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ABSTRACT
An essential part of being an individual is our personal history,
in particular our episodic memories. Episodic memories revolve
around events that took place in a person’s past and are typically
defined by a time, place, emotional associations, and other contex-
tual information. They form an important driver for our emotional
and cognitive interpretation of what is currently happening. This
includes interactions with media technologies.

However, current approaches for personalizing interactions with
these technologies are neither aware of what episodic memories are
triggered in users, nor of their emotional interpretations of those
memories. We argue that this is a serious limitation, because it
prevents applications from correctly estimating users’ experiences.
In short, such technologies lack empathy.

In this position paper, we argue that media technologies need
an Artificial Empathic Memory (AEM) of their users to address this
issue. We propose a psychologically inspired architecture, examine
the challenges to be solved, and highlight how existing research
can become a starting point for overcoming them.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting theory, concepts and paradigms;
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1 INTRODUCTION
User-modeling describes approaches that enable interactive ap-
plications to adapt their behavior dynamically in response to the
specific preferences and needs of their users, thereby creating more
personalized experiences [34, 48]. Insights into users’ emotions are
a particularly valuable source of information for applications about
how interactions with them are being experienced [44]. For this
reason, attempts are beingmade to provide media technologies with
the ability to relate to peoples’ emotions (e.g. [41]). For example,
applications attempt to anticipate the emotional qualities that inter-
acting with specific media content evokes in users for the purpose
of facilitating personalized recommendations (e.g. [3, 69, 81]).

However, making such estimations correctly is a challenging task.
Individuals’ emotional experiences of events are highly subjective
and express a dynamic relationship between them and their current
situation [56]. As such, the emotional qualities of media experiences
may vary significantly across people and in response to the specific
context in which they take place [36].

One important contextual influence on how people experience
their present situation are the personal memories that it brings
to mind. Moments in which human beings re-experience specific
events from within their personal history are known as Episodic
Memories [21]. These recollections typically include a sense of the
time and the place at which remembered events have occurred, as
well as potentially vivid visual imagery [21]. These memories also
may contain strong affective associations that have an influence
on our present emotional interpretations [7], and emerge sponta-
neously in response to our current environment [8]. Interactions
with media content, such as personally meaningful pieces of music,
may be particularly affected by this emotional influence from the
past: empirical research has identified that these can act as potent
triggers for episodic memories about events from a listener’s past
[47, 65]. Moreover, the emotional tone associated with the memo-
ries elicited in this way, has a strong influence on how listening to
a piece feels [6, 82].

Such influences of a user’smemories on the subjective experience
of interactions with media technology poses three interpretation
challenges that need to be addressed by personalization technolo-
gies:
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• Knowing the conditions that trigger episodic memories. We
refer to this as the challenge of receptiveness, i.e., whether
an individual is receptive to remembering episodes in the
current situation;

• Knowing what episodic memories of the user are triggered
by the current situation. We refer to this as the challenge of
content, i.e., which memories are triggered by the current
situation;

• Knowing the emotional interpretation of a remembered event
and its impact on both the interpretation of the current sit-
uation and emotional state of the user. We refer to this as
the challenge of appraisal, i.e., how does the current situa-
tion, including the triggered episodic memories, feel for the
individual.

We summarize these challenges as the RECAP problem (REcep-
tiveness, Content, and APpraisal). Approaches for personalization
of media interactions that fail to address the RECAP problem are
unable to provide reliable estimations of a user’s experiences. This
is because they are unable to predict if memories impact the user’s
experience of the current situation at all, what memories impact
it, and how they impact it. In a very real sense, being recollection-
unaware in such a fashion makes technologies lack empathy, since
they cannot relate in any way to the influence that having access
to a personal history exercises on their users’ feelings.

In this position paper, we argue for the need to create recollection-
aware technologies that are capable of addressing the RECAP prob-
lem. Furthermore, we propose a generic architecture for the simu-
lation of episodic memory processes in users through an Artificial
Empathic Memory (AEM) as a means to do so. It provides application
with the ability to reason about how episodic memories influence
their users’ cognitive-affective interpretations of a specific situa-
tion, thereby enabling them to more thoroughly empathize with
their subjective experiences.

2 THE RAMIFICATIONS OF
RECOLLECTION-UNAWARE MEDIA
TECHNOLOGY

In the following, we discuss challenges and limitations in interac-
tions between users and multimedia applications that are unable to
relate to the way that human beings dynamically experience their
own past. We begin by discussing the implications of the RECAP
problem on interactions with multimedia content in an example
application domain where they are particularly salient, before de-
scribing broader consequences for personalizing users’ experiences
with media technologies.

2.1 An Example: Challenges for Media-based
Reminiscence Support Technologies

Reminiscing about the past is a complex activity that involves
recollection, interpretation and often sharing of personally sig-
nificant memories [11]. Reminiscing has been attributed with the
fulfillment of numerous psycho-social functions for individuals
engaging in it [10, 27]. Additionally, guided reminiscence activities
are being successfully used as interventions to improve subjective
well-being [17] and ameliorate depression [43]. Motivated by this,

researchers have displayed an ongoing interest in designing tech-
nologies to support and encourage such activities (e.g. [5, 25, 49, 55]).
A popular strategy consists of attempting to evoke recollections in
users by presenting them with personally relevant media content
[24, 58, 60, 76, 77]. Content shared on social media platforms is a
particularly rich and accessible resource for these purposes (e.g.
[66]), and recently has been exploited in large-scale applications
created by commercial enterprises to spark recollections in users
(e.g. [33, 71]).

Despite a persistent interest in the development of technologies
that promote and support reminiscence activities through media
content, relatively little is known about their effectiveness. Initial
empirical findings indicate a potential for evoking meaningful and
desirable recollections in users, but they also highlight how the
RECAP problem hinders applications to do so successfully [25, 61,
66].

First, individuals are not always in a state of mind in which
external stimuli trigger episodic memories. One factor that appears
to contribute to their capacity to do so is individuals’ willingness
and ability to think about their past [25]. Empirical findings indicate
that the capacity of an attempt to evoke episodic memories depends
on how absorbed individuals are in the activities that they are
currently undertaking [61, 78]. This demonstrates the importance
solving the challenge of receptiveness for this kind of applications.

Second, content provided as trigger may not be successful at in-
ducing any episodic memories in individuals, even in cases where it
objectively documents moments from within their personal past. In
these situations, people may recognize that a relation to themselves
exist (e.g. that it is them who are being depicted in a photograph),
but have no recollection [25, 61]. Moreover, the same stimulus may
bring to mind varying memories when encountered at different
moments in time, or result in memories of multiple events. In short,
it is unknown what memories are evoked by a particular trigger.
This is an instance of the challenge of content.

Third, undergoing episodic memories of certain events may be
experienced as undesirable by users of an application. For exam-
ple, people have reported that applications evoke recollections of
events from their life that they did not experience as significant or
interesting enough to warrant their attention in the present [25]. In
other studies, participants have even described negative emotional
responses towards being reminded of certain events from their
past [46, 50, 61]. Strikingly, existing applications of reminiscence
technologies integrated in social media platforms, have led to rec-
ollections of unwanted memories, undermining their explicit goal
of providing their users with joyful experiences [13, 38]. Solving
the challenge of appraisal is therefor an important step towards
predicting the user’s emotional interpretation of a memory evoked
by a multimedia stimulus.

Overall, these findings illustrate the implications of failing to
address the RECAP problem for media-based reminiscence support
technology. Because existing approaches to these applications are
recollection-unaware, they are very limited in their capacity to
cause episodic memories that are aligned with the goals of appli-
cations and the desires of their users. To function reliably, these
applications need to be capable of providing highly personalized
experiences, i.e. they require recommendation of multimedia stim-
uli that are meaningful for an individual user, in light of his or
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her personal past in a specific situation. This cannot be facilitated
without an approach to user-modeling and context-awareness that
addresses all aspects of the RECAP problem.

2.2 Broader Implications for Personalizing
Interactions with Media Technology

The impact of not addressing the RECAP problem stretches beyond
this specific application setting, however, and has broad implica-
tions for personalizing users’ interactions with media technologies.

For once, any form of recommender system can benefit from ad-
dressing the RECAP challenge, both w.r.t. to what suggestions they
make, as well as in choosing the means for how they do it. Contem-
porary versions of such systems are location and time aware and
can, for example, suggest dinner locations with the understanding
that it is lunch time and where the nearest dining locations are.
However, these suggestions are unable to take into account the local
haunts of an ex-lover or suggest a restaurant because a meaningful
family celebration for that individual has occurred there. In this
case, the experience of the recommendation is highly influenced by
the appraisal of the episodic memories associated with the dinner
location. This appraisal may change over time and due to other
factors than the person’s experience at those locations. Moreover,
the form in which the recommendation is provided (e.g. involving
a photo) may accidentally trigger memories that influence its expe-
rience significantly. Without a model to simulate the recollection a
memory and its appraisal in the present, it is practically impossible
to predict the emotional experience associated with a particular
recommendation.

Another example is human memory support through media-
based reminders (see [42] for a recent overview). Addressing the
RECAP problem is a core challenge that these systems face for the
provision of functional and personalized support. They need to
understand when individuals may be able to actually benefit from
external reminders (Receptiveness), determine how to best elicit a
specific memory with the modalities available to them (Content),
and estimate the potential emotional consequences of reminding
their users of a specific event (Appraisal).

In a similar vein, the RECAP problem holds relevance for per-
sonalizing interactions with e-Learning applications and intelligent
tutoring systems. Here, content provided to students may acci-
dentally trigger task-irrelevant (potentially emotionally charged)
thoughts about their past. These may negatively impact their effi-
ciency of learning by preventing them to focus on their intended
learning objectives. Being able to estimate whether certain material
or activities are likely to result in a state of mind in which such
distracting memories emerge more easily provides valuable infor-
mation to applications for personalizing their interactions (see e.g.
[9]).

This is just a small selection of applications that are impacted
by the RECAP problem. Because episodic memories form such an
important part of human cognitive-affective functioning, numerous
other scenarios can be envisioned where users’ experiences of
interactions with media technologies could be improved.

3 AN ARCHITECTURE FOR ARTIFICIAL
EMPATHIC MEMORY

Human beings have an innate ability to estimate how other people
think and feel in response to events in their environment [45].
An important part of this empathic understanding is the cognitive-
affective reasoning by which a person simulates the mental states of
others, based on prior (shared-) experiences and general knowledge
[28]. This is often referred to as Theory of Mind. Empirical findings
suggest that the more familiar one person is with another, the
more likely they are to gain accurate insights into how that other
person feels [70]. In essence, to achieve true personalization of their
interactions, applications need to possess a rudimentary theory of
mind of their users. This would enable them to simulate what a user
is actually thinking and feeling. Building an accurate and usable
artificial theory of mind is, however, a bridge too far in the context
of reliable computational modeling.

In this paper we argue that an important subset of that can
already help to address the RECAP problem for providing per-
sonalized experiences. To that end, we propose a computational
architecture for an Artificial Empathic Memory (AEM). It provides
applications with the ability to predict the user’s experiences of a
situation (including the system’s actions) while taking into account
the episodic memories that are so important for forming his/her
personal interpretation of it.

We argue, that for each of the three RECAP challenges there
is a suitable psychological theory that can form the foundation
of a functional component to address it computationally. In the
following, we provide an overview over each of these components.
In particular, we outline how they interact with each other to detect
the individual’s attentional engagement in a present activity, pre-
dict the associative strength existing between external stimuli and
episodic memories, and finally predict their impact on the emotional
experience of individuals. See also Fig. 1 for an overview.

• Flow Detection Component: The input of this module
consists of features describing a user’s current activity and
state, while the output is the degree of attentional engagement
that is experienced. This value modifies the operation of
the ecphoric processing-module: a low degree of attentional
engagement results in a low activation threshold for episodic
memories, biasing the Ecphoric Processing Component to
propose candidates for recollection.

• Ecphoric Processing Component:. The input of this com-
ponent is the current situation (state + activity). It extracts
(a subset of) the user’s current situation as an Episode in
a representation that allows associative strength to be cal-
culated (e.g. a vector of features). Then it determines the
associative strength between that encoding of the situation
and all available episodes in the Episodic Memory Store. The
outcome of this operation are one or more Episodic Memories.
The Episodic Memory Store forms an important resource for
this process. It is a database that contains a collection of
information about personal events from a user’s past in the
form of encoded situations that we refer to as Episodes.

• EmotionalAppraisal Component:Thismodule simulates
a series of cognitive-affective processes that determine the
emotional quality of experiencing an episodic memory. It
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Figure 1: An overview of the functional components of the AEM Architecture

takes a representation of an Episodic Memory as input and
outputs a representation of the Emotional Qualities of its ex-
perience. An important resource needed for this component
is a Goal Repository, containing information about existing
concerns and motivations of the user who is being modeled.

In the remainder of this section, we provide an outline of psycho-
logical theories that we have chosen to form the foundations for
these functional components. Furthermore, we highlight existing
computational work in line with this psychological basis. As such,
our argument is that an AEM is not only needed for addressing
the RECAP problem, as explained above, but also feasible in the
future, given sufficient efforts. Finally, we discuss conceptional and
technological challenges that need to be tackled to instantiate each
functional component of the AEM.

3.1 Flow Detection and the Challenge of
Detecting Receptiveness

3.1.1 Psychological background. Findings of empirical studies in-
vestigating the emergence of episodic memories in everyday life
have demonstrated that they have a tendency to occur in situations
where a person’s attention is not fully immersed in an ongoing
activity [78, 79]. In this section, we argue that Flow is a useful psy-
chological concept to understand and model the degree to which a
user’s current situation gives rise to such attentional engagement.

The concept of flow describes a state of mind in which a person
is so absorbed in performing an activity that there is no room for
other thoughts to emerge [57]. A requirement for flow experiences
to emerge, is that an ongoing situation holds a balance between
the challenges that it presents to a person and his or her perceived
ability to cope with them [26]. Importantly, situations that are
experienced as lacking in challenge result in states of cognitive
under-stimulation, e.g. boredom [54]. Here, individuals’ attentional
resources are no-longer fully invested in the activities they are
undertaking, thus creating conditions that are more favorable for
episodic memories to emerge.

In summary, Flow is a concept that is widely used and empirically
well established across a broad variety of disciplines. It provides
a suitable theoretical framework to characterize how individuals’

degree of attentional engagement varies under specific circum-
stances, which in turn modulates individuals’ tendency for episodic
recollection.

3.1.2 Computational Approaches Towards Flow Detection. A large
body of work on flow and engagement detection exists, within
the domains of entertainment and education computing. For ex-
ample, research on detecting tutoring engagement showed initial
successes at discriminating between flow-relevant states of bore-
dom, frustration and confusion in learners [30]. In the adaptive
gaming domain, automatic detection of boredom and frustration
was also shown to be feasible [19, 67]. In some cases, these attempts
reached a reported accuracy of over 90 percent in post-hoc classifi-
cation of engagement and frustration based on recorded visual and
game-play features [67]. Further, in the field of Human Robot In-
teraction, initial investigations have shown the possibility to detect
engagement based on task and interaction-related features [18], in
essence replicating findings in the gaming and e-learning/tutoring
domain. Finally, research in the field of interruptibility detection
(e.g. [35]) strongly relates to detecting flow and engagement based
on a user’s context as captured by ubiquitous sensing technology
[75]. In essence, these different areas seem to converge on similar
ideas, namely, that it is both important and computationally feasi-
ble to detect task engagement in users. With the right focus, we
believe these techniques can be extended to engagement measures
that are correlated with the emergence and intensity of episodic
recollections.

3.1.3 Challenges in Flow Detection. Important research challenges
remain. First, significant sensing abilities are needed to detect en-
gagement in users, in particular when focusing on social signals.
Pupil-dilation might be an interesting alley for future research, as
it seems to correlate with, for example, high temporal resolution
attention dynamics [80]. As such, it might be an easy-to-detect, uni-
modal option for the detection of flow. As eye-tracking can now be
reliably done using machine learning on data coming from standard
cameras embedded in mobile devices [23], it is to be expected that
pupil dilation detection too becomes feasible in the near future.
This opens up the possibility to detect attentional engagement in
real time on standard customer devices.
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Another challenge hinted at by flow theory is that activities may
result in varying degrees of attentional engagement for different
individuals, because these do not experience the same degree of
challenge. Detection in these circumstances can probably be en-
hanced with personalized engagement models. Information about a
user’s specific skills or interest in particular activities might help a
computational model of flow-processing to become more accurate
in detecting momentary engagement.

Finally, flow detection will also need to be taken into account
when compiling data traces into digital records describing persons’
episodic stores. This is because the information sensed by tech-
nological monitoring may not be aligned with the deployment of
attentional resources by a person in the same situation. It may
therefor provide a description of the events in question that is strik-
ingly different from that person’s memories. Research on modeling
human attentional focus (e.g. [63]) holds potential for improvement
of this circumstance, e.g. by enabling applications to construct a
model of a situation that corresponds more closely to the user’s
perception of it.

3.2 Ecphoric Processing and the Challenge of
Predicting Episodic Content

3.2.1 Psychological background. The degree of association between
a present situation and an instance in a person’s past plays an es-
sential role in the emergence of episodic memories with a specific
content in contemporary psychological models of human memory
(e.g. [22, 72]). For example, it is understood that the potential of a
present situation to cause an episodic memory of a specific past
event (i.e. to act as a memory cue for it), is dependent on its similar-
ity to the context under which that event was originally committed
to memory [68, 73]. The greater this overlap, the more likely it is to
come to mind. Consequently, the associative strength of external
stimuli both influences whether something comes to mind, as well
what something is. However, the nature of the associations linking
external stimuli to past events can take numerous forms and exist
at different levels of abstraction. They can range from purely per-
ceptual similarities between cues and elements of a past episode to
associations that exist solely at a conceptual level [52].

One way to conceptualize the process of how stimuli act as cues
for recollections of specific events has been proposed by Tulving
[74]: in an initial phase called ecphory, cue attributes are corre-
lated with information stored in memory as traces. The outcome of
this process describes the potential activation of each trace given
its association with the current cue [72, 74]. This is followed by
a conversion-stage, in which the degree of activation determines
whether the information in a trace is recollected or not [72]. This
model provides a simple theoretical framework to conceptualize
the influence that a situation has on the occurrence and content of
episodic memories.

3.2.2 Computational Modeling of Episodic Memory Processes. Re-
search in the domain of artificial intelligence has produced several
computational models of episodic memory that implement retrieval
mechanisms akin to ecphoric processing (e.g. [15, 37, 59, 62]). A
common approach is to represent both cues and traces as an array
of features, and to calculate the associative strength between them

using a form of distance metric. Overall, a variety of plausible mod-
els of ecphoric processing exist in the agent and cognitive modeling
fields. This is of importance as it means that, when such models
can be populated with actual experience-rich content from users,
they can be a start to simulate their episodic memory processes.
This can be combined with a data-driven approach where a model
learns over time which associations are more likely to occur for a
person by receiving explicit feedback from them.

3.2.3 Challenges in EcphoricMemory Processing. Several challenges
for a computational model of ecphoric processing are important to
discuss here. First, in order to facilitate a useful simulation of the
evocative potential of situations, it is necessary to develop a repre-
sentation for them that captures their potential to act as memory
cues. Developing such a representation is challenging, since it must
capture attributes at different levels of abstraction, i.e. facilitate
both perceptual and semantic associations.

Second, the detection of what attributes of a situation are relevant
for the process of memory elicitation is a difficult and unsolved
problem. The main challenge here is that a stimulus can only act
as a cue in a situation if a user is actually perceiving it. So, either
a system must be certain that he or she attends to it due to the
context of its presentation (e.g., in the case of it taking a large
amount of screen estate), or we need means to estimate the target
of a user’s attention (e.g. through detecting users’ attentional focus
via gaze-tracking, see [63])

Finally, a crucial resource required in ecphoric processing is a
collection of personal information that describes those past experi-
ences that may potentially resurface as episodic memories. In our
architecture, these form the records of the Episodic Memory Store.
One particular challenge here is the comprehensiveness required
from these records: to meaningfully contribute in overcoming the
RECAP problem, the they need to cover enough ground about users’
lives to facilitate association with the events relevant for in a given
situation. A starting point for its construction can be the substantial
research on the creation of lifelogs. It describes the collection and
organization of large quantities of data describing a person’s experi-
ences into a single comprehensive digital repository [39]. Common
tasks for constructing such an archive include recording and fusing
multimodal data traces into a single timeline, its automatic seg-
mentation into a structure of distinct events [31], and its automatic
semantic annotation through pattern recognition techniques [40].

While addressing policies for population and management of
such an episodic store is beyond the scope of this article, we feel
it is important to highlight the challenge of maximizing privacy
in its construction (both of users themselves and the people they
encounter in their lives). Additionally, this includes methods for
providing users with control over what parts of the episodic store is
available for personalization purposes. Both privacy in lifelogging
[51], as well as management of long-term user models [4] are the
subject of ongoing research.
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3.3 Cognitive Appraisal Theory and the
Challenge of Predicting Emotional
Experience

3.3.1 Psychological background. A series of common evaluative
judgments (e.g. novelty, goal-congruence, etc. [56]) have been iden-
tified to reliably accompany and discriminate between emotional
experiences [64]. These judgments can be seen as partial mental rep-
resentations of the emotional qualities of experiences [2]. The view
of relating cognitive judgments of personal meaning to emotional
responses is called Cognitive Appraisal Theory (CAT). Its central
assumption is that an organism’s emotional responses express how
much personal significance it assigns to the information it processes
in a given situation w.r.t its utility for the fulfillment of its concerns
[56]. While the descriptions of appraisal processing given in the
literature often focus on evaluations of individuals’ immediate sur-
roundings, CAT argues that emotional appraisal is a fundamental
mode of cognitive-affective functioning. As such, it applies to any
kind of experiential content: perceived, remembered and even imag-
ined [14]. In summary, CAT provides a general theoretical lens for
understanding and describing the emergence of emotional qualities
in experiences based on information processing. Because of this,
we see them as a promising approach to model the relationship
between episodic memories and the emotional qualities of their
experience for a person.

3.3.2 Computational Modeling of Emotional Appraisal. Numerous
computational models have drawn on appraisal theories to enable
virtual agents or robots to display plausible emotional reactions
to events in their artificial environments or in interactions with
users (see [53] for a comprehensive overview). In addition, artificial
intelligence research has used appraisal theory to enable virtual
agents to reason about the potential emotional reactions of human
beings that they are interacting with (e.g. [12]). Despite the popu-
larity of appraisal theories as inspiration for computational models
of emotion elicitation, they have not seen wide usage in models of
experiencing episodic memories. However, several existing compu-
tational memory models for intelligent agents include an abstract
representation of their emotional state (e.g. [16]) or appraisal val-
ues [29] to describe the emotional experience that an actor has had
in a previous event. This work shows that it is feasible to model
the appraisal of events in a personal context. Although work on
appraising the situation and memories of an actual person (rather
than a virtual agent or robot) is scarce, the modeling technique can
be similar.

3.3.3 Challenges in Cognitive Appraisal of Episodic Memories. With
the exception of [37] there has been no research on computational
modeling of how episodicmemories are appraised upon recollection.
This may be in part because there are some conceptual challenges
to a straightforward application of established appraisal theories
to episodic memories as stimulus events that form the target of
appraisal. Especially challenging is the fact that episodic memories
contain multiple aspects that can be appraised by individuals. On
the one hand, there is the recollected information itself (which al-
ready has been appraised in the past during the original experience).
On the other hand, there is information available that describes the
current circumstances under which the event is recollected, such as

its relevance for a person’s current motivations. How these different
sources of affective information shape the outcome of a person’s
emotional interpretation of a situation needs to be accounted for in a
computational model of this process. For this reason it is important
to investigate how common dimensions in appraisal theories can
most meaningfully be applied in a computational model of episodic
memories, as well as in how far such an application produces out-
comes that are plausible and congruent with human experiences at
the moment of recollection.

An additional challenge is the inference of a person’s current
goals. CAT postulates that motivations play an essential role in ap-
praisal processing, but these constructs cannot be directly observed
in individuals. As such, research contributing to their automatic
inference from individuals’ behavior has a tremendous potential
for supporting the computational modeling of emotional appraisal
processing in users. Existing technologies, such as data-driven and
automatic driver intention recognition (for short term goals) [32]
and explicit preference elicitation (long term values and preferences
of people) [20], demonstrate that this is at least a feasible road to
take. Furthermore, existing research on activity recognition [1] can
be already used for coarse goal detection (going to work, going
to bed, etc.). As such, there is quite some work showing that the
inference of users’ goals and intentions at different time scales is at
least a feasible enterprise, given sufficient sensor data.

4 SUMMARY AND CONCLUSION
Experiences from our past are a primary influence on how we
understand our environment in the present, including during in-
teractions with multimedia applications. Ignoring this influence
results in recollection-unaware media technology that is oblivious
to the RECAP problem for personalization. Ramifications become
strikingly evident when looking at scenarios where the primary
goal of applications hinges on their capacity to shape experiences
through elicitation of episodic memories.

We have argued that providing media technologies with in-
creased empathy for their human users requires enabling them
to display awareness of when and how they dynamically experi-
ence their past in episodic memories. Our proposed architecture for
an Artificial Empathic Memory forms a psychologically-grounded
computational blueprint for providing applications with the means
to do this. It comprises a series of processing components that
jointly form a computational model of how externally triggered
episodic remembering influences the emotions evoked during inter-
actions with media technologies. Access to this information enables
applications to adjust their behavior in meaningful ways, thereby
facilitating truly personalized experiences.

Instantiating the individual components of such an AEM is a
challenging task. However, it benefits from existing technological
research in a variety of areas, such as the detection of attentional
deployment from multimodal sensor data, computational cognitive
modeling, and the development of lifelogging appliances. Given
this, we feel that there is no fundamental technological hurdle for
developing applications that better understand their users’ subjec-
tive experiences by accounting for the role of episodic recollections
in them.
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