorticity correction, as discussed in
several research papers (Whitlow (1988), Klopfer and Nixon (1984), Whitlow et al. (1987),
Hafez and Lovell (1988), and somewhat more recently in Parrinello and Mantegazza (2012)).
The general consensus in these reports is that the entropy correction provides a significant
improvement in the results, with the results of the model comparing better to the solutions
provided by the Euler equations. Furthermore, Whitlow (1988) shows that the computational
cost is around 30-40% higher than the model without the correction, but states that the
enhanced shock resolution justifies the extra computational costs. Finally, because of the
(partial) inclusion of entropy in the fluid domain, the solver is able to better incorporate
strong shocks into the flow field.

Building on the previous analysis, this research continues with the full potential flow equa-
tions, enhanced by an entropy correction. The primary contribution of this work to the current
research is the implementation of the entropy correction within a finite element solver, with
the additional aim of extending its application to three-dimensional flow fields.

The choice of a finite element framework for solving full potential flow equations enables the
selection of a suitable software platform to implement the entropy correction. Taking into
account the existing collaboration between Delft University of Technology and the University
of Liège, the open-source solver Flow — developed by the University of Liège and detailed
in Crovato (2020) — was chosen. This software, which employs the finite element method to
solve the full potential flow equations, has been validated against benchmark cases, making
it a reliable foundation for incorporating and testing the entropy correction. To distinguish
between the original solver and the modified version with entropy correction, the latter is
referred to as EC-Flow throughout this research.

2.3 Shock Wave Detection

Implementing the entropy correction introduces the need for shock detection. Shock detection
includes determining the location of the shock, its extent from the airfoil boundary into the
fluid domain, and its strength. These characteristics are subsequently used to calculate the
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2.3 Shock Wave Detection 7

entropy correction and enforce this correction on parts of the domain influenced by the shock.

Both Ma et al. (1996) and Wu et al. (2013) break down some general methods to detect a
shock wave. The methods consist of (by increasing resolution quality): a threshold based on
the Mach number component normal to the shock, a threshold based on the density/pressure
gradients, and a method of characteristics. The normal Mach number uses the fact that
the component of the Mach number normal to the shock wave crosses 1 over said shock
wave. This can then be exploited to detect shock waves within the flow field. Furthermore,
density/pressure gradient methods use the fact that density and pressure rapidly change over
a shock wave. Finally, the method of characteristics determines the characteristic vector at
each grid vertex and, based on a shock-crossing condition, determines if a shock is crossed.

The normal Mach number and gradient-based methods both yield acceptable results, although
they may occasionally produce false positives. In contrast, the method of characteristics
provides high accuracy but is computationally expensive. According to Ma et al. (1996),
a combination of the gradient-based method and a normal Mach number threshold offers a
reliable compromise between accuracy and efficiency.

In this research, a combination of the first two methods is used for shock detection. The
specific thresholds used for detection will be determined by trial and error, as there are no
established guidelines. This approach not only balances accuracy and efficiency but also
automatically calculates the Mach number normal to the shock. This normal component is
needed to determine the size of the entropy correction, as detailed in chapter 3.
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Chapter 3

Theoretical Background and Research
Questions

This chapter outlines the mathematical model for steady, nonisentropic full potential flow.
First, the isentropic full potential flow model is introduced in section 3.1, along with the
simplifying assumptions required to derive the model and its impact on the precision of the
solution. Subsequently, the implementation of the entropy correction is detailed in section 3.2,
including the formulation of the correction and the additional numerical challenges it poses.

3.1 Steady Isentropic Full Potential Flow Model

In chapter 2, it was concluded that the steady, non-isentropic, full potential flow model will be
used in this research. Here, the isentropic full potential flow model is described in more detail.
The general full potential equation for steady, three-dimensional flow is given by Equation 3.1.
Here, ρi is the isentropic density, and ϕ is the velocity potential. These parameters are duly
differentiated with respect to spatial coordinates x, y, and z through the gradient operator
∇. Compared to a two-dimensional flow, the components with regard to z can be ignored.

∇ · (ρi∇ϕ) = 0 (3.1)

Here, the density is determined from the Bernoulli relation, which is given in Equation 3.2.
Note that this equation is based on the assumption that the incoming flow is uniform. Here,
γ is the specific heat ratio for air, and M∞ is the Mach number in free-stream conditions (far
from the analysed body). Furthermore, ϕi denotes the derivative of ϕ with respect to the
spatial coordinate i, for i = x, y, z.
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ρi =

[
1 +

γ − 1

2
(M2

∞ − ϕ2
x − ϕ2

y − ϕ2
z)

] 1
γ−1

(3.2)

Important to note is that the full potential flow model is not able to determine loads, as it is
irrotational. In Flow, this problem is overcome by enforcing the Kutta condition by extending
a flat wake sheet from the trailing edge of the airfoil/wing. This wake sheet enables the
generation of aerodynamic loads by introducing a necessary discontinuity between the flows
on the upper and lower surfaces of the airfoil.

The Kutta condition is a fundamental concept in aerodynamics but is especially highlighted
here because it provides another important feature that will be indirectly used by EC-Flow.
The flat wake sheet serves as a sort of discontinuity in Flow, separating flows on the upper
and lower sides of the airfoil. In EC-Flow, the entropy correction is applied to streamlines
behind a shock wave, achieved through downstream iteration from the location of the shock.
The wake sheet acts as a natural boundary, ensuring that the downstream iteration remains
confined to the respective flow region and does not interfere with the flow on the opposite
side of the airfoil — an advantageous and intended side effect.

For a comprehensive discussion of the finite element formulation used in Flow and the as-
sociated boundary conditions, the PhD dissertation by A. Crovato (Crovato (2020)) offers
an in-depth analysis. Given the detailed treatment provided in that work, it was deemed
unnecessary to replicate the analysis here.

3.2 Entropy Correction

This section describes the mathematical formulation of the entropy correction and how it
is used in aerodynamic analysis. The analysis in this section will focus on a combination
of Klopfer and Nixon (1984), Hafez and Lovell (1988), Whitlow et al. (1987), and Whitlow
(1988). In chapter 4, a better description of the numerical model will be given to complement
the mathematical model in this chapter.

The entropy change across a shock wave can be derived from the Rankine-Hugoniot jump
relations, which relate the physical states on both sides of the shock wave. The change in
entropy over a shock wave, ∆s, can be expressed as a function of the component of the
upstream Mach number normal to the shock wave (Mn), the specific heat ratio γ, and the
universal gas constant Rg as by Equation 3.3.

∆s

Rg
=

1

γ − 1

[
ln

(
2γ

γ + 1
M2

n − γ − 1

γ + 1

)
− γln

(
(γ + 1)M2

n

(γ − 1)M2
n + 2

)]
(3.3)

This equation captures the irreversible nature of the shock wave and quantifies the increase
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in entropy experienced by the fluid particles travelling through a shock wave. Mn is the
component of the Mach number normal to the shock, and its value must be tracked across
the shock front due to its variation. Here, gamma represents the ratio of specific heats, which
is approximately 1.4 for air under normal conditions. With the entropy change determined,
the isentropic density ρi determined behind a shock wave can be corrected for using this value,
as shown in Equation 3.4.

ρc = ρie
−∆s
Rg (3.4)

In this equation, ρi represents the isentropic density behind the shock wave, as determined
by the full potential flow equations. This value is adjusted to obtain the corrected density ρc.

For example, for an Mn of 1.3 (a strong shock), the correction value e
−∆s

Rg is roughly equal to
∼0.98. These corrections are small, highlighting the importance of accurate shock resolution.

The entropy correction thus reduces the density magnitude behind the shock, thereby de-
creasing the density jump across the shock wave and weakening its strength. As discussed in
chapter 2, the full potential flow equations typically overestimate the shock strength and po-
sition the shock too far aft. The entropy correction addresses these inaccuracies by indirectly
reducing the predicted shock strength.

While the entropy correction is straightforward in its formulation, its practical implemen-
tation presents certain challenges. Significant challenges are the shock detection and the
determination of the upstream component of the Mach number normal to the shock wave. In
transonic and supersonic flows, the location and strength of the shocks can vary depending
on the geometry and flow conditions. To correctly apply the entropy correction, the shock
location must be identified, and the upstream Mach number must be tracked for the complete
shock front.

The determination of the Mach number component normal to the shock wave inherently
enables the analysis of oblique shock waves. While the curvature of the shock front is expected
to have only a minor influence on the cases analyzed in this research, it remains an important
consideration.

3.3 Research Questions

The previous analysis concludes with the following research questions and sub questions that
are to be answered in the upcoming research.

1. What are the effects of the incorporation of an entropy correction in a full potential
flow solver for aerodynamic problem solving?
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• How does one implement the entropy correction in an existing, finite element, full
potential flow solver?

• How does the entropy correction impact the solution quality with respect to stan-
dard full potential flow solvers?

2. How does the full potential flow solver with entropy correction compare to state-of-the-
art models?

• What are the differences in computational efficiency compared to the standard full
potential equation and the Euler equations?

3. What are the limitations of the full potential flow solver with entropy correction for
aerodynamic problem solving in aeroelastic context?

• What ranges of angle of attack is this method most suited for?
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Chapter 4

Methodology

This chapter outlines the numerical application of the entropy correction model, referred to as
EC-Flow, within the framework of the standard Flow solver. To establish the foundation for
this integration, section 4.1 provides an overview of the numerical scheme and the details of
the implementation of Flow. This overview serves as the basis for the subsequent description
of the numerical integration of the entropy correction.

The numerical methods for detecting shock waves are detailed in section 4.2. Shock detection
presents a significant challenge, especially when computational efficiency must be preserved.
This section outlines the complexities involved in identifying shocks and describes the ap-
proach adopted to address these challenges within the context of this study.

Finally, subsection 4.2.4 discusses the application of the entropy correction to the flow field
downstream of the shock wave. This process presents the greatest challenge, as different
correction values need to be applied to different streamlines. Since the finite-element mesh
typically does not align perfectly with the streamlines, numerical inconsistencies can creep
into the solver.

4.1 Flow Numerical Scheme and Implementation

This section provides a concise overview of the numerical schemes employed in Flow, with a
focus on the quasi-Newton algorithm, where the entropy correction is applied. Detailed infor-
mation on the implementation of the finite element method is beyond the scope of this work
and is therefore not included here. For a comprehensive discussion on the implementation of
the finite element method, readers are referred to Crovato (2020).

The finite element discretized weak form of the full potential flow equation can be rewritten
as a set of equations, R = 0, with R the residual vector. The weak form is derived by
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integrating the governing equations against a set of test functions and is central to the finite
element formulation. Solving the full potential flow equation for transonic flows, particularly
using the finite element method, requires a robust numerical scheme to address the non-
linearities inherent in compressible flow. Consequently, the system of non-linear equations
must be solved iteratively.

In Crovato (2020), two primary iterative techniques are employed to solve these non-linear
equations: the Picard iteration and the Quasi-Newton method. As the Picard method is used
primarily for debugging and has poor convergence characteristics, the focus of this work lies on
the Quasi-Newton algorithm, which offers superior convergence for transonic flow problems.

Ignoring higher-order terms and assuming that a solution is available in iteration m, a better
estimate of the solution can be found by Equation 4.1.

Jm(ϕm+1 − ϕm) = −Rm (4.1)

Here, Jm denotes the Jacobian matrix in iteration m, which is defined by Equation 4.2. The
Jacobian matrix represents the matrix of first-order partial derivatives of the residual vector
Rm with respect to the solution ϕm.

Jm =
∂R

∂ϕ
|ϕm (4.2)

The quasi-Newton solution effectively solves for Equation 4.1. The idea behind Equation 4.1
is to linearize the non-linear problem locally with the current solution ϕm. By solving this
linearized system, one obtains a correction ϕm+1 − ϕm that reduces the residual Rm. The
Jacobian matrix Jm helps determining the appropriate size and direction of this correction.

The entropy correction must be incorporated into the residual vector Rm and the Jacobian
matrix Jm. This integration involves modifying the underlying density variables for specific
elements in the computational domain. The solver must identify the finite elements where
the entropy correction is required and apply the corresponding correction values. To achieve
this, all entropy correction values are pre-computed for the entire flow domain before the next
iteration begins. These precomputed values are then utilized during the solution updates, as
outlined earlier, ensuring consistency and computational efficiency.

4.2 Shock Wave Detection

As discussed in section 2.3, gradient-based methods and the normal component of the Mach
number relative to the shock wave are commonly used to determine the location of the shock.
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This section elaborates on the methodology used to identify shock waves in the flow field.
The approach combines density gradient analysis, detailed in subsection 4.2.1, with Mach
number thresholds, described in subsection 4.2.2. Furthermore, subsection 4.2.3 introduces
an auxiliary selection criterion based on a velocity parameter. This parameter helps to exclude
regions of the flow that are not relevant to the shock detection process.

4.2.1 Gradient-Based Detection of Shock Waves

As discussed in section 2.3, the methodologies presented by Ma et al. (1996) and Wu et al.
(2013) are utilized to detect shock waves in the flow field. The detection process leverages
the first-order directional derivative of the density, δ1ρ, and the second-order directional
derivative, δ2ρ. These derivatives are instrumental in identifying regions of rapid density
variation, such as those found in shock waves. By analysing how the density changes along
the local velocity vector, these methods enable precise localization of shocks in the flow field.

In Equation 4.3, one can find the first-order directional derivative of the density. Here, V
||V||

is the normalised velocity vector and ∇ρ the density gradient.

δ1ρ =
V

||V||
· ∇ρ (4.3)

This criterion is informative for shock locations, as the maximum of this variable is attained
at the shock location. Moreover, if the value is positive or larger than zero, it means that the
flow is compressing. This means that the velocity and the density gradient are oriented in
the same direction. If it is negative, it means that the flow is expanding. This criterion thus
also provides a distinction between expansion and compression waves.

In practical applications, identifying the maximum values of δ1ρ provides an initial indica-
tion of the locations of the shock, marking the regions of drastic density changes. To find
these maximum values, the second order derivative δ2ρ is used and is given by Equation 4.4.
Determining the maxima of δ1ρ is the same as determining the zero values of δ2ρ.

δ2ρ =
V

||V||
· ∇ (δ1ρ) =

V

||V||
· ∇

(
V

||V||
· ∇ρ

)
(4.4)

Although δ2ρ is zero at shock waves, it can also reach zero in smooth regions of the flow,
resulting in spurious shock wave locations. This requires additional criteria to differentiate
between these cases.

In addition to adding additional parameters to the threshold with, the values for δ1ρ and δ2ρ
can also be used solely. Then, one has to threshold the δ1ρ value by δ1ρ > ϵ, as mentioned
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by Wu et al. (2013). This means that this value has to be user-selected. This loses some
generality and ease of use of Flow, and introduces a new very sensitive parameter. Therefore,
it was chosen to add extra parameters instead.

4.2.2 The Normal Mach Number

As mentioned, it is essential to couple the gradient parameters with the normal Mach num-
ber to ensure that shock detection only occurs in regions where supersonic flow decelerates
to subsonic speeds. The Mach number component normal to the shock Mn is defined by
Equation 4.5.

Mn =
V · n
a

(4.5)

Here, V is the velocity vector, n is the local surface normal, and a is the speed of sound under
local conditions. The local surface normal is determined byEquation 4.6. This is equal to the
normalized density gradient.

n =
∇ρ

||∇ρ||
(4.6)

The normal Mach number provides a critical threshold mechanism for shock detection. During
analysis, elements are evaluated to determine whether Mn > 1, hence only select regions
where the flow has supersonic components normal to the local surface. This ensures that the
detection mechanism accurately identifies the shock locations, as these regions correspond to
supersonic deceleration indicative of a shock wave. However, even if this method is coupled
with gradient-based parameters, it is also mildly sensitive to spurious selection of slightly
upstream locations of the shock. Therefore, another parameter was used, as discussed in
subsection 4.2.3.

4.2.3 Extra Criterion Based on Velocity Decrease

During the shock determination process, an additional selection criterion was found to be
helpful in deselecting upstream parts of the domain. The criteria is given by Equation 4.7,
and was also referenced by Wu et al. (2013) as a useful tool.

V · ∇||V || < 0 (4.7)
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If V · ∇||V || is smaller than zero, it means that the flow is decelerating in the direction of
the flow, which is expected across a shock wave. This criterion helps in deselecting upstream
parts as the velocity is increasing there in the direction of the flow.

Combining this method with the other two provides a solid basis for shock wave detection. Al-
though being of major importance, the implementation of the correction that follows from this
shock wave location is arguably even more important. This is discussed in subsection 4.2.4.

4.2.4 Iterative Downstream Implementation

Once the shock wave is localized, the entropy correction is calculated using the Mach number
component normal to the shock wave. The implementation of the entropy correction involves
traversing downstream over streamlines. This is by finding neighbouring elements for which
their relative position is most in streamwise direction (in the velocity vector direction). This
approach ensures that the entropy change remains consistent along each streamline, as the
shock-induced entropy change is constant for streamlines passing through the shock.

The iteration downstream continues until one of the following conditions is met: the edge of
the domain is reached, no downstream element can be identified, or a predefined iteration
counter is exceeded (to ensure convergence).

It should be noted that, when the solver has reached a downstream element, it also applies
the entropy correction to its direct neighbouring elements. This is done to ensure that all
elements downstream of the shock are selected and corrected for using the appropriate en-
tropy correction. In practice, when not adding those neighbouring elements, some elements
are missed whilst adding the entropy correction. The implications of this are discussed in
chapter 5.
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Chapter 5

Results

This chapter presents the results of the influence of the entropy correction within the frame-
work of Flow. The analysis includes two cases: a NACA0012 airfoil with a moderate strength
shock and an RAE2822 airfoil with a strong shock. The NACA0012 airfoil was selected for
its widespread use in aerodynamic testing and validation and is analysed at a Mach number
of M∞ = 0.752 and an angle of attack of α = 1.49. Its generality also facilitates the inclu-
sion of experimental data for the pressure coefficient plots, providing an additional layer of
validation. The NACA0012 airfoil is represented in Figure 5.1.
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Figure 5.1: The NACA0012 airfoil.

The RAE2822 is a nonsymmetric supercritical design and was chosen as another commonly
used validation model. This case is examined with a Mach number of M∞ = 0.725 and an
angle of attack of α = 2.4. The airfoil can be found in Figure 5.2.
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Figure 5.2: The RAE2822 airfoil.

The results are presented systematically, beginning with a convergence analysis of the domain
size, airfoil mesh size, and far-field mesh size. Although the standard Flow solver demonstrates
convergence for these parameters, it is essential to verify whether EC-Flow, which incorporates
the entropy correction, exhibits similar behaviour. The entropy correction, applied to the
flow field as it passes through the shock wave, introduces a potential sensitivity to these
parameters. This necessitates a more detailed examination of the convergence characteristics
of these parameters, albeit for different reasons.

The size of the domain ensures general convergence and determines the required extent of
the computational domain. As the entropy correction is applied throughout the entire fluid
stream that interacts with the shock wave, the domain size directly influences the extent of the
region where the correction is active, making its convergence analysis particularly significant.
The domain size convergence will be analysed in section 5.1. Furthermore, the airfoil mesh
size is equally important as it directly impacts the shock wave resolution near the body of the
airfoil. Since the entropy correction relies on accurately identifying the location of the shock
wave, it is critical to determine whether this parameter significantly affects the solution. It
will be analysed in section 5.2. Then, the far-field mesh density influences the resolution
in the regions where the entropy correction is applied. Assessing the convergence of this
parameter is essential not only for general solver stability but also for identifying whether
EC-Flow imposes additional requirements on far-field mesh refinement compared to Flow.
This will be addressed in section 5.3.

The convergence analysis concludes with remarks on the general convergence in section 5.4.
From the convergence characteristics of the three mesh defining parameters between the two
models, it will become clear that EC-Flow seems to exhibit a stronger convergence behaviour
than Flow. This is analysed in slightly more detail in this section, by addressing the general
convergence of the models. By examining the general convergence of the two models, this
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section provides a bit more detail on the influence of the entropy correction on the general
convergence.

Following the convergence analysis, the results of the shock location determination and the
shock domain of influence are presented. These aspects form the numerical implementa-
tion of the entropy correction. Especially the domain of influence analysis highlights rather
specifically where the corrections are applied, and the values it uses.

Subsequently, the impact of these corrections is demonstrated through pressure coefficient
plots and load coefficients for the two cases. To provide a broader analysis, the lift, drag, and
moment polar plots are provided for the NACA0012 and RAE2822 airfoils. This generalization
not only illustrates the effects of the entropy correction more comprehensively but also reveals
the solver’s enhanced capability to handle a slightly extended range of angles of attack when
the correction is applied.

The foundation of the results section is the comparison between the standard Flow model
and its entropy-corrected extension, EC-Flow. To reiterate, the standard model Flow assumes
irrotational, and isentropic flow when compared to the Euler solution. In contrast, EC-Flow
tries to lift the isentropic assumption by applying a correction. Hence, to check the validity,
and the influence of this correction, it is best to also compare these results with the Euler
solution. For this purpose, Euler solution results will be presented in this chapter. All Euler
results were generated using the open-source software of SU2 (Economon et al. (2016)).

In conclusion, the convergence analysis uses four key parameters: the lift coefficient Cl, the
drag coefficient Cd, the shock location normalized by the chord length xs/c, and the shock
strength. Now, the shock strength is quantified by the jump in pressure coefficient of the
coefficient on the airfoil body. This is by no means the most accurate metric for this parameter,
but it only serves as an indicator as to how the shock strength changes with mesh fidelity and
also between the two models.

5.1 Domain Convergence

Analysing domain convergence is essential to ensure that the solver reaches a stable solution
as domain size increases. If the domain boundaries are placed too close to the airfoil, they
may interfere with the solution by imposing artificial constraints on the flow field. Conversely,
extending domain boundaries too far can unnecessarily increase computational cost without
improving solution accuracy significantly.

In addition to these general considerations, the domain size requires particular care for EC-
Flow, because the correction is applied on the flow field downstream of the shock. Therefore,
the size of the domain directly impacts the extent of the application of the correction. This
means that analysing the domain size not only demonstrates the solver’s convergence, but
can also highlight potential differences in domain size requirements for the two solvers. Thus,
it will ensure that the entropy correction is applied accurately.
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For the domain convergence analysis, an airfoil mesh size of 0.01 and a far-field mesh size of
0.5 were selected. These values were found to produce the best results, particularly for EC-
Flow, as the refinement they provide in the shock domain of influence is critical for ensuring
solution quality. The importance of these mesh sizes and their impact on the solution will be
further detailed in section 5.2 and section 5.3, respectively.

In Table 5.1, one can find the convergence parameters for the NACA0012 airfoil case. Note
that this airfoil was analysed at a Mach number of M∞ = 0.752 and an angle of attack of
α = 1.49. The domain size itself is given in chord lengths on the x- and z-axis.

Table 5.1: Domain size convergence for the NACA0012 airfoil.

Domain size
Cl Cd Shock loc. xs/c (shock strength)

Flow EC-Flow Flow EC-Flow Flow EC-Flow
7 x 6 0.428 0.389 0.0095 0.0080 0.53 (1.07) 0.49 (0.98)
13 x 12 0.394 0.369 0.0076 0.0069 0.50 (1.13) 0.46 (1.00)
21 x 20 0.393 0.366 0.0074 0.0067 0.50 (1.15) 0.45 (1.01)

The results indicate that both models exhibit similar convergence behaviour, with a domain
size of approximately 13×12 chord lengths being sufficient to achieve stable solutions. Im-
portantly, this domain size provides a balance between capturing the essential flow physics
and avoiding unnecessary computational costs. Furthermore, this domain provides better
resolution of the shock wave, as shown by the shock location and shock strength

A first implication on what the entropy correction does to the solution can also be seen; it
seems to reduce the shock strength, and place the shock more towards the leading edge. These
changes also influence the Cl and Cd, as these values experience a drop.

For the non-symmetric RAE2822 airfoil, the convergence parameters are presented in Ta-
ble 5.2. The dashes for Flow at the domain size of 7x6 means that the solution did not
converge.

Table 5.2: Domain size convergence for the RAE2822 airfoil.

Domain size
Cl Cd Shock loc. xs/c (shock strength)

Flow EC-Flow Flow EC-Flow Flow EC-Flow
7 x 6 - 1.104 - 0.027 - 0.73 (1.45)
13 x 12 1.100 0.959 0.022 0.012 0.74 (1.56) 0.64 (1.20)
21 x 20 1.076 0.955 0.019 0.012 0.72 (1.55) 0.64 (1.18)

As observed with the NACA0012 case, both Flow and EC-Flow exhibit similar convergence
behaviour, requiring a domain size of approximately 13×12 chord lengths for stable solutions.
This size represents again the balance between capturing the essential flow dynamics and
minimizing computational cost.

However, a notable difference is the slightly stronger convergence exhibited by EC-Flow,
particularly for the lift and drag coefficients. The parameters for EC-Flow demonstrate less
variation when transitioning from the 13×12 domain to the 21×20 domain. This suggests
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that EC-Flow achieves a more stable and smoother solution.

The stronger convergence of EC-Flow can most likely be attributed to its prediction of a
weaker shock. This results in a smoother flow field with reduced solution jumps in the shock
region, improving overall stability and reducing sensitivity to domain size.

Further insight into the convergence behaviour is provided in section 5.4, where the gen-
eral iteration requirements and solution quality are analyzed for both solvers. This section
highlights the number of iterations required for convergence and provides a comparative as-
sessment of the stability and accuracy of Flow versus EC-Flow.

5.2 Airfoil Mesh Size Convergence

The size of the mesh at the airfoil plays an important role in the fidelity of the solution on
the airfoil boundary. As mentioned, the shock location needs to be determined numerically
to be able to apply the entropy correction on the flow field. Since the shock wave is strongest
near the airfoil boundary, the numerical determination of its location is probably dependent
on the quality and density of the mesh in this region.

In Table 5.3, the convergence values for the NACA0012 airfoil mesh size are shown.

Table 5.3: Airfoil mesh size convergence for the NACA0012 airfoil, with far-field mesh size 0.05.

Airfoil mesh size
(No. of elements)

Cl Cd Shock loc. xs/c (shock strength)
Flow EC-Flow Flow EC-Flow Flow EC-Flow

0.02 (5700) 0.391 0.364 0.0075 0.0067 0.47 (1.08) 0.44 (0.96)
0.015 (9700) 0.393 0.369 0.0076 0.0068 0.48 (1.09) 0.45 (0.99)
0.01 (10800) 0.394 0.369 0.0076 0.0069 0.50 (1.13) 0.46 (1.01)

Both versions of Flow exhibit the same convergence pattern. Already at an airfoil mesh size
of 0.015, both solvers seem to produce comparatively converged results. However, especially
for shock resolution, in terms of strength and location, it is advised to use an airfoil mesh size
of 0.01. This only comes at a cost of slightly more fluid domain elements (10800 compared to
9700) and produces a better shock prediction. Moreover, the coarser meshes introduce some
slight shock smearing due to a slight lack of mesh resolution. Again, especially for EC-Flow,
the refinement of the shock is of importance.

Table 5.4 shows the values for the RAE2822 airfoil. This table shows again that both solvers
exhibit the same general behaviour.
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Table 5.4: Airfoil mesh size convergence for the RAE2822 airfoil, with far-field mesh size 0.05.

Airfoil mesh size
(No. of elements)

Cl Cd Shock loc. xs/c (shock strength)
Flow EC-Flow Flow EC-Flow Flow EC-Flow

0.02 (5700) 1.041 0.942 0.015 0.013 0.70 (1.48) 0.62 (1.18)
0.015 (9800) 1.058 0.957 0.019 0.013 0.72 (1.52) 0.63 (1.19)
0.01 (11100) 1.100 0.959 0.022 0.012 0.74 (1.56) 0.64 (1.20)

5.3 Far Field Mesh Size Convergence

The far-field mesh size directly influences the fidelity of the shock domain of influence. Ac-
curate resolution in this region is crucial to ensure that the streamlines that pass a shock
wave are refined enough, and therefore correctly analysed. A poorly resolved far-field mesh
can lead to inaccuracies in capturing the flow behaviour downstream of the shock, potentially
compromising the effectiveness of the correction. If needed, to get a better feel of how the
entropy correction is applied in the flow field, it is referred to section 5.6. There, figures il-
lustrate the domain of influence of the entropy correction on the streamlines of the flow field,
and its values. This can create a better feeling for how the far field mesh size can influence
the solution behaviour.

The values for the far field mesh size convergence of the NACA0012 airfoil convergence are
shown in Table 5.5.

Table 5.5: Farfield mesh size convergence for the NACA0012 airfoil, with airfoil mesh size 0.01.

Farfield mesh size
(No. of elements)

Cl Cd Shock loc. xs/c (shock strength)
Flow EC-Flow Flow EC-Flow Flow EC-Flow

1.5 (6400) 0.356 0.347 0.0069 0.0061 0.48 (1.02) 0.42 (0.93)
1 (7400) 0.387 0.354 0.0071 0.0062 0.49 (1.07) 0.43 (0.95)
0.5 (10800) 0.394 0.369 0.0076 0.0069 0.50 (1.13) 0.46 (1.00)
0.35 (18300) 0.400 0.373 0.0083 0.0075 0.51 (1.17) 0.46 (1.02)

Although both models seem to convergence, it seems like EC-Flow requires a far-field mesh
size of 0.5 for accurate shock resolution. Its values, especially in shock location and lift
coefficient, seem to change significantly between far-field mesh sizes of 1 and 0.5

The far-field mesh size convergence values for the RAE2822 airfoil are presented in Table 5.6.
Both models again exhibit the same general behaviour, but here the difference between a
far-field mesh size of 1 and 0.5 is not particularly evident for EC-Flow.

For EC-Flow, it is advised to use a far-field mesh of 0.5, to provide the best shock resolution,
and to provide the best overall convergence results, as analysed in section 5.4.
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Table 5.6: Farfield mesh size convergence for the RAE2822 airfoil, with airfoil mesh size 0.01.

Farfield mesh size
(No. of elements)

Cl Cd Shock loc. xs/c (shock strength)
Flow EC-Flow Flow EC-Flow Flow EC-Flow

1.5 (6800) 1.048 0.956 0.017 0.012 0.70 (1.51) 0.62 (1.18)
1 (7900) 1.079 0.959 0.020 0.012 0.72 (1.54) 0.62 (1.19)
0.5 (11100) 1.100 0.959 0.022 0.012 0.74 (1.56) 0.64 (1.20)
0.35 (18200) 1.166 0.976 0.029 0.013 0.76 (1.59) 0.66 (1.22)

5.4 Remarks on Convergence

The previous analyses indicate that, in general, using a domain of roughly 13x12 chord lengths,
an airfoil mesh size of 0.01, and a far-field mesh size of 0.5 are best for usage of EC-Flow.

It also became evident that, especially for the RAE2822 case, the solution seems to stabilise
more effectively for EC-Flow compared to Flow. This is probably attributed to the lower
predicted shock strength, allowing for smoother flow. It does raise the question of how
this influences the overall convergence of the solver. To investigate this further, the general
convergence rates of the cases are analysed here, or the relative residual values. This provides
a little more insight into the solvers’ efficiency and stability in achieving a stabilised solution.
The relative residuals convergence for the NACA0012 and RAE2822 airfoils can be found in
Figure 5.3 and Figure 5.4, respectively.

The convergence plot for the NACA0012 airfoil highlights several features of the models
and illustrates notable differences in their behaviour. The first observation is that EC-Flow
converges faster than Flow in iterations (17 compared to 22). It should be noted that EC-Flow
does require extra computations for the entropy correction, hence this does not necessarily
mean that it has faster computational performance. Its computational performance will be
analysed in section 5.9.

Moreover, the first two times the relative residuals converge to a value below 10−2, the
viscosity damping parameter is altered (which was already present in the standard solver),
which can best be seen in the standard model (the two increases in relative residual values at
iterations 10 and 13). This is also apparent for EC-Flow, at iterations 9 and 12.

For EC-Flow, the entropy correction field is updated at every sixth iteration. This was deter-
mined by trial and error, and the sensitivity of this parameter is analysed in subsection 5.10.1.
The updates of the entropy field correction in EC-Flow is specially seen here at iteration 6,
the first update. After this, the two solver exhibit different convergence values.

Furthermore, for the RAE2822, the influence of the entropy correction field update is more
clear, as seen in Figure 5.4.

First of all, EC-Flow converges significantly faster in iterations than Flow. Again, although
converging faster in iteration count, EC-Flow needs to determine the entropy correction field
at every update it places. Therefore, this does not necessarily mean that it converges faster
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Figure 5.3: Convergence history of the NACA0012 airfoil at M∞ = 0.752 and α = 1.49.

in actual computational time. The actual computational time for the two cases is analysed
in section 5.9.

In Figure 5.4, the spikes at iterations 15 and (partially) 18 can be attributed to the update
of the viscosity damping parameter. However, the spikes at 6, 12, and (partially) 18, are
attributed to the updates of the entropy correction field. These oscillations pose a negative
behaviour on the convergence, causing some leakage of performance. Smoothing of the resid-
uals, resulting in a better performance of the correction updates, is a recommendation for
further research. Especially as it seems that the convergence rate looks fast already at earlier
iteration counts, and the entropy field updates cause a bounce-back in residual values. This
compares to the rather smooth behaviour of the original Flow model.
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Figure 5.4: Convergence history of the RAE2822 airfoil at M∞ = 0.725 and α = 2.4.

5.5 Shock Location Determination

Following the detailed and somewhat tedious convergence analysis, the shock location deter-
mination is now analysed. An overview of the shock location determined for the NACA0012
airfoil is presented in Figure 5.5. Overall, the selection of shock elements in this simulation
performs well, accurately identifying most of the elements within the shock region on the
upper surface of the airfoil. However, near the top of the shock wave, the resolution becomes
coarser and some elements appear to be missed.

These omissions are better showcased in Figure 5.6. In this plot, the shock location is exam-
ined more closely, with the centres of gravity of all elements displayed alongside the elements
identified as part of the shock.
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Figure 5.5: Overview of the shock wave locations for the NACA0012 airfoil at α = 1.49◦ and
M = 0.752.
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Figure 5.6: Zoomed in plot of the NACA0012 airfoil shock locations at α = 1.49◦ and M =
0.752. All elements are shown, overlayed with the elements tagged as shock locations.
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There indeed seem to be some omissions, one at the bottom, one in the middle, and one at
the top of the shock. These omissions, while noticeable, are not particularly of great influence
on the implementation of the entropy correction. This is because neighbouring elements are
also selected when moving downstream of a shock.

For the RAE2822 case, the overview of the shock locations can be found in Figure 5.7. This
shows a correct shock determination at the base of the shock, whilst at the top of the shock,
an omission seems apparent. This is best analysed via the zoomed in plot, which is given by
Figure 5.8.
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Figure 5.7: Overview of the shock wave locations for the RAE2822 airfoil at α = 2.4◦ and
M = 0.725.

It again shows that at the base of the shock, where the shock is stronger, the shock selection
appears to be correct and in a straight manner. At the top, the small gap in the shock wave
selection can be attributed to the absence of an element there.

Though the solver exhibits coarse selection at the top of the shock for both cases, this was
found to have negligible effects on the overall solution quality. Mostly because the shock is
weaker here anyway, hence the correction value is also smaller (close to 1). Furthermore, as
mentioned before, the correction is also applied to neighbouring elements in the downstream
domain, removing the strict necessity of selecting all shock wave elements. This is better
showcased in section 5.6, where the domain of influence of the shock is analysed, together
with the used correction values.
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Figure 5.8: Zoomed in plot of the RAE2822 airfoil shock locations at α = 2.4◦ and M = 0.725.

5.6 Shock Domain of Influence

Though the shock location determination showed some coarse selection at the top of the
shock, its application towards the downstream flow field is considered to be more important.
This section analyses the shock domain of influence regarding the entropy correction that is
applied.

For the NACA0012 case, the shock domain of influence can be found in Figure 5.9. In this
plot, the elements that are corrected for are shown as non-red, with values conforming to the
colour-coding on the right. As can be seen, the corrections vary from values of 0.982-1. The
colour-coding can also be seen as the different streamlines in the influenced domain of the
shock wave.

Figure 5.9 immediately shows the importance of the far-field mesh size. It has a direct
influence on the fidelity of the downstream region, and hence determines the resolution of
this area.
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Figure 5.9: Entropy correction field for the NACA0012 airfoil at α = 1.49 and M∞ = 0.752.

Another feature of Flow, which was introduced earlier, can be spotted at the wake. In the
standard model of Flow, there is a wake sheet extended from the trailing edge. This is done
to ensure the Kutta condition is correctly applied. In EC-Flow, this means that the entroy
correction field cannot interfere with flow on the bottom side of the airfoil, which is desired.

For the RAE2822 case, the shock domain of influence can be found in Figure 5.9. This case
was presented as a strong shock case, which can be seen by larger correction values and the
slightly larger shock, which are now in the range of roughly 0.965-1, as compared to the
NACA0012 airfoil.
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Figure 5.10: Entropy correction domain of influence for the RAE2822 airfoil at α = 2.4 and M∞
= 0.725.

5.7 Pressure Distributions

In this section, the results of the previous sections are combined towards the two different cases
that have been analysed, determining the pressure coefficient plots and the load coefficients.

The pressure coefficient plot for the NACA0012 airfoil can be found in Figure 5.11, with its
corresponding load coefficients in Table 5.7. Three solutions are compared: Flow, EC-Flow,
and the Euler solution.

From Figure 5.11, it becomes clear that EC-Flow provides a significant correction to the
standard Flow model. The shock location, as well as the shock strength, is better compared
to the standard Flow model. Although the shock domain of influence remains a numerical
approximation correction, the solved flow still seems to exhibit smooth behaviour after the
shock.

Table 5.7 showcases the same behaviour as found in the pressure coefficient plot. The solution
of EC-Flow moves towards the Euler solution, especially in the drag coefficient. Still, the lift
coefficient and moment coefficient are somewhat off.
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Figure 5.11: Pressure coefficient plot for the NACA0012 airfoil at α = 1.49 and M∞ = 0.752.

Table 5.7: Load coefficients for the NACA0012 airfoil at M∞ = 0.752 and α = 1.49.

NACA0012 Flow EC-Flow Euler

Cl 0.397 0.369 0.315

Cd 0.00782 0.00692 0.00654

Cm0.25c -0.00733 -0.00558 -0.000824

The RAE2822 case represents a stronger shock wave and, therefore, the results are somewhat
more amplified compared to the NACA0012 case. The pressure coefficient plot can be found
in Figure 5.12, and the load coefficients in Table 5.8.

Again, a significant change in shock location and strength can be seen, moving towards the
Euler solution. In this extreme case, the solution is approaching the Euler solution.

Table 5.8: Load coefficients for the RAE2822 airfoil at M∞ = 0.725 and α = 2.4.

RAE2822 Flow EC-Flow Euler

Cl 1.1831 0.9591 0.7900

Cd 0.03035 0.01224 0.01179

Cm0.25c -0.1985 -0.1337 -0.1195

Table 5.8 follows the analysis of the previous plot, highlighting a significant move towards
the Euler solution, especially in the drag coefficient. Here, the move in moment coefficient is
somewhat more clear as well, and significant, as it can be better seen that it approximates
the moment coefficient better compared to the standard model.
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Figure 5.12: Pressure coefficient plot for the RAE2822 airfoil at α = 2.4 and M∞ = 0.725.

5.8 Polar Data

The polar data analysis offers a broader perspective on the aerodynamic performance of the
studied models by showing the extent of the lift, drag, and moment coefficients, and their
variations across a range of angles of attack. Unlike isolated case studies, polar data provides
a more general assessment of the solver’s capabilities and limitations, revealing trends that
might not be evident from analysing individual cases alone.

This broader approach is particularly valuable in understanding the solver’s performance
boundaries. The results presented here compare Flow, EC-Flow, and the Euler solutions. The
results for the Euler solution were generated using the open-source software SU2 (Economon
et al. (2016)). By evaluating changes in aerodynamic loads and overall performance trends,
this section demonstrates the implications of the entropy correction and contextualizes the
solver’s strengths and constraints in predicting aerodynamic behaviour.

Before analysing the results, it should be noted that these plots were generated by analysing
the polars until numerical divergence occurred in the solvers. Hence, beyond the results
analysed in the subsequent section, the solvers diverge and no physical solution was obtained.
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5.8.1 Lift Polar

The lift polar for the NACA0012 and RAE2822 airfoils can be found in Figure 5.13 and
Figure 5.14, respectively. Here, the numerical nature of the solver can be seen, as it does not
provide as smooth curves as Flow and the Euler solution.
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Figure 5.13: Lift polar plot for the NACA0012 airfoil at M∞ = 0.752.

For the NACA0012 airfoil, the effects of the entropy correction are clear. The entropy cor-
rected method more closely follows the Euler solutions, seemingly extending the linear be-
haviour of the lift polar plot somewhat. Furthermore, it can be seen that EC-Flow, though
very slightly, extends the extent to which the solver is capable of solving (by around 0.25
degrees angle of attack).
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Figure 5.14: Lift polar plot for the RAE2822 airfoil at M∞ = 0.725.

The same results apply to the RAE2822 airfoil. However, here, EC-Flow seems to more
closely follow the curve of Flow. This can be explained by the slightly lower Mach number
M∞ = 0.725. This causes the strong shock effects to really start to take effect only at the
extreme angles of attack; this is also the reason why the RAE2822 airfoil was analysed at the
limit of 2.4 degrees angle of attack. Again, the solver, only slightly, extends the domain by
around 0.25 degrees angle of attack.

It was first the intention to analyse the RAE2822 at an angle of attack of 2.55 degrees, as
there is also experimental data available for this available. However, this proved to be outside
the region of capability for the Flow solver.

5.8.2 Drag polar

The drag polar for the NACA0012 airfoil is illustrated in Figure 5.15.

This plot shows some interesting things. For small angles of attack, though hardly visible,
the Euler solution predicts a slightly higher values for the drag coefficient. Once the shock
starts taking effect on the solution at higher angles of attack, the drag coefficient predicted
by the two full potential flow models is higher than the Euler solution. This is because the
shock strength, predicted by the full potential solvers, is significantly stronger than the Euler
solution. The drag coefficient therefore becomes higher as well.

Vincent Hoogeboom M.Sc. Thesis



5.8 Polar Data 37

3 2 1 0 1 2 3
Angle of attack,  [ ]

0.00

0.01

0.02

0.03

0.04

0.05

Dr
ag

 c
oe

ffi
cie

nt
, C

d [
-]

Flow
EC-Flow
Euler

Figure 5.15: Drag polar plot for the NACA0012 airfoil at M∞ = 0.752.

Then, the drag polar for the RAE2822 airfoil can be found in Figure 5.16.
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Figure 5.16: Drag polar plot for the RAE2822 airfoil at M∞ = 0.725.

This plot shows the same behaviour as for the NACA0012 airfoil, though it being with ampli-
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fied effects. At angles of attack ranging from -1 to 1, the Euler solution predicts a significantly
higher drag coefficient for the airfoil compared to the two full potential solutions. At these
angles of attack, the shock in the domain is not that strong, hence it does not influence the full
potential flow solvers significantly. Again, once at extreme angles of attack, where the shocks
are the predominant force, the two full potential solvers diverge from the Euler solution, and
compute higher values than the Euler solution again.

5.8.3 Moment Polar

The moment polars for the NACA0012 and RAE2822 airfoils can be found in Figure 5.17 and
Figure 5.18, respectively. For the NACA0012 case, it can be seen that the solver significantly
alters the values of Flow at the more extreme angles of attack. Here, the shock wave is most
present, and the significant changes in especially the location of the shock seem to have a
major influence on the moment coefficient prediction.
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Figure 5.17: Moment polar plot for the NACA0012 airfoil at M∞ = 0.752.

Both plots seem to experience the same behaviour, with the entropy correction pushing the
solution of Flow towards the Euler solution quality. However, at the more extreme angles of
attack, both models still diverge from the Euler solution due to the absence of vorticity.
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Figure 5.18: Moment polar plot for the RAE2822 airfoil at M∞ = 0.725.

Although providing a better prediction, still only at extreme angles of attack the entropy
change becomes visible, as that is where the shock waves are the dominant force. Furthermore,
an extension of around 0.25 degrees in angle of attack is experienced, only a slight increase.

5.9 Computational Performance

To complement the preceding results, this section provides a final analysis of the compu-
tational time required by the three models. The results thus far have demonstrated that
EC-Flow significantly improves the solution quality of Flow, achieving accuracy levels closer
to those of the Euler solution.

However, computational efficiency remains a critical consideration in assessing the practicality
of a solver. If the computational time required by EC-Flow approaches that of the Euler
solver, the added complexity of EC-Flow may not justify its use over the more robust Euler
solution. Therefore, while EC-Flow shows promise in balancing accuracy and efficiency, its
computational performance relative to the other solvers requires careful evaluation.

The computational performance of the solvers for the NACA0012 case is summarized in Ta-
ble 5.9. Among the solvers, EC-Flow actually requires approximately 22% less computational
time than Flow, while the Euler solution demands more than twice the computational effort.
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This decrease in computational time for EC-Flow was not readily expected before the start
of this research, but can be attributed to the smoother flow prediction (less strong shock)
by EC-Flow. As highlighted in section 5.4, the general convergence behaviour still exhibits
oscillations in the residuals, primarily caused by updates to the entropy correction field. Ad-
dressing these oscillations could lead to notable performance improvements, making EC-Flow
even more competitive computationally.

Table 5.9: Computational performance for the NACA0012 case.

Solver Wall-Clock Time [s] CPU Time [s]

Flow 3.74 3.74

EC-Flow 2.91 2.91

Euler 7.87 -

The computational performance for the RAE2822 case is summarized in Table 5.10. As
discussed in section 5.4, EC-Flow requires fewer iterations to converge compared to Flow,
demonstrating improved convergence behaviour. This is attributed to the weaker shock that
is predicted using the EC-Flow model, allowing for smoother flow in the domain. The corre-
sponding computational time for each solver is provided in Table 5.10, reflecting the gains in
efficiency discussed previously in the number of iterations.

Table 5.10: Computational performance for the RAE2822 case.

Solver Wall-Clock Time [s] CPU Time [s]

Flow 9.0 9.0

EC-Flow 4.3 4.3

Euler 25 -

Notably, EC-Flow actually achieves convergence approximately 53% faster in computational
time compared to Flow. This is a significant improvement again, and shows that the smoother
flow predicted by EC-Flow allows for better computational performance.

Also for this case, although there is faster convergence, oscillations were observed in the
convergence rates, indicating that there is still room for further optimization. Addressing
these oscillations could enhance the computational performance of EC-Flow even further.

5.10 Sensitivity Analysis

Due to the addition of the entropy correction, some additional parameters have been added
to the structure of Flow. In this section, the parameters that could influence the solution, or
convergence, are analysed.

The entropy correction is currently applied on iterations 10-15, and afterwards for iterations
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that are divisible by 6. These numbers have been determined by trial and error, and have
been found to perform best. Therefore, it is interesting to see what the influence is of changing
this parameter, which will be done in subsection 5.10.1.

Finally, the symmetry-preserving property of Flow is revisited. For symmetric airfoils at zero
angle of attack, Flow maintains symmetric flow solutions. To confirm whether EC-Flow also
retains this symmetry, a zero angle of attack case for the symmetric NACA0012 airfoil is
evaluated in subsection 5.10.2.

5.10.1 Iteration Updates

As previously discussed, the entropy correction is currently applied at every sixth iteration.
This frequency was determined to provide an optimal balance between ensuring sufficient
updates to the entropy correction field while allowing the solver enough room to converge.

To evaluate the solver’s sensitivity to this parameter, tests were conducted with varying
entropy correction update intervals for both airfoil cases. Including both cases highlights
similarities and differences across distinct flow conditions. Specifically, the solvers were tested
with entropy updates applied every third, sixth, tenth, and fifteenth iteration. The results for
the NACA0012 and RAE2822 cases are presented in Table 5.11 and Table 5.12, respectively.

Table 5.11: The sensitivity of the NACA0012 airfoil case to the iteration update of the entropy
field.

Update at nth iteration Cl Cd Number of iterations Wall-Clock time [s]

3 - - - -

6 0.369 0.00692 17 2.9

10 0.373 0.00697 19 3.2

15 0.367 0.00686 23 3.9

The sensitivity of the NACA0012 airfoil was analysed at its previous conditions ofM∞ = 0.752
and α = 1.49. The results indicate that at an update frequency of 3 iterations, the solver fails
to converge. This does not imply divergence but rather an inability to achieve sufficiently small
residual values. This behaviour is attributed to overly frequent entropy correction updates,
which introduce numerical oscillations that hinder convergence. The update frequency of
6 iterations delivers the best results, offering the optimal balance between computational
performance and solution accuracy. It is therefore recommended for future research.

For the RAE2822 case, the update frequency of 6 iterations also provides the best compu-
tational performance. Similar to the NACA0012 case, a frequency of 3 iterations results in
non-convergence due to excessive entropy correction updates causing numerical instability.
At an update frequency of 15 iterations, the results deviate significantly, producing slightly
less accurate outcomes. This discrepancy arises from the infrequent updates, which fail to
sufficiently account for the evolving entropy field of the solution.
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Table 5.12: The sensitivity of the RAE2822 airfoil case to the iteration update of the entropy
field.

Update at nth iteration Cl Cd Number of iterations Wall-Clock time [s]

3 - - - -

6 0.969 0.0128 24 4.3

10 0.967 0.0126 45 8.1

15 1.009 0.0150 28 4.8

5.10.2 Symmetry Analysis for NACA0012 Airfoil

To assess whether EC-Flow preserves symmetry in the solution, the NACA0012 airfoil is
analyzed with a free-stream Mach number of M∞ = 0.8, and an angle of attack of α = 0.
The pressure coefficient distributions for both Flow and EC-Flow are shown in Figure 5.19,
and the corresponding aerodynamic load coefficients are provided in Table 5.13.
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Figure 5.19: Pressure coefficient plot for the NACA0012 airfoil at M∞ = 0.8 and α = 0.

From Figure 5.19, it is evident that both solvers produce perfectly overlapping pressure co-
efficient distributions on the upper and lower surfaces of the airfoil, preserving the expected
symmetry. A slight variation in shock location and strength is observed, attributed to the
influence of the entropy correction.

The aerodynamic load coefficients further confirm this symmetric behaviour, with the lift
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Table 5.13: Load coefficients for the NACA0012 airfoil at M∞ = 0.8 and α = 0.

NACA0012 Flow EC-Flow

Cl 0.0000 0.0000

Cd 0.00735 0.00723

Cm0.25c 0.0000 0.0000

and moment coefficients remaining zero, as expected for a symmetric airfoil at zero angle
of attack. The slight alteration in shock location and strength is also reflected in the drag
coefficient, with EC-Flow predicting a marginally lower value compared to Flow.
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Chapter 6

Discussion

The introduction of an entropy correction in the full potential flow solver aimed to address
the model’s limitations in capturing the non-isentropic nature of shock waves in transonic
flow. This chapter reflects on the results, connecting them to the research questions outlined
in chapter 3, and analysing their implications for solution quality, computational efficiency,
and applicability to aeroelastic contexts.

6.1 Effects of the Entropy Correction on Solution Quality

The incorporation of an entropy correction fundamentally transforms the solver’s behaviour,
yielding key improvements in the resolution of transonic shock waves. By shifting shock loca-
tions closer to the leading edge and reducing their strength, the entropy correction enhances
the solver’s ability to align predictions with physical reality. This improvement is crucial
for aeroelastic applications, where the accuracy of shock wave resolution directly impacts
aerodynamic load distribution and, consequently, structural deformations and responses.

Additionally, the solver demonstrates decreased sensitivity to mesh resolution, offering a
robust basis for aeroelastic models that require reliable aerodynamic input for multiple struc-
tural configurations. To examine the full capabilities of EC-Flow within aeroelastic analysis,
the results of the newly formed solver should be used in aeroelastic analyses in further re-
search.

While the entropy correction extends the solver’s range of applicability by improving load
predictions, extreme cases with strong shocks remain a limitation. Nevertheless, the en-
hanced physical realism of the results provides a strong foundation for further coupling with
aeroelastic solvers.
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6.2 Comparison with State-of-the-Art Models

In transonic flow analysis, the entropy-corrected solver serves as a middle ground between
the standard full potential flow solver and higher-fidelity models like the Euler equations.
Its ability to more accurately predict shock location and strength directly benefits aeroelas-
tic analyses, where shock-induced flow changes significantly affect structural responses. By
bridging the gap between computational efficiency and solution fidelity, EC-Flow provides a
practical tool for early aeroelastic design phases.

For strong shocks, EC-Flow faces limitations. The absence of vorticity modelling restricts its
accuracy in extreme cases, where vorticity effects play a significant role. This is however the
case for both the standard solver and the entropy-corrected solver. Consequently, the results
in such scenarios should be interpreted with caution, particularly when applied to scenarios
involving strong shocks or complex geometries.

Despite these limitations, EC-Flow retains a distinct computational advantage. It achieves
faster convergence and lower computational costs compared to both the Euler solver and the
standard Flow solver. These advantages make it particularly suitable for early design phases,
where rapid iteration and resource management are important.

The extension of EC-Flow to reliable three-dimensional solutions remains an area for future
research. The challenges associated with 3D flow, most apparent in span wise shock variations,
present opportunities to further enhance the model for entropy corrections. Addressing these
complexities would unlock the full potential of EC-Flow, enabling it to tackle a broader range
of aerodynamic problems.

6.3 Numerical Convergence and Stability

The numerical convergence behaviour of the entropy-corrected solver provides several valu-
able insights. Across both analysed cases, EC-Flow demonstrates faster convergence rates
compared to the standard full potential solver. This improvement can be attributed to the
smoother flow profiles resulting from the entropy correction, which mitigates abrupt changes
in the flow field caused by strong shocks that are over-predicted. The reduced discontinuities
improve stability, allowing the solver to achieve convergence more rapidly.

Despite this improved convergence, the implementation of the entropy correction introduces
residual oscillations during the iterations where the correction field is updated. Nevertheless,
between updates, the solver exhibits rapid reductions in residuals, maintaining an overall
faster convergence trend compared to the standard solver.

While the solver shows robust convergence behaviour, the oscillations introduced during en-
tropy correction updates suggest an area for further improvement. Strategies such as adaptive
or conditional updates could help smooth residuals and further enhance performance.
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Chapter 7

Conclusion

This thesis presented the development and evaluation of an entropy correction in a finite
element full potential flow solver, aimed at improving shock wave resolution in transonic
aerodynamic flows. By lifting the isentropic assumption inherent in the standard solver, the
entropy correction enhances the solver’s ability to capture non-isentropic effects and resolve
shock waves with greater fidelity, while maintaining the computational efficiency of the original
model.

The results demonstrate that the entropy correction significantly improves shock predictions,
including shock location, strength, and downstream flow profiles. These capabilities were
validated across the NACA0012 and RAE2822 test cases, where the corrected solver consis-
tently produced more realistic aerodynamic load predictions. The enhanced accuracy and
smoother flow fields provide a robust foundation for aeroelastic analyses, where accurate load
distributions are critical for evaluating structural responses and stability.

From a computational perspective, the entropy-corrected solver serves as an intermediate-
fidelity model, trying to bridge the gap between the standard full potential flow solver and
higher-fidelity Euler-based methods. Although the entropy correction introduces additional
complexity, the solver remains computationally efficient enough for early design phases. Its
enhanced stability for high-fidelity meshes and stronger shocks underscores its robustness in
transonic applications, and even provides faster computational performance than the original
model.

Despite these advancements, there is still room for improvement in the performance of EC-
Flow. While the solver is well-suited to steady transonic flows, extending its capabilities
to handle unsteady and three-dimensional flows would significantly broaden its applicability,
particularly for aeroelastic analyses involving dynamic shock behaviour. Furthermore, the
smoothing of residuals and thread-splitting of the entropy field updates can provide further
improvements in computational performance.

MSc. Thesis Vincent Hoogeboom



48 Conclusion

In conclusion, the entropy correction represents a significant enhancement to the full potential
flow solver, offering a practical and computationally efficient solution for modelling transonic
flows. Its ability to predict and resolve shock waves with better accuracy makes it particu-
larly well-suited for early aerodynamic and aeroelastic design phases. By addressing current
limitations and extending its scope, the entropy-corrected solver has the potential to play a
role in advancing computational aeroelasticity in early-phase design.
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Recommendations

This chapter outlines potential improvements and future directions for the entropy-corrected
full potential flow solver (EC-Flow) developed in this research. While the solver demonstrates
promise in accurately resolving shock waves and enhancing solution quality for transonic
aerodynamic flows, there remain opportunities to extend its capabilities and optimize its
computational performance. The recommendations presented here focus on addressing the
challenges encountered in the current work and exploring directions for further development,
particularly in expanding the solver to three-dimensional flows, improving convergence rates,
and implementing advanced numerical techniques such as multi-threading, and adaptive mesh
refinement. These enhancements aim to increase the robustness, efficiency, and applicability
of EC-Flow, increasing the potential for further applicability in aerodynamic, and aeroelastic
analysis.

8.1 Current State of Three-Dimensional Flow Analysis

This work primarily focuses on two-dimensional cases, where the entropy correction method
has demonstrated significant potential, both in terms of solution quality and computational
efficiency, particularly for strong shocks. While the methodology was initially developed for
2D, efforts are underway to extend it to three-dimensional problems.

Several complications occur when moving from 2D to 3D, especially in applying the entropy
correction field on the domain behind the shock wave. In 2D, it was stated that the entropy
correction is applied on downstream elements, and all of its neighbouring elements. This
method provides accurate results in two-dimensional cases, but it does not hold in three-
dimensional bodies. This is due to the inclusion of span wise effects of shock waves, which
has a detrimental effect on the solution if the same methods are applied. Therefore, another
method is used, based on Equation 8.1.
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d =
|V × r|
|V |

(8.1)

In Equation 8.1, d is the perpendicular distance from the neighbouring element to the velocity
vector of the analysed element. Moreover, V is the velocity vector, and r is the position vector
between the two elements. Based on these calculated distances, from the n neighbouring
elements, them closest elements are selected for an entropy correction. A visual representation
of this method is provided in Figure 8.1. While illustrated in 2D for clarity, the concept applies
directly to 3D cases.
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Figure 8.1: Distance based approach in 2D.

This method aims to mitigate the span-wise effects of shock waves, and already produces con-
verged results for some cases. Moreover, the current implementation of the three-dimensional
entropy correction excludes the tip of the aircraft wing, as this area provides unstable effects
on the entropy correction. For example, for the AGARD445 wing, at a Mach number of
M∞ = 0.9, and an angle of attack of α = 2, the produced load coefficients can be found in
Table 8.1.

From Table 8.1, several things are apparent. First, the differences in three dimensions between
the several solvers are way more subtle. The differences are small, and the entropy correction
only affects the solution slightly. However, the lift and moment coefficients of EC-Flow do
seem to better align with the Euler solution compared to Flow. In contrast, the drag coefficient
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Table 8.1: Load coefficients for the AGARD445 wing at M∞ = 0.9 and α = 2.

AGARD445 Flow EC-Flow Euler

Cl 0.1380 0.1365 0.1365

Cd 0.00271 0.00261 0.00278

Cm -0.1466 -0.1446 -0.1448

is actually larger in magnitude for the Euler compared to both full potential models. The
entropy correction causes the drag coefficient to go down with respect to the standard model,
which does seems not to be an improvement compared to the Euler solutions.

A serious limitation of EC-Flow in 3D is for cases with double shocks. For example, the
ONERAM6 wing at a Mach number of M∞ = 0.839 and angle of attack of α = 3.06. In this
scenario, flow particles traverse two shocks on the wing surface, necessitating the application
of double corrections to the density field. While conceptually straightforward, the current
implementation of EC-Flow struggles with differentiating between the two shocks due to
the selection of spurious, false-positive shock locations in the region between them. This
limitation prevents the accurate application of double corrections.

While the preliminary results in 3D are promising, they should be interpreted with caution.
Further analysis and validation are necessary to ensure the robustness and accuracy of EC-
Flow in three-dimensional applications.

8.2 Smoothing of Convergence Rates

As shown in section 5.4, the EC-Flow convergence rates show some oscillating behaviour.
This can be attributed to the entropy correction field updates, and it causes negative effects
on the residual convergence. Although the overall convergence of EC-Flow is faster than
Flow, improvements are possible.

Currently, the entropy correction field is updated at every sixth iteration. As mentioned, each
entropy field update causes an increase in relative residual values. Some general directions in
which this can be analysed/improved will be given in the remainder of this section.

8.2.1 Threshold-Based Updates

The general idea of threshold-based updates can best be explained by Equation 8.2. Here,
Rn is the relative (or absolute if wanted) residual value at iteration n, and ϵ is the threshold
that is applied. It basically entails that the entropy correction update is only applied if the
inequality in Equation 8.2 holds.
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Rn+1 −Rn

Rn
< ϵ (8.2)

When the inequality does not hold, the solver stops updating the entropy correction field.
This prevents unnecessary field updates when the solver is converging smoothly.

8.2.2 Conditional Field Updates

This is a rather simple idea, with possible beneficial effects on the residual convergence. It
is nothing more than applying an update frequency dependent on the solving phase. Early
phases might require more updates, as the solution changes more significantly than in later
stages. E.g., in numerical terms, in early phases update the field every 2 iterations, while in
later stages, only apply the updates at every 8 iterations.

The update frequency can also be made dependent on the actual residual values themselves.

8.2.3 General Remarks

Although the topic of this smoothing is rather subjective, there is potential for a lot of gain
here. For example, if the convergence rates were smoothed for the RAE2822 case in this
report, it would have the potential to converge as soon as iterations in the 20s. Especially
when expanding this method to 3D the gain could provide significant.

8.3 Add Thread Splitting for Entropy Field Update

As discussed, the solver currently calculates the entropy correction field values for the entire
fluid domain using a single thread. While Flow is designed to leverage multi-threading, the
current implementation of the entropy correction does not utilize this capability. Implement-
ing thread splitting for this process could reduce computational time, particularly for large
and complex flow domains.

However, careful attention must be paid to avoid potential overlaps or conflicts in calcu-
lations. Ensuring that the domain is partitioned efficiently and that each thread operates
independently within its assigned region is critical to maintaining numerical accuracy and
stability. Strategies such as domain decomposition or task-based parallelism could be ex-
plored to achieve optimal performance. Proper synchronization mechanisms should also be
implemented to manage dependencies between threads and ensure consistency in shared data.

By integrating multi-threading into the entropy field update process, the solver can enhance
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its computational efficiency even further, making it even more suitable for iterative analyses
in early design phases.

8.4 Adaptive Mesh Refinement

The current implementation of Flow primarily relies on the far-field mesh size to control
the overall mesh density in the computational domain, including the shock domain of influ-
ence. However, this approach results in uniformly increased mesh density across the entire
domain, even in regions where such refinement is unnecessary. This inefficiency increases
computational costs, as the denser mesh is only critically required in the vicinity of the shock
wave.

To address this, implementing an adaptive mesh refinement (AMR) strategy could offer sig-
nificant advantages. An adaptive mesh would focus refinement efforts on the shock domain
of influence, where higher resolution is essential to accurately capture the entropy correction.
Simultaneously, coarser mesh elements could be used in regions where the flow is not affected
by the entropy correction.
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Appendix A

NACA0012 Case with Experimental Data

0.0 0.2 0.4 0.6 0.8 1.0
Normalized chordwise location, x/c [-]

1.0

0.5

0.0

0.5

1.0

Pr
es

su
re

 c
oe

ffi
cie

nt
, C

p [
-]

Flow
EC-Flow
Euler
Experimental lower
Experimental upper

Figure A.1: NACA0012 airfoil at M∞ = 0.752 and α = 1.49 with experimental data.
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