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Abstract

A satellite remote sensing technique, Interferometric Synthetic Aperture Radar (InSAR), is
able to provide surface displacement information on a millimeter level. In this study, data
from the TerraSAR-X satellite collected in the years 2009-2018 over the area of Amsterdam
is used. Even though radar data is a subject to multi-step processing, there are still several
problems observed that can make the interpretation of the time-series difficult for users who
are not experts in the radar remote sensing field. In this study we focus on unwrapping errors,
partial decorrelation, and incorrectly fitted models. The unwrapping errors are handled as
outlier detection problem and the rest as a time-series segmentation task.

In order to address these issues, a data-driven approach is proposed. We show a method to
detect unwrapping errors based on spatially neighboring points. A GUI is developed to collect
expert knowledge in a form of assessing the time-series correctness, marking unwrapping
errors, and dividing time-series into separate segments. This information is later used in the
evaluation of several outlier detection and segmentation algorithms. We propose a supervised
learning approach based on neural networks in order to use expert knowledge. Due to not
enough labelled data available, a simulation is developed and used for training of the networks.
We present two different approaches, one based on multi-label classification and one on binary
classification. For each of them fully-connected neural networks and convolutional neural
networks are compared.
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Chapter 1

Introduction

In the last decades, remote sensing techniques have become a more and more popular source
of information about the Earth. Nowadays, numerous missions have a task of observing and
collecting measurements for various applications, such as atmospheric research, oceanography,
ice cover or vegetation monitoring, and many others. The missions can use either satellites
or aircraft as a carrier for different kinds of sensors that provide proper measurements.

Among different imaging techniques, SAR (Synthetic Aperture Radar) imagery has found
numerous applications. One of the methods using SAR images is InSAR (Interferometric
SAR)—a technique that can provide height and deformation measurements. It is used in re-
search related to, e.g. volcanoes, land subsidence and uplift, glaciers or ice motion [1]. Among
the currently used processing methods there is still room for development and improvements,
especially regarding automation of the processing task. Moreover, various additional infor-
mation sources are available that could potentially be beneficial. The InSAR technique is a
focal point for the further research and thereby the main motivation for this work.

Processing of the acquired data, i.e. parameter estimation, requires dedicated algorithms and
expert knowledge. The amount of data is growing rapidly, which makes its analysis impossible
to be performed only by people, as the work is laborious and time consuming. Despite
advanced processing methods, by inspection, one can find that there are still some obvious
errors present, such as unwrapping errors, i.e. measurements shifted due to ambiguities caused
by the angular nature of the signal. They are easily spotted by a human expert, however,
currently used algorithms are unable to detect these problems at all times.

Another aspect is that as nowadays a great number of measurements of environmental factors
is available, which can be used to enhance the analysis of the observations. There are historical
records of e.g. temperature, precipitation, and the ground water table for numerous locations.
By making use of these data, it may be possible to find correlations between the radar
measurements and other signals, what can be a sign of a causality or at least an indication
that there is some relationship between the behaviour of a scatterer point and some considered
environmental factors. This kind of knowledge could be achieved using machine learning or
data mining techniques.
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2 Introduction

Recently, the machine learning, and especially deep learning, approach has been applied in
multiple remote sensing research areas, however, most of them are related to image processing.
Among these applications there are image preprocessing, such as denoising or sharpening,
classification, target recognition, or scene understanding [2, 3].

1-1 Problem formulation and research goal

Following from the above, a contribution to the existing methods could be achieved by de-
signing a system which would be able to spot unwrapping errors in the InSAR time-series and
correct them accordingly. The machine learning approach is not widely applied in the field
of InSAR processing and hence, this creates a possibility to investigate how this field could
benefit from this new approach.
Among many challenges in the InSAR data postprocessing, the ones presented below will be
considered in this thesis. A more detailed explanation, together with background information,
can be found in Section 3-2.

Problem 1 - Single unwrapping errors and unwrapping shifts

Despite pre-processing of the data to unwrap the raw measurements, often there are still
multiple unwrapping errors present in the data (see Sections 2-2 and 3-2-1). One can observe
either single, individual unwrapping errors occurring during one epoch or unwrapping shifts
affecting a number of consecutive epochs. This is pictured in the Figure 1-1. This error causes
further problems with fitting a model and, in general, in the assessment of the underlying
process and situation.

Problem 2 - Partial temporal decorrelation

Some of the time-series also exhibit partial temporal decorrelation (see Section 2-2 and Sec-
tion 3-2-3). This means that some part of the time-series does not actually yield any valuable
information and, if the series is treated as a whole, this only distorts the general behaviour.
This can be seen in Figure 1-2. Getting rid of these segments, or just ignoring them, can allow
for better modelling and analysis of the behavior. On the other hand, the partial decorrelation
can also be used as an indicator itself that there have been some changes in the scattering
characteristics for the observed point (location), which is relevant information.

Problem 3 - Incorrectly fitted models

There is no “one size fits all” model that could optimally represent the behaviour of all
scatterers in the observed area. Misfits are often due to the previously mentioned problems
with unwrapping errors and partial decorrelation. Moreover, after analysis of many time-
series one can notice that it is not uncommon that there are cases where in one time-series it
is possible to distinguish different behaviour of the scatterers (see Section 2-1). Taking this
fact into account would allow to avoid fitting one model through the whole timespan and
hence, to fit better models and to look for relations with other factors only in some of the
segments. An example is given in Figure 1-3.
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Figure 1-1: Examples of Problem 1. The plots present measurement series of the TerraSAR-X
mission with λ = 31 mm (middle curve, dark blue) and two additional series, which are shifted
copies of the original series corresponding to ±2π shifts (see Section 2-2). It is possible to spot
that in the top figure there is a high likelihood that one of the points in mid-2017 has been
misplaced—a single unwrapping error. Similarly, in the bottom figure, apart from two potential
single unwrapping errors, one could notice a shift of the whole remaining series after early 2012
(the upper series seems to be a better continuation)—an unwrapping shift.

Figure 1-2: Example of Problem 2. On the left side, the measurements from 2009 till early 2012
seem to be random and follow what appears to be a uniform distribution (see Section 3-2-3),
they basically fuse with the ±2π copies. This is an example of a partial temporal decorrelation
and this part should not be used in model fitting.

Research question

The main research question of this work has been formulated as follows:
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Figure 1-3: Example of Problem 3. The black curve is a model fitted by default. As one can
see, the model does not reflect the behaviour of the time-series, as it has periods of different
behaviour (e.g. mid-2011 till mid-2013, between 2014 and 2015, and from 2015 till 2018) and
the model does not account for that, it is an incorrectly fitted model.

How can a machine learning approach be used to reduce the errors
of types 1, 2, and 3 in InSAR postprocessing?

To investigate this in more detail, several subquestions have been posed:

1. Why are there unwrapping errors present? How to decide whether it is an unwrapping
error or an outlier?

2. There are multiple works addressing time-series analysis that might serve useful in this
application. Which algorithms perform well in the tasks of unwrapping error detection
and time-series segmentation in the InSAR data context?

3. Raw measurement data may not be the most efficient input for a machine learning
algorithm. How to preprocess the time-series to be the most useful for the machine
learning algorithm? What features could improve the performance?

4. There are multiple algorithms available within the current state of the art in the ma-
chine learning field. Moreover, within one algorithm various parameters have to be
adjusted. Which machine learning approach and architecture is the most suitable for
the application and why?

5. Points within close proximity can be helpful in detecting specific events in the neigh-
boring points. How to include the spatial context into the unwrapping errors detection
and into segmentation task?

In order to answer this question, the following tasks have been defined:

1. Analyze the data and prepare an extensive simulation.

2. Perform a literature study to find methods that can be used for the unwrapping detection
and segmentation tasks. Experiment with the found, non-machine learning approaches.

3. Find and implement a suitable machine learning approach to detect the potential un-
wrapping errors and shifts, and correct them accordingly.

4. Segment the time-series based on different characteristics.
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1-2 Outline of the thesis

An introduction to radar remote sensing is given in Chapter 2. Basics of SAR remote sensing
technique are presented, as well as basics of the SAR Interferometry (InSAR). Also, a brief
description of a specific technique within InSAR, namely, Persistent Scatterer InSAR (PS-
InSAR) is presented, as it is the source of the data used in this thesis.

The analysis of the considered time-series is performed in Chapter 3. At first, the used
dataset is introduced shortly. Then, different characteristics and observations of the data are
presented. This is followed by the suggestions about what could be done or improved. Lastly,
available contextual information is discussed, namely, spatial context and the environmental
factors.

Theoretical introduction to the knowledge representation and expert knowledge incorpora-
tion is provided in Chapter 4. Moreover, the chapter contains a detailed description of the
technique used for the data collection (expert knowledge data).

Subsequently, several algorithms for outlier detection and segmentation are tested and dis-
cussed in Chapter 5. For the outlier detection such methods as moving average, exponential
smoothing, or ARIMA are presented. Experiments in segmentation involve probabilistic ap-
proaches, as well as BFAST and piecewise linear representation techniques.

Machine learning basics and the architecture design are described in Chapter 6. Several
approaches are used for building a machine learning solution and then tested, compared, and
discussed.
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Chapter 2

Radar remote sensing

Nowadays, numerous Earth-observing satellites orbit the planet and perform various kinds
of measurements in order to explore and study miscellaneous aspects of Earth. The remote
sensing techniques can be divided into active and passive, based on the way the measurements
are acquired. Radar remote sensing is an active sensing technique. The radar illuminates the
target with microwave radiation and collects the reflected signal. On the other hand, passive
sensors can only register the signals emitted by the Earth’s surface or atmosphere (e.g. a
microwave sensor) or detect radiation reflected from the surface (e.g. an optical sensor). One
of the advantages of radar being an active sensor is its ability to penetrate through the cloud
cover and to operate at night.
The general principle of how the radar works is as follows. The radar is sending electromag-
netic wave pulses in the direction where the transmitting antenna is pointing, the signal hits
a target and backscatters into the receiving antenna. In case of a monostatic system there
is only one antenna which is both transmitting and receiving. The frequency with which the
pulses are emitted is the PRF (pulse repetition frequency) and it determines the size of a res-
olution cell of the obtained image. What is important, is that a radar is a distance measuring
instrument and hence, all targets within the same range are treated as one (they all end up
in the same resolution cell).
There are different types and forms of radars and the one that is particularly suitable for
Earth observation is the synthetic-aperture radar (SAR).
In this chapter, a brief introduction to radar remote sensing is given. At first, some basic
information about SAR imaging and then, about the SAR Interferometry, is presented. Later
on, more details are given about the Persistent Scatterer InSAR technique, including its
processing steps and the resulting data characteristics.

2-1 SAR remote sensing

In radar technology, the resolution in the azimuth direction is proportional to the size of the
antenna. Therefore, the resolution is constrained by the construction capabilities of a physical
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8 Radar remote sensing

antenna. A solution to this problem is SAR imagery (Synthetic Aperture Radar). The
principle there is to use a moving antenna (space- or airborne) and combine the acquisitions,
thereby creating a "synthetic" antenna of a much larger size [4], see Figure 2-1.

Figure 2-1: SAR observation geometry [1] (left) and the synthetic aperture principle, combining
images to obtain an image as of it would be acquired using a very long antenna [5] (right).

The satellite illuminates a strip of the ground (also called swath) and moves in the azimuth
direction creating a strip map. There are also other acquisition modes available, such as
ScanSAR and spotlight SAR, but the Stripmap mode is the most popular one, due to its
fine azimuth resolution [1]. The antenna is mounted in a side-looking configuration, i.e.
it illuminates the surface with a non-zero off-nadir angle. Such geometry provides range
sensitivity without ambiguous reflections. However, this causes also geometric distortions
due to specific characteristics of the illuminated terrain, see Figure 2-2. A positive slope in
the direction towards the radar is much shorter in the line of sight than on the ground, this
is called foreshortening (A in Figure 2-2). Additionally, the foreshortened areas are imaged
as brighter as the backscattering area there is much larger, so there is more power in the
returning signal. Layover (B) happens when the slope is steeper than the off-nadir angle and
the top is registered earlier than the bottom, the order is reversed and the contribution in the
image is mixed with other areas. The shadow (C) occurs if the area is occluded, the beam is
not able to illuminate it and no signal is backscattered [4, 1, 5].

The satellites bearing the SAR instrument orbit the Earth on almost polar orbits and collect
images in ascending (south to north) and descending (north to south) passes. Due to the
aforementioned distortions, observing an area from two different perspectives may result in
different images which are complementary [4].

The radars can operate in different frequency bands. Depending on the wavelength of the
emitted signal, the radar system is suitable for different applications. For instace, the X-
band, with the shortest wavelength of around 3.1 cm is used in urban areas surveillance.
Both X- and C-band have too short wavelength to penetrate significantly through canopies
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and vegetation, this is, however, possible with the L-band with a longer wavelength of around
23 cm [6].

Figure 2-2: SAR image example [7] (left) and geometric distortions, i.e. foreshortening, layover
and shadow, with different reference surfaces (ellipsoid or geoid). [1] (right)

The Figure 2-2 shows an example of a SAR image. One of the data types provided by the
space agencies is the Single-Look Complex (SLC) [8]. Each pixel is associated with a complex
value, representing the amplitude and phase information. Pixel size depends on the azimuth
PRF and the range sampling frequency.

The amplitude and phase in each pixel are a superposition of signals from all the scatterers
within the corresponding resolution cell. Therefore, the phase information follows a uniform
distribution and does not yield any meaningful information [1]. Moreover, the fact that there
are multiple scatterers in each cell and they can often behave in a random way (e.g. grass in
a field) is responsible for an effect called speckle, which causes a radar image to look grainy
and noisy. A way to reduce this effect is, for instance, averaging multiple images of the same
area or filtering during the processing [5]. One can distinguish two types of scatterers. One
type are point scatterers, where a single object dominates the reflected signal, and the other
one are distributed scatterers, where multiple objects contribute to the reflection [1].

2-2 Interferometric SAR

The SAR system is measuring only distance in the line of sight direction. In case of two
objects located at different heights (e.g. object at height H in Figure 2-3 and any point at the
same range), the distance measurements are the same and the points are indistinguishable.
However, a satellite can observe the same area from slightly different angles. Consequently,
using this angular differences, with two images it is possible to retrieve information about
the height. There are two configurations in which the images can be acquired. It can be
a single-pass interferometry, where there is one carrier with two antennas, or a repeat-pass,
where the same area is observed after days, months, or even years. The spatial separation
between the orbit positions of a satellite during both acquisition is called a spatial baseline.
Similarly, the temporal baseline defines the temporal separation between acquisitions.

Each SAR image consists of a grid of complex values, which can be represented by their
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10 Radar remote sensing

amplitude and phase as follows:

y1 = |y1|ejψ1 , (2-1a)
y2 = |y2|ejψ2 , (2-1b)

Then, the interferogram is formed by complex multiplication of corresponding values:

I12 = y1y
∗
2 = |y1||y2|ej(ψ1−ψ2) (2-2)

This is preceded by the co-registration of the images. As two different acquisitions are made
with slightly different geometries, they have to be aligned and resampled in order to be
comparable and compatible.

In order to assess the accuracy of the interferometric phase, the coherence can be used as a
measure. The coherence is defined as follows:

γ = E{y1y
∗
2}√

E{|y1|2}E{|y2|2}
, 0 ≤ γ ≤ 1 (2-3)

where y1 and y2, are zero-mean circular Gaussian variables. For calculating the expectation
values several interferograms obtained under the same circumstances are required. However,
in each SAR acquisition every full-resolution pixel is registered only once [1]. Therefore,
Eq. (2-3) is often replaced with an estimator of the coherence magnitude using a spatial
average over a small window of N pixels, instead of ensemble average, provided that all the
deterministic phase components are taken into account [1, 4, 9]:

|γ̂| = |
∑N
n=1 y

(n)
1 y

∗(n)
2 |√∑N

n=1 |y
(n)
1 |2

∑N
n=1 |y

(n)
2 |2

(2-4)

Phase contributions

The interferometric phase is a difference in the phase between two SAR acquisitions:

φ = ∆ψ = ψ1 − ψ2 (2-5)

InSAR phase measurements are a combination of multiple factors. The signal is influenced
by effect such as ground deformation, atmospheric conditions, or electrical properties of the
scatterer, in particular [11]:

φ = φflat + φtopo + φdefo + φorbit + φtropo + φiono + φscat + φnoise (2-6)

The “flat” earth phase φflat results from the assumption of the reference shape of the Earth
made during the processing of the images that can be accounted for based on satellite orbits.
It is related to the parallel baseline (see Figure 2-3):

φflat = −4π
λ
B‖ (2-7)
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Figure 2-3: Geometry of a repeat-pass satellite interferometric SAR system [4] (left) and [10]
(right).

The topographic phase φtopo is related to the terrain shape above the reference ellipsoid (see
Figure 2-2). It is related to the perpendicular baseline:

φtopo = −4π
λ

B⊥
R sin θHp (2-8)

where R is the range to the target, θ is the look angle, and Hp is the height of the point.

The phase component due to ground deformation φdefo, which is measured in the line-of-sight
direction, is

φdefo = −4π
λ
Dp (2-9)

where Dp is the surface displacement.

The spatial baseline is based on the orbit information, hence, any errors in this information can
cause phase errors φorbit. Furthermore, atmospheric effects also affect the phase measurement,
such as the phase delay occurring in the troposphere φtropo due to refractivity and water
content. Additionally, especially for longer wavelengths, ionospheric total electron content
(TEC) can influence the interferometric phase measurement φiono.

Moreover, electrical properties of the scatterer also contribute to the interferometric phase.
They are, however, often assumed negligible for the studies concerning ground deformation
or topography [11].

The noise term φnoise expresses the noise factors coming from different decorrelation sources.

Decorrelation

One can distinguish several decorrelation sources, such as spatial baseline decorrelation,
Doppler centroid decorrelation, thermal or system noise, or temporal decorrelation [1, 11].
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The spatial baseline decorrelation is related to the geometry of the acquisitions. It is caused
by the difference in the incidence angles between two SAR images.
The Doppler centroid decorrelation comes from the difference in Doppler centroid frequencies
between two SAR acquisitions. It can be a result of different squint angles or the convergence
of the orbits.
Thermal noise is present as an inherent characteristic of a radar system.
Temporal decorrelation happens when the physical properties of scatterers within a resolution
cell change over time. Examples can be human activity such as farming or contructions sites,
as well as natural processes such as vegetation growth.

Phase ambiguity and unwrapping

The observed interferometric phase is an ambiguous measurement. It is a relative phase,
which is wrapped in the interval [−π, π) and expressed by

φw = W{φ} = mod{φ+ π, 2π} − π (2-10)

where W is the wrapping operator and φ is the unknown true phase, as in Eq. (2-6). The
task of retrieving the unknown absolute phase from the wrapped measurement is one of the
main challenges in radar interferometry due to its non-uniqueness and non-linearity [1, 10].
There are several methods to approach this problem. To solve for the unwrapped phase
value, some additional information, such as a priori knowledge of the terrain, or assumptions
are required. Usually, to impose a certain degree of smoothness, an assumption is made
that differences between adjacent pixels do not exceed half a cycle, i.e. phase gradient is in
the interval [−π, π). If the observed differences are bigger, a cycle is added or subtracted
accordingly. While this procedure works for a signal with small gradients and with low noise
level, any mistake results in propagating the error [1, 4]. Among more complex, conventional
methods are residue-cut (or branch-cut) method, least-squares approach, or minimal cost flow
methods [1, 11].

Differential interferometry

Differential interferometry provides additional information compared to a single interferogram
and allows to study the deformation signals. For that purpose two interferograms are required.
One is used to obtain the topography and the other one to observe the deformation. The
interferograms can be obtained either in a three-pass or a four-pass setting. In the former,
there is one common reference image and two others are used to create interferograms with the
reference one. In the latter, two separate interferograms are created and then, the topographic
pair is subtracted from the deformation pair. What is important, from the differential pairs
not only displacement but also changes in the atmospheric phase component can be observed.

2-3 Persistent Scatterer InSAR

The temporal and spatial decorrelation are one of the main difficulties in differential InSAR.
Therefore, a method focusing on identifying scatterers which are coherent over long time
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periods. Such coherent scatterers are called Persistent (or Permanent) Scatterers (PS) and
this multi-epoch InSAR technique is called Persistent Scatterer Interferometry (PSI) [4, 10].
The technique is multi-epoch, a stack of multiple SAR images is analyzed together. The
PS are abundant mainly in urban environments, where scatterers are "stable" and with good
reflectivity. All images are co-registered on a chosen master image and a set of interferograms
is generated. There are several processing steps to obtain PS points and they are shortly
presented below. More detailed information can be found in [1, 10].

Figure 2-4: An illustration of a stack of SAR images with scatterers coherent over multiple time
intervals [12].

2-3-1 Processing steps

At the very beginning a master image for the whole stack has to be selected. This is performed
by maximizing the stack coherence of a batch of interferograms. The next step is to select a
preliminary set of constantly coherent pixels, the so called PS candidates. At that point, the
PS phase cannot be used as it still contains unknown signals. Hence, the amplitude is used
to assess whether a PS is potentially coherent, under an assumption that high and almost
constant amplitude implies low phase dispersion. The normalized amplitude dispersion,

Da = σa
ma

, (2-11)

where σa is the standard deviation and ma is the mean of the amplitude values. Typically,
the pixels below Da = 0.25 are selected. Subsequently, a reference network of the selected PS
candidates is constructed using, for instance, Delaunay triangulation. The phase differences
between the connected points are called arcs. The arcs are unwrapped in time and integrated
in space. Later on, further estimation is performed on the unwrapped arc phase in order
to reduce the orbital inaccuracies and the atmospheric signal in each interferogram. In or-
der to account for the atmospheric component of the signal an assumption is used, that the
atmospheric phase is spatially correlated and temporally uncorrelated. After removing the
estimated orbital and atmospheric influence, a second round of selecting the PS candidates
is performed. New candidates increase the density of the network and new arcs are added to
the network. All PS candidates are re-evaluated and points which occurred to be noise are

Master of Science Thesis Adrianna Kaźmierczak



14 Radar remote sensing

discarded from the network. After the final estimation of the displacement parameters, the
PS points are geocoded [10]. As a result, a deformation time-series for each PS point is derived.

In this study, the deformation time-series obtained from the PSI processing technique are an-
alyzed and post-processed. Especially, different inaccuracies in time-series related to handling
the phase unwrapping are presented.
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Chapter 3

Characteristics of the data

3-1 Dataset description

The raw data is acquired by multiple satellites observing the Earth, such as Sentinel-1, ERS,
and TerraSAR-X. The measurements are geolocated, i.e., the location of each point scatterer
is mapped onto an earth-centered, earth-fixed reference system. The available measurements
are also initially pre-processed).

The primary dataset that is used in this work1 comes from TerraSAR-X measurements over
the area of Amsterdam. The satellite pass direction was ascending and the incidence angle
was 31.1◦. The timespan covered is from 05-02-2009 until 05-01-2018 with the measurement
interval of 11 days. There are 219 samples in each time-series. The dataset is divided into
8124 ’low’ and 14999 ’high’ points, based on the initial height of the points in the DEM,
hence, the whole size of the dataset consists of 23123 time-series. In this work, the time-series
are denoted as AL### and AH### (ascending low and ascending high), where AL and AH
indicate whether the time-series belongs to the ’low’ or high’ points subset and the number
that follows is the number from the corresponding subset.

Other information that can be found in the dataset for each scattering point are: the point
id, the position in latitude and longitude, the position in the Dutch RD-system, the height
of the point in the DEM (provided by AHN), the residual height of the point measured, the
estimated linear fit for all measurements, and the quality of the point, which is the degree of
fit with respect to the estimated linear fit.

Additionally, the dataset contains a default model fitted to each time-series, it consists of lin-
ear, quadratic, and seasonal components. The model is represented by the following function:

y(t) = a+ b(t− to) + c(t− to)2 + d sin((t− to) · 2π) + e cos((t− to) · 2π) (3-1)

where a, b, c, d, e are the parameters to be estimated and to is the offset value and equals
to = 4.5181 for all of the time-series in this dataset.

1For the purpose of this work, the datasets come from the resources of the company SkyGeo.
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(a) (b)

Figure 3-1: (a) The area covered by the considered dataset - Amsterdam, (b) a scheme for
conversion between the line-of-sight and vertical projection.

3-2 Exploratory analysis

The deformation data provided in the dataset is a vertical projection of the line-of-sight
(LOS) displacement computed in the InSAR processing steps. In the LOS a change of phase
of 2π corresponds to the deformation of λ2 (as the wave travels to the target and back). The
TerraSAR-X satellite operates in the X-band and the wavelength λ is 3.1 cm. The vertical
projection for a deformation corresponding to a 2π shift is

Lvert(2π) = λ

2 cos θ = 3.1
2 cos (31.1◦) = 1.81 cm (3-2)

where θ is the incidence angle. The data in the dataset is given with a discretization of 0.1
mm. Later on in this study the deformation values are given in mm and the velocity values
in mm/year.

Visual inspection of the deformation time-series from the dataset reveals that numerous exam-
ples contain some kind of errors or misfits. Below, different aspects of the data are presented
and discussed.

3-2-1 Unwrapping

The unwrapping errors are caused by an incorrect resolution of the phase ambiguities in the
unwrapping process. There are two main types of inaccuracies introduced by unwrapping.
The first one are only single, individual points which are shifted by k · 2π, where k ∈ Z, from
their actual position. The second type are the shifts of the whole subseries. Both types are
shown in Figure 1-1. Determining whether a point is indeed an unwrapping error or just an
outlier is not trivial. An assumption is made, that a point is an unwrapping error if it fits
better to a series shifted by k · 2π than to an original time-series.

In Figure 3-2, there are three unwrapping errors present. They are all shifted down by the
vertical equivalent of the 2π shift. It is not always straightforward to determine whether
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an outlier is of the unwrapping nature or comes from an unusual state of the scatterer or
some external disturbance. Time-series visualizations with the shifted copies of the series
help a user/expert to recognize the unwrapping errors, however, not all the cases are easily
interpretable.

Figure 3-2: An example of a time-series with three single unwrapping errors, (AL1306).

Another example is shown in Figure 3-3. The time-series labelled in the plot as 1 (AL324)
exhibits very similar behaviour to the nearby time-series 2 (AL325), with around 3m distance.
The exception is that after January 2013 there is suddenly an offset between them. Figure 3-4
shows screenshots from the Time-series assessment GUI (see Section 4-2-1) with both time-
series and with relative position of both scatterers. The value of the offset corresponds to a
2π shift. This allows to reason that both time-series should have the same behavior for the
whole timespan but in one of them there was an unwrapping error which propagated till the
end of the time-series, creating an unwrapping shift. Without any external information it is
not possible to determine which of the two time-series is the correct one. One of the ways is
to take into account the behavior of the neighboring scatterers, which could give an indication
whether in this case the point went up or down in early 2013.

Figure 3-3: An example of two neighboring time-series where subseries are shifted by the 2π
shift with respect to each other. The first series (blue, 1, AL324) is plotted together with its ±2π
copies. The second time-series (orange, 2, AL325) is very similar but the subseries after early
2013 overlaps with the −2π copy of the first time-series.
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(a) (b)

Figure 3-4: Screenshots from Time-series assessment GUI (see Section 4-2-1) view of AL324.
(a) A part of the "Show neighbors" view with time-series AL324 and AL325. (b) Mini-map view
showing the relative position of the neighboring time-series for AL324.

3-2-2 Missing measurements

The revisit time of the TerraSAR-X satellite is 11 days. For the timespan covered in the
considered dataset that would correspond to 297 measurements collected with the 11-days
intervals. However, there are only 219 measurements available, which is ∼73% of the whole
timespan. The most of the missing measurements are between early 2012 and late 2013 (see
Figure 3-5). One of the reasons for that could be that there were other tasks performed by
the satellite at that time and it could not provide the measurements for this particular area.

Figure 3-5: Timestamps for the available acquisitions

The gaps could be filled by interpolation, however, it is not straightforward. There are three
options to be considered, namely with interpolation, without interpolation, or considering
only available measurements.

Interpolation. The time-series can be interpolated in order to approximate the missing
samples. There are multiple techniques available, such as linear, polynomial, or nearest-
neighbour interpolation. However, in many cases the available neighbouring samples
are not sufficient for a reliable prediction of the missing samples as the signal is noisy.
Moreover, the behavior in the interval with gaps sometimes differs from the other parts
of the signal, making it difficult to reliably interpolate the data.

No interpolation. There are 219 out of 297 samples available. The missing samples
could be explicitly treated as ones without a numerical value and get a NaN assigned.
This approach allows to keep the original structure of the time-series, however, this may
also cause implementation issues while processing.
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Ignore the gaps. The last alternative is to discard the empty samples and ’squeeze’
the time-series, so that in only contains actual measurements. This approach simplifies
processing of the data, nonetheless, it makes the time-series much less representative of
the underlying process.

Further in this chapter only the original time-series are considered in order to avoid artificially
distorting the real signal and making additional assumptions. However, in the following
chapters the time-series are interpolated due to implementation constraints, see Section 5-2.

3-2-3 Non-homogeneity

Many among the time-series are not homogeneous. The behavior of the scattering point
(or at least of the registered signal) differs in time. In some cases the transition between
periods with a different behavior is smooth, in some it is abrupt. The differences that are
easily discernible are, for instance, various trends within one signal, sections with nonlinear
behavior, and varying dispersion. Below, a more detailed description and examples are given.

A time-series can be divided into trend, cyclic, seasonal, and a remainder component [13, 14].
Trend is a long-term, general tendency in the data to either increase, decrease, or stagnate.
The cyclic component occurs when there are medium-term changes without fixed frequency
which are modifying the trend, however, this pertains mainly to business or economic data.
Sometimes trend and cyclic components are treated together as a trend-cycle component [13].
This convention is used also in this thesis and the trend-cycle is shortly called a trend for
simplicity and as the cycles are not always observable in the data. The seasonal pattern occurs
when the fluctuations in the time-series are caused by a seasonal factor and its frequency is
known and fixed, such as yearly.

There are two models of the time-series composition. The first one, the additive model,
assumes that the components are independent:

y(t) = T (t) + S(t) +R(t) (3-3)

where y(t) is a time-series data, T (t) the trend, S(t) the seasonal component, and R(t) is the
remainder (residual). On the other hand, the multiplicative model is expressed by

y(t) = T (t)× S(t)×R(t) (3-4)

Here the components may affect each other and, for instance, the seasonal pattern appears to
be proportional to the trend component. In the considered InSAR deformation time-series it
is assumed that the components are independent of each other and that the model is additive.

Different trends

In Figure 3-6 a time series with two different trends is presented. A default model that was
fitted to this signal is a quadratic function. This model is fitted to the whole time-series
and it does not take into account that there is a step in early 2010. After dividing the
time-series into two sections and fitting linear trends to each of them, one can see that they
represent different behaviour. Additionally, the root-mean-square error (RMSE) between the
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time-series and the default model (RMSE = 2.309) is higher than the model with two linear
trends (RMSE = 1.883). Different trends can be associated with the changing behaviour of
the scattering point or with the unwrapping shifts. Therefore, forcing a single continuous
model such as in Eq. (3-1) to fit to such a signal depreciates the quality of the model and its
ability to represent the real situation.

Figure 3-6: An example of a time-series with different trends, the original time-series with a
default model (dashed) and two linear fits (solid) after manual segmentation (vertical dashed
line) (AL109)

Nonlinearity

Not all of the distinctive segments of a time-series tend to have only linear trends. In some
cases the whole time-series exhibits nonlinear behaviour, for instance, signals with strong
seasonality, and in some, only a part of a time-series seems to be nonlinear. In Figure 3-
7 one can distinguish three segments, first and last are mainly linear trends, the middle
one, after accounting for an unwrapping error in early 2013, seem to have more nonlinear
trajectory. However, it is important to take into account that in the presented case there are
few measurements available and the signal is noisy.

Figure 3-7: An example of a time-series with different trends and a nonlinear segment (with an
unwrapping error in early 2013) (AL40)
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Seasonality

From the visual inspection it can be observed that some of the deformation time-series show
seasonal behavior. Usually, the period of changes is around one year. This suggests that
the variation of the signal may be a result of yearly natural changes such as the weather.
Other factors could be, for instance, agriculture and growth of the vegetation, however, in
the considered case, the observed area is mainly an urban environment.

In the provided dataset, 43% of all the points have a default model fitted (see Eq. (3-1)) with
non-zero coefficients for the periodic components, d and e in Eq. (3-1). An example of a time-
series with a seasonal behaviour is given in Figure 3-8. The figure presents decomposition of
the time-series into seasonal, trend, and residual components as in Eq. (3-3), using Seasonal
and Trend decomposition using Loess, called STL decomposition [15]. The seasonal component
with yearly fluctuations is clearly visible.

Figure 3-8: Seasonal and Trend decomposition using Loess (STL decomposition) of a time-series
AL1223 with a yearly seasonal pattern.

Heteroscedasticity

In some of the time-series, one can observe heteroscedasticity, i.e. some subseries have different
variability than the others. An example is given in Figure 3-9, where in the segment III the
dispersion of the measurements is smaller than in the segment IV, and in Figure 3-10. This
effect can be an indication of changes in the scattering point.

Partial decorrelation

If the measurements from a target are not coherent (see Section 2-2), the time-series from
that point is usually rejected at the earlier step of the SAR processing. However, sometimes
only a subseries is incoherent and the rest of the time-series is of sufficient quality to not get
rejected at the PS processing step. In such case, the part that is incoherent, most probably
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Figure 3-9: An example of a time-series with varying dispersion. The data in segment III has
smaller variance than the data in segment IV. (AL50)

due to temporal decorrelation, does not yield any meaningful information for the rest of
the time-series and often distorts or biases the default model. Only the information about
the decorrelation itself is valuable as it suggests a certain behaviour of the target, i.e. the
scatterer is changing between the satellite revisits. In [16] Rocca suggests two mechanisms.
Either there is motion of the scatterers in the resolution cell, or they suddenly change their
reflectivity. An example can be a construction site or water. As given in 2-2, in such case the
phase measurement follows the uniform distribution, which can be seen in Figure 3-10.

Figure 3-10: An example of partial decorrelation. In the first half of the time-series the phase
measurements are incoherent and follow a uniform distribution (point AL7769).

Jumps

Another behaviour observed in the time-series for the scatterers are jumps, or steps. This
means that there is a sudden change in the deformation time-series resulting in a subseries
having an offset with respect to the earlier measurements. As examples can serve Figure 1-2
(bottom) and Figure 3-3. If there is no visible transition between the subseries but the change
is abrupt, it is not possible to determine the true height of the jump as all the measurements
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are initially wrapped and one of the unwrapping assumptions is that the difference between
measurements is not bigger than π.

3-2-4 Stationarity

Many of time-series analysis techniques are based on an assumption that the time-series is
stationary. Therefore a short analysis of the stationarity of the time-series in the considered
dataset is presented in this section. A process is called strictly stationary if its properties, in
particular the joint probability distribution associated with the observations, do not change
in time [17]. However, for many practical applications, strict stationarity is too restrictive.
Weak-sense (or wide-sense) stationarity is a weaker form of stationarity. The requirement is
that the first moment, i.e. the mean, and the autocovariance do not depend on time, and the
variance is finite.

For time-series with a trend, the trend can be either deterministic or stochastic. For the
former, if the deviation from the mean, which can contain a trend, is stationary, the process
is called trend-stationary. Additionally, such processes are mean-reverting, i.e. impulses have
only transitory effects and the time-series converges back to the initial trend. For the lat-
ter, the processes with a unit root may exhibit a trend for which any random shocks have
permanent effects. This is depicted in Figure 3-11 where the process signal is not able to
return to its initial trend after a random shock. An example of a stochastic trend is a process
with a linear trend and random walk. Such processes are called difference-stationary, as af-
ter first differencing they become stationary [13]. Therefore, simply detrending a time-series
with a stochastic trend will not result in a stationary time-series and differencing should be
applied. Unit root is an important concept related to stationarity. Its presence may cause
the time-series to require additional transformations before applying various time-series anal-
ysis techniques. The unit root means that a root of a characteristic equation of the process,
assuming it is a linear stochastic process, is equal to 1. This is related to a pole of a discrete
system lying on a unit circle, which makes the system marginally stable.

There are statistical tests for stationarity, among the most popular ones are the Augmented
Dickey-Fuller (ADF) test, where the null hypothesis is the presence of a unit root, and the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for stationarity. More on hypothesis testing
can be found in Section 3-5-1. They only test for first order stationarity, namely only the first
moment (mean) has to be constant in time. They do not take the variability of the variance
(second moment) into account.

The two tests are run on the considered dataset. In the python implementation it is possible
to allow tests to take into account that the time-series have trends. Consequently, the ADF
test suggests that in 6705 out of 8124 (83%) from low points and in 12995 out of 14999 (87%)
of high points a null hypothesis of a unit root can be rejected, and hence, the time-series
are stationary. In the KPSS test, for 3328 (41%) from low points and 5980 (40%) from high
points the null hypothesis of stationarity is rejected, resulting in 4796 (59%) and 9019 (60%)
stationary time-series, respectively. Clearly, the tests do not always give consistent results. In
case when KPSS test suggests stationarity and ADF does not, the series is trend-stationary
[18], there are 275 such series among low points and 342 among high points. Alternatively,
if ADF indicates stationarity and KPSS non-stationarity, the series is difference-stationary.
There are 2184 and 4318 such series for low and high points respectively. Another factor for
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Figure 3-11: An example illustrating the concept of a unit root. A stationary process is able to
return to its initial trend after a shock, i.e. an impulse caused by an exogenous factor. In case of
a time-series with a unit root, the change does not have a temporary effect but rather causes a
permanent shift.

non-consistency of the results can be limitations in the python implementation when it comes
to the detrending and handling seasonal components.

The time-series representing four different results of the ADF and KPSS tests, namely, only
ADF indicating stationarity, only KPSS indicating stationarity, both tests suggesting station-
arity and both suggesting non-stationarity, are shown in Figure 3-12. It is not straightforward
to assess the stationarity of a given series just by visual inspection, what justifies the use of
statistical tests in order to determine the stationarity characteristics of a series.

There are different methods to impose stationarity onto a time-series, such as differencing or
transformations such as logarithm or square root [13]. According to the ADF and KPSS tests
results, most of the time-series are stationary or difference-stationary. Only a small number
of points exhibits trend-stationary behavior and therefore differencing is chosen to be applied
on all of the time-series to impose stationarity. The ADF and KPSS tests are rerun on the
differenced time-series. In result, for ADF test, only two low points and eight high points
are indicated as non-stationary and for KPSS test all low and high points are assessed as
stationary.

However, the results of the stationarity tests should be handled with caution. Proper de-
trending and removing the seasonality component is difficult for all the different time-series
at once. Additionally, the tests may have low power in some cases, e.g. small number of
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Figure 3-12: Example time-series for four different stationarity tests results. Top left: ADF -
stationary, KPSS - non-stationary, top-right: KPSS - stationary, ADF - non-stationary, bottom-
left: both ADF and KPSS - stationary, bottom-right: both ADF and KPSS - non-stationary.

samples, and their results may not be as trustworthy as expected. They also do not consider
the changing variance of the time-series. However, the tests give some indication about the
need for differencing for fitting the ARIMA models (see Section 5-2-4).

3-3 Contextual information

Analyzing an InSAR deformation time-series without any additional context may be difficult
or can lead to incorrect conclusions, as due to phase ambiguities it is intrinsically impossible.
Ideally, one would like to know as much as possible about the observed area in order to be
able to understand the obtained InSAR measurements. E.g. , information about ongoing
construction works, changes in a traffic situation, or any temporary events, may provide
explanation for unusual and unexpected measurements. However, such information is rarely
available and even if it is, it can only serve an operator manually working with the data.

As another type of contextual information can serve the spatial neighbourhood of a considered
scattering point. Points close to each other can provide information about the behaviour of
a bigger area or structure, e.g. when they all belong to one building.

Moreover, environmental factors can have an influence on the scatterer’s behaviour. Such
aspects as temperature or precipitation may change the physical features of the target. This
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is discussed below in more detail. Additionally, some factors may influence the scattering
characteristics of the target, for instance, snow cover or vegetation (represented by the nor-
malized difference vegetation index, NDVI). Other contextual information could be soil type,
land use, or the groundwater table.

Additionally, the signal itself can be a source of supplementary information that could be used
in the assessment of the measurements and their interpretation. This includes, for instance,
the amplitude and the coherence of the signal.

In the following, an exploration of the dataset is performed by taking into account such
information as spatial neighborhood or temperature.

3-3-1 Spatial neighborhood

The time series for points which are geographically close to each other often exhibit similar
behaviour, as they may, for instance, be located at the same building or street. Taking into
account spatial neighbours of a point could provide more information about the observed
behaviour and help with the detection of potential errors.

Two approaches for choosing the neighbors are used in this work. The dataset has information
regarding the geographical location of each scatterer. In fact, the accurate position of the
point is hard to determine, however, it is assumed to be sufficient for this purpose. The first
approach is to choose five nearest neighbours of a point. The second one is to choose all the
points that lie within a 10 m radius from the considered scatterer.

xi,k ∈ N(xi), k ∈ {1, ...,NN} (3-5)

where N(xi) is a set of points being neighbours for the considered point xi and NN is the
number of neighbours.

The nearest neighbours search is performed using the k-d Tree algorithm [19]. Based on the
geographical location information, a tree of points is created. It allows to find the closest
spatial neighbours, either by the number of requested neighbours or by the given radius.
Other algorithms are also available, such as Ball Tree method [20]. Nonetheless, the k-d Tree
algorithm is sufficient for this application as the task is only two-dimensional (latitude and
longitude).

Correlation between neighboring points

It is possible that points located close to each other do not belong to the same object. There-
fore, their behaviour can be substantially different and they should not be treated as ’neigh-
bouring’ points as it can lead to incorrect conclusions. Therefore, at first, the point’s corre-
lation with its the nearest neighbours is checked. For that purpose, the Pearson correlation
coefficient is used, which is a measure of linear correlation between two variables, in this case
two time-series:

r = corr(xi, xj) =
∑T−1
t=0 (xit − xi)(x

j
t − xj)√∑T−1

t=0 (xit − xi)2
√∑T−1

t=0 (xjt − xj)2
(3-6)
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The value of r is in the range 〈−1, 1〉, where 1 and −1 mean perfect positive and negative
correlation, respectively, while 0 means there is no correlation between the variables. The
correlation of |r| > 0.75 is regarded as high, and the correlation of |r| < 0.25 is regarded as
low.

For each point in the dataset, the correlation with all its neighbours is calculated. An inter-
esting behaviour can be observed in case of comparing points which by visual inspection seem
to be similar but one of them has a shift, see e.g. Figure 3-13. Then, the correlation calculated
with Eq. (3-6) yields very low values of |r|, as the points do not exhibit linear correlation if
the whole time series are considered. Instead, there are two separate parts, each showing
linear correlation, but this cannot be detected using Eq. (3-6) for all samples. Figure 3-14
shows the correlation plot of an example (AL325 vs AL324). The time-series from this case
are depicted in Figure 3-13.

Figure 3-13: Two neighboring time-series AL324 and AL325 (top) and the correlation coefficient
calculated with a sliding window of the size 30 (bottom). The window is shown in the top figure
in red. The calculated coefficient within the window is centered, i.e. the result is shifted to the
center of the window. The correlation coefficient median is 0.7797.

In order to find the two parts of both time-series which are correlated with each other,
clustering is run in the space (xi, xj). The DBSCAN algorithm is used to extract the clusters
[21]. The DBSCAN is chosen over, for instance, kNN algorithm because it is able to treat
the points lying far from the constructed clusters as noise. The kNN algorithm takes all of
the points into account, what makes it prone to distortions if any outlying points are present.
Also, in contrast to DBSCAN, the kNN requires to set the number of clusters a priori. This
is not desirable in this case, as one does not know beforehand how many shifts are in the
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considered time-series.

Later on, the Pearson correlation coefficient is calculated separately for the created clusters.
For the case of points AL325 and AL324, the correlation for whole series is −0.1598, whereas
for the clustered case it is 0.8509 and 0.9248. This way of computing the correlation between
the points allows to find the neighbours which, accounted for the shift, are highly correlated.
A significant difference between the result of Eq. (3-6) and the one after clustering also yields
an important information that may be helpful in detecting unwrapping shifts in time-series.

Another, alternative way of assessing the similarity between two time-series is to calculate
the correlation coefficient using a sliding window. A sliding window of 30 samples is applied
on both time series under analysis and the correlation coefficient is calculated using Eq. (3-6)
for two subseries in a window. After performing the calculation for the whole time series, the
median is taken from the scores obtained from the consecutive windows.

(a) (b)

Figure 3-14: (a) A plot of two neighbouring time-series against each other, AL324 and AL325.
(b) There are two groups of highly correlated samples, lines represent linear fits to both groups
and shows the linear correlation between the samples within each group.

A drawback of the DBSCAN correlation is the inability to control the clustering process for
all possible cases. In some instances it may result in discarding too many samples as noise
and returning a high score. However, a great advantage is that it can handle outliers and
noisy subseries, as opposed to the sliding window correlation, which is sensitive to those. The
sliding window correlation plot provides results that are easily interpretable and readable.
Nonetheless, taking the median of the scores as the aggregated result leads to losing valuable
information about the behaviour of the correlation score throughout the time-series.

3-3-2 Temperature

Variation of the temperature can influence a scatterer’s behaviour and hence, a deformation
time series. Due to the effect of thermal dilation, with the increase of temperature, buildings,
infrastructure, and metal structures, such as lampposts or transmission towers, are subject to
deformation. While most of the temperature-dependent anthropogenic targets expand in the
summer, an opposite effect can be observed for some soil types. There, in the warm periods,
the ground water table may get lower which results in the lowering of the ground while during
the cold periods, the ground water table rises [10].
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Therefore, one can observe a correlation between the temperature signal and the deformation
time-series. As InSAR is a differencing technique and all measurements are taken with respect
to the initial (master) one, the temperature time-series is adjusted accordingly, see Figure 3-
15. The temperature data represents the average temperature over a day. The delay between
the temperature change and the reaction of the target is assumed to be negligible. The source
of the temperature records is the Royal Netherlands Meteorological Institute (KNMI) and the
closest station to Amsterdam is at Schiphol, which is located ∼ 12 km from the area covered in
the dataset. Hence, the temperature information is also charged with additional uncertainty.

The deformation due to the thermal dilation can be expressed by

∆LT = ∆T k · η (3-7)

where ∆T k is the temperature difference between the kth and the master acquisition (sample)
and η is a thermal expansion coefficient, characteristic for the size and material of a specific
object or target and can be estimated based on the observed deformations.

Figure 3-15: (top) Change of the temperature with respect to the first, reference measurement
for the period of 02.2009 - 01.2018. The points mark the days corresponding to the acquisition
days and the line shows the temperature record for the whole period with the 11-days interval.
(bottom) A time-series with a very high positive correlation with the temperature correlation
AH4304.

The temperature dependence is illustrated by a time-series AH4304, in Figure 3-15. The
correlation coefficient between the differences in temperature and the registered deformation
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Table 3-1: The percentage of points with temperature correlation coefficient ≥ 0.6 using three
different methods

full corr DBSCAN corr sliding window corr

low points 1.4% 4.0% 3.2%
high points 0.9% 3.2% 5.2%

is 0.8577, calculated as in Eq. (3-6). A strong seasonal behaviour is clearly visible, the target
point is higher in the summer and lower in the winter.

The correlation with the temperature is calculated in three ways, similarly to the correlation
with the spatial neighbours in Section 3-3-1. One is obtained using the whole time-series
for both signals, temperature and deformation, the second one using clustering to find the
correlation between subseries of the two, and the third one using a sliding window. The
Table 3-1 shows the percentage of points showing the value of the correlation coefficient
above 0.6, which is considered moderate correlation. The difference in the score using these
methods suggests that there are many cases where the time-series is partly decorrelated but
the coherent part exhibits temperature dependence. It is worth noting that none of the three
correlation computing methods can handle the cases where a time-series shows temperature
dependence but also has a significant long-term trend.

3-3-3 Precipitation

The influence of the precipitation can be observed especially on structures such as levees.
There, extreme weather conditions, such as drought, heavy rainfall, storms, can affect the
structure which can lead to failures and the risk of flooding. In [22] Özer et al. show that
there is a correlation between the precipitation and temperature and the deformation of the
levees. The meteorological conditions can result in swelling of the structure, due to the soil
saturation and increased pore water pressure, or shrinkage, due to excessive drying. The
reaction time, as well as the magnitude of the deformations depend on, among others, the
soil type and the geometry of the levee.

3-4 Suggestions

Based on the above analysis, a few suggestions can be formulated. First, the potential unwrap-
ping errors can be detected (to some extent) and corrected. Second, many of the time-seires
could be divided into more homogeneous segments which are analyzed separately. Only then,
they could be combined together again. Further in this thesis different approaches to the
detection of the potential unwrapping errors and to the segmentation of the time-series are
tested, see Section 5-2 and Section 5-3.

Regarding the contextual information, one would like to have as much additional data as
possible, however, this is not achievable on a large scale and automating the incorporation of
this extra context would at first require a laborious input from the human operators. On the
other hand, incorporation of environmental factors can be used in an automated system to
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assess the accuracy of the acquisitions and to interpret the behaviour of the point scatterers,
e.g. seasonal, temperature-dependent signal.

3-5 Current approach

The time-series obtained from, e.g. Persistent Scatterer time-series technique, see Section 2-3,
can be a subject to further postprocessing techniques, such as atmospheric effects or kine-
matic behavior (deformation modeling). Solving for the kinematic parameters is an ill posed
problem because without any additional constraints it is not possible to determine whether
the variability of each single point should be attributed to actual deformation or to noise or
decorrelation [10, 23]. Among the assumptions that are made are smoothness of the signal in
time and space.

The current approach is based on the multiple hypothesis testing to obtain an optimal kine-
matic model for the observed time-series. The null hypothesis is chosen as the steady-state
behavior, the rest of the hypotheses is based on the library of canonical functions, which is
presented below.

3-5-1 Hypothesis testing

A statistical hypothesis is a statement on a random variable or a process. After performing
an experiment or observations, one can infer about the given statement based on the collected
data. A primary hypothesis is called a null hypothesis and is denoted as H0 [24].

If the collected evidence is sufficient, the null hypothesis can be rejected. On the contrary, one
can also fail to reject the hypothesis if the data does not support the rejection. Nonetheless,
failing to reject the hypothesis is not equal to confirming it. A second, complementary
hypothesis can be defined, called the alternative hypothesis Ha. The null hypothesis can be
tested against the alternative hypothesis and it can be rejected in favor of the alternative
hypothesis. This is called binary hypothesis testing.

The hypothesis can be formulated as follows [24]:

H : y ∼ fy(y|x), (3-8)

where fy(y|x) defines a probability density function (PDF) of an observable y given the
unknown parameter x. x here can be a scalar, a vector, or even a matrix parameter, depending
on the formulation of the problem.

An example can be a signal measurement and two hypotheses that differ in the mean values
of the signal [24]. Then, the hypotheses are defined as the expectations of the observable y
with two possible means, x0 and xa. Figure 3-16 shows two possible pairs of hypotheses. In
order to decide whether the collected data speaks in favor of the null hypothesis a decision
rule is required, called a test. A chosen test statistic, which is a function h of the observables,
T = h(y), can be used to reduce the dimensionality. The decision rule is defined in terms
of the critical region K, i.e. a set of values of y, or of a test statistic T , for which the null
hypothesis H0 gets rejected. This is depicted in Figure 3-16b.
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(a) (b)

Figure 3-16: (a) Two pairs of hypotheses, H0 and Ha, with two different pairs of means of
observable y, x0 and xa. (b) The choice of critical region K determines for which values of y, or
test statistic T , the null hypothesis H0 gets rejected.

Therefore, if the T ∈ K then H0 is rejected and complementarily, if the T /∈ K then one fails
to reject H0. There are two decision errors to be considered, related to the chosen critical
region K, namely, one can either reject a null hypothesis which is in fact true, or accept a
false one. These are called type I and type II errors respectively. The whole decision matrix
is given in Table 3-2 and a very similar concept is presented in Table 5-1 as well.

Table 3-2: Decision matrix of binary hypothesis testing.

Reality
H0 true H0 false

Decision
accept H0 OK β - type II error
reject H0 α - type I error OK

The probability of committing a type I error is denoted by α, which is called a level of
significance. This is defined as α = P (T ∈ K|H0), i.e. the probability of the test statistic
lying within the critical region even though the null hypothesis is true.

On the contrary, the probability of accepting a false null hypothesis, i.e. committing a type
II error, is denoted by β and defined as β = P (T /∈ K|Ha). Moreover, the probability of
choosing the alternative hypothesis when it is indeed true is called the power of the test and
is denoted by γ, where γ = 1− β.

In the considered case of InSAR observations, where the null hypothesis is a steady-state
behavior, an alternative hypothesis may sound as follows: "The observed deformation time-
series is caused by a temperature-dependent behavior of the persistent scatterer". Below, the
approach of defining the alternative hypotheses is presented, as well as the decision flow for
choosing the most optimal one.
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3-5-2 Library of canonical deformation models

The canonical functions represent physically realistic models and are the building blocks for
the temporal model for the time-series.

M1(v(x)) = t · v(x),
M2(η(x)) = ∆T · η(x),

M3(s(x), c(x)) = sin(2πt)s(x) + (cos(2πt)− 1)c(x),

M4(κ(x), β(x)) = (1− exp( t

β(x)) · κ(x),

M5(Di(x)) = Di(x)δij , i, j ∈ [1,m],
M6(∆i(x)) = ∆i(x)H (t− τi(x)), i ∈ [1,m− 1],

(3-9)

where t is the temporal baseline, η(x) is the thermal expansion, H (t−τi(x)) is the Heaviside
step function, δij is the Kronecker delta function, κ(x) is the exponential magnitude, and
β(x) is the slope factor of the exponential magnitude.

The temperature component, as mentioned in Section 3-3-2, can be expressed using eitherM2
or M3, which are a directly temperature-related function and a seasonal periodic function,
respectively [23].

This approach allows to arbitrarily combine the canonical models. Therefore a great number
of deformation models can be created and used as alternative hypotheses.

3-5-3 Multiple hypothesis testing for InSAR

The idea behind the multiple hypothesis testing approach is to compare all the alternative
hypotheses with the null hypothesis and assess which model among the alternative hypotheses
is the optimal one. Each model, and hence each hypothesis, can be expressed in a form of a
linear system of equations

H0 : E{y}
m×1

= A
m×n

x
m×1

;

D{y} = Qyy
m×m

= σ2Ryy

Hj : E{y}
m×1

= A
m×n

x
m×1

+ Cj
m×q
∇j
q×1

, ∇j
q×1
6= 0;

D{y} = Qyy
m×m

= σ2Ryy,

(3-10)

where A is the design matrix, m is the number of observations y, x is a vector of unknown
parameters, Cj is a design matrix for the additional parameters ∇j which are defined for
each alternative model. Each hypothesis has a test statistic associated. In this case the
test statistic T q follows a noncentral Chi-squared distribution χ2(q, λ), where q denotes the
degrees of freedom and λ - the level of noncentrality.

Master of Science Thesis Adrianna Kaźmierczak



34 Characteristics of the data

For a given level of significance α and the related critical value χ2
α(q, 0), if T jq > χ2

α(q) then
the null hypothesis H0 is rejected.

The algorithm for the multiple hypothesis testing for InSAR is presented in Figure 3-17. At
first, an Overall Model Test is performed in order to check whether any further model search
is needed. If T 0 is smaller than the critical value K, there is not enough evidence to reject the
steady-state default model and the null hypothesis is sustained. Otherwise, each alternative
hypothesis is tested and the test ratio is calculated as follows

T j
qj

= T jqj
/χ2

αj
(qj). (3-11)

If the test ratio is smaller than 1, the hypothesis is not rejected and is considered further
while searching for the most probable model, which is chosen as

TB
qB

= max
j
{T jqj
}. (3-12)

Regarding the choice of the parameters, the level of significance is chosen using the rule of
thumb often used for the InSAR time-series which is α0 = 1/(2m), where m is the number
of observations. It typically yields α0 between 0.2% and 2%. For each alternative hypothesis
and its dimensions the α has to be adjusted. The power of the test γ0 is related to the size
of an additional parameter in the alternative hypothesis that would cause the alternative
hypothesis to be chosen. In this approach it is chosen as γ0 = 50%. More details can be
found in [10].

Figure 3-17: Flowchart for the multiple hypothesis testing [10, 23].
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Conclusions

In this chapter an exploratory analysis of the InSAR time-series is performed. There are
several aspects of the time-series data that are presented and discussed, such as unwrapping
errors, both single points as well as shifts, missing measurements, and non-homogeneity of the
time-series, e.g. different trends, heteroscedasticity, partial decorrelation. Also, a stationarity
analysis is presented. Moreover, the relevance of the contextual information is investigated,
mainly spatial neighborhood and temperature dependence.

Although the the time-series come from the same sensor and go through the same prepro-
cessing procedure, there are many factors that influence the resulting time-series. Therefore,
there is significant variability in the whole dataset which makes it difficult to find a solution
that would handle all time-series using a single approach. Also the analysis is hindered by
missing measurements and hence, need for interpolation of the data.

Master of Science Thesis Adrianna Kaźmierczak



36 Characteristics of the data

Adrianna Kaźmierczak Master of Science Thesis



Chapter 4

Expert knowledge incorporation

In the era of rapidly growing fields of Artificial Intelligence and autonomous systems, there
is a need to include knowledge of a human expert into the system design in order to benefit
from the already available domain knowledge and experts’ experience. Especially, when the
systems are supposed to assist or even replace human operators in some tasks. Such a system
can contain knowledge of procedures, typical as well as abnormal or dangerous behaviours,
relations between objects, or general rules in a given domain [25].

4-1 Knowledge incorporation

A model that encodes expert and contextual knowledge can be explicit or implicit. In the
first case, the information about a situation, an event, or some property of an object has to be
fully described and hard coded by an expert or an operator. In the second case, the system
can learn patterns or behaviours from the analysis of provided training data using different
learning algorithms [26]. In this section, ways of encoding the expert knowledge as well as
how can it be incorporated into a system are discussed.

4-1-1 Knowledge representation

There are numerous ways of representing knowledge. In this chapter three popular approaches
are presented, namely mathematical models, rules, and first-order logic. A choice of a par-
ticular type of the knowledge representation is often determined by the form of available
knowledge for a given application.

Mathematical models

Mathematical model is a very general term and different concepts can be described as such.
However, a common feature of mathematical models is that the information is described using
equations and formulas.

Master of Science Thesis Adrianna Kaźmierczak



38 Expert knowledge incorporation

There are numerous examples in the literature where expert knowledge is included in the sys-
tem. For instance, in [27, 28] additional information is incorporated directly into a kinematic
or a dynamic model used for object tracking. Such extended models are used in a Kalman
filter and result in a reduction of errors [28]. Another way to include auxiliary information
into a system is by imposing constraints on a model [25, 27]. Moreover, a lot of information
can be represented in a form of an artificial force field. Such a field does not refer to any
actual force acting on the considered entity but it provides accessible models to simulate the
behaviour of an object in a given environment [29].

Rules

Expressing information and knowledge in the form of rules is natural and easily understand-
able. Therefore, it is a popular way of incorporating the expert knowledge into the system.

Straightforward if-then-else rules are characterized by their simplicity and effectiveness. They
can be employed, for instance, in finding a suspicious event or behaviour, or in system guidance
for what measures should be taken.

Examples of a simple rule can be

IF rain > 2 mm/h THEN qual = 0.5,
IF s1 and s2 give contradictory results THEN use only s1

where the former one encodes the following information: if the rainfall is bigger than 2mm/h,
then a quality coefficient for the sensor’s measurements receives value 0.5. Similar approach
to incorporate quality information can be found in [30].

An alternative to this kind of rules are fuzzy rules [31, 32]. They also are an if-then-construct,
however, the antecedent and consequent are fuzzy propositions. Considering a linguistic
(Mamdani) fuzzy model of a following form

IF x is A THEN y is B

x and y are base variables and A and B are linguistic terms, which need to be specified
beforehand based on the chosen semantic rule and membership functions. An example of a
fuzzy rule might be

IF the weather is bad THEN the reliability of the sensor is poor

In this case, the meanings of "bad" and "poor" have to be defined. This is done using mem-
bership functions which allow for a degree of truth for the statement that the weather is bad.
Membership function is a generalization of a characteristic function of a conventional set, but
instead of having only {0, 1} values it can take values from the interval [0, 1] [33]. "Badness"
of the weather is not only 1 if it is bad or 0 if it is not bad, but values in between are possible.
This kind of approach seems to be suitable for representing expert or operator knowledge as
it deals with linguistic variables what is closer to the way humans express their knowledge.
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First-order logic

Propositional logic is a branch of logic, it is based on propositions (facts) and is concerned
with joining the propositions to form more complicated statements and with the logical rela-
tionships between the propositions [32, 34]. As example can serve a simple rule given above.
"If rain bigger than 2 mm/h then quality parameter is equal to 0.5" is an implication and
"rain bigger than 2 mm/h" and "quality parameter is equal to 0.5" are propositions.

An extension of propositional logic is first-order logic, which is another powerful method to
represent knowledge. While in propositional logic only facts are encoded in the knowledge
base and they can be either true, false, or unknown, in first-order logic, there are also the
so-called objects and their relations that are taken into consideration [32]. Additionally, an
important feature of first-order logic is its ability to express facts about some or all of the
objects, thereby making it possible to represent general rules or laws. Consequently, this
approach is better suited to represent complex environments.

The structure of first-order logic consist of the following elements: terms (which can be a
constant, a variable, or a function of a term) that refer to objects, predicates that refer to
relations, and atomic sentences, which are sentences that are indivisible, that state facts. In a
popular example from [32], there are objects John and Richard (Richard, John), a relation of
being a brother (Brother), and an atomic sentence stating that John and Richard are brothers
(Brother(Richard, John)). Furthermore, there are also quantifiers which enable to represent
general rules, functions, and complex sentences [31, 32]. While developing a knowledge base,
it is necessary to carefully decide on a vocabulary of predicates, functions, and constants, and
to thoroughly analyze the domain to encode general knowledge and more specific relations.
An example related to InSAR processing could be the following: a scattering point can be an
object, two points (objects) being neighbors within a certain range can be a relationship. If
another object is added, e.g. a swamp, a relationship On can be defined and then, a statement
(On(Point, Swamp)) would be an atomic sentence stating the relationship between the two
objects. And lastly, a sentence “if On, then <some property>“ would be a proposition.

4-1-2 Incorporation into a system

As stated above, the implementation of the expert knowledge can be either explicit, as in all
examples in Section 4-1-1, or implicit. The latter approach can also be called data-driven, as
it is entirely based on the collected data. In this case, the expert knowledge can be encoded in
the form of labels, or attributes, given to certain data (e.g. measurements or images). Next,
a learning algorithm, such as a neural network, can use the labelled data to build a model.

Implementation of expert knowledge in the form of rules or mathematical models is often
straightforward. The additional equations and constraints can be added to the model and/or
the optimization cost function, depending on the problem to be solved. Rules are extensively
used in, for instance, decision support systems [35]. Fuzzy logic can be incorporated into
decision or control systems [36].
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4-2 Data collection

For this thesis, a data-driven approach is adopted and not domain-driven approach, i.e. ex-
plicit rules, models, or logic. Therefore, there is a need to collect the data first. For that
purpose, an application is built to record the decisions of a user. To provide expert knowledge
multiple people were asked to contribute to this project. Among them are people who are
experts in the field of InSAR and geodesy, as well as people who work with InSAR data for
their applications, such as researchers and PhD students from the Geoscience and Remote
Sensing (GRS) department of the TU Delft Faculty of Civil Engineering and Geosciences.
They were asked to give answers based on their experience and intuition.

4-2-1 Tool description

A graphical user interface (GUI), presented in Figure 4-1, is designed to serve as a platform for
the data collection. In general, a user is shown a time-series and his role is to make a decision
about the following aspects. The user is asked about unwrapping errors and modelling errors.
If, according to the user, there is an unwrapping error, a button Unwrapping is giving this
time-series a label that it contains unwrapping errors. Also, a model that is fitted in the
preprocessing and provided together in the dataset may not be a suitable one (as for the
reasons presented in Section 3-2-3). Then, the Model button denotes that there are problems
with a default model fitted. If both problems occur in a time-series, one should choose the
button Both. On the other hand, if no errors are to be spotted, a user should choose It’s fine.

Additionally, the user can manually mark individual unwrapping errors by clicking on a
respective point in a plot. Moreover, it is possible to draw segmentation lines between the
parts of a time-series that the user would treat separately for reasons such as jumps or changes
within a time-series, see Section 3-2-3.

Both forms of contribution, namely only voting or marking the errors and drawing lines, are
valuable input data and can be provided irrespective of each other.

In order to get more insight about the time-series under assessment, the user can see the
plots for the five closest spatial neighbours of the considered point (see Section 3-3-1). This
window is shown in Figure 4-2. Additionally, a map with the relative location of the point
and its five neighbours can be displayed to get more information about the neighbourhood of
the point.

The GUI can also serve as a simple viewer for the deformation time-series as it is easy
to navigate between different points. Furthermore, it is possible to view the chosen time-
series based on a provided subset of the dataset, and to view which points were marked as
unwrapping errors and where the segmentation lines were drawn in the answers provided
before or by another user.

4-2-2 Results

As mentioned above, a group of researchers and PhD candidates from GRS were asked to
use the GUI and provide answers. In total seven people took part in the experiment. The
answers were provided for 122 of the low points and 275 of the high points. Sometimes the
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Figure 4-1: Graphical user interface for the data collection

Figure 4-2: A window with the deformation time-series plots for the five nearest spatial neigh-
bours of the considered point

time-series, for which the answers were given, were overlapping between the people. An
interesting observation is that they not always agree in their judgments regarding the same
time-series. In such case, a more restrictive answer was taken into account. An additional set
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of more than 100 answers was provided by the author of this thesis.

4-3 Simulation

The data-driven approaches require lots of training data in order to prove their usefulness and
potential, the amount differs depending on the complexity of the problem. In case when it is
not easy to acquire sufficiently many expert answers, a possible solution is to use a simulation
to create the training data artificially. It is a quick way to generate a lot of data for which
the ground truth is known. Of course, a simulation will never be able to ideally recreate the
real measurement data, as the observations are subject to random noise and unexpected and
hence, unmodelled events. Additionally, multiple assumptions are made in order to generate
the data and the underlying model may be incorrect or too simple.

In this thesis, two versions of the simulation are designed. The first, called basic simulation,
generates homogeneous signals. The second one, the extended simulation, creates signals
with changing properties. Here, the extended simulation is described in full details as the
basic simulation is a simplification of this version. The differences between the versions are
highlighted in the description. Examples of both simulations are shown in Figure 4-3.

Figure 4-3: Examples of time-series generated with a basic simulation (top) and extended sim-
ulation (bottom). Black horizontal lines mark the division between the segments.

The general algorithm is presented in Appendix A. The extended simulation provides time-
series with several segments with different characteristics. Therefore, the first step is to divide
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the time index into segments. A number of segmentation lines to be generated is chosen
randomly between 0 and 3, giving a maximum of 4 segments in a time-series. Additional
constraint is that the segment cannot be shorter than 15 samples, in order to be visible at
all. For the basic simulation, the number of segmentation lines is fixed to zero.

The next step is to choose a model function for the subseries to be generated in the first
segment. The simulation is based on the canonical functions presented in Section 3-5-2. The
available models are linear, temperature-dependent, exponential, and sinusoidal functions.
The final model can be a superposition of the available functions. The number of components
is chosen randomly with a 40% chance for a single component model, and 20% each for two,
three, or four individual functions combined. Subsequently, for the first segment, a set of
initial parameters is chosen at random, depending on the type of the model.

Later on, for each consecutive segment, a type of change is randomly drawn. There are
three changes available with equal chances of being chosen, namely a change in the standard
deviation of the samples, a step can be introduced, or a change in the model can be made.
There is 60% chance that only one of the three will happen, 30% that two, and 10% that
all three changes will be applied. If the model change is chosen, a new model is generated
as described above. The parameters for the new model are chosen in such a way that the
difference between the previous and the new model is significant in order to ensure that it is
visible. Consequently, a subseries for the segment is generated, including possible changes in
the standard deviation and level (step). This step is repeated for the rest of created segments.

The possible values for standard deviation and linear trend are taken from the analysis of
the Amsterdam dataset, which is presented in Table 4-1. For the calculation of the standard
deviation, the time-series are detrended using the value of the linear parameter, given in the
dataset and estimated in the preprocessing (see Section 3-1).

Table 4-1: Statistics of the standard deviation and the linear trends for the whole Amsterdam
dataset.

min mean median max 1st 99th

STD low points 1.02 2.75 2.80 8.59 1.33 4.53
STD high points 0.98 2.65 2.68 7.01 1.27 4.35

linear trend low points -20.5 -1.5 -1.1 3.1 -8.3 0.7
linear trend high points -17.4 -1.0 -0.7 3.1 -4.6 0.7

Values for the other parameters are chosen experimentally, so that the changes are visible and
the time-series resemble the deformation time-series provided in the dataset. The complete
list of all of the parameters and their possible values is given in Appendix A.

Conclusions

Out of several ways of incorporating expert knowledge into an automated system, a data-
driven approach is selected in this study. In order to collect data required for a data-driven
approach, a Python application is created. Additionally, a simulation is developed to address
a problem of not enough data collected from the experts.
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Chapter 5

Time-series processing

The two goals of this thesis are (i) to find potential unwrapping errors in the deformation
time-series and (ii) to divide the non-homogeneous time-series into separate segments. For
that purpose, several algorithms that can be found in the literature are implemented and
tested.

At first, validation and performance metrics used throughout this thesis are introduced. Sub-
sequently, different approaches to address the problem of unwrapping error detection are
described in detail. Lastly, several methods for time-series segmentation are presented and
applied.

5-1 Validation and performance metrics

In the tasks of unwrapping error detection and segmentation, the performance is determined
based on the correctness of the obtained detections of unwrapping errors or segmentation
lines. A sample is given a positive, True, label if it is predicted to be an unwrapping error or
a segmentation line and a negative, False, label otherwise. In this context, a prediction is a
state/label/value which is assigned as an output of a model. The

In order to assess the performance, the predicted labels are compared with the true labels.
The ground truth in this study, or true labels, is collected as described in Section 4-2. There
are four possible outcomes of such a comparison and they can be expressed in a form of a
confusion matrix, see Table 5-1.

The first metric that can be defined is accuracy, ACC, which expresses the ratio between
properly classified objects and all objects in the dataset:

ACC = TP + TN

P +N
= TP + TN

TP + TN + FP + FN
. (5-1)

While accuracy is a widely used performance metric, it is not very well suited for the problems
which are unbalanced, i.e. when there are much more occurrences of one label than the others.
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Table 5-1: General formulation of a confusion matrix

True condition
Positive (P) Negative (N)

Predicted
condition

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

In fact, this is the case in the outlier detection. In a time-series, there are much more ‘inliers’,
for which the label is negative, than actual outliers, labelled as positive. Therefore, the score
for the accuracy metric will always be very high, as most of the points are indeed correctly
classified as inliers. This introduces a bias which causes that even while not detecting any
outliers in the series may lead to an accuracy value of 98-99%, which is not very informative.
To address this other performance metrics can be introduced.
Recall, also called sensitivity, is a measure that focuses on how many relevant samples are
chosen:

recall = TP

P
= TP

TP + FN
. (5-2)

A complementary metric often used together with recall is precision, which expresses how
many of the chosen samples are relevant:

precision = TP

TP + FP
. (5-3)

Furthermore, a metric that combines both recall and precision is the F1-score, which is a
harmonic mean of the two metrics:

F1 =
(

recall−1 + precision−1

2

)−1

= 2 · precision · recall
precision + recall . (5-4)

Recall and precision are common means of measuring performance for various machine learn-
ing applications. Other performance metrics used in outlier detection problems are miss-rate,
MR, and false discovery rate, FDR. The former one expresses how many of the relevant
samples are labelled incorrectly:

MR = FN

P
= FN

TP + FN
. (5-5)

The false discovery rate shows how many of the predicted samples are false positives:

FDR = FP

TP + FP
. (5-6)

In this thesis, mainly recall and precision are used to assess the performance of the detection
algorithms.

5-2 Unwrapping error detection

To detect potential unwrapping errors, these errors are treated as abnormal measurements
(outliers). This approach allows the use of methods from the well established outlier (or
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anomaly) detection field. There are multiple ways to perform the anomaly detection, however,
for the case of time-series, a popular approach is to forecast a value and then compare it with
the observed one [37, 38]. The difference between these two values is used to assess whether
the considered observation is anomalous or normal:

dt = |yt − ŷt|, t ∈ {0, 1, . . . , T − 1}, (5-7)

where yt is an observed value and ŷt is the predicted value for any time instance t. Other
solutions are based on distance between samples in the data space or on density [37, 38].

The forecast-based anomaly detection has been applied, for instance, to the detection of
abnormal measurements in the signals from a flight data recorder [39] or in sensor data, such
as windspeed [40], hydrological data [41], or data from a chemical plant [42].

As only potential unwrapping errors, and not all outliers, are of main interest in this work,
an additional constraint has been posed for the outlier detection problem:

Constraint: The sample has to lie at least 0.75 × (2π shift) from the forecasted
value,

see Section 3-2-1 for the shift explanation and further in the current section for the rationale
behind choosing this threshold value. Note that the developed algorithms are applied on
‘unwrapped’ data, i.e. the original phase ambiguities in the InSAR data have already been
resolved.

A crucial part of the forecast-based outlier detection is the forecast step where the values are
forecasted at each time instance t. Currently, there are numerous approaches to the task of
forecasting time-series values [37]. The forecast can be based on the values of the neighboring
samples in a window of a particular size [39, 43]. A different way is to apply moving average
[41] or exponential smoothing [13] to obtain a smoothed time-series capturing the trend.
Another widely used method for modeling the time-series are AR and ARIMA models [37].
A similar approach is a single-layer linear network predictor [40, 37]. Moreover, machine
learning approaches such as a multilayer perceptron, support vector regression (SVR) [37, 40],
k-nearest neighbours [44, 43, 45], can be used.

In this work, several of these prediction methods are described, tested, and their results are
compared and assessed.

Experiment design

The experiments are run on two types of simulations, basic and extended (see Section 4-3), and
on the real data with the ground truth provided from the GUI (see Section 4-2-1). As most
of the methods presented in this section cannot handle missing samples, the time-series in the
real data set are interpolated. The tested interpolation techniques are the previous neighbor
interpolation, linear interpolation, and quadratic interpolation. Although the quadratic or
cubic interpolation sometimes reflect the time-series behavior better, in general, the previous
neighbor and the linear interpolation do not overfit as much as the former two and therefore
they are chosen as more suitable for handling the whole dataset together.
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Each of the two simulated datasets has 10.000 time-series. The size of this batch is chosen
such that the total performance scores for the outlier detection experiments do not show
significant change with the number of time-series anymore (see Appendix A).

To assess the performance of the presented methods, the recall and precision metrics are
applied. There are two ways to compute the scores for both metrics in the considered case.
One way is to calculate recall and precision for the outlier detection for each consecutive
time-series and then take the average of both. The other way is to take into account all the
samples of all time-series in a dataset collectively and then compute the recall and precision
based on how many samples are labelled correctly in total. An example: if there are two
unwrapping errors in each time-series in a dataset of 100 time-series, then each time-series is
not considered separately but a total of 200 labelled samples is used to calculate recall and
precision scores. The latter approach is slightly more rigorous. For instance, a time-series
for which a forecast is very incorrect in the first case would add a score of 0.0 to the later
calculated average. In the second case, it could add more than 200 false positives to the total
count, leading to much lower total recall and precision values. For that reason, the second
way of assessing the performance is used in the following experiments.

The choice of the threshold when a sample is classified as an outlier is not trivial and is
obtained experimentally, which is depicted in Figure 5-1. The threshold cannot be equal to
the respective 2π shift, as it is not possible to forecast a value with such an accuracy that the
real unwrapping error would be exactly a 2π shift away from the predicted sample. Hence, a
margin is needed to be able to identify outliers. Figure 5-1 presents the performance of the
outlier detection (using two of the methods described in the following sections) depending on
the threshold value.

For the simulated datasets the best F1-score is obtained with the threshold of 0.8× 2π shift.
For the real data on the other hand (100 labelled examples), the best result is for the 0.7×2π
shift. In conclusion, a design choice is to assume the threshold value as the value in between,
namely 0.75 × 2π shift (corresponding to 13.6 mm in this TerraSAR-X dataset), especially
that in the real data it favors the precision over the recall.

Another approach is to additionally take the distribution of the data into account, so that
the threshold varies based on the variance of the data. However, the local estimation of the
standard deviation is not always reliable and results in incorrect threshold values, and further,
incorrect detections.

In the following sections several outlier detection algorithms are tested on both simulated and
real datasets. For brevity, only the scores for the extended simulation are presented, along
with two interpolation methods for real data. The scores for the basic simulation can be
found in the Appendix A.

5-2-1 Neighboring samples

A simple approach to predict the value of a sample yt is to use its neighboring points (before
and after) in the time-series, excluding the yt itself [39, 43]. The forecasted value is based on
the median (or mean) of the points within a chosen window, e.g. for t−k and for t+k, where
k = 1, 2, 3, and it’s calculated by

ŷt = f(ml,mr), (5-8)
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Figure 5-1: The performance of two outlier detection algorithms expressed with an F1-score
depending on the threshold value. The experiments are performed for simulated dataset as well
as real data with two interpolation methods. NS refers to a neighboring samples algorithm and
MA to a moving average smoothing approach, see Section 5-2-1 and Section 5-2-2 respectively.

where ml = f(yt−1, yt−2, yt−3) and mr = f(yt+1, yt+2, yt+3). The function for combining ml

and mr and the function applied to the neighboring samples can be chosen as median or
mean. The number of samples before and after xt taken into consideration is set to three, but
it is possible to introduce an offset between the sample to be predicted and the neighboring
ones, i.e. use samples t± k where, for example, k = 2, 3, 4. Omitting the closest samples can
be helpful in a case with outliers in two consecutive samples.

Experiments

The algorithm is applied in four settings as given in Table 5-2. The windows with an offset of
one sample, i.e. with k = 2, 3, 4, have higher recall than the ones without the offset. On the
other hand, for k = 1, 2, 3 the precision is higher than for k = 2, 3, 4. This means that more
outlying samples are missed but the ones that are chosen are more often correct. Overall,
the method gives good results for both simulated datasets. For the interpolated data, the
linear interpolation shows very little improvement over the previous neighbor interpolation.
In general, for the real data, the method shows high precision while still finding two thirds of
the outliers.

5-2-2 (Weighted) moving average smoothing

The moving average approach uses a sliding window of size n in which an average of samples
within the window is computed, as in

ŷt = yt−1 + yt−2 + yt−3 + · · ·+ yt−n
n

= 1
n

n∑
i=1

yt−i, (5-9)

where ŷt is a predicted value, yt is a sample at the time instance i, and n is the number of
the preceding samples taken into account, i.e. a window size.
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Table 5-2: Results for the outlier detection with sample prediction using the neighbouring samples
method. Scores for four different settings for the algorithm are presented, namely using mean or
median of neighbouring samples and k samples symmetrically around the predicted sample.

mean median

k = 2, 3, 4 k = 1, 2, 3 k = 2, 3, 4 k = 1, 2, 3

Ext. simulation
Recall 0.87 0.88 0.87 0.88

Precision 0.83 0.83 0.81 0.82
Real data - previous

Recall 0.67 0.62 0.68 0.68
Precision 0.82 0.84 0.68 0.63

Real data - linear
Recall 0.68 0.62 0.67 0.64

Precision 0.83 0.91 0.78 0.84

The prediction ŷt is based on the past values, the number of which depends on the chosen
window size. While this action introduces some lag, it smooths the signal making it possible
to see more general trends in an often noisy signal.

If the whole signal is available (offline analysis), the window can be shifted so that the pre-
dicted value is located in the center of the window. This way it is possible to make use of
the measurements on both sides (before and after) of the considered sample in the series. A
drawback of such an approach is that one uses yt to make a prediction ŷt and if this sample
is an outlier, the prediction will be biased. This can lead to difficulties with the detection of
such an outlier.

In the above case, all of the samples within the window are of equal significance for the
prediction of yt. This can be changed by introducing the weights vector w = [wi, . . . , wn],
which allows to, for instance, give higher weight to more recent values, as in

ŷt = w1yt−1 + w2yt−2 + w3yt−3 + · · ·+ wnyt−n
n

= 1
n

n∑
i=1

wiyt−i . (5-10)

In practice, the weights should sum up to 1.

Experiments

For the moving average prediction, seven different, arbitrarily chosen window sizes are tested,
namely 3, 5, 7, 10, 12, 15, and 20. Additionally, a weighted moving average for the window
size of 5 is applied. The weights vector is set to [0.1, 0.2, 0.3, 0.3, 0.1] in order to put more
weight on the more recent samples, except for the directly preceding one, which also has
lower significance. As presented in Table 5-3, the recall values increase with the size of the
window until the window size of 7. For the bigger windows the values drop gradually. For
the extended simulation, beyond the n = 7, both the precision and recall decrease with the
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window size. For the real data, similarly to the neighboring samples method, more than half
of the outliers are found. The precision is around 0.80 which can be considered a relatively
good result. The linear interpolation gives better precision at the cost of a slight drop in the
recall value, compared to the previous neighbor interpolation. Adding a weights vector did
not yield better results, the recall is slightly higher than for non-weighted experiments but
the precision is much lower.

Table 5-3: Results for the outlier detection with sample prediction using smoothing with the
moving average (MA). Seven different window sizes n are tested, as well as one weighted moving
average example (WMA).

MA WMA

n = 3 n = 5 n = 7 n = 10 n = 12 n = 15 n = 20 n = 5

Ext. simulation
Recall 0.87 0.87 0.87 0.85 0.84 0.83 0.81 0.78

Precision 0.69 0.77 0.78 0.76 0.74 0.71 0.66 0.66
Real data - previous

Recall 0.69 0.67 0.67 0.62 0.62 0.53 0.46 0.68
Precision 0.57 0.70 0.74 0.78 0.79 0.75 0.69 0.61

Real data - linear
Recall 0.56 0.62 0.62 0.59 0.60 0.54 0.44 0.65

Precision 0.61 0.76 0.73 0.79 0.84 0.80 0.79 0.67

5-2-3 Exponential smoothing

Exponential smoothing is yet another smoothing technique that can be used for forecasting. It
is similar to the moving average but with exponentially decaying weights [13]. The exponential
smoothing method takes all past samples into account and not only n past data points. There
are three main approaches within this technique. In the simplest one, called the Simple
Exponential Smoothing (SES), the forecasted value is computed as

ŷt+1|t = st

st = αyt + (1− α)st−1,
(5-11)

where st is the smoothed value for any time instance t and α is a smoothing factor, 0 < α ≤ 1.
In this case, the forecasted value ŷt is equal to the last smoothed value. This is not suitable
for the time-series that exhibit trends or periodic behaviour.

The second method, called Holt’s method or the Double Exponential Smoothing (DES), is
able to handle trends in time-series, what can be expressed by

ŷt+h|t = st + hbt

st = αyt + (1− α)(st−1 + bt−1)
bt = β(yt − yt−1) + (1− β)bt−1,

(5-12)
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where h denotes the step in the h−step− ahead forecast, bt is an estimate of the trend, and
β is a smoothing parameter for the trend (0 ≤ β ≤ 1).

The last approach is an extension of Holt’s method, called the Holt-Winters’ seasonal method
or the Triple Exponential Smoothing (TES), and is able to deal with the seasonality in the
signal. In the case of displacement time-series an additive nature of the seasonal component
is assumed, as described in Section 3-3-2. The Holt-Winters’ method is given by

ŷt+h|t = st + hbt + ct+h−m(k+1)

st = α(yt − ct−m) + (1− α)(st−1 + bt−1)
bt = β(yt − yt−1) + (1− β)bt−1

ct = γ(yt − st−1 − bt−1) + (1− γ)ct−m,

(5-13)

where ct expresses the seasonal component of the signal and m is the frequency given in the
number of periods in a year, γ is the smoothing parameter for the seasonal component and
0 ≤ γ ≤ 1, and k is the integer part of (h− 1)/m [13].

Experiments

Experiments show that the smoothed time-series for both simple smoothing and Holt’s method
are similar and bring close results in the detection of potential unwrapping errors. The
difference between them is more visible in the case of longer out-of-sample forecasting, but
here only one-step-ahead prediction is performed. Holt’s and Holt-Winter’s methods require
more computational time than the Simple Exponential Smoothing. The recall and precision
scores for the Triple Exponential Smoothing (Holt-Winter’s) are worse than Simple or Double
Exponential Smoothing for all tested cases. Moreover, the results for tests with the Simple
and Double Exponential Smoothing, SES and DES respectively, are presented in Table 5-4.
Three smoothing levels α are tested, 0.5, 0.2, and 0.1. The value of α = 0.2 gave the best
results in SES so the DES method is tested keeping α = 0.2 as the smoothing level. For
the same parameters, the linear interpolation yields higher scores for precision and lower for
recall compared to the previous neighbor interpolation. This means it produces more false
negatives and less false positives. It can be observed that in TES the higher the value of γ,
the more false positives are generated. Moreover, long gaps without the actual data which
are interpolated linearly may hamper the seasonal behaviour of the time-series.

5-2-4 ARIMA

One of the most popular techniques for time-series modelling and forecasting are ARMA-type
models [13, 17]. They are composed of autoregressive (AR) and moving average (MA) terms.
In the autoregressive model of order p, denoted as AR(p), a variable is forecasted based on a
linear combination of p its previous values

yt = c+
p∑
i=1

φiyt−i + εt, (5-14)
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Table 5-4: Results for the outlier detection with the prediction based on the Exponential Smooth-
ing. Total recall and precision are obtained for Simple Exponential Smoothing (SES) and Double
Exponential Smoothing (DES), for different smoothing levels α and smoothing slopes β.

SES DES

α = 0.5 α = 0.2 α = 0.1
α = 0.2 α = 0.2 α = 0.3
β = 0.2 β = 0.5 β = 0.2

Ext. simulation
Recall 0.88 0.89 0.88 0.89 0.89 0.88

Precision 0.69 0.80 0.75 0.80 0.79 0.79
Real data - previous

Recall 0.70 0.68 0.61 0.67 0.67 0.68
Precision 0.60 0.66 0.72 0.79 0.77 0.73

Real data - linear
Recall 0.52 0.61 0.56 0.61 0.61 0.56

Precision 0.62 0.82 0.83 0.83 0.81 0.76

where c is a constant, φi are parameters of the model, and εt is white noise. The moving
average model of order q, MA(q), is a regression-like model that uses current and past values
of error terms or random shocks

yt = µ+ εt +
q∑
i=1

θiεt−i, (5-15)

where µ is a constant, θi are parameters of the model, and ε is white noise.

One of the assumptions for the ARMA models is the stationarity of the time-series. In case of
a non-stationary time-series, differencing can be applied to eliminate the non-stationarity. A
combined model is an autoregressive integrated moving average (ARIMA) model of the order
ARIMA(p, d, q), where d denotes the order of differencing.

The ARIMA models provide a parsimonious representation of linear processess. In order to
select the best model for the considered time-series, two information criteria are popularly
used, namely Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
[13, 17].

Regarding the considered dataset, the individual analysis of each time-series in a large dataset
of time-series with varying behaviour is difficult. Usually, one model type is not able to fit all
of the different occurring patterns. The majority of time series is non-stationary due to an
existing trend and the differencing is used to transform the time series to a stationary signal.
However, some of the signals exhibit a non-stationary behaviour other than trend, such as
varying variance, see Section 3-2-4.
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Experiments

Different settings of ARIMA models are tested, namely ARIMA(1, 1, 1), ARIMA(2, 1, 1),
ARIMA(1, 0, 1), and ARIMA(0, 1, 1). The results for two AL time-series are given in Ap-
pendix C, the lower the scores, the better. The time-series is differenced in order to get
rid of the trend and impose weak sense stationarity (see Section 3-2-4). For the most of
the simulated and real data time-series the ARIMA(1, 1, 1) and ARIMA(2, 1, 1) have simi-
lar values of AIC, lower than the other tested models. However, the BIC is the lowest for
the ARIMA(1, 1, 1). Additionally, the difference between ARIMA(2, 1, 1) and ARIMA(1, 1, 1)
is relatively small. Due to the fact that the less complex models should be preferred the
ARIMA(1, 1, 1) is chosen as the main model. A significant difference between the recall and
precision scores for the two interpolation methods for the real data can be observed. The
previous neighbor interpolation performs much better here than the linear interpolation.

Table 5-5: Results for the outlier detection using ARIMA method for prediction. Each time-
series from simulations and the real data is fitted an ARIMA(1,1,1) model individually and the
predictions are compared with the actual sample values.

Ext. simulation Real data - previous Real data - linear

Recall 0.89 0.63 0.48
Precision 0.82 0.83 0.77

5-2-5 Local Outlier Factor

The next method approaches the outlier detection from a different angle in comparison to
the already presented techniques. In detail, some points can be treated as outliers when
compared globally with the rest of the set, but if one takes a more local view of the same
set, it may occur that these points do not deviate from their neighbors enough. A method
called Local Outlier Factor (LOF) derived from this approach and hence is able to use the
local information about the point in order to find abnormal samples [46]. The authors define
the notion of the local reachability density (lrd) which expresses the distance between the
point being considered and its neighbors. Subsequently, the local outlier factor which is the
average ratio between the lrd of the point and the lrds of its neighbors can be calculated.

This approach allows to perform outlier detection in a local manner. A time-series is treated
as a set of points in a 2D space and the local outlier factor is computed for each point. If
the value is much higher than 1, the point is identified as an outlier. One of the crucial
parameters is the number of neighbouring points taken into consideration at all steps of the
procedure, hereinafter noted with k.

The Python implementation of the LOF algorithm requires an a priori choice of the contam-
ination parameter, i.e. what is the proportion of the abnormal samples in the data set (here
in a single time-series). As this information is not known in advance, the algorithm tends
to either miss some outlying samples or produce too many false positives depending on the
chosen value of contamination.
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Experiments

For the Local Outlier Factor method four different numbers of neighboring points and two
contamination settings are tested. The combinations can be found in Table 5-6. As this is a
2D outlier detection method, scaling is applied on both axes. Both time and deformation are
scaled to lie between 0 and 1. Later on, a scaling factor of 7 is applied on the time axis to
maximize the performance. This value is obtained based on the results using different scaling
factors. As the contamination value has to be fixed for this algorithm, there is a bound
on the precision that can be obtained. The recall can get very high but it results in many
false positives. Regarding the number of neighbors, higher values tend to give better results.
However, these limitations cause that the method, although giving satisfactory results if the
number of outliers is known, is not suitable for this kind of application. Especially in the
real data, where only around 30% of the time-series has any unwrapping errors and often not
more than 5.

Table 5-6: Results for the outlier detection using the Local Outlier Factor algorithm. The
scores are computed for different settings with varying number of neighbouring samples taken
into consideration k and the contamination value c, namely how many outliers are expected.

k = 3 k = 5 k = 10 k = 15

c = 0.033 c = 0.033 c = 0.033 c = 0.03 c = 0.033 c = 0.03

Ext. simulation
Recall 0.90 0.94 0.96 0.95 0.90 0.88

Precision 0.31 0.33 0.33 0.37 0.31 0.34
Real data - previous

Recall 0.83 0.88 0.91 0.91 0.88 0.87
Precision 0.06 0.07 0.07 0.08 0.07 0.07

Real data - linear
Recall 0.74 0.83 0.93 0.93 0.91 0.90

Precision 0.06 0.06 0.07 0.08 0.07 0.08

5-2-6 Summary

Several observations and remarks can be made for the performed experiments. For most of
the methods, the samples at the beginning, and for some methods also at the end of the
time-series, are used for the predictions and there is no way to predict values within these
regions. The signals are relatively short and in some cases there is no error-free sequence that
is long enough to be a good example for further detections. Moreover, the signals exhibit
several types of different behaviors what makes it difficult to find a one-fits-all algorithm.

The results from the presented methods show a significant difference between the performance
on the simulated datasets and the real data. There are several factors contributing to this
outcome. First of all, the real data is more noisy, it has unexpected variations in the time-
series which are difficult to handle for any of the algorithms. Consequently, the simulation
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may not reflect the real data close enough. Another problem is that the real data is labelled
by hand and there are many arguable samples where it is difficult to assess with certainty
that it is an unwrapping error. Due to that fact, some of the ground truth data may not be
fully consistent; a sample that is treated as an error in one time-series may be omitted in a
slightly different one.

The performance of the detection is also hindered by the interpolation process, which in-
evitably introduces distortion to the signal and makes detrimental assumptions.

The goal was to find potential unwrapping errors in the InSAR deformation time-series and,
if possible, correct them. For that purpose, for each of the methods presented in Section 5-2,
a setting with the best recall and precision score (also compared using F1 score) is chosen
as the final parameter setting. Out of all methods, the best performance on the labelled
set is recorded for the Neighboring Samples and the Moving Average Smoothing approaches
(highlighted in the respective results tables). Additionally, among several settings with similar
F1 score, the higher precision is preferred over the higher recall. This is due to the fact that
the case of a higher recall and lower precision leads to unnecessary corrections.

For the whole dataset the performance can be only assessed qualitatively as most of the data
is not labelled in any way. It is possible to display the corrected time-series in the GUI (see
Section 4-2-1), an example result is given in Figure 5-2. The red points and dashed connecting
lines are the original samples and the corrected ones are displayed the same way as the other
samples.

Figure 5-2: The GUI displays the corrected time-series #AL39. Red points are the original
samples detected as the potential unwrapping errors and the new, corrected samples are plotted
the same way as the rest of the time-series.

For the labelled low points in the Amsterdam dataset, the unwrapping error detection is able
to recognize around two thirds of the potential unwrapping errors and a great majority of the
detections is assessed correctly. For the high points, which seem to be more difficult to handle,
the detection rate is lower than for the low points, however, the precision is still visibly high
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and there are not many misdetections.

5-3 Segmentation

The goal of the segmentation is to divide the time-series into distinct, internally homogeneous
subseries. The non-homogeneity of the time-series can potentially mean that there were
significant changes, for instance, in the scattering point or measurement conditions. The
segmentation problem can be also formulated as a changepoint detection problem, in which
the goal is to find abrupt changes occurring in the time-series [47]. The changepoint detection
has been applied in various fields, such as medical monitoring, human activity analysis, IoT
systems, and environmental monitoring.

The segmentation techniques can be divided into supervised and unsupervised. The former,
to which belong many of the machine learning methods, require a labelled dataset in order
to learn the mapping between input and output data. For the changepoint detection such
algorithms as decision trees, support vector machines, Bayesian nets, and various binary
classifiers have been applied [47]. On the other hand, the unsupervised methods are able to
find patterns without the need of providing labelled data. A group of methods that is well
established and popular in the literature since decades are probabilistic methods, which are
based on estimating the probability distributions. Examples are Offline Bayesian Changepoint
Detection [48, 49], Bayesian Online Changepoint Detection [50], Adaptive sequential Bayesian
changepoint detection [51], or a Gaussian Process [47]. Many papers that use the probabilistic
approach share a common assumption, called product partition model [52], that a time-series
can be divided into non-overlapping partitions and data in each partition ρ is i.i.d. from a
probability distribution P (xt|ηρ) [50, 52, 47].

The segmentation problem can be approached from different angles and there are numerous
methods implementing various concepts. Methods based on piecewise linear representation
are presented by Keogh et al. [53] and by Hu et al. [54], There are also segmentation methods
drawing inspiration from control theory and system identification [47]. Further, optimization
techniques and the total variation concept are used to tackle segmentation in [55] by Bleakley
and Vert. A method based on least squares and time-series decomposition, called BFAST, is
presented by Verbesselt et al. in [56]. Moreover, several kernel based and graph based methods
are applied to perform changepoint detection [47]. Finally, Zhang and Huang explore adding
contextual variables to the segmentation task in [57].

As in numerous fields nowadays, also in time-series segmentation there are works that make
use of the most recent advances in machine learning and, especially, deep learning research.
An example can be a breakpoint detection algorithm based on autoencoders [58]. A different
approach can be found in [59], where the changepoint detection is performed using pyramid
recurrent neural networks based on wavelets. The deep learning based techniques are discussed
in more detail in Chapter 6.

In this section four different unsupervised methods are tested. The supervised approach to
segmentation is discussed in Chapter 6.
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5-3-1 Piecewise Linear Representation

There are multiple ways to obtain an approximate representation of a time-series, such as
discrete Fourier transform (DFT), discrete wavelet transform (DWT), singular value decom-
position (SVD), Symbolic Aggregate approXimation (SAX) [60] and piecewise linear rep-
resentation (PLR) [54]. One of the goals of these kinds of representation is to reduce the
dimensionality of the data. Moreover, it can be used in the similarity search and pattern
discovery [54, 61].

In the piecewise linear representation method, a time-series is divided into non-overlapping,
consecutive segments S = (S1, S2, . . . , Sk), where k is the number of segments. The segments
are represented as linear functions [54, 61]. The objective is to find the optimal approximation,
i.e. where the error between the linear representation and the actual data points is minimal.

A linear representation of a set of points can be obtained using interpolation or regression.
In the case of interpolation, the resulting approximation line is connecting two data points at
the boundaries of each segment. For the regression case, a line is fitted using the least squares
approach. Figure 5-3 shows both methods. In the interpolation case the approximation is
smoother and the computational complexity is lower. On the contrary, the regression provides
a visually less intuitive result, but the fitting error is lower than in the interpolation case [54].
Additionally, using the interpolation approach, the data points at the breakpoints between the
segments are treated as certain. After computing the segments, the piecewise representation
relies fully on these boundary points, whereas a regression line is based on all the points in a
calculated segment.

Figure 5-3: Two different types of fitting lines in PLR, the one using regression (top) and the
one using interpolation (bottom), AL137.

There are three main general approaches to the segmentation task, namely Top-Down, Bottom-
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Up, and the Sliding Window. While the Top-Down and the Bottom-Up require a time-series
to be fully available, i.e. they are offline methods, the Sliding Window can also handle a
streaming time-series.

Top-Down

In the Top-Down approach, at first, a whole series is divided into two segments, considering
the most optimal location of the breakpoint, such that the difference between the two resulting
segments is maximal. Subsequently, each of the segments is further divided in two the same
way until the approximation error criterion is met [54, 61]. One of the main disadvantages is
the method’s inflexibility, as the breakpoints determined at the very beginning of the process
may occur to not be the optimal ones [61].

Bottom-Up

On the contrary, the Bottom-Up approach starts from a time-series divided into n−1 segments,
where n is the number of samples in the time-series. Then, the consecutive segments which
treated together cause the smallest error increase are being merged together. This is repeated
until the maximum approximation error is reached.

Sliding Window

The Sliding Window is an online method. At first a left boundary is determined and then the
data points are sequentially assessed. The window size grows until the error does not exceed
the maximum allowed error. A drawback of this approach is lack of a global view, due to
focusing only on the subseries within the sliding window.

To improve the performance of the three aforementioned approaches several other solutions
have been proposed. The most popular is the SWAB algorithm, which combines the Sliding
Window and the Bottom-Up approach [53]. Other methods are PLR based on important
data point (PLR-IDP), feasible space window (FSW), and stepwise FSW [54].

In order to define a stopping criterion for the PLR algorithms a maximum approximation
error is set. Two approaches for choosing the maximum error are tested in this thesis. The
maximum error for the whole dataset of time-series is either a fixed arbitrary value or is
dependent on the standard deviation of the samples in a time-series. For each time-series
two values of standard deviation are calculated, one using an original time-series and one
after detrending it based on linear trend values provided in the dataset. Different coefficients
are tested for the dataset with three interpolation scenarios (see Section 5-2). The average
std of the detrended time-series is more than two times smaller than the average std of the
original time-series. Table 5-7 presents a comparison of results for the fixed max error and
the max error defined as a multiple of the std after detrending the time-series. Additionally,
Figure 5-4 shows behavior of the recall and precision for a bigger range of fixed max values
for the dataset of low points without interpolation. It can be observed that with increasing
the value of the max error the precision rises at the cost of the recall.
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Figure 5-4: The recall and precision values for three PLR methods, i.e. Sliding Window (SW,
dashed line), Bottom-Up (BU, dashdotted line), and Top-Down (TD, solid line), for different
maximum approximation error values; low points dataset with linear interpolation. Additionally,
the dotted line shows the F1-score for the Top Down method.

Table 5-7: Piecewise Linear Representation - recall and precision for three PLR methods and
different maximum error settings using two approches, i.e. fixed maximum error and maximum
error as a multiple of a standard deviation of a time-series. Tolerance = 5 and std is computed
for the detrended time-series. Ground truth collected as described in Section 4-2.

fixed max error × std

300 700 1000 1300 1900 200 300 400 500 600

Top-Down
Recall 0.69 0.57 0.48 0.41 0.34 0.59 0.49 0.45 0.38 0.36

Precision 0.11 0.14 0.35 0.39 0.41 0.19 0.26 0.34 0.39 0.43
Bottom-Up

Recall 0.33 0.15 0.10 0.06 0.05 0.22 0.13 0.07 0.06 0.04
Precision 0.11 0.14 0.16 0.17 0.25 0.13 0.12 0.10 0.11 0.10

Sliding Window
Recall 0.30 0.10 0.06 0.03 0.04 0.23 0.11 0.06 0.10 0.04

Precision 0.11 0.10 0.10 0.07 0.14 0.12 0.09 0.06 0.14 0.08

As per Figure 5-4 and Table 5-7, the Top-Down method provides significantly better results
than the other two. Table 5-8 presents more detailed results for the Top-Down method in all
interpolation scenarios, using the max error based on the std of the detrended time-series.

The linear interpolation performs better than the previous neighbor method. An interesting
observation is that the corrections of the potential unwrapping errors slightly impair the
segmentation result in the low points dataset. An opposite situation is in the high points
dataset, where the improvement is not big but it is consistent over all interpolation scenarios.
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Table 5-8: Piecewise Linear Representation - recall and precision for the Top-Down method
calculated for both low and high points dataset for three different interpolation approaches.
Tolerance = 5 and the coefficient for the standard deviation is 600, std is computed for the
detrended time-series. Ground truth collected as described in Section 4-2.

AL AH

original corrected original corrected

previous interpolation
Recall 0.31 0.29 0.35 0.36

Precision 0.34 0.34 0.26 0.28
linear interpolation

Recall 0.36 0.33 0.33 0.35
Precision 0.43 0.41 0.29 0.31

without interpolation
Recall 0.38 0.34 0.40 0.42

Precision 0.37 0.37 0.39 0.42

5-3-2 Bayesian changepoint detection

In multiple works, the authors take the Bayesian approach to the changepoint detection.
Probabilistic methods are well-established and popular among researchers, with most of the
works treating about offline detection [48, 49]. In this thesis, two algorithms are used for the
time-series segmentation, namely, Bayesian Changepoint Detection as in works by Fearnhead
[48] and Xuan and Murphy [49] and Bayesian Online Changepoint Detection by Adams and
MacKay [50].

Fearnhead in [48] created an offline algorithm computing the posterior over the number and
location of changepoints in a univariate time-series. Xuan and Murphy in [49] extended
Fearnhead’s work to handle multivariate time-series. The algorithm is efficiently implemented
using dynamic programming [62]. The approach is related to the product partition models.
There are two priors for the changepoints considered, a prior for the number of changepoints
and a prior on their location. The latter is obtained from a point process for the time between
two successive points, i.e. the length of a segment. The observation likelihood function is used
for the modelling of Pr(yt:s|t, s in the same segment), where t, s are time instances such that
s ≥ t.

The outcome of the algorithm is the posterior probability of a changepoint occurring at each
time instance, see Figure 5-5. The bottom plot shows the probabilities and the upper plot
shows the time-series. The segmentation lines are located at the time instances where the
changepoint probability is above 0.3 threshold.

The implementation provides three prior functions: constant, geometric, and negative bino-
mial function and three observation log-likelihood functions: Gaussian, the so called inde-
pendent features presented in [49], and a full covariance model [49]. In the tests of a whole
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Figure 5-5: An example of the Bayesian Changepoint Detection algorithm outcome for a univari-
ate time-series. A time-series from AL dataset with linear interpolation (top) and the probability
score (bottom), AL869. The samples where the probability is higher than 0.3 are treated as
changepoints.

dataset where each time-series is assessed individually a Gaussian observation log-likelihood
is used. The independent features method and the full covariance model are tested for a
multivariate case. Regarding the prior function, the probability of a changepoint occurring
after a previous changepoint is assumed to be constant over the whole time-series and equal
to 1/n, where n is the length of a time-series.

The multivariate methods are tested on a particular group of time-series which exhibit high
correlation with each other. Figure 5-6 shows an example of five similar time-series from the
high points dataset. While processed individually, the changepoints in the time-series have a
maximum probability score of around 0.4. However, when they are considered together, the
collective score is very high. The method can be helpful in discovering hidden patterns in
the time-series based on its neighbors or most similar points. Both methods, the independent
features and the full covariance model provide similar results in the tested cases.

A different approach is taken by Adams and MacKay in [50]. The online method consists
in modeling the run length rt, i.e. the time since the last changepoint. The run length rt is
either zero, if the changepoint occurs at time t, or continues to grow:

rt =
{

0 if changepoint occurs at time t,
rt−1 + 1 otherwise.

(5-16)

The changepoint prior P (rt|rt−1) is used to model the transition probability. The probability
of the next data point xt+1 can be computed by conditioning the predictive distribution on
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Figure 5-6: An example of the Bayesian Changepoint Detection algorithm outcome for a mul-
tivariate time-series. A set of five similar time-series from AH dataset with linear interpolation
(top) and the probability score (bottom).

Table 5-9: Bayesian Changepoint Detection - recall and precision for offline and online ap-
proaches. The scores are computed for low and high points datasets, the original and corrected
versions, in three interpolation scenarios. Tolerance = 5 and the threshold for the probability
score is 0.3. Ground truth collected as described in Section 4-2.

offline online

AL AH AL AH
orig. correct. orig. correct. orig. correct. orig. correct.

previous interpolation
Recall 0.61 0.62 0.65 0.64 0.63 0.64 0.50 0.51

Precision 0.19 0.20 0.14 0.14 0.13 0.13 0.08 0.09
linear interpolation

Recall 0.64 0.64 0.61 0.62 0.62 0.62 0.47 0.48
Precision 0.21 0.22 0.15 0.16 0.14 0.14 0.09 0.09

without interpolation
Recall 0.64 0.43 0.55 0.41 0.62 0.63 0.52 0.52

Precision 0.39 0.43 0.29 0.36 0.22 0.23 0.17 0.17

the run length rt. Consequently, the marginal predictive distribution is expressed by

P (xt+1|x1:t) =
∑
rt

P (xt+1|rt,x(r)
t )P (rt|x1:t). (5-17)
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The run length posterior distribution is proportional to the joint distribution P (rt,x1:t) and
can be computed by a recursive message-passing algorithm. Joint distribution over the current
run length and observed data is given by

P (rt,x1:t) =
∑
rt−1

P (rt|rt−1)P (xt|rt−1,x(r)
t )P (rt−1,x1:t−1), (5-18)

where the first component is the changepoint prior. The changepoint prior is defined using the
hazard function H(τ), which expresses the probability that the changepoint will occur, given
that it has not occurred yet [63]. In [50] Adams and MacKay assume the a priori probability
distribution over the interval between changepoints as a discrete exponential distribution
with timescale λ. In such case the hazard function is constant H(τ) = 1/λ, as the process is
memoryless and therefore H(τ) does not depend on time.
The algorithm makes use of the properties of conjugate-exponential models. An advantage
of conjugate models is that the posterior predictive has the same form as the prior predictive
and only differs in hyperparameters. Furthermore, the strength of exponential family models
is that they make inference possible with a finite number of sufficient statistics. Additionally,
these can be calculated incrementally, what is beneficial for the computational efficiency. As
the run length is modelled at each time point t, the parameters are updated one step at a time
and the values become their priors for the next step. The implementation uses the Student’s
t-distribution as the observation likelihood, which hyperparameters are updated after each
step.
As it is very challenging to assess whether a changepoint occurred after just one sample,
there is a parameter Nw in the implementation which determines for how many samples the
algorithm should "wait" until it decides whether a changepoint occurred at that previous time.
The tests performed with different values of Nw show that the higher the value the less false
positives are generated. This can be explained by the fact that in such case the algorithm
has more evidence and it may be easier to assess data points in the window. Lower values of
Nw raise the recall value significantly, however the precision score changes very slowly. As a
result of experiments, the Nw = 10 is chosen for the further tests.
The tests are run for different values of a constant hazard function. Regarding the Student’s
t-distribution initialization, multiple settings are tested and the set of parameters (0.5, 0.005,
0.10, 0) is chosen as giving the best results in terms of the recall and precision. The results
are presented in Table 5-9. The online method has worse scores than the offline one in all
interpolation scenarios. Nonetheless, this is to be expected as there is a trade off between the
accuracy of a method and its computational complexity.
In summary, the method is much faster than the offline Bayesian Changepoint Detection and
allows to analyze even very long time-series without an excessive use of computational power.
However, the need of making assumptions on the data distribution is an important drawback.
Additionally, the method produces a lot of false positives. It should be noted that in this
particular use case of relatively short time-series of InSAR measurements taken every 11 days,
the computation time is not the most important factor.

Segmentation lines suppression

It can be observed that the Bayesian methods presented above produce segmentation lines
which are located very close to each other, e.g. two consecutive points are marked as change-
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points. This is not a desired behavior as such short segments could be attributed to outliers
or noisy data, which not necessarily should be treated as separate segments. In order to
limit the number of segmentation lines an algorithm inspired by Non-Maximum Suppression
[64] is applied on the results of the time-series segmentation. It consists in selecting the seg-
mentation lines that have the highest score and discarding the lines that are within a certain
margin to the line with the highest score. This is only possible for segmentation methods that
provide a score associated with the detected changepoint, such as probability. Tests are run
on the results of the Bayesian Changepoint Detection with the minimum distance between
segmentation lines set to 5 samples. For both AL and AH subsets, lines suppression indeed
results in limiting the number of changepoints and increases the precision score from 0.39 to
0.43 for AL and from 0.30 to 0.36 for AH, for corrected datasets without interpolation. An
example is shown in Figure 5-7. The green lines are the ones that are kept and the grey ones,
the ones discarded.

Figure 5-7: An example of the outcome of a segmentation lines suppression. Blue time-series
is the original measurement and the yellow one is a −2π copy. The segmentation lines in green
have higher scores than the grey ones and they are dominating the lower scored neighboring lines
within the minimum distance of 5 samples. AL869.

5-3-3 BFAST

The algorithm BFAST, Breaks For Additive Seasonal And Trend, has been introduced by
Verbesselt et al. in [56]. Verbesselt et al. in [56, 65] apply BFAST on the simulated and real
satellite NDVI time-series data acquired by MODIS between 2000 and 2008. The method
consists in iterative decomposition of the time-series into trend, seasonal, and noise compo-
nents (see Eq. (3-3)) integrated with methods for change detection [56, 65]. It does not
require an a priori choice of threshold or reference period. BFAST is able to find breakpoints
(changepoints), in contrast to, for instance, STL procedure (see Figure 3-8 and Section 3-2-3),
which is based on a locally weighted regression smoother (LOESS) [15]. The smoothing in
the STL counteracts the detection of changes.

The model of the time-series in this approach is an additive model Yt = Tt + St + Rt, where
T is the trend, S is the seasonal, and R is the remainder component. The trend is assumed
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to be piecewise linear with breakpoints t∗1, . . . , t∗m. The model for trend component subseries
is

Tt = αj + βjt (5-19)

for t∗j−1 < t ≤ t∗j and j = 1, . . . ,m. The magnitude of the change is defined as a difference
between linear models for subseries before and after a breakpoint. The seasonal component
can have breakpoints at different times than the trend breakpoints and they are denoted as
t#1 , . . . , t

#
p . The seasonal component can be expressed as

St =
s−1∑
i=1

γi,j(dt,i − dt,0) (5-20)

for t#j−1 < t ≤ t#j and where s is the seasonality period, γi,j is the effect of season i, and
dt,i = 1 when t is in season i and 0 otherwise.

In the BFAST algorithm, ordinary least squares residuals-based moving sum (OLS-MOSUM)
is used to check whether there are any breakpoints occurring in the time-series. The number
of breakpoints is determined by the BIC. At first, Ŝt is estimated with a mean of all seasonal
subseries. Then, one iteration consists of four following steps. First, OLS-MOSUM is used
to detect any breakpoints in the trend component, which are estimated from a seasonally
adjusted time-series Yt − Ŝt. Then, the trend coefficients αj and βj are calculated using
regression and the trend estimate T̂t is updated. The next two steps are analogous, but the
breakpoints are computed for the seasonal component using detrended time-series Yt − T̂t.
The whole process is repeated until the breakpoints do not change.

In this thesis the BFAST algorithm is tested on twelve sets of time-series, i.e. low and high
points are tested with original and corrected data in three interpolation scenarios. An R
implementation of BFAST by Verbesselt et al. [66] is used in the experiments. There are three
seasonal models that can be used to fit the seasonal component as well as detect seasonal
breaks, namely dummy as given in [56], harmonic as in [65], and none, which means St = 0.
All three settings are tested on all subsets. The best results are obtained with no seasonal
model fitted and they are presented in the Table 5-10. This is due to the fact that in an
uninterpolated scenario the BFAST is not able to handle gaps in the temporal data as the
time-series is "squeezed" together causing the time-series to lose its seasonal structure. Also for
the interpolated time-series, the algorithm performs better without the seasonal component,
especially for the low points. Moreover, the linear interpolation is a better choice here than the
previous neighbor interpolation. Nonetheless, the best scores are obtained for the time-series
without any interpolation. Especially the precision is higher than in the other cases. The
reason behind it may be the fact that there are discontinuities due to lacking measurements
which make it more likely to put a segmentation line there. In fact, a human analyzing the
time-series may have a similar impression and as the scores are calculated with respect to the
human judgment, this may be a source of bias.

Usually not more than four iterations are needed to obtain the final breakpoints. A maximal
number of breaks in a time-series is chosen as five. Figure 5-8 presents a seasonal decomposi-
tion of a time-series together with the breakpoint detection in the trend component. On the
bottom plot, the time-series and its fitted trend are shown in more detail. There are three
linear models with different slopes fitted.
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Figure 5-8: The decomposition into three components, trend, seasonal, and residual, with the
breakpoints in the trend obtained with the BFAST method (top). The estimated piecewise linear
trend with detected breakpoints and the time-series (bottom), AH14014.

The Table 5-10 presents results for different interpolations and for both original and corrected
datasets. The tolerance level is five samples, i.e. a detection within five samples to the left or
right on the time axis is still counted as a correct one. The results show that BFAST performs
better on original time-series than on the corrected ones. After visual inspection it can be
inferred that there are cases where uncorrected outliers cause that BFAST is less sensitive to
variation of the data and is able to catch more general trends than after the corrections (e.g.
AL1451).

5-3-4 Clustering methods

Additionally to the above presented methods, segmentation using several clustering tech-
niques have been tested. The following methods were used in the experiments: K-means,
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Table 5-10: BFAST - recall and precision scores computed for low and high points datasets, the
original and corrected versions, in three interpolation scenarios. Tolerance = 5 and no seasonal
model is fitted. Ground truth collected as described in Section 4-2.

AL AH

original corrected original corrected

previous interpolation
Recall 0.34 0.34 0.37 0.37

Precision 0.31 0.29 0.28 0.27
linear interpolation

Recall 0.36 0.36 0.40 0.40
Precision 0.32 0.31 0.30 0.30

without interpolation
Recall 0.31 0.33 0.37 0.37

Precision 0.39 0.39 0.44 0.41

Agglomerative Hierarchical Clustering, DBSCAN, Gaussian Mixture Model, and Gustafson-
Kessel algorithm. Although for some time-series some of the methods gave good results, the
performance of the clustering method was highly dependent on the shape of the time-series.
A serious disadvantage in all tested methods except DBSCAN is the necessity of assuming
the number of clusters beforehand. The time-series are treated as a set of points in a two-
dimensional space (t, y) and the clustering is performed on this 2D space. This requires scaling
of the data as the distance on the t-axis (time instance) does not correspond to the distance
on the y-axis (milimeters). The scaling or normalization of the 2D set is impeded by the di-
versity of the time-series shapes, for instance, outliers or strong linear trends. In conclusion,
whereas the clustering methods were able to handle some individual cases successfully, they
failed in processing the whole diverse dataset with acceptable performance scores.

5-3-5 Conclusions

In this section four different approaches to the changepoint detection has been applied to the
InSAR deformation time-series dataset. In almost all tested cases, the scenario in which no
interpolation was applied and the calculations were performed on the "squeezed" time-series
without any gaps occurred to produce the best results. The only exception is the PLR method
for the AL dataset where it is the linear interpolation that shows the best results. Presumably
this is caused by the fact that the analysis and the choice of coefficients were made mainly
on the AL dataset with linear interpolation and this introduced a bias towards this setting.

The best results are provided by the offline Bayesian Changepoint detection algorithm. The
online form is faster, less computationally expensive, and allows for the analysis of streaming
time-series but the precision is evidently lower than in the offline case.

The BFAST algorithm’s ability to isolate the seasonal component of the time-series is very
promising, however, in the performed tests the best results are obtained if the seasonal com-
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ponent is neglected. The reason behind it might be introducing the interpolation or, in case
of "squeezed" time-series without interpolation, the loss of real temporal structure.

In general, the lacking measurements are a significant difficulty as they entail the need of
interpolating the time-series or using only the available samples. Both approaches distort the
time-series and hinder various transformations and the analysis of the time-series behavior.
Ideally, no interpolation would be needed, but in reality the problem of missing data is
sometimes unavoidable. Many computational methods cannot handle missing data and in
such case linear interpolation showed to give better results than the previous interpolation.

Additionally, the PLR and BFAST are based on piecewise linear trends and are not able
to take nonlinear trends into account. This may be a serious simplification, especially that
44% of low points and 45% of high points have a non-zero quadratic trend component in the
default model (see Eq. (3-1)).

Providing a reliable human input is more difficult in the case of segmentation problem than
in unwrapping error detection. The division of the time-series into separate segments is often
not trivial and highly depends on the implicit and not clearly defined assumptions. Therefore,
a human judgment can not only differ between experts but also between similar time-series
assessed by the same expert.
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Chapter 6

Machine learning approach

The current research trend of employing artificial intelligence, and especially machine learning,
methods has not been missed in the geoscience and remote sensing fields. Among frequently
used techniques are autoencoders, restricted Boltzmann machines, deep belief networks, and
convolutional neural networks (CNNs) [2]. To name a few machine learning applications,
one of the examples is hyperspectral image analysis. The land cover/use classification is
performed with different types of CNNs, from 1-D till 3-D. Also the interpretation of SAR
images or high-resolution satellite images is approached with CNNs or deep autoencoders.
Another example is multimodal data fusion with different proposed solutions using CNNs,
stacked autoencoders, or recurrent neural networks [2].

The researchers point out that deep learning-based unsupervised feature learning often out-
performs handcrafted features [3]. Moreover, as more and more data is collected in cycles,
time-series processing brings valuable insight but on the other hand, it also adds another di-
mension to the analyzed data, thereby complicating the computations. Deep learning meth-
ods can respond to the need of exploiting the temporal information together with spatial and
spectral aspect of the data [2, 3].

However, remote sensing suffers from the same difficulty as many others, namely, only a few
labeled samples is available. Another challenge, specific to remote sensing, is the multimodal-
ity of the observed data. The large number of bands in which the data is registered yields
large volumes of data. Different specifics of various sources and different geometries of data to
be used together make it far for trivial, especially in case of automated learning and black-box
machine learning models. Moreover, rapidly growing amount of collected data stands behind
the need for fast and efficient methods. Furthermore, although machine learning problems
can often be reformulated as detection or classification tasks, this is not the case in the remote
sensing research, where many problems cannot be reduced to widely used solution patterns.
Additionally, there is a lot of well-established expert knowledge in the field and it should be
included in the research using deep learning applications [2, 3].

Numerous examples of machine learning solutions applied to geoscience and remote sensing
problems are listed in [67]. Lary et al. cite dozens of works, with many of the solutions other
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than image-based, which are the most popular. An example that is specifically related to the
SAR and InSAR techniques can be a problem of winter vegetation quality mapping which is
approached using recurrent neural networks on multitemporal SAR images [68]. Also, in the
work of Massinas et al. [69] convolutional neural networks are used for modeling ionospheric
disturbances from InSAR data.

6-1 Preliminaries

In machine learning there are two main approaches to learning algorithms, namely supervised
and unsupervised learning. In the supervised case the algorithm is exposed to example input
data together with the outputs, called labels or targets. In the unsupervised approach the
algorithm does not get feedback information about the correctness of its output. Its main
purpose is the extraction of information from a dataset which has not been labelled. Exam-
ples of tasks performed by unsupervised learning algorithms are clustering, i.e. grouping of
the data, density estimation, or denoising [70]. On the other hand, the supervised learning
algorithms learn a mapping between the provided input and output data. There are also
semi-supervised learning algorithms which fall between supervised and unsupervised meth-
ods. There, a small subset of labelled data is combined with unlabelled data to learn the
representation for the whole dataset [70]. As acquisition of large sets of labelled data can be
very expensive or can require a large amount of human labor, the semi-supervised approach
allows for learning in situations where there is not enough data for supervised methods. Yet
another type of machine learning algorithms is reinforcement learning, where an algorithm
is not presented with example outputs as in supervised learning but it works on a trial and
error principle and is only given a reward if the result is as expected [71]. In this chapter only
supervised methods are considered.

6-1-1 Supervised learning

The goal of a supervised learning algorithm is to learn a mapping between input and output
data. This process requires labelling the data, namely providing the output for a given input
in order for the algorithm to learn from it. This process can be laborious, expensive, or even
infeasible for large amounts of data. Such a collected, labelled dataset is later divided into
training, test, and validation datasets. The training of a machine learning algorithm, i.e. a
process of learning, is performed only on the training set. The performance of the algorithm is
then checked using a test set as it is desirable that the testing is done on the data that has not
been seen during the training. Among the most popular supervised learning algorithms are
probabilistic methods, such as logistic regression or naive Bayes, support vector machines, k-
nearest neighbors, decision trees, or neural networks. There are two main groups of problems
that can be solved with the supervised learning, namely classification and regression. In the
former, the label or target is a category and in the latter, it is a real value [70, 72].

6-1-2 Neural Networks

Artificial neural networks (ANNs) owe their name to the inspiration from neuroscience and the
biological neurons. As in other supervised learning techniques, the goal of a neural network is
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to find an approximation of some function which maps the given inputs to provided outputs
(or targets). A general representation of a neural network is shown in Figure 6-1a. The
network consists of an input layer where the data enters the graph, an output layer where the
data leaves the network, and the layers in between, called hidden layers. Each node in the

(a) General feedforward neural network architec-
ture.

(b) Schematic of a single neuron with the input nodes,
weights and biases, activation function (transfer func-
tion), and the output.

Figure 6-1: General representation of a feedforward neural network and its layers and the com-
ponents of a single neuron.

hidden layer, also called a neuron or a unit, is a nonlinear function of a linear combination of
the input nodes. The parameters in the linear combination are adaptive and their values are
found in the process of training,

aj =
m∑
i=1

w
(1)
ji xi + w

(1)
j0 (6-1)

where x1, . . . , xm are the input variables, j = 1, . . . , r, where r is the number of neurons in
the hidden layer, and the superscript indicates the layer. The adaptive parameters wji are
called weights and wj0 are biases. aj is called activation and it is an argument of an activation
function [71]. The activation function h(·) introduces nonlinearity,

yj = h(aj). (6-2)

Some of the most popular activation functions are sigmoidal function, hyperbolic tangent
(tanh), or rectified linear unit (ReLU). In the output layer the neurons also have an activation
function. The choice of the output activation function depends on the task, e.g. for regression
this would be identity and for classification a sigmoidal function or softmax.

Overall, assuming that the network has only one hidden layer, one of the outputs of the
network function can have the form [71]

yk(x,w) = σ

(
n∑
i=1

w
(2)
kj h

(
r∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(6-3)
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where x and w denote the input vector and weights vector, respectively, and σ is a sigmoid
function. The information flows through the network from the inputs, through the hidden
layers, till the outputs without any feedback connections. Therefore such network is called
a feedforward network. Additionally, a network where all nodes from a preceding layer are
connected to all nodes of the succeeding layer is called a fully-connected feedforward network.

The learning process in the neural network consist in feeding the training samples into the
network and then comparing the output with the given target. The latter is defined by a loss
function, also called an error function, which returns a loss value for each training sample. An
average of losses for the whole dataset is the cost function. The loss function highly depends
on the task and the objectives. For the regression it can be e.g. the mean squared error or the
mean absolute error and for classification e.g. cross-entropy or Kullback-Leibler divergence
[70, 71]. After calculating the loss, the error is back-propagated through the network, the
algorithm is called back-propagation and it calculates the gradient of the loss function with
respect to the weights. Then, the weights are updated accordingly, using a chosen optimizer,
such as stochastic gradient descent or its modifications. This is done for all training samples
in the dataset and one pass through the whole dataset is called an epoch. Usually, iterating
over the training dataset is repeated for a chosen, fixed number of epochs. Other approaches
are for instance early stopping of the learning algorithm if the loss function is not decreasing
anymore for a given number of epochs [70, 71].

Convolutional neural networks

The convolutional neural networks (CNNs) are neural networks which, at least in one layer,
use the convolution operation instead of general matrix multiplication. They are particularly
suited for processing data with a grid-like topology, such as images (2-D) or time-series (1-D)
[70]. The convolution operation is defined by

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da, (6-4)

and in the discrete case by

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a), (6-5)

where x is the input, w is called a kernel or a filter, and the result is called a feature map [70].
In the specific case of a 2-D image I and a 2-D kernel K, the feature map can be computed
by

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (6-6)

As the kernel is shifted over the whole input image, a CNN can work with variable input sizes,
unlike the fully-connected network. Since the kernel sizes are smaller than the input images,
only the neighborhood of each pixel has a direct impact on the output of the convolution step.
Again, this is in contrary to the fully-connected network where an input is connected with all
the nodes in the following layer. Building blocks of a convolutional network are three layers
that typically follow each other and the groups can be repeated. First, the convolutional layer
performs the convolution operation on the input. The next layer is the detector, also called
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Figure 6-2: Representation of a CNN architecture. Convolutional layers are followed by pooling
layers. At the end there is a fully-connected layer to transform the feature maps into the output,
e.g. in classification task. Activation layer is often omitted in the architecture schemas and is
treated as an intrinsic part of each convolutional layer.

activation, layer which introduces nonlinearity. Currently ReLU is the most commonly used
activation function. The last, third layer is pooling. Pooling operation produces a reduced
output that uses summary statistics of the neighboring outputs. For instance, max pooling
takes maximum values out of the defined neighborhood, e.g. using a 2 × 2 window. This
step makes the output invariant to local translation [70]. Typically, the convolutional layers
are followed by a fully-connected layer to perform classification on the vector from feature
maps. In such case, pooling helps in handling varying sizes of the input and allows for always
the same size of the input to the fully-connected layer of the network. Moreover, kernel
parameters are shared across the whole input, i.e. the kernel is the same at each location of
the input. This makes the CNNs more efficient in terms of memory and storage compared to
FCNs. Other parameters defining the CNN layers are kernel size, padding, and stride, i.e. by
how many elements the kernel is shifted, typically set to one.

6-1-3 Pretraining and transfer learning

The problems to be solved by machine learning algorithms are becoming more and more
complex and additionally, in case of supervised learning, it might be difficult or expensive
to obtain a required amount of labeled data. A technique called transfer learning is able to
use what has been learned in one setting and extend it to another setting [70]. The most
popular transfer learning applications are image recognition and language models. In image
recognition tasks, the low-level features learned by a base model can be repurposed in a
new model to recognize a different categories of object than the original model. This can be
achieved by e.g. using initial layers of the base network and then training the end layers on
a dataset for a new problem. There are numerous models that have been trained on millions
of data that are made publicly available and can be reused for transfer learning in similar
applications.

Another way of handling an insufficient amount of labeled training data is to simulate the data
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that closely resembles the original data and train a model based on the simulated data first. As
a next step the model can be fine-tuned using a real dataset [73]. In this thesis, since there is
not enough labeled training data in the InSAR time-series dataset, the approach of pretraining
the models on a simulated dataset is taken. If models show satisfactory performance on the
simulated dataset, the real time-series will be used for fine-tuning these models.

6-2 Network architectures and training

Two approaches are taken in the experiments in this thesis. The first is based on the raw
data input. Whole time-series are fed into a neural network and multi-label classification
is performed in order to determine whether there should be a segmentation line on a given
sample or not. The second approach is to divide the time-series into smaller subseries and,
by performing binary classification, to determine whether there should be a segmentation line
within a given subseries. For each of these approaches different architectures are built and
tested. For the experiments a Python Keras package (Tensorflow backend) is used to build
neural network models. All of the experiments and trainings are initially prepared on the
simulated dataset. This allows to use much more labeled time-series than only using the real
dataset where only a small subset has been labeled.

6-2-1 Raw data input

A whole time-series is taken as an input to the network. The architectures that are used in
experiments are fully-connected networks (FCNN) and convolutional neural networks (CNN).
As the input is a whole time-series, the output is a vector of the same length as a time-series
and for each sample (epoch) there is a 0/1 label associated, with 1 at the time steps where
there is a division between the segments.

The whole simulated dataset is split into train, validation, and test sets with the proportion
of 70%, 20%, and 10%, respectively. The training is done on the train set and the models are
evaluated on the validation set. The test set is kept out and only used for getting the score
from the final model in each of the approaches.

The simulated dataset contains artificially added unwrapping errors, therefore, each simu-
lated time-series is first corrected using Neighbouring Samples method (see Section 5-2-1).
Subsequently, data normalization is performed in order to limit the input values to the [0, 1]
range.

CNN

As a starting point, several arbitrarily chosen sets of hyperparameters are tested and the ones
that show better performance are further used for tests with finer changes of hyperparameters.
Ranges of values of hyperparameters are given in Table 6-1.

Both input and output layers are of length 297. The output activation layer is sigmoid
and the loss function is binary cross-entropy. Sigmoid function returns a value between 0
and 1 and the threshold where the class should be treated as 1 varies depending on the
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Table 6-1: Hyperparameters and their values used in experiments for CNN with raw data input
architectures.

Hyperparameter Values

number of layers (conv + fully-connected) 1 + 1, 2 + 1, 3 + 1, 3 + 2, 4 + 1, 4 + 2, 5 + 2
kernel size 3, 5, 7, 9, 11, 13, 15, 21, 25, 45, 60

number of filters 64, 128, 192, 256, 512
dropout size 0.1, 0.3, 0.5

optimizer SGD, Adam
learning rate 0.001, 0.0001, 0.0005

fully-connected layer size 512, 1024, 2048, 4096

hyperparameters. Therefore, the results are presented and evaluated with respect to different
threshold values. Activation function after convolutional layers as well as fully-connected
layers is chosen as ReLU. After each convolutional layer and before an activation layer a batch
normalization layer is added. Also, after fully-connected layers dropout is added in order to
prevent overfitting. For coarse testing of different architectures the models are trained for
maximum of 100 epochs, later the fine tuning is up to 200 epochs. Batch size for training is
set to 32.

FCNN

Another architecture that is developed for the multi-label classification is a fully-connected
network. Hyperparameters used in the experiments and their values are given in Table 6-2.
Like in the CNN approach, the input and output are both of length 297. Activation function
in the hidden layers is chosen as ReLU and the output activation is sigmoid. Similarly to
CNN, different thresholds of the outputs are considered. The testing is run on maximum
of 100 epochs and using a batch size 32. What is important, a fully-connected network on
raw time-series is ignoring the structured character of the input data, which is a crucial
information in the considered problem. Therefore, a lower performance compared to CNN
approach is expected.

Table 6-2: Hyperparameters and their values used in FCNN experiments for raw data input.

Hyperparameter Values

number of hidden layers 4, 5
number of nodes in hidden layers 128, 256, 384, 512, 1024, 1536, 2048, 4096

dropout size 0, 0.3
optimizer SGD, Adam

learning rate 0.001, 0.0001
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6-2-2 Subseries approach

In this approach, first the time-series is divided into subseries with a given length (window
size) and offset, i.e. a shift by which the window is moved to create next subseries, see Figure 6-
3. In this case, the performed machine learning task is binary classification with the objective
to determine whether there is a segmentation line within the input subseries. Class (label) 0
means there is no segmentation line within a subseries and oppositely, class (label) 1 denotes
a subseries with a segmentation line. An advantage of this approach is its lower complexity,
binary classification is much easier than multi-label classification, and the possibility to work
on extracted features. However, the downsides of this method are that it does not take global
behavior of the time-series into account and it is only able to determine the segmentation
point within a range (window size) and not in a specific sample.

Depending on the tested architecture, two ways of handling input data are used. In the exper-
iments with a fully-connected neural network, features are extracted from the raw subseries
and the network is trained on the features. In the experiments with a CNN however, raw
subseries are used, in order to keep the structured character of the data.

Figure 6-3: A division of the time-series into subseries. A window of defined width (number of
samples) and with defined offset (by how many samples the window is shifted) is shifted through
the whole time-series and generates subseries of given length. An example window of width 30
and offset 10 is shown in grey. Two next windows are marked with dashed lines.

Feature engineering and selection

For each of the subseries different features describing the subseries are extracted. The follow-
ing features are computed for the whole subseries, as well as for the first and the second half
of the subseries separately: mean, median, variance, third moment (skewness), and fourth
moment (kurtosis). Additionally, the same set of features is extracted for a subseries which is
differenced once and twice. This yields 45 features for each subseries that describe the whole
subseries and its left and right halves separately.

An algorithm for feature selection called Boruta algorithm [74] is used to check the relevance
of the above features. In result, all of the above 45 features are assessed as relevant and are
kept. An additional set of features is obtained using a Python package tsfresh [75] which
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computes a great number of different time-series characteristics, giving 434 features. These
are subsequently also passed through the Boruta algorithm in order to only keep the features
that are relevant in this particular problem of binary classification. In result, after removing
features that are not relevant and the ones with infinite values, which cannot be handled in
a neural network, 242 features are kept as relevant.

Dataset split and class imbalance

The whole simulated dataset of subseries has to be divided into train, validation and test
sets, with the same proportion as in the raw input approach, namely 70%, 20%, and 10%
respectively. The subseries are divided based on the original time-series they are a part of, in
order to avoid a situation where subseries which are only a few samples apart (only one shift
apart) would end up in both train and test set. That could bias the results of the learning
process since testing on a very similar subseries would be close to testing on a subseries from
the train set. Additionally, there is a heavy class imbalance in the dataset, since class 0, i.e.
no segmentation line in a subseries, is much more than class 1. In the training set there are
141733 samples with class 0 and only 26267 with class 1. Since class 0 makes up ∼ 84% of
the whole training set (168000 samples in total), a model which learns to always output class
0 would have 84% accuracy. Therefore, a limited number of samples with class 0 is taken for
the training to keep balance between both classes. At first all class 1 samples are taken and
then the same number of samples is randomly selected from class 0 samples.

FCNN

At first, the features are normalized to have values within [0, 1] range, since originally features
have values of different orders of magnitude. The loss function is binary cross-entropy and the
output activation function is sigmoid. Two separate networks are developed for automatically
generated features and for simple, hand-crafted features. The trainings start with arbitrary
chosen networks using hyperparameters from Table 6-3 and Table 6-4. The input has 242
features in the first case, andt 45 in the second. Both optimizers, SGD and Adam, are
tested, with different learning rates. All activations in hidden layers are chosen as ReLU. The
networks are trained for 100 epochs, the batch size is set to 32 and the validation split for
training is 0.2. In some cases, the models are re-trained again for a short number of epochs
using the same training set.

Table 6-3: Hyperparameters and their values used in FCNN experiments using automatically
generated features.

Hyperparameter Values

number of hidden layers 2, 3, 4, 5
number of nodes in hidden layers 32, 64, 128, 192, 256, 384, 512

dropout size 0.1, 0.3, 0.5
optimizer SGD, Adam

learning rate 0.01, 0.001, 0.0001
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Table 6-4: Hyperparameters and their values used in FCNN experiments using simple, hand-
crafted features.

Hyperparameter Values

number of hidden layers 2, 3
number of nodes in hidden layers 16, 32, 64, 96

dropout size 0, 0.1, 0.3
optimizer SGD, Adam

learning rate 0.01, 0.001, 0.0001

CNN

In the CNN approach only raw values in subseries are used. Hence, data normalization is
performed sample-wise and not feature-wise, as in the FCNN case. The same as in the FCNN
case, the loss function is binary cross-entropy and the output activation function is sigmoid.
Hyperparameters and their values are given in Table 6-5. The approach to experiments is
the same as in the CNNs for raw inputs, at first arbitrarily chosen sets of hyperparameters
are tested and then, depending on their performance, they are further fine-tuned. As the
subseries are of length 30 and not 297, the kernel sizes are smaller accordingly.

Table 6-5: Hyperparameters and their values used in experiments for CNN with raw data input
architectures.

Hyperparameter Values

number of layers (conv + fully-connected) 1 + 1, 2 + 1, 2 + 2, 3 + 1, 3 + 2
kernel size 3, 5, 7, 9, 11

number of filters 32, 64, 128, 192
dropout size 0.1, 0.3, 0.5

optimizer SGD, Adam
learning rate 0.001, 0.0001, 0.0005

fully-connected layer size 32, 64, 128, 256, 512

6-3 Evaluation and results

In this section the tested models are evaluated and the results of the experiments are described.
For each of the approaches, the best model is chosen based on validation set and then its
performance is given based on its performance on the test set. Then, these best models are
applied on the labeled subset from the real dataset. Apart from the validation set, the models
are also checked on a trivial example (a constant line with two steps) to make sure the model
can handle a simple case that is different than the ones seen in training but also having
separate segments.
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6-3-1 Raw data input

CNN

Numerous experiments with different sets of hyperparameters are run in order to find the most
suitable values for the hyperparameters. At first, an architecture with only one convolutional
layer and one fully-connected layer is tested to check the influence of the kernel size on the
output results. In general, results have shown that, up to some point, the bigger the kernel
size, the better the scores. The first convolutional layer captures high-level features, therefore,
a longer kernel might be able to find more long-term changes of the time-series.

Adding a second convolutional layer with a higher number of filters and a smaller kernel than
in the previous layer improved the results. Moreover, an additional fully-connected layer
after flattening the feature maps (step between convolutional layers’ feature maps and the
fully-connected layers, see Figure 6-2) has brought further improvement.

After initial experiments with changing mainly the number of layers, number of filters, and
kernel sizes, four best performing models are chosen for comparison and fine-tuning to choose
the final model out of them.

The performance of the models is evaluated using recall, precision, and F1-score. The toler-
ance is set to 5, i.e. a predicted line can be off by 5 samples in both directions and still be
counted as a correct prediction. The output of the model is first reduced using line suppres-
sion algorithm (see Section 5-3-2). Then the scores are generated for several cut-off thresholds
between classes 0 and 1. If the output of the model at given time step (epoch) is greater than
the threshold, then the predicted class is 1. The scores are presented for results before and
after line suppression to show the improvement the line suppression provides.

The four presented models are differing in the number of layers and kernel sizes. Further they
are referred to as models A, B, C, and D. Model A is the simplest with only one convolutional
layer with 32 filters and a kernel 25. The best performance was found for two fully-connected
layers of sizes 2048 ans 1024. After each fully-connected layer dropout of value 0.5 is added.
Model B has two convolutional layers with 64 filters and kernel 60 and 128 filter with kernel
45, respectively. Model C has two more convolutional layers added on top of the layers from
model B: 192 filter and kernel 25 and 256 filters and kernel 7. Finally, model D also has four
convolutional layers with the same number of filters but the kernel sizes are much smaller,
15, 9, 5, and 5, respectively. In this model a smaller dropout of 0.3 proved to be better than
the 0.5 one.

In all the models the Adam optimizer and a learning rate of 0.0001 gave the best results.
Fully-connected layers of sizes other than 2048 and 1024 only worsened the final results,
therefore this same structure is kept across all four models.

Figure 6-4 shows the recall and precision at several thresholds for each of the four models.
Dashed lines represent the scores after line suppression. It can be observed that the line
suppression significantly improves the precision scores. The best scores, with the highest
F1-score, are given in Table 6-6. For models B and D two pairs of recall/precision scores
are presented because they have the same F1-score but different ration between recall and
precision. The decision which threshold to keep can depend on the needs, whether more
detections with lower precision are preferred or less detections but more precise.
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Figure 6-4: Recall and precision scores at different thresholds for four CNN models. Solid lines
show original scores and dashed lines - scores after line suppression. The higher value of precision
and recall, i.e. both recall and precision lines closer to the top, the better performance the model
offers. Recalls close to 1 with very low precision mean that there are a lot of false positives.
Additionally, using line suppression (dashed lines) significantly limits the number of false positives
and improves the performance.

Table 6-6: Four CNN models scores on the validation set. All scores are given after line sup-
pression and at the best threshold. For models B and D values in brackets show scores with a
very close F1-score but with different ratio between recall and precision.

model A model B model C model D

best threshold 0.02 0.05 (0.1) 0.1 0.02 (0.03)
recall 0.22 0.40 (0.32) 0.28 0.34 (0.30)

precision 0.44 0.43 (0.59) 0.56 0.49 (0.59)
F1-score 0.29 0.42 (0.42) 0.38 0.40 (0.40)

In result, model B shows best performance on the validation set and is chosen as the final
model with the threshold 0.1. A scheme with all layers is shown in Figure 6-5 and a detailed
scheme with the shapes of the layers can be found in Figure B-1.

The scores on the test set and on the labelled subsets from real InSAR dataset AL and AH are
presented in Table 6-7. As expected, the scores on the real data are lower than on the test set.
However, the model was only trained using the simulated dataset and the real dataset can be
treated as more difficult to handle, also because of the interpolation. Figure 6-6 shows two
InSAR time-series with labelled segmentation lines and the predicted line, output from the
final CNN model. Top figure shows one correctly predicted line (tolerance is set to 5 samples)
and one misdetection, however, the labelled segmentation line is not objectively true, it is an
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Figure 6-5: Architecture scheme for the final CNN model.

opinion of the labelling person. In the bottom figure a predicted line is close to the correct
label but due to interpolation it is more than five samples away from the label and is not
counted as a correct prediction.

Table 6-7: Results of the final CNN model with the raw data input on test set and two real
datasets, AL and AH. Ground truth collected as described in Section 4-2.

test set real data AL real data AH

recall 0.32 0.27 0.25
precision 0.58 0.33 0.36
F1-score 0.41 0.30 0.29

FCNN

At first an arbitrary set of hyperparameters is used as a starting point. A model with four
layers of sizes between 128 and 512 shows poor performance on the validation set. Therefore,
networks with more units in the hidden layers are tested. Adding dropout layers improves the
scores in all cases. A model with four layers of sizes 512, 1024, 2048, and 512, respectively,
is chosen for comparison and is referred to as Model E. Subsequently, further increasing the
number of units in the biggest layer to 4096 brings improvement. This model is referred
to as Model F. In order to check whether the performance would constantly improve with
bigger networks, models with more layers are tested but their scores are worse than Model F.
Also tests with removing dropout show that this is not a correct way, keeping dropout with
rate 0.3 results in better scores. In multiple models raising the learning rate from 0.0001 to
0.001 causes the training to be unstable and gives very poor results. Moreover, choosing SGD
optimizer leads to very poor results and hence, Adam is kept as the optimizer.

Table 6-8 presents the results of models E and F on the validation set and Figure 6-7 shows
the plots with values of recall and precision (after line suppression) for different thresholds.
Consequently, model F is chosen as the final model in this approach as it produces slightly
better results than model E. The architecture of the network is shown in Figure 6-8 and
detailed scheme is presented in Figure B-2.

In general, the tested FCNN models produce more predictions than the CNNs, resulting in
higher recall scores. This can be observed by comparing Figure 6-4 and Figure 6-7 where the
recall line is closer to value of 1.0 for FCNN models, compared to CNN models.

Master of Science Thesis Adrianna Kaźmierczak



84 Machine learning approach

Figure 6-6: Two examples of the CNN final model outputs on AL535 (top) and AH6973 (bottom)
time-series. Dashed lines represent predicted segmentation lines and dash-dotted - the labelled
ones. Interpolated points are shown in gray and gray lines are connecting the points for readability.
Ground truth collected as described in Section 4-2.

Table 6-8: Two FCNN models scores on the validation set. All scores are given after line
suppression and at the best threshold.

model E model F

best threshold 0.1 0.1
recall 0.29 0.28

precision 0.28 0.33
F1-score 0.29 0.31

The final scores on the test set and on the real datasets are presented in Table 6-9. As
expected, the results are not as good as in the CNN model. Figure 6-9 shows the outputs
from the FCNN model on the AL and AH datasets. In the top figure two out of three predicted
lines are close to the labelled ones. In the bottom figure in the middle of the time-series, the
network finds two segmentation lines next to each other but one can see that in fact the left
one, which is overlapping with the labelled line, and the right one are only divided by a fully
interpolated part, effectively making it lines in two consecutive time steps.
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Figure 6-7: Recall and precision scores at different thresholds for two FCNN models. Solid lines
show original scores and dashed lines - scores after line suppression. The precision and recall lines
are closer to their boundary values which means that there are mainly false positives produces
by the models. The recall and precision lines cross at a relatively small value showing a lower
F1-score.

Table 6-9: Results of the final FCNN model with the raw data input on test set and two real
datasets, AL and AH.

test set real data AL real data AH

recall 0.28 0.22 0.18
precision 0.32 0.25 0.24
F1-score 0.30 0.26 0.21

Figure 6-8: Architecture scheme for the final FCNN model for raw data input and multi-label
classification.

6-3-2 Subseries approach

The threshold between classes is set to 0.5, which is a default value in the sigmoid output as
the sigmoid function is symmetric around 0 with a value of 0.5. It proves to give the best
results in terms of F1-score, other values favor either recall or precision but at the cost of the
overall F1-score.
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Figure 6-9: Two examples of the FCNN final model outputs on AL2379 (top) and AH3715
(bottom) time-series. Dashed lines represent predicted segmentation lines and dash-dotted - the
labelled ones. Interpolated points are shown in gray and gray lines are connecting the points for
readability. Ground truth collected as described in Section 4-2.

FCNN

Automatically generated features

The training starts with an arbitrary chosen network. The input has 242 features so a
relatively big network, with five layers, is tested at the beginning. However, there occurred a
problem with overfitting and in order to mitigate it higher dropout and smaller networks are
investigated. Raising dropout rate to 0.5 does not help in this case, also a four-layer network
gives similar results. For a change, a smaller, two-layer network is tested, but the results
are worse than in the previous experiments. Across different settings, SGD optimizer with
different learning rates performs worse than Adam. In the end, a network size in the middle,
namely three-layer model but with less units per layer than before gives best results among
all experiments: 128, 196, and 64 units per layer accordingly. Further lowering the number of
units does give as good results. Dropout of rate 0.3 is a better choice in this case than 0.5 or
0.1. The best model scores 0.48 recall, 0.47 precision, and 0.48 F1-score. Figure 6-10 shows
the output of the model on a validation set. Most of the windows are correctly predicted to
contain a segmentation line. On the right hand side there are two windows that are missed
(orange, \pattern which does not overlap with blue / pattern). The results on the test and
real datasets are given in Table 6-10 and the architectures are shown in Figure 6-11 and
Figure B-4. Although the results on the test set are relatively good, the scores on the real
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data do not show similar performance and the recall is much higher than precision. This is
reflected in Figure 6-12 where there are much more predicted windows compared to ground
truth.

Figure 6-10: A simulated time-series with windows predicted to contain a segmentation line
(blue, / pattern) and windows labelled to contain a segmentation line (orange, \ pattern). Areas
where both pattern cross show where the prediction agrees with ground truth. In the middle of
the time-series the final FCNN model (automatically generated features is able to correctly find a
segmentation line in all three windows in which the line is included. On the right hand side, there
are two lines to be detected, the model is able to partially find them but not in all windows.

Table 6-10: Results of the final FCNN model with the subseries input (automatically generated
features) on test set and two real datasets, AL and AH. Ground truth collected as described in
Section 4-2.

test set real data AL real data AH

recall 0.50 0.69 0.56
precision 0.47 0.17 0.16
F1-score 0.48 0.28 0.25

Figure 6-11: Architecture scheme for the final FCNN model for subseries with automatically
generated features.
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Figure 6-12: Output of the FCNN model with automatically generated features on a real time-
series AL565. The model produces a lot of false positives, i.e. predicts windows to contain a
segmentation line when in fact there are no ground truth windows there.

Simple hand-crafted features

Since there are only 45 features, this network is much smaller, only two or three layers. This
however makes it prone to overfitting. Bigger rates of dropout do not help overcome the issue,
the best results are obtained with 0.1 or no dropout. Also here SGD does not yield any valid
results. In the final model, which is found to have 32, 64, and 16 units on the respective
layers, recall is much higher than precision and therefore the model is retrained again for
several epochs with a smaller learning rate. The score on the validation set is 0.44 recall and
0.47 precision, which give F1-score of 0.45. Figure 6-13 shows the output of the model on a
simulated time-series. This is the same time-series as in Figure 6-10 and the simple features
model produces less predicted windows in this case compared to the model with automatically
generated features. This is consistent with a lower recall score for the simple features model.

Figure 6-13: The output of the model for the same simulated time-series as in Figure 6-10. This
model has lower recall than the model with automatically generated features and indeed, there
are less predicted windows in this plot than in Figure 6-10.

The final results on the test and real datasets are presented in Table 6-11. The architectures
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are shown in Figure 6-14 and Figure B-5. The performance of the model on an example from
the real dataset is presented in Figure 6-15. One of the segmentation lines is found with all
the windows covering it predicted correctly. Another line, in the middle of the time-series, is
missed but there are no false positives produced.

Table 6-11: Results of the final FCNN model with the subseries input (simple features) on test
set and two real datasets, AL and AH. Ground truth collected as described in Section 4-2.

test set real data AL real data AH

recall 0.46 0.36 0.47
precision 0.47 0.47 0.44
F1-score 0.47 0.41 0.45

Figure 6-14: Architecture scheme for the final FCNN model for subseries with simple features.

Figure 6-15: Output of the FCNN model with simple features on a real time-series AL874. The
model produces a lot of false positives, i.e. predicts windows to contain a segmentation line when
in fact there are no ground truth windows there. One of the segmentation lines was detected
correctly (all windows containing this line are predicted) and the other one is missed completely.
There are no false positives. Ground truth collected as described in Section 4-2.

Even though the results on the validation and test sets are similar for both FCNN approaches,
the simple features model has shown much better performance on the real data than the
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automatically generated features model. Apparently, the simple features model is able to
generalize better as it does not catch that many details of a subseries as the automatically
generated features. And while on the simulated dataset both models are performing fine, the
real time-series are much less smooth than the simulation and most probably introduce a lot
of noise into all the different automatically generated features. It is probable that if more real
labelled data was available and used for training, the simple features would occur to be too
simple and too few.

CNN

Compared to the multi-label classification in Section 6-2-1, the binary classification task in
the subseries case is simpler and the input sizes are much smaller as well. Therefore, both
the number of layers and the kernel sizes are smaller. In the experiments, smaller kernels, 7
and 5, perform better than the bigger ones, 11 and 9. Also smaller values of dropout (0.3
and 0.1) are more suitable than 0.5. A learning rate of 0.001 for Adam optimizer gives better
results than e.g. 0.0001.

Out of many experiments with different settings of hyperparameters the best results are
obtained for a model with two convolutional layers and two fully-connected layers. The
convolutional layers have 32 filters with kernel 7 and 64 filters with kernel 5 accordingly. The
fully-connected layers have 256 and 32 nodes. The learning rate is 0.005 and the optimizer
is Adam. The exact architecture scheme is presented in Figure B-3 and a general scheme is
shown in Figure 6-17. The rest of experiments is described in the Appendix C. Regarding
the performance, for most of the experiments, the scores on the validation set all seem to be
around 0.4 for both recall and precision.

The results of the final model on the test set and on the real InSAR data are given in Table 6-
12. The results on the test set resemble the results on the validation set. The precision and
recall are on a similar level. The real datasets however seem to cause more problems to the
trained model considering high recall and low precision scores. An example of the model
output on a real time-series is presented in Figure 6-18, where multiple blue regions indicate
a lot of false positives.

Table 6-12: Results of the final CNN model with the subseries input on test set and two real
datasets, AL and AH. Ground truth collected as described in Section 4-2.

test set real data AL real data AH

recall 0.47 0.76 0.72
precision 0.46 0.25 0.23
F1-score 0.47 0.38 0.35

In general, if a segmentation line lies close to an edge of a subseries, then the network cannot
detect it correctly. Especially if the segmentation line is exactly at the edge. This is one
of the disadvantages of the subseries approach. Also, sometimes windows are too short to
yield meaningful information about potential changes in the time-series that would require
segmentation.
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Figure 6-16: A simulated time-series with windows predicted to contain a segmentation line
(blue, / pattern) and windows labelled to contain a segmentation line (orange, \ pattern). Areas
where both pattern cross show where the prediction agrees with ground truth. The CNN model
is able to detect two out of three segmentation lines. In the middle and right parts one more
window for each line could be detected on the left side of the line, but the line is very on the edge
of the 30 sample window and the model was not able to find it.

Figure 6-17: Architecture scheme for the final CNN model for subseries approach.

Figure 6-18: An example of the final subseries CNN model output on a real time-series (AL2271).
At the beginning of the time-series, areas with predicted segmentation (blue, / pattern) overlap
with the labelled areas (orange, \ pattern). In the middle and on the right hand side there are
several false positive areas. Ground truth collected as described in Section 4-2.
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The multi-label classification approach is more complicated than the subseries approach in
terms of difficulty of a machine learning task. Even thought both CNN classifiers give similar
results on the validation set, there is a significant difference in handling the real datasets. A
simpler task (subseries) performs better than the multi-label classification in terms of the F1-
score, which is biased by a high recall score. However, overwhelming number of false positives
causes that the results look unreliable and random. Therefore, qualitatively, the multi-label
classification gives more interpretable results, due to higher precision. This may be caused
by the fact that the real data is noisy and its behavior is less predictable than the simulated
time-series. And therefore, cutting such time-series into smaller parts creates short series of
data which are hard to interpret without broader context.

Conclusions

The best results among all the tested neural networks are obtained with the FCNN subseries
model with simple features. Although, after qualitatively assessing the outputs of the net-
works on the real datasets, the CNN multi-label approach seems to provide the results with
the best balance between the scores, readability, and interpretability. Interestingly, all of the
final networks have very similar performance on the simulated test set but differ a lot when
evaluated on the real datasets. However, the models are only trained using simulated data,
if more labelled real time-series data was available so that the models could be additionally
trained on these datasets, the models would exhibit different and most probably, improved
behavior. While comparing the results of machine learning approaches with the results from
Section 5-3 it is important to remember that the real time-series are all linearly interpolated
as the networks cannot handle empty values in their inputs. Also the need of using the
simulation and designing the network with a fixed input size forced the use of interpolation.
In general, the machine learning approaches presented in this chapter do not outperform
methods such as PLR, BFAST, or Bayesian Changepoint Detection. However, supervised
learning requires a lot of reliable training data and considering that the current performance
is obtained with simulation training only, the machine learning approach in general shows a
lot of potential.
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Conclusions

The main objective of this thesis was to investigate How can the machine learning approach
be used to reduce the errors of types 1, 2, and 3 in InSAR postprocessing? (see Section 1-1).

At first exploratory analysis of the considered dataset of InSAR time-series was performed.
Main focus was on different aspects of non-homogeneity of the time-series, such as different
trends, jumps, heteroscedasticity, or partial decorrelation. Additional contextual information
was discussed, with the biggest attention given to spatial neighborhood of the points. Analysis
of the correlation between neighboring time-series allowed to determine whether there is a
potential unwrapping shift present between the time-series.

In this thesis a data-driven approach was taken and hence, collection of the labelled data was
an important part. Therefore, a tool for time-series assessment was developed. A graphical
interface was built and it allowed to record experts’ knowledge that would be later on used in
the training of machine learning models. Since the amount of collected data was not sufficient
for machine learning purposes, a simulation was built that made it possible to generate labeled
time-series resembling the original dataset of InSAR time-series.

Several algorithms based on literature were implemented and tested for unwrapping error
detection as well as for segmentation tasks. The best results in the unwrapping error detection
were obtained with Neighboring Samples and Moving Average Smoothing methods with ∼
70% of recall and more than 80% precision. In the most of the methods the performance was
better in the low points dataset, compared to high points, which is influenced by the higher
variability and more noisy data in the high points. In the segmentation task, among several
tested algorithms the offline Bayesian Changepoint Detection algorithm proved to give the
best results. The need of interpolating the data in the time-series introduces distortion into
the data and is one of the reasons behind mediocre results of segmentation in general.

Two different machine learning approaches to segmentation are developed in this thesis,
namely multi-label classification and subseries binary classification. In multi-label classifi-
cation, using only raw data as inputs, CNNs show better performance than FCNNs with 15%
and 38% higher F1-score compared to FCNNs, for AL and AH, respectively. However, the
best results are obtained with a subseries binary classification FCNN with a set of 45 simple
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features. In terms of F1-score, it is better by 0.12 and 0.20 than FCNN with automatically
generated features, for AL and AH, respectively. While it outperforms a multi-label CNNs,
this method is less precise, as it only detects existence of segmentation lines within a wider
window, which is larger than the tolerance margin in multi-label classification networks.

The results of the networks were not better than the non machine learning methods tested in
this thesis. The main reasons behind this are: using simulated data for learning due to lack
of enough annotated data, no objective ground truth in the real labelled data as the decision
whether a segmentation line should be placed at a given epoch can be different among different
labelling people, and the interpolation of the real dataset.

In conclusion, experiments done in this thesis are a step towards automatic assessment of
the InSAR time-series based on the experts’ knowledge and input. This is a data-driven
approach and in such case a main advantage is no need for explicit providing of rules and
logic, an expert could transform their experience and intuition into an input to an automatic
system. On the other hand, the facts that there can be inconsistent decisions from different
experts, the objective truth is not available in many cases, and the variability of the InSAR
time-series all contribute to the difficulty of the posed task. Although the results in this
thesis did not prove that the machine learning approach is able to outperform classical (non
machine learning) methods, there is still potential in this approach and it might be worth
exploring it further.

Contributions

Different types of InSAR errors of postprocessed time-series are simplified into three
distinctive classes, namely unwrapping errors (single errors and shifts), partial temporal
decorrelation, and incorrectly fitted models (see Section 1-1).

An alternative way of identifying unwrapping shifts by comparing neighboring points
and analyzing correlation between them is proposed (see Figure 3-14).

Methodology for using supervised learning techniques in the InSAR postprocessed time-
series data is designed and tested. A graphical tool is developed for the collection of
experts’ knowledge (see Section 4-2, Figure 4-1, and Figure 4-2).

A simulation for InSAR time-series is designed and developed (see Section 4-3 and
Appendix A).

7-1 Future work and recommendations

Next step after successful segmentation of the time-series would be to fit models, e.g. using
the library of canonical functions, to the obtained segments. The time-series would then
look like the original processed InSAR time-series, which have the models fitted, but divided
into separate segments if the time-series nature indicated that there is no consistent behavior
throughout the whole time range. That is a final goal of this project, since that would improve
the understanding of the presented data to the end-user which happen to not be experts in
the field.
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Regarding the performance and the results, main recommendation would be to collect more
labelled data, i.e. time-series assessed by the experts. That would allow to apply transfer
learning or retrain and fine-tune the model on the real data, which would improve the per-
formance of a neural network. Also an expert could additionally give labels on the output of
the model in order to correct the model’s outputs. Then, the model could be further trained
on this additional input and learn even better.

There are numerous other machine learning approaches that could potentially prove useful in
the considered task. Apart from other methods using neural networks, such as e.g. autoen-
coders, other machine learning algorithms, such as ones based on decision trees are worth
investigating.

Moreover, another method of expert knowledge incorporation could be investigated. In this
thesis a data-driven approach was taken, however, a more domain-specific, hand-crafted
method may be more suited for the considered task.
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Appendix A

Data simulation

Two versions of the data simulation have been prepared in this thesis. Fist, simple simulation
and second, extended simulation where the time-series with different segments are generated.
In the simple simulation there are five kinds of models available and they can be combined
together to get a more complicated model. The models are based on the library of canonical
functions, see Section 3-5-2 and equations (3-9). In the simulation the following models are
used, where x is the argument of the function, i.e. list of samples or time steps, and y0 is the
initial vector:

• linear (M1 in (3-9)):
y = ax + y0, (A-1)

where a is the slope of the linear function;

• temperature-dependent (M2 in (3-9)):

y = η∆T + y0, (A-2)

where η is the thermal expansion coefficient and ∆T is the temperature difference with
respect to the first sample;

• sinusoidal (M3 in (3-9)):

y = s · sin
(

2πx

T

)
+ c · cos

(
2πx

T

)
+ y0, (A-3)

where s is the coefficient for the sine component, c is the coefficient for the cosine
component, and T is the period;

• exponential (M4 in (3-9)):

y = yst(1− exp(−(x/β)) · κ+ y0 (A-4)

where κ is the exponential magnitude, β is the slope factor of the exponential magnitude,
and yst is the starting value;
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• step (M6 in (3-9)):
y = y0 +

∑
i

∆iH (x− τi), (A-5)

where ∆i is the value of the step, H is the Heaviside function, τi is the sample (or time
step) at which the step occurs, and i ∈ [0,m], where m is the number of steps applied
in the series.

The models are generated by giving the values for all the parameters in the expected model.
After that, the simulated time-series are generated using the above models and given param-
eters. At the end, the single unwrapping errors are added at random samples. In practice,
the simple simulation can be treated as the extended simulation with just one segment and
hence, only the extended simulation is described in detail. Examples of series generated with
basic simulation are shown in Figure A-1.

Figure A-1: Two examples of series from basic simulation.

At first, a number of segments is chosen. The number of segmentation lines is a random
integer between 0 and 3, giving a maximum of 4 segments. The minimal length of a segment
is set to 15 samples. A sample at which the segmentation line will be drawn is chosen
randomly. Then, each next segmentation line is placed randomly, with the constraint that a
segment length cannot be shorter than 15 samples. Figure A-2 shows the iterative process of
choosing the sample for segmentation line. Blue horizontal lines represent available samples
for segmentation line, black dot is a chosen sample. Grey crossed area shows where the next
segmentation line cannot be placed.

With the determined number of segments, the first step is to choose a model for the time-series.
There are three available models, namely linear ((A-1)), temperature-dependent ((A-2)), and
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Figure A-2: Iterative process of choosing the segmentation lines. Horizontal lines represent avail-
able ranges for a respective segmentation line. Grey crossed area shows ranges that are excluded
in the choice of the subsequent lines. In this case, segmentation lines will be at [61, 170, 247].

exponential ((A-4)), but the final model can also be a sum of two or three of these models.
The chance for choosing only one model is 40%, and for two or three, both 30%.
The next step is to choose starting parameters for the time-series model for the first segment.
The starting value is always 0, just like in the original InSAR time-series dataset. The
standard deviation is set to a random value in range [1.0, 5.0). Then, depending on the model
components, parameter values are randomly chosen from a uniform distribution in the ranges
defined in Table A-1.

Table A-1: Parameter ranges and minimal changes values for the simulated time-series model
components.

Model component Parameter ranges Minimal change

Linear a ∈ [−8.3, 0.7) 1.0
Temperature-dependent ct ∈ [−0.5, 0.5) −

Exponential
β ∈ [1.0, 10.0) 3.0
κ ∈ [−30, 30) 1

all - standard deviation σ ∈ [1.0, 5.0) 2.0
all - step ∆ ∈ [0.3, 0.7) −

The values are generated using the randomly created model for the length of the first seg-
ment, which might also be the only segment in the simulated time-series if the number of
segmentation line is zero. At the end of the first segment, the changes that are going to be
applied on the simulated time-series are randomly chosen. There are three types of changes,
namely changing the standard deviation, adding a step, and changing the model completely.
There is 60% chance that only one of these three changes is applied, 30% chance that two of
the changes, and only 10% that all three effects come together.

Standard deviation change: If the standard deviation change is applied, the samples in
the next segment are generated using a new standard deviation, the difference between
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the previous and the new value of standard deviation has to be at least 2.0, in order to
cause any easily visible changes.

Step change: The step change consists in adding a step, the coefficient is in range
[0.3, 0.7) and the sign −1, 1 of the step change is randomly chosen. This is multiplied
by 18.1 to simulate a step change that is not an unwrapping shift.

Model change: If the model change is chosen, a new model is generated, taking the last
point of the preceding segment as a boundary condition for the new model. Then, the
parameters are chosen randomly but under the condition of minimal change values (see
Table 4-1) to keep the changes discernible.

The process is repeated until all the segments are generated. At the very end, when the whole
simulated time-series is ready, the single unwrapping errors are added at randomly chosen
samples. The number of added unwrapping errors is between 0 and 10. Examples of series
from extended simulation are shown in Figure A-3.

Figure A-3: Two examples of series from extended simulation.
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Appendix B

Model details

B-1 CNN - raw input

Figure B-1 shows detailed architecture of the final CNN model for raw input approach.

B-2 FCNN - raw input

Figure B-2 shows detailed architecture of the final FCNN model for raw input approach.

B-3 CNN - subseries

Figure B-3 shows detailed architecture of the final CNN model for subseries approach.

B-4 FCN - subseries - automatically generated features

Figure B-4 shows detailed architecture of the final FCNN model for subseries approach with
automatically generated features.

B-5 FCN - subseries - simple features

Figure B-5 shows detailed architecture of the final FCNN model for subseries approach with
simple features.
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Figure B-1: Detailed architecture of the final CNN model for raw input.
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Figure B-2: Detailed architecture of the final FCNN model for raw input.
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Figure B-3: Detailed architecture of the final CNN model for subseries.
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Figure B-4: Detailed architecture of the final FCNN model for subseries with automatically
generated features.
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Figure B-5: Detailed architecture of the final FCNN model for subseries with simple features.
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Appendix C

Experiments - settings and results

The appendix with the experiments and results is available in a separate PDF file upon
request.
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