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Abstract— To gently grasp objects, robots need to balance
generating enough friction yet avoiding too much force that
could damage the object. In practice, the force regulation is
challenging to implement since it requires knowledge of the
friction coefficient, which can vary from object to object and
even from grasp to grasp. Tactile sensing offers a window in
the contact mechanics and provides information about friction.
Notably touch can detect the precursor of the object slipping
away from the grasp. To find this information, tactile sensors
measure the deformation field of an artificial skin in both the
normal and tangential direction. However, current approaches
only react to slip and therefore react too late to perturbations.
The object slips, inducing a failure of the grasp and damage. In
this study, we introduce a method that uses machine-learning
to anticipate slip by computing the so-called safety margin of the
grasp. This safety margin represents the extra lateral force that
maintains the contact away from the frictional limit. To find
this value, we use a high-density camera-based tactile sensor to
measure the 3D deformation of the surface via the movement
of 82 colored markers. We trained a Convolutional Neural
Network (CNN) to estimate the safety margin from the tactile
images. Because it gives a distance to slip, the safety margin is
a powerful metric for regulating grasp forces. As a testament of
this effectiveness, we show that a simple proportional controller
can robustly grasp a wide variety of objects. The results show
that this control method outperforms slip detection methods,
by reducing regrasp reaction times while decreasing grasping
forces to 1-3 N.

INTRODUCTION

When dynamically manipulating objects with a robotic
gripper, the contact with fingers constantly evolves. During
the movement, the pressure and traction distributions change
in response to the dynamics and as a function of the friction
and material properties. Consequently, it can be difficult
to estimate and predict how the object will move within
the grasp and whether or not the grasp will be stable.
This prediction is crucial for grasping since the forces at
the contact determine if the object can rotate, pivot, slide,
or stay in place. Without the information regarding the
frictional resistance, a controller cannot optimally determine
the force that would maintain a stable grasp. Therefore
friction-agnostic approaches generally overestimate the grip
force to avoid a catastrophic loss of grip [1], [2]. Large forces
prevent dropping objects, but also restrain manipulation
flexibility [3].

Tactile sensing offers a promising avenue for capturing
the mechanical interaction at the interface between the en-

vironment and the fingers. Robotic tactile sensors capture
the deformation of an artificial skin from which they can
infer high-order information, such as material properties
(i.e. compliance, texture, curvature) or the contact state
(i.e. distance to slip or effort). Tactile sensors discretize
the mechanical interaction, represented by the pressure or
deformation field, often using miniaturized high-resolution
cameras pointing at the membrane [4], [5].

The pressure or deformation field can be processed to
estimate contact shape and force [6], or to detect slip from
physics-based models [7]. More complex mechanical interac-
tions can be captured using machine learning approaches [8]–
[10]. However, when tactile sensors are deployed for grasp-
ing regulation they are used to detect slip which makes the
reaction to perturbation too slow and they often fails to regain
stability after slip [11]–[13].

At a mechanical level, the transition from stick to slip
for a soft fingertip occurs gradually. When the tangential
force increases from a fully stuck contact, the outer edge
of the contact area begins slipping while the center remains
stuck. The slip region grows until the entire contact area
is in the slip state and the object fully slips [14], [15]. It
is postulated that humans use the ratio between the stick
and the slip region inferred from the skin deformation to
estimate the safety margin [16]. This distance from the onset
of slip is believed to be ultimately used to regulate their grip
force [17], [18].

In this work, we measured the pattern of deformation of
the artificial fingertip before the onset of slip with an iterated
version of our ChromaTouch tactile sensor [19], [20]. We
trained a convolutional neural network (CNN) to estimate
the frictional strength using the safety margin. The model
performance is evaluated against an unseen dataset, which
showed an average prediction accuracy of 98.2% from the
ground truth, when computing the MSE loss over the entire
range of safety margin predictions. The 50 Hz refresh rate
and the accuracy of the estimation make it suitable for real-
time grasping applications on soft and complex objects such
as fruits and vegetables, which is demonstrated on three
fragile fruits.

We aim to create a tactile-enabled gripper that maintains
a squeezing force on an arbitrary object so that the safety
margin remains constant (Fig. 1A). To do so, we designed
an impedance control gripper (Fig. 1B) which regulates
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Fig. 1. A. Typical evolution of the interaction force when manipulating an object. The grip force is maintained with a safety margin Γ over the minimum
required grip force defined by the friction cone. B. Render of the custom-made parallel gripper. C. Exploded view of the tactile sensor ChromaTouch.
D. Grip force control to maintain a constant safety margin (red dotted line). E. Hidden layers of the convolutional neural network are used to estimate
the safety margin. F. Deviation of the estimation compared to the real safety margin. G. Mean grasping force and probability of slips for three control
strategies: reaction to slip [13], constant safety margin of 40%, and over grasping strategy with a fixed 3.5 N grasping force.

its grasping force in real-time. The gripper has two soft
tactile sensing fingertips, capturing the 3D deformation of a
membrane using an embedded camera (Fig. 1C). The images
of the interaction are fed to a CNN to estimate the frictional
safety margin Γ (Fig. 1E,F), which is used to adjust real-time
grasping force (Fig. 1D), improving object manipulation and
minimizing object slip (Fig. 1G). A desired target for Γ is
set between 20-60%, resembling human behavior [18].

MATERIALS AND METHODS

Tactile sensing gripper

The tactile gripper consists of two main components: a set
of Chromatouch tactile sensors and a custom-made robotic
gripper with force control (Fig. 2A). The Chromatouch tactile
sensing mechanism relies on a color-mixing principle [19].
Two layers of colored-markers are first 3D-printed with a
Stratasys J735 PolyJet printer in flexible transparent Agilus-
Clear with a Shore hardness of 30A. These layers are bonded
together using a 1.2 mm-thick elastic silicone (Smooth-
On SortaClear 12A), cast between the two marker layers.
Three layers of white pigmented silicone (PlastiDip) are
sprayed over the outside of the dome, to block light from
external sources and to help diffuse internal light. A per-
finger embedded USB camera (Basler Dart daA1920-160uc
with a Basler Evetar M13B02118W fisheye lens attached)

acquires 896 px × 896 px tactile images at 100 Hz with a
surface resolution close to 22 px/mm. More information on
the design of these tactile fingertips can be found in our
previous work [20].

For this work, we custom-designed a parallel gripper
where the force could be finely tuned and fit the need
of delicate robot grasping. The design, publicly available1,
consists primarily of 3D-printed parts, with tactile sensors
embedded at the fingertips. The fingers are driven using one
servo-motor (Dynamixel XH430-W210-R), through a set of
modified POM gears. The servo-motor enables our gripper
with current control, which is calibrated to forces by grasping
a regular force sensor (ATI Nano43). We confirmed a linear
relation between motor current and grasping force (Fig. 2B).

Working principle of the tactile sensor
To validate the working principle of the tactile sensor, we

calibrated the acquired images towards actual 3D deforma-
tion using an analytical model. We first acquired images
during a normal indentation and a lateral slide (Fig. 3A).
On Fig. 3B, images of the preload, and image differences
of the initial contact, incipient slip and full slip are shown.
We proceeded to find a robust transformation of the sub-
image around each marker into the normal displacement uz

1https://github.com/Dirrkk/fuse-gripper
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(Fig. 3C). To find this transformation, we used as ground-
truth a filtered version of the Hertzian contact theory. This
model predicts a parabolic displacement of the surface of the
membrane. For further explanation about the method, refer

to our previous work [20]. The lateral displacements ux, uy

are computed using a marker tracking method (Fig. 3D).
The effective 3D displacements are shown at different time
courses during slip, for a high and a low friction condition
in Fig. 3E. The output displacements have a sub-millimeter
precision in the normal and tangential plane.

Experimental setup

We designed an experimental setup to impose arbitrary
tangential and normal forces on the tactile sensors (Fig. 2A).
During a trial, the tactile gripper first grasps a stationary
suspended object with a predefined grasping force. The
apparent weight of the object was programmed at 0g by
constantly pulling the object against the direction of the
gravitational field using two DC-motors (Faulhaber, 2642
012 CR) and a capstan transmission. A force sensor (ATI
Nano43) is embedded inside this object, which measures the
3D force interaction at the gripper fingertips. A second-long
ramp-pulling force is applied to the suspended object two
seconds after the object has been grasped, trying to pull it
away from the fingertips using the DC motors. The pulling
force produced by the DC motors is controlled using a linear
servo amplifier (Maxon, LSC 30/2).

The position of the object was measured with an encoder
(Baumer, BTIV 24S 16.24K 1024 G4 5) and the safety
margin Γ was estimated using the force measurement and
an approximation of the friction coefficient (Fig. 2E):

Γ(t) =
f∗
f − ff (t)

f∗
f

, (1)

with ff the current frictional force, and f∗
f the maximum

applicable force to overcome the frictional strength of the
grasp, after which the object starts to slip. This frictional
force was computed using an estimation of the friction
coefficient as the average force ratio when the object is
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slipping (Fig. 2D). The influence of the grip force on the
friction coefficient has been neglected (Fig. 2C).

During data collection, a randomized experimental plan
containing the grasping force and the load force and its rate
was followed. The grasping forces vary from 1.0 to 2.5 N
in 0.5 N intervals, the load force was uniformly chosen
between 2 and 3 N and the force rate was controlled at
2 different levels (0.5 N/s or 1 N/s). The training dataset
consisted of a flat and a curved object (radius of curvature
R = ∞ and R = 45 mm) at 3 different frictional conditions
(high, medium, low). These friction conditions were obtained
by adding water or soap on the surface of the objects, the
corresponding friction coefficients are reported Fig. 2D (left
side). Every condition has been cycled 16 times using the
experimental plan, resulting in a total of 96 trials, or 177.000
(left+right) images. We used 80% for training and 20% for
testing. This procedure has been repeated 4 days later (the
temperature was 6°C lower and the humidity decreased by
3%), to collect a validation dataset consisting of the same 2
objects, on 2 frictional conditions (high and low), resulting in
64 trials and 118.000 images. The data analysis is performed
on this validation dataset.

Model training

The images from the tactile gripper and the above-
computed safety margin Γ are linked together using a CNN
ShuffleNetV2 [21]. This network is lightweight and mobile,
and showed promising results in related tactile sensing stud-
ies [3]. Our application is suited for a lightweight network
since the tactile images represent close-contact information
with a limited pixel size, and do not need to contain complete
environmental scenes. Furthermore, the lightweightness gives
tactile grasping demonstrations in a portable setting.

Inputs of the network are the tactile images from both
fingertips. The raw images are resized to 224 × 224 px,
after which they are concatenated vertically and fed into the
network, ensuring both images have the same timestamp.
ColorJitter and GaussianBlur data augmentation techniques
are used to increase the generalization capabilities of the
model.

The output of the ShuffleNetV2 network is adapted to a
single floating point value, which equals the estimated Γ for
the input image. This reduction in output space is obtained by
combining a set of linear layers with LeakyReLU activation
functions and Batch Normalization (1D) layers, decreasing
the output space from 1024 nodes to 1.

Training was done using PyTorch on an Ubuntu 20.04
machine with an Intel Xeon CPU and using CUDA on
a Nvidia RTX3060Ti GPU with 8GB of video memory.
We used 50 epochs with the batch size set to 64. The
MSEloss function was used for backpropagation. For the
optimizer, we made use of the Ranger21 framework [22],
which is built around the AdamW optimizer, while also
providing several techniques to further increase performance
and prevent influences from local minima. We used Ranger21
default parameters and set the number of iterations to 100
(number of epochs) x 141600 (length of the training dataset).

Controller design

The trained CNN described above outputs one floating
point value (Γ), based on a set of images from the left and
right fingertips combined. A simple proportional controller is
deployed on the gripper, which takes the estimated Γ value
as input, and outputs the grip force required to maintain a
target value for Γ. By adapting the target value, the distance
to slip can be varied on a per-object basis. The KP gain
was set to 2, and the Γ difference is in the range 0-100%.
The minimum applied grip force is set to 0.25 N, to keep
the object in a force closure grasp. To prevent damage to the
tactile sensor’s soft silicone layer, the maximum applied grip
force was limited to 3.2 N.

RESULTS

Safety margin estimation

To show the accuracy of the trained CNN, we compared
the model output, which only sees the tactile images with
ground truth data extracted from the force measurement
collected during the experiments. We estimated the safety
margin Γ on a validation dataset of unseen images when the
gripper interacts with a flat or a curved object and with a high
or a low friction coefficient. The ground-truth safety margin
was recorded using a force sensor embedded into the object
(see Materials & Methods for further details). To compare the
predictions of Γ with the real values, we compute the Mean
Squared Error (MSE) loss over the validation datasets, the
trial average can be found in Table I. Taking the average over
the four datasets yields a combined MSE loss of 0.01821,
giving the total model an accuracy of 98.2% when predicting
Γ.

TABLE I
MEAN SQUARED ERROR (MSE) LOSS (MEAN ± STD) COMPUTED OVER

THE 4 VALIDATION DATASETS: A FLAT AND A CURVED OBJECT

EVALUATED ON BOTH HIGH AND LOW FRICTION CONDITIONS. THE MSE
SHOWN IS THE COMBINED AVERAGE OVER ALL 16 TRIALS PER

CURVATURE/FRICTION CONDITION.

MSE loss [-] Flat Curved
high friction 0.03005 ± 0.04232 0.01357 ± 0.02482
low friction 0.01256 ± 0.02480 0.01665 ± 0.01941

The confusion matrices are shown in Fig. 4A with the
safety margin Γ divided in 10% bins to evaluate model
performance on the full 0 to 100% range. The model
showed similar performance on the flat and the curved object
(Fig. 1F). Thus, to show the influence of friction on the safety
margin estimation, the flat and curved object datasets are
averaged in a single confusion matrix. From the diagonal
trend in the figure, we can see that the estimated safety
margin is positively correlated with the ground truth safety
margin in both friction conditions. However, friction has a
significant influence on the safety margin prediction accuracy
(Anova, F (1, 63) = 4.27, p= 0.043). We observed similar
performance for both friction conditions when the safety
margin is higher than 40%. However, when the safety margin
drops below 10%, the model performs better in the high
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friction condition. In the low friction case, we can see that
the prediction is underestimating the ground-truth with errors
up to 0.4 when the real safety margin is equal to 0 (Fig. 1F).

Finally, the grip force applied has no significant influence
on the MSE, although we can see that lower grip force results
in higher errors in the high friction condition (Fig. 4B).

Controller validation

To evaluate the safety margin framework in a real time
grasping task, the CNN model output is used with a Pro-
portional controller to control the grip force of the gripper.
Experiments are performed on a set of delicate soft fruits: a
strawberry (20 g), a mandarin (90 g) and a banana (180 g).
In a normal force-controlled environment, assuming µ = 1
in dry circumstances, a desired grasping force would need to
exceed respectively 0.2, 0.9 and 1.8 N at least. A 50 g weight
was attached with a wire from the grasped object to induce
a sudden increase in load force on the object. Fig. 5A shows
the grip force required to hold the objects with a given target
safety margin of 20%, 40%, and 60%, which is around the
desired safety margin target used by humans as discussed
before. The boxplots represent the average and standard
deviation over 5 trials. We can see a significant increase in
grip force when increasing the safety margin target for all
fruits (p< 0.001 and F (2, 31) = 189.7, F (2, 33) = 19.6,
F (2, 29) = 80.74 for the strawberry, the mandarin and the
banana respectively). To measure the control reaction time,
the attached weight is dropped, causing a sudden spike in
load force. The gray zones from Fig. 5A show that, on
average, this increase in load force resulted in an increased
grip force, especially for the 60% safety margin target, which
allows for higher grasp forces.

The probability of object slip decreases with the increase
in safety margin, as shown in Fig. 5B. We can see that for
the 20% target, the gripper managed to keep the relatively
light strawberry between its fingertips for most cases, while
the heavier banana and mandarin experienced more slips.
Increasing the safety margin target to 40% and 60% caused
fewer slips for the heavier objects. We can even see that for
the 60% case, the strawberry experienced zero cases of full

slip. During the ≤40% safety margin targets, the grasping
force stays below what is needed for a force-grasp strategy,
demonstrating the benefit for fragile objects.

We also performed an experiment with slowly increasing
load force, when grasping an empty cup which was slowly
manually filled with rice. The results can be seen in Fig. 5C.
At around 10 seconds, as weight is slowly added, we
recorded an increase in grip force to maintain the set control
target. We can see that over the whole range, a higher
grip force is required to maintain the 60% target, while the
40% target only increases grip force to around 1 N when
maintaining the grasp.

CONCLUSION AND DISCUSSION

We introduced a new method for controlling the grasping
force of a gripper based on a new metric called the frictional
safety margin. The frictional safety margin Γ was extracted
from tactile sensor images using a convolutional neural
network and its prediction shows an average accuracy of
98.2% compared to the safety margin found with force
measurements. The trained network was evaluated on a
validation dataset recorded on a different day. The robustness
of the results shows the model capabilities in expanding
to other friction conditions, as these vary on a daily basis
and are highly sensitive to environmental conditions like
humidity.

Despite its excellent performance, the main limitation of
the proposed approach is the prediction of Γ when the
frictional contact is either small or slippery. To overcome
the first issue, we decided to run our experiments within a
limited range of grasping forces, between 0.25 and 3.2 N.
Limiting the range kept results accurate while preventing
damage of the tactile sensors. On slippery surfaces, we
noticed that the accuracy of the estimate decreases for lower
safety margins, especially in low friction conditions. The
decrease in accuracy can be caused by the sparsity of data
used for training in the lower range of safety margin. During
data acquisition, the low safety margin, which corresponds to
gross slippage, was not always reached because of limitations
in the experimental setup in which maximum applicable load
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Fig. 5. A. Mean grasping force for 3 different fruits and 3 safety margin commands. The gray zone represents the period after the weight is dropped.
B. Probabilities of slip as a function of the safety margin for the 3 fruits. C. Force and estimated safety margin when the gripper is grasping a cup being
filled with rice. The safety margin was controlled at 40% and 60% respectively on the left and on the right.

force was limited to 3 N. This low accuracy can result in
difficulties in handling fragile and slippery objects, as an
underestimation of the safety margin will result in a higher
grasping force than necessary. However, the study shows that
the optimal target safety margin is around 40% so low values
of safety margin will be rarely reached. In cases where the
predictions are less accurate, the control is flexible and can
quickly regulate a higher safety margin setpoint. The error in
the estimation is also illustrated by a large standard deviation
of the estimated safety margin. This uncertainty can result
in fluctuations in grasp force.

A second validation has been done by evaluating the
grasping performance of fragile real-life objects. These ex-
periments show that, although the model has been trained
on two object shapes, it can generalize to more complex
scenarios. The frictional safety margin can also be used
to increase grasping performance while reducing object
damage. The trained network predicts Γ at 50 Hz on a
desktop CPU, making it fast enough for real time control.
The reaction time of the gripper after a weight drop has
been measured at approximately 100 ms, which is in the
same order of magnitude as the human reaction times to an
external perturbation [23].
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