

Delft University of Technology

Privacy-Preserving Alpha Algorithm for Software Analysis

Tillem, Gamze; Erkin, Zekeriya; Lagendijk, Inald

Publication date
2016
Document Version
Final published version
Published in
37th WIC Symposium on Information Theory in the Benelux / 6th WIC/IEEE SP Symposium on Information
Theory and Signal Processing in the Benelux

Citation (APA)
Tillem, G., Erkin, Z., & Lagendijk, I. (2016). Privacy-Preserving Alpha Algorithm for Software Analysis. In
37th WIC Symposium on Information Theory in the Benelux / 6th WIC/IEEE SP Symposium on Information
Theory and Signal Processing in the Benelux (pp. 136-143)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Privacy-Preserving Alpha Algorithm for Software
Analysis

Gamze Tillem Zekeriya Erkin Reginald L. Lagendijk
Delft University of Technology

Department of Intelligent Systems, Cyber Security Group
Delft, The Netherlands

G.Tillem@tudelft.nl Z.Erkin@tudelft.nl R.L.Lagendijk@tudelft.nl

Abstract

Validation in a big software system can be managed by analysis of its be-
haviour through occasionally collected event logs. Process mining is a technique
to perform software validation by discovering process models from event logs or
by checking the conformance of the logs to a process model. A well-known algo-
rithm in process mining to discover process models is alpha algorithm. However,
while utilising alpha algorithm is useful for software validation, the existence of
some sensitive information in the log files may become a threat for the privacy of
users. In this work, we propose a protocol for privacy-preserving alpha algorithm
on encrypted data. Our protocol aims to generate process models for a software
without leaking any information about its users. It achieves same computational
complexity with the original algorithm despite the additional computation over-
head.

1 Introduction
Software systems have an evolving nature which enables them to grow continuously
with new updates and interactions. While growth of software systems is beneficial for
its functionality, conversely, it complicates managing its validation. In the traditional
approach software validation is maintained by analysing the conformance of pre-defined
cases in the design time. However, for complex software systems which has interactions
with several external tools, a priori prediction of cases is challenging. This challenge
introduces a new approach for software validation which shifts the validation procedure
to online phase, namely, analysis of software in the run time. The event logs that
are generated during the execution of software, enable observation of behaviour and
checking the conformance of design requirements.

A non-trivial technique to monitor software behaviour for validation is process
mining. As a field between data mining and process modeling, the aim of process
mining is to discover, monitor and improve the real processes by extracting information
from the event logs [13]. Process mining utilises log information in three categories.
The first category is process discovery which generates a process model from log data.
The second category is conformance checking whose purpose is to indicate that the real
behaviour of the system conforms to the model by comparing event log of a process
with an existing process model. Finally, the third category is enhancement where an
existing process model is improved by comparing it with event logs.

As the core component of process mining, log data has a crucial role to determine
in which way the software behaviour is modelled. Software log can contain information
about user, system settings (e.g. type of operating system, number of cores, mem-
ory usage), interactions with other components and the date or duration of execution.
Aforementioned information is valuable for process miner to obtain knowledge about
the software behaviour. On the other hand, the content of information is vulnerable

against privacy threats since it may contain sensitive information about user or sys-
tem. An example of such a threat is recently experienced by GHTorrent platform [6].
Aiming to monitor GitHub events to simplify searching on them, GHTorrent does not
consider removal of personal data from events. However, it appears that some users of
the platform abused the personal data to send survey invitations to data owners [5].
Receiving hundreds of e-mails from external parties, the data owners has started com-
plaining about their privacy in collected logs∗ which, in the end, required the platform
developers to revise their privacy policy [6]. The case of GHTorrent shows that as log
based software analysis gets popular, the importance of privacy in log files becomes
prominent.

In our work, we aim to design a privacy-preserving process discovery protocol to
generate process models from event logs while guaranteeing the privacy of event logs.
As an initial step, alpha algorithm [14] is selected for process discovery since it clearly
shows the steps for discovery of process models. Our protocol utilises encryption to
guarantee the confidentiality of logs. To overcome difficulty of retrieving information
from encrypted data, we use homomorphic encryption schemes which enable us to
perform operations on ciphertext without using decryption mechanism. These schemes
are useful especially in multiparty settings which requires prevention of information
leakage to other parties while performing computations on encrypted data.

Privacy in software is investigated from different aspects by research community.
Several works focus on providing privacy in released test data through anonymization
techniques [7, 10] or machine learning techniques [8]. Some other works, e.g. [2, 3], are
interested in controlling crash report generation to eliminate sensitive information in
reports. Furthermore, preventing the leakage of sensitive data from running software
is another concern in software privacy which is achieved by utilising information flow
mechanisms in [4] and [15]. However, to the best of our knowledge, none of the existing
works deals with the privacy of software validation under process mining. Our protocol
is the first attempt to operate process discovery algorithms on software in a privacy-
preserving manner.

In the rest of the paper, first we provide some preliminary knowledge (Section 2).
Then, we introduce the protocol for privacy preserving alpha algorithm in Section 3 and
continue with the complexity analysis in Section 4. Finally, in Section 5, we conclude
our paper and explain the directions of future research.

2 Preliminaries
Prior to explain the protocol for privacy-preserving alpha algorithm, we provide some
preliminary knowledge about alpha algorithm and cryptographic tools in this section.

2.1 Alpha Algorithm
Alpha algorithm is one of the first process discovery algorithms to discover process
models from event logs. Since it covers basic steps of discovery, it is favourable as a
starting point for process discovery. It takes an event log L as input and outputs a
process model. The process model is represented as a Petri net, which is a modelling
language used in process mining [14]. L is a set of traces and each trace is a set of
activities. Formally, L = [σ1, σ2, ...σx] where σi is a trace and x ∈ Z+. For each
σi = 〈t1i , ..., tji〉, tji is an activity where 1 ≤ ji ≤ K and K is the maximum number of
activities. Then,

L = [〈t11 , ..., tj1〉, 〈t12 , ..., tj2〉, ..., 〈t1x , ..., tjx〉].
Alpha algorithm runs in 8 steps to generate a process model. In this section, the

steps of alpha algorithm is explained through an example. Assuming that following
event log L is collected from a software

∗https://github.com/ghtorrent/ghtorrent.org/issues/32

L = [〈a, b, e, f〉, 〈a, b, e, c, d, b, f〉, 〈a, b, c, e, d, b, f〉, 〈a, b, c, d, e, b, f〉, 〈a, e, b, c, d, b, f〉],
the alpha algorithm proceeds through the following steps :

Step 1: Discovers distinct set of activities (TL) in L =⇒ TL = {a, b, c, d, e, f}.

Step 2: Discovers initial activities (TI) in each σi =⇒ TI = {a} and assigns
an initial place iL.

Step 3: Discovers final activities (TO) in each σi =⇒ TO = {f} and assigns a
final place oL.

Step 4: Groups activities using ordering relations (direct succession (>), causal-
ity (→), parallel (||) and choice (#)) [14] to create relation set XL. The relations
between each activity can be represented in a footstep matrix as in Figure 1.
Then, using footstep matrix, XL is =⇒
XL = {({a}, {b}), ({a}, {e}), ({b}, {c}), ({b}, {f}), ({c}, {d}), ({d}, {b}),
({e}, {f}), ({a, d}, {b}), ({b}, {c, f})}.

Step 5: Removes pairs from XL to create an optimised relation set (YL) =⇒
YL = {({a}, {e}), ({c}, {d}), ({e}, {f}), ({a, d}, {b}), ({b}, {c, f})}.

Step 6: Determines set of places for process model (PL) =⇒
PL = {p({a},{e}), p({c},{d}), p({e},{f}), p({a,d},{b}), p({b},{c,f}), iL, oL}.

Step 7: Connects places PL by introducing arcs FL.

Step 8: Returns α(L) = (PL, , TL, FL) which is demonstrated as a Petri net in
Figure 1.

a b c d e f
a # ← # # ← #
b → # ← → || ←
c # → # ← || #
d # ← → # || #
e → || || || # ←
f # → # # → # iL oL

p({b}, {c,f})

p({e}, {f})

p({c}, {d})

a

p({a, d}, {b})

p({a}, {e})

d

b

c

e

f

Figure 1: Footstep matrix and process model as Petri net for E(L).

2.2 Cryptographic Tools
As stated in Section 1, we construct our protocol on homomorphic encryption schemes
to prevent leakage of sensitive information during computations. Considering the trade-
off between somewhat homomorphic and additively homomorphic schemes with respect
to efficiency of operations and functionality of cryptosystem, we decide to analyse our
protocol both on additive homomorphic scheme, Paillier cryptosystem [11] , and on
somewhat homomorphic scheme, YASHE [1].

Paillier cryptosystem: Based on decisional composite residuosity problem [11],
Paillier cryptosystem can encrypt a plaintext m on a modulus N = p · q where p, q
are large primes and g = n + 1 as E(m) = gm · rN mod N2 where r ∈R ZN . The
cryptosystem enables to perform addition and scalar multiplication on encrypted text.
Two encrypted plaintext m1, m2 can be added as E(m1) ·E(m2) = E(m1 +m2). Scalar
multiplication is performed as E(m1)c = E(c ·m1).

YASHE: While Paillier cryptosystem is constructed on integers, YASHE scheme is
constructed on ideal lattices. The security of the scheme is based on Ring Learning
with Errors assumption [1]. Because of page limitation, we refer readers to [1] for more
details. Here we only summarise homomorphic properties of YASHE scheme.

We are given two ciphertexts c1 and c2 which are encryptions of m1 and m2 and [·]a
refers to reduction to modulus a. Then, homomorphic addition is achieved by adding
c1 and c2 as c = [c1 + c2]q which is equal to the encryption of [m1 +m2]t. On the other
hand, homomorphic multiplication is performed in two phases. In the first phase an
intermediate ciphertext ĉ = [dt/q · c1 · c2c]q is computed. Since this operation increases
noise which prevents a correct decryption of ciphertext [1], in the second phase a Key
Switching mechanism is applied to ĉ to transform it into a decryptable ciphertext c.

3 Privacy-Preserving Alpha Algorithm
We now describe our protocol for privacy-preserving alpha algorithm on encrypted
data. The protocol is based on semi-honest model with three entities which are User,
Log Repository and Process Miner. User is the end user of a software who generates
event logs and sends them to Log Repository in encrypted form. Log Repository is a
semi-honest storage unit which is responsible for collecting and storing encrypted event
logs. It can be either specific to a certain software product or a common repository
which manages logs from different software products. Since Log Repository is not
fully trusted, in our setting it is not allowed to see order relations between any two
encrypted activities of event log L. Finally, Process Miner is a semi-honest third party
which has capabilities to generate process models from encrypted event logs. To be
able to generate process models, Process Miner has to learn the order relations in event
logs. However, it cannot learn the content of log files.

The protocol is based on three main phases which are Set Up, Relation Discovery
and Model Discovery which are demonstrated in Figure 2. As it is explained later in this
section, Relation Discovery phase requires utilisation of secure equality tests to discover
relations between encrypted activities. Thus, Secure Equality Check subcomponent is
integrated to that phase. We show two efficient Secure Equality Check mechanisms [12,
9] here, but, other efficient mechanisms can also be adapted to the protocol. Rest of this
section explains each phase of privacy-preserving alpha algorithm protocol in detail.

User Log	RepositoryLog Repository Process Miner

Set Up

Relation Discovery

Secure Equality Check

Model Discovery

Figure 2: Overview of Privacy-Preserving Alpha Algorithm

3.1 Set Up
In Set Up, initially cryptographic keys are generated by a trusted third party and
distributed to related entities. Since user is only responsible for generation of encrypted
event logs, he is provided public key pk. Log Repository and Process Miner are given
their secret shares skLR and skPM , respectively.

In the second part of Set Up phase, according to user’s interaction with software
an event log L is generated, as explained in Section 2. After generation of L, user

encrypts it under selected encryption scheme (Paillier or YASHE) using pk and out-
sources encrypted log E(L) to Log Repository. Finally, Log Repository shares E(L)
with Process Miner which is going to discover process model in encrypted log data.
The format of data that Process Miner retrieves is:

E(L) = [〈E(t11), ..., E(tj1)〉, 〈E(t12), ..., E(tj2)〉, ... , 〈E(t1x), ..., E(tjx)〉].

3.2 Relation Discovery
The core of our protocol is to securely detect distinct activities, address initial and
last activities in each trace and identify the relations between them. To that end, we
construct a relation table RT whose indices correspond to encrypted activities. For
each index, RT shows whether the activity is initial (Init) or last (Last) in its trace
and it stores the list of direct successors (Direct Successor) for the activity. When an
encrypted activity E(tyi) where y ∈ [1, j] is retrieved, RT is searched to find a match
for E(tyi) using secure equality checks. If there is no match for E(tyi), then it is inserted
into RT as a new index. Figure 3 demonstrates the procedure of Relation Discovery
phase.

Log Repository (skLR) Process Miner (E(L) , skPM)

∀ E(tji) ∈ E(L), check RT [k]

if E(tji) ∈ RT
update Init, Last,

Direct Successor

else E(tji) /∈ RT
insert E(tji) into RT

EqualityCheck(E(tji), RT [k], skPM , skLR) =⇒ E(Q)
where Q ∈ {0, 1}

Figure 3: Overview of Relation Discovery phase

To clarify the procedure, we can construct RT by using the example log data in
Section 2. Initially, Process Miner has the following encrypted log data:

E(L) = [〈E(a), E(b), E(e), E(f)〉, 〈E(a), E(b), E(e), E(c), E(d), E(b), E(f)〉,

〈E(a), E(b), E(c), E(e), E(d), E(b), E(f)〉, 〈E(a), E(b), E(c), E(d), E(e), E(b), E(f)〉,

〈E(a), E(e), E(b), E(c), E(d), E(b), E(f)〉].
Starting from the first activity E(a) in trace σ1 = 〈E(a), E(b), E(e), E(f)〉, Process

Miner scans RT to find a match for the current activity. Since initially the table is
empty, E(a) is directly added to RT (Table 1). For second activity, E(b), one equality
check should be performed to compare it with E(a). Since E(b) 6= E(a), E(b) is
inserted into RT as a new index (Table 2). Furthermore, since E(b) directly follows
E(a), it is added into Direct Successor list of E(a). When the same operations are
applied for each encrypted activity, the relation table RT is completed as shown in
Table 3.

3.2.1 Secure Equality Check for Relation Discovery

Construction of RT requires comparison of encrypted activities which has to be man-
aged by secure equality check (SEC) mechanisms. Since proposing an equality check
mechanism is not our main concern, we adapted two existing mechanisms to our proto-
col [9, 12]. Below, we briefly describe these mechanisms and refer the readers to [9, 12]
for their detailed description.

Index Init Last
Direct

Successor
E(a) 0 + +

Table 1: RT with one element

Index Init Last
Direct

Successor
E(a) 0 + + 1
E(b) 1 - -

Table 2: Inserting E(b) into RT

Index Init Last
Direct

Successor
E(a) 0 + + 1, 2
E(b) 1 - - 2, 3, 4
E(e) 2 - - 1, 3, 4, 5
E(f) 3 - + -
E(c) 4 - - 2, 5
E(d) 5 - - 1, 2

Table 3: Complete version of relation table RT

SEC by Toft [12]: Toft [12] proposes a SEC protocol by employing Jacobi symbol.
The protocol requires a virtual trusted third party which is Arithmetic Black Box
(ABB) to provide secure storage and to perform arithmetic computations. The equality
of two values is tested by testing whether their difference d is equal to 0. For an
encryption modulus M , if d = 0, then Jacobi symbol for d + r2 where r ∈R M is

Jd+r2 =

(
d+ r2

M

)
= 1. Otherwise, if d 6= 0, Jd+r2 = −1. Although, Toft’s scheme is

efficient, the result is correct with 1/2 probability due to probabilistic nature of Jacobi
symbol. Thus, reducing the probability to a negligible degree requires the repetition
of protocol κ times with the same input.

SEC by Lipmaa & Toft [9]: Different from [12], Lipmaa and Toft [9] introduce a
SEC protocol which utilises Hamming distance. Similar to [12], the protocol is based
on zero check for difference d and ABB is responsible for secure storage and arithmetic
computations. Hamming distance is computed between a random r and m = r + d.
To reduce the complexity of operations in Hamming distance computation, an offline
preprocessing phase to compute random values, random inverses and random exponents
is proposed. Furthermore, for online phase Lagrange interpolation is used. Although
the result of the protocol is deterministic, it has drawback of computational complexity
which is bounded by the bit length of encryption modulus M .

3.3 Model Discovery
After discovery of the order relations between encrypted activities, the final phase of
our protocol generates the process model using the information in RT . In the original
algorithm, a footstep matrix is constructed to demonstrate casual, parallel and choice
relations between activities based on direct successions (see Section 2). In the same
manner, our protocol constructs the footstep matrix using Direct Successor lists in RT .
Finally, the process model as a Petri net is generated using the ordering relations in
footstep matrix as it is showed in Figure 4.

4 Complexity Analysis
Utilising encryption is advantageous to maintain the confidentiality of log files. How-
ever, a qualified scheme for software analysis should also consider the efficiency of
computations for practicability. Thus, in this section we analyse the complexity of our
protocol.

To evaluate performance of our protocol, initially we have to investigate the com-
plexity of original alpha algorithm. Since in the original algorithm computations are

0 (a) 1 (b) 2 (e) 3 (f) 4 (c) 5 (d)
0 (a) # → → # # #
1 (b) ← # || → → ←
2 (e) ← || # → || ||
3 (f) # ← ← # # #
4 (c) # ← || # # →
5 (d) # → || # ← # iL oL

p({1}, {3,4})

p({2}, {3})

p({4}, {5})

0

p({0, 5}, {1})

p({0}, {2})

5

1

4

2

3

Figure 4: Footstep matrix and process model as Petri net for E(L).

handled by one party (Process Miner), the complexity can be analysed only in terms of
computational cost. Step 4 and 5 of the algorithm dominate computational complexity.
Construction of footstep matrix in 4th Step requires O(xK2) comparisons to find order
relations where x is total number of traces and K is maximum number of activities in
one trace. In Step 5, O(K2) comparisons are performed to find maximal relation sets.
Consequently, the overall computational complexity of original algorithm is O(xK2).

In our protocol, the computational complexity is dominated by construction of
relation table RT . Similar to the original alpha algorithm, this process necessitates
O(xK2) comparisons in the worst case. However, each comparison is performed by
running a secure equality check protocol rather than integer or string comparisons as
in the scheme with plaintext. Therefore, despite in theoretical bounds our protocol has
the same complexity with the original scheme, it is useful to analyse the cost of one
equality check protocol to understand additional cost of encryption in the protocol.
Table 4 overviews the complexity of computations for SEC protocols [9, 12] which are
used in Relation Discovery phase. To comply with notations in ABB schemes, the
complexity as the number of ABB operations is also provided.

Using SEC from [9] Using SEC from [12]
ABB operations O(`) O(κ)

Paillier based implementation
(num of multiplications and exponentiations)

O(`) O(κ)

YASHE based implementation
(num of additions and multiplications)

O(`) O(κ)

Table 4: Overview of complexity in SEC protocols

The analysis results shows that the cost of computation is bounded by bit size in
[9] where ` = dlog2Me. The operations in the preprocessing phase dominates the
complexity of protocol. On the other hand, in [12] computation cost is determined by
correctness parameter κ. Although, one run of protocol is handled by constant number
of operations, since the result is probabilistic, it requires κ repetitions. Finally, both
additive and somewhat homomorphic setting have same theoretical bounds, but in
reality the number of operations for somewhat homomorphic based implementation is
less than the number of operations in additive homomorphic implementation. However,
it does not necessarily imply that somewhat homomorphic setting is more efficient than
additive homomorphic since the bit size of modulus and the complexity of operations
differ in two settings.

5 Conclusion and Future Work
In this work we have addressed for the first time the privacy in software analysis under
process mining techniques. Specifically, we presented a naive protocol for privacy-
preserving alpha algorithm to generate process models from encrypted event logs. Our
protocol achieves same theoretical bounds with the original algorithm. However, it
requires usage of secure comparison protocols which imposes additional computations

with larger bit sizes. In the future, we continue exploring privacy issues in different
algorithms of process mining for software analysis. Furthermore, we extend our re-
search with implementation of algorithms and utilisation of other privacy enhancing
technologies.

References
[1] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security for a ring-based fully homo-

morphic encryption scheme. In Cryptography and Coding, pages 45–64. Springer, 2013.

[2] Pete Broadwell, Matt Harren, and Naveen Sastry. Scrash: A system for generating secure crash information. In
Proceedings of the 12th conference on USENIX Security Symposium-Volume 12, pages 19–19. USENIX Association,
2003.

[3] Miguel Castro, Manuel Costa, and Jean-Philippe Martin. Better bug reporting with better privacy. In ACM
Sigplan Notices, volume 43, pages 319–328. ACM, 2008.

[4] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N Sheth. Taintdroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[5] Arnoud Engelfriet. Is it legal for ghtorrent to aggregate github user data? https://legalict.com/privacy/

is-it-legal-for-ghtorrent-to-aggregate-github-user-data/, 2016. Accessed May 3, 2016.

[6] Georgios Gousios. The issue 32 incident an update. http://gousios.gr/blog/Issue-thirty-two, 2016. Accessed
May 3, 2016.

[7] Mark Grechanik, Christoph Csallner, Chen Fu, and Qing Xie. Is data privacy always good for software testing?
In Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium on, pages 368–377. IEEE,
2010.

[8] Boyang Li. Enhancing utility and privacy of data for software testing. In Software Testing, Verification and
Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference on, pages 233–234. IEEE, 2014.

[9] Helger Lipmaa and Tomas Toft. Secure equality and greater-than tests with sublinear online complexity. In
Automata, Languages, and Programming, pages 645–656. Springer, 2013.

[10] David Lo, Lingxiao Jiang, Aditya Budi, et al. kbe-anonymity: test data anonymization for evolving programs. In
Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, pages 262–265.
ACM, 2012.

[11] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in cryptol-
ogy–EUROCRYPT–99, pages 223–238. Springer, 1999.

[12] Tomas Toft. Sub-linear, secure comparison with two non-colluding parties. In Public Key Cryptography–PKC
2011, pages 174–191. Springer, 2011.

[13] Wil Van Der Aalst, Arya Adriansyah, Ana Karla Alves de Medeiros, Franco Arcieri, Thomas Baier, Tobias Blickle,
Jagadeesh Chandra Bose, Peter van den Brand, Ronald Brandtjen, Joos Buijs, et al. Process mining manifesto.
In Business process management workshops, pages 169–194. Springer, 2011.

[14] Wil Van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Discovering process models from event
logs. Knowledge and Data Engineering, IEEE Transactions on, 16(9):1128–1142, 2004.

[15] David Yu Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall. Tainteraser: protecting sensitive
data leaks using application-level taint tracking. ACM SIGOPS Operating Systems Review, 45(1):142–154, 2011.

https://legalict.com/privacy/is-it-legal-for-ghtorrent-to-aggregate-github-user-data/
https://legalict.com/privacy/is-it-legal-for-ghtorrent-to-aggregate-github-user-data/
http://gousios.gr/blog/Issue-thirty-two

	Introduction
	Preliminaries
	Alpha Algorithm
	Cryptographic Tools

	Privacy-Preserving Alpha Algorithm
	Set Up
	Relation Discovery
	Secure Equality Check for Relation Discovery

	Model Discovery

	Complexity Analysis
	Conclusion and Future Work

