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Chapter 3

Global and low-cost
topographic data to support
flood studies

Kun Yan"®, Jeffrey C. Neal’, Dimitri P. Solomatine'” and Giuliano Di
Baldassarre™*

YIHE-Delft, Institute of Water Education, Delft, The Netherlands; >School of Geographical
Sciences, University of Bristol, Bristol, United Kingdom; *Water Resources Section, Delft
University of Technology, Delft, the Netherlands; *Department of Earth Sciences, Uppsala
University, Uppsala, Sweden; 5Deltares, Delft, the Netherlands

3.1 Introduction
3.1.1 Growing availability of global earth observation data

The recent catastrophic flood events (e.g., Central Europe, June 2013)
encouraged more efforts in flood risk-prevention measures to reduce human
losses and economic damages. To this end, modeling and mapping flood
inundation processes using hydraulic modeling techniques has become an
essential component (de Moel et al., 2009; Van Alphen et al., 2009). The
growing availability of distributed remote sensing data has provided a great
potential in building and testing flood inundation models in recent years
(Bates, 2012; Di Baldassarre and Uhlenbrook, 2012). In addition to the high-
resolution digital elevation models (DEMs), which are highly precise but
costly, global low-cost products also provide topographic data, such as the
DEM derived by the shuttle radar topography mission (SRTM). These topo-
graphic data may potentially offer new opportunities to implement flood
inundation modeling in data scarce/poor areas. However, SRTM suffers from
random noises and radar speckles due to the fact that it utilizes radar-based
interferometry technology, which involves the reception of a back-scattered
radar signal by two antennae. Speckle adds waviness with amplitudes of
~1.0m to SRTM (Falorni et al., 2005). Additionally, vertical accuracy is
degraded by its space-borne altitude and its inability to penetrate water surface
and dense vegetation (Falorni et al., 2005). Hence, the low accuracy of SRTM
(Rabus et al., 2003; Rodriguez et al., 2006) together with all its drawbacks
listed above seem that utilizing SRTM data in flood modeling is rather
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challenging. However, SRTM is characterized by errors in flat areas lower than
the errors occurring in high slope areas (Rodriguez et al., 2006). This feature
of the SRTM is beneficial for the potential use of this topographic data to
support large-scale inundation modeling as floodplains are usually flat and
with a mild slope. In addition, floodplain flow above small-scale topography
features, which are usually misrepresented by the SRTM, do not play a
dominate role in large-scale flood inundation processes (Bates, 2012).

3.1.2 Recent progress on evaluation of global topographic data in
supporting flood modeling

The recent scientific efforts on exploring the potential usefulness of SRTM
data in supporting floodplain monitoring at large scale are encouraging. For
example, LeFavour and Alsdorf (2005) derived the water-surface slope of
Amazon based on SRTM topography and found that accurate main stem
discharge values can be estimated with this water-surface slope in this biggest
river of the world. Schumann et al. (2010) compared the water surface gradient
generated by intersecting SAR image and SRTM DEM to that derived from
intersecting SAR image with a high resolution and quality Light Detection
And Ranging (LiDAR) DEM on River Po. They found that there the two
estimates are remarkably close to each other. Sanders (2007) evaluated diverse
public DEMs (including interferometric synthetic aperture radar [IfSAR] and
SRTM) for flood inundation modeling and found that airborne IfSAR was not
appropriate for flood simulation, while SRTM topography led to a 25% larger
flood zone when compared with the high-resolution topography in a steady-
flow Santa Clara River application. Schumann et al. (2012) calibrated the
hydrodynamic model by using highly accurate water levels on the main
channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser
altimeter and validated using multiple satellite acquisitions of the flood area in
the forecasting for the Lower Zambezi River in southeast Africa. Results
showed that satisfactory parameter values and performance, as well as
acceptable prediction skills can be achieved at a very large scale and using
coarse grid resolutions. In a recent study (Yan et al., 2013), the design flood
profiles derived from hydraulic models based on high resolution and accuracy
topography and bathymetry (LiDAR) and hydraulic models based on SRTM
data were compared considering all the other major sources of uncertainty that
unavoidably affect any modeling exercise. It was found out that the differences
between the high resolution topography-based model and the SRTM-based
model were not negligible, but within the accuracy that is typically associ-
ated with large-scale flood studies. However, the flood event considered in Yan
et al. (2013) was confined by the lateral embankments of the River Po, and
therefore a one-dimensional (1D) hydraulic model was used in that study.
Moreover, studies at different scales mentioned above yield quite different
conclusions. Hence, the value of SRTM topography in supporting two-
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dimensional (2D) flood inundation modeling remains largely unexplored,
particularly for medium—small-sized (with width smaller than 100 m) rivers.

3.1.3 Uncertainties in inundation modeling and probabilistic flood
mapping

Many studies have described that there are several sources of uncertainties
intrinsic to flood inundation modeling, such as model structure, topographic
data, model parameter, and inflow etc (e.g., Aronica et al., 2002; Pappenberger
et al., 2006; Di Baldassarre and Montanari, 2009). Among those, topography
uncertainty is considered to be one of the major sources of uncertainty. The
flood inundation maps are characteristically produced by hydraulic models
using deterministic or probabilistic approaches. The deterministic flood maps
which are produced by using a fully 2D physically based best-fit model are
precise, but potentially wrong, due to the fact that they ignore the above-
mentioned uncertainties in inundation modeling. The probabilistic flood maps
that explicitly consider various sources of uncertainties are believed to be
theoretically more appropriate for visualizing flood hazard (Di Baldassarre
et al., 2010), even though their application in flood risk studies is still limited.

3.1.4 Different types of data in constraining uncertainty in flood
modeling

Recent advances in airborne and satellite remote sensing allow the parame-
terization, calibration, and validation of flood inundation models in a
distributed manner (Bates, 2004). Hydraulic models are usually tested on flood
extent data (e.g., Matgen et al., 2007; Pappenberger et al., 2007; Neal et al.,
2013) rather than water level or flow data at particular points as the models
may not perform well at the locations away from the gauged points (Bates
et al.,, 2004). As pointed out by Pappenberger et al. (2007), data used to
constrain model parameter uncertainty should be consistent with the modeling
purpose. For example, models are better to be conditioned on flood extent data
if the goal is predicting flood-prone areas, whereas high water marks are
preferable if the purpose is estimating design flood profiles (Brandimarte and
Di Baldassarre, 2012).

Yet, the use of flood extent data can sometimes be difficult to distinguish
between different model parameterization when the flood extent is not sensi-
tive to changes in water level. In addition, flood extents from satellite flood
images are usually difficult to obtain. As a matter of fact, the overpass fre-
quency of the satellites which provides high-resolution flood imagery is usu-
ally low (e.g., 35 days of repeat cycle for ERS2-SAR, Schumann et al., 2010)
even though there are few products with low revisit time recently available
(e.g., COSMO-SkyMed offers 12 and 24 h revisit time, Garcia-Pintado et al.,
2013). This implies that finding a satellite image at the time of flooding may be
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difficult as flood duration time in small—medium catchment is usually shorter
than the revisit time of satellite data (Hunter et al., 2007; Schumann et al.,
2010). Hydrometric data such as water stages are relatively easier to find. They
have a high temporal frequency but are unavoidably sparse in space (Di
Baldassarre et al., 2011).

A few scientists have explored the use of different types of data sets to
constrain uncertainty in inundation models. For example, Horritt and Bates
(2002) tested three hydraulic codes on a 60-km reach of the River Severn,
UK, using independent hydrometric and satellite data for model calibration.
They found all models are capable of reproducing inundation extent and
flood wave travel time to the similar level of accuracy at optimal simulation.
However, the predictions of inundation extent are in some cases poor when
hydrometric data are used for model calibration. Hunter et al. (2005) cali-
brated an inundation model against flood images, downstream stage, and
discharge hydrographs on a 35-km reach of the River Meuse, the
Netherlands. They found that the evaluation of internal predictions of stage
also offers considerable potential for reducing uncertainty over effective
parameter specification.

3.1.5 The dilemma of downstream water level in hydraulic
modeling

In hydraulic modeling, the normal depth (calculated from the water surface
slope) is often used as downstream boundary condition. The water surface
slope is normally unknown and is often estimated as the average bed slope
under the assumption of a Manning’s type relationship between water stage
and discharge at the downstream end of the river reach. The results of flood
inundation models (e.g., water levels, inundation extent) are affected by this
assumption, especially when backwater effects are significant. Samuels (1989)
proved the practical use of Eq. (3.1) to calculate the backwater length, L, for
engineering applications:

0.7D
L=
S0

3.1)

where D is the bankfull depth of the channel and Sy is the bed slope. Only a
few studies (e.g., Wang et al., 2005; Schumann et al., 2008) have investigated
the impact of assuming a certain water surface slope as downstream boundary
conditions on the results of 2D hydraulic models, such as inundation extent
and water stage. Those impacts can be substantially reduced by extending the
model domain and placing the downstream water level sufficiently far away
from the points of interest. However, this is not always possible.

In this context, the aim of this chapter is twofold: (1) explore the potentials
and limitations of SRTM data in supporting the 2D hydraulic modeling of
floods; (2) examine the sensitivity of 2D hydraulic models on the water surface
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slope used as downstream boundary as well as the associated value of
downstream water levels in constraining uncertainty of flood extent prediction.

3.2 Test site and data availability

The study is carried out on a river system including: (1) the 10-km reach of the
River Dee, between Farndon and Iron Bridge, two gauging stations of the
Environment Agency of England and Wales (hereafter called the EA); and (2)
the 8-km reach of the River Alyn, between the EA gauging station of Pont-y-
Capel and the confluence to the River Dee (Fig. 3.1). A high resolution (2 m)
LiDAR DEM of this test site is derived by the EA. Surface artifacts such as
vegetation and buildings are removed from the raw LiDAR data. The EA also
conducts a channel bathymetry ground survey of 36 cross-sections that are
incorporated with the LiDAR data on floodplain. Hereafter, this hybrid high-
resolution DEM is called LiDAR DEM.

Another DEM of the test site is derived from the SRTM data postprocessed
by the Consortium for Spatial Information of the Consultative Group for In-
ternational Agricultural Research, for example, fills in the no-data holes in the
raw SRTM data (Jarvis et al., 2008). The SRTM DEM of the study area is
reprojected into 75 m resolution with no speckles and surface artifacts
removed. The two DEMs are strongly different, not only in terms of resolution
(2 vs. 75 m) but also in terms of accuracy: the vertical accuracy of LiDAR data
was of around 10 cm, whereas that of SRTM in Europe was found around 6 m
(Rodriguez et al., 2006).

In December 2006, the River Dee underwent a low magnitude flood event
(with the return period about two years). In this period, a high-resolution
satellite image (ERS-2 SAR, see in Fig. 3.1) was acquired. The ERS-2 SAR
image is characterized by a pixel size of 12.5 m and a ground resolution of
approximately 25 m. The satellite image was processed by using visual
interpretation procedure to derive a flood extent map (Schumann et al., 2009;
Di Baldassarre et al., 2010). We reproject this flood extent map into the 20 and
75 m resolution for evaluating the LiDAR-based and SRTM-based models (see
below).

3.3 Inundation modeling

The LISFLOOD-FP (Bates and De Roo, 2000) raster-based hydraulic model is
used to simulate the flood event in 2006. The main channel widths of River
Dee and Alyn are on average 30 and 12 m, respectively, which are much
smaller than SRTM DEM cell resolution (i.e., 75 m). Therefore, the subgrid
approach of LISFLOOD-FP (Neal et al., 2012), which can represent 1D
channels with widths below the grid resolution, is applied for the SRTM-based
model. The subgrid approach allows the modeler to specify channel width,
channel depth as well as the bank elevation inside each cell, so that it can
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Iron Bridge

Pont-y-Capel Farndon

Iron Bridge

Pont-y-Capel )

Farndon

FIGURE 3.1 River Dee between Farndon and Iron Bridge and River Alyn from Pont-y-Capel (black
lines); flood extent of 2006 event from ERS2-SAR flood image (crosshatch); (A) LiDAR digital
elevation model (DEM) (gray scale); (B) shuttle radar topography mission DEM (gray scale).

better emulate flood propagation in the main channel for coarse resolution
models. It was proved to change the floodplain inundation dynamics signifi-
cantly and increase simulation accuracy in terms of water levels, wave prop-
agation speed, and inundation extent compared with the pure 1D channel
model or 2D floodplain model of LISFLOOD-FP (Neal et al., 2012). The
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subgrid approach uses the floodplain flow model of Bates et al. (2010), which
introduced the local inertial term to the diffusive wave equation to significantly
reduce the computation cost. However, computational cost can still be high for
fine resolution (e.g., 1—10 m) grids. Therefore, the 2 m LiDAR DEM is
aggregated into 20 m resolution to reduce the model computational time. The
key topographic features such as embankments are manually identified in the
aggregated DEM.

The channel-bed elevation of SRTM topography is found to be overall
overestimated in the study area. This is due to the fact that radar wave cannot
penetrate water surface to detect the channel-bed elevation and the channel is
typically smaller than an SRTM pixel. Therefore, we improve the SRTM
channel-bed elevation by using the boat survey data. However, the combina-
tion of boat-surveyed, channel-bed elevation and overestimated SRTM
floodplain topography results in a very deep channel depth (around 8—10 m).
As one of the main purposes of inundation modeling is to predict the flood
extent correctly, we use the surveyed channel depth (bank elevation subtract
bed elevation) to replace the SRTM channel depth rather than directly
replacing SRTM bed elevation by the surveyed bed elevation.

Two hydraulic models (LiDAR and SRTM-based) are built to simulate the
2006-year flood event. The observed discharge hydrograph starting on
December 6, 2006 at 11:00 h (around 144 h before the satellite overpass) is
used as upstream boundary condition. A normal depth with the water surface
slope (estimated as the average bed slope) is applied as the downstream
boundary condition.

In this study, two types of observations are available for the model eval-
uation: (1) spatially distributed binary flood extent and (2) at-a-point time
series of flood water stages (Iron Bridge). The simulated inundation areas are
compared to the observed flood extent map (derived from the ERS2-SAR
satellite imagery, Fig. 3.1) using the performance measure, F' (Aronica
et al., 2002; Horritt et al., 2007):

A
F=— "
A+B+C

where A is the number of cells correctly predicted by the model, B is the
number of cells predicted as wet that is observed dry (overprediction), and C is
the number of cells predicted as dry that is observed wet (underprediction). F'
ranges from O to 1, the higher the better. As assumed in previous studies (e.g.,
Aronica et al., 2002; Pappenberger et al., 2007), only the cells with a simulated
inundation depth greater than 20 cm are considered as flooded.

The evaluation of the simulated downstream water levels is conducted by
using the observed time series of flood water levels at the downstream end of
the river reach. The calibration focuses on the peak hours of the water stage
hydrograph, starting on December 7, 2006 at 4:00 a.m. and ending 127 h later,
which is also the time of the satellite overpass. The root mean square error

(3.2)
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(RMSE) is used to evaluate model errors for both LiDAR and SRTM-based
model.

3.4 The effect of topography resolution on inundation
modeling

To better distinguish between the impact of the resolution and the accuracy of
topographical input data, we first conduct a numerical experiment to isolate
the resolution effect: the LIDAR DEM is aggregated into 80-m resolution
DEM, which is similar to the SRTM resolution (i.e., 75 m). Then the subgrid
LiDAR-based model (80 m of resolution) in which the channel has the same
width, friction, and bed elevation to the LiDAR-based model (20 m of reso-
lution) is built. The SRTM-based model (75 m of resolution) is used for
comparison. The other model parameters among three models are identical.
The flood extents simulated by three models are compared to the flood
extent derived from the ERS2-SAR image. The value of performance measure,
F, is shown in Table 3.1. The coarse resolution LiDAR-based model performs
slightly worse than the high resolution one (with 0.01 difference in terms of F),
whereas the performance is much higher than the SRTM-based model (with
0.271 difference in terms of F). This shows that coarse resolution LiDAR-
based model can simulate the flood extent equally well as the high resolu-
tion LiDAR-based model. The coarse resolution does not degrade the model
performance, whereas the vertical accuracy of floodplain cells might play an
important role. Thus, we focus on the effect of DEM vertical accuracy on flood
extent and downstream water level predictions in the following experiments.

3.5 Uncertainty analysis within a generalized likelihood
uncertainty estimation framework

To investigate the usefulness of SRTM data to support hydraulic modeling, the
effects of topography uncertainty are evaluated within the generalized likeli-
hood uncertainty estimation (GLUE, Beven and Binley, 1992) framework.
GLUE is a simple and pragmatic methodology, which uses Monte Carlo
simulations to produce parameter distributions and uncertainty bounds
conditioned on available data. GLUE has been widely used in environmental

TABLE 3.1 Comparison of three floodplain models.

LiDAR-based model LiDAR-based model SRTM-based model
(80 m) (20 m) (75 m)
F 0.781 0.791 0.510

SRTM, shuttle radar topography mission.
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modeling (e.g., Aronica et al., 1998; Romanowicz and Beven, 1998; Beven
and Freer, 2001). It is worth noting that a number of authors (Montanari, 2005;
Mantovan and Todini, 2006; Stedinger et al., 2008) showed that the GLUE
methodology does not formally follow the Bayesian approach in estimating the
posterior probabilities of parameters and of the output distribution. Also, a
number of subjective decisions have to be made in GLUE, for example, the
priori distribution and feasible range of each parameter (generalized) likeli-
hood function for model evaluation, the threshold between behavioral and
nonbehavioral simulations. It is therefore necessary to clarify each decision to
be transparent and unambiguous.

The assumed ranges of parameters can have an influence on resulting
uncertainties (Aronica et al., 1998). Thus, large parameter ranges, which
cover the extreme feasible values, were used to overcome the potential issue
of subjective choice (e.g., Aronica et al., 1998). Therefore, we keep the
roughness parameter range sufficiently large. Both Manning’s channel and
flood-plain roughness coefficients are sampled randomly from the uniform
distribution between 0.015 and 0.150 m'?s™" due to the lack of information
regarding the priori distribution as well as the feasible range of parameters.
A similar parameter range was also used by Stephens et al. (2014) for the
same study area. The range of average bed slopes is calculated from the two
topographic data sets: the upper bound of the bed slope is calculated based
on the reach from Fardon to Iron Bridge, whereas the lower bound is
calculated based on the reach from the confluence to Iron Bridge for both
LiDAR and SRTM-based model (Table 3.2).

The objective function (i.e., F and RMSE) values for each parameter set
(i.e., Manning’s coefficients in channel (n.,), Manning’s coefficients on
floodplain (nfp), and water surface slope (SI)) are calculated to derive the
generalized likelihoods, which are positive values with the summation of 1
(Wagener et al., 2001). The likelihood measure can be used to weight each
model realization. The behavioral models can be selected by rejecting the
simulations that underperform a user-defined threshold or a percentage of
simulations. In this study, the best 10% of the realizations are assumed as
behavioral models and then used to produce probabilistic inundation maps.

TABLE 3.2 Bed slope calculated from two topographic data.

Farndon to Iron Bridge Confluence to Iron Bridge
LiDAR-based model 0.0002 0.00002
SRTM-based model 0.0012 0.0002

SRTM, shuttle radar topography mission.
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Given the simulation results for the jth computational cell of w;; = 1 for wet
and w;; =0 for dry, the probabilistic inundation map is produced using
Eq. (3.3):

> Liw;
M =-

=+t 33

I=5 T (3.3)
where Mj indicates a weighted average flood state for the jth cell and L; is the
likelihood weight assigned for each simulation i. The posterior parameter
distributions (PPDs) of both two models are plotted as well.

3.6 Results and discussion

We conducted 1000 simulations for LIDAR and SRTM-based models within
the GLUE framework (see above). Two performance measures are evaluated
according to two types of observations. The dotty plots are generated to show
the parameter uncertainty given alternative performance measures and data
sets for both LIDAR and SRTM-based model.

Fig. 3.2A and B shows that the performance measure of LiDAR-based
model increases as the n., and ng increase when conditioned on flood
extent data for the small n.;, and ng, values (below 0.05). The performance

(a) (b) (c)
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FIGURE 3.2 (A)—(C) Performance measure F for LiIDAR-based model conditioned on ERS2-
SAR flood image. (D)—(F) Performance measure root mean square error (RMSE) for LiDAR-
based model conditioned on downstream water stage.
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measure begins to remain unchanged for the larger n., and ng, values. It is
found out that there is a tendency to generally underestimate the flood extent
for smaller Manning’s coefficients. The simulated inundation extent is, as
expected, increasing when n., and ng, are increasing.

It is difficult to observe the optimal S/ when conditioned on flood-extent
data as good simulations occur across the whole range of parameter values
(Fig. 3.2C). The flood extent is affected by the back-water effect and therefore
related to the downstream water slope SI. However, the influence of backwater
to flood extent in this case is limited as the floodplain acts as a “valley-filling”
case, whereby, once the valley is filled by flood water, increases of water depth
do not lead to significant differences in flood extent (Hunter et al., 2005).

The sensitivity to parameters nf, and SI is assessed also by conditioning the
model on downstream water levels (Fig. 3.2E and F). The RMSE is increasing
when nfp is increasing with the optimal value around 0.05. The RMSE is
decreasing when S is increasing (Fig. 3.2F). The effects of the two parameters
are compensated with each other (e.g., when SI is increasing, one can keep
almost the same water level but increase nf,). The sensitivity of S/ is clearly
visible as conditioned on water stage information, as expected. The predicted
downstream water levels are strongly affected by the assumed water-surface
slope.

In Fig. 3.3C, the average performance measure remains stationary with the
change of ST when the SRTM-based model is conditioned on flood-extent data.

(a) (b) (c)

0.8 0.8 0.8

0.7 0.7 0.7
w

0.6 0.6 0.6

""L‘**Al"r.w’w
05| mmmsrliiiadl | 05 N&._ -n | 05

0 005 01 015
Nch

0 005 01 015
Nch

S x107

FIGURE 3.3 (A)—(C) Performance measure F for shuttle radar topography mission (SRTM)-
based model conditioned on ERS2-SAR flood image. (D)—(F) Performance measure root mean
square error (RMSE) for SRTM-based model conditioned on downstream water stage.



96 SECTION | I Floods

A clearly decreasing performance as njp is increasing (Fig. 3.3B). A similar
trend also occurs for ng, (Fig. 3.3A). The SRTM-based model essentially
overestimates the flood extent (with very few underprediction cells), even with
the optimal parameter sets. This is shown by the fact that the performance
measure (F) keeps dropping while n., and nf}, are increasing due to the fact
that the simulated inundation extent keeps increasing, which results in more
overprediction.

The sensitivity of SRTM-based model conditioned on downstream water
stage (Fig. 3.3D—F) is overall larger than LiDAR-based model. The re-
alizations with high performance (low RMSE) are more concentrated in an
area with the small values of n;, and ng, rather than the high ones. Similarly to
the LiDAR-based model, the SRTM-based model performs better with larger
SI values (Figs. 3.2F and 3.3F).

Fig. 3.4B and E shows that, when conditioned on downstream water stages,
the best realizations are obtained with small Manning’s floodplain roughness
values (around 0.05), whereas high-performance realizations are found for
higher Manning’s floodplain values, when the model is conditioned on flood
extent. The PPD for water surface slope, when conditioned on flood extent,
and Manning’s channel coefficients, when conditioned on water stage, are
found nearly uniformly distributed for the LiDAR-based model (Fig. 3.4C and
D). If all the realizations are taken as behavioral, we might conclude that the

(a) x107° (b) x107° (C) x107°
2.5 2.5 2.5
2 2 2
A 15 15 15

o
& g 1 1
05 0.5 0.5
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d o e y f "

()xm"' ()x103 () x107°
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05 05 0.5
0 0 0
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Nch Nfp s <167

FIGURE 3.4 (A)—(C) Posterior parameter distribution (PPD) for LiDAR-based model condi-
tioned on ERS2-SAR flood image. (D)—(F) PPD for LiDAR-based model conditioned on down-
stream water stage.
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simulations conditioned on hydrometric data (i.e., water-stage time series)
may not predict the flood extent properly for LiDAR-based model
(Fig. 3.4A—F). However, the performances are very different after the rejec-
tion of nonbehavioral simulations. Fig. 3.5 (upper panel) shows the flood
extent predicted by the best 10% simulations, conditioned on downstream

Iron Bridge

(a)

Probability
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Low : 0

00306 12 18 24
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FIGURE 3.5 ERS2-SAR flood imagery (crosshatch) and probabilistic inundation map of 2006
event (from black, 1, to white, 0) with behavior simulations conditioned on downstream water
stage: (A) LiDAR-based model; (B) shuttle radar topography mission-based model.
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TABLE 3.3 Performance measure F of two models.

Performance measure F

Average of best 10% Best of
Average of best 10% simulations simulations conditioned 1000
conditioned on water stage on ERS2-SAR Simulations
LiDAR-based 0.771 model 0.797 0.799
SRTM-based 0.524 model 0.543 0.557

SRTM, shuttle radar topography mission.

water stages of which the average performance measure (F) is 0.771, given the
best F among all 1000 simulations is 0.799 (see Table 3.3).

In Fig. 3.6, the PPD shows the performance of parameters for SRTM-
based model is rather similar between the two performance measures (i.e.,
F and RMSE). This indicates that it might get relatively satisfactory pre-
dictions of flood extent when the SRTM-based model is conditioned on
water stage data. It also shows SRTM-based model might be more flexible in
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FIGURE 3.6 (A)—(C) Posterior parameter distribution (PPD) for shuttle radar topography
mission (SRTM)-based model conditioned on ERS2-SAR flood image. (D)—(F) PPD for SRTM-
based model conditioned on downstream water stage.
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conditioning on different data sets than LiDAR-based model. The model
performances after the rejection of nonbehavioral simulations are also shown
in Fig. 3.5 (lower panel). The probabilistic inundation map of the best 10%
simulations conditioned on water stage, of which the average performance
measure (F) is 0.524, compares with the best F of 0.557 among all 1000
simulations (Table 3.3).

Figs. 3.2 and 3.3 show that the LiDAR-based model performs better than
the SRTM-based model in predicting flood extent as well as the downstream
water stage. This shows how the performance of hydraulic models can be
affected by topographic errors. The prediction of downstream water stages
shows a mean RMSE of 1.853 m for SRTM-based model and 0.504 m for the
LiDAR-based model. Considering the predicted water stage is obviously
affected by the channel-bed elevation, the poor performance of the SRTM-
based model is expected. On the other hand, the mean F of the best 10%
realizations conditioned on ERS2-SAR is 0.543 for SRTM-based model and
0.797 for LiDAR-based model (Table 3.3). Despite this large difference,
getting a performance above 50% in simulating flood extent is a reasonably
good result for using SRTM topography to support the hydraulic modeling of a
small—medium-sized river.

3.7 Conclusions

This chapter presents an evaluation of the potential usefulness of SRTM
topography in supporting models predicting flood extent as well as down-
stream water stages, by taking into account parameter uncertainty within a
GLUE framework. The topographic uncertainty is estimated by comparing the
SRTM-based model to a model based on high-resolution topography (i.e.,
LiDAR plus channel survey). The ERS2-SAR flood imagery and downstream
time series of water stages of the 2006 flood event are used to constrain model
uncertainty. Roughness coefficients in channel and floodplain as well as the
water surface slope are sampled uniformly within their parameter space. The
effect of water surface slope in affecting flood extent and downstream water
stages is quantified. The ability of a 2D flood inundation model conditioned on
water stage to simulate flood extent is also evaluated.

The SRTM-based model performs poorly for the downstream water stage
predictions, but it captures the majority of the inundation patterns. In addition,
similar optimal parameters for the SRTM-based model conditioned on flood
extent or water stage are encouraging. However, to generalize these findings,
SRTM data should be tested on more case studies.

It is also shown that the optimal parameters are rather different when the
LiDAR-based model is conditioned on either the flood extent or water stages.
However, when behavioral simulations are conditioned on water stage, pre-
dictions of flood extent prediction are rather good. This is likely due to the fact
that the differences in water levels do not imply changes in flood extent.
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The water surface slope used as downstream boundary condition is found
to have a negligible impact on flood extent predictions with the LiDAR-based
model and a limited impact on flood-extent predictions with the SRTM-based
model. In contrast, the downstream water surface slope is found to signifi-
cantly affect water stage predictions of both models. This finding suggests that
water-surface slope has to be selected with caution when one of the purposes
of the hydraulic model is the prediction of downstream water stages and design
flood profiles.
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