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Accelerating Hyperbolic t-SNE
Martin Skrodzki , Hunter van Geffen, Nicolas F. Chaves-de-Plaza , Thomas Höllt , Elmar Eisemann ,

and Klaus Hildebrandt

Abstract—The need to understand the structure of hierarchical
or high-dimensional data is present in a variety of fields. Hyperbolic
spaces have proven to be an important tool for embedding compu-
tations and analysis tasks as their non-linear nature lends itself
well to tree or graph data. Subsequently, they have also been used
in the visualization of high-dimensional data, where they exhibit
increased embedding performance. However, none of the existing
dimensionality reduction methods for embedding into hyperbolic
spaces scale well with the size of the input data. That is because
the embeddings are computed via iterative optimization schemes
and the computation cost of every iteration is quadratic in the size
of the input. Furthermore, due to the non-linear nature of hyper-
bolic spaces, euclidean acceleration structures cannot directly be
translated to the hyperbolic setting. This article introduces the first
acceleration structure for hyperbolic embeddings, building upon a
polar quadtree. We compare our approach with existing methods
and demonstrate that it computes embeddings of similar quality
in significantly less time. Implementation and scripts for the ex-
periments can be found at https://graphics.tudelft.nl/accelerating-
hyperbolic-tsne.

Index Terms—Dimensionality reduction, t-SNE, hyperbolic
embedding, acceleration structure.

I. INTRODUCTION

THE analysis of high-dimensional data is of major impor-
tance for a wide range of applications across many industry

and research fields. Dimensionality reduction is a key part of
processing pipelines to visualize and analyze such data, which
has recently been demonstrated in the application settings of
sports [55], literature search [38], machine learning [54], and
e-commerce [59]. Effective embeddings of data points preserve
structures in the data set, such that a visual inspection of the low-
dimensional embedded data can help to gain insights into the
structures of the high-dimensional data. A widespread technique
to create such embeddings is t-distributed stochastic neighbor
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embedding (t-SNE) [51]. It is popular because t-SNE preserves
local neighborhoods particularly well when embedding the data,
see Section III. Most dimensionality reduction algorithms tra-
ditionally embed data into flat, euclidean space. This misses
the opportunities provided by other embedding spaces, like
negatively curved, hyperbolic spaces.

Hyperbolic spaces already find applications in the embedding
of trees, graphs, and other hierarchical data. For example, it is
possible to embed trees into two-dimensional hyperbolic space
with arbitrarily low distortion [48]. By this property, previous
works have successfully embedded social networks [52] or
the Internet [6] into hyperbolic space. Furthermore, hyperbolic
spaces exhibit a natural Focus+Context view of the data [32],
[37], which significantly increases information foraging [43].
Finally, it has recently been suggested that hyperbolic spaces are
suitable for navigating higher-dimensional spaces directly [29].

Given the utility of hyperbolic spaces for the visualization
of hierarchical data, several methods have been proposed to
translate t-SNE to work in hyperbolic space [19], [25], [60].
These adaptions have shown great potential, when used, for
instance, in visualization, clustering, lineage detection, and
pseudotime inference tasks [25]. We will discuss these in detail
in Section III-A. Although they all create useful embeddings
of high-dimensional data in hyperbolic spaces, solving their
respective optimization problems is costly compared to methods
that embed into euclidean space.

The long optimization run time in hyperbolic spaces is mostly
because accelerations for the computation of euclidean embed-
dings are not directly effective for embeddings in hyperbolic
spaces. For euclidean embeddings, state-of-the-art implementa-
tions make use of acceleration methods [34], [42], [46], [50],
which have been developed over the last years to speed up
the processing, see Section III-B. However, contrary to flat
euclidean spaces, hyperbolic spaces exhibit negative curvature.
One consequence is that the circumference and area of a circle
in a two-dimensional hyperbolic space grow exponentially with
its radius, while they grow polynomially in euclidean space
[30]. On the one hand, these properties make hyperbolic spaces
well-suited for the embedding of structures that also grow
exponentially. On the other hand, it also leads to the lack of
linear interpolation or averages in these non-linear, hyperbolic
spaces. Euclidean acceleration structures, including those listed
above, rely on these properties and can thus not be translated
directly for use in hyperbolic spaces. For example, the Barnes-
Hut scheme [50] accelerates the optimization by building a
quadtree on the embedding space. Here, equal-sized quadri-
laterals form the nodes of the tree and their midpoints act as
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accelerating proxies. In hyperbolic spaces, no direct analog of
such a tree can be built due to the exponential growth and non-
linear properties of such spaces. Instead, existing approaches for
hyperbolic t-SNE turn to sampling the data in order to compute
the embeddings within a reasonable time frame. This limits the
visualization of the data to only a limited portion of the input.

This paper introduces the first acceleration structure for hy-
perbolic embeddings. We use a polar quadtree [35], designed
to operate in hyperbolic spaces. However, we find that the
data structure needs to be adjusted to the specific setting of
embeddings by changing its build procedure to provide a re-
liable speed-up of the optimization. Based on this modified data
structure, we proceed to formulate an approximation of the cost
function gradient used in the optimization of hyperbolic t-SNE
embeddings. By analyzing the gradients of current state-of-
the-art approaches for hyperbolic embeddings [19], [25], [60],
we show that our acceleration technique can be adjusted to
their respective needs. Thus, it is a versatile building block for
current and future hyperbolic embedding approaches. Finally,
we present several experiments to validate our findings and
conclusions. In summary, the contributions of this paper are:
� the presentation of a polar quadtree data structure for

hyperbolic embedding computations,
� a new splitting rule for the data structure that enhances

performance for embedding computations,
� a fast approximation scheme of hyperbolic gradient descent

iterations using the data structure, and
� an analysis of how to integrate this approximation into

existing approaches for hyperbolic embeddings.

II. BACKGROUND

In this section, we present the techniques and concepts that
our method is built upon. Specifically, we introduce t-SNE, its
Barnes-Hut acceleration for euclidean embeddings, and nec-
essary concepts of hyperbolic spaces. Finally, we present a
hyperbolic data structure that was designed for fast random
graph generation in hyperbolic space and that will serve as a
basis for our acceleration of hyperbolic t-SNE.

A. T-Distributed Stochastic Neighbor Embedding

A widely used technique for non-linear dimensionality re-
duction is t-distributed Stochastic Neighbor Embedding (t-
SNE), which creates a low-dimensional embedding of the data
while aiming at preserving local neighborhoods of the high-
dimensional data points [51]. This is achieved by interpreting
the high-dimensional input {x1, . . . ,xn} ⊆ Rd as (conditional)
probabilities by

pj|i =
exp

(
−‖xi − xj‖2 /2σi

)
∑

k �=i exp
(
−‖xi − xk‖2 /2σ2

i

) , pij =
pj|i + pi|j

2
,

(1)
where pi|i = 0 and σi is the variance of the Gaussian centered on
point xi. In practice, σi is chosen such that the perplexity of the
probability distribution Pi equals a user-prescribed perplexity
value. On the low-dimensional embedding {y1, . . . ,yn} ⊆ Rd′

,

a corresponding probability distribution is given by

qij =

(
1 + ‖yi − yj‖2

)−1

∑
k �=�

(
1 + ‖yk − y�‖2

)−1 . (2)

To compute the positions yi of the low-dimensional embedding,
t-SNE starts with an initial embedding obtained by principal
component analysis (PCA) [27] and then alters the embedding
by gradient-descent optimization of the Kullback-Leibler diver-
gence between the high- and the low-dimensional probability
distribution, which is given by

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

, (3)

with the gradient

δC

δyi
= 4

∑
j �=i

(pij − qij)
(
1 + ‖yi − yj‖2

)−1

(yi − yj). (4)

The naive implementation of t-SNE has a run time of O(n2) as
evaluating the gradient takes quadratic time in the number of
input points. This is clear from rewriting δC/δyi as

δC

δyi
= 4

⎛
⎝∑

j �=i

pijqijZ(yi − yj)−
∑
j �=i

q2ijZ(yi − yj)

⎞
⎠ ,

(5)
where Z =

∑
k �=�(1 + ‖yk − y�‖2)−1. The first sum can be

computed efficiently, if the probability distribution P is
sparse [50], that is if the Gaussians in (1) are truncated. However,
the second sum requires O(n2) operations.

B. Barnes-Hut Acceleration Structure for t-SNE

Several accelerating methods have been proposed to speed
up the gradient computation. A method inspired by n-body
simulation is to build a quadtree data structure, alternatively
called a Barnes-Hut tree, on the embedding points [50]. This
hierarchical data structure enables the approximation of the
second sum of (5). It does so by grouping pointsyj far away from
the query point yi on a higher level of the quadtree hierarchy
and using a summary of the cell instead of the individual points.
That is, when evaluating the gradient for an embedding point yi,
we traverse the quadtree structure. At every cell, we evaluate
whether

rcell

‖yi − ycell‖ < θ, (6)

holds, where rcell is the length of the diagonal of the cell, ycell

denotes the arithmetic midpoint of all points stored in the cell,
and θ is a user-given parameter to steer the approximation.
Typically, θ is set somewhere between 0.2 to 0.8 [50]. If (6)
holds, we do not further traverse the hierarchy but instead utilize
the midpoint ycell, weighted by the number of embedding points
represented by the cell, in the evaluation of the gradient. See
Fig. 1 for an illustration of this procedure.
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Fig. 1. Barnes-Hut data structure, showing the quadtree and the hierarchy.
Influence of the points y1,y2,y3 on point y9 is approximated using their
midpoint ycell and the cell diagonal rcell. Modified from [50].

Fig. 2. Poincaré disk model of hyperbolic space with a blue straight line in
the left that appears curved and has infinitely many parallels to it. On the right a
regular tiling illustrating how tiles visually shrink towards the edge of the disk,
while keeping their area within hyperbolic space.

C. Hyperbolic Space and the Poincaré Disk Model

As this work aims at embeddings in hyperbolic space, we will
recall several important notions. Working with hyperbolic space
calls for choosing an appropriate model to work with, for exam-
ple, the Poincaré disk model, the Lorentz hyperboloid model,
or the Klein model [8, Sec. 7]. All these models are compatible
with each other and translation from one model to another is
not costly. Our embeddings will be placed in the Poincaré disk,
see Fig. 2. This is a suitable model because it maps the entire
two-dimensional hyperbolic space to a finite disk. Furthermore,
it has the advantage of being conformal, which helps in splitting
the space into a hierarchy. However, we will use the Klein
model for the computation of the Einstein midpoint, see the
discussion after (11). Other embedding approaches have turned
to the Lorentz model, because of better numerical precision [25].
However, since we will build our acceleration structure directly
on the Poincaré disk, that is, on the embedding space, we obtain
satisfactory results without translating to the Lorentz model.

Formally, the Poincaré disk model is the space D =
{y ∈ R2 : ‖y‖ < 1} equipped with the metric

gD
y = λ2

y g
E , where λy =

2

1− ‖y‖2 , (7)

with gE the standard scalar product of R2 and ‖.‖ the stan-
dard norm of R2, see [17, Eq. (1)]. The hyperbolic distance
dH(yi,yj) between two points yi and yj in the Poincaré model
is then given by [17, Eq. (2)].

dHij := cosh−1

⎛
⎝1 + 2

‖yi − yj‖2(
1− ‖yi‖2

)(
1− ‖yj‖2

)
⎞
⎠ . (8)

Fig. 3. Building a polar quadtree: Poincaré disk with seven points, initially
split into four pie slices, and splitting one of them along the angular and radial
direction.

D. Polar Quadtree

In hyperbolic space, data structures have to be adjusted to fit
the specifics of the space. A possible translation of the quadtree,
used by the Barnes-Hut acceleration of t-SNE in euclidean space,
to hyperbolic space, is the polar quadtree data structure [35]. The
root cell in this case is not a square or rectangle that encompasses
all points, as in the euclidean case, but a circle in the Poincaré
disk that includes all input points. This circle is then split along
the angular and radial directions, to form polar quadrilaterals as
cells, see Fig. 3.

Denoting the angular direction by φ, a split in this direc-
tion is performed at midφ = (maxφ +minφ)/2, where maxφ
andminφ are the respective maximal and minimal angular values
of the current cell. For each of the resulting four sub-cells to
represent the same area in hyperbolic space, a split in radial
direction r is performed at

midr = acosh

(
cosh(maxr) + cosh(minr)

2

)
. (9)

It can be shown that inserting a node into this tree takesO(log n)
time, when n nodes are present in the tree [35, Sec. 3.2]. The
polar quadtree data structure was originally introduced for the
fast generation of random hyperbolic graphs. We will use it to
translate the Barnes-Hut acceleration of t-SNE to hyperbolic
space.

III. RELATED WORK

Methods for dimensionality reduction can be classified ac-
cording to whether their embedding is obtained linearly or
non-linearly and whether they aim to preserve local or global
distances. Here, we focus on t-SNE [51], which is a non-
linear, locally preserving method. Other methods in this class
include LLE (Locally Linear Embedding) [45], LE (Lapla-
cian Eigenmaps) [3], LAMP (Local Affine Multidimensional
Projection) [23], and UMAP [2]. We refer to a recent survey
for the advantages and disadvantages of the respective classes
and methods [57]. The survey states that non-linear embedding
techniques, such as t-SNE, “preserve local neighborhood[s]
in [the] D[imensionality]R[eduction] processes”. Furthermore,
they find that t-SNE “perform[s] the best in cluster identification
and membership identification.” This motivates our focus on
t-SNE.

Considering the t-SNE gradient (5), the two sums can be
interpreted as attractive and repulsive forces, respectively, acting
on the embedding points yi. This interpretation is in direct
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correspondence to force-directed graph layouts, see [7] for a
detailed discussion of the spectrum of attractive and repulsive
forces, related methods, and the impact on embeddings. For a
detailed discussion, we will focus on two aspects: embeddings
into hyperbolic space and acceleration structures for t-SNE.

A. Hyperbolic Embeddings

Embeddings into hyperbolic space have been studied widely
in the context of graph embeddings. Here, it was shown to
be possible to embed trees into two-dimensional hyperbolic
space with arbitrarily low distortion [48]. Additionally, many
real-world graphs and networks have properties that can be
modeled using hyperbolic geometry. Random graphs created in
the hyperbolic plane [16], [30] exemplify some of these proper-
ties, such as the power-law degree distribution, small diameter,
and high clustering, similar to those observed in real-world
networks. Examples of such graphs are the internet [6] and social
network connections [52]. Recent works introduced embedding
techniques that scale well to large networks [5], [39], [47] and
show the relevance of hyperbolic space for biological data [62].

Subsequently, research started to investigate the potential of
hyperbolic spaces for embedding high-dimensional data sets
without graph structures. In this area, several works study ex-
tensions of multidimensional scaling (MDS) [20] to hyperbolic
space (h-MDS) [12], [53] as well as extensions of self-organizing
maps [28] to the hyperbolic setting [40]. By comparing MDS
embeddings of high-dimensional data into euclidean and hy-
perbolic space, it was found that the latter resulted in less
metric distortion [47]. This suggests that hierarchical, high-
dimensional data, similar to large networks as discussed above,
follow an intrinsic hyperbolic metric structure [33, Thm. 1]. On
the flip side, many high-dimensional data sets, like networks
and graphs, but also single-cell RNA sequencing measurements
are of a hierarchical nature [56], which spurred the interest for
dimensionality reduction [25].

Several extensions of t-SNE to hyperbolic space have been
proposed. The Cauchy Origin-SNE (CO-SNE) [19] starts by
interpreting the high-dimensional data as hyperbolic by com-
puting the probability distribution P via the Riemannian nor-
mal distribution. Furthermore, the low-dimensional probabili-
ties Q are derived using the Cauchy distribution. Additionally,
to preserve hierarchical structures, the cost function (3) has
an additional term to help preserve the distances between the
high-dimensional points and the origin.

An alternative extension of t-SNE to hyperbolic space is given
by the Poincaré maps [25]. Here, the starting point is a nearest-
neighbor graph on the high-dimensional data to which additional
edges are added until the entire data set is represented by one
connected component. The weights on the edges are modeled
by a Gaussian kernel. The high-dimensional probabilities P
are given by the Relative Forest Accessibility matrix on the
graph, while the low-dimensional probabilities Q are provided
by Gaussian kernels. As a cost function, a symmetric version of
the Kullback-Leibler divergence is used.

A third and final extension of t-SNE to hyperbolic space is
hyperbolic SNE (h-SNE) [60]. The cost function is enhanced

with a term to increase the sensitivity to large distance values,
as proposed in g-SNE [61]. A hyperbolic embedding is obtained
by replacing the euclidean distance terms in the gradient with
hyperbolic distances. As a limitation, the authors identify the
lack of any acceleration scheme and thereby the limitation on
the size of the data set that can be embedded. Their embedding
scheme performs well until a data set size of about 6,000
points [60, p. 11].

In conclusion, several extensions of t-SNE to hyperbolic space
have been proposed. These alter the algorithm to accommodate
different aspects of the embedding. Yet, all suffer from the lack
of acceleration structures and thus turn to sampling the data
before the embedding or performing stochastic approximations
of the gradient descent. In this paper, we present an acceleration
data structure suitable to speed up the computation of hyperbolic
t-SNE embeddings.

B. Accelerating t-SNE

In Section II-B, we discussed the Barnes-Hut acceleration
method for euclidean t-SNE. Several alternatives for this accel-
eration are available. One of these uses the principle of Fourier
transforms [34]. For this approach, the embedding domain is
covered with a regular grid, and the probability distribution Q
is computed at the grid points instead of at the points yi. The
second term of (5) is then interpolated between the grid values.

A similar approach rewrites (4) in terms of a scalar field
representing the point density and a vector field representing
the forces, both acting on the regular grid points [42]. This
enables the use of parallelized graphics hardware to solve the
embedding problem with linear complexity, assuming that the
grid size is � n, with n points to be embedded. Furthermore,
this can be combined with the quadtree approach, by building
a dual-hierarchy setup on both the embedding and its field rep-
resentation [46]. This approach provides a complexity of O(n)
while significantly reducing the number of interactions between
the hierarchies, compared to the other accelerations.

One difficulty with embedding into hyperbolic space is that it
is not a linear space. For instance, it is not possible to zoom in on a
part of the hyperbolic space without changing the fundamental
structure of the embedding [13]. Both the Fourier transforms
and the vector field approach need a regular grid representation
of the embedding space, but without a uniform scaling, there
is only one fixed resolution of such available in hyperbolic
space. Similarly, it is not possible to translate hierarchies with
congruent cells on a level and similar cells across levels, like
Barnes-Hut [50] and the dual quadtrees [46], as these require
a similar, uniform rescaling. Therefore, efficient computations
of embeddings in hyperbolic space must use the geometric
structures of hyperbolic space to their advantage [24]. We aim
to address this with our hierarchical acceleration data structure
that we present in the following.

IV. A HIERARCHICAL ACCELERATION STRUCTURE FOR

HYPERBOLIC T-SNE

Our proposed solution for accelerating hyperbolic t-SNE
embeddings is based on a data structure, which we describe
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Fig. 4. Left: Initial annulus root cell of a polar quadtree. Center: Splitting the
polar quadrilaterals such that they represent equal hyperbolic area (top) or at the
center of the embedding coordinates (bottom). Right: Two polar quads that have
different elements as their respective longest internal distances, highlighted in
blue.

in Section IV-A, that is adjusted to hyperbolic space. We then
proceed to explain how the data structure can be used to approx-
imate the hyperbolic gradient and thereby speed up the gradient
descent steps of the optimization (Section IV-B). Finally, before
going to some experimental validations, we will investigate how
our approach can be used to accelerate the different variants of
hyperbolic t-SNE (Section IV-C).

A. Modified Polar Quadtree – Embedding Acceleration

We aim at building a hierarchical data structure correspond-
ing to the Barnes-Hut tree for t-SNE [50] but designed for
the Poincaré disk model of hyperbolic space. Recall that the
Barnes-Hut tree starts from an initial quadrilateral encompassing
all points and is built hierarchically by splitting the quadrilateral
into four congruent quadrilaterals. Because of the curved nature
of hyperbolic space, hierarchical splitting into congruent tiles
is not possible. There exist tilings of hyperbolic space with
congruent tiles [11], see an example in Fig. 2, but these do
not support a hierarchy built from similar tiles. Therefore, we
abandon congruent tiles and instead settle for a hierarchy that
consists of similar tiles both laterally at one level of the hierarchy
and across different levels. We achieve this by starting from
an annulus on the Poincaré disk, see Fig. 4 left, as the root
node of our version of a polar quadtree. This annulus contains
all embedding points yi and is split into four similar polar
quadrilaterals by cutting in the radial and angular directions.

In the euclidean case, when cutting a quadrilateral into four
congruent smaller quadrilaterals, each of these has the same
diagonal length. Thus, the maximum distance of two points in
one cell of a quadtree shrinks uniformly by a factor of 0.5 from
one level of the hierarchy to the next. There are two important
differences when going to the hyperbolic setting. First, the
longest distance within a polar quadrilateral is not necessarily
the diagonal. While this is true for polar quadrilaterals close
to the origin, polar quadrilaterals towards the outside of the
disk have the longest distance along their outer arc, see Fig. 4
right. Hence, when checking for the largest possible difference
between points within one cell of the polar quadtree, we have
to check not only the diagonal but also one of the radial and
one of the polar edges of the quadrilateral. Second, as the polar
quadrilaterals on one level of the hierarchy are not congruent
anymore, they can exhibit different longest distances within

Fig. 5. Effect of the two splitting choices on the polar quadtree, note the long
pieces towards the center when splitting according to (9) on the left, while cells
are more compact when splitting according to (10) on the right.

them. Thus, there is no unique shrinkage factor across the levels
of the hierarchy. However, preliminary experiments suggest that
the shrinkage factor approaches 0.5 rapidly, after just a few levels
of the hierarchy.

As stated above, we choose an annulus including all embedded
points yi as root node, see Fig. 4 left. So far, this approach has
been following the polar quadtree construction as outlined in
Section II-D. However, when splitting cells in the polar quadtree,
we strive for a tree that best supports the subsequent approxi-
mation scheme, therefore we divert from the original splitting
procedure [35] and alter it to better adapt to our case of data
embedding. We continue splitting in the middle of the angular
direction, that is at midφ = (maxφ +minφ)/2. However, in our
experiments, we observed that splitting along the radial direction
according to (9) creates larger quadrilateral cells towards the
center of the Poincaré disk, see Fig. 5 left. As t-SNE begins with
a PCA initialization placing all yi close to the disk center [27],
this way of building the polar quadtree does not provide a good
resolution, especially for these first iterations. Therefore, we
propose a different splitting rule that creates more equal-sized
quadrilaterals from the perspective of looking at the Poincaré
disk (Fig. 4 center)

midr =
maxr +minr

2
. (10)

We will evaluate the effect of this new splitting choice on the
performance of the approximation in Section V-A4. Note that
following this splitting choice leads to differently shaped nodes
and thus a different tree than the original polar quadtree [35].

When building the polar quadtree, in addition to the coordi-
nates of each polar quadrilateral at the nodes, we also store one
piece of additional information. In the leaf nodes, we store the
single pointyi located within the polar quadrilateral of this node.
In all other nodes, we store a midpointycell of all pointsyi in this
cell. In the euclidean setting, this is simply the arithmetic mean of
the stored embedding points, which is not available in hyperbolic
space. There, the midpoint is given by the Fréchet mean, which
is defined indirectly as the solution to a variance-minimization
problem. This could be solved to an (1− ε)-approximation by
iteratively solving an optimization problem for every cell during
tree construction [9]. To avoid this, we turn to a pseudo-Fréchet
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mean that has the closed form

m ({vj}) =
∑
j

(
γ(vj)∑
� γ(v�)

)
vj , (11)

where γ(vj) = 1/
√

1− ‖vj‖2 and vj are the coordinates ofyj

interpreted in the Klein model of hyperbolic space, which can
easily be computed [18]. This is only an approximation of the
midpoint and comes with an error rate of about 7% with regard
to the Fréchet variance problem [36, Appendix H], however, it
enables us to compute the midpoint as a rolling average. That is,
we can build the tree by successively adding points and updating
the cell midpoints on the fly, which means that inserting a new
point and updating all midpoint information still has O(log(n))
cost.

B. Approximating the Hyperbolic Gradient

There are different possible ways of adapting the objective of
the euclidean t-SNE for hyperbolic embeddings. For our exper-
iments, we use an objective that resembles the euclidean case
as closely as possible. Therefore, we keep the high-dimensional
probabilities (1). Replacing the euclidean distance in the low-
dimensional probabilities (2) gives

qHij =

(
1 + (dHij)

2
)−1

∑
k �=�

(
1 + (dHij)2

)−1 , (12)

with dHij the hyperbolic distances (8) of yi and yj . Thereby, in
the gradient of the cost function, we need the variation of the
hyperbolic distance

δdHij
δyi

=
4((‖yj‖2 − 2〈yi,yj〉+ 1)yi/α− yj)

αβ
√

γ2 − 1
, (13)

where 〈., .〉 denotes the standard inner product and ‖.‖ the stan-
dard norm of R2. In addition, α = 1− ‖yi‖2, β = 1− ‖yj‖2,
and γ = 1 + 2

αβ ‖yi − yj‖2. The hyperbolic gradient is the
product of λ−1

yi
from (7) with the variation

δCH

δyi
= 4

∑
j �=i

(
pij − qHij

) (
1 + dHij

2
)−1 δdHij

δyi
. (14)

The derivation of the gradient is analog to that of Co-SNE [19]
and h-SNE [62]. Similar to the euclidean case, we can rewrite
the variations in a split form of two sums as

4

⎛
⎝∑

j �=i

pijq
H
ijZ

H δdHij
δyi

−
∑
j �=i

(
qHij

)2
ZH δdHij

δyi

⎞
⎠ , (15)

where ZH =
∑

k �=�(1 + dHij
2
)−1.

To ensure each gradient descent-step taken from yi in the
euclidean tangent space Tyi

D of D is projected to the correct
point on the Poincaré disk, a standard procedure is to utilize
the exponential map, see Fig. 6. That is, for a euclidean direc-
tion v ∈ R2, we project the corresponding step taken from a
point yi in the Poincaré disk to

expyi
(v) = yi ⊕

(
tanh

(
λyi

‖v‖
2

)
v

‖v‖
)
, (16)

Fig. 6. Exponential map projects a stepv at pointyi in the tangent spaceTyiD
onto D. Thus, a step follows a straight line in the Poincaré disk, as shown in
Fig. 2.

with λyi
from (7) and ⊕ the Möbius addition, which for two

points yi,yj ∈ D is defined as

yi ⊕ yj =
(1 + 2〈yi,yj〉+ ‖yj‖2)yi + (1− ‖yi‖2)yj

1 + 2〈yi,yj〉+ ‖yi‖2 ‖yj |2
.

(17)
See [17] for a more general version incorporating varying cur-
vature of the hyperbolic space.

Performing gradient descent close to the edge of the Poincaré
disk can move points outside of the disk. We follow the pre-
viously suggested solution of projecting the points back to the
strict interior of the Poincaré disk after each gradient step [39,
p. 5]

proj(yi) =

{
yi/ ‖yi‖ − ε if ‖yi‖ ≥ 1
yi otherwise

. (18)

The polar quadtree with our modified splitting rule (10) will
serve as the main acceleration tool to speed up the evaluation
of the hyperbolic gradient as given in (15). Note that, just as
in the euclidean case, for a sparse high-dimensional probability
distribution P with truncated Gaussians in (1), the first sum of
(15) can be evaluated without negatively affecting the algorithm
performance. To speed up the computation of the second sum
of (15), we proceed analogously to the Barnes-Hut approach
for euclidean t-SNE [50]. That is, we observe that if a cell of
the polar quadtree is sufficiently small and sufficiently far away
from a point yi, the contributions −(qHij)

2ZHδdHij/δyi will be
similar for all points yj inside this cell. Therefore, we replace
these summands by

−Ncell

(
qHi,cell

)2
ZH δdH(yi,ycell)

δyi
, (19)

where Ncell is the number of points yj in the cell, ycell is the
midpoint of the cell according to (11), and

qHi,cellZ
H =

(
1 + dH(yi,ycell)

2
)−1

.

When evaluating the second sum in (5) for a pointyi, we perform
a depth-first traversal of the polar quadtree. At each node,
we check the condition rcell/d

H(yi,ycell) < θ, the hyperbolic
analog of (6), and if it holds, we cull the subtree and replace
its summands by an approximation according to (19). See Fig.
12, left, for an illustration of the approximation, similar to the
euclidean illustration in Fig. 1. We will evaluate the effectiveness
of this approximation and its effects on the embedding quality
in Section V.
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C. Application to Other Hyperbolic t-SNE Schemes

This approach of translating the Barnes-Hut approximation
data structure to hyperbolic space enables the acceleration of
t-SNE embeddings in hyperbolic spaces. Note that the data
structure and the approach described here are not contradictory
but rather complementary to previous hyperbolic variants of
t-SNE [19], [25], [60]. All these methods can be augmented
by our data structure to efficiently compute the t-SNE gradient
(5) and thus provide faster results. In that sense, we provide
a new building block for hyperbolic dimensionality reduction.
Here, we briefly discuss the gradients of the methods [19], [60]
to discuss how our acceleration can be implemented there.

Hyperbolic SNE [60] uses the cost function

C + λĈ = KL(P ||Q) + λKL(P̂ ||Q̂),

from [61], where λ ∈ R is a weighting parameter and

p̂ij=
1 + ‖xi − xj‖2∑

k �=�(1 + ‖xk − x�‖2)
, q̂ij=

1 + ‖yi − yj‖2∑
k �=�(1 + ‖yk − y�‖2)

.

In the hyperbolic case, the variations δ(C + λĈ)/δyi are
4
∑

j �=i(pij−qij)(1+‖yi − yj‖2)−1(yi−yj)− 4λ
∑

j �=i(pij

− qHij)(1 + (dHij)
2)−1 δdH

ij

δyi
, where the first part corresponds to a

scaled version of (4) and the second part corresponds to (14).
Thus, both can be accelerated, respectively.

CO-SNE [19] uses the cost function λ1 C + λ2H =
λ1 KL(P ||Q) + λ2

n

∑n
i=1(‖xi‖2 − ‖yi‖2)2with the varia-

tions δ(λ1 C + λ2H)/δyi equal to 4λ1

∑
j �=i(pij − qHij)(1 +

(dHij)
2)−1 δdH

ij

δyi
+ 4λ2

n (‖xi‖2 − ‖yi‖2)yi,where the first part can
be rewritten equal to (14) and (15) while the second part does
not need any acceleration as it can be evaluated in constant
time.

Note that the gradient used by the Poincaré maps ap-
proach [25] is not explicitly given in the publication. The deriva-
tion of the gradient is outside the scope of this publication. Still,
at least the first summand can be rewritten equivalently to (15)
and the second symmetric summand, can either be rewritten sim-
ilarly or approximated otherwise. This shows that our method is
versatile in the sense that it provides a building block to integrate
into existing hyperbolic t-SNE implementations.

V. EVALUATION

In this section, we will experimentally evaluate our hyperbolic
acceleration scheme. For our experiments, we use the data sets
listed in Table I.

The first three data sets and the last one contain data obtained
from single-cell RNA sequencing [1]. The data by Lukk et al.,
the Planaria data set [44], and the C.Elegans data are exper-
imentally obtained gene expression atlases. The first contains
human cell data, the latter two contain flatworm data. In con-
trast, the MyeloidProgenitors data consists of synthetic data,
obtained via a boolean gene regulatory network [31]. These
data sets are chosen due to their size variation and their use
in previous hyperbolic t-SNE approaches [19], [25], [62]. We
further include the MNIST data set, as it is a frequently used test

TABLE I
DATA SETS USED IN THE EXPERIMENTS WITH THE NUMBER OF POINTS, THE

DIMENSION, AND THE NUMBER OF LABELED CLASSES

set for dimensionality reduction algorithms. It contains 70,000
hand-written images of the ciphers 0 to 9. For the WordNet data
set [15], consisting of word relations, we follow the general
approach as outlined in previous work [39]. That is, we trained
a network for 400 epochs, after which no significant change
occurred. From this training, we pick the checkpoint with the
lowest cost function value as input for our embeddings.

When computing a hyperbolic t-SNE embedding of these data
with our method, we perform the following steps that reflect
best practices for euclidean t-SNE as closely as possible. First,
we employ principal component analysis (PCA) to reduce the
data to 50 dimensions to speed up computations as previously
recommended [51, Sec. 4.2]. Then, we further employ regular
t-SNE strategies by first performing early exaggeration, that
is, a series of gradient descent steps for which the attractive
forces pij are amplified by multiplying them with a factor,
see [51, Sec. 4.3]. We use an exaggeration factor of 12, following
a corresponding ablation study [4]. We then apply several non-
exaggerated gradient descent steps, that is, steps with regular pij
as defined above, as with usual t-SNE [51, Sec. 3.4].

For the learning rate, we align with a heuristic from the
euclidean case. In the euclidean case, the initial learning rate
is set to η = n/12 [4]. We observe that this setting alone causes
embeddings that tend to the boundary of the Poincaré disk very
quickly. To slow this progression down and to enable a more
thorough development of clusters in the hyperbolic case, we
modify the euclidean heuristic and set the initial learning rate to

η =
n

12 · 1000 . (20)

This is also because, within the hyperbolic disk, the distance
between the left boundary and the right one is not large, for
instance, dH((−1 + 10−4, 0), (1− 10−4, 0)) ≈ 80. Thus, the
embedding has to grow significantly slower than in the euclidean
case, where embeddings easily grow to diagonal sizes of several
hundred units.

From this initial learning rate, we use momentum and gains
as described for the euclidean setting [22], [51]. Gradient de-
scent optimization with momentum is available for hyperbolic
space [10, Alg. 2] and we implement it via the machinery
discussed above [17]. This allows us to rely on the comparatively
rather small initial learning rate that builds up with momen-
tum and gains. We default to the same parameters used in the
euclidean case, that is, a momentum of 0.5 during early exag-
geration and a momentum of 0.8 during the non-exaggerated
iterations. Furthermore, we run all experiments with a uniform

Authorized licensed use limited to: TU Delft Library. Downloaded on July 16,2024 at 07:37:57 UTC from IEEE Xplore.  Restrictions apply. 



4410 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

Fig. 7. Evaluations from left to right: (1) Run time behavior of the exact hyperbolic t-SNE embedding versus the accelerated version on various input data sizes.
For each data set, measurements are connected as a line; black trend lines for O(n2) and O(n log2(n)) are fitted to the data by regression. (2) Run time behavior
of equal area splitting (9) versus lengths splitting (10). (3) Estimating asymptotic run time of the accelerated and the exact hyperbolic t-SNE embeddings. (4) Run
time behavior of accelerated hyperbolic t-SNE embeddings for different values of θ.

perplexity of 30, which is in the recommended range [4, Tab. 2]
and corresponds to the default values used in previous exper-
iments [26]. Furthermore, all accelerations use θ = 0.5, if not
specified otherwise, as is used in previous work [50].

A. Time Gain by Acceleration

As a first set of experiments, we will investigate the time
gain obtained by our acceleration. Here, we are interested in
the absolute time gained for each iteration (Section V-A1), an
estimate of the asymptotic time gain (Section V-A2), and the
effect of parameter θ (Section V-A3) and structural choices
(Section V-A4) on the data structure.

1) Reduction of the Absolute Run Time: First, we want to
measure the effectiveness of our acceleration structure with the
following experiment. For each data set listed in Table I, we
consider the ten sample sizes n/10, 2n/10, . . . , n, where n is
the number of points in the data set. Then, for each size, we draw
five random samples and perform 250 iterations of early exag-
geration followed by several non-exaggerated iterations of gra-
dient descent. When running these non-exaggerated iterations,
we check regularly whether any point has a distance smaller
than 10−4 from the boundary of the Poincaré disk, measured in
embedding coordinates. If so, we stop the optimization as the
embedding has now sufficiently spread across the disk. At the
latest, we always stop the gradient descent after 750 iterations,
as in previous studies [4].

After the optimization, we average the time it took for each
iteration across all five random runs. This provides us with ten
different average times per data set, dependent on the size of
the sample. In Fig. 7, first, we plot a trend line for each data
set, both for the exact version, not using our acceleration, and
the accelerated version where we approximate the second sum
in (5) via the polar quadtree as described in Section IV. Note
that Fig. 7, first, uses a log-scale on both the x- and the y-axis,
hence the dashed trend line for O(n2) becomes a linear graph
of slope 2.

The exact computation of the gradient (4) on a set of n points
requires O(n2) operations. Hence, in Fig. 7, first, we observe a
quadratic growth of the average iteration time. In contrast to that,
our accelerated embeddings build a hierarchical data structure,
which has a theoretical run time of O(n log(n)). The time taken

TABLE II
RUN TIME STATISTICS OVER FIVE RUNS FOR SIX DATASETS

Fig. 8. Embedding the MNIST data set into the Poincaré disk exactly (left)
and using our accelerated method (right).

is mostly two orders of magnitude below the time taken by the
exact method, which amounts to a significant speed-up. This
still holds, even when taking variation into account, which can
be confirmed in Table II, where we report statistics on the run
times. Values are given for the respective full data set. Note that
for all data sets, on average, an iteration saves one—for larger
data sets even two—orders of magnitude of run time.

2) Estimated Asymptotic Run Time: We will use the experi-
mental data to estimate the asymptotic cost of the computation.
To do so, for a pair of input sizes (ni, ni+1) and correspond-
ing average iteration times (ti, ti+1) on these input sizes, we
estimate the order α of the asymptotic run time O(nα) as
α = log(ti+1)−log(ti)

log(ni+1)−log(ni)
, which is the inverse of the experimental

order of convergence, as adapted from Senning [49, Eq. (9)].
As we run ten sample sizes on each data set, we obtain

nine estimated values of α by comparing the run time of each
sample size with the run time on the next larger sample. Consider
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Fig. 9. Embedding the Planaria data set into the Poincaré disk exactly (left) and using our accelerated method (right).

Fig. 10. Comparison of the precision/recall curves for exact and accelerated hyperbolic embeddings.

Fig. 11. Nearest-neighbor preservation on the MNIST data set for varying
values of θ.

Fig. 7, third, for a plot of these estimates. First, we can observe
that the asymptotic order for the exact method is estimated
around α = 2, that is, the exact approach takes quadratic run
time. Second, while the estimated asymptotic order fluctuates
with the different data sets for our method, the convergence
rate α is always well below 2. This shows that there is an

Fig. 12. Left: Our polar quadtree acceleration structure on top of the C. Elegans
data points. The red mark indicates a query point and the polar quads include
groups of points that are summarized via the quad midpoints, shown as blue
dots. Right: Final embedding of the full C.Elegans data set (89,701 points) into
hyperbolic space.

asymptotic time gain, which highlights the increased impact of
our method for growing data set sizes.

3) Effect of θ on the Run Time: Just like with the Barnes-Hut
data structure [50], the main steering parameter of our accel-
eration is θ, which determines whether or not a subtree of the
hierarchy is explored or approximated following (6). For θ = 0,
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no approximation is performed, and for growing values of θ, an
increasing number of subtrees is approximated. We measure
this effect by embedding the full data sets listed in Table I
with varying approximation values θ ∈ {0, 0.1, . . . , 1.0}, us-
ing 250 iterations of early exaggeration and 750 iterations of
non-exaggerated gradient descent, possibly stopping earlier, as
discussed in Section V-A1. We then report the average run time
of these iterations, see Fig. 7, fourth.

We see a similar effect as with the Barnes-Hut data struc-
ture [50], in the sense that increasing the value of θ significantly
reduces the run time of the iterations. When comparing to the
behavior of the Barnes-Hut tree in the euclidean setting [50,
Fig. 3], we see a similar tendency for our method to reach a
plateau, which is not as notable with the log-scale y-axis in Fig.
7, fourth, as it is with the linear scale of [50, Fig. 3]. Yet, these
experiments show that our method successfully replicates the
run time reduction from euclidean t-SNE, but for hyperbolic
t-SNE implementations.

4) Time Gain by Splitting Choices: The previous experi-
ments were run with a polar quadtree built by splitting according
to (10), as opposed to the splitting strategy proposed in the
original publication, see (9). To show that this change in the
data structure has a positive effect on the run time, we repeat
the experiment described in Section V-A1, but this time, we
compare the two different splitting options, see Fig. 7, second.

Averaged over all runs, utilizing our proposed splitting option
(10) outperforms the original splitting method (9). While this
gain is different across the data sets, we obtain an average time
reduction per iteration of 11% for Lukk, 20% for Myeloid, 64%
for Planaria, 34% for MNIST, 42% for WordNet, and 45%
for C.Elegans. As a concrete example, in the largest size of
C.Elegans, with 89,701 points, the average iteration run time
goes down from about 12 seconds for equal area splitting (9) to
roughly 6 seconds for equal lengths splitting (10). This justifies
our choice of implementing a new splitting behavior for the
acceleration data structure, which also sets our data structure
apart from the polar quadtree as presented in previous work [35].

B. Quality Retention Under Acceleration

We now turn to the quality of the obtained embeddings. To
measure the embedding quality, on the one hand, we turn to
method-intrinsic measures, such as the norm of the gradient field
(14) and the value of the cost function (3). On the other hand, we
investigate method-extrinsic measures, such as the one-nearest
neighbor error [50].

1) Retention of the Gradient and the Cost Function: Ulti-
mately, our acceleration method approximates the exact varia-
tions (15) by introducing the summarized terms (19). To measure
the quality of this approximation, we compare the summarized
gradient term to the exact one. Experimentally, for each of the
six data sets from Table I and for each of the sample sizes from
Section V-A1, we compute a hyperbolic embedding using our
accelerated method performing 250 iterations of early exagger-
ation and 750 iterations of non-exaggerated gradient descent.
At iterations i ∈ {0, 50, 100, 150, 200, 249} of early exaggera-
tion and iterations i ∈ {0, 50, . . . , 700, 749} of non-exaggerated

TABLE III
MEAN RELATIVE GRADIENT AND COST FUNCTION ERROR

TABLE IV
1-NEAREST NEIGHBOR ERROR FOR THE EXACT AND ACCELERATED

EMBEDDINGS WITH θ = 0.5

gradient descent (possibly less if stopping earlier, see Section
V-A1), we compute the relative error of the exact version gi

and the approximated version ĝi as
√∑

i d
H(gi,ĝi)2√∑

i d
H(0,gi)2

, that is we

relate the norm of the distance field between the two gradients
to the norm of the exact gradient field. In Table III, we report
the average of all such relative errors, measured at the iterations
indicated above, for each of the sample sizes and runs as laid out
in Section V-A1. From the values presented, we can conclude
that the relative approximation error of the gradient in each
iteration is about 1 to 2.7 permille.

Furthermore, we turn to the cost function of the full embed-
ding obtained after all iterations. We evaluate the cost function
(3), utilizing the hyperbolic low-dimensional probabilities (12),
providing an exact value C of the non-accelerated embedding
and a cost function value C ′ of the accelerated embedding. We
compute the relative error of these as |C − C ′|/C. In Table
III, we present the mean of all these relative cost function
errors across the data sets, averaged over the runs explained
in Section V-A1. This shows that while there is a gradient
approximation error of about 1 to 2.7 permille, the effect on
the cost function of the final embedding is three orders of
magnitude smaller. Hence, our method is efficient at accelerating
the embedding procedure while not affecting the quality of the
results, see the qualitative comparison in Figs. 8 and 9.

2) Effect of the Acceleration on the Embedding Quality: It
was shown for the Barnes-Hut acceleration method, that larger
values of θ lead to larger 1-nearest neighbor errors in corre-
sponding embeddings [50, Fig. 3]. The 1-nearest neighbor error
is given by the percentage of points whose nearest neighbor in the
embedding does not have the same class label as the query point.
Note that for k = 1, this is the inverse of the neighborhood hit,
as discussed by Espadoto et al. [14]. We utilize this measure
to investigate the effect of the acceleration on the embedding
quality. See Table IV for the errors obtained on five of the six
data sets. Note that the WordNet data set has been removed from
this measure as it does not have a clear cluster structure.
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The experimental results in Table IV show that the local
quality of the embedding, measured by the 1-nearest-neighbor
error remains the same under acceleration. That is, our method
produces embeddings that capture local cluster structures, as
well as the exact hyperbolic t-SNE formulation while being
considerably faster.

To further quantify the quality of our embeddings, we turn to
the precision/recall metric [41]. For that, we follow the previ-
ous work and fix a maximum neighborhood size kmax = 30.
Then, for each k ∈ {1, . . . , kmax}, we compute the number
of true positives as TPk = Nkmax

(X) ∩NK(Y ), that is, the
points that are in the high-dimensional neighborhood and also
in the low-dimensional embedded neighborhood, given the re-
spective metrics. From this value, we obtain the precision as
PRk = |TPk |/k and the recall as RCk = |TPk |/kmax. That
is, ideally, the precision is always 1, while the recall grows
as k/kmax, yet, a data set might not exhibit such a solution,
nor does t-SNE necessarily find this solution. Instead, we want
to show that our acceleration does not influence this resulting
quality significantly while achieving a significant speedup.

See precision/recall curves for all data sets in Fig. 10. While
the preservation of the accelerated embeddings falls slightly off,
in particular for the larger embeddings, overall the preservation
behavior is similar. This further demonstrates how our accelera-
tion keeps local neighborhoods at a quality comparable to that of
the exact method while obtaining the embeddings significantly
faster.

3) Effect of θ on the Embedding Quality: As discussed
in Section V-A3, the main parameter of our acceleration
data structure is θ. Here, we investigate the effect different
choices of θ have on the quality of the final embedding. We
choose θ ∈ {0.0, 0.1, 0.2, . . . , 1.0} and embed the MNIST data
set using 250 iterations of early exaggeration and up to 750
iterations of non-exaggerated gradient descent, possibly stop-
ping earlier, as discussed in Section V-A1. For each of the
embeddings, we then compute the neighborhood preservation
via a precision/recall curve. These curves are shown in Fig. 11.
While the approximations fall off slightly when compared to the
exact solution θ = 0.0, the neighborhood quality remains very
stable within the explored range of θ.

Note that θ = 0 is the exact version and obtains the best,
upper-rightmost curve. However, the curves for other, increasing
values of θ are very comparable and do not fall off significantly
in comparison. Therefore, we deduce that the acceleration has a
small enough effect on the embedding quality to make its time
gains a reasonable trade-off.

C. Embedding of Large-Scale Data Sets

Due to the slow processing of larger data sets, previous
approaches turned to subsampling data to show hyperbolic
embeddings. For instance, the Poincaré maps approach took a
sub-sample of 40,000 data points from the C.Elegans data set,
and its GPU implementation spent 2–3 hours to compute an
embedding [25]. With our acceleration structure, we can embed
not only the full C.Elegans data set (Fig. 12), but also to do so on
the CPU within 45 minutes. Generally, these time gains mean

that, with our acceleration structure, hyperbolic embeddings can
be computed without costly graphics cards and thus become
more widely available to researchers. The larger size of data sets
that can be handled furthermore unlocks previously infeasible
application scenarios.

VI. CONCLUSION

In this paper, we have presented an acceleration data struc-
ture for hyperbolic t-SNE embeddings and discussed how to
approximate the hyperbolic gradient with it. We have shown
that this approach is a potential building block for existing and
upcoming hyperbolic embedding techniques. Our experimental
results validate the time gain while showing that there is no
significant loss in embedding quality.

Our work focuses on hyperbolic t-SNE-type embeddings, and
extending our acceleration to other embedding approaches is left
for future work. Furthermore, it remains to be investigated how
to translate Fourier transform approaches or stochastic gradient
descent to the hyperbolic t-SNE scenario. While there are gen-
eralizations of Fourier transform to hyperbolic space [21], [58],
the main challenge for the context of embedding computations
would be to build a regular grid with a clear control on the num-
ber of grid points and the grid-cell shape in hyperbolic space. As
for stochastic gradient descent, sampling the gradient causes the
repulsive forces of the cost function to become unbalanced with
the attractive forces. The main challenge lies in balancing the
sampling rate with a re-normalization of the forces. Furthermore,
it remains to be investigated how these approximations affect
both the run time and the embedding quality.

FIGURE CREDITS

Fig. 1 is an adapted reprint of [50, Fig. 2]. Fig. 2, left, is a
reprint of https://commons.wikimedia.org/wiki/File:Poincare_
disc_hyperbolic_parallel_lines.svg, which is in the public do-
main. Fig. 2, right, is a reprint of https://commons.wikimedia.
org/wiki/File:∗732_tiling_on_the_Poincar
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