
PinDown:
Generalized Application Code
Identification And Functional
Component Analysis In
RTOS-based Firmware

D.A. Prinsze





PinDown: Generalized
Application Code Identification
And Functional Component
Analysis In RTOS-based

Firmware
by

D.A. Prinsze
to obtain the degree of Master of Science in Computer Science

at the Delft University of Technology,
to be defended publicly on 7𝑡ℎ of October, 2024

Student number: 4346106
Graduation committee: Georgios Smaragdakis, TU Delft

Alex Voulimeneas, TU Delft
Jérémie Decouchant, TU Delft
Andrea Continella, UTwente



ii Preface

Preface
This thesis analyzes the effectiveness of identifying and leveraging RTOS components within RTOS
based firmware in order to identify application code. This project was performed at the Cyber Security
Group at the technical university of Delft in conjunction with the university of Twente. The supervising
professor is Georgios Smaragdakis, a professor of Cybersecurity at TU Delft. The assisting supervising
professor is by Andrea Continella, an associate professor at the university of Twente. The responsible
professor is Alex Voulimeneas, an assistant professor at the Cyber Security Group at TU Delft. The
final committee member member is Jérémie Decouchant, an assistant professor from the Distributed
Systems Group at TU Delft.

The source code will be made publicly available at a later date1.

1https://github.com/utwente-scs/firmware-decomposition/



Preface iii

Acknowledgments
I want to thank my family and friends for their patience and support during this period. Most of all, I
want to thank my wonderful partner for her encouraging words and endless kindness during this chapter
of my academic career. Furthermore, I want to thank my supervisors from Delft and Twente for their
tremendous support and words of encouragement whenever I felt at a loss. I had a lot of fun working
on this project and look forward to the next phase of my life.

D.A. Prinsze
Delft, October 2024



iv Preface

Abstract
Small embedded devices are becoming more prevalent in the world with each passing year to im-
prove our quality of life. However, as more devices are created, an increasing number of older devices
are declared obsolete despite still being used. This results in an increasing amount of devices being
vulnerable to exploitation due to a lack of security updates. Identifying these vulnerabilities manually
without any system knowledge is an arduous task, and current state-of-the-art technologies do not
perform generalized analysis in RTOS-based firmware. In this work, we present PinDown, an analysis
framework that enables the automated identification of application code in RTOS-based firmware with-
out requiring partial system knowledge. By identifying functions that modify the heap, we can identify
RTOS components that can be leveraged to locate memory regions that host application code.



Contents

1 Introduction 1
1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Security analysis of IoT devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Embedded Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 RTOS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Reaching definitions analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Constraints and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Related Work 13
3.1 Static analysis techniques for deriving binary characteristics . . . . . . . . . . . . . . . . 13
3.2 Function discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Automated vulnerability discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Knowledge gap resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Approach 17
4.1 Approach overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Prerequisite analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Base address identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Basic heap modifying function identification . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Caller candidates discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Functional components discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.1 Call-graph analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Register and load instruction retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Valid functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Application code discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 Component grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Addressing improper firmware decompositions . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5.1 Functions disassembled as callsites. . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5.2 Unreachable critical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.3 Function abstraction in optimized firmware . . . . . . . . . . . . . . . . . . . . . . 26
4.5.4 Infinite looping during symbolic execution. . . . . . . . . . . . . . . . . . . . . . . 26
4.5.5 Incorrect pc-relative offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Evaluation 29
5.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Experimentation: Ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Ground truth dataset description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Ground truth validation: Stage 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Ground truth validation: Stage 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.4 Ground truth validation: Stage 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Experimentation: Wild firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Wild firmware dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Wild firmware validation: Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3 Wild firmware validation: Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.4 Wild firmware validation: Stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



vi Contents

5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.1 Ground truth dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.2 Wild firmware dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusion, Limitations And Future Work 49
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



1
Introduction

Electronic devices play a critical role in our society. It is estimated that nowadays there are about 17.08
billion connected Internet of Things (IoT) devices with statistics indicating that this amount will reach
a total of 32.1 billion by 2030, nearly doubling within six years [1]. Consumer electronics represent
a large subsection of these devices as people have an ever-increasing need for control over home
appliances such as indoor climate control, being notified of who is at their front door, or turning on
their lights from a remote location. Aside from consumer electronics, IoT devices also play a large role
within critical infrastructure (CI) such as water management facilities, power distribution stations, public
infrastructure management systems, the medical domain as well as the financial sector [2][3][4]. Within
CI these devices are often deployed as advanced sensors, which are responsible for relaying informa-
tion to central control hubs that depend on the integrity of these devices to fulfill their function. Due to
the broad deployment of such devices in our society, the attack surface has increased considerably.
This can mainly be attributed to the fact that these devices and the protocols they utilize often introduce
vulnerabilities, as established in two separate security reviews by Nadir et al. [5] and Pliatsios et al. [6].
Several attacks on CI in the past were enabled by the utilization of insecure inter-device communica-
tion protocols, lack of adherence to established security regulations, and the absence of updating or
patching of these critical devices [7]. This makes CI a high-priority target for actors who aim to disrupt
and damage society or to perform espionage. As such it is paramount to secure these devices and to
inspect any suspect devices for potential vulnerabilities to prevent such damage from being realized.

The need to secure potentially vulnerable CI devices against malicious actors is high. Frank Ebbers
has shown that many security vulnerabilities can persist because of lacking incentive to update the
firmware on IoT devices [8]. Ebbers analyzed connected IoT devices on the Internet and established
that devices that ran the most up-to-date firmware only represented 2.45% of all analyzed devices. Fur-
thermore, they determined that the average time since a prior update was performed is 19.2 months.
The analysis also indicates that device type and manufacturer are the most significant factors in deter-
mining the likelihood of whether or not firmware will be updated. The inability to update firmware with the
goal of patching security vulnerabilities depends on several factors, such as the logistics of performing
updates, whether a downtime of the device in question is acceptable, and whether the manufacturer
still supports the device. The analysis by Frank Ebbers shows that manufacturers tend to prioritize
the development of new commercial products over maintaining older devices, allowing various security
vulnerabilities to persist. The lack of support from device manufacturers means we must analyze and
secure vulnerable devices ourselves.

A characteristic of many IoT devices that can be analyzed and studied is the operating system or
the operating system libraries that provide a form of abstraction to the device. Most firmware utilizes
some implementation of a real time operating system (RTOS) in order to facilitate developers and make
development for devices easier and faster. Such RTOSs provide a hardware abstraction layer (HAL),
which allows on-board peripherals to be invoked or addressed. Firmware that is built on top of an
RTOS (or libraries of an RTOS) is referred to as Type-II or Type-III firmware [9][10]. Several operating
systems for embedded devices are open source and maintained by a large collective of developers.

1



2 1. Introduction

An example of such an RTOS is RIOT OS1. All the source code for RIOT is available online and can
be modified by anybody who wishes to do so. Such open-source frameworks enable developers to
adjust certain functionalities and tailor them for their specific use case. This form of development also
allows people to submit adjustments and other modifications for approval to incorporate them into the
framework that is then made available to others. Such changes need to be approved by the respective
maintainers of the project, mitigating the possibility of erroneous or malicious code being incorporated.
This transparency allows individuals to inspect such frameworks and identify bugs, which can then be
reported to the maintainers of the project, ensuring that a collective of interested parties can aid in
securing such frameworks. Using these publicly available open-source frameworks provides several
benefits to embedded developers as well. When developers opt to use an established framework such
as RIOT, they can reasonably assume that the framework is secure and can utilize the well-documented
functionalities in order to develop their custom application. As such, they only need to be concerned
with developing their application and using all the tools that are available.

Contrary to identifying user application code, analyzing the RTOS frameworks is less challenging
due to the open-source nature of these systems since the translation to firmware usually conforms
to a one-to-one conversion, assuming that no modifications were made. However, when developers
decide to strip such a system of bloating components that are not utilized, this notion falls apart as
we can no longer be certain that we are comparing the correct components. This is because binary
firmware images are generally distributed in a custom format that has been stripped, leaving it devoid of
debugging symbols and function names. This results in a lack of discerning factors that enable efficient
manual analysis. While these frameworks provide improvements for development, they also make it
more challenging to identify crucial components that are more likely to introduce vulnerabilities. These
frameworks introduce several hundreds, if not thousands, of functions. Of all these functions, only a
few host the user application code, which can be interacted with, whilst the rest have a mostly support-
ive role in executing those functionalities. The sheer complexity of these binary images, in conjunction
with the lack of context for each function thanks to the custom format, all pose an immense challenge
when we want to discern between user applications and framework-supporting functions.

One of the prevalent ways of analyzing IoT devices is employing firmware analysis. The process of
the analysis entails that one acquires a binary image of the firmware on a target device and reverses
the implementation of the program code in order to establish its function and identify potential vulner-
abilities that enable exploitation [11][12][13][14]. However, such manual analysis of IoT devices with
the intent to secure them has proven to be a difficult and time-consuming effort. As such, research
efforts have focused on automated analysis, vulnerability identification, and mitigation in various ways.
Examples of recent research efforts are state-of-the-art technologies such as ArgXTract [15] and Arm-
Patch [16]. These solutions focus on analyzing and patching security vulnerabilities in devices that lack
proper support from the manufacturer. These solutions use device characteristics to identify vulner-
abilities that could be exploited (such as buffer overflows). After identifying such a vulnerability, their
solution introduces new code into the binary to prevent exploitation and mitigate the vulnerability. The
ability to perform such analysis and patch whatever vulnerability is found is of utmost importance in the
absence of regulations that guarantee the security of IoT devices. However, the field of firmware analy-
sis is challenging given the firmware’s complexity and the myriad of hardware configurations available,
making it hard to find a ”one size fits all” solution.

In the field of automated analysis, current state-of-the-art solutions focus mainly on analyzing every
single function in a binary in search of common types of vulnerabilities through static analysis. These
common vulnerabilities often focus on memory-related bugs, which can be identified through symbolic
execution. This approach is, however, not optimal due to the nature of static analysis and how certain
bugs require the environment to be fully initialized before they become apparent. Furthermore, static
analysis also tends to identify vulnerabilities that can not be exploited in practice. However, dynamic
analysis is often not feasible either, as simulating all the code in the firmware does not guarantee that
vulnerable sections within the firmware will be reached. There is a need for analysis techniques that
perform a more targeted analysis of relevant sections within the firmware, namely the user application
code, without requiring partial knowledge. As developers create custom applications on top of RTOS
frameworks, these applications are more likely to contain undiscovered vulnerabilities.

In order to streamline this process of identifying user application code, we require a generalized
analysis approach that can leverage characteristics that are generally present by design regardless of
1RIOT: https://github.com/RIOT-OS/RIOT



1.1. Research questions 3

hardware configuration, RTOS, or any possible modifications made without partial knowledge or being
aware of the presence of any of the factors as mentioned earlier.

1.1. Research questions
Whilst there are state-of-the-art solutions aimed at deploying patches in an automated manner or ex-
amining firmware in search of common vulnerabilities, no solution exists that aims to identify user
application-related functions within firmware built on top of an RTOS. The identification of specific ap-
plication code-related components within an image would aid in the manual analysis of firmware as we
only focus on the relevant parts of a binary and enable the deployment of patches in a targeted man-
ner, accelerating the entire process of analysis. Furthermore, the ability to identify application code
would help uncover vulnerabilities and aid in establishing the exact functionality of a device and the
library components the application utilizes to enable its function. In order to address and resolve this
knowledge gap, we address the following research questions in this work:

RQ1. How can we identify functional components in monolithic firmware?
In order to address this main research question, we answer the following sub-questions:

SQ1. What are the prevalent mechanisms or structures that launch or initiate application code in
real time operating systems?
SQ2. How can these mechanisms or structures be leveraged in order to allow for effective appli-
cation code discovery?
SQ3. To what extent can this procedure be generalized in a way such that we can analyze firmware
based on different RTOSs?

1.2. Contributions
In this thesis, I present PinDown2, a fully automated analysis tool that utilizes static analysis and
symbolic execution in order to accurately identify functional components and application code within
RTOS-based firmware. PinDown effectively identifies application code within firmware hosted on an
ARM Cortex-M processor regardless of RTOS. The analysis that PinDown performs is based on static
analysis and symbolic execution, which makes the implementation more efficient than other dynamic
analysis approaches, as it is scalable. PinDown statically performs all analysis by leveraging the angr3
framework, which enables the manipulation of variables and the discovery of relations between func-
tions through control-flow graph analysis. Furthermore, the entire analysis process is fully automated,
meaning that one only needs to provide the tool with a binary firmware image as PinDown establishes
information such as the binary’s entry point and its base address offset by itself. Following the identifi-
cation of the base address is an in-depth analysis of the binary firmware image, in which the addresses
of the application code and functional components are discovered. After the analysis is complete, Pin-
Down generates candidate function addresses within the binary that we label as functional components
and application code.

PinDown performs its analysis in three separate stages. Pindown will start with the first stage of
analysis, in which functions that implement thread creation are identified. The second stage of anal-
ysis performs analysis over argument values, which are identified at the call sites that target these
functions. The third and final stage of analysis is the analysis of the arguments that represent function
addresses and their implementation to determine the locations of user application code. This approach
was constructed because we discovered a strong relationship between the creation of threads and the
invocation and execution of user applications within RTOS-based firmware. This perceived relevance
was discovered during an analysis of several different RTOSs and RTOS-based firmware images,
which all implement thread creation to directly invoke a user application or set up a component, which
proceeds to further initialize the system and then invoke a user application.

We verify the correctness of the approach through experimental validation, which consists of ap-
plying the tool to a manually generated dataset of RTOS-based firmware and ”wild” firmware images
(i.e., firmware extracted from real-life devices). When using PinDown on the generated dataset to es-
tablish a ground truth, it could distill the several hundreds of functions within a binary image down to an
average of four if at least the second analysis phase was successful. The binary firmware images in

2PinDown source code: https://github.com/utwente-scs/firmware-decomposition
3angr framework: https://angr.io/



4 1. Introduction

the dataset that was used to establish the ground truth of the project are generated using six different
RTOS at varying optimization levels ranging from O0 to O5. Afterward, several databases contain-
ing monolithic firmware4 ,5 were searched for wild firmware which was compiled for Cortex-M based
devices. PinDown then analyzed all these different images to identify the application code, the cor-
rectness of which was manually verified by reverse engineering. Of all identified function candidates
in these binaries, the function address that contained the application code was found in the majority of
all test cases for both the ground-truth dataset and the wild firmware. However, other functions were
sometimes marked as potential candidate functions, resulting in an average false positive rate of about
50.26% while reducing several hundreds of candidate functions by 99.18% on average. If PinDown
could identify potential candidates, then we should still manually verify which of these functions per-
forms the tasks of the device. Luckily, manual verification has proven to be quite easy, as relations
between candidates will quickly indicate the addresses of the application code based on how this func-
tionality is usually compartmentalized. PinDown was also used to analyze binaries that had not been
previously inspected from several datasets that had been utilized in related work.

In summary this work has provided the following contributions:
• An analysis of task initialization processes in firmware;
• An analysis of application initialization techniques within real-time operating systems;
• A generalized approach of identifying application code within RTOS based firmware;
• Provide an extension to existing state-of-the-art technology in order to identify user applications;
• The PinDown framework itself.

1.3. Outline
The rest of this work is structured as follows. Chapter 2 contains background information upon which
the research was based as well as elaboration upon concepts that are required for understanding this
work.

Chapter 3 goes more in-depth on the current state-of-the-art research and techniques employed in
this work. A summary of the most important works for this thesis is also provided.

Chapter 4 contains the construction of the approach and provides supportive arguments as to why
the approach is logically sound. Furthermore, a high-level overview of the approach is provided, and
the research constraints are further elaborated upon.

Chapter 5 contains all the results of the experimental validation as well as discusses the experi-
mental setup, how the dataset was acquired, and an in-depth analysis of the performed experiments.

Finally, chapter 6 contains the conclusion of the research, the uncovered limitations, and possible
suggestions for future work.

4Monolithic firmware dataset: https://github.com/ucsb-seclab/monolithic-firmware-collection/tree/
master

5RTOSExploration database: https://github.com/RTOSExploration/lctes2023-artifact/tree/main/
artifact/bitcode-db



2
Background

This chapter provides more information about important concepts relevant for understanding the final
work. We assume a basic understanding of operating systems, reverse engineering, and analysis tech-
niques as we will build our implementation on top of existing knowledge. Section 2.1 provides more
information about the classes of techniques that are utilized in the field of reverse engineering. Further-
more, this section provides a comparison of the two classes to highlight the benefits and downsides
of each respective class. Section 2.2 provides information about the different kinds of firmware, their
characteristics as well as how these can be categorized into separate groupings. Section 2.3 provides
an analysis of several different RTOSs which were chosen based on popularity in the industry. The
results and insights of this analysis were utilized to construct a general approach to aid in the iden-
tification of user applications. Section 2.4 provides information about an analysis technique that was
leveraged in order to identify critical components within a binary firmware image. Lastly, section 2.5
defines the scope of the work as well as how we came to the conclusion that this scope is appropriate.

2.1. Security analysis of IoT devices
Embedded and internet of things (IoT) devices are devices that can have a major impact on the fields
in which they are deployed if compromised, making them high-value targets for malicious actors. While
this is especially true for critical infrastructure that utilizes these devices, it also holds for devices tar-
geted at consumers. As such, it is important to understand the security risks associated with such
devices and where and how vulnerabilities manifest themselves. Furthermore, we need to understand
how we can analyze firmware in search of vulnerabilities and what techniques are available.

A study performed by Nadir et al. [5] found that there are two primary ways of identifying vulnera-
bilities in firmware: through fuzzing/fuzz testing and by applying static or dynamic analysis (or a mix
thereof). Fuzzing typically entails the generation of system inputs with the intent to trigger events that
lead to system exploitation. Several works focus on the usage of fuzzing in order to uncover vulnera-
bilities. An example of such a framework is IoTFuzzer, developed by Chen et al. [17]. This framework
utilizes fuzzing to find memory vulnerabilities in IoT devices by dynamically relating crashes to certain
inputs. A downside is that we may be unable to reach critical code sections utilizing dynamic analysis.
As such, fuzzing does not guarantee the total coverage of an IoT device. Another downside is that we
rely on possessing the physical device or being able to simulate the device in question, all of which
introduce overhead and reduce the scalability of applying fuzzing techniques to IoT devices. Due to
this overhead, most solutions proposed in the field of vulnerability analysis are based on static and/or
dynamic analysis techniques.

2.1.1. Dynamic analysis
Dynamic analysis is closely related to fuzzing but focuses on analyzing properties associated with
executing a program. Generally, the benefit of dynamic analysis is the high degree of accuracy that
is provided, as no approximation or abstraction is provided. This is because in dynamic analysis, the
exact run-time behavior is analyzed, reducing the uncertainty of which control flow paths were taken,
the computed values, or how long the program took to execute [18][19]. Furthermore, we do not need

5



6 2. Background

to decompile or decrypt program code; we simply execute the program code and observe its behavior.
As a side effect of program execution, we can observe any vulnerabilities if the appropriate event is
triggered. Another benefit of dynamic analysis is that the run-time execution could provide insight into
the program code that is being executed.

However, dynamic analysis does pose some challenges. Dynamic solutions do not scale as well
as several static analysis techniques do. Generally, dynamic analysis is performed by investigating the
device and observing its function. Such analysis could only be scaled through virtualization. When
utilizing virtualization, it could be that the program code that requires analysis cannot be virtualized
due to limitations. Furthermore, such virtualization introduces a lot of overhead and requires a lot of
computational resources before it can be effective [5].

2.1.2. Static analysis
Static analysis entails the analysis of IoT devices without the need to execute the software present
in such devices. This means that if you can acquire a binary firmware image from a device, you can
analyze these images to identify the issues within the firmware without having access to the physical
device. This implies that static analysis is ideal regarding scalability if automated. On the contrary,
manual static analysis has been known to be a costly and time-consuming endeavor. Furthermore,
static analysis has proven to be most effective when we want to improve existing security features
and are not required to bypass encryption or obfuscation [5]. Another benefit of static analysis is that
we can analyze memory regions that can not be reached through dynamic analysis. Even though the
system will never use these regions, the implementation of functions in these regions still presents a
potential vulnerability as potential exploits could leverage these regions by means of return oriented
programming [20] as they could be incorporated in the ROP-chain. An example of a work that relies on
static analysis to identify vulnerabilities in multi-binary systems is KARONTE by Redini et al. [11]. The
main motivation for this research was based on the fact that non-standard configurations in IoT devices
left current static and dynamic analysis techniques ineffective. This is because many existing devices
implement their function through the usage of multiple binaries that interact with each other. KARONTE
was developed to provide an effective analysis approach in such multi-binary systems, which is done
by tracking and modeling interactions between binaries. As information is tracked between binaries
through taint-analysis, the amount of false positives is reduced, which is one of the known downsides
of static analysis as shown in figure 2.1. KARONTE has been shown to work very well on Linux-based
firmware, having found multiple previously unknown zero-day vulnerabilities. However, no such ap-
proach exists yet for RTOS-based firmware.

We want to construct a generalizable approach that can be applied to any binary firmware image
based on an RTOS framework. It becomes clear that we need to consider utilizing existing tools and
frameworks such as angr1 that enable static analysis given how need to be able to analyze binaries
regardless of their implementation and functionality. We cannot make assumptions about the dynamic
functionality of binary firmware images, and as such, we cannot derive a way to identify user applica-
tions using such techniques. As such, we need to base our approach on static analysis and accept the
possibility that our approach will have a higher rate of false positives.

2.2. Embedded Operating Systems
An embedded or internet of things (IoT) device generally has an integrated circuit that contains all the
program code the device needs in order to fulfill its function. Such program code is called firmware.

Firmware comes in many different forms and configurations, which makes it hard to divide them
up into categories that truly encompass all functionality whilst enabling comparative studies. As our
research focuses on the construction of a supporting framework in the analysis and identification of
application code, we will use the classifications utilized by Muench et al. [10] and Qasem et al. [9].
We have opted for this classification structure because we aim to leverage operating system-related
mechanisms in order to discover user applications. This also made sense since we want to discover
user application code within frameworks to enable targeted analysis and patching. The utilized classi-
fication structure also provides information about possible security mechanisms that can be provided
based on the type of classification. The classification system splits the different types of firmware into
three separate groups: Type-I, Type-II, and Type-III.
1angr framework: https://angr.io/



2.2. Embedded Operating Systems 7

Figure 2.1: A table constructed by Nadir et al. [5] that highlights the benefits and downsides of static analysis compared to
dynamic analysis.

• Type-I: General purpose OS-based. Type-I firmware is often defined as being built on top of a
modified or lightweight version of an existing operating system. Typically, such operating systems
are based on Linux, and they are usually designed to handle complex logic and enable networking
and internet services. The benefit of building on top of such an operating system is that it allows
for easier integration of existing UNIX software suites that can run in POSIX environments such
as BusyBox2 and micro-C3.

• Type-II: Embedded OS-based. Type-II firmware is built for devices that are constrained in com-
putational resources and power and are generally built on top of a minimal operating system.
Generally, Type-II firmware is built on top of hardware that does not possess a memory manage-
ment unit (MMU) as is the case in Cortex-M-based hardware. Generally, the firmware for such
devices still contains a logical separation between the application and the kernel. An example of
an OS in Type-II firmware is Zephyr.

• Type-III: No OS abstraction Type-III firmware is characterized as not having an operating system.
Instead, the software depends on a single control loop and interrupt handler to respond to inter-
actions with the device’s peripherals. Such firmware can be completely customized or based on
existing operating system libraries. These libraries provide a form of abstraction, but the even-
tual firmware that is compiled will still contain system and application code compiled together as
monolithic software. Contiki and mBed OS provide such libraries.

In this work, we mostly focus on the analysis of firmware that is built on top of a real-time operating
system (RTOS) or that utilizes existing RTOS libraries. An RTOS is defined by the need for the timely
execution of tasks and the processing of data necessary to perform those tasks. This makes such
RTOSs ideal for the development of applications intended for IoT devices, as these typically depend
on the efficient execution of their intended function. While current works focus on analyzing binary
interactions within Linux-based and bare-metal devices, there is no work that aims to address the
generalized analysis of RTOS-based firmware. This could be due to the lack of an effective way of
categorizing firmware into classes. Instead, other works classify firmware based on implementation
and features present in firmware images. In this work, we aim to create a generalizable approach for
identifying user application code within Type-III firmware that was built using RTOS libraries, as well as

2BusyBox: https://www.busybox.net/
3uClibC: https://uclibc.org/



8 2. Background

Type-II firmware that was built on top of a single-purpose RTOS.

2.3. RTOS analysis
We need to analyze and reverse engineer a group of real-time operating systems to find overlapping
structures or mechanisms that can be leveraged to construct a generalizable approach. Such analysis
is required in order to get an idea of how applicable the approach will be to any real-time operating
system. For this analysis, we have chosen six popular open-source operating systems4 that are widely
used in the industry. Whether an operating system is popular is determined based on its ranking on
Github, and additional choices are based on the availability of wild firmware for the experimental vali-
dation. The following real-time operating systems were chosen for analysis:

• LittleKernel5

• RIOT6

• mBed OS7

• Zephyr8

• Contiki-NG9

• NuttX10

A set of firmware images is compiled for each operating system at varying optimization levels, ranging
from no optimization to O5. This was done to uncover functions that were abstracted away and esti-
mate whether this required to be accounted for in later analysis phases (see section 4.5).

Ghidra11 is a reverse engineering tool developed by the NSA that disassembles executables as well
as binaries. Given how we have manually compiled a set of binaries, we have the corresponding exe-
cutable and linkable format (ELF) files as well that can be disassembled by Ghidra. These files contain
information about function names, the base address offset, and other otherwise absent characteristics.
Real-time operating systems require a way of handling whatever user application code needs to be
executed by managing threads. Such operating systems usually implement a function that creates a
thread whenever a process needs to be called and returns a corresponding unique identifier for this
thread. Generally, thread creation involves generating a new stack and allocating space on the heap
for local variables of the accompanying function that it calls [21]. This means that any application that
is required to run in parallel to whatever functions the operating system is performing will most likely be
instantiated in this manner. Analyzing the aforementioned operating systems by investigating functions
whose task is to create threads shows that these functions play a critical role in the initialization of user
applications. While the implementation of these functions is different for each operating system, analy-
sis shows that each such function has been found to call application code directly or is responsible for
initializing another process, which initializes such code.

The following schematics indicate how these functions relate to the process of initializing application
code. The figures shown in 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 provide a schematic overview of the relation
between thread creation and user application code for LittleKernel, MBedOS, NuttX, RIOT, Zephyr and
Contiki-NG respectively. Given the entry-point function of a binary 𝑓𝑛, this function may contain function
calls to other targets where 𝑛 is the layer in the call graph starting at 𝑓0. A function that is tasked with
the creation of threads is labeled 𝑇𝐶. As stated earlier in this section, 𝑇𝐶 functions require another
function as an argument to initialize the stack and whatever local variables such a function needs. We
denote a function passed as an argument as 𝑠𝑓𝑛, where 𝑛 denotes the layer in the call graph from
the point where it was passed as an argument. The analysis shows that typically, these functions are
either a component that performs the initialization of the application code or the application code itself.
When we find a component whose task it is to initialize application code, we find that there are several
possible implementations of how this is achieved:
4Popular RTOS: https://www.osrtos.com/
5LittleKernel github: https://github.com/littlekernel/lk
6RIOT OS github: https://github.com/RIOT-OS/RIOT
7mBedOS github: https://github.com/ARMmbed/mbed-os
8ZephyrOS github: https://github.com/zephyrproject-rtos/zephyr
9Contiki github: https://github.com/contiki-ng/contiki-ng
10NuttX github: https://github.com/apache/nuttx
11Ghidra: https://github.com/NationalSecurityAgency/ghidra/releases



2.3. RTOS analysis 9

�������

�������

�������

�������

�������

�������

Figure 2.2: A schematic overview of the relation between
thread creation and initializing application code in LittleK-
ernel based firmware.

�������

�������

�������

�������

�������

Figure 2.3: A schematic overview of the relation between
thread creation and initializing application code in MBe-
dOS based firmware.

1. Threads are created before a direct call is made to the application code where the call site only
contains a single bl instruction in its block.

2. Threads are utilized in order to launch application code, which can be a single application or sev-
eral applications that are launched individually through a loop where the addresses are typically
stored in a list

3. There is no usage of thread creation, but several smaller functions are called which perform some
initialization of the system or hardware

Based on these groupings, we can assign each operating system to a group that best describes its
implementation. We find that Zephyr generally fits the description of group 1 and group 2 as Zephyr
can launch single applications or uses thread creation to launch several applications. The general
construction of LittleKernel-based firmware indicates that LittleKernel best fits the description of group
2 as no other initialization mechanisms are present, and every application is launched in a similar
manner. MBed, Contiki, and RIOT all match the description of group 3 as shown in figures 2.3, 2.7,
and 2.5, respectively. This analysis shows that we should be able to leverage functions that create
threads to uncover application code in firmware based on the chosen operating systems. While this
analysis has been performed on a very specific subset of all available operating systems, the notion
that these systems require functions that create threads to manage whatever application is run on top
of the system should be extendable to other systems. We base this on the idea that we are leveraging
aspects that fit into basic operating system design principles.



10 2. Background

�������

�������

�������

�������

Figure 2.4: A schematic overview of the relation between
thread creation and initializing application code in NuttX
based firmware.

Figure 2.5: A schematic overview of the relation between
thread creation and initializing application code in RIOT
based firmware.

�������

�������

�������

�������

�������

Figure 2.6: A schematic overview of the relation between
thread creation and initializing application code in Zephyr
based firmware.

�������

�������

�������

������� �������

Figure 2.7: A schematic overview of the relation between
thread creation and initializing application code in Contiki-
NG based firmware.

2.4. Reaching definitions analysis
In this work, we aim to identify the user application code, and we have determined that its invocation
is strongly related to functions that implement the creation of threads. As such, we need to identify an
appropriate method of identifying these functions in a generalized manner. This means that we need
to identify an overlapping component that is present in all implementations of such functions. The field
of function discovery seems to focus mostly on how functions can be differentiated from data in binary
code. This is useful as methods that aim to statically translate binaries must be aware of all the func-
tions within a binary to successfully retarget it for another platform. Two works by Chen et al. highlight
both the importance of such techniques as well as the applicability [22][23].

However, we need to identify functions based on their functionality and assume the function in
question is one of many candidates. In our analysis of RTOSs, we determined that functions that im-
plement thread creation depend on some form of heap modification to accommodate whatever function
is passed to it as an argument. This means that if we can determine the function addresses of heap
modifying functions, we can utilize reaching definitions (RD) analysis to identify candidates that depend



2.5. Constraints and scope 11

on heap modifying functions.
The concept of reaching definitions is inherent to the field of compiler construction theory. When a

value is assigned to a variable, this is called a definition. We say that a definition 𝑑 is able to reach a
point 𝑝 in the control-flow graph if there exists a path 𝑎 between 𝑑 and 𝑝 where 𝑑 is not overwritten [24].
As such, we are able to inspect reaching definitions by means of data-flow analysis. This analysis can
be used to reach certain parts within the program code. In order to identify functions that implement
thread creation, we can inspect the register values of heap modifying functions. We can then apply
reaching definitions analysis to these variables up to the point where they were first declared.

We have determined that the initialization of application code depends on the usage of functions
that implement thread creation and that functions that implement thread creation rely on heapmodifying
functions. This means that functions that implement thread creation will initialize variables that are as-
sociated with function size and function-specific variables. When we apply reaching definitions analysis
to these variables, we can reach a function that has implemented thread creation to accommodate po-
tential user application code. In order to do so, a definition graph is constructed. In such a graph, each
node represents a register definition, and each edge represents the dependencies between different
definitions. The following equation gives a formal definition of this data-flow analysis:

𝐼𝑁𝑛 = ⋃
𝑝∈𝑝𝑟𝑒𝑑(𝑛)

𝑂𝑈𝑇𝑝 (2.1)

𝑂𝑈𝑇𝑛 = 𝐺𝐸𝑁𝑛⋃(𝐼𝑁𝑛 − 𝐾𝐼𝐿𝐿𝑛) (2.2)

In equation 2.1 and 2.2, 𝐼𝑁𝑛 and 𝑂𝑈𝑇𝑛 represent the incoming and outgoing information flows. In
equation 2.2, 𝐺𝐸𝑁𝑛 and 𝐾𝐼𝐿𝐿𝑛 respectively contain information flows that are newly generated and
overwritten (killed). These sets are properties of each node in the definition graph and are expressed
as follows:

𝐺𝐸𝑁𝑛 = {⟨𝑥, 𝑛⟩ ∶ 𝑛 def 𝑥} (2.3)

𝐾𝐼𝐿𝐿𝑛 = {⟨𝑥, 𝑛′⟩ ∶ 𝑛 def 𝑥, 𝑛′ ∈ 𝑁} (2.4)

Equation 2.3 shows that a node generates a definition for each variable it defines, and equation 2.4
shows that a node kills a definition if one already exists.

This work implements reaching definitions analysis in order to uncover function addresses that
implement thread creation by applying this analysis to basic heap modifying functions.

2.5. Constraints and scope
This research focuses on RTOS-based firmware, the target architecture of which is ARM Cortex-M. As
the goal is to find a generalized approach for identifying application code within such binary firmware
images considering the allotted time frame, it is necessary to first verify the existence and feasibility of
such an approach. As bare-metal firmware does not contain any form of operating system that provides
an abstraction, it becomes inherently difficult to differentiate between application code and functions
that are tasked with handling events [9]. As such, the characteristics that could be utilized to discern
between such components are ambiguous at best. RTOS-based firmware, on the other hand, contains
a form of operating system, either general purpose or embedded, and, as such, it provides a separation
that is potentially easier to identify. Due to the presence of an operating system, such firmware is more
likely to contain indicators that enable the construction of a generalized approach. The lack of ambiguity
in the layers of such firmware allows for leveraging principles from the operating system development
field. This enables the construction of an appropriate strategy, reducing the need to rely on device-
specific implementations, which can vary greatly between different hardware configurations.

As small IoT devices show the greatest need for targeted function analysis and patching, given
the widespread deployment of such devices in critical infrastructure, we need to identify the type of
hardware such devices typically require. Several papers, such as the analysis provided by Pinto et
al.[25] and argXTract implementation by Sivakumaran et al.[15] corroborate the statement that the ARM
platform is widely used by small and energy-efficient IoT devices. Furthermore, their analysis shows
that ARMv7 Cortex-M4 is generally still widely considered the industry standard. While hardware is
slowly transitioning to ARMv8, which provides more features in order to enable secure application
development, as elaborated in chapter 2, many older devices would need to be replaced, which is a



12 2. Background

costly endeavor. As the Cortex-A series plays a smaller role in terms of industry utilization, we will limit
the scope to focus on ARM Cortex-M-based devices specifically, as these devices are more common
and are less likely to be replaced.

An automated and generalizable approach requires that all necessary information for analysis can
be acquired by means of deploying state-of-the-art analysis techniques. As ARM Cortex-M devices are
required to be energy efficient and have several computational limitations, these devices tend to contain
RTOS-based firmware as there is simply no need for all auxiliary functionality that more advanced
operating systems contain. For these reasons, the research in this work will be limited to RTOS-based
firmware where its target architecture is ARMv7 Cortex-M.



3
Related Work

In this chapter, we discuss the works and state-of-the-art technologies related to this work in more
detail. We also discuss the reasoning behind adopting certain technologies. Section 3.2 goes in-
depth about several works that have provided methods of deriving information about binary firmware
images, such as the base address and instruction set architecture, without relying on partial knowledge.
Section 3.2 discusses the techniques used in state-of-the-art technology to uncover specific functions
and how this is performed. Section 3.3 discusses the works that perform function analysis in order to
uncover vulnerabilities as well as how to discover the relations between functions. Lastly, section 3.4
summarizes the remaining knowledge gap that this work resolves and which technologies are utilized
to achieve this.

3.1. Static analysis techniques for deriving binary characteristics
We need to identify the base-address offset before we can analyze a binary firmware image. This is
required as an incorrect offset will prevent absolute pointers and vector table entries from referencing
the correct memory regions. This is illustrated in figure 3.1. This figure shows how variables that
carry static memory references are influenced when analyzed under an incorrect base address offset.
Several works have been concerned with developing static analysis techniques to uncover the potential
base address and other information, such as its instruction set architecture.

De Nicalao et al. have proposed a way for code and data separation to ease the static analysis
of binaries [26]. As perfect disassembly of machine instructions is undecidable [27], De Nicalao et al.
propose a new technique for code and data separation based on sequential learning. More importantly,
however, if the ISA is unknown, ELISA leverages a logistic regression model to identify the correct
ISA and its endianness from the contents of a file. This, in turn, also enables the identification of
the base address offset based on the identified ISA. This ISA identification is achieved by computing
the possible byte value frequencies as they assume that compiled executables have different Byte
Frequency Distributions (BFDs) when compiled for different CPUs. While this method of uncovering
the base address is effective, it is not the main goal of the implementation. However, it proves that
uncovering the base address is feasible without assuming partial system knowledge.

The work by Wen et al. provides an alternative method of base address identification in their work
called FirmXRay [13]. The work focuses on detecting Bluetooth link layer vulnerabilities within bare-
metal firmware. In order to achieve this, they introduce a novel method that allows for robust firmware
disassembling despite the absence of system knowledge. Whereas other works (i.e., [28]) focus on
the function prologues to enable base address identification, FirmXRay utilizes the fact that absolute
pointers must point to certain instructions or variables with respect to their types. This insight enables
using the present relation between a pointer and the variable or instruction it points to infer a potential
base address. Absolute pointers are recognized by leveraging the functionality of load instructions and
software development kit (SDK) functions that take strings as parameters. When all absolute pointers
are identified, FirmXRay determines the most likely candidate for the base address by comparing the
sums of correctly resolved absolute pointers. The main benefit of this method is that it is entirely
static and does not utilize any form of supervised learning. Moreover, it can be applied to any binary

13



14 3. Related Work

executable and is shown to be effective in a case study concerning hardware developed by Nordic and
Texas Instruments.

In this work, we utilize the FirmXRay framework to enable the automated analysis of RTOS-based
firmware. Wewill adopt the base address identification algorithm in our work as this allows us to perform
analysis without relying on partial knowledge aside from the target architecture and microcontroller
unit (MCU) manufacturer. The approach, as implemented, does not require any modification, and the
proposed solution can be used as is.

Figure 3.1: The effect of disassembling firmware with different base address offsets as provided by Wen et al. [13]

3.2. Function discovery
A function is nothing more than a deterministic transformation of input that produces an output based
on that transformation. Functions can be deterministic but also stochastic, depending on the type of
implementation that a programmer requires. One of the questions we need to address in this work is
how we can identify functions without having any partial knowledge. This section provides an overview
of different works that have concerned themselves with devising strategies for function discovery as
well as the types of functions that can be found.

Sivakumaran et al. have provided a work to identify information about security-related configura-
tions in stripped Cortex-M binaries called argXtract [15]. The goal of argXtract was to create a scalable
solution that enables bulk extraction of security-relevant configuration data. To facilitate this extraction,
argXtract performs four forms of identification: application code base identification, data identification,
function block identification, and call of interest (COI) identification. The application code identifica-
tion is performed by leveraging known address information of the core interrupt handlers, as these are
stored within the vector table at specific offsets. They aim to identify the single control loop of the system
in the default handler, meaning that this approach is only effective at identifying such base addresses
in Type-III firmware that operates without the presence of RTOS libraries. The function identification
proposed in this work relies on pattern matching and analyzing the call execution path. This means
that while an approach for application code identification exists and can be utilized to gain insight into
the device’s security settings, it is limited to bare-metal firmware that does not utilize RTOS libraries.
Furthermore, the work relies on partial knowledge of the system, such as the presence of a single con-
trol loop and the known address information of the core interrupt handlers.

The work by Gritti et al. called Heapster utilizes a different approach of function discovery to identify
memory-related vulnerabilities [14]. In this work, Gritti et al. observe that allocator functions, which are
critical for systems to perform their function, are often vulnerable and exploited. As memory allocators
are extensively utilized in embedded devices, these devices require more scrutiny from the community,
given their broad deployment in critical infrastructure. As such, they have created a solution named
Heapster to identify heap management library (HML) components and subsequently test the security
of its components. In order to identify functions that belong to the heap library, Gritti et al. simulate
functions present in the binary to determine whether or not they are HML components [14]. First, all
functions in the binary are analyzed and filtered based on numerical characteristics. This excludes
functions that are too large or too complex. After filtering, the functions are simulated, and their imple-
mentation is compared to the expected behavior of HML functions. This was done by creating models
that describe HML functions with predictable behavior. Modeling function behavior was done by cre-



3.3. Automated vulnerability discovery 15

ating sets of virtual input and output data where the output data showed transformations based on the
expected function behavior. The input datasets are provided to these functions, and their functionality
is verified based on whether or not the implementation matches the expected output results.

Heapster is focused on identifying HML vulnerabilities, but the technique used to identify HML com-
ponents can be applied to any function with predictable behavior. While we cannot make any as-
sumptions about the predictability of the behavior of functions that implement thread creation, we have
observed a strong relation between thread creation and heap modification. While we cannot create
models to identify functions that implement thread creation based on transformative operations on in-
put data, we can identify heap-modifying functions using Heapster’s approach. As such, by deploying
other techniques, such as reaching definitions analysis, we can leverage the work provided in Heapster
to identify the functions we need to find user application code in RTOS-based firmware.

3.3. Automated vulnerability discovery
This work focuses on identifying user-oriented application code in strippedRTOS-based firmware. Iden-
tifying user application code allows for targeted analysis to identify vulnerabilities and patch them ac-
cordingly.

Eschweiler et al. have created an implementation called discovRE that enables the identification of
bugs through efficiently identifying similar functions within different systems [12]. This work implements
an algorithm that can identify similar functions despite different optimization levels, compilers, operating
systems, and CPU architectures. This is achieved by taking a known vulnerable function and compar-
ing its structural and numerical features against the features of other functions to identify similarities.
Examples of the numerical features that are taken into account are the number of instructions, number
of basic blocks, and size of local variables. Examples of structural features that are considered are the
control flow graph (CFG) of the function and other features of the basic blocks, such as the number
of call targets. However, the work also leverages the presence of debugging symbols and function
names, aspects we assume to be absent. As such, this approach is not expected to work in stripped
RTOS-based firmware.

Gustafson et al. observe an increase in devices that are abandoned, reach their end-of-life (EOL)
cycle, are no longer supported, or will no longer receive security updates [29]. Furthermore, they no-
tice that devices that use monolithic firmware are especially vulnerable, given how these are difficult to
examine. To combat this, they present Shimware, which is tasked with implementing new security mea-
sures for monolithic firmware images. This is achieved by identifying input-output (IO) pointers, empty
memory regions, and self-referencing sections. These parameters allow Shimware to determine the
type of vulnerability and to deploy an appropriate patch in a safe memory region while accounting for
potential self-checks, which aim to prevent firmware modifications. The implementation of Shimware
is limited to the analysis of firmware that is not based on an RTOS or RTOS libraries, as these pointers
would be abstracted by the HAL. Furthermore, we note the usage of angr to perform variable recovery
and state initialization and manipulation. They also use angr to generate the CFG upon which further
analysis is performed.

KARONTE is a framework created by Redini et al. that enables the detection of insecure interac-
tions within multi-binary systems [11]. The main goal of KARONTE is to improve the static analysis of
non-standard configurations, as many devices implement their functionality through multiple binaries.
In order to identify insecure interactions, Redini et al. utilize taint analysis to track the data between the
different components. The relations between different components are identified by means of creating
a binary dependency graph (BDG), which models the interaction between different binaries in the sys-
tem.

In summary, the work by Redini et al. focuses on the identification of inter-binary relations in Linux-
based firmware. The important takeaway from their work is that multi-binary relations, which are mod-
eled through a binary dependency graph, can be leveraged to reduce false positives [11]. We utilize
the same principle of leveraging strong relations between system components to reduce the amount of
false positives we could encounter. While KARONTE mainly focuses on Linux-based firmware, we pro-
vide a framework for RTOS-based firmware that leverages the relations between specific functions and
functional components to more accurately identify user application code. The work by Gustafson et al.
focuses on the retrofitting of bare-metal firmware images in which no RTOS libraries are present [29].
They leverage the fact that IO interactions are not abstracted by a potential HAL to identify vulnera-



16 3. Related Work

bilities. Like the Shimware implementation, we can utilize angr to generate the CFG and manipulate
function states to recover variables, but we will not need to perform taint analysis. Lastly, we can
leverage the numerical and structural features of stripped RTOS-based firmware to identify functional
components and application code as performed by Eschweiler et al. [12]. However, the features we
are interested in are different, and we will not base our identification on similarities between implemen-
tations as we assume no partial knowledge. However, we can leverage block structures and branching
calls to specific functions to estimate the type of component we are inspecting.

3.4. Knowledge gap resolution
The previously mentioned works aim to tackle various challenges within the field of automated binary
analysis, ranging from automated patching to code and data separation. However, many of these
technologies are limited in their applicability as they target either bare-metal firmware without RTOS
abstractions or Linux-based firmware. Furthermore, none of the existing works have investigated the
possibility of leveraging and discovering RTOS library components to identify user applications on a
system. We also find that several works perform automated patching by analyzing every function in a
binary image. This means that functions that an attacker can never reach will be marked as vulner-
able regardless. Leveraging RTOS components to identify application code in RTOS-based firmware
will reduce the number of candidate functions that require inspecting, thereby optimizing the analysis
process and reducing the number of unreachable candidate functions.



4
Approach

This chapter elaborates on the approach and methodology of this thesis. Section 4.1 provides a high-
level overview that explains the phases of the approach, the required information, and why this in-
formation is necessary. Furthermore, it elaborates on the state of the system after each phase and
provides context regarding the goal of each phase within the system. An in-depth description of each
phase is given in section 4.2, section 4.2.3, section 4.3 and section 4.4 respectively. Finally, section
4.5 provides information on the challenges that must be addressed before PinDown can identify user
application code.

4.1. Approach overview
In order to identify the different functional components, we need to perform three separate stages of
analysis. Figure 4.1 provides a schematic overview of the pipeline. The goal of the first analysis stage
is to establish basic information about the binary using state-of-the-art technology. This stage will be
referred to as the prerequisite analysis phase (or the first stage of analysis) as the stage is concerned
with uncovering basic information of the binary firmware image. This prerequisite analysis stage utilizes
identification strategies described in FirmXRay [13] and Heapster [14] to do so. Furthermore, we will
leverage the angr1 framework to perform register and state manipulation, which allows us to identify
basic heap modifying functions as well as perform reaching definitions (RD) analysis. Assuming the
hardware manufacturers Nordic and Texas Instruments and CPU architecture Cortex-M, FirmXRay en-
ables us to recover basic information about the system, such as its base address and entry point.

After the FirmXRay implementation has finished its analysis, the base address and binary entry
points are stored in a conf.yaml file that can be parsed by the next component of the prerequisite
analysis phase called Heapster[14]. We use Heapster to identify basic functions that are part of the
heap management library (HML) and pointer source generators as these enable the identification of
other important functions. As such, we only need to execute the first two steps of the Heapster frame-
work.

The result of executing FirmXRay and Heapster is that we now have knowledge of the base ad-
dress, the entry point of the binary, the addresses of essential functions that modify the heap (such
as memcpy, memset, memcmp, strlcpy etc.) and a list of function addresses that generate pointers.
Given this information, we can initiate the process of discovering caller candidates by applying RD
analysis to each identified heap modifying function. We define a caller candidate as a function that
calls any of the essential heap functions recovered by Heapster.

Real-time operating systems have a need to manage their processes by means of handling threads.
The main insight we have is that amongst these caller candidates, there is a function tasked with modi-
fying space on the heap for managing the application present in the binary image, as heap modification
is required to accommodate user applications.

The second stage is called the functional component identification phase, which will scan through
the call graph with the entry-point function as the root node. We will use the angr framework to manip-
ulate registers, identify function relations, and uncover function relations by analyzing the control flow
1angr framework: https://angr.io/

17



18 4. Approach

graph. In this scan, we will identify the usage of the previously identified caller candidates. If such a
function is used, we will heuristically determine whether this function creates threads in order to launch
user applications. The end result of this analysis stage is a list of functions that either directly launches
user applications or initializes a functional component.

The analysis of several RTOSs shows that the function that is passed to such a caller candidate
as an argument is likely to play a critical role in the initialization of application code. As such, the third
stage is called the application code discovery phase, which is tasked with discerning whether we are
dealing with application code (option 1 ) or with a functional component that itself is tasked with initial-
izing application code (option 2 ). This means that the address is either the application code, which
we can identify with heuristics, or we can derive that the address is a helper function that launches the
application. If we encounter option 1 , we can utilize several characteristic filters to determine whether
or not we are dealing with application code. In the case of option 2 , we can leverage the presence of
caller candidates to identify the application code. Since the functional component identification phase
has already identified likely caller candidates based on the fact that they require a valid function as an
argument and are called in the upper layers of system initialization, we have narrowed the list of po-
tential caller candidates considerably. Assuming that only one function is tasked with creating threads
(as duplicate functions indicate poor implementation standards), we search the upper layers of the
call graph where the function passed as an argument is now appointed as the root node. When we
find a function that matches the caller candidates identified in the functional component identification
phase, we again retrieve the function arguments that resolve to valid function addresses. Our analysis
of RTOSs shows that these valid function addresses are the functions that contain application code,
and we label them as such.

Finally, we are left with a list of function addresses labeled as application code, functions that are
functional component candidates, and an inconclusive list of functions that could be a functional com-
ponent or application code and further inspection of these candidates is required. The inconclusive
candidates were taken into account as discerning between applications and supporting framework
functions is not feasible using an automated process relying on static analysis.



4.1. Approach overview 19

ƒ

�������

������� �������

�������

�������

�������

Figure 4.1: A schematic overview of the relations between components in the framework and
the steps that are taken to produce intermediary results. A binary firmware image is provided
and is analyzed by FirmXRay. The base address and binary entry point are then passed to

Heapster. Caller candidates will be identified based on those results and the function
addresses will be saved. These addresses are then used by PinDown in two separate stages

in order to identify user applications within that binary firmware image.



20 4. Approach

4.2. Prerequisite analysis
We have identified the crucial components that we need to identify based on the results of our analysis
on RTOSs, and these components are present in all operating systems that we have chosen to inspect.
We want to construct an approach that can statically analyze all binary firmware images for all these
RTOSs and determine to what degree this process is generalizable.

In order to keep our approach as generalized as possible, we need to identify these components in
a way that does not depend on specific characteristics related to RTOSs. We must inspect functions
based on their behavior and role within a system. Each binary firmware image has a base address and
binary entry point, and each RTOS from our selection utilizes thread creation to initialize user applica-
tions. We can leverage state-of-the-art technology to identify both the base address and entry point
address and the functions that enable the discovery of such a function that creates threads, namely
heap modifying functions.

After we have been able to identify the base address, binary entry point, and heap modifying func-
tions, we need to identify possible candidate functions that may create threads. Given how thread
creation generally involves the modification and allocation of space on the heap, we can leverage
knowledge of the previously identified heap modifying functions to generate a list of caller candidates.
This can be achieved by employing static analysis techniques.

We call the first stage of analysis the prerequisite analysis phase. This analysis stage focuses on
utilizing several techniques to identify the addresses of caller candidates. The result of the prerequisite
analysis phase is a list of function addresses that PinDown can later use to determine the addresses
of functional components and user applications.

4.2.1. Base address identification
The base address offset needs to be correctly identified. An incorrect offset yields the incorrect disas-
sembly of pointers that contain memory addresses of functions. If the base address is incorrect, the
address to which a pointer points may have been disassembled incorrectly and not contain the function
we are interested in. In order to correctly identify the base address, we employ a state-of-the-art iden-
tification technique called FirmXRay[13]. As explained in-depth in chapter 3, FirmXRay uses robust
firmware disassembling to identify the base address of a given binary. This result is achieved by real-
izing that absolute pointers will point to certain variables or instructions depending on the variable type
or instruction. As we require the proper disassembling of functions for our approach to be effective,
we implement this strategy of base-address identification in our framework. The implementation of
FirmXRay is focused on performing the analysis within hardware developed by either Nordic or Texas
Instruments. As such, we need to take this constraint into account when constructing and testing our
approach on binary firmware images.

4.2.2. Basic heap modifying function identification
We need to be able to identify basic functions that are part of the HML present on the system before we
can identify functions that create threads. Our analysis of the chosen operating systems has shown that
functions that create threads depend on functions in the HML that perform heap modifications. In order
to identify these functions, we can leverage a state-of-the-art technology called Heapster[14]. Heapster
identifies functions based on predictable and expected behavior in conjunction with filtering based on
generic function features such as size, the presence of loops, and other characteristics. Identifying
functions based on predictable behavior is done by modeling data within memory regions and how this
data is transformed by a function. As these basic functions are expected to perform specific trans-
formations, Heapster checks if the transformation matches a specific function model. Heapster has
provided several models that describe the expected behavior of functions that are of interest. Heapster
then tests each function in the firmware image against these models to see if there is a match. In total,
there are four models that we can utilize in order to find functions of importance given their perceived
role in thread creation, namely memset, memcmp, memcpy and strnpy. We will leverage this strategy
to discover these functions in a firmware image.

In order to perform this analysis, we provide Heapster with the base address and binary entry point
as discovered by FirmXRay. After Heapster is finished simulating the selected functions, all results will
be put in a hb_state.json. This file will be utilized and modified by subsequent steps in the Heapster
framework.



4.3. Functional components discovery 21

4.2.3. Caller candidates discovery
The next step in the first stage of analysis is to discover caller candidates given a list of basic heap
modifying functions and potential pointer source generators as a result of executing FirmXRay and
Heapster. We define caller candidates as functions which, at some point in the call graph, invoke basic
heap modifying functions. Due to how functions that create threads are usually implemented, these
functions will not be discovered by the pointer source generator identification that Heapster performs as
they typically do not match the criteria of the functions intended to be identified by Heapster. However,
the approach implemented in Heapster can be leveraged to enable the discovery of caller candidates
by logging every function that, at some point, invokes a heap modifying function. This allows for a
broader subset of functions to be identified, upon which we can then perform analysis.

The end result of this discovery phase is a group of memory addresses that will contain the ad-
dress of a function responsible for thread creation, which we can later narrow down by leveraging other
characteristics. This result is guaranteed based on the analysis we performed on such functions in the
chosen RTOSs.

In order to identify caller candidates, we adjust the implemented strategy of Heapster[14] and em-
ploy reaching definitions analysis[24] (RD). Given the addresses of basic heap modifying functions, we
need to identify every call-site in every function in the binary that invokes such a function. A definition
graph will be generated at the perceived call sites that target heap modifying functions. A definition
graph is a directed graph where nodes are represented as register definitions and edges represent
definition dependencies [14][24]. We are interested in the nodes that represent function arguments
as these indicate definitions provided by caller candidates. When such a node is found, we utilize the
strategy presented in the work by Gritti et al.[14] and build corresponding definition graphs, but now
starting at the function where this type of node is found. This process is repeated until we no longer
find a node that can represent an argument provided by a potential caller candidate. The function that
was reached when the process of backward analysis terminates will be labeled a caller candidate.

The result of this stage of analysis is a list of caller candidates, which have been reached by per-
forming an RD analysis on all basic heap modifying functions that were found by executing FirmXRay
and Heapster.

4.3. Functional components discovery
We have been able to establish basic information about the binary we aim to analyze by applying
the approach in section 4.2 and have uncovered functions that are of particular interest by using the
approach from section 4.2.3 as amongst the acquired functions will be a candidate that is tasked with
the creation of threads. This has been determined to be the case based on the inherent functionality
these functions must provide to fulfill their purpose. Given how we have established some properties
of the caller candidate functions discovered during the prerequisite analysis phase, we can now start
applying characteristic filtering. We now begin the second stage of analysis, which we call the functional
component discovery phase. In this analysis stage, we will use the results from the previous stage,
which were stored in a state file.

The end-result of the second stage of analysis is a list of function pairs {(𝑓1, 𝑓2) ∶ 𝑓1 ∈ F1, 𝑓2 ∈ F2}. In
this representation, F1 is defined as a subset of caller candidates found in memory regions associated
with system and user application initialization. Functions from the set F2 were found to be passed
as arguments to functions within the set F1. This means that the set F2 exists out of valid function
addresses found at call sites that invoke functions from the set F1.

4.3.1. Call-graph analysis
The initialization of application code in the devices defined in our scope in section 2.5 usually happens
in one of the first few layers of the call graph, as has been further corroborated by our analysis of the
selected RTOSs in section 2.3. Based on the results of this analysis, we limit our function discovery to
the first three layers of the call graph within a binary firmware image where the function at the entry point
of the image is determined to be the root node. Starting at this function 𝑓0, we will check whether the
call targets of corresponding call sites match one of the functions in the resulting list of caller candidates
at the end of the first analysis stage. This process of finding matching functions will be repeated for
each function of the call graph until a depth of three has been reached, meaning that we will enter
each encountered function as long as there is no match found within our list of caller candidates. The



22 4. Approach

matching address and location will be stored if a matching function is found. The result of this step
is a subset of caller candidate functions, which are initialized in the first few layers of the call graph,
as analysis has shown that thread creation to execute application code takes place soon after the
reset_handler of a device is called.

4.3.2. Register and load instruction retrieval
Given a list of localized caller candidates resulting from the previous step, we now need to inspect the
arguments with which this function is called. We inspect each instruction of the block of each respective
call site with a target function present within our subset of caller candidates. As the calling convention for
ARM indicates that registers r0 through r4 typically contain function arguments, we perform symbolic
execution to retrieve the values within these registers after the function is called. In order to acquire
this information, we initialize a blank state at the start of this function and step through each block until
we have reached the block that contains the call target we are looking for. After stepping through one
more time, each register contains information with which the function has been called. We need to
expand our instruction analysis since we cannot make assumptions about the amount of arguments
such functions may have or which registers contain arguments that we are interested in. Function
arguments may, for example, be stored on the stack at some offset from the stack pointer (sp), which
we cannot reach by means of symbolic execution. In order to acquire such arguments, we need to
inspect the values loaded from memory in each block of instructions containing a caller candidate as a
target. The instruction in these blocks whose contents we need to analyze is the ldr instruction. This
instruction loads values from memory into a specific register. This operation is performed by taking the
value of the program counter (pc) to which a static value is added. The final result of this addition is a
memory address at which the information is stored that needs to be loaded into a register. This form of
addressing is also known as program counter relative addressing2. The symbolic execution in ANGR
will perform these operations automatically, meaning that whatever value is loaded into a register can
be overwritten in the same block. We can overcome this by explicitly calculating and retrieving the
values of the program counter and the value that needs to be added to the pc to uncover the memory
location from which a value is loaded. We then store all the values found within registers and all values
loaded from memory using ldr instructions in a list.

At the end of this step, we should now have a list of function arguments, their precise values, and
any loaded values from memory for each caller candidate present in the first three layers of the call
graph.

4.3.3. Valid functions
Given how functions that create threads pass functions as arguments to execute them, we can nar-
row down the list of caller candidates further by determining whether or not one of the arguments that
belong to each respective function represents a valid function address. Using angr, we generate a
control-flow graph (CFG) and call graph for the binary we are inspecting. These graphs will be popu-
lated with every function that has been identified during angr’s CFG analysis, and angr stores these
function addresses as well as other values in its knowledge base (KB). In order to determine whether
an argument value is a valid function address, we only need to check if this value is present in the
knowledge base of the CFG analysis. Our analysis of RTOSs has shown that user application code
may be stored and invoked through several means. Such function addresses may be passed directly
to a caller candidate, meaning that the address that is passed is the address of the function that hosts
application code. Arguments may also be presented as pointers, where the pointer points to an ad-
dress in memory that, in turn, points to application code. Lastly, we found that several RTOSs contain
data structures that resemble lists and that these data structures can contain addresses of several user
applications. In RTOSs that utilize data structures to store application code addresses, we found that a
pointer to the head of the list may be passed as an argument in conjunction with a value that specifies
the index. When analyzing function arguments, we need to check whether the argument value points
to a valid function address when interpreting that value in line with either of these three scenarios.

After this step is completed, we should have narrowed down our initial subset of caller candidates
to only those candidates that pass valid function addresses as arguments with the intent of modify-
ing the heap to accommodate these functions and executing them. We label these functions as TC

2ARM Documentation on pc relative addressing:https://developer.arm.com/documentation/dui0473/h/Cacdbfji



4.4. Application code discovery 23

candidates and store the respective valid function addresses with which they were invoked and label
these as potential functional component candidate or application code candidate. We define a func-
tional component as a function that performs some other system initialization before invoking a user
application, and application code is a function developed on top of the real-time operating system to
perform a task as intended by the creator of the device.

At the end of this step, we will have a list of valid function addresses that were passed as arguments
to functions from our subset of caller candidates. We also have a modified and reduced list of caller
candidates, which represents a subset of caller candidates resulting from the first analysis stage.

4.4. Application code discovery
The third analysis stage determines the addresses of user application code based on the acquired set
of TC candidate functions. Our previous analysis phase has provided us with a list of TC candidate
functions and the corresponding function addresses that were passed as arguments, from here on out,
referred to as sub-function (SF).

Assuming that one of our TC candidates is a function that creates threads, we need to investigate
whether the corresponding function passed as an argument hosts application code or if the function
plays a part in initializing the application of the firmware as a functional component. Unfortunately, we
cannot make any assumptions about the construction, the utilized libraries, or the tasks of application
code, as these components vary between RTOSs and devices. This makes the process of differen-
tiating between what components classify as application and operating system-related components
challenging. However, we have isolated a set of operating system-specific functions, which are pro-
vided with function addresses as arguments during the second stage of analysis. These functions are
assumed to be operating system-specific and will likely not be invoked by applications written for RTOS-
based hardware. This is because the RTOS provides resource management for the developer, which
is one of the main reasons for employing an RTOS. As TC candidate functions were called during the
initialization of the entire system, it is unlikely that an operating system would provide these functions to
whatever application runs on top. The usage of such functions is sparse and strongly associated with
the initialization and calling of application code. This implies that the regions in which such functions
are found should be analyzed for the presence of application code or a functional component. Using
the results of the RTOS analysis, we can perform a superficial analysis of the acquired sub-functions
to determine whether we are analyzing a functional component or a user application. In this analysis,
we will reduce the number of candidate functions likely to be application code by leveraging features
identified during RTOS analysis. Such features include the nested presence of the TC function to which
the current function was passed as an argument, the amount of bl instructions, whether their respec-
tive function blocks contain multiple instructions and the number of predecessors and cross-references
belonging to a function. However, it is possible that the features we will look for will not be present in
the component that we are analyzing. In this case, we can still attempt to make some observations
based on our analysis of operating systems; however, the results will be labeled inconclusive instead.

The final results of the third stage of analysis is a group of functions that are likely to be user ap-
plications. This phase will also separate the functional component from the application code based on
the heuristics, as mentioned earlier. If no functional component is involved (i.e., the application code
is initialized directly by passing its function to a TC-candidate), we will perform a superficial analysis to
determine this.

4.4.1. Component grouping
We start the analysis of the sub-functions we have identified at the end of the second stage of analysis.
Our analysis of RTOSs shows that there are a couple of possible compositions within the chosen group
of frameworks. To reiterate, these groups are as follows:

1. The sub-function utilizes thread creation to initiate some auxiliary attributes before application
code is invoked

2. The sub-function utilizes thread creation to invoke the actual application code
3. The sub-function makes no usage of thread creation and makes some static function calls to

initialization functions before application code is invoked
4. The sub-function is the actual application that runs on top of the system, and no further initializa-

tion is required



24 4. Approach

We first need to analyze the discovered sub-functions associated with the TC candidate in order to
determine which classification of the component we are dealing with. Our RTOS analysis has shown
that the initialization of user applications in functional components happens in a superficial layer of the
call graph starting at the root of the sub-function. Based on this analysis, we have determined that it is
sufficient to search through the first two layers of a call graph where the discovered sub-function is the
root node.

During this scan, we are looking for functions also present in our list of TC-candidates, which was
the result of our second analysis stage. First, we search for the TC-candidate that invoked the current
sub-function. If we locate this same function in this sub-function, it is more likely that our TC-candidate
will indeed create threads. We base this on the insight we gained in our RTOS analysis, which shows
that these functions will be used both for initializing a functional component and within the functional
component. Establishing the presence of such a function indicates whether we might be dealing with
either a class that depends on thread creation to initialize user applications (class 1 or 2) or class 3 or 4,
which do not depend on thread creation. If another TC-candidate is found in any of the scanned layers
of the sub-function, we perform register and load instruction retrieval as we did during the second
analysis stage. This will provide us with the associated values loaded from memory and argument
values found in registers. Much like in the previous phase, we will again scan these values to see if
valid functions were passed as arguments. Such a function may have been compiled as part of the
system, but no functions have been passed that require initialization. In such an event, these registers
and loaded memory values will not yield any valid functions. If a valid function address is found, then
we mark this function as an application code candidate as this function needs to run on top of the
previously initialized system and thus likely fulfills the intended use of the system. If no values are
loaded into relevant registers or if the registers do not contain a valid function address, then assume
that no application code is initialized by means of thread creation, and instead, there will be a function
call in a block with only a single bl instruction. RTOS analysis has shown that if no functions are
initialized by means of executing threads, then there is a single call to a main function that contains
application code. It is possible that the function value is not within the list of functions present in the
binary, so we have to check the validity of the discovered address.

When we do not find any functions that match the sub-function its associated TC-candidate and
when no function matches any of the functions in our list of TC-candidates, we assume that we are
dealing with either class 3 or 4. As we cannot make any assumptions about the internal workings of
applications or the frameworks that launch them, there exists the possibility that the current sub-function
we are inspecting is a user application or that we are inspecting a component that launches application
code. In either case, manual verification is required of these addresses as we lack any context about the
system as a whole. As such, while we can apply a superficial analysis to find probable user application
code, we have to mark the component that we are inspecting and the functions we find based on this
analysis as inconclusive candidates. This will increase the false positive rate, but there is still a very
likely chance that we have identified the components in which we are interested.

The result of this phase of analysis is a function or group of functions that are labeled as user
applications, functional components (if one was present), and inconclusive function addresses that
we suspect to be application code but cannot verify this in an automated manner. In the case of
inconclusive results, we must manually analyze the provided functions to correctly identify the actual
application code. The manual analysis of individual functions should be relatively simple but requires
at least the knowledge of the device’s applicability to which the firmware belongs. Lacking knowledge
or context about the device for this analysis will make it hard to accurately assess whether the identified
functions perform the intended functionality of the device. Furthermore, the evaluation of PinDown has
shown that in systems with only a single user application, PinDown generally identifies less than seven
candidate functions. This is a reasonable amount of functions to analyze compared to the several
hundred that require inspection without the usage of PinDown. This step concludes the PinDown
analysis.

4.5. Addressing improper firmware decompositions
Due to the nature of firmware disassembly and the issues that THUMB-2 instructions introduce because
of the varying instruction sizes, it is possible that state-of-the-art technology can struggle with correctly
handling firmware. Examples of such handling issues are misidentified function entry points, incorrectly



4.5. Addressing improper firmware decompositions 25

interpreted firmware instructions and operations, or the incorrect interpretation of data regions. These
issues enable the possibility that functions may not be accurately disassembled. This is problematic
for our analysis approach as we depend on finding certain functions to identify critical components. As
such, we need to account for these problems as best as possible to enable firmware analysis. In this
section, we explain the problems that we encountered during firmware analysis and how these issues
are partially solved.

4.5.1. Functions disassembled as callsites

During angr’s function analysis, it is possible that the target function of a call site is not interpreted
as a separate function but instead as a continuation of that function. This is a function identification
issue. The field of function identification is well studied, and new algorithms are being devised to
reduce overhead and increase identification accuracy [30][31]. The result of calls to incorrectly identified
functions is that a branch is created into a distant memory region. Furthermore, we find that the original
function now contains the instructions of two functions that should have remained separate. Not only
does this cause the original function to absorb the call-target, but it also makes the function address
of the absorbed function unidentifiable. If this occurs within one of the functions that we require during
analysis, then we will not be able to complete the analysis in an accurate manner. Analysis has shown
that this issue tends to occur at the last call site of a function. As this problem is related to the angr
framework, which we use to perform automated analysis, identifying the root cause and implementing
a fix is outside of the scope of this research. However, we can introduce a workaround that attempts
to identify the originally intended function at the cost of potentially introducing a false positive result
during analysis.

All disassembled function addresses are stored in a knowledge base. As the intended function
address is not identified as a function during disassembly, this address will be missing. However, it is
possible that the disassembler will identify the corresponding function prologue. As the disassembler
identifies this region as a part of another function, it will attempt to make sense of the situation by looking
at nearby memory addresses and providing these as the corresponding function addresses despite this
not being the actual case. This behavior has been observed during the analysis of several binaries.
The result was that the call target instead had an address value with a possible offset of a few bytes
added or subtracted. While this replacement function may not be identical to what the function was
intended to look like, it most likely still contains the instructions that are relevant for continuing analysis.

There are two ways this issue can manifest itself. In the first case, the function whose call-targets
are being analyzed branches off into a memory address before the start of the current function. In this
case, we can be sure that the call site that branches off into a distant memory region was not correctly
identified as a function, as it points to a region before the address of the current function. For example,
if we find a function at address 0x1000 but it has a call-site at address 0x200, then we know that the
call-target at the corresponding branching instruction was instead interpreted as a call-site, which in turn
results in this corresponding function address not being directly accessible. In the second case, a call
site branches off into a memory region far beyond the actual end of the function we were inspecting.
In this case, we can verify the presence of the issue and see if there is a gap between the address of
the last function call at which the branching was identified and the memory address to which it points.
More problems arise in the second case, as it could be that a branching call points to the memory
region directly after the function we are analyzing. This means we need to estimate a function’s size
(amount of instructions), which is no longer reasonable. To remedy this misidentification, the best we
can do is to search for valid function addresses in our knowledge base that are in numerical range
of the target instruction addresses identified at the incorrectly interpreted call site. For example, if an
incorrect call-site has been identified at a branching instruction that points to address 0x164, then we
search our knowledge base for neighboring function addresses (such as 0x160 and 0x170). We then
check if this function contains an identical set of instructions found at the incorrect call site. If this is the
case, we store this function and proceed with the analysis with this function instead. We will attempt to
identify any valid call targets if no such function was found. However, it is highly likely that the call site
will not contain all the instructions of the original function, and as such, we may not be able to identify
any other call targets. In this case, we halt analysis.



26 4. Approach

4.5.2. Unreachable critical functions
During the first stage of analysis, the backward generation of definition graphs may terminate because
of the misidentification of functions. When this process of analysis terminates prematurely, it means
that we have not reached the caller candidate that we were interested in. This issue then propagates
through the following analysis stages as we depend on the generation of a set of candidate functions
in order to identify functional components and user applications. This is a hard problem to solve as we
cannot discern between correct termination and incorrect termination.

In order to still attempt analysis despite the issue of incorrect caller candidate generation, we can
employ a brute-force approach to enable further analysis in the second stage of analysis. Instead of
scanning for matching functions from the list of acquired caller candidates as a result of the first stage of
analysis, we can instead inspect any function call where registers and loaded memory values contain
valid function addresses during the second stage of analysis. The main drawback of this method is the
potentially larger set of TC-candidate functions that we acquire. This means that the analysis will take
longer to complete. Furthermore, it is possible that we incorrectly identify more components as potential
application code candidates. Nonetheless, using this method in our approach opens up another avenue
for identifying user applications despite the lack of caller candidate generation. However, this comes at
the cost of acquiring a higher false positive rate and thus requiring more extensive manual verification.

4.5.3. Function abstraction in optimized firmware
When a firmware image is compiled with an optimization setting, the goal is to optimize the functionality
of the resulting binary. This means that some functions may be abstracted away or inlined. The
final result is that the binary contains fewer functions than the code that was compiled and that some
functions no longer have a 1-to-1 equivalent. This process of inlining functions makes manual analy-
sis difficult if one tries to compare functions in source code to functions in binary disassemblies. Due
to how we identify TC-candidates by inspecting the layers of a generated call graph, function inlining
poses a problem for our approach. This is because optimized binaries are structurally different from
unoptimized binaries. We need to construct a generalized approach that could be applied to any binary
that fits our scope.

In order to address this issue, we can implement a workaround that identifies transitive components.
We define a transitive component as a component in the call graph that only has a single predecessor
and could have multiple successors if there are no cycles within the function. If we encounter such
functions during analysis, we abstract away this transitive component ourselves, effectively reducing
the depth of the current call-graph level by one. During the operating system analysis, we found that
several wrapper functions are employed that do not seem to perform any critical functionality other than
providing clarity to developers. We need to extend our approach to account for this issue, as the pres-
ence of such functions in unoptimized firmware can prevent us from reaching the critical components
we are interested in, as we have based the required depth of analysis on uncovered characteristics. To
illustrate this, if function F𝐴 calls a function F𝐵, function F𝐵 only calls a single function F𝐶 and function
F𝐵 is only invoked by F𝐴 then we abstract away F𝐵 by stating that F𝐴 calls F𝐶 by means of a transitive
component and continue analysis, ignoring the additional layer introduced by F𝐵. The benefit of this
approach is that the entire generated call graph will remain the same while allowing us to store inter-
mediate results and ignore layers that are introduced by functions that serve no other purpose than to
call other functions. Using this approach, we can find functions that are of particular interest in both
optimized and unoptimized binary firmware images.

4.5.4. Infinite looping during symbolic execution
It is possible to encounter indefinitely looping structures when using symbolic execution to retrieve val-
ues stored in registers before a function is invoked. Being able to determine whether or not such a
loop terminates is a problem that is reducible to the halting problem, which has shown to be undecid-
able [32]. While there exist techniques that leverage symbolic execution to identify infinite loops, such
as the work by Ibing et al., this detection was not present in the angr framework that we utilize for
analysis. Instead, we have implemented a more superficial way of exiting such loops.

During the symbolic execution of a function, we do not enter new function calls to prevent path
explosion. It is possible that looping structures depend on the return values of such function calls and
that without these values, such a loop will most likely never terminate. In this instance, there is no other
option but to terminate the symbolic execution of the function in question, as the contents of register



4.5. Addressing improper firmware decompositions 27

values need to be kept track of throughout the execution of instructions within the function. This means
that we will not be able to determine the contents of the registers before a function call is made, as
register values are constantly shifted and changed. Unfortunately, there is no way to break out of such
a loop while maintaining correct register states. In order to continue binary analysis in the event we
encounter such a loop during symbolic execution, the best approach is to keep track of the number
of loops and terminate execution if the number of loops becomes unreasonably large. As there is no
proper definition of ”unreasonably large,” we have decided that if a loop is repeated more than 100
times, we terminate symbolic execution and mark the function as containing a loop that does not finish.
Despite not being able to read register values, we can still inspect the ldr instructions of the function
if values from memory are loaded into registers. When a non-terminating loop is encountered, this
becomes the only way to identify potential function addresses that are passed as arguments.

4.5.5. Incorrect pc-relative offset
A side effect of incorrect function identification is that ldr instructions that depend on pc-relative ad-
dressing will no longer load data from the correct memory address as the program counter no longer
holds the correct value that is required. These load instructions take the address value of the current
instruction and increment it with a static value to determine the memory address from which to load
data. In the event a function is instead identified as a call-site, that means the corresponding program
counter will contain a value that will be off by at most two as the length of a bl instruction is two bytes.
However, It is possible that the program counter’s value remains unaffected and that the proper value
can still be loaded. This is another limitation of the technology we utilize, and we are not certain of
the root cause of this behavior. However, the possibility that we cannot identify the information loaded
from memory due to this incorrect pc-relative addressing still needs to be accounted for.

In order to do so, we can manually keep track of the program counter during automated analysis of
the instructions within a function. As the generation of the control-flow graph also includes analyzing the
presence of such load instructions and the target addresses from which a value is loaded, we can check
if the instruction address that performs the load instruction is in the knowledge base of the control-flow
graph. When this is not the case, we can utilize our custom program counter to retrieve the values
from the target memory location. We will use our custom program counter to generate two different
target values, one value with an offset of one from the instruction address and one value with an offset
of three from the instruction address. As we are only concerned with potential function addresses, we
only need to check if either of the retrieved values from memory is present in the knowledge base of
the call graph. When such a value is present, we store this value and use it in subsequent steps of
analysis.





5
Evaluation

This chapter provides context for the experimental settings and the generated datasets, based on which
factors we determined the analysis to be successful, and argues why the results of the experimental
validation show that our approach is effective in discovering application code. Section 5.1 discusses the
details of the hardware that was utilized to perform the experimental validation and how the experiments
were conducted. Section 5.2 provides information about our ground truth dataset, how this dataset was
established, and what factors were considered when creating the ground truth. In the same section, we
will discuss the results of each analysis phase and analyze them in order to verify the outcomes. Section
5.3 discusses the analysis results of the wild firmware dataset and how this dataset was created. The
experimental results from applying PinDown to wild firmware provide insight into the applicability of our
method on firmware built on top of other RTOSs and the RTOSs on which the approach was based.
Lastly, section 5.4 will discuss the performance results and elaborate on how the performance results
help explain the experimental validation.

5.1. Experimental Settings
All experiments were performed on consumer hardware using open-source software. A PC was outfit-
ted with the Kali Linux rolling operating system, version 2024.2, using an x64 Threadripper 2950X CPU
with 16 cores and 32 threads and 32 gigabytes of DDR4 DRAM. We decided to use Docker1 to ensure
the reproducibility of the experiments and results, as it allows us to create a containerized environment
in which we have full control over software versioning. This prevents dependency issues from arising
and shows that the results will be consistent regardless of the system on which the experiments are
performed. Docker loads all requirements from the Dockerfile in the repository and installs all system
requirements for the Heapster and FirmXRay frameworks, on which our implementation is partially de-
pendent. The version of Ghidra with which all firmware was manually analyzed is also installed in this
environment. From this version of Ghidra, a .jar file is generated, which will be used by FirmXRay.
This was done to prevent features in newer Ghidra revisions from causing potential errors.

Several scripts were written in Python to perform the experiments. However, three main scripts
perform the individual analysis stages:

1. Performing the prerequisite analysis on the ground truth dataset
2. Performing the prerequisite analysis on the wild firmware dataset
3. Performing the second and third stages of analysis for either firmware from the ground truth or

wild firmware dataset.
Automating the serialized analysis of each single firmware image takes too long, given the number of
available samples. The scripts that are tasked with executing the prerequisite analysis phase leverage
multiprocessing. This enables parallelized analysis of all samples. While the hardware on which the
experiments are performed does not provide enough computational resources to perform a complete
parallelized analysis of all firmware samples, we can now analyze all images in the ground truth data
set within 1.5 hours. This is considerably faster given how serialized analysis of each individual process
would take ~8.5 hours. Due to technical limitations, FirmXRay analysis has to remain serialized. In
1Docker: https://www.docker.com/

29



30 5. Evaluation

order to avoid excessive waiting time, intermediary results provided by FirmXRay and Heapster in the
prerequisite analysis phase are stored and used in later analysis phases. This means that we only
execute FirmXRay and Heapster once per firmware image. The processes and analysis results of
these state-of-the-art technologies are deterministic, and the input does not change between analyses.

The intermediary results of PinDown are comprised of several groups of memory addresses at which
important functions may be hosted. In order to verify the correctness of our framework, the firmware
that was automatically analyzed with PinDown is now manually analyzed and reverse-engineered.
The application code is identified within each sample utilizing the results and guidelines from the RTOS
analysis in chapter 2 if one is present. We then verify that the addresses found at the end of each
phase match the components we intended to identify. We claim that stage one analysis is successful
when the group of identified caller candidates contains the address of a function that creates threads.
We claim that stage two analysis is successful if we have identified the caller that creates threads
and that the arguments that belong to the corresponding function call contain valid functions that play
a role in initializing application code. Lastly, we claim that stage three analysis is successful if the
addresses that contain application code are included in the group of identified functions. Furthermore,
for each analysis phase, we include a false positive rate to indicate how precise the identification is and
the percentage with which we were able to reduce the number of candidate functions within a binary
image.

5.2. Experimentation: Ground truth
The experiments on the ground truth dataset were performed with the experimental setup described in
the previous section. We sequentially apply each analysis stage to each binary firmware image in the
dataset and inspect the result of each stage. We have reverse-engineered each sample in the ground
truth dataset and manually identified each function we aim to identify using PinDown. We will inspect
the results of each analysis stage and verify that we have identified the intended function(s) at the end
of each stage. This section provides information on our dataset, how each image was generated, and
the results of each analysis stage.

5.2.1. Ground truth dataset description
We compiled a dataset of 24 firmware images at varying optimization levels, hosting different applica-
tions for varying development boards in order to establish a ground truth and to perform our experimen-
tal validation. In order to create the dataset, we have installed toolchains available on GitHub for all
RTOSs that were selected; RIOT2, mBed OS3, Zephyr4, Contiki-NG5, NuttX6 and LittleKernel7. As we
have limited our scope to hardware that runs on Cortex-M and because our base address identification
process relies on characteristics in micro-controller units (MCU), we need to select hardware profiles
that match the requirements of our scope. The installed toolchains come with prebuilt modules and
extensions that accommodate a large variety of different development boards. The libraries in these
toolchains also provide several configurations, modules, and libraries that allow example projects to
utilize unique hardware features.

For each RTOS, we aspired to compile two firmware images for both Nordic-based hardware and
Texas Instruments-based hardware. However, some of the toolchains did not offer hardware profiles
for both manufacturers. When we are not able to generate firmware images for both manufacturers,
we focus on the hardware profiles that we can compile. These images are compiled with an equal
distribution of enabled and disabled optimization flags. This means we have about an equal number
of images compiled with O0 and O5; due to the limited availability of hardware targets that matched
the aforementioned requirements, we have chosen as many varying development boards as possible
but have resorted to previously chosen targets if necessary. While this could influence the eventual
structuring of the binary at compilation, it is unknown to what degree this will be noticeable or whether
it will affect analysis. As different development boards host different revisions of Cortex-M, we aim to
exclude the possibility of biased results by applying analysis to as many different revisions as avail-
2RIOT OS Github: https://github.com/RIOT-OS/RIOT
3MbedOS Github: https://github.com/ARMmbed/mbed-os
4ZephyrOS Github: https://github.com/zephyrproject-rtos/zephyr
5Contiki Github: https://github.com/contiki-ng/contiki-ng
6NuttX Github: https://github.com/apache/nuttx
7LittleKernel Github: https://github.com/littlekernel/lk



5.2. Experimentation: Ground truth 31

able.
We need to decide what type of application the RTOS should be compiled with. We decided to

compile each image with a different example application provided by the installed toolchains. This
was done to exclude the possibility that incorrectly written custom applications would affect the results.
Many examples of applications that are provided aim to show off certain properties of the associated
hardware. We want to focus on varying degrees of software complexity instead of functionality. This
means that we want firmware with only a single application built on top of an RTOS, which launches at
boot, and firmware that can host multiple applications. These applications could range from providing
user interaction through a shell or launching several instances of the same application by means of
invoking multiple threads. Not every RTOS toolchain came prepackaged with enough example appli-
cations that fit all categories, but to establish a ground truth, we estimated that this was unnecessary.
As such, some firmware images built on top of different RTOSs will host similar applications. A full
description of each image can be seen in table 5.1. In this table, we have grouped firmware images
by their corresponding RTOS. This is followed by their file names and properties, such as optimization
flag, MCU manufacturer, Cortex-M revision, and shipped application(s). All images that were used to
establish a ground truth can be found in the fw-dataset directory on the GitHub page8.

The custom dataset allows us to establish a ground truth, which will be used to estimate the correct-
ness of the approach described in chapter 4. This dataset will also be utilized to test whether or not our
approach is effective and establish the accuracy of PinDown. We can determine what the addresses of
application code are as we are in possession of non-stripped binaries as well as the source code of the
compiled applications. This makes it easier to find the application code in the compiled binaries using
manual analysis and reverse engineering. Using this information, we can correctly verify the results of
the analysis performed by PinDown.

Table 5.1: General information for each binary firmware image in the ground truth dataset. The images in question are grouped
per RTOS.

Firmware
Information

Properties

O
ptim

ization

M
C
U
M
anufacturer

C
ortex-M

Version

Application

RIOT nordic-riot-nrf52dk.bin O0 Nordic M4 Blinky
nordic-riot-nrf5340dk-app.bin O5 Nordic M33 Blinky
ti-riot-cc1352-launchpad.bin O0 TI M4 HelloWorld
ti-riot-cc2538dk.bin O5 TI M3 Micropython

Zephyr nordic-zephyr-nrf51dk.bin O5 Nordic M0 PWM LED Controller
nordic-zephyr-nrf52840dongle.bin O5 Nordic M4 Bluetooth LED Controller
nordic-zephyr-thingy52.bin O5 Nordic M4 HelloWorld
ti-zephyr-cc1352r-sensortag.bin O5 TI M4 Multithreaded blinky

mBed OS nordic-mbedos-epatlas.bin O5 Nordic M4 DeviceKey
nordic-mbedos-NRF52DK.bin O5 Nordic M4 Blinky
nordic-mbedos-SDT52832B.bin O5 Nordic M4 KeyValueStorage

Contiki-NG nordic-contiki-nrf5340dk.bin O0 Nordic M33 Listener
ti-contiki-cc26x0-http.bin O0 TI M4 Client
ti-contiki-cc26x0-ws.bin O0 TI M4 Server
ti-contiki-cc2538dk.bin O5 TI M3 Client

LittleKernel nordic-lk-nrf51-pca10028-O5.bin O5 Nordic M0 Command shell
nordic-lk-nrf52-pca10040.bin O0 Nordic M4 Command shell
nordic-lk-nrf52-pca10040-O5.bin O5 Nordic M4 Command shell
ti-lk-lm3s6965evb-test.bin O0 TI M3 Command shell

Nuttx nordic-nuttx-nrf52832-dk.bin O5 Nordic M4 Button controls, Command shell
nordic-nuttx-nrf52840-dk.bin O5 Nordic M33 PWM controls, Command shell
ti-nuttx-eagle100.bin O5 TI M4 Network Client
ti-nuttx-lm3s6965-ek.bin O5 TI M3 Echo server
ti-nuttx-tm4c129e-launchpad.bin O5 TI M3 Command shell, IPv6 pinger

8PinDown Github: https://github.com/utwente-scs/firmware-decomposition



32 5. Evaluation

5.2.2. Ground truth validation: Stage 1
Ground truth validation was performed on the stripped .bin files, which were generated using installed
toolchains. First, we need to determine if FirmXRay and Heapster have identified the correct properties
of the binary in question. This includes the base address, binary entry point, and function addresses
of basic heap modifying functions. The results of this analysis show that, indeed, FirmXRay was able
to identify the correct base address for each firmware sample in the ground truth dataset. We verified
the correctness of FirmXRay by cross-referencing the identified base address with the base address
in the corresponding .elf file for each sample.

When FirmXRay is finished, we execute Heapster to identify the addresses of heap modifying func-
tions. When this process is finished, we verify the correctness of the identified functions by checking if
the targets in the .bin sample match the function models provided by Heapster. Using these models,
we concluded that Heapster correctly identified each function for which a model was provided unless
that function was not present in the binary.
Following the execution of FirmXRay and Heapster, we need to establish if a function that creates
threads has been found. If such an address has been identified, it can be found within the list of caller
candidates as a result of the first stage of analysis. We will verify the results of this analysis phase
by manually identifying the function address of interest within the corresponding sample. Next, we will
cross reference the presence of this address in the acquired list of caller candidates resulting from
this analysis phase. As shown in table 5.2, we find that, generally, the first stage of analysis success-
fully identifies a candidate function that creates threads. We conclude that in these successful cases,
reaching definitions analysis can identify a function that creates threads as a caller candidate. We also
find that this phase does not identify a correct candidate for a function that creates threads in several
other samples. The results show that these samples belong to the groups of mBed OS, Contiki-NG,
and RIOT-based samples.

We want to know why these functions do not get identified. When inspecting the samples of mBed
OS, we can quickly deduce that applying reaching definitions analysis to the basic functions identified
with Heapster does not allow the intended targets to be reached. This can be attributed to the incorrect
identification of functions. While this does not appear to be the case in Ghidra, inspection of the stripped
binaries in ANGR shows that the addresses of functions that need to be reached are not present in the
knowledge base as they have not been recognized as proper functions. As such, the potential callers
have not been reached, and the analysis has failed. All samples compiled with Contiki-NG fail to pass
stage 1 analysis as well. For both Contiki-NG and mBed OS, this is mainly attributed to the incorrect
identification of functions that need to be reached before we arrive at a candidate function that creates
a thread. The functions at which reaching definitions analysis terminates prematurely varies between
binaries. We have deduced that this can be attributed to the toolchain applying optimizations based on
the target hardware. The actual function that creates threads is, however, disassembled properly, so
if we were able to successfully complete reaching definitions analysis, the candidate would be present
in the resulting list. Lastly, our analysis also seems to fail in successfully identifying caller candidates
in RIOT-based samples. As with mBed OS and Contiki-NG, we find that intermediate functions in the
reaching definitions analysis are not correctly identified or that the caller candidate we aim to identify
is improperly disassembled, causing the analysis process to terminate prematurely and not reach the
intended target. The issue of improper disassembly and misidentification of functions is well known
within the field of reverse engineering, and as such, this seems to be a limitation of the technology
we utilize and not necessarily our approach or implementation. This is supported by the fact that our
approach to identifying these caller candidates is effective in the samples that host the other operating
systems. We have accounted for this problem by integrating an alternative path of application code
discovery, as we are aware of the possibility that functions may not be correctly identified.

5.2.3. Ground truth validation: Stage 2
Next, we will investigate the results acquired from the second analysis stage. Our approach success-
fully identified the functional component and corresponding target function in 21 samples, failing in only
four cases, as shown in table 5.2. A closer inspection of the four cases that fail stage 2 analysis shows
that the samples that fail analysis are all built on top of the Contiki-NG RTOS. When inspecting the logs
and debugging information we generated during analysis, we found that our implementation analyzed
a function that creates threads in every sample that failed during stage 2 analysis. This means that
our approach was able to identify the correct function based on our alternative path of caller candidate



5.2. Experimentation: Ground truth 33

Table 5.2: An overview of whether or not stage 1 and stage 2 analysis were completed successfully, whether the firmware was
disassembled correctly as well as how many candidates were found at the end of stage 2 with the corresponding false positive
rate.

Firmware Name

St
ag

e
1
Su

cc
es
s

C
or
re
ct
D
is
as
se
m
bl
y

St
ag

e
2
Su

cc
es
sf
ul

N
um

be
r O

f I
de

nt
ifi
ed

Fu
nc
tio
ns

St
ag

e
2
Fa

ls
e
Po

si
tiv
e
R
at
e

nordic-riot-nrf52dk.bin - - + 1 0%
nordic-riot-nrf5340dk-app.bin - - + 2 50%
ti-riot-cc1352-launchpad.bin - + + 1 0%
ti-riot-cc2538dk.bin - - + 2 50%
nordic-zephyr-nrf51dk.bin + + + 2 50%
nordic-zephyr-nrf52840dongle.bin + + + 1 0%
nordic-zephyr-thingy52.bin + + + 3 66.7%
ti-zephyr-cc1352r-sensortag.bin + + + 3 66.7%
nordic-mbedos-epatlas.bin - - + 1 0%
nordic-mbedos-NRF52DK.bin - - + 1 0%
nordic-mbedos-SDT52832B.bin - - + 1 0%
nordic-contiki-nrf5340dk.bin - + - 2 50%
ti-contiki-cc26x0-http.bin - - - 2 50%
ti-contiki-cc26x0-ws.bin - - - 2 50%
ti-contiki-cc2538dk.bin - + - 2 50%
nordic-lk-nrf51-pca10028-O5.bin + + + 1 0%
nordic-lk-nrf52-pca10040-bin + + + 2 0%
nordic-lk-nrf52-pca10040-O5.bin + + + 1 50%
ti-lk-lm3s6965evb-test.bin + + + 2 50%
nordic-nuttx-nrf52832-dk.bin + + + 1 0%
nordic-nuttx-nrf52840-dk.bin + + + 1 0%
ti-nuttx-eagle100.bin + + + 1 0%
ti-nuttx-lm3s6965-ek.bin + + + 1 0%
ti-nuttx-tm4c129e-launchpad.bin + + + 2 50%

discovery despite the failure of the first stage of analysis. During the retrieval of register values and
loaded values, we observed that no valid function addresses were found despite manual analysis of
instructions indicating that a proper function address was loaded from memory. It is unexpected that
this analysis stage fails as we take into account the edge case possibility that function addresses can
be part of a list data structure or that such addresses are contained in pointers. However, closer inspec-
tion reveals that these function addresses are loaded into virtual memory tables, and the addresses
are inaccessible during static analysis. This virtual address table is never constructed, as we are not
executing or attempting to parse the generation of such virtual address tables. As such, our analysis
could not discover valid functions within these binary samples, so the analysis was terminated unsuc-
cessfully. Our implementation and approach would have been able to successfully identify the function
arguments if these were not stored in a virtual address table, as our approach was able to reach the
function responsible for creating threads despite stage 1 analysis failing. Furthermore, despite several
cases failing to identify the intended caller candidate, the alternative discovery implementation shows
that functional components can still be identified even if we were not able to find proper candidates us-
ing reaching definitions analysis. This is done by leveraging knowledge about the call graphs of sample



34 5. Evaluation

binaries and how functions are passed as arguments to construct a generalized approach. While this
alternative discovery has the potential to introduce more false positives, results show that this is not a
guaranteed outcome as PinDown was able to identify the functional component of importance in sam-
ples on which stage 1 analysis was unsuccessful, realizing a false positive rate on par with samples in
which stage 1 was successful. This indicates that within the group of selected RTOSs, stage 1 analysis
may be redundant and that the heuristics-based method of identifying functions that create threads is
sufficient for this selection.

5.2.4. Ground truth validation: Stage 3
For the third stage of analysis, we find that the results for all samples match our expectations while
being generally promising, as seen in table 5.3. The fact that stage 3 analysis fails for all samples
with Contiki-NG is unsurprising, as the second analysis stage was unsuccessful for these samples.
This results in there not being any candidates that could be analyzed during the third analysis stage.
PinDown analysis was, however, successful in identifying the relevant function(s) that could host ap-
plication code in every other sample from the ground truth dataset. While it is a rare occurrence that
exactly and only the function addresses are identified which host application code, this is expected
based on the approach we have implemented and given the fact that static analysis generally has a
higher false positive rate compared to other analysis techniques. Based on the results of the third anal-
ysis stage, we can conclude that although multiple candidates were identified, there is still a significant
reduction in candidate functions. The amount of candidate application code functions is reduced from
several hundred to an average of only five candidate functions. Even without the context of the device’s
intended application, it is relatively easy to identify which addresses contain application code versus
which addresses perform RTOS-related functions. This is because many of the incorrectly identified
functions seem to perform memory-related operations and are quite short in terms of function size.
Moreover, the implemented approach was always able to identify the addresses of user applications
and the associated data structure in which these addresses may be stored. When the applications are
stored in a data structure such as a list, a quick analysis of the memory regions where the references
are stored reveals whether or not other applications might be hosted on a system. However, as such
lists may be constructed in a different manner (such as different separators for each list entry), we have
not implemented an approach to automatically identify all these function addresses and properties as
this would require knowledge of the data structure at hand. As mentioned previously, we assume no
knowledge of a present RTOS and cannot make any assumptions about the implemented data struc-
tures. This means that PinDown was successful in identifying application code in 84% of the samples
in the ground truth dataset, failing only when application code was stored at an unreachable address.
This is a limitation of the implementation as we want to keep the approach static.

The results of our ground truth validation clearly show that overall analysis can successfully ter-
minate and correctly identify the application code and functional components within a firmware image.
This is achieved despite some failures of the intermediary analysis phases. PinDown reduced the num-
ber of candidate functions that could host application code in samples of our ground truth dataset by
99.18% on average and shows a false positive rate of 50.26% on average when inspecting the selected
candidate functions. While this rate is rather high in practice, there are less than ~5 candidate func-
tions identified that could host application code. This is an acceptable number of functions to manually
investigate when one needs to determine the application code of a device.

5.3. Experimentation: Wild firmware
The experiments on the wild firmware dataset were performed using the same experimental setup
as with the ground truth dataset. The results were validated by manual verification of the identified
addresses, using the same approach as in the validation of our ground truth dataset.

5.3.1. Wild firmware dataset description
The results from the ground truth validation show that the implemented approach is effective in iden-
tifying application code. The next goal is to assess its effectiveness when applied to wild firmware.
In this instance, we collected firmware samples from various collections. A selection of samples was
curated from several collections of monolithic firmware that matched our scope. The dataset includes



5.3. Experimentation: Wild firmware 35

Table 5.3: Here is highlighted in which cases stage 3 was successful followed by the rate by which we were able to reduce the
candidate functions in a binary firmware image.

Firmware Name

St
ag

e
3
Su

cc
es
sf
ul

N
um

be
r o

f I
de

nt
ifi
ed

Fu
nc
tio
ns

St
ag

e
3
Fa

ls
e
Po

si
tiv
e
R
at
e

C
an

di
da

te
Fu

nc
tio
ns

C
an

di
da

te
R
ed

uc
tio
n
R
at
e
(%

)

nordic-riot-nrf52dk.bin + 2 50% 2/197 98.99%
nordic-riot-nrf5340dk-app.bin + 6 83.3% 6/189 96.83%
ti-riot-cc1352-launchpad.bin + 3 66.7% 4/175 97.71%
ti-riot-cc2538dk.bin + 3 66.7% 3/2046 99.85%
nordic-zephyr-nrf52840dongle.bin + 6 83.3% 6/583 98.97%
nordic-zephyr-nrf51dk.bin + 7 85.75% 7/478 99.68%
nordic-zephyr-thingy52.bin + 8 87.5% 8/394 99.48%
ti-zephyr-cc1352r-sensortag.bin + 2 50% 2/266 99.25%
nordic-mbedos-epatlas.bin + 3 66.7% 3/1043 99.71%
nordic-mbedos-NRF52DK.bin + 3 66.7% 3/549 99.45%
nordic-mbedos-SDT52832B.bin + 3 66.7% 3/543 99.45%
nordic-contiki-nrf5340dk.bin - 0 100% 736/736 0%
ti-contiki-cc26x0-http.bin - 0 100% 823/823 0%
ti-contiki-cc26x0-ws.bin - 0 100% 835/835 0%
ti-contiki-cc2538dk.bin - 0 100% 681/681 0%
nordic-lk-nrf51-pca10028-O5.bin + 2 50% 2/486 99.59%
nordic-lk-nrf52-pca10040-bin + 3 66.7% 3/488 99.39%
nordic-lk-nrf52-pca10040-O5.bin + 1 0% 1/529 99.81%
ti-lk-lm3s6965evb-test.bin + 4 75% 4/605 99.34%
nordic-nuttx-nrf52832-dk.bin + 2 50% 2/979 99.79%
nordic-nuttx-nrf52840-dk.bin + 2 50% 2/972 99.78%
ti-nuttx-eagle100.bin + 3 66.7% 3/716 99.57%
ti-nuttx-lm3s6965-ek.bin + 1 0% 1/932 99.89%
ti-nuttx-tm4c129e-launchpad.bin + 4 75% 4/1354 99.70%

a firmware samples from the collection ucsb-seclab9.
Samples were selected based on whether or not they fit the previously established scope. Other

characteristics, such as image size or intended application, were not considered during the selection,
and the samples were not manually inspected or reverse-engineered before performing the experiment.
As with the ground truth dataset, a similar description of each sample in the wild firmware dataset has
been provided in table 5.4. There is little known about each sample regarding how it was compiled or
what the target hardware was. While we could derive some characteristics, it is unrealistic to derive
the missing information accurately. In the cases where we could not derive certain properties, U was
used to convey an ”unknown” property. We also performed an experiment on an image containing an
operating system that had not been inspected or analyzed before. This information was used to verify
if our approach is also effective in identifying application code within firmware hosting an operating
system that had not been used in establishing our ground truth. Given the scarce availability of wild
firmware that can be analyzed, these results indicate the effectiveness of the approach. In total, we
inspect images based on RIOT OS, Zephyr OS, mBed OS, Contiki-NG, and FreeRTOS.

5.3.2. Wild firmware validation: Stage 1
We applied FirmXRay and Heapster to each image in the dataset, as we did with samples from the
ground-truth dataset. The analysis of each image successfully terminated. FirmXRay correctly iden-
9monolithic firmware collection:https://github.com/ucsb-seclab/monolithic-firmware-collection



36 5. Evaluation

Table 5.4: General information for each binary firmware image in the wild firmware dataset. The images in question are grouped
per operating system and a U is used to describe an unknown property.

Firmware
Information

Properties

O
ptim

ization

M
C
U
M
anufacturer

C
ortex-M

Version

Application

RIOT ti-p2im_console.bin O0 TI U Command shell
Zephyr zephyr-CVE-2020-10064.bin U U U Echo server

zephyr-CVE-2020-10065.bin U U U Bluetooth device
zephyr-CVE-2020-10066.bin U U U Bluetooth device
zephyr-CVE-2021-3320.bin U U U Echo server
zephyr-CVE-2021-3321.bin U U U Echo server
zephyr-CVE-2021-3322.bin U U U Echo server
zephyr-CVE-2021-3323.bin U U U Echo server
zephyr-CVE-2021-3329.bin U U U Bluetooth device
zephyr-CVE-2021-3330.bin U U U Echo server
CVE-no-CVE-false-positive-watchdog-callback.bin U U Cortex-M Echo server
zephyr-CVE-no-CVE-false-positive-rf-size-check.bin U U Cortex-M Echo server

mBed OS mBed-arch-pro.bin U NXP M3 Secret code reader
mBed-efm32gg-stk3700.bin U Silicon labs M3 Secret code reader

Contiki-NG contiki-atmel_6lowpan_udp_rx.bin U U U UDP receiver
contiki-atmel_6lowpan_udp_tx.bin U U U UDP transmitter
contiki-cve-2020-12140.bin U U U UDP receiver

FreeRTOS freertos-p2im_soldering_iron.bin U U U Soldering iron controls

tified all base addresses, which were then used to find the entry points within each binary. Heapster
was then able to find the addresses of all modelled heap-modifying functions present in the binary.

Given the results from the execution of FirmXRay and Heapster, we now initiate the caller candidate
identification. Unfortunately, we quickly find that reaching definitions analysis does not seem effective
at identifying functions that create threads, as can be seen in table 5.5. We see that such a function is
not identified in the firmware based on RIOT OS, mBed, Contiki-NG, and FreeRTOS. This means that
this approach was only effective at identifying such a function within Zephyr-based firmware. Closer
inspection indicates that this can only be partially blamed on the incorrect identification of functions. Fur-
thermore, the actual functions that implement thread creation seem to be disassembled properly in all
samples except those based on mBed OS. Inspecting the Contiki-NG and FreeRTOS-based firmware
indicates that these implementations do not depend on HML components to accommodate functions
for which threads are created. Instead, they use different means of achieving this. We also find that
the functions that implement thread creation are important to the initialization of user applications, so
this implies that our method of identifying such functions was made with an incorrect assumption. The
alternate path of function discovery was implemented to remedy this potential flaw, which was shown
to be effective in our ground truth dataset. Regarding Zephyr OS, we can correctly identify candidate
functions that create threads.

The acquired results from stage 1 analysis show that for our approach to work, as expected, we
require a set of conditions to be true. These conditions indicate the extent to which our approach is
applicable to different RTOSs. These conditions are:

• The function tasked with creating and executing threads should be correctly identified as a func-
tion.

• The function tasked with creating and executing threads must leverage HML functions to be iden-
tified.

• Each function that is analyzed during reaching definitions analysis is required to be correctly
identified as a function.

5.3.3. Wild firmware validation: Stage 2
After the first stage of analysis is finished, we initiate stage 2 analysis. Our approach was able to
correctly identify a candidate function that implements thread creation in 12 firmware samples. As we
can see in table 5.5, we find that our implementation was able to identify the functional components



5.3. Experimentation: Wild firmware 37

Table 5.5: An overview of whether or not analysis phases were completed successfully, whether the firmware was disassembled
correctly as well as how many candidates were found at the end of stage 2 analysis with the corresponding false positive rate.

Firmware Name

St
ag

e
1
Su

cc
es
s

C
or
re
ct
D
is
as
se
m
bl
y

St
ag

e
2
Su

cc
es
sf
ul

N
um

be
r O

f I
de

nt
ifi
ed

Fu
nc
tio
ns

St
ag

e
2
Fa

ls
e
Po

si
tiv
e
R
at
e

ti-p2im_console.bin - + + 1 0%
zephyr-CVE-2020-10064.bin + + + 1 0%
zephyr-CVE-2020-10065.bin + + + 2 50%
zephyr-CVE-2020-10066.bin + + + 2 50%
zephyr-CVE-2021-3320.bin + + + 1 0%
zephyr-CVE-2021-3321.bin + + + 1 0%
zephyr-CVE-2021-3322.bin + + + 1 0%
zephyr-CVE-2021-3323.bin + + + 1 0%
zephyr-CVE-2021-3329.bin + + + 2 50%
zephyr-CVE-2021-3330.bin + + + 1 0%
false-positive-watchdog-callback.bin + + + 1 0%
false-positive-rf-size-check.bin + + + 1 0%
mBed-arch-pro.bin - - + 4 25%
mBed-efm32gg-stk3700.bin - - + 4 25%
contiki-atmel_6lowpan_udp_rx.bin - + - 0 100%
contiki-atmel_6lowpan_udp_tx.bin - + - 0 100%
contiki-cve-2020-12140.bin - + + 10 90%
freertos-p2im_soldering_iron.bin - + - 2 100%

within the Zephyr, RIOT, and mBed firmware samples despite failing stage 1 analysis. Furthermore, we
find that our implementation identified candidate functions in one Contiki-NG and one FreeRTOS-based
binary firmware image, but the identified candidates in the FreeRTOS sample are all incorrect. This
means that our alternate path of discovery was able to identify functions that matched the requirement
that it should have a valid function address as an argument in the higher levels of the call graph.

A closer look at the structure of the binary image based on FreeRTOS reveals that thread creation
is not important to the initialization of user application code. Instead, the main user application is called
directly. This results in our approach being unable to identify relevant functions as they are simply
absent. Due to the difficulty of discerning between user applications and functions introduced by the
framework, our implementation could not leverage previously discussed concepts to identify application
code within this image. When manually analyzing functions that create threads within this image, we
find that the arguments passed to a function that creates threads are again pointers to the heads of
lists stored within memory. Unfortunately, the structure of these lists is different from the ones we
accounted for in our implementation. As such, these functions were not able to be identified through
the path of alternate discovery. However, this would not matter as these functions were called within the
user application code, and as such, the arguments would have been incorrectly identified as functional
components. This indicates the extent to which our approach is applicable to different RTOSs.

The candidates from the Contiki-NG-based image are more interesting as we could not identify any
valid candidates in the images that were used to establish a ground truth. Manual analysis of this image
shows that PinDown could identify a function that starts user application processes, but not in the way
we expected. Further inspection shows that the arguments passed to this component are the head
elements of lists stored in memory. In our ground-truth dataset, we dealt with addresses that could not



38 5. Evaluation

be reached as they were stored in virtual address tables. While the addresses in this current Contiki-
NG sample can be reached, the list structure shows index separators that we had not accounted for in
the implementation. This means that the functional component will not be identified and classified as
such based on this analysis. Instead, we find that the functional component has been identified based
on another function that calls a function that creates threads at a different point in the call graph. This
means that while the function tasked with executing user applications or a functional component has
been identified, the point at which it was identified plays no role in the initialization of user application
code. This means that the next analysis phase will not be able to identify any relevant application code
for this sample. If we had been able to account for different data structures that store user application
addresses, we would have identified the correct functional component or user application.

5.3.4. Wild firmware validation: Stage 3
The third stage of analysis will take candidate functions identified in the second analysis stage. These
candidate functions will be used to find user application code, the results of which can be viewed in
table 5.6. We find that our approach correctly identified user application code in the samples based on
Zephyr and RIOT OS. We also found that our approach was unsuccessful in identifying user application
code in the samples based on mBed OS, Contiki-NG, and FreeRTOS. As discussed in the previous
section, the failure to identify application code in Contiki-NG and FreeRTOS-based binary firmware im-
ages was expected due to the lack of accounting for the data structure that required parsing. The fact
that our approach failed to identify the application code within the mBed OS-based firmware is more
surprising and requires a more thorough analysis.

The functions identified in mBed OS-based samples at the end of stage 2 analysis show that the
components are the same as the components found within the mBed OS-based samples within the
ground truth dataset. This means that we could identify a function that is important to the process of
initializing application code. We will manually reverse the binary image to identify what went wrong.
After the manual analysis is complete, it becomes clear that the functional component that is leveraged
in order to identify application code is structurally different from the one we identified within the ground
truth dataset for reasons unknown. A disassembly of the critical function that was identified in these
images can be seen in figure 5.1a. After manual analysis, we determined that the same function was
identified in both wild mBed OS-based samples. However, the call targets of this function are no longer
present, as can be seen in figure 5.1b. This means that the critical component was correctly identified
in a generalized manner, but the analysis could not find any call targets as these were absent. This
means that analysis had to halt and that no user application code could be identified. Unfortunately,
we do not know why this critical function differs from the one found in images from our ground truth
dataset. Deriving the cause of this difference is also difficult as we do not have any knowledge about
how it was generated, the version of the toolchain, or the version of the compiler that was used. We are
also unaware of whether these factors are of any importance to begin with. It could be that the function
was removed or altered by developers or that the toolchain optimization stripped it from the final image.
Another possibility is that the function has been altered because the image was disassembled incor-
rectly. Developers may be inclined to apply changes as they see fit, but such changes are challenging
to differentiate from issues arising from firmware reversing. The result is that PinDown will not be able
to analyze images as analysis is based on the identification of mechanisms within unmodified operating
systems. This is a limitation of the approach, which is difficult to make up for, given how we cannot
make any assumptions about how developers decide to alter operating system functionalities.

When analyzing wild firmware, we found that PinDown was able to reduce the number of candidate
functions by 99.47%. Furthermore, we have found that among the identified candidates, there exists
an average false positive rate of 75.08%. However, we find that the result of the final analysis stage
generally contains the function addresses that host user applications. Unfortunately, given how wild
binary firmware images are hard to come by, we find ourselves somewhat constrained given the scope
of the project. Furthermore, we were able to identify features that made it impossible for our approach
to correctly identify user application code.

5.4. Performance
In order to determine the applicability of the PinDown framework in real-life analysis and understand
the limitations of the research, we have logged the execution times of each analysis stage. Inspect-



5.4. Performance 39

(a) The annotated disassembly of the critical component identified in the nordic-mbedos-
epatlas.bin image.

(b) The annotated disassembly of the critical
component identified in the mbed-arch-
pro.bin image.

Figure 5.1: Annotated disassemblies of the same function within two different binary firmware images based on mBed OS.

ing the performance of the analysis framework indicates that the speed of the framework is bound by
the analysis performed by Heapster as well as the caller candidate discovery step in the first analysis
stage. We also find that overall performance is impacted by the present user application(s), RTOS, and
changes that developers have applied to the said RTOS framework. Furthermore, the performance of
the second and third analysis stages are bound by the implemented workarounds that aim to address
the challenges mentioned in chapter 4. This can be mainly attributed to the fact that when a poten-
tial infinite loop is encountered, we wait a constant amount of iterations before we decide to halt the
symbolic execution and continue analysis. We also find that the amount of time required by the third
analysis stage is nearly negligible in all firmware images within both the wild firmware and ground truth
datasets. The execution times also show that when earlier analysis stages are unsuccessful, future
stages are impacted in their relative performance. This is expected as when analysis fails to identify
specific targets, more possible targets are taken into account, which leads to an increasing number of
functions being analyzed. Finally, we can observe that the total time necessary for PinDown to analyze
a binary firmware image is about 23.5 minutes, which is an acceptable amount of time, especially given
how this process can be easily parallelized, which will greatly reduce the downtime between analyzing
several firmware images at once.

5.4.1. Ground truth dataset
We start with investigating the performance results of the entire PinDown framework, of which the re-
sults are shown in figure 5.2. It becomes evident that the prerequisite analysis phase generally causes
the majority of the performance overhead. We also find that, on average, PinDown is responsible for
about 7.7% of the performance overhead. This is in line with our expectations, as PinDown relies
mainly on static analysis techniques and the symbolic execution of only a few specific functions. The
number of functions that PinDown will analyze will be decided by the prerequisite analysis phase, which
will need to create a selection of all candidates for which static analysis and function simulation will be
utilized. We can also see that there is one statistical outlier in ti-riot-cc2538dk.bin, which we
will inspect in greater detail.

We highlight the performance results of the individual processes within the prerequisite analysis
phase, which can be viewed in figure 5.3. It becomes very clear that the performance of the first stage
of analysis is bound by the execution time of Heapster and the caller candidate identification. This was
expected as Heapster simulates functions it aims to identify, meaning it will symbolically execute each
function in a binary firmware image if the function was not filtered out based on model expectations. As
the caller candidate discovery iterates through the call graph, starting at each basic HML function, there
will be multiple paths to traverse. These paths will all need to be analyzed, and given the complexity
of RTOS, many paths will greatly impact performance. The possibility of functions being incorrectly
identified may also lead to the analysis framework exhaustively trying to identify a potential generator.
Furthermore, the processes of caller candidate identification were combined with the pointer source
generator identification step from Heapster in order to reduce potential overhead, all of which explain
the long execution times of stage 1 analysis as well as why stage 1 analysis represents 64.1% of the
average performance overhead.

This is further supported by derived metrics as shown in table 5.8 in which we find an average
execution time of 1300.09 seconds, of which 833.9 seconds on average are spent performing caller



40 5. Evaluation

Table 5.6: Additional results showing the success of stage 3 analysis and the reduction rate of candidate functions in various
firmware images.

Firmware Name

St
ag

e
3
Su

cc
es
sf
ul

N
um

be
r o

f I
de

nt
ifi
ed

Fu
nc
tio
ns

St
ag

e
3
Fa

ls
e
Po

si
tiv
e
R
at
e

C
an

di
da

te
Fu

nc
tio
ns

C
an

di
da

te
R
ed

uc
tio
n
R
at
e
(%

)

ti-p2im_console.bin + 3 66.7% 3/336 99.11%
zephyr-CVE-2020-10064.bin + 3 66.7% 3/910 99.67%
zephyr-CVE-2020-10065.bin + 6 83.3% 6/816 99.26%
zephyr-CVE-2020-10066.bin + 5 80% 5/832 99.40%
zephyr-CVE-2021-3320.bin + 4 75% 4/889 99.55%
zephyr-CVE-2021-3321.bin + 4 75% 4/885 99.55%
zephyr-CVE-2021-3322.bin + 4 75% 4/886 99.55%
zephyr-CVE-2021-3323.bin + 4 75% 4/882 99.55%
zephyr-CVE-2021-3329.bin + 5 80% 5/843 99.41%
zephyr-CVE-2021-3330.bin + 4 75% 4/876 99.55%
zephyr-CVE-no-CVE-false-positive-watchdog-callback.bin + 4 75% 4/890 99.55%
zephyr-CVE-no-CVE-false-positive-rf-size-check.bin + 4 75% 4/896 99.55%
mBed-arch-pro.bin - 0 100% 391/391 0%
mBed-efm32gg-stk3700.bin - 0 100% 484/484 0%
contiki-atmel_6lowpan_udp_rx.bin - 0 100% 804/804 0%
contiki-atmel_6lowpan_udp_tx.bin - 0 100% 804/804 0%
contiki-cve-2020-12140.bin - 0 100% 671/671 0%
freertos-p2im_soldering_iron.bin - 0 100% 689/689 0%

Table 5.7: Statistics for the prerequisite analysis, PinDown analysis and combined total performances where the combined
performance is based on the sum of respective execution times.

Combined execution time Prerequisite analysis PinDown analysis
Statistic Statistcal values

Average 1408.20 1300.09 108.11
Minimum 162.46 104.92 5.54
Maximum 4984.80 4853.81 1026.80
Standard Deviation 1003.03 978.32 217.81
Median 1507.31 1437.85 28.57
Variance 1006065.54 957112.43 47440.16
Number of Outliers 1 1 1

candidate discovery. This is in line with our expectations as tasks relayed to Heapster and caller can-
didate discovery are more computationally intensive to complete compared to the task of FirmXRay.
We also find that ti-riot-cc2538dk.bin is the only statistical outlier that varies more than twice
the standard deviation from the average total execution time. Closer inspection reveals that this can be
attributed to the fact that several functions are not correctly identified by angr, which leads to several
instances within Heapster and caller candidate identification trying to identify functions that it cannot
reach despite these being present in the knowledge base. As such, an exhaustive discovery is per-
formed to identify potential generators and candidates. This can be further supported by the results
from the experimental validation, which clearly show that stage 1 analysis was unsuccessful due to
improper function identification.

The performance results of stage 2 and 3 analysis indicate that this performance is bound by the
analysis performed in stage 2, as shown in figure 5.4. This is also in line with our expectations, as all
matching call targets need to be examined for valid function addresses and all the functions present



5.4. Performance 41

Figure 5.2: The figure shows execution times of each main component in the PinDown analysis framework when applied to every
image in the ground truth dataset. It also shows how execution time was distributed between PinDown and the prerequisite
analysis phase

in the first three layers of any call graph generated by angr. The single statistical outlier of these
results is the ti-nuttx-eagle100.bin firmware image, which requires a short amount of time to
complete the second stage of analysis but then takes comparatively long to complete the third stage
of analysis. A closer inspection of this firmware image shows that several infinite loops in the code are
analyzed when trying to determine whether the function at hand is application code or not. The image
was compiled with a client application that listens continually for possible inputs. It is highly likely that
the analysis will take longer than the second stage because of how we deal with potentially infinite
loops.

Furthermore, this provides useful insight that the application code present on the image affects
the performance of PinDown because of its implementation. We cannot ensure we will never analyze
user application code as initialization procedures may call these functions directly. We need to alter
our implementation if we want to mitigate the potential performance overhead that the analysis of user
applications may introduce.



42 5. Evaluation

Figure 5.3: Prerequisite performance results of each firmware image in the ground truth dataset in seconds. The total time for
each image is equal to the sum of the respective Heapster, FirmXRay and Phase 1 execution times.

Besides the statistical outlier, we also need to consider that the firmware images based on Contiki-
NG failed the second stage of analysis. As a result, the analysis process was terminated before the third
analysis stage was performed. This explains why stage 2 analysis represents 100% of the total Pin-
Down execution time in these cases, which is reflected in the average values shown in table 5.9. When
we omit the performance results of ti-nuttx-eagle100.bin and ti-contiki-cc2538dk.bin
(which are the two statistical outliers) to improve the clarity of the graphs as can be seen in figure 5.5,
we see that stage 3 has a near negligible share in the performance overhead. This is also apparent
based on the generated statistics in table 5.9.

Overall, it becomes clear that the identification of functions that implement thread creation is the
bounding factor.



5.4. Performance 43

Table 5.8: Combined statistics and metrics on performance results from the ground truth dataset found in figure 5.3. Combined
performance corresponds to the sum of the respective FirmXray, Heapster and caller candidate identification execution times.

Stage 1 performance FirmXRay performance Heapster performance Caller candidate Indentification
Statistic Statistical values

Average 1300.09 55.72 410.47 833.90
Minimum 105.00 6.39 21.91 49.84
Maximum 4853.81 211.42 2546.03 2290.53
Standard Deviation 978.32 59.07 572.15 584.81
Median 1437.85 33.91 185.83 691.07
Variance 957112.43 3489.63 327357.60 341998.51
Number of Outliers 1 No Outliers 1 1

Figure 5.4: Performance results of applying stage 2 and stage 3 analysis to each firmware image in the ground truth dataset.
The total time for each image is equal to the sum of the respective stage 2 and stage 3 analysis times.

5.4.2. Wild firmware dataset
We have seen that the first analysis stage has the largest share in performance overhead when analyz-
ing firmware images from the ground truth dataset. We want to know if the same holds for wild firmware
or if this was simply a result of how we generated this dataset. Plotting out the execution times, as can
be seen in figure 5.6, clearly indicates that the same holds for the analysis of wild firmware. We also find
that generally, the average execution times are higher than the ground truth dataset, as seen in table
5.10, showing an increase of nearly 600 seconds on average. Viewing these numbers, we do have to
consider that our two datasets are very different regarding the number of images per RTOS, the types
of RTOSs present in these images as well as the implemented user applications, all of which impact the
performance to some degree. We will now inspect the execution times of all the steps in the first stage
of analysis as well as the second and third stages of analysis in order to more accurately determine
the main causes of extended execution times. The execution times for the prerequisite analysis phase
on wild firmware can be viewed in figure 5.7.



44 5. Evaluation

Figure 5.5: Omitting ti-nuttx-eagle100.bin and ti-contiki-cc2538dk.bin to improve visual clarity.

In our ground truth analysis, we found that the first analysis stage was generally bounded by the
identification of the caller candidate. We attribute this to the increasing complexity of reaching def-
initions analysis and the possibility of incorrectly identified functions. However, when inspecting the
performance results concerned with analyzing wild firmware, we find that caller candidate identification
only makes up for the majority of the performance overhead in two cases, which are also the statisti-
cal maximum values as can be seen in table 5.11. Incidentally, these concern samples whose critical
functions do not seem to be properly identified. While this seems to indicate that improper function
identification causes extended execution times of caller candidate identification, the results from the
ground-truth dataset contradict this notion as several properly disassembled images showed longer ex-
ecution times of caller candidate identification as well. This means that the operating system impacts
the performance of the first stage of analysis, the user application(s) present in the binary firmware im-
age, and how the firmware images were generated. We can derive this based on the fact that images
that host a similar operating system have a varying distribution of execution times between Heapster
and caller candidate identification. This also implies that it is difficult to give any performance esti-
mations based on the approach and implementation, as performance depends on factors we have no
assumed knowledge of.



5.4. Performance 45

Table 5.9: Combined statistics for applying PinDown to the ground truth dataset after omitting ti-nuttx-eagle100.bin and
ti-contiki-cc2538dk.bin.

Total execution time Stage 2 analysis Stage 3 analysis
Statistic Statistical values

Average 49.50 47.07 2.44
Minimum 5.54 5.49 0.00
Maximum 218.08 218.08 28.86
Standard Deviation 60.91 59.78 6.07

Figure 5.6: The figure shows execution times of each main component in the PinDown analysis framework and how these
compare to the total execution time for each image in the wild firmware dataset.

Table 5.10: Statistics for the performance results of applying PinDown to wild firmware.

Combined Execution Time Prerequisite Analysis PinDown Analysis
Statistic Statistical values

Average 2011.56 1931.64 79.92
Minimum 640.03 595.25 7.93
Maximum 4627.72 4389.90 410.49
Standard Deviation 983.18 903.29 119.40
Median 1797.37 1789.18 27.88
Variance 966633.37 815927.82 14256.48
Number of Outliers 2 2 2



46 5. Evaluation

Figure 5.7: This figure shows the execution times of each step in the first stage of analysis and how these compare to the total
execution time.

Table 5.11: Statistics for the peformance results of applying stage 1 analysis to wild firmware

Stage 1 performance FirmXRay performance Heapster performance Caller candidate identification
Statistic Statistical values

Average 1931.64 214.00 1040.62 677.02
Minimum 595.25 11.00 542.19 34.69
Maximum 4389.90 497.41 1503.56 2959.56
Standard Deviation 903.29 150.50 248.21 819.18
Median 1789.18 152.16 1040.92 523.84
Variance 815927.82 22649.75 61609.48 671060.87
Number of Outliers 2 0 1 2

Lastly, we want to gain more insight into the performance times of the second and third stages of
analysis when our framework is applied to each image in the wild firmware dataset. The results of this
analysis are shown in figure 5.8. During the performance analysis of applying stage 2 and stage 3 to the
ground truth dataset, we found that generally, stage 3 has a near negligible share of the performance
overhead. We now analyze the execution times shown in figure 5.8.

Again, we find that the third stage of analysis has a negligible impact on overall performance in all
but three cases. We want to understand why analysis takes longer in the three Zephyr-based firmware
images, as all three are a statistical outlier, as shown in table 5.12. First of all, we note that these images
are all compiled with what is most likely the same application: an application that sends advertisements
to a device over a Bluetooth connection. This has been verified by means of manual analysis. We were
able to determine that when PinDown is analyzing the main application during the third analysis stage,
we encounter a function that introduces several finite loops. Due to how we aim to uncover information
about these functions by means of register and memory analysis, we can assume that iterating over
these loops introduces the observed performance overhead. This confirms our earlier observation that



5.4. Performance 47

Figure 5.8: An overview of the performance results of applying stage 2 and stage 3 analysis to each image in the wild firmware
dataset. The total time for each image is equal to the sum of stage 2 and stage 3 times.

because of how we aim to deal with potential infinite loops, the performance is partially based on the
implementation of user applications.

Table 5.12: Statistics of the performance results acquired from executing stage 1 and stage 2 on wild firmware

Total execution time Stage 2 analysis Stage 3 analysis
Statistic Statistical values

Average 79.92 67.72 12.20
Minimum 7.93 7.82 0.00
Maximum 410.49 407.98 74.48
Standard Deviation 119.40 121.92 26.73
Median 27.88 8.42 0.03
Variance 14256.48 14864.40 714.63
Number of Outliers 2 2 3





6
Conclusion, Limitations And Future Work
In section 6.1 of this chapter, we discuss the results of the experimental validation and provide the
answers to the initial research questions. Furthermore, this section discusses the limitations of the
work. Finally, section 6.2 provides a short summary of the work and discusses potential future work.

6.1. Discussion
Based on the results of the experimental validation, it becomes clear that our current approach and
implementation for identifying user application code is effective when concerned with binary firmware
images based on RIOT, mBed OS, Zephyr, NuttX, and LittleKernel. The results show that we can
correctly identify functions that implement thread creation that are part of the corresponding RTOS
based on their relation to heap modifying functions. Furthermore, the results show that functions that
implement thread creation can be leveraged to identify functional components and user application
code. We also show that our alternative method of function discovery by means of analyzing compiled
structures is effective at identifying such functions when reaching definitions analysis is insufficient.
When inspecting the results of the ground-truth dataset, we see that our framework is only ineffective
at identifying application code in one group of firmware. This can be attributed to pointers referencing
addresses from the virtual address table, which are not statically accessible. Inspecting the results
from the wild firmware dataset, we find that incorrectly identified functions, omitted functionality, and
a lack of reliance on RTOS components are the main reasons why our framework failed to identify
application code. We also find that the performance of our approach and implementation is impacted
by the type of application that is compiled for the system. This is because we may end up analyz-
ing user application code when we need to discern whether or not we are dealing with a functional
component, an initialization mechanism, or actual user application code. This application code may
initialize infinite loops which we cannot statically detect. Due to the sheer variety of applications, this
introduces performance overhead. However, the overhead introduced by our implementation is mini-
mal compared to the overall overhead introduced by the first stage of analysis within both the ground
truth and wild firmware datasets. A great portion of the overhead can be attributed to how Heapster
uncovers HML components as it does so by simulating existing functions. Furthermore, the process
of applying reaching definitions analysis in order to uncover potential functions that create threads is
responsible for the majority of the performance overhead. We also find that the methods we implement
to identify potential candidate functions in the event stage 1 analysis are unsuccessful, contributing to
an increase in execution time given the exhaustive nature of the implementations. The implemented
methods also increased the false positive rate of the identified candidates, which was expected.
Addressing which types of initialization mechanisms are prevalent in RTOS-based firmware (SQ1), we
find that thread creation is the prevalent method of initiating user application code either by a functional
component or directly in RTOS-based firmware. We also find that we can identify user application code
and functional components by analyzing register values, which are passed as arguments when such
a function that implements thread creation is called. In addition, we have found that these addresses
are stored in data structures within memory regions of the image, and these data structures require
different detection mechanisms, addressing how we can leverage these mechanisms to enable appli-

49



50 6. Conclusion, Limitations And Future Work

cation code discovery (SQ2). Lastly, based on our results, we find that our framework is applicable
to a variety of different RTOS-based systems but that we are limited by the current technology that
enables accurate function identification within stripped firmware. Furthermore, we find that when the
RTOS library functions for systems have been modified, or that thread creation components have been
omitted, our analysis is unsuccessful in addressing the extent to which our approach and implementa-
tion are applicable (SQ3).

We also gain a better understanding of the limitations of our approach. We find that it is important
to devise a method of identifying data structures within binary firmware images and the entries within
these data structures. Experiments concerned with identifying function addresses in Contiki-NG-based
firmware halt further analysis as we cannot identify the valid function addresses stored in a list. This
is because the construction of that list was very different from what we had encountered during the
code analysis of RTOS-based firmware. When we can more accurately identify such data structures,
we should be able to better identify user applications within such binary firmware images. Another
limitation we identify is that reaching definitions analysis cannot always reach a candidate function
that implements thread creation. This is because the assumption that such functions depend on HML
functions to accommodate user applications was partially incorrect. We show that leveraging HML
functions by applying reaching definitions analysis is effective when a function that implements thread
creation does depend on HML components. Furthermore, we find our solution to be dependent on the
presence of thread creation as provided by an RTOS framework. This also implies that our approach
is limited to analyzing binary firmware images in which the framework and its components remain un-
altered. Furthermore, our research was limited by the lack of availability of device firmware that fit our
scope and the fact that many open-source RTOS frameworks have no documentation, rely on devices
to create firmware, or only provide support in Chinese, which we could not translate. All of which shrunk
the potential dataset we could analyze. In order to combat this lacking availability of device firmware
research and RTOS frameworks, we have tried to increase the size of the dataset of wild firmware by
decompiling bit code files into .bin files but this resulted in a missing function hook, preventing the
creation of call- and control-flow graphs1.

6.2. Conclusion
In this work, we have presented PinDown, an automated analysis framework that identifies applica-
tion code within RTOS-based firmware without requiring partial system knowledge. We have provided
an analysis of different RTOS frameworks as well as the initialization characteristics and mechanisms
within firmware based on these frameworks. Using this analysis, we have constructed an approach
that identifies application codes within firmware based on six different RTOSs. This is achieved by
leveraging heap modifying functions to identify RTOS components that enable the discovery of appli-
cation code. As our approach is generalizable, it can be applied to any RTOS-based firmware, but its
success depends on unmodified RTOS library functions as well as the correct identification of functions
by the disassembler. We have performed experimental validation by means of analyzing a custom set
of firmware images as well as wild firmware images and found that PinDown was able to reduce the
number of candidate functions in a binary by 99.18% on average, sporting a 50.26% false positive rate.
PinDown also addressed several challenges inherent to the field of firmware analysis and was able to
mitigate the potential effects these would exert on the effectiveness.

There are several options that future work could investigate to improve PinDown or build upon the
existing framework. An alternative method of identifying RTOS components would enable a more ac-
curate and efficient analysis as reaching definitions analysis depends on correct function identification.
Furthermore, the work can be improved by being able to identify structures within firmware images that
store data such as function addresses and index separators. An extension to this work could focus
on the automated analysis of the application code identified with PinDown in search of vulnerabilities.
Lastly, as PinDown identifies RTOS components to discover application code, future work could uti-
lize this approach in order to determine the type of framework present in the firmware based on the
identified functions.

1bitcode database:https://github.com/RTOSExploration/lctes2023-artifact/tree/main



Bibliography
[1] L. S. Vailshery. Number of Internet of Things (IoT) connections worldwide from 2022 to 2023,

with forecasts from 2024 to 2033. 2024.
[2] Simon Duque Anton et al. “Two decades of SCADA exploitation: A brief history”. In: 2017 IEEE

Conference on Application, Information and Network Security (AINS). IEEE. 2017, pp. 98–104.
[3] Ana Kovacevic and Dragana Nikolic. “Cyber attacks on critical infrastructure: Review and chal-

lenges”. In: Handbook of Research on Digital Crime, Cyberspace Security, and Information As-
surance (2015), pp. 1–18.

[4] Amir Djenna, Saad Harous, and Djamel Eddine Saidouni. “Internet of things meet internet of
threats: New concern cyber security issues of critical cyber infrastructure”. In: Applied Sciences
11.10 (2021), p. 4580.

[5] Ibrahim Nadir, Haroon Mahmood, and Ghalib Asadullah. “A taxonomy of IoT firmware security
and principal firmware analysis techniques”. In: International Journal of Critical Infrastructure Pro-
tection (2022), p. 100552.

[6] Dimitrios Pliatsios et al. “A survey on SCADA systems: secure protocols, incidents, threats and
tactics”. In: IEEE Communications Surveys & Tutorials 22.3 (2020), pp. 1942–1976.

[7] Hugo Riggs et al. “Impact, vulnerabilities, and mitigation strategies for cyber-secure critical in-
frastructure”. In: Sensors 23.8 (2023), p. 4060.

[8] Frank Ebbers. “A large-scale analysis of iot firmware version distribution in the wild”. In: IEEE
Transactions on Software Engineering 49.2 (2022), pp. 816–830.

[9] Abdullah Qasem et al. “Automatic vulnerability detection in embedded devices and firmware:
Survey and layered taxonomies”. In: ACM Computing Surveys (CSUR) 54.2 (2021), pp. 1–42.

[10] Marius Muench et al. “What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embed-
ded Devices.” In: NDSS. 2018.

[11] Nilo Redini et al. “Karonte: Detecting insecure multi-binary interactions in embedded firmware”.
In: 2020 IEEE Symposium on Security and Privacy (SP). IEEE. 2020, pp. 1544–1561.

[12] Sebastian Eschweiler, Khaled Yakdan, Elmar Gerhards-Padilla, et al. “Discovre: Efficient cross-
architecture identification of bugs in binary code.” In: Ndss. Vol. 52. 2016, pp. 58–79.

[13] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. “Firmxray: Detecting bluetooth link layer vul-
nerabilities from bare-metal firmware”. In: Proceedings of the 2020 ACM SIGSAC conference on
computer and communications security. 2020, pp. 167–180.

[14] Fabio Gritti et al. “Heapster: Analyzing the security of dynamic allocators for monolithic firmware
images”. In: 2022 IEEE Symposium on Security and Privacy (SP). IEEE. 2022, pp. 1082–1099.

[15] Pallavi Sivakumaran and Jorge Blasco. “argXtract: Deriving IoT security configurations via au-
tomated static analysis of stripped arm cortex-m binaries”. In: Proceedings of the 37th Annual
Computer Security Applications Conference. 2021, pp. 861–876.

[16] Mingyi Huang and Chengyu Song. “ARMPatch: A binary patching framework for ARM-based IoT
devices”. In: Journal of Web Engineering 20.6 (2021), pp. 1829–1852.

[17] Jiongyi Chen et al. “IoTFuzzer: Discovering Memory Corruptions in IoT Through App-based
Fuzzing.” In: NDSS. 2018.

[18] Thoms Ball. “The concept of dynamic analysis”. In: ACM SIGSOFT Software Engineering Notes
24.6 (1999), pp. 216–234.

[19] Michael D Ernst. “Static and dynamic analysis: Synergy and duality”. In: WODA 2003: ICSE
Workshop on Dynamic Analysis. 2003, pp. 24–27.

51



52 Bibliography

[20] Ryan Roemer et al. “Return-oriented programming: Systems, languages, and applications”. In:
ACM Transactions on Information and System Security (TISSEC) 15.1 (2012), pp. 1–34.

[21] Victor Alessandrini. Shared memory application programming: Concepts and strategies in Multi-
core application programming. Morgan Kaufmann, 2015.

[22] Jiunn-Yeu Chen et al. “Effective code discovery for ARM/Thumb mixed ISA binaries in a static
binary translator”. In: 2013 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES). IEEE. 2013, pp. 1–10.

[23] Jiunn-Yeu Chen et al. “On static binary translation of arm/thumb mixed isa binaries”. In: ACM
Transactions on Embedded Computing Systems (TECS) 16.3 (2017), pp. 1–25.

[24] Paolo Tonella et al. “Variable-precision reaching definitions analysis”. In: Journal of Software
Maintenance: Research and Practice 11.2 (1999), pp. 117–142.

[25] Sandro Pinto and Cesare Garlati. “Secure IoT Firmware For Cortex-M Processors”. In: ().
[26] Pietro De Nicolao et al. “ELISA: ELiciting ISA of raw binaries for fine-grained code and data sep-

aration”. In: International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer. 2018, pp. 351–371.

[27] Richard Wartell et al. “Differentiating code from data in x86 binaries”. In: Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases. Springer. 2011, pp. 522–
536.

[28] Ruijin Zhu et al. “Determining image base of firmware files for ARM devices”. In: IEICE TRANS-
ACTIONS on Information and Systems 99.2 (2016), pp. 351–359.

[29] Eric Gustafson et al. “Shimware: Toward Practical Security Retrofitting for Monolithic Firmware
Images”. In: Proceedings of the 26th International Symposium on Research in Attacks, Intrusions
and Defenses. 2023, pp. 32–45.

[30] Jintao Huang et al. “TaiE: Function Identification for Monolithic Firmware”. In: Proceedings of the
32nd IEEE/ACM International Conference on Program Comprehension. 2024, pp. 403–414.

[31] Xiaokang Yin et al. “Function recognition in stripped binary of embedded devices”. In: IEEE Ac-
cess 6 (2018), pp. 75682–75694.

[32] Andreas Ibing and AlexandraMai. “A fixed-point algorithm for automated static detection of infinite
loops”. In: 2015 IEEE 16th International Symposium on High Assurance Systems Engineering.
IEEE. 2015, pp. 44–51.


	Introduction
	Research questions
	Contributions
	Outline

	Background
	Security analysis of IoT devices
	Dynamic analysis
	Static analysis

	Embedded Operating Systems
	RTOS analysis
	Reaching definitions analysis
	Constraints and scope

	Related Work
	Static analysis techniques for deriving binary characteristics
	Function discovery
	Automated vulnerability discovery
	Knowledge gap resolution

	Approach
	Approach overview
	Prerequisite analysis
	Base address identification
	Basic heap modifying function identification
	Caller candidates discovery

	Functional components discovery
	Call-graph analysis
	Register and load instruction retrieval
	Valid functions

	Application code discovery
	Component grouping

	Addressing improper firmware decompositions
	Functions disassembled as callsites
	Unreachable critical functions
	Function abstraction in optimized firmware
	Infinite looping during symbolic execution
	Incorrect pc-relative offset


	Evaluation
	Experimental Settings
	Experimentation: Ground truth
	Ground truth dataset description
	Ground truth validation: Stage 1
	Ground truth validation: Stage 2
	Ground truth validation: Stage 3

	Experimentation: Wild firmware
	Wild firmware dataset description
	Wild firmware validation: Stage 1
	Wild firmware validation: Stage 2
	Wild firmware validation: Stage 3

	Performance
	Ground truth dataset
	Wild firmware dataset


	Conclusion, Limitations And Future Work
	Discussion
	Conclusion


