
 
 

Delft University of Technology

XLBlocks: On the Effect of a Visual Language on Formula Creation and Comprehension
in Spreadsheets

Jansen, B.

DOI
10.4233/uuid:2df1b141-cd35-41e8-abde-9910134bbda0
Publication date
2022
Document Version
Final published version
Citation (APA)
Jansen, B. (2022). XLBlocks: On the Effect of a Visual Language on Formula Creation and Comprehension
in Spreadsheets. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:2df1b141-cd35-41e8-abde-9910134bbda0

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:2df1b141-cd35-41e8-abde-9910134bbda0
https://doi.org/10.4233/uuid:2df1b141-cd35-41e8-abde-9910134bbda0


XLBlocks: On the Effect of a Visual Language
on Formula Creation and Comprehension in

Spreadsheets





XLBlocks: On the Effect of a Visual Language
on Formula Creation and Comprehension in

Spreadsheets

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op maandag 12 september 2022 om 17:30 uur

door

Bas JANSEN

Master of Science in Industrial Engineering & Management,
Twente University Enschede, The Netherlands,

geboren te Arnhem, Nederland.



Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. A. van Deursen
copromotor: Dr. ir. F. Hermans

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. A. van Deursen, Technische Universiteit Delft
Dr. ir. F.F.J. Hermans, Universiteit Leiden

Onafhankelijke leden:
Prof. dr. M. Specht, Technische Universiteit Delft
Prof. dr. ir. D.M. van Solingen, Technische Universiteit Delft
Prof. dr. D.C. Shepherd, Virginia Commonwealth University,

United States of America
Prof. dr. A.J. Ko, University of Washington,

United States of America
Prof. dr. T. van der Storm, Rijksuniversiteit Groningen

Keywords: End-User Programming, Spreadsheets, Block-based languages

Printed by:

Cover:

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/phd-thesis-template

The author set this thesis in LATEX using the Libertinus and Inconsolata fonts.

ISBN …

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

https://github.com/Inventitech/phd-thesis-template
http://repository.tudelft.nl/


There is no better motivation to finish a dissertation than when a loving father, a wonderful
wife, and an involved supervisor conspire against you.





vii

Contents

Summary xi

Samenvatting xiii

Acknowledgments xvii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Spreadsheet challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Phase I: better understanding of spreadsheets . . . . . . . . . . . 9
1.5.2 Phase II: development of a visual language for spreadsheet formu-

las . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset 13
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Size, Coupling and Use of Functions . . . . . . . . . . . . . . . . 20
2.3.3 Significance of the Differences . . . . . . . . . . . . . . . . . . . 21

2.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Size, Coupling, and Use of Functions . . . . . . . . . . . . . . . . 26

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 Pivot Tables, Charts and VBA code . . . . . . . . . . . . . . . . . 28
2.5.3 Calculation Chains . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Con-
trolled Experiment 31
3.1 Delocalized Plans in Spreadsheets . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Delocalized Plans in Source Code . . . . . . . . . . . . . . . . . 33
3.1.2 Translating Delocalized Plans to Spreadsheets . . . . . . . . . . . 33



viii Contents

3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 The Spreadsheet model . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . 37
3.2.5 Variables and Analysis Procedure . . . . . . . . . . . . . . . . . 39

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 RQ1: How does the existence of delocalized plans in spreadsheets

influence the user’s ability to understand a component of the spread-
sheet? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 RQ2: How does the existence of delocalized plans in spreadsheets
influence the user’s ability to understand the complete calculation
model of the spreadsheet? . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 RQ3 How does the existence of delocalized plans in spreadsheets
influence the user’s ability to adapt the spreadsheet? . . . . . . . . 43

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Effect of long calculation chains . . . . . . . . . . . . . . . . . . 46
3.4.3 Long Calculation Chain smell versusMultiple Operations andMul-

tiple References smells . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Software Engineering Methods and Spreadsheets. . . . . . . . . . 46
3.5.2 Delocalized Plans and Program Comprehension . . . . . . . . . . 46
3.5.3 Controlled Experiments in Software Engineering. . . . . . . . . . 47

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Detecting and Predicting Evolution in Spreadsheets 49
4.1 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Software Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Spreadsheet Evolution . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 Comparing Spreadsheets . . . . . . . . . . . . . . . . . . . . . . 52
4.1.4 Spreadsheet Evolution Challenges . . . . . . . . . . . . . . . . . 53

4.2 Detecting Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Unique Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Similarity score . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Spreadsheet Evolution in two Industrial Case Studies . . . . . . . . . . . 57
4.3.1 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Case Study I: failure density in the natural gas distribution net-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.3 Case Study II: Failure analysis of the Medium Voltage Grid . . . . . 61
4.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 VBA Code, Pivot Tables, and Charts . . . . . . . . . . . . . . . . 65



Contents ix

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas 67
5.1 XLBlocks: a block-based formula editor . . . . . . . . . . . . . . . . . . 69

5.1.1 XLBlocks Interface . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 EACH ROW and EACH COLUMN . . . . . . . . . . . . . . . . . 70
5.1.3 Lookups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Setup of Think-aloud Study . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3 Think-Aloud Study . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.4 Interview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Diffuseness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Role-expressiveness . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.3 Secondary Notation . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.4 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.5 Closeness of Mapping . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.6 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.7 Error-proneness . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.8 Hard Mental Operations . . . . . . . . . . . . . . . . . . . . . . 78
5.3.9 Hidden Dependencies . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.10 Premature Commitment & Provisionality . . . . . . . . . . . . . 79
5.3.11 Progressive Evaluation . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.1 Learnability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2 Further Reduce Error-Proneness . . . . . . . . . . . . . . . . . . 79
5.4.3 Simultaneous Use of XLBlocks and the Formula Bar . . . . . . . . 80
5.4.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.1 Spreadsheets and Visual Languages . . . . . . . . . . . . . . . . 81
5.5.2 Cognitive Dimensions of Notation . . . . . . . . . . . . . . . . . 82
5.5.3 Block-Based Languages . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 The Effect of a Block-based Language on Formula Comprehension in
Spreadsheets 85
6.1 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.1 Spreadsheets and Visual Languages . . . . . . . . . . . . . . . . 86
6.1.2 Block-based languages . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Analyzing Formulas with XLBlocks . . . . . . . . . . . . . . . . . . . . 88
6.2.1 XLBlocks Interface . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.2 Generate Block-based Formulas . . . . . . . . . . . . . . . . . . 88
6.2.3 Highlighting and scrolling . . . . . . . . . . . . . . . . . . . . . 88
6.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 90



x Contents

6.2.6 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.7 Comprehension Tasks and Think-Aloud Study . . . . . . . . . . . 92
6.2.8 Think-Aloud study . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.9 Interview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 Comprehension Tasks . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 CDN Interview . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.1 Confusing IF statement. . . . . . . . . . . . . . . . . . . . . . . 102
6.4.2 Giving Range Blocks Meaningful Names . . . . . . . . . . . . . . 103
6.4.3 Navigating Formulas . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4.4 Intermediate Results . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Conclusion 107
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.1 Navigating the calculation chain . . . . . . . . . . . . . . . . . . 108
7.2.2 Naming in spreadsheets . . . . . . . . . . . . . . . . . . . . . . 109
7.2.3 Version Management. . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.4 Further XLBlocks Improvements . . . . . . . . . . . . . . . . . . 109

7.3 Reflections on the thesis statement . . . . . . . . . . . . . . . . . . . . . 111
7.3.1 Professional Spreadsheet Users . . . . . . . . . . . . . . . . . . . 111
7.3.2 Complex Formulas . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.3 Interacting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.4 Visual Language . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3.5 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3.6 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.7 Reduction in the Number of Errors . . . . . . . . . . . . . . . . . 115

Bibliography 117

Curriculum Vitæ 127

List of Publications 129



xi

Summary
The use of spreadsheets in industry is widespread. Their outcomes are often used to
substantiate critical business decisions. Unfortunately, spreadsheets are also error-prone.
Consequently, companies risk making decisions based on inaccurate information, which
eventually could lead to loss of money and reputation.

This dissertation investigates to what extent a visual language could support profes-
sional spreadsheet users in interacting with complex formulas. We divided our research
into two phases. In the first phase, we try to understand better how spreadsheets are used
in three ways. We looked at:

1. code smells in formulas

2. the influence on comprehension of how data is structured in a spreadsheet

3. how spreadsheets evolve.

In the second phase, we developed XLBlocks: a block-based formula editor for spread-
sheets.

Phase I
Code smells
Based on a data set from financial modeling company F1F9, we researched the occurrence
of formula smells in spreadsheets. The data set consisted of 54 pairs of spreadsheets. Each
pair consisted of a model supplied by a customer of F1F9 and an improved model rebuilt
from scratch by professional modelers of F1F9. We hypothesized that the improvedmodels
should contain fewer smells, and that was indeed the case. However, we also found that
size and coupling metrics are not good indicators to predict the complexity of a spread-
sheet. The professional F1F9 models scored low on the occurrence of smells, but some still
scored high on the size and coupling metrics.

Structure of data
We applied the concept of delocalized plans to spreadsheets to study how data is structured
in a spreadsheet affects the comprehensibility of a spreadsheet. We defined a delocalized
plan in a spreadsheet as a formula that has its precedents spread widely across the spread-
sheet.

We conducted a controlled experiment with 107 spreadsheet users. We asked them to
execute a set of comprehension tasks on a spreadsheet model. We used two different vari-
ants of the same spreadsheet. One group received a spreadsheet where the data necessary
for a calculation was located close to the calculation itself. The other group got the same
calculations, but now the data used in the calculation was grouped by category and, as a
result, spread far and wide across the spreadsheet.



xii Summary

We found that the participants performed better in explaining formulas using the
spreadsheet model where the data was closely located to the calculation. We also ob-
served that when participants have to make changes to a formula, they perform better on
a longer formula with a relatively short calculation chain than on a short formula with (as
a consequence) a longer calculation chain.

Spreadsheet evolution
Spreadsheets have an average lifespan of five years. During their existence, they are main-
tained and, consequently, evolve. To better understand how spreadsheets evolve, we con-
ducted two case studies on two different sets of spreadsheets that both were already main-
tained for three years. To study the evolution, we developed FormulaMatch, an algorithm
to detect and visualize changes in spreadsheets.

From the case studies, we learned that spreadsheets grow over time both in data and
in number of formulas. New feature requests mainly drive the growth. Also, during the
lifespan of a spreadsheet, formulas will be changed. In the case studies, we saw that from
version to version, usually, the same formulas are changed. These changes are often neces-
sary because new data is added to the spreadsheet. Other reasons for change are improving
the maintainability of the spreadsheet and bug fixing.

Phase II
XLBlocks
During the second phase of our research, we developed XLBlocks: a block-based formula
editor for spreadsheet formulas. In the first version of the language, it was possible to
generate valid Excel formulas from a block-based model of the formula created in the
visual editor of XLBlocks.

We conducted a think-aloud study, asking participants to perform a set of typical
spreadsheet tasks with XLBlocks. Then we interviewed them and asked them to evalu-
ate XLBlocks, using the Cognitive Dimensions of Notation (CDN) framework.

XLBlocks received a better score than the Excel formula editor on all dimensions. Users
appreciated XLBlocks because they did not have to worry about the syntax of a formula,
the drag and drop interface made it easier to edit formulas, and they had the freedom to
develop the formula in the order they saw fit.

After the first think-aloud study, we further developed XLBlocks and extended it with
the functionality to generate a block-based representation of an existing (textual) formula.
We organized a second think-aloud study that focused on spreadsheet comprehension.

Results from the study indicate that participants believed that XLBlocks helped them
comprehend the spreadsheet better. They gave several reasons for this. The visualization
in blocks supported them in splitting the formulas into smaller parts in their head, making
them easier to comprehend. Furthermore, the labels used in the blocks make it easier to
read a formula, and finally, the highlighting functionality of XLBocks, combined with
the functionality to navigate the formula precedents, makes it easier to understand the
spreadsheet as a whole.



xiii

Samenvatting
Spreadsheets worden volop gebruikt in het bedrijfsleven. De uitkomsten hiervan worden
vaak gebruikt bij belangrijke zakelijke beslissingen. Helaas zijn spreadsheets foutgevoelig.
Hierdoor lopen bedrijven het risico dat ze hun beslissingen baseren op onjuiste informatie.
Uiteindelijk kan dat leiden tot financiële verliezen en/of reputatieschade.

Dit proefschrift onderzoekt in hoeverre een visuele taal professionele spreadsheetge-
bruikers kan ondersteunen bij het maken en begrijpen van complexe formules. We hebben
ons onderzoek onderverdeeld in twee fasen. In fase I hebben we geprobeerd om vanuit
drie invalshoeken beter te begrijpen hoe spreadsheets worden gebruikt. We hebben hierbij
gekeken naar:

1. het voorkomen van zogenaamde ‘code smells’ in spreadsheetformules

2. de vraag of de manier waarop de gegevens in een spreadsheet zijn georganiseerd
van invloed is op de begrijpbaarheid van een spreadsheet

3. de evolutie van spreadsheets

In fase II van het onderzoek hebben we XLBlocks ontwikkeld. XLBlocks is een visuele,
op blokken gebaseerde, programmeertaal voor het maken en onderhouden van formules
in spreadsheets.

Fase I
Code smells
Met behulp van een dataset met spreadsheets van de financiële modellenbouwer F1F9
hebben we gekeken hoe vaak code smells voorkomen in spreadsheetformules. De data-
set bestond uit 54 spreadsheetparen. Ieder paar bestond uit een spreadsheet aangeleverd
door een klant van F1F9 en een door de professionele modelbouwers van F1F9 verbeterde
variant van diezelfde spreadsheet. We vermoedden dat de door de professionele modelbou-
wers ontwikkelde spreadsheets minder code smells zouden bevatten en dit bleek inderdaad
het geval te zijn. Daarnaast bleek dat kengetallen voor omvang en koppelingsdichtheid
(het aantal onderlinge verbindingen tussen formules) slechte voorspellers zijn van de com-
plexiteit van een spreadsheet. Er waren geen duidelijke verschillen voor deze kengetallen
tussen de spreadsheets van de klant en die van F1F9.

Organisatie van de gegevens in een spreadsheet
We hebben het concept van ‘delocalized plans’ toegepast op spreadsheets. Delocalized
plans in spreadsheets hebben we gedefinieerd als formules waarbij de onderdelen van
de berekening van die formule ver van elkaar verwijderd staan in de spreadsheet. We
hebben onderzocht in hoeverre de aanwezigheid van delocalized plans van invloed is op
de begrijpbaarheid van de spreadsheet.



xiv Samenvatting

Hiertoe hebben we een gecontroleerd experiment opgezet. We hebben de 107 deelne-
mers gevraagd om een aantal taken uit te voeren in een spreadsheet. Deze taken konden
alleen goed uitgevoerd worden als degene die de taak uitvoerde de spreadsheet goed be-
greep. In het experiment hebben we twee varianten van dezelfde spreadsheet gebruikt.
De ene groep deelnemers moest de taak uitvoeren in een spreadsheet waarbij de gege-
vens voor een berekening zo dicht mogelijk bij elkaar stonden. De andere groep moest
dezelfde taken uitvoeren in een andere variant van de spreadsheet waarbij de gegevens
voor de berekening verspreid stonden over de spreadsheet.

Het bleek dat deelnemers formules beter konden uitleggen als de gegevens die gebruikt
werden in de formule dicht bij elkaar stonden. Ook werd duidelijk dat ze beter in staat
waren om veranderingen in formules aan te brengen als die formule langer was en daar-
door een kortere ‘calculation chain’ had. Bij kortere formules met een langere calculation
chain werden meer fouten gemaakt.

Spreadsheet evolutie
De gemiddelde levensduur van een spreadsheet is vijf jaar. Gedurende deze periode wor-
den ze regelmatig onderhouden en aangepast. Om meer te weten te komen over hoe
spreadsheets evolueren, hebben we twee casestudies uitgevoerd op twee verschillende
sets van spreadsheets. Beide sets bestonden al 3 jaar. Om de evolutie te kunnen onder-
zoeken was het nodig om de verschillen tussen twee versies van een spreadsheet vast te
kunnen stellen. Hiervoor hebben we FormulaMatch ontwikkeld. Het is een algoritme dat
verschillen tussen versies opspoort en visualiseert.

Op basis van de casestudies werd duidelijk dat spreadsheets gedurende hun leven blij-
ven groeien. Het gaat hierbij om groei van zowel gegevens als het aantal formules. Belang-
rijkste reden voor deze groei zijn nieuwe stukjes functionaliteit die worden toegevoegd
aan de spreadsheet. Ook bleek dat er regelmatig formules worden aangepast. Van versie
op versie zijn het veelal dezelfde formules die worden aangepast. De reden voor deze aan-
passingen is vaak dat er nieuwe gegevens zijn toegevoegd aan de spreadsheet. Andere
redenen voor aanpassingen in formules zijn het verbeteren van de onderhoudbaarheid en
het corrigeren van fouten.

Fase II
XLBlocks
In de tweede fase van ons onderzoek hebben we ons gericht op het ontwikkelen van XL-
Blocks: een op blokken gebaseerde programmeertaal voor het maken en aanpassen van
spreadsheetformules. In de eerste versie van de taal was het mogelijk om een blokmodel
te maken van een formule en deze om te laten zetten naar een geldige Excelformule.

Ommeer te leren over het gebruik van de taal hebben we een ‘think-aloud study’ opge-
zet. We gaven de deelnemers een aantal typische spreadsheetopdrachten die ze moesten
oplossen met XLBlocks. Daarna hebben we ze een interview afgenomen waarin we ze
gevraagd hebben naar hun ervaringen met XLBlocks. Hierbij hebben we gebruik gemaakt
van het Cognitive Dimensions of Notation (CDN) framework.

XLBlocks kreeg van de deelnemers voor alle CDN-dimensies een hogere score dan de
standaard formulebalk in Excel. Ze vonden het prettig dat ze met XLBlocks niet hoefden



Samenvatting xv

na te denken over de precieze syntax van een formule, de ‘drag-and-drop’ interface maakte
het eenvoudiger om formules aan te passen en XLBlocks gaf deelnemers de vrijheid om
de formule op te bouwen in de volgorde die zij logisch vonden.

Na de eerste studie hebben we XLBlocks verder doorontwikkelt. We hebben de moge-
lijkheid toegevoegd om een bestaande Excelformule om te zetten naar een blokmodel van
die formule in XLBlocks.

Ook voor deze tweede versie van XLBlocks hebben we een think-aloud studie uitge-
voerd. In deze studie hebben we met name gekeken naar het effect van een visuele taal
op de begrijpbaarheid van een spreadsheet.

Uit de uitkomsten van de studie komt naar voren dat deelnemers het gevoel hebben dat
XLBlocks het makkelijker maakt om een spreadsheet te doorgronden. Ze geven hiervoor
een aantal redenen. Allereerst helpt de visualisatie van een formule om deze mentaal op
te delen in kleinere stappen waardoor deze makkelijker te begrijpen is. Daarnaast maken
de omschrijvingen van de parameters van de functie het makkelijker om de formule te
lezen. Tot slot maakt de combinatie van het markeren van formules in de spreadsheet en
de mogelijkheid om eenvoudig van formule naar formule te navigeren, het eenvoudiger
om de spreadsheet in z’n geheel te begrijpen.





xvii

Acknowledgments
Finishing a Ph.D. is not a sprint but a marathon and, in my case, a long one. Nevertheless,
I enjoyed every bit of the race. And I could only enjoy it because of all the people that
surrounded and supported me. In the following paragraphs, I will seriously try to thank
you all.

Hermien: I will start with you. You are my soulmate, my Northstar, and you supported
me from start to finish. It was not easy. Simultaneously pursuing a Ph.D. and running
one’s own company takes a severe toll on one’s private life. You were not happy with that,
but still, you realized it was important to me and supported me unconditionally. You had
my back every time I dropped the ball. Without you, I would have never made the finish.
I can not thank you enough for this. I owe you.

Ella: When I started my Ph.D., you were a little girl of seven, now a young woman of
15 and my paranymph. You can not imagine how proud I am of you. I thank you for being
a constant source of joy in my life, and I apologize for all the times dad was not available
because he had to write a paper.

Dad: You were undoubtedly my biggest supporter. You were there at the start and
would have almost given anything to witness the finish. Unfortunately, it was not meant
to be. We had to let you go. I promised you that I would finish this project, and today I
can fulfill this promise. Thank you for giving me a solid foundation in life. You taught me
to always go the extra mile. Thank you.

Mom: You accompanied me for the first 15 years of my life, and you could not have
imagined that I would start a Ph.D. one day. I’m convinced you gave me the curiosity and
eagerness to learn that drove me into this project.

Felienne: You are the best co-promoter one can wish for. Boy, did I learn a lot from you.
You always found the right balance between pushing me and giving me slack. I remember
a specific paper where I was determined to tell you I would not submit it. I just had to
inform you by phone. The call lasted about 15 minutes, and somehow, by the end, you
convinced me to finish the paper. I still do not understand how. However, I did finish the
paper and submitted it. It was accepted and now is chapter five of this thesis.

The most important thing I learned from you is to tell my story. Answer the why and
convince the reader already in the introduction of the story. Valuable lessons, not only for
academic writing but for life in general.

I certainly will miss our running routine. Every Friday, we would start early in the
morning with a run for 45 - 60 minutes. We would discuss, among many other things,
the progress of my research. To keep me talking was a smart strategy to keep up with
my running pace in the early days Nowadays, that’s not necessary anymore. You easily
outrun me.

Arie: Thank you for being my promotor and allowing me to pursue my Ph.D. in your
group. You had a bit of a laissez-faire strategy with me. But there were a few instances
I really needed your advice, and then you were there for me. Your advice was always



xviii Acknowledgments

wrapped in a question. A question that would make me think, and eventually, I would
stumble on the answer. Thank you for your guidance.

Edwin: You are a definite constant in my academic life. Long ago, you guided me
in writing my master thesis at Kema, you allowed me to do research for my Ph.D. at
Alliander (and because of that, co-authored chapter 4 with me), helped me to sharpen my
propositions, and at the finish line of this journey, you supportme by beingmy paranymph.
Your advice is sincere, well thought out, fact-based, and nuanced. Thank you for your
support, but above all, for being my friend.

Fenia, Alaaeddin, Sohon, and Moritz: The first years of my Ph.D. took place in Delft,
and you were an integral part of this time. I enjoyed working and spending time with you.
I have fond memories of the international diner at Fenia’s place and barbecue at Mortiz’s
place. Going out for lunch with you was one of the highlights of my Fridays. Not for
the food (although I spotted a pattern there), but for the many discussions we had about
a variety of topics. We all come from different cultural backgrounds, which made the
conversations much more interesting. In most cases, it gave me new insights and made
me a more humble world citizen. Thank you for that.

Petra: You have beenmy business partner since just beforemy Ph.D. I remember asking
you if I should go for it, and you immediately said yes. And even though it took away time
and energy from the company, you’ve always supported me. Always interested in what I
was up to, and if you somehow could participate, you would. Thanks.

And last but not least, I want to thank all the people that participated in one of the
different studies. The 107 spreadsheet users that participated in the experiment about
delocalization in spreadsheets (Chapter 3), The employees at Alliander that participated
in the case studies (Chapter 4), the 13 spreadsheet users that evaluated the first version of
XLBlocks (Chapter 5), and the 21 spreadsheet users that participated in the second study
about XLBlocks (Chapter 6). There are too many of you to mention you all by name, but
research is impossible without you. Your valuable feedback is what brings progress. You
gave me the most precious thing you possess, your time. Thank you for that.

Nine years is a long time, if you in someway helped or supported me in this endeavor
and I did not mention you, let me buy you a beer the next time I see you.

Bas
Banff National Park, Canada, July 2022

metronome.unplanned.curfew



1

1

1
Introduction



1

2 1 Introduction

1.1 Background

Spreadsheet usage
Spreadsheets are widely used in industry. According to Panko and Ordway [1] 95% of
U.S. firms use spreadsheets in some form of financial reporting. Panko and Ordway also
interviewed 118 business leaders, and 85% of them stated that they use spreadsheets in
financial reporting and forecasting. Winston [2] found that 90% of all analysts use spread-
sheets for their calculations. Furthermore, a study by the USA Bureau of Labor Statistics
in 2003 [3] showed that 60% of 77 million surveyed workers in the U.S. reported that using
spreadsheets is the third common use of computers after e-mail and word processing. In
another study among 95 organizations in Europe, North America, Australia, and Asia,
spreadsheets were placed fourth, after e-mail, browsing, and word processing [4].

Not only are spreadsheets widely used, but they are also used to support critical busi-
ness decisions. Croll interviewed 23 professionals that wereworking in the City of London,
who stated that spreadsheets are used to value financial instruments of all types and guide
decisions on what to trade and when. Caulkins et. al. [5] came to a similar conclusion. A
study among 45 executives and senior managers affirmed that spreadsheets are frequently
used to inform decisions. Furthermore, Hermans et. al. [6] interviewed 27 analysts of an
asset management company and more than half of them stated that they use calculations
in spreadsheets as a basis for their decisions.

Spreadsheet errors
From research, we also know that spreadsheets are error-prone. The cell error rate is a
metric to measure the error-proneness of a spreadsheet. It is the number of errors divided
by the combined number of numerical and formula cells [7]. Several studies [8] [9] reveal
an average cell error rate between one and five percent. In the Enron corpus (15,770
spreadsheets), Hermans and Murphy-Hill [10] found an average of 1,286 formula cells per
spreadsheet. Combined with a cell error rate of one percent means, on average, thirteen
erroneous cells in a spreadsheet. Based on these numbers, it is expected that almost every
spreadsheet in the Enron corpus contains errors, which agrees with a finding from Panko
that 86% of the spreadsheets contain errors [11].

These error rates are not specific for spreadsheets but consistent with human error
rates from other work domains. Depending on the complexity of the tasks, humans tend
to make undetected errors in about 0.5% to 5% of their actions [7]. The difference is the
impact of these errors. If a user makes a typo while writing a report, the typo does not
change the report’s outcome. However, if a user makes a typo in a formula, it will most
likely change the spreadsheet’s calculation outcome.

The widespread use of spreadsheets to support critical business decisions combined
with their error proneness leads to the risk that companies make decisions based on inac-
curate information, leading to loss of money and reputation.

An infamous example of reputation loss caused by a spreadsheet error is the Reinhart
and Rogoff controversy. Based on their study Reinhart and Rogoff concluded that once the
public-debt-to-GDP ratio rises above 90%, the average economic growth rate is a negative
0.1% [12]. The conclusions of this study were frequently quoted on the issue of whether



1.1 Background

1

3

a Keynesian stimulus program or policy of austerity would be the appropriate reaction to
the economic crisis of 2008.

In a replication study, Herndon et. al. found several errors in Reinhart and Rogoff’s
study, one of them being a spreadsheet coding error that led to the exclusion of growth data
of five countries [13]. When properly calculated, Herndon et. al. found that the average
GDP growth rate for countries carrying a public-debt-to-GDP ratio over 90 percent is 2.2%
instead of Reinhart and Rogoff’s -0.1%, meaning economic growth instead of decline.

The delay of the opening of Edinburgh’s new children’s hospital illustrates the possible
financial impact of a mistake in a spreadsheet ¹. Critical care rooms need ten air changes
per hour, but due to the spreadsheet error, they were outfitted with a ventilation system
that only did four air changes per hour. This led to remedial work worth sixteen million
GBP that had to be carried out to correct the ventilation system.

An extensive list of spreadsheet horror stories illustrating the above mentioned risks
can be found on the website of the European Spreadsheet Risk Interest Group².

Spreadsheets are code
Hermans et. al. [14] state that spreadsheets can be considered to be the world’s most suc-
cessful end-user programming language and in their paper they give several compelling
reasons why spreadsheets are code:

• They share similar goals. Spreadsheets are used to solve similar problems like com-
plex financial calculations or data manipulation.

• They have comparable expressive power and share concepts like composition, se-
lection, and repetition. Examples of composition are formulas that reference other
cells in the spreadsheet. Selection is implemented by providing an if-then-else func-
tion. Repetition is found in the replication of the same formula across many rows
or columns.

• They share maintainability issues with software. They have a long lifespan (an aver-
age of five years), are used by many different users (an average of twelve different
users), lack documentation [6], and suffer, because of the error-proneness, from
quality issues.

Motivation
The similarities mentioned above between spreadsheets and software motivate to seek in-
spiration from methods and techniques in software engineering to improve spreadsheets.
Theprimarymotivation for this dissertation is the wish to reduce the error-proneness of spread-
sheets and, consequently, reduce the risks of loss of money and reputation by companies. Can
we use the acquired knowledge in the field of software engineering to improve spread-
sheets?

¹https://www.bbc.com/news/uk-scotland-edinburgh-east-fife-53893101
²http://www.eusprig.org/horror-stories.htm



1

4 1 Introduction

1.2 Spreadsheet challenges
Although spreadsheets have similarities with code, they also possess some properties that
make them different. These properties can be divided into three categories: language-
related, user-related, or tool-related. We will elaborate on these properties in the coming
paragraphs.

1.2.1 Language
The first property is the directness of spreadsheets. In spreadsheet development, there is
no difference between coding and runtime. A change in a formula results immediately in
a different outcome of the spreadsheet model. Furthermore, a formula is visually replaced
by its result as soon as the user confirms it. This effect further enhances the sense of direct-
ness. The directness brings the user of the spreadsheet the advantage of high interactivity,
but it also hides the design of the spreadsheet behind the results of the spreadsheet, which
makes it more challenging to comprehend the spreadsheet model.

Almost all programming languages accommodate the concept of a loop with state-
ments like for...next and do...while. Spreadsheets do not have such looping constructs.
Spreadsheet users copy formulas to execute the same calculation for different values to
reach the same effect. It is not uncommon that a single formula is copied thousands of
times. These ranges of similar formulas introduce potential errors. If one formula is chan-
ged, the spreadsheet software will not automatically populate this change to the copied
formulas. If the user forgets to do this manually, an error is introduced in the spreadsheet.

In a spreadsheet interface, it is impossible to see which formulas are a copy of each
other. With a high number of copied formulas, it could be challenging to discover the
unique formulas that define the business rules in the spreadsheet. This makes it more
challenging to comprehend a spreadsheet model.

1.2.2 Tools
An important tool for software developers is the Integrated Development Environment
(IDE). It can be seen as a sophisticated text editor specially designed to write code (See
also Figure 1.1). There are many different IDEs, but in general, IDEs support the developer
by providing functionality including:

• Syntax highlighting: the editor displays source code in different colors according to
the category of terms.

• Refactoring: the process of restructuring source code without changing its external
behavior with the intention to improve the code.

• Minimap: a reduced overview of the entire file, displayed in a separate pane, typi-
cally next to the source code.

• Debugger: from within the editor, it is possible to run the source code under con-
trolled conditions, track its progress, and halt it at specific points.

• Autocomplete: feature in an editor that predicts the rest of a word or snippet while
the user is typing.



1.2 Spreadsheet challenges

1

5

• Version management: a system that tracks and provides control over changes in the
program.

Figuur 1.1: Example of an IDE with examples of syntax highlighting and a minimap

Spreadsheet software does not have an IDE for writing formulas. In the most used
spreadsheet program Microsoft Excel a user can enter a formula in three different ways:

1. directly in a cell (See Fig. 1.2a)

2. in the formula bar (See Fig. 1.2b)

3. via the function wizard (See Fig. 1.2c)

In comparison with an IDE, there are seven issues with these different input methods
for spreadsheet formulas.

1. All three input methods have limited space to enter and edit a formula compared
with IDEs. The space in an IDE makes it possible to see multiple lines of code in a
single glance. Because of this, a developer can see a single statement in the context
of other statements. Furthermore, they can use horizontal (indentation) or vertical
(blank lines) white space to structure their code.

2. In Excel, it is not easy to use white space to structure formulas. Creating vertical
white space is possible with in-cell editing and in the formula bar. In both cases, it
requires that the user knows the keyboard shortcut for a new line ([alt] + [enter]),
and if it is done in the formula bar, the user needs to resize the formula bar manually
to create enough space to see the additional blank lines. Horizontal white space is
even more difficult. Excel does not accept the tab character in a formula. However,



1

6 1 Introduction

(a) In-cell editing

(b) Editing in the formula bar

(c) Using the function wizard

Figuur 1.2: three ways for entering a formula in Excel

indentation can be created with spaces. If the function wizard is used, Excel will
generate the formula automatically, and no white space is added.

3. The limited space available in spreadsheet programs to display formulas in combi-
nation with the default behavior that only a single formula can be seen at a glance
makes it difficult for spreadsheet users to get an overview of the formulas used in a
spreadsheet.

4. Syntax highlighting is not available in spreadsheets. Although color is used in for-
mulas, it is not used to highlight keywords but to highlight references to other cells
and for matching parentheses (see Fig. 1.3).

5. Tools for refactoring are lacking, although both Hermans and Dig[15] and Badame
and Dig [16] have shown that refactoring for spreadsheets is technically feasible
and can support users to create better formulas.

6. Navigation is another area where spreadsheet software is lacking. Relations bet-
ween formulas are not visible in the user interface. Some tools can visualize depen-
dencies between formulas, but this functionality is limited and does not scale when
spreadsheets grow bigger and formulas become more complex.

7. Finally, there is no solution for version management. It is not easy to show the diffe-
rences between two versions of the same spreadsheet. For example, if a user inserts
an empty row in a spreadsheet, all formulas that refer to a cell below this row are
automatically changed. Furthermore, because it is common practice to copy formu-
las down or to the right to simulate loops (see Section 1.2.1), insertion of a single
empty row can lead to thousands of changes in formulas. The insertion of the empty



1.2 Spreadsheet challenges

1

7

row did not change the working of the spreadsheet model in any way, but the user
would be confronted with thousands of changes in formulas. This problem could be
circumnavigated by focusing on changes to unique formulas. They can be detected
in a spreadsheet by using the R1C1³ notation instead of the default A1 notation[17].
The thousands of changes can then be reduced to a single change to a unique for-
mula. However, it immediately introduces a new challenge. If two spreadsheets A
and B are compared, how does one know which unique formula in spreadsheet A
corresponds to the same unique formula in spreadsheet B. Spreadsheet formulas do
not possess a unique identifier. The formula’s cell address is some form of a unique
identifier but can easily be changed when changes are made to the layout of the
spreadsheet by inserting or deleting rows or columns. A possible approach for a
solution to this challenge is described in Chapter 4.

Figuur 1.3: Cell reference highlighting instead of syntax highlighting

1.2.3 Users
An important difference between software developers and spreadsheet users is that most
spreadsheet users did not receive any formal training in software development. They are
first, and foremost end-users [18]. There is a growing body of research in which soft-
ware engineering methods are transferred to the spreadsheet domain to support users in
creating better spreadsheets. However, some of these methods expect spreadsheet users
to know concepts from the domain of computer science. For example, Erwig introduced
ClassSheet [19]. With ClassSheet, it is possible to define a template for spreadsheets that
can automatically generate a spreadsheet model. However, it also requires some know-
ledge of the principles of object-oriented programming. Knowledge most spreadsheet
users are lacking. Roy interviewed spreadsheet users about their testing practices [20].

³In the R1C1 notation, R stands for row and C for column with the numbers identifying the row and column
number of the cell.



1

8 1 Introduction

Their answers illustrate that the development of a spreadsheet is often an ad-hoc and or-
ganic process. Users are focused on finding a quick solution for their problem and do not
think about the spreadsheet structure. Hermans found that spreadsheets have an average
lifespan of five years and are used on average by thirteen different users [6]. However,
if spreadsheet users are confronted with these findings, they are surprised. They never
planned to design a spreadsheet that can be easily maintained for such a lifespan and is
easy to use for different users.

1.3 Thesis statement
This thesis aims to find ways in which spreadsheet users can be supported to create spread-
sheets that contain fewer errors. As we have seen in the previous section, most spread-
sheet challenges concern the user interface of spreadsheet software. Also, it was menti-
oned that a growing body of research focuses on transferring methods used in software
engineering to the domain of spreadsheets. This research includes testing, reverse engi-
neering, code smells, and refactoring. Attention to the user interface of spreadsheets is
missing in this research. This thesis will zoom in on the development and maintenance of
spreadsheet formulas. Are there ways to improve the interface for creating and maintai-
ning formulas?

We started our research by exploring the idea of using a visual language to create better
spreadsheets [21]. It is this central thought that formed the inspiration for the following
thesis statement:

A visual language supports professional spreadsheet users in interacting with complex
formulas. This results in a reduction in the number of errors made during the creation
or maintenance of formulas.

Wewill use this thesis statement as a guide for our research. It narrows down the scope
and provides a roadmap for this dissertation. In the coming chapters, we will examine the
different aspects, and based on the conclusions of our research, we will reflect on the
statement and answer the question if we think it holds.

1.4 Methodology
To explore the previously mentioned thesis statement, we conducted several different stu-
dies.

In these studies, we worked with spreadsheets used in industry. We took inspiration
fromwell-established methods in software engineering and translated them to the domain
of spreadsheets.

In the different studies, we used several research methods.

• We used static analysis [22] of formulas to detect code smells in spreadsheet for-
mulas. We analyzed 130 spreadsheets from an industrial partner with the Spread-
sheet Scantool developed at Delft University of Technology. The study is reported
in Chapter 2.



1.5 Outline

1

9

• We used a controlled experiment [23] to research the effect of delocalized plans
in spreadsheets. We asked the participants of the experiment to perform a set of
maintenance tasks in a spreadsheet. Each participant had to perform the same tasks,
but the spreadsheet differed. See Chapter 3 for a detailed report of this research.

• In Chapter 4, we use a case study [24] to analyze the evolution of two sets of spread-
sheets. Within these sets, we analyzed different versions of spreadsheets and dis-
cussed our findings with the owners of the spreadsheets in an interview.

• To evaluate users’ experiences with our block-based formula language XLBlocks
(see Chapter 5 and 6) we used think-aloud studies [25]. The aim of our research in
these two chapters is not to prove that XLBlocks is a better formula editor but to
understand how it is used and experienced by professional spreadsheet users. The-
refore, we specifically chose think-aloud studies because they allowed us to collect
as much information as possible about how users experience XLBlocks. In the stu-
dies, we asked participants to perform typical spreadsheet tasks. After the tasks, we
conducted a semi-structured interview to further inquire about things we noticed
during the think-aloud study.

• To evaluate XLBlocks as a programming language, we used the Cognitive Dimen-
sions of Notation (CDN) framework [26]. We asked participants in the studies to
evaluate XLBlocks on the different dimensions of the CDN framework.

We are firm believers in open data, and whenever possible, we share our data and
source code online. The data is stored following the guidelines of TU Delft, which means,
among other things, that it complies with the GDPR and that data is stored and archived
for at least ten years for the sake of transparency and audibility. We also value research in
an industry setting. Therefore, in some studies, weworked closely with industrial partners.
In those cases, the spreadsheets we used were confidential and could not be shared.

1.5 Outline
The chapters of this dissertation are based on peer-reviewed publications in several soft-
ware engineering conferences. Each chapter is self-contained, and therefore one could
notice some repetitions, especially in the introduction of the chapters. The main body of
this thesis consists of previously published papers that examine the different aspects of
the thesis statement. All chapters are co-authored with Felienne Hermans, and Chapter 4
is also co-authored with Edwin Tazelaar.

The research for this dissertation can be roughly divided into two phases. In phase
one, our research aimed to gain a better understanding of how users interact with spread-
sheets and what causes the error-proneness. In phase two of the research, we developed
and evaluated a visual language to support users in creating and maintaining complex
formulas.

1.5.1 Phase I: better understanding of spreadsheets
We will start in Chapter 2 with defining the concept of code smells in spreadsheet for-
mulas. In previous research, Hermans defined code smells for spreadsheets, both on the



1

10 1 Introduction

level of the worksheet and the level of formulas [27], [28]. In these studies, Hermans
showed that it is possible to define code smells for spreadsheets and users recognize the
different smells. However, the studies did not demonstrate that smells in spreadsheets
are bad by definition and will cause problems. This chapter explores the hypothesis that
spreadsheets containing fewer code smells are less error-prone, easier to understand, and
easier to maintain. We analyzed a set of 54 pairs of spreadsheets that we obtained from
financial modeling company F1F9. Each pair consists of a spreadsheet created by one of
F1F9’s customers and a corresponding model with the same functionality as the first mo-
del but rebuilt from scratch by professional spreadsheet modelers of F1F9 using the FAST
standard. We scanned all spreadsheets for smells with the Spreadsheet Scantool developed
at Delft University of Technology [28]. We hypothesized that the spreadsheets created by
the professional spreadsheet developers of F1F9 should contain less smelly formulas than
the spreadsheets built by their customers. The results showed that the F1F9 spreadsheets
suffer from smells to a much lower extent than the customer’s sheets. This chapter pre-
viously appeared in the Proceedings of the 2015 International Conference on Software
Maintenance and Evolution (ICSME) [29].

In Chapter 3, we explore the effect of delocalized plans in spreadsheets on the com-
prehensibility of spreadsheets. In this study, we conducted a controlled experiment. One
hundred seven participantswere asked to perform several comprehension tasks in a spread-
sheet. For this experiment, we created two versions of the same spreadsheet. In one
spreadsheet, the data was structured so that all data needed for a particular formula was
grouped closely together. In the other spreadsheet, similar data were grouped, and as a
result, the data needed for a single formula could be spread all over the spreadsheet. The
participants were randomly assigned to one of the two models. The results reveal that
participants perform significantly better when they perform the comprehension tasks on
the model where all data needed for a single calculation was grouped closely together.
The absence of delocalized plans in the spreadsheet led to better comprehensibility. This
chapter was published in the Proceedings of the 25th (2017) International Conference on
Program Comprehension (ICPC) [30].

Chapter 4 describes a case study of the evolution of a set of spreadsheets. As menti-
oned in Section 1.2.3, spreadsheets have an average life span of 5 years. During this life
span, it is to be expected that the model needs maintenance or that data is updated. The
update of data and the maintenance of formulas are moments when errors can be intro-
duced in the model. In this chapter, we describe two case studies on two different sets of
spreadsheets. We follow the evolution of these spreadsheets over a period of three years.
We needed to develop an algorithm to detect and visualize the changes made during this
period. Results of the case study indicate that studying the evolution of a spreadsheet
helps users to identify areas in the spreadsheet that are error-prone, likely to change, or
that could benefit from refactoring. This work appeared in the Proceedings of the 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME) [31].

1.5.2 Phase II: development of a visual language for spreadsheet for-
mulas

In Chapter 5, we finally turn our attention to the user interface of spreadsheets. As we
have learned from the concept of code smells in spreadsheets (see Chapter 2) and research



1.5 Outline

1

11

on spreadsheet errors[11], we know that most spreadsheet errors have their origin in for-
mulas. In Section 1.2.2 we also saw that the interface for creating and editing formulas
is challenging in itself. Therefore, we wondered if improving the interface would help to
improve the overall quality of spreadsheets. Given the success of block-based languages
in studies on the performance of novice programmers, we hypothesized that a block-based
formula editor could similarly support spreadsheet users.

Therefore, we developed XLBlocks, a block-based formula language for spreadsheets.
To evaluate XLBlocks, we conducted a think-aloud studywith thirteen experienced spread-
sheet users. In the study, we asked them to create and edit several spreadsheet formulas
with XLBlocks. After the think-aloud study, participants evaluated XLBlocs against the
Cognitive Dimensions of Notations framework. This evaluation revealed that XLBlocks
received, on all dimensions, a better evaluation than the default text-based formula editor
of Excel. The think-aloud study showed that users were supported in thinking about the
formula they were constructing because of the drag and drop interface. They experienced,
in comparison with the text-based formula editor, more freedom in the sequence in which
they could construct the formula. The study also indicated areas where XLBlocks could
be further improved. Better use of color could help make the formulas easier to read, an
improved type-checking system should prevent users from connecting invalid combina-
tions of blocks, and in this version of XLBlocks, only new formulas could be generated.
Users indicated that it would be beneficial to generate a block-based model of an existing
formula. This chapter was published in the Proceedings of the 2019 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC) [32].

Chapter 6 presents a second study with XLBlocks. In this study, we focus on the ef-
fect of a block-based language on formula comprehension in spreadsheets. Research has
shown that block-based languages positively influence the comprehension of code [33].
We hypothesize that the same goes for spreadsheets and that a block-based formula lan-
guage will positively affect formula comprehension. To study this, we extended XLBlocks
with the functionality to generate a block-based representation of an existing formula.
Next, we conducted a think-aloud study with twenty-one experienced spreadsheet users.
They were asked to perform a set of twelve comprehension tasks on an existing spread-
sheet. After the think-aloud study, we interviewed the participants and asked them to
reflect on the use of XLBlocks. We used again the Cognitive Dimensions of Notations
framework to structure the interview. Results of the study showed that the participants
preferred the block-based representation of the formula over the textual representation
when analyzing or explaining formulas. They also preferred XLBlocks for implementing
non-trivial changes. Furthermore, they indicated that the presence of named parameters
and the absence of parentheses and commas made the formulas easier to understand. Also,
the visualization enabled them to separate smaller parts in the formula, which improved
comprehension. Finally, the possibilities to easily navigate from formula to formula made
it easier to understand how formulas were related and gave a better understanding of
the spreadsheet as a whole. This chapter appeared in the Proceedings of the 29th (2021)
International Conference on Program Comprehension (ICPC) [34].

Finally, Chapter 7 presents the conclusions of this dissertation and discusses future
work.





2

13

2
Code Smells in Spreadsheet

Formulas Revisited on an Industrial
Dataset

In previous work, code smells have been adapted to be applicable on spreadsheet formulas.
The smell detection algorithm used in this earlier study was validated on a small dataset of
industrial spreadsheets by interviewing the users of these spreadsheets and asking them about
their opinion about the found smells. In this paper a more in depth validation of the algorithm
is done by analyzing a set of spreadsheets of which users indicated whether or not they are
smelly.

This new dataset gives us the unique possibility to get more insight in how we can distinguish
‘bad’ spreadsheets from ‘good’ spreadsheets. We do that in two ways: For both the smelly and
non smelly spreadsheets we 1) have calculated the metrics that detect the smells and 2) have
calculated metrics with respect to size, level of coupling, and the use of functions. The results
show that indeed the metrics for the smells decrease in spreadsheets that are not smelly. With
respect to size we found to our surprise that the improved spreadsheets were not smaller, but
bigger. With regard to coupling and the use of functions both datasets are similar. It indicates
that it is difficult to use metrics with respect to size, degree of coupling or use of functions to
draw conclusions on the complexity of a spreadsheet.

This chapter has been published as  B. Jansen and F. Hermans. Code Smells in Spreadsheet Formulas Revisited
on an Industrial Dataset, ICMSE’15 [29]



2

14 2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset

S preadsheets could be considered the most successful end-user programming platform,
with an estimated 55 million people using them in the US alone. Because spreadsheets

are so widely used as programming tools, it is plausible to apply methods from software
engineering to them in order to improve them. This has been done in previous work,
among others by Hermans et al. [27] who translated some of Fowler’s code smells [35] to
the realm of spreadsheets.

In their paper, a method for the detection of spreadsheet smells is described, including
for example a long list of referenced cells or deeply nested conditional formulas. To eva-
luate their smell detecting algorithm, Hermans et al. detected smells in ten spreadsheets
created by employees of an investment bank, and subsequently interviewed the users of
these spreadsheets, asking their opinion about the found smells. This study had two ob-
vious limitations: firstly, the dataset used in this evaluation was very small, consisting of
only 10 spreadsheets stemming from one company. Secondly, it was not known in ad-
vance if these spreadsheet were suffering from smells; users were just asked for ‘complex
spreadsheets’.

This paper presents a more extensive investigation of spreadsheet smells on an enti-
rely new dataset, obtained from financial modeling company F1F9. Employees of F1F9
develop financial models in Excel for customers, often based upon the customer’s existing
spreadsheet models. We have obtained 54 pairs of spreadsheets consisting of the origi-
nal model developed by the customer and the rebuilt model created by F1F9 employees.
Customers in general reach out to F1F9 because they cannot maintain their spreadsheets
models anymore, in other words: they are smelly. As such, these pairs of smelly and non-
smelly versions of the same spreadsheet provide ample opportunity for us to investigate
what characterizes a smelly spreadsheet.

To do so, we have performed an evaluation in whichwe detected smells for both smelly
and non-smelly spreadsheets. We have applied both the Wilcoxon Signed-Ranks Test for
Paired Samples and the Wilcoxon-Mann-Whitney test to see if there is significant diffe-
rence between the two types of spreadsheets. We find that indeed the rebuilt spreadsheets
contain smells less frequently. In addition to calculating smells, we also calculated size and
coupling metrics of the two types of spreadsheets and investigated their use of functions.
Surprisingly enough, the rebuilt sheets are not smaller, but bigger, and seem very similar
in terms of coupling and function use. Hence, these metrics do not offer value when trying
to distinguish maintainable from smelly spreadsheets.

With our work, we improve upon the existing, preliminary, study in two ways. Firstly,
our dataset is bigger, consisting of 108 spreadsheets. More importantly, our set is based
on pairs of spreadsheets, one being an original, smelly spreadsheet, and the other being a
rebuilt, well-structured model, allowing us to pair-wise compare the models.

The remainder of this paper is structured as follows: in the next section we give back-
ground information about the smells that we used to analyze the spreadsheets. In Section
2.2 we describe the setup of our analysis. We explain the content of the dataset and the
procedure we followed to calculate the different metrics. The results of the analysis are
presented in section 2.3. In Section 2.4 we discuss the results in more detail and put them
in the context of the FAST standard that was used by F1F9 to rebuild the financial models.
Several issues that affect the applicability and suitability of the findings are discussed in
section 2.5 and we finish the paper with related work (Section 2.6) and the concluding



2.1 Background

2

15

remarks (2.7).

2.1 Background
Hermans et. al. [27] introduced 5 smells in spreadsheet formulas:

• Multiple Operations: Inspired by the code smell LongMethod, this smell indicates
the length of the formula. It measures the total number of operations that a formula
contains. Figure 2.1 shows a formula that is suffering from this smell with a total of
15 unique operations within the formula.

Figuur 2.1: Example of Multiple Operations Smell

• Multiple References: Another well known code smell is Many Parameters. The
spreadsheet formula equivalent is Multiple References. It counts the number of
ranges a formula is referring to. An example of this smell is a formula with 79
references that is shown in Figure 2.2.

Figuur 2.2: Example of Multiple References Smell

• Conditional Complexity: Many nested conditional operations are considered as
a threat to code readability [35]. The same is true for spreadsheet formulas. The
Conditional Complexity smell measures the number of conditionals contained by
a formula. Figure 2.3 shows a formula with 7 nested IFs functions. This was the
maximum number of nested IFs that was allowed up to Excel 2003.

• Long Calculation Chain: In spreadsheets, it is common that formulas refer to
other formulas. Therefore, one could say that a spreadsheet consists of a collection
of calculation chains. Tracing a long calculation chain is considered by users as a
tedious task. The smell is measured by the length of the longest path of cells that
need to be referenced when computing the value of the formula.



2

16 2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset

Figuur 2.3: Example of Conditional Complexity Smell

• Duplicated Formulas The equivalent of the Duplicate Code smell in spreadsheets
is the Duplicated Formulas smell. The smell as described in [27] occurs at formu-
las that are partially the same as others. The smell is measured by the number of
formulas, located in the same worksheet and expressed in relative R1C1 notation,
with which a formula shares at least one proper subtree. In the original study, it
was found that users found this smell hard to understand. Therefore we changed
the definition for this smell. It is nowmeasured by the number of identical formulas
that are located in the same worksheet and having at least one function or operator.
Row 39 in Figure 2.4 shows an example of four identical formulas.

Figuur 2.4: Example of Duplicated Formula Smell

We received the dataset that we use in this paper from F1F9¹. They are the world largest
financial model building firm. They build their models using spreadsheets, according to
the FAST standard. The FAST standard [36] was first developed by employees of F1F9. It is
nowmaintained by the FAST Standard Organization². The standard is primarily concerned
with good spreadsheet design. Its acronym stands for Flexible, Appropriate, Structured,
and Transparent. It aims to support spreadsheet designers to build spreadsheets that: Are

¹To protect the confidentiality of the models we only had access to the dataset on F1F9’s premises and then only
indirectly whereby our software automatically generated and stored only the necessary survey statistics. At
no point did we have direct access to the models, nor did our software extract any commercial data from the
models.
²http://www.fast-standard.org/



2.2 Experimental Setup

2

17

free of fundamental omissions; Have no logical errors; Can be created under short lead
times; Can be easily used and reviewed; Are readily adaptable when circumstances change.

2.2 Experimental Setup
The dataset we use for this paper consists of 54 pairs of spreadsheets. For every pair one
spreadsheet was created by a client of F1F9, the other one an improved version built by
consultants of F1F9 according to the FAST standard. Both spreadsheets have the same
functionality and deliver the same results for identical input. However, the models within
the spreadsheets are completely different. F1F9 built their version completely from scratch.
All spreadsheets contain financial models.

When we received the dataset, it consisted of a total of 146 spreadsheets. However, we
discovered that the set contained some duplicates and that for some client files the mat-
ching F1F9 file was missing and vice versa. So after an initial cleaning, a set of 130 files
remained. Subsequently, we analyzed these spreadsheets with the Spreadsheet Scantool,
developed at Delft University of Technology. The tool runs on the previously developed
Breviz core that was made for spreadsheet visualization and smell detection [37]. Some
of the remaining files were password protected, corrupt or otherwise unreadable by the
scantool and were therefore excluded from the dataset. Of course if a client file was unre-
adable, we also had to exclude the matching F1F9 file. Eventually we ended up with 108
scanned files.

The spreadsheets in the Client set were perceived by their users as problematic. It
was because of this reason, that they asked F1F9 to rebuild these models. What makes
the dataset interesting for our research is that we have one set of spreadsheets that are
perceived by their users as problematic and a matching set of spreadsheets that, according
to professional model builders, are easier to understand, less error-prone and less difficult
to maintain.

In earlier studies regarding smells in spreadsheets the smells were validated by either
asking users about their opinion about the smelliness [27] or by manual inspecting the
detected smells to see if they were actually smelly [38]. What was missing in these valida-
tions, was ground truth about the smelliness of a spreadsheet. Fortunately, we can solve
this now with the above mentioned dataset.

One would expect that a spreadsheet that is considered easier to understand, less error-
prone and less difficult tomaintain contains less smells than a spreadsheet that is perceived
as problematic. This brings us to the main question for this research:

R1 Do spreadsheets that are perceived as easier to understand, contain fewer
smelly cells than spreadsheets that are perceived as problematic?

In earlier work [39], metrics for size, coupling and the use of functions were used
to characterize spreadsheets in large corpora. We will use these metrics to analyze the
differences between the client and the F1F9 spreadsheets. Table 2.1 gives an overview of
these metrics.

Most of these metrics are self-explanatory, however a few deserve some further expla-
nation [39]:



2

18 2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset

Tabel 2.1: Overview of Metrics

Dimension Metric
Size s1 # non-empty cells per spreadsheet

s2 # worksheets per spreadsheet
s3 # formulas per spreadsheet
s4 # unique formulas per spreadsheet
s5 length of formula in characters (measured per cell)

Coupling c1 % external links per spreadsheet
c2 # interworksheet connections per spreadsheet
c3 path depth per formula
c4 total number of transitive precedents per formula

Use of functions f1 Number of unique functions per formula
f2 Parse three depth per formula
f3 Number of preceding cells per formula

• Number of unique formulas per spreadsheet (s4): It is common practice in
spreadsheets to define a formula in once cell and then copy it down or right to other
cells. As a consequence, many of the formula cells in a spreadsheet contain the same
formula except for the references to the other cells. Therefore, we also measure the
number of unique formulas in the spreadsheet. We determine the unique formulas
by looking at the relative R1C1 notation of the formula. As described by Sajaniemi
[17], this notation stays the same even if you copy a formula down or right.

• Path depth (c3), transitive precedents (c4), and number of preceding cells
(f3): In most cases formulas receive input from other cells. This is what we measure
with the number of preceding cells per formula. However, these precedents could
be formulas themselves that, in turn, have their own precedents. The number of
transitive precedents is calculated by tracing along these precedents until on all
branches a cell is reached without any precedents. The path depth is the longest
calculation chain within the tree of precedents. See also Figure 2.5.

• Parse tree depth (f2): This metric indicates how nested a formula is. The formula
A1 + A2 has a parse tree depth of 2, the formula (A1 - A2) / (A3 * SQRT(A5)) a parse
tree depth of 5.

Calculating these metrics for the spreadsheets will enable us to answer the second
research question:

R2 What are the differenceswith respect to size, level of coupling and the use of
functions between spreadsheets that are perceived as easier to understand
and spreadsheets that are perceived as problematic?

To answer both research questions, we calculated for each file the metrics that indicate
one of the five smells that were described at the beginning of this chapter and the metrics
with respect to size, coupling, and use of functions.



2.3 Results

2

19

Figuur 2.5: Precedents, Transitive Precedents, and Path Depth ([39])

2.3 Results

2.3.1 Smells
Figure 2.6 displays the results for the smell metrics. We use the radar chart to visualize
all metrics in a single figure. The chart shows the relative score for each smell. The F1F9
scores (red line) are represented as a percentage of the Client scores (blue line) (Client =
100%).

Figuur 2.6: Relative score of Smells Figuur 2.7: F1F9 has a slightly higher median, but a
much smaller interquartile distance

For the exact figures see Table 2.2. It shows for each smell the median of the number
of times the smell occurred in each spreadsheet. The last column gives the score for the
F1F9 spreadsheets as a percentage of the score of the Client sheets and were used in Figure
2.6.



2

20 2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset

Tabel 2.2: Overview of Smells

Metric Client F1F9 F1F9 (%)
Multiple operations 101.0 71.0 70.3%
Multiple references 136.5 49.0 35.9%
Conditional complexity 36.0 15.5 43.1%
Long calculation chain 412.0 444.5 107.8%
Duplicated formulas 296.0 21.5 7.2%

We can see that overall the number of occurrences of the smells decrease. We observe
a dramatic decrease of the occurrence of the Duplicated formula smell and also see a clear
difference for the Multiple references and Conditional complexity smells. In Section 2.4,
we will explain some possible causes for these findings. Long calculation chain forms
an exception because the number of occurrences of this smell is slightly higher in the
F1F9 sheets. We have analyzed this in more detail. Figure 2.7 shows the boxplot for this
smell for both the Client and the F1F9 sheets. The boxplot displays the minimum, 1st
quartile, median, 3rd quartile, and maximum value. In the Client data set, there is one
spreadsheet with a calculation chain of 9,995 cells, that can be considered as an outlier.
We have excluded it from the boxplot because we wanted to visualize the difference in
interquartile distance between F1F9 and the Client, which is not affected by the outlier.
It shows that although the median for the number of occurrences of the Long calculation
smell is slightly higher for F1F9 than the Client, the 3rd quartile and maximum value were
decreased dramatically. There are fewer spreadsheets that suffer in a high degree from the
Long calculation smell in the F1F9 dataset.

2.3.2 Size, Coupling and Use of Functions
The metrics for the dimension size have been summarized in Figure 2.8 and the exact
figures can be found in Table 2.3. It turns out that almost every size metric has increased
for the F1F9 spreadsheets. Only the length of the formulas decreases as compared to the
Client sheets. Notable is also the number of formulas. This metric has increased much
more than the other size metrics.

Tabel 2.3: Overview of Size Metrics

Metric Client F1F9 F1F9 (%)
s1 # non-empty cells 170,202.0 215,998.5 126.9%
s2 # worksheets 19.5 28.0 143.6%
s3 # formulas 92,954.5 198,711.0 213.8%
s4 # unique formulas 1,467.0 2,094.0 142.7%
s5 formula length 32.0 28.0 87.5%

To measure the level of coupling, we have analyzed both the external (to other spread-
sheets) and internal (within the same spreadsheet) links between worksheets, the path
depth per formula and the total number of transitive precedents of a formula. The results
of this analysis are visualized in Figure 2.9 and the exact figures summarized in Table 2.4.



2.3 Results

2

21

Figuur 2.8: Relative score on dimensions of size Figuur 2.9: Relative score on dimensions of coupling

Tabel 2.4: Overview of Coupling Metrics

Metric Client F1F9 F1F9 (%)
c1 # external links 0.0 0.0 100.0%
c2 # interworksheet connections 60.5 205.0 338.8%
c3 Path depth 16.0 13.0 81.3%
c4 # transitive precedents 135.0 127.0 94.1%

From the results, it seems that both datasets are almost identical on the degree of
coupling, except for the number of interworksheet connections. These are much higher
within the F1F9 dataset.

Finally, we have analyzed the use of functions in both datasets, by looking at the num-
ber of unique functions used, the parse tree depth, and the number of preceding cells per
formula. Figure 2.10 summarizes the results for these metrics. Exact figures can be found
in Table 2.5.

Tabel 2.5: Metrics on the Use of Functions

Metric Client F1F9 F1F9 (%)
f1 # unique functions 1 1 100.%
f2 parse tree depth 2 3 150%
f3 # preceding cells 3 3 100%

With respect to the use of functions, both datasets are very similar. The only difference
is the median for the parse tree depth, which is 3 for F1F9 and 2 for the Client sheets.

2.3.3 Significance of the Differences
These results give us an indication of the differences between smelly and non-smelly
spreadsheets. However, we do not know yet if these differences are statistically signi-



2

22 2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset

Figuur 2.10: Relative score on Use of Functions

ficant. Because we have pairs of smelly and non-smelly spreadsheets we can do a paired
group comparison to determine if there is a significant difference. To do so, we used the
Wilcoxon Signed-Ranks Test for Paired Samples. However, we can do this test only for
the metrics on spreadsheet level (because we have pairs of spreadsheets). If the metric is
a characteristic of a formula, a paired comparison is not possible. We do not have pairs
of formulas that we can compare. For these metrics we have to test if the distribution of
the two datasets is different. We calculated that using the Wilcoxon-Mann-Whitney test.
Both tests give us a p-value that can be found in Table 2.6. We have denoted the metrics
on spreadsheet level with an ‘s’ and the metrics that are characteristics of formulas with
an ‘f’.

If there was a significant difference, we have calculated the effect with the Cliff’s Delta
d. For both metric s2 (number of Worksheets) and metric c2 (number of interworksheet
connections) the effect is large (d ≥ 0.47). For Duplicated formulas, metric c1 (number
of external links), and metric c4 (number of transitive precedents) the effect is medium
(0.33 ≤ d < 0.47). For Conditional complexity, Multiple references, metric s1 (number of non-
empty cells), metric s3 (number of formulas) the effect is small (0.147 ≤ d < 0.33). For the
other metrics the effect is negligible.



2.4 Interpretation

2

23

Tabel 2.6: Statistical Analysis of Client and F1F9 Datasets

Dimension Metric Level p-value d
Smells Conditional complexity s <0.01 0.158

Duplicated formulas s <0.01 0.412
Multiple Operations s <0.01 0.030
Multiple References s <0.01 0.310
Long calculation chain s <0.05 0.055

Size s1 # non-empty cells s <0.01 0.228
s2 # worksheets s <0.01 0.536
s3 # formulas s <0.01 0.257
s4 # unique formulas s >0.05 -
s5 formula length f <0.01 0.078

Coupling c1 # external links s <0.01 0.400
c2 # interworksheet conn. s <0.01 0.835
c3 path depth f <0.01 0.037
c4 # transitive precedents f <0.01 0.379

Use of f1 # preceding cells f <0.01 0.071
Functions f2 parse Tree Depth f <0.01 0.096

f3 # unique functions f <0.01 0.023

2.4 Interpretation
In the previous section, we have described the results of our analysis. We found that the
F1F9 sheets were less smelly, but, to our surprise, also bigger. With regards to coupling
and the way functions were used, the sets appear more similar. In this section, we will
further discuss some of these results. Although we were not able to interview the users
of the spreadsheets, we assume that they perceived the F1F9 spreadsheets as easier to
maintain and less error-prone. If this was not the case, F1F9 would have gone out of
business a long time ago. But what is causing the difference between the F1F9 and the
Client spreadsheets? Of course the employees of F1F9 build complex spreadsheet models
for a living, but maybe even more importantly they make use of the FAST standard to
build these models. A further explanation of some of the concepts and terminology of the
FAST standard will help us to better understand the found results.

The FAST standard divides a spreadsheet in different hierarchical levels to organize
their guidelines. The highest level is the workbook itself, followed by the individual works-
heets. According to the FAST standard there can be many worksheets within a workbook
but each worksheet always fits in one of the following four functional classes:

1. Foundation: The basis for the financial model. These worksheets contain all the
inputs, timing rules, assumptions and indexation.

2. Workings: The engine of the model. All calculations necessary for the final result
of the model are made on these sheets.

3. Presentation: The output of the model, usually made up of financial statements,
charts and summaries. These sheets are used for decision making by the users of



2

24 2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset

the model.

4. Control: These sheets assist the builder during the process of creating the model. It
normally contains list of pending changes, version control, table of contents, error
checking, etc. Furthermore, if scenario planning or sensitivity analysis is used, they
are controlled from this sheet.

Figure 2.11 shows several worksheets of a financial model that was built according to
the FAST standard. The sheets InpC, INpS, and Time are examples of a Foundation sheet;
Ops, Asset, and Finstats are examples of a Workings sheet.

Figuur 2.11: An example of a consistent column structure that has been maintained across all sheets

In the FAST standard a worksheet is divided in several calculation blocks. A calcula-
tion block can be considered as an autonomous paragraph on a worksheet and is always
responsible for a single calculation. Rows 44 through 51 in Figure 2.12 show an example
of a calculation block. The calculation block itself consists of the ingredients for the cal-
culation (row 47: Domestic charter landings trough 50: International scheduled landings)
and the actual calculation (row 51: Total landings).



2.4 Interpretation

2

25

The lowest level of a financial model is formed by the individual line items (for example
row 49 ‘International charter landings’ in Figure 2.12). It’s defined as a unit of information
displayed on a row or column, of its own with its own label.

Figuur 2.12: Screenshot of a FAST model that shows an example of a calculation block

In the remainder of this section, we will analyze the possible effects of the FAST gui-
delines on the metrics and smells we have calculated for the F1F9 sheets. We will first
discuss the smells and at the end of the section focus on the metrics for size, coupling, and
the use of functions.

2.4.1 Smells
First of all FAST strongly advises to create short and easy to understand formulas. This
explains why we find less formulas that suffer from the Multiple Operations and Multiple
References smells. Furthermore, the standard discourages the use of IF and even prohibit
the use of nested IFs. We see that reflected in the lower occurrence of the Conditional
Complexity Smell.

FAST also dictates that a calculation should only be made once. If the result of the
calculation is needed somewhere else in the model, one should link back to the original
calculation. Furthermore, formulas should be consistent along the row or column axis,
meaning that the formula should be created once and than dragged to the right or the
bottom. This is illustrated in Figure 2.13. It displays the formulas in the R1C1 notation
to show that all the formulas on a single row have the same structure. However, they
are not identical. The formulas differ in their references to other cells. In this example a
single formula was copied to 70 columns. If a spreadsheet is designed in accordance with
this rule it means that to understand the sheet we do not have to inspect 71 cells to check
if the formulas differ somewhere. We just have to inspect the cell in (in this case) the
10th column. In addition, because the column structure across the different worksheets is
consistent this holds true for every worksheet. The guidelines of consistent formulas and
defining a calculation only once, explain the dramatic decrease in the occurrence of the



2

26 2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset

Duplicate formula smell.

Figuur 2.13: Example of consistent formulas. The formulas in row 30 and 33 are displayed both in R1C1 (top)
and A1 (bottom) notation. Although the formulas differ in normal notation, the R1C1 notation shows that they
are actually identical.

The number of smell occurrences decreases for four of the five smells. However, the
median for the Long Calculation Chain in the F1F9 dataset is slightly higher than in the
Client dataset. This is not unexpected, trying to minimize the Multiple References and
Multiple Operations smells (ie breaking long formulas in shorter parts), inevitable leads to
longer calculation chains.

2.4.2 Size, Coupling, and Use of Functions
Based on the size metrics, we can conclude that the F1F9 models grew in size. Within the
FAST standard there are several guidelines that could explain this increase.

• Separate worksheets per functional class: the standard dictates a strict separation bet-
ween input (Foundation), calculation (Workings), output (Presentation), and control,
which causes more worksheets per spreadsheet.

• Maintain consistent column structure across all sheets: Most financial models are time-
related. For example, to calculate the business case for a major investment it is
necessary to predict the future cash flows over the life span of the investment (which
could easily be 30 years). The FAST standard prescribes tomodel the time-dimension
along the columns of a worksheet. Because of this guideline, these time series are
repeated on every worksheet even if that means that on some worksheets these
columns are unused. Figure 2.11 shows an example of such a consistent column
structure across different sheets.

• Construct all calculations in a separate calculation block: A calculation block (see Fi-
gure 2.12 for an example) consists of all the ingredients (inputs) that are necessary
for a calculation. Ingredients can also be used in other calculations. The standard
dictates that in such a case the ingredients are repeated (by direct linking) to form
a new calculation block. This increases the number of non-empty cells on a works-
heet.



2.5 Discussion

2

27

With respect to coupling, the number of interworksheet connections was the only
metric in the F1F9 sheets that differed from the Client sheets. This could be caused by the
way calculation blocks are constructed according to the FAST standard. Aswe already saw,
a calculation block consists of the necessary ingredients and the calculation itself. The
ingredients are often input values that are coming from another (Foundation) worksheet
and thus creating an interworksheet connection. If the same ingredient is necessary for
another calculation, it will be repeated. However, the FAST standard forbids a series of
linked links, so called daisy chains. We illustrate this concept with a small example in
which for a certain calculation a start date is needed. The start date is coming from the
sheet ‘InpC’ (which is a Foundation sheet) and is located in cell F11. The start date is an
ingredient for a calculation block and it is put in cell F12 on the sheet ‘Time’. The formula
for this cell becomes:

F12: = InpC!F\$11

This same start date is also needed as ingredient in a second calculation block (in for
example cell F21) on the same sheet. In general users tend to solve this with:

F21: = F12

However, this creates a daisy chain. The value from cell F11 on the sheet ‘InpC’ is retrieved
via cell F12 on the sheet ‘Time’. To prevent daisy chaining the formula should be:

F21: = InpC!F\$11

Applying this guideline will create an additional interworksheet connections every time
an input value is re-used in a different calculation block. It explains why the number of
interworksheet connections in the F1F9 sheets is higher than in the Client sheets.

The use of functions is similar in both datasets. In earlier work [39] we saw that in
the Enron Corpus the majority of formulas only make a direct reference to a few other
cells, are hardly nested and within the formula only one function (not being an operator)
is used. Despite the fact that both the Client and the F1F9 dataset consists of complex
financial models, we see the same kind of metrics with respect to the complexity of the
formulas. Users tend to create simple formulas. Complex and large formulas do exists but
are an exception.

2.5 Discussion
In the previous sections, we have analyzed the occurrences of smells and metrics with
respect to size, coupling and use of functions in both the Client and the F1F9 spreadsheets.
In this section, we discuss some topics that could affect the applicability and suitability of
the approach used and the results found.

2.5.1 Threats to Validity
The dataset we received from F1F9 gave us a unique opportunity to work with complex,
real-life, industrial spreadsheets to investigate what characterizes a smelly spreadsheet.
Unfortunately, this real-life dataset comes with the price of reduced repeatability. We are



2

28 2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset

strong believers of open data, but because the spreadsheets contain confidential informa-
tion, we were only allowed to analyze them automatically and we are not able to share
them.

A threat to the external validity of our analysis is the representativeness of the pro-
vided dataset. Half of the spreadsheets were created by a single company. However, the
Client spreadsheets are from different clients. More important is the fact that all spread-
sheets are financial models. Consequently the findings of our analysis can only be applied
to spreadsheets within the specific domain of financial modeling.

2.5.2 Pivot Tables, Charts and VBA code
In our analysis, we limited ourselves to the described smells and metrics. However the im-
provements that were made by F1F9 could also affect the use of more elaborate structures
like Pivot tables, charts and VBA code. In future research, we plan to specifically analyze
these constructs.

2.5.3 Calculation Chains
All the smells that we have analyzed are calculated on the formula level. The same is true
for the following metrics that we used to analyze the size, level of coupling and use of
functions:

• s5 length of formula in characters

• c3 path depth per formula

• c4 total number of transitive precedents per formula

• f1 number of unique functions per formula

• f2 parse three depth per formula

• f3 number of preceding cells per formula

We took the single formula as the object of analysis. We considered it as the equivalent
of a line of code. However, in a spreadsheet it is always possible to take a formula and
split it over more than one cell. What we consider a line of code is actually an arbitrary
decision of the user. To see and understand the complete code for a certain calculation,
you need to look at the complete calculation chain. In future research, we plan to extend
the analysis of smells and metrics to the level of the calculation chain.

2.6 Related Work
Our work builds upon the work of Hermans et. al. [27], in which the concept of spread-
sheet smells at the formula level was introduced. However, for their evaluation they
used a small dataset of which it was not known in advance whether it contained smelly
spreadsheets. In addition to that paper, Hermans also worked on other types of spread-
sheet smells, for example focusing on detecting smells between worksheets, rather than



2.7 Concluding Remarks

2

29

within [28]. Other work on spreadsheet smells was done by Cunha et al. who aim at de-
tecting smells in values, such as typographical errors and values not following the normal
distribution [38].

A second category of related work aims at defining spreadsheet metrics. Bregar de-
veloped a catalog of spreadsheet metrics based on software metrics [40]. He however did
not evaluate his metrics in practice. Hodnigg and Mittermeir [41] also proposed several
spreadsheet metrics of which some are similar to Bregar’s. Their metrics are divided into
three categories: general metrics, such as the number of formulas and the number of dis-
tinct formulas; formula complexity metrics, such as the number of references per formula,
and the length of the longest calculation chain; and finally metrics, such as the presence
of scripts in, e.g., Visual Basic for Applications (VBA), user defined functions and external
sources. Hole et al.[42] propose an interesting approach to analyze spreadsheets in terms
of basic spreadsheet metrics, such as the number of functions used, the presence of charts
and the complexity of program code constructs with the specific aim of predicting the
level of the spreadsheet creator.

A research direction related to smell detection is spreadsheet refactoring, which also
has been addressed by researchers in recent years. The first to present a semi-automated
approach were Badame and Dig [16], whose refactorings unfortunately were not directly
based on smells. A generalization of this idea was presented by Hermans and Dig [15].

2.7 Concluding Remarks
This paper describes the analysis of a new spreadsheet dataset. This set consists of 54 pairs
of spreadsheets, which both implement the same functionality, but are either smelly and
hard to maintain (client) or well-structured (F1F9).

For each spreadsheet, we calculated the metrics that indicate formula smells and exten-
ded this analysis with additional metrics for size, coupling and the use of functions. For
each metric we determined whether there was a significant difference between the client
and the F1F9 sheets. If a difference was found, we calculated the effect size.

Based on this analysis we answered our two research questions:

R1 Do spreadsheets that are perceived as easier to understand, contain fewer smelly
cells than spreadsheets that are perceived as problematic?

R2 What are the differences with respect to size, level of coupling and the use of func-
tions between spreadsheets that are perceived as easier to understand and spread-
sheets that are perceived as problematic?

Our analysis reveals two interesting points. Firstly, the F1F9 spreadsheets indeed suf-
fer from smells to a much lower extent than the client sheets. We observed for example
that the F1F9 sheets contain fewer duplicated formulas and that formulas have fewer refe-
rences to other cells. Secondly, size and coupling metrics, obvious candidates to measure
spreadsheet complexity, do not succeed in differentiating between the both parts of the
datasets.

Our current analysis gives rise to ample directions for future work. In this paper we
did a pairwise comparison on spreadsheet level. Because F1F9 rebuilt the models from
scratch, it was not possible to do this on formula level. In future research, we are planning



2

30 2 Code Smells in Spreadsheet Formulas Revisited on an Industrial Dataset

to analyze the effect of refactoring spreadsheet formulas in existing models. In such a case
pairwise comparison on formula level is possible.

A spreadsheet that contains fewer smells should be easier to understand and maintain.
In this study, we saw indeed that the spreadsheets improved by F1F9 contain fewer smells.
However, it was not possible to interview the users of these spreadsheets to obtain their
opinion about the understandability and maintainability of the spreadsheets. We believe
this is a promising avenue for future research. We will perform a case study with users to
test if they are able to understand and maintain a refactored spreadsheet with less effort.



3

31

3
The Effect of Delocalized Plans on

Spreadsheet Comprehension: A
Controlled Experiment

Spreadsheets are widely used in industry. Spreadsheets also suffer from typical software en-
gineering issues. Previous research shows that they contain code smells, lack documentation
and tests, and have a long live span during which they are transferred multiple times among
users. These transfers highlight the importance of spreadsheet comprehension. Therefore, in
this paper, we analyze the effect of the organization of formulas on spreadsheet comprehen-
sion.

To that end, we conduct a controlled experiment with 107 spreadsheet users, divided into two
groups. One group receives a model where the formulas are organized such that all related
components are grouped closely together, while the other group receives a model where the
components are spread far and wide across the spreadsheet. All subjects perform the same set
of comprehension tasks on their spreadsheet.

The results indicate that the way formulas are located relative to each other in a spreadsheet,
influences the performance of the subjects in their ability to comprehend and adapt the spread-
sheet. Especially for the comprehension tasks, the subjects perform better on the model where
the formulas were grouped closely together. For the adaptation tasks, we found that the length
of the calculation chain influences the performance of the subjects more than the location of
the formulas itself.

This chapter has been published as  B. Jansen and F. Hermans. The effect of delocalized plans on spreadsheet
comprehension: a controlled experiment, ICPC17 [30]



3

32 3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Controlled Experiment

T he use of spreadsheets in industry is widespread. For millions of employees, spread-
sheets form the day-to-day tool to solve business questions, create reports, and deliver

support for planning and scheduling activities.
Spreadsheets can be considered a successful end-user programming language. It could

also be argued that spreadsheets are more than an end-user programming language and
that they are code [14], as there are many similarities with code. Like code, spreadsheets
implement concepts like composition, selection and repetition. In spreadsheets, simple
objects can be combined into more complex ones by including references to other cells
within a cell’s formula, they implement selection with an if-then-else structure and they
mimic iterations by the replication of the same formula across many rows or columns.

However, like code, spreadsheets suffer from software maintenance issues. They lack
documentation [37], contain code smells [27] and clones [43], have an average lifespan of
five years and are used or maintained by an average of twelve different users [37].

There is a growing body of research in which methods of software engineering are
transferred to spreadsheets. This research include testing [44], reverse engineering [45],
[46], code smells, [27], [38], and refactoring [15], [16].

Because of their average lifetime of 5 years, spreadsheets are transferredmultiple times
from one user to another. These transfer scenarios stress the importance of spreadsheet
comprehension. With respect to source code we know that the concept of delocalized
plans or locality is a factor that influences program comprehension. There are several stu-
dies that indicate that delocalization negatively correlates with program comprehension
[47], [48], [49], [50]. For spreadsheets this concept of locality is also relevant. The advice
we can extract from several spreadsheet guidelines with respect to locality is conflicting.
Conway and Ragsdale [51] stated in their spreadsheet guidelines that “things which are
logically related should be arranged in close physical proximity and in the same colum-
nar or row orientation”. However, the FAST standard [36] prescribes to separate inputs
from calculations and to put them on different worksheets. The first approach adheres to
the concept of locality, the second approach will lead to delocalized plans. What is the
effect of this design choice on the overall comprehensibility of the spreadsheet? It is this
question that leads us to the core question of this research paper: What is the effect of
delocalized plans on spreadsheet comprehension?

To address this goal, we set up a controlled experiment with 107 spreadsheet users.
We create two different versions of a spreadsheet model, that differ in the organization
of the formulas within the spreadsheet. In one model the formulas are closely grouped
together while in the other model they are spread over multiple worksheets. The subjects
are divided over the two models and asked to perform the same set of comprehension
tasks. During the experiment, we measure 1) correctness, 2) perceived difficulty, 3) the
time to completion, and 4) number of clicks needed for completion of the task.

The results reveal that the existence of delocalized plans in spreadsheets influences the
user’s ability to comprehend and adjust the spreadsheet. When users have to execute com-
prehension tasks on formulas with longer calculation chains they perform significantly
better on the model that contained less delocalized plans.

The contributions of this paper are:

• A definition of the concept of delocalized plans in spreadsheets (Section 3.1)



3.1 Delocalized Plans in Spreadsheets

3

33

• Design of a controlled experiment with 107 spreadsheet users to analyze the ability
of subjects to comprehend and adjust a spreadsheet (Section 3.2)

• Translation of the software comprehension tasks as defined by Pacione et al. [52]
to the spreadsheet domain (Section 3.2)

• An empirical evaluation of the effect of delocalized plans in spreadsheets on spread-
sheet comprehension (Section 3.3)

We organize the remainder of this paper in the following way. In the next section,
we provide background information about the concept of delocalized plans in the context
of spreadsheets. In Section 3.2 we describe the set-up of the experiment followed by a
presentation of the results in Section 3.3 and a discussion of the results in Section 3.4. The
paper is concluded with an overview of the related work (Section 3.5) and the concluding
remarks (Section 3.6).

3.1 Delocalized Plans in Spreadsheets

3.1.1 Delocalized Plans in Source Code
The concept of locality in source code is a well-researched area. Weinberg [47] defines
the concepts of locality and linearity and their effect on program comprehension. Locality
means that all relevant parts of the program are located closely together. Linearity means
that decisions in the program are arranged in a strictly linear sequence. The two concepts
are related: arranging decisions in a non-linear sequence often causes non-locality. Lo-
cality and linearity can support a programmer with the comprehension and adaption of
code.

Letovsky and Soloway [48] reached a similar conclusion. They explore the relation
between program comprehension and delocalized plans. A plan is defined as the technique
that is used to realize the intention behind the code. A delocalized plan means that the
code for the plan is spread far and wide in the source code. In their study, they concluded
that delocalized plans are more liable to misinterpretations.

3.1.2 Translating Delocalized Plans to Spreadsheets
The concept of delocalized plans can easily be translated to spreadsheets. In the left part
(a) of Figure 3.1 we have highlighted the formula in cell C32. It calculates the total funding
a school receives for its entry level students. The formula in cell C32 is:

= C30 * C31

Cells C30 and C31 are the direct precedents of this formula and are located close to
the formula itself (in the same column in the two rows directly above it). However, the
calculation chain does not stop there. Both cells C30 and C31, in turn, also contain a
formula and they again refer to other cells. To completely understand the calculation you
need to trace back not only the direct but also the indirect precedents. They are illustrated
in Figure 3.1 with the blue arrows. The indirect precedents are located somewhat further



3

34 3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Controlled Experiment

Figuur 3.1: Two examples of the same formula. In the left example (a) all precedents are grouped closely together,
the size of the model is 14 columns by 32 rows. In the example on the right (b), the precedents are spread far and
wide in the model. The size of the model is 16 columns by 104 rows.

away. Nevertheless, they still can be presented in a readable manner on a single screen.
The complete model spans 14 columns by 32 rows.

In the right part (b) of Figure 3.1 we illustrate the same calculation, with the same input
and output, but in a spreadsheet where the formulas are organized in a different way. The
calculation in this model is located in cell C21 and its formula is:

= O19 / C43 * C50

If we limit our attention to the direct precedents, we already can observe that they
are located much farther apart than in the first example. They are located in different
columns (O and C) and also the vertical distance is larger. The precedents are located two
rows above, 22 rows below, and 29 rows below the formula. If we also include the indirect
precedents, the situation deteriorates. It is going to be very difficult to present them all in
a readable manner on a single screen. This version of the model spans 16 columns by 104
rows.

However, in a spreadsheet, there is a third dimension. In the previous two examples,
the precedents of a formula were all located on the same worksheet. Yet, it is also possi-
ble that precedents are located on a different worksheet. Previous research [28] defines
the Feature Envy code smell in the context of spreadsheets. A formula suffers from Fea-
ture Envy if it makes references to cells on different worksheets. The authors argue that
refactoring such a formula by moving it to that different worksheet “will likely improve
understandability, since the formula is then closer to the cells it is referring to.”

Letovsky and Soloway use the term delocalized plan if the code for a plan is “spread
far and wide in the text of the program”. If we apply this to spreadsheets, a delocalized plan
would be a formula that has its precedents spread widely across the spreadsheet. This
could mean that the precedents are located far apart on the same worksheet or that they



3.2 Experimental Setup

3

35

are located on different worksheets. We regard a formula as delocalized if it is impossible
to get an overview of all its precedents in a single glance.

Both Letovsky and Soloway and Weinberg argue that source code that tries to avoid
delocalized plans is easier to comprehend and adapt. Is this also true for spreadsheets?
To answer this question we have designed a controlled experiment. The set-up of this
experiment is discussed in the next section.

3.2 Experimental Setup
The goal of this paper is to answer the question: Are spreadsheets that contain delocali-
zed plans harder to understand? To address this goal we have formulated the following
research questions. How does the existence of delocalized plans in spreadsheets influence
the user’s ability to:

RQ1 understand a component of a spreadsheet?

RQ2 understand the complete calculation model of a spreadsheet?

RQ3 adapt a spreadsheet?

The distinction between RQ1 and RQ2 is the level of abstraction. If we would explain
the difference between RQ1 and RQ2 in the context of source code, then RQ1 is about code
explanation and RQ2 about system understanding [53].

To answer these questions we design a controlled experiment. In the remainder of this
section, we explain its set-up.

3.2.1 Subjects
To recruit subjects for the experiment we invite the participants of one of our MOOCs
(Massive Open On-line Course), post it on social media and announce it via the mailing
lists of EUSPRIG and our own research website. People who are interested are randomly
assigned to one of the two models. In total, we received 107 valid responses.

We ask the participants to assess their own Excel skills and how frequently they use
Excel on a five-point Likert scale. Table 3.1 gives an overview of how the participants
are distributed over the two models and the average score for their Excel skills and the
frequency in which they use Excel.

Tabel 3.1: Distribution of Participants, frequency and skill level were measured on a five point Likert Scale (1 =
low, 5 = high)

Model C Model F
# Subjects 56 51
Frequency 3.3 3.4
Skill Level 3.6 3.6

3.2.2 Tasks
We ask each subject to answer nine questions about the spreadsheet. The questions are
the same in both models. In order to answer these questions the participants have to ana-



3

36 3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Controlled Experiment

lyze the formulas in the spreadsheet, make small changes and correct errors. To obtain a
proper set of comprehension tasks we use the framework that was defined by Pacione et
al. [52], commonly used for empirical evaluation of code comprehension [54],[53]. They
analyzed sets of software comprehension tasks that were suggested in software visualiza-
tion and comprehension evaluation literature and classified them in nine distinct software
comprehension activities. Table 3.2 gives an overview of these nine categories.

Tabel 3.2: Comprehension activities from Pacione et al. [52]

Activity Description
A1 Investigating the functionality of (a part of) the system
A2 Adding to or changing the system’s functionality
A3 Investigating the internal structure of an artefact
A4 Investigating dependencies between artefacts
A5 Investigating runtime interactions in the system
A6 Investigating how much an artefact is used
A7 Investigating patterns in the system’s execution
A8 Assessing the quality of the system’s design
A9 Understanding the domain of the system

Our questions¹ are designed in such a way that each of them addresses, at least, one
of the categories and that all, for spreadsheet relevant categories, are covered. Table 3.3
shows for each question in the experiment one or more of Pacione’s activities that are
related to the question in the experiment.

Tabel 3.3: Comprehension tasks used in experiment and their mapping to both the nine comprehension activities
of Pacione and the research questions of this paper

Question Task RQ A1 A2 A3 A4 A5 A6 A7 A8 A9 Total
Q1 Explain a calculation RQ2 X X X 3
Q2 Find and correct an error RQ3 X X 2
Q3 Adapt a calculation RQ3 X X X 3
Q4 Explain a key concept of the model RQ2 X X X 3
Q5 Determine relationship between two cells RQ1 X X 2
Q6 Find dependents of a cell RQ1 X X 2
Q7 Explain how the spreadsheet can be improved RQ2 X X 2
Q8 Assess adaptability of the spreadsheet RQ3 X 1
Q9 Assess transferability of the spreadsheet RQ2 X 1
Total 3 2 5 2 - 2 - 3 2

Table 3.3 shows that there are no tasks in the experiment that are related to A5 (Inves-
tigating runtime interactions in the system) and A7 (Investigating patterns in the system’s
execution). Because of the directness of a spreadsheet, there is no clear distinction between
coding and runtime. Therefore, we exclude these two activities from the experiment.

3.2.3 The Spreadsheet model
To ensure that all the different comprehension tasks are covered in the experiment we
need a spreadsheet of a reasonable size with non-trivial calculations. Furthermore, the
¹Both the questions and the spreadsheet models used in this experiment can be found at: https://doi.org/10.
6084/m9.figshare.3167983

https://doi.org/10.6084/m9.figshare.3167983
https://doi.org/10.6084/m9.figshare.3167983


3.2 Experimental Setup

3

37

experiment should simulate a realistic scenario. For these reasonswe choose a spreadsheet
that is used in practice by schools to calculate the total funding they receive from theDutch
government, based on the number of students and the number of certificates they issue.

We created two versions of the model, one that adheres to the concept of locality
(ModelC, precedents are locatedClose to the formula) and one that contains numerous of
delocalized plans (Model F, precedents are located Far from the formula). The delocalized
plans were created by grouping related data on separate worksheets, a practice that is
often used by spreadsheet users to structure data in a spreadsheet. We tried to keep the
formulas in both models as much the same as possible. However, the layout of the data
in a spreadsheet and the structure of the formulas are highly intertwined. Because of this
we had to change some of the formulas. Figure 3.2 is a screen shot of Model C. The blue
arrows visualize the precedents that are used in the formula of the active cell. They are all
located on the same worksheet in the rows above the formula.

In Figure 3.3 the same formula is displayed, but now in Model F. The precedents are
not located on the same worksheet but spread over four different worksheets.

To inspect the formula the user has to switch back and forth between four different
worksheets. This is in contrast to the first example (Figure 3.2, Model C), in which all
precedents are on the same worksheet and because they are located close to the formula
itself it is not even necessary to scroll when inspecting the formulas.

In a spreadsheet with delocalized plans formulas make reference to cells that are lo-
cated far from the formula, often on a different worksheet. The number of external refe-
rences (to another worksheet) is also used to determine if a spreadsheet is suffering from
the Feature Envy smell. To be sure that the two spreadsheets differ sufficiently from each
other we analyzed both models on the occurrence of the Feature Envy smell.

As a metric for enviousness we counted all references a formula has to cells contai-
ned by the other worksheet which is the same definition that was used in [28]. For both
spreadsheets we divided the number of these external references by the total number of
references for all unique formulas. Model C scored 0%, Model F 73%.

To determine if one of the models is suffering from Feature Envy we have to establish
a threshold for the described metric. We established this threshold by analyzing the dis-
tribution of the metric over the Enron Spreadsheet Corpus [10] and used the approach of
Alves et al. [55]. In total we analyzed 9.080 spreadsheets with a total of 770.644 unique
formulas. 90% of the analyzed spreadsheets had a score for Feature Envy of 16% or less. In
accordance with [55] we defined this score of 16% for the metric as a very high risk that
the spreadsheet is suffering from the Feature Envy smell. Based on this threshold Model
F is suffering from Feature Envy and Model C not.

3.2.4 Experimental procedure
To participate in the experiment the subjects have to register themselves on the web page
of the experiment and after registration, they are randomly redirected to a download link
for either Model C or Model F. In the instructions we ask them to answer all questions in
one sitting. We added a VBA script to the spreadsheet that logs all activities of the subjects.
The script is activated when a participant clicks on a random cell in the spreadsheet. From
that moment on, each click, activation of a worksheet, or change to a cell is logged with a
timestamp. As soon as a subject closes the workbook the log file is automatically sent to



3

38 3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Controlled Experiment

Figuur 3.2: Example of a spreadsheet designed with concept of locality in mind



3.2 Experimental Setup

3

39

Figuur 3.3: Example of spreadsheet containing delocalized plans

us. In this set-up, we cannot control the subject’s behavior. It is plausible that the subject
will be interrupted during the experiment and is not able to complete all the tasks in one
sitting. However, using the timestamps we could deduce if there was a continuous time
line. From the results, we learned that in 99% of the cases the time between two activities
(a click or a change in a cell) is not more than one and a half minute. We, therefore, ignored
all gaps between activities that lasted more than one and half minute, to ensure a proper
timing of the tasks.

3.2.5 Variables and Analysis Procedure
The independent variable in this experiment is the existence of delocalized plans in a
spreadsheet. There are several dependent variables. The first is the correctness of the
answer. We measure this by checking all answers against our answer model and grading
it on a scale of one to ten (where ten is a perfect score).

The second dependent variable is the perceived difficulty of the question. After each
question, we ask each subject to indicate on a five-point Likert scale how difficult they
thought the question was.

The other dependent variables in the experiment are the time, the number of clicks,
and the number of worksheet changes a subject needs to answer a question. We choose
to measure the number of clicks because the most common way to analyze a formula in a
spreadsheet is to select the cell with the formula, which then can be inspected in the for-
mula bar. Every cell selection leads to a click and gives us information about the formulas
the user analyzed during a specific task. The VBA script measures the aforementioned va-
riables. When a subject closes the workbook the associated log file is automatically sent
to us by e-mail.

In the next section, we present the results of our experiment and answer our research



3

40 3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Controlled Experiment

questions.

3.3 Results
As described in the previous section, we analyzed five different variables: correctness, per-
ceived difficulty, time, clicks, and worksheet changes. During the experiment the subjects
had to answer nine different questions. Table 3.4 gives an overview per question of the
results for these variables.

Tabel 3.4: Average values for dependent variables correctness, difficulty, time, # clicks, # sheet changes for both
Model C and Model F

# Sheet
Correctness† Difficulty Time # Clicks Changes

Question Task C F C F C F C F C F
Q1 Explain a calculation 6.2 5.9 3.8 3.2 5:26 7:55 25 33 0 6
Q2 Find and correct an error 7.9 8.5 3.7 3.6 5:27 5:21 75 69 0 2
Q3 Adapt a calculation 5.4 6.8 3.5 3.6 6:44 5:05 65 19 0 4
Q4 Explain a key concept of the model 5.6 4.1 3.5 3.2 4:23 4:02 30 23 0 3
Q5 Determine relationship between two cells 8.6 8.9 3.4 3.4 6:42 5:57 91 58 0 6
Q6 Find dependents of a cell 6.8 5.9 3.5 3.6 3:51 4:28 39 87 0 7
Q7 Explain how the spreadsheet can be improved - - 3.1 3.3 2:28 1:50 25 5 0 3
Q8 Assess adaptability of the spreadsheet 6.5 6.2 - - 1:14 1:04 2 1 0 0
Q9 Assess transferability of the spreadsheet† 5.3 5.2 - - 0:50 0:53 1 0 0 0
†The scores for Q8 and Q9 do not represent the correctness of the answer but the assessment of the adaptability and
transferability of the spreadsheet on a scale from one to ten, one meaning very difficult, ten very easy.

†† For the highlighted cells there is a significant difference between the two models for the combination of the question
and the dependent variable.

The results are displayed separately for both spreadsheet models. Model C was desig-
ned in adherence to the concept of locality, trying to minimize the number of delocalized
plans. This is in contrast to Model F where the precedents of formulas were spread far and
wide in the spreadsheet, leading to a high number of delocalized plans (see for examples
Figure 3.2 and 3.3 in Section 3.2).

A Shapiro-Wilk test showed that the data did not follow a normal distribution for al-
most all combinations of questions and models. Therefore, we used the Wilcoxon-Mann-
Whitney test to determine per question if there was a significant difference between the
two models. Table 3.5 shows that for some questions there is a significant difference bet-
ween the two models.

For each variable with a significant difference we calculated the effect with the Cliff’s
Delta (Table 3.6). For most variables the measured effect was medium (0.33 ≤ 𝑑 < 0.47) [56].
Exceptions are the number of clicks for Question 6 where the effect is large (𝑑 ≥ 0.47) and
the correctness, where the effect for Q3, Q4, and Q6 is small (0.15 ≤ 𝑑 < 0.33).

In the remainder of this section, we will interpret the results and answer our research
questions.



3.3 Results

3

41

Tabel 3.5: p-values (Wilcoxon-Mann-Whitney) per question

Question Correctness Difficulty Time # Clicks
Q1 - <0.05 <0.05 <0.05
Q2 - - - -
Q3 <0.05 - - <0.05
Q4 <0.05 - - -
Q5 - - - -
Q6 <0.10 - <0.05 <0.05
Q7 - - - -
Q8 - - - -
Q9 - - - -

Tabel 3.6: Cliff’s Delta per question

Question Correctness Difficulty Time # Clicks
Q1 - 0.4044 0.4194 0.3000
Q3 0.2108 - - 0.3955
Q4 0.2186 - - -
Q6 0.1835 - 0.3865 0.5100

3.3.1 RQ1: How does the existence of delocalized plans in spread-
sheets influence the user’s ability to understand a component
of the spreadsheet?

Pacione considers several levels of abstraction with respect to code comprehension. We
see this reflected in the set of comprehension activities (Table 3.2). In our experiment, the
questions Q5 and Q6 are related to code comprehension on the component level (see Table
3.3).

In Question 5 we ask the subjects to determine if one cell is a precedent of another cell.
An example of such a question is:

‘Answer the following statement with yes or no. The student value for entrance
education (result of table IV, cell N24) is used in the calculation of the School
student value (cell C28).’

To answer this question the subjects have to inspect the formula in cell C28 to see if it
makes a reference to cell N24. For this question, there is no significant difference in perfor-
mance between the two groups. This in contrast to Question 6 where there is a significant
difference. In this case the subjects have to answer the following question (see also Figure
3.4):

‘Which cells are affected if you change the ‘budget factor student value’ (C74).’

This question is different from Question 5. In Question 5 we provide two components and
ask the subjects if they are related. In this question, we provide one component and ask the
subjects to identify all components that are directly or indirectly related to this one. To be
able to answer this question they have to trace all dependents of this cell. The participants



3

42 3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Controlled Experiment

in Model C answered this question significantly faster and needed fewer clicks. Notable
is the high number of clicks that participants need to answer this question in Model F. In
addition of these clicks they also needed to change frequently between worksheets.

Figuur 3.4: Budget factor student value in both Model C (left) and Model F (right)

Based on these results we observe that the existence of delocalized plans in spread-
sheets does influence the user’s ability to comprehend the relations between components
of the spreadsheet. If there are more delocalized plans, the user needs more time and is less
accurate. However, we only see this effect when users are inspecting longer calculation
chains.

3.3.2 RQ2: How does the existence of delocalized plans in spread-
sheets influence the user’s ability to understand the complete
calculation model of the spreadsheet?

Question 1 and Question 4 test to which degree the subject understands the workings
of the model. As stated in the previous section, the model calculates the total funding a
school receives given the number of students. The main component of the funding is the
student value. It is depending on the number of students but has a different value. In
Question 1 we ask the subject to explain why the student value is higher than the total
number of students. To answer this question they have to analyze a set of formulas and
the relations between them.

For both models, the correctness of the answer did not show any difference. However,
on average it took the participants in Model F more time and they needed more clicks than
the participants in Model C. Also the Model F participants thought that the question was
more difficult. In Model C all cells used to calculate the student value could be inspected
on a single worksheet without the need for scrolling. In Model F the participants had to
switch between two worksheets. It is plausible that the switching between sheets and
the fact that all precedents of the formula could not be inspected on a single screen is
responsible for the more time that was needed, the higher number of clicks, and a higher



3.3 Results

3

43

level of perceived difficulty.
In Question 4 we also asked the participants to explain the working of the model. An

important concept in the model is the cascade factor. It is a weighting factor that ensures
that the school gets less funding for students that need more time to finish their education.
We ask the participants to explain the cascade factor in their ownwords. Although there is
no significant difference in the time and number of clicks needed to answer this question,
the quality of the answers in model C is significantly higher (See Table 3.5).

From these results, we conclude that the existence of delocalized plans in a spreadsheet
influences the user’s ability to comprehend the complete calculation model of the spread-
sheet. However, we also observe that although we see a difference for both questions, the
results differ per question. In Question 4 there is a difference in the correctness of the
answers and in Question 1 it is the timing, perceived difficulty and the number of clicks.
In future research, we will design a follow-up experiment to gain better insight into the
causes for these differences.

In both Question 7 and 9, the subjects are asked to assess the quality of the spreadsheet.
In Question 7 they have to suggest improvements to themodel, whereas in Question 9 they
are asked to assess how easy it is to explain the working of the spreadsheet to somebody
else. Both questions are related to the user’s ability to understand the spreadsheet.

It is notable that there is no significant difference, for both questions, in the subject’s
assessment of the quality of the spreadsheet, whereas we do observe a difference in the
performance when subjects have to execute a comprehension task in Q1 and Q4.

We also received contradicting advice about how to improve the spreadsheet. A subject
working with Model C (that consisted of a single worksheet) suggested to: “split the long
sheet to several sheets and name them by what they calculate.”, while a subject working with
Model F (consisting of multiple worksheets) wrote that: “having all the inputs on one sheet
would be helpful (to prevent having to scroll trough tabs all the time)”.

In both groups, there were several subjects that suggested that the spreadsheet would
be easier to comprehend if named ranges were used (replacing cell addresses by meaning-
ful names). In future work, we will research the effect of using named ranges on formula
comprehension.

3.3.3 RQ3 How does the existence of delocalized plans in spread-
sheets influence the user’s ability to adapt the spreadsheet?

In both Question 2 and 3, the subjects are asked to make adaptations to the model. In
Question 2 they have to find and correct an error. For this question, we do not see any
significant difference between the two groups. The subjects knew beforehand which part
of the spreadsheet contained the error. To find the error it was not necessary to trace all
the precedents, inspecting the formula was sufficient. This explains why the organization
of the formulas in the spreadsheet did not influence the subjects ability to correct the error.

In Question 3 we asked the participants to change the model. Each school receives
additional funding for disabled students. In our model, it takes into account both the
number of students at entry level as well as the other students. In the question, we asked to
exclude the entry level students from the calculation. In this case, the results indicate that
it was easier to make this change in Model F than in Model C. For model F, the participants
needed fewer clicks and submitted a higher number of correct answers. In Model C all



3

44 3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Controlled Experiment

components of the formula were located on a single sheet. In Model F the components
were split between two worksheets. In order to make the change, the subjects needed to
change sheets several times. Nevertheless, the performance in Model F was better.

There are two possible explanations. Although in Model F, the components of the for-
mula were spread over two different sheets, on both sheets it was possible for the subjects
to see all information in a single glance. Whereas in Model C all information was located
on one sheet, but not visible in a single glance. We suspect that subjects had to scroll to see
the complete picture. So one explanation could be that the ability to see all information
in a single glance is responsible for the better performance.

Another explanation could be the formula itself. In order to make the change in Model
C, the subjects needed to make changes in more than one cell, whereas in Model F it was
sufficient to make a change in only one cell.

We designed a small second experiment to determine which of these two explanations
is more plausible. We provided fourteen employees of the financial staff of Delft University
of Technology with an advanced Excel training. During this training we let them do an
exercise that was designed to determine which of the aforementioned explanations is the
most plausible.

In this experiment, for both models, it was not possible to see all information in one
glance and scrolling was necessary. The only remaining difference was the way the for-
mula was constructed. The fourteen employees were randomly assigned to either Model
C or Model F. The results of this experiment are summarized in Table 3.7.

Tabel 3.7: Results for spreadsheet experiment with TU Delft controllers

Activity Model C Model F
Correctness 8.1 10
Difficulty 3.2 3.4
Time 8:15 4:40
Clicks 40 9

Again the performance was better in Model F. All eight subjects that were assigned to
Model F completed the exercise flawlessly. In this model it was sufficient to change just a
single cell, making the way the formula was constructed the most plausible explanation
for the better performance.

This finding also sheds light on a previously unresolved issue regarding the trade-off
between the long method and the long calculation chain smell in spreadsheet formulas as
discussed in [27] and [29]. Defining a short formula to avoid the long method smell inevi-
tably leads to a longer calculation chain. Trying to reduce the long calculation chain smell
will lead to longer formulas. Based on the findings in this paper it appears that reducing
the length of the calculation chain has more impact on maintainability of a formula than
the length of the formula itself. This contradicts the FAST [36] guideline to write short
formulas. A short formula is maybe easier to understand, but it leads to longer calculation
chains and the experiment shows that users make more errors when they have to make
adjustments to the logic in the calculation chain. In future research, we will conduct an
experiment with a larger test group to further validate these conclusions.



3.4 Discussion

3

45

The last question that is related to the user’s ability to adapt the model is Question 8.
In this question subjects are asked to assess how easy it would be to adapt the spreadsheet.
The results for this question do not show a significant difference between the two models.

The results do not provide evidence that the existence of delocalized plans influences
the user’s ability to adapt the spreadsheet. However, they do indicate that regardless the
existence of delocalized plans, the length of a calculation chain does influence the user
while adapting the spreadsheet. If there is a longer calculation chain, the user needs more
clicks to make the change in the model and is more likely to make errors.

3.4 Discussion

3.4.1 Threats to validity
There are several threats to the internal validity of this study. The first threat is the sub-
ject’s skill level with respect to Excel. To mitigate this risk we asked the subjects to rate
how frequently they use Excel and how they assess their skill level on a five-point Likert
scale. Table 3.1 shows that for both variables there is no significant difference between
the two groups.

The second threat is that the subjects were aware of the goals of the Study. To mitigate
this we referred to the goals of the study in very general terms in both the invitation to
participate and the instruction (for example: ‘We are very much interested in how people are
interacting with spreadsheets’). Furthermore, the log file we used to analyze the subject’s
interaction with the spreadsheet was sent to us without showing it to the subject.

A third threat to the internal validity is the threat of self-selection. We invited partici-
pants of a MOOC about spreadsheets, approached mailing list members of a spreadsheet
interest group (EUSPRIG), and members of our own mailing list. Because of this, it is plau-
sible that all subjects have a more than average interest in the subject of spreadsheets and
are not representative of the total population of spreadsheet users. Nevertheless, we deci-
ded to approach these possible subjects to maximize the set of participants. And although
these subjects have possibly a more than average interest in spreadsheets it is also more
likely that they use spreadsheets in their daily activities.

A final threat to the internal validity could be a learning effect. We mitigated this
by allowing subjects to participate only once in the experiment. If we received multiple
log files from the same e-mail address, only the first submission was accepted for the
experiment. Nevertheless, a learning effect also occurs because the subject acquires more
knowledge of the model while answering the questions. We decided not to randomize
the sequence of questions to mitigate this effect. Pacione [52] considers several levels of
abstraction with respect to code comprehension and the sequence of our questions has
been structured accordingly.

A threat to the external validity of the experiment could be the representativeness
of the spreadsheet model that we used in the study. We mitigated this risk by using a
spreadsheet model that is based on a model that is used in practice by professionals.

Also, the representativeness of the subjects is an external threat. This risk is redu-
ced by the relatively large sample size of 107 subjects. They varied in their age, cultural
background, and Excel skill level and were randomly assigned to one of the two models.



3

46 3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Controlled Experiment

3.4.2 Effect of long calculation chains
When we started this study, we expected to find a clear relation between the existence
of delocalized plans in spreadsheets and the user’s ability to comprehend the spreadsheet.
We did find such a relation, but it is more nuanced than we thought. It appears that also
the length of a calculation chain is an important factor that influences spreadsheet com-
prehension. Furthermore, the type of comprehension task seems to be relevant. Subjects
perform significantly better in spreadsheets without delocalized plans when they have to
explain the working of the model. However, when we ask them to adapt the model, it is
the length of the calculation chain that determines their performance and not the existence
of delocalized plans.

3.4.3 Long Calculation Chain smell versus Multiple Operations and
Multiple References smells

In previous research on code smells in spreadsheet formulas it is stated that there is a trade-
off between the Long Calculation Chain smell and the Multiple Operations and Multiple
References smells [27], [29]. Our results indicate that the Long Calculation Chain smell
has a higher impact on the user’s ability to comprehend and maintain a formula than the
Multiple Operations and Multiple References smells. It is easier for a user to comprehend
and adapt a long formula with a short calculation chain than a short formula with a long
calculation chain. This finding contradicts the popular belief that short formulas are easier
to comprehend. For example, the FAST Standard Organization advises in their popular
FAST standard to write short formulas: “A formula longer than your thumb likely means
that it should be broken into more than one step.” [36].

3.5 Related Work

3.5.1 Software Engineering Methods and Spreadsheets
There are numerous studies that focus on applying software engineering methods on
spreadsheets. Rothermel et al. brought the concept of testing to spreadsheets with the
What You See is What You Test paradigm [44]. Other researchers focused on the domain
of reverse engineering and came up with methods to extract class diagrams from spread-
sheets [45] [46] or to visualize the data flowwithin spreadsheets [6]. Fowler introduced the
concept of smells in code [35], but smells also exist in spreadsheets. They are described in
detail in the work of Hermans [57] [28], Cunha [38] and Barowy et al. [58]. From smells, it
is a small and logical step to refactoring. Hermans defined refactorings for formula smells
in spreadsheets [15]. Inspired by this work Badame and Dig developed RefBook, a tool
that supports a number of refactorings for spreadsheet formulas [16].

3.5.2 Delocalized Plans and Program Comprehension
Weinberg defines several principles for programming language design [47]. According
to the author, a properly designed language aids the programmer by keeping relevant
information close at hand. In this context, he defines the concepts of locality and linearity.
Localitymeans that all relevant parts of a program are found in the same place, for example



3.6 Concluding Remarks

3

47

on the same page or on a single screen. Linearity means that the decisions in the program
are arranged in a strictly linear sequence.

Letovsky and Soloway [48] studied the relation between locality and program compre-
hension. They state that the goal of program understanding is to recover the intentions
behind the code. They define a plan as the technique that is used to realize an intention.
In their paper they focus on so-called delocalized plans, meaning that the code for the
plan is not closely grouped, but spread far and wide in the source code. They found that
in order to understand a program, programmers make reasonable but sometimes incor-
rect assumptions. They tend to leave these assumptions unverified if the effort required
to verify the assumption is great. Typically in delocalized plans, it will take more effort
to verify the assumptions. According to the authors, these plans are more liable to mis-
interpretation than plans whose code is closely grouped. Delocalized plans could also be
defined as plans with data flow links spanning widely separate parts of the code. Provi-
ding the developer with a data flow analyzer that makes these links explicit could reduce
the risk of misinterpretations.

Constantine [50] took a different approach. He focused on the concept of localization
in relation to user interface design. He defines the metric Visual Coherence that measures
how the arrangement of visual components matches with their semantic relationships. He
found that professional developers preferred more visually coherent designs and thought
they were easier to use.

3.5.3 Controlled Experiments in Software Engineering
Other research discusses the set-up of experiments to analyze software comprehension.
Pacione et al. [52] introduce a software visualization model for supporting object-oriented
software comprehension. They evaluate the performance of visualization tools by asses-
sing their performance in typical software comprehension tasks. Based on previous work
and evaluation tasks found in software comprehension and software visualization litera-
ture, they introduced a framework of nine principal comprehension activities (see also
Table 3.2 in Section 3.2). In the current paper, we use this framework to make sure that
all relevant program comprehension activities were covered in our experimental setup.

A similar set-up of a controlled experiment in software engineering was used by Cor-
nelissen et. al [54]. The authors use a controlled experiment to evaluate the effectiveness
of a tool for the visualization of large traces and also apply Pacione’s comprehension fra-
mework to select their comprehension tasks for the experiment.

3.6 Concluding Remarks
The goal of this paper is to answer the question: Are spreadsheets that contain delocalized
plans harder to understand?

To address this goal, we set up a controlled experiment using two spreadsheets that
differ in the organization of the formulas within the spreadsheet. In the experiment, the
subjects are divided over the twomodels and perform a number of comprehension tasks, of
which we measure correctness, perceived difficulty, completion time and the total number
of clicks.

The results reveal that the existence of delocalized plans in spreadsheets influences the



3

48 3 The Effect of Delocalized Plans on Spreadsheet Comprehension: A Controlled Experiment

user’s ability to comprehend and adjust the spreadsheet: subjects perform significantly
better on the model that contained less delocalized plans when they have to perform com-
prehension tasks on formulas with longer calculation chains.

The contributions of this paper are:

• A definition of the concept of delocalized plans in spreadsheets (Section 3.1)

• Design of a controlled experiment to analyze the ability of subjects to comprehend
and adjust a spreadsheet (Section 3.2)

• Translation of the software comprehension tasks as defined by Pacione et al. [52]
to the spreadsheet domain (Section 3.2)

• An empirical evaluation of the effect of delocalized plans in spreadsheets on spread-
sheet comprehension (Section 3.3)

3.6.1 Future work
This paper triggers several ideas for follow-up research. Firstly, a more extensive expe-
riment is needed to understand the impact of delocalized plans in spreadsheets in more
depth. For example, with a larger controlled experiment using multiple spreadsheets, fol-
lowed by a longitudinal study.

Furthermore, we envision a tool that measures the occurrence of delocalized plans in
spreadsheets. Such a tool could support users in estimating the effort needed for maintai-
ning a spreadsheet.

In this experiment, references in formulas were presented in ‘A1’ style. However, there
are alternatives like ‘R1C1’ notation or the use of named ranges for references. In a fu-
ture study, we will investigate the effect of these different forms of notation on formula
comprehension.



4

49

4
Detecting and Predicting Evolution

in Spreadsheets
The use of spreadsheets in industry is widespread and the information that they provide is
often used for decisions. Research has shown that spreadsheets are error-prone, leading to the
risk that decisions are made on incorrect information.

Software Evolution is a well-researched topic and the results have proven to support developers
in creating better software. Could this also be applied to spreadsheets? Unfortunately, the
research on spreadsheet evolution is still limited. Therefore, the aim of this paper is to obtain
a better understanding of how spreadsheets evolve over time and if the results of such a study
provide similar benefits for spreadsheets as it does for source code.

In this study, we cooperated with Alliander, a large energy network company in the Nether-
lands. We conducted two case studies on two different set of spreadsheets that both were
already maintained for a period of three years. To have a better understanding of the spread-
sheets itself and the context in which they evolved, we also interviewed the creators of the
spreadsheets.

We focus on the changes that are made over time in the formulas. Changes in these formulas
change the behavior of the spreadsheet and could possibly introduce errors. To effectively
analyze these changes we developed an algorithm that is able to detect and visualize these
changes.

Results indicate that studying the evolution of a spreadsheet helps to identify areas in the
spreadsheet that are error-prone, likely to change or that could benefit from refactoring. Fur-
thermore, by analyzing the frequency in which formulas are changed from version to version,
it is possible to predict which formulas need to be changed when a new version of the spread-
sheet is created.

This chapter has been published as  B. Jansen, F. Hermans, and E. Tazelaar. Detecting and Predicting Evolution
in Spreadsheets, ICSME18 [31]



4

50 4 Detecting and Predicting Evolution in Spreadsheets

T he use of spreadsheets is widespread in industry. Panko [1] estimates that 95% of U.S.
firms use spreadsheets in some form of financial reporting and Winston [2] estimates

that 90% of all analysts in industry use spreadsheets for their calculations. Hermans et
al. make compelling arguments that spreadsheets are code [14] and with an estimate of
500 million active users worldwide, spreadsheets are a successful end-user programming
language. Notwithstanding their common use, research has also proven that spreadsheets
are error-prone [7] which can lead to incorrect decisions and loss of money¹.

Until now, much of the spreadsheet research was focused on improving spreadsheets
by applying software engineering methods to them. The concept of testing was brought
to spreadsheets by Rothermel et al. [44] and recently Roy [20] investigated how users test
spreadsheets. Hermans [45] and Cunha et al. [46] covered the topic of reverse engineering
and proposed methods for extracting class diagrams from spreadsheets. Several studies
were published about the existence of code smells in spreadsheets [57] [38] [58]. From
code smells it is a small step to refactoring. Both Hermans and Dig [15] and Badame and
Dig [16] proposed tools that support several refactorings for spreadsheet formulas.

Contrary to the general belief, most spreadsheets are not one-time models that only
exists for a short time. The average lifetime of a spreadsheet is 5 years and during its
lifetime they are used on average by 12 persons [37]. Because of their relatively long
lifetime, spreadsheets, like software, evolve over time.

Software evolution is a well-researched topic within the domain of software enginee-
ring [59], [60], [61]. Research showed that the understanding of source code evolution
helps to identify errors within the software and highlights areas that are change-prone
and could possibly be improved. Could a better understanding of spreadsheet evolution,
bring similar benefits to the domain of spreadsheets? Unfortunately, research on spread-
sheet evolution is rather limited and a better understanding of how spreadsheets evolve
is needed. We need answers on questions such as:

• How do spreadsheets evolve over time?

• What is the change frequency?

• What kind of changes are made?

• What are the motivations behind these changes?

• Will the study of spreadsheet evolution contribute to better change comprehension
and prediction of spreadsheets?

Analyzing the evolution of spreadsheets leads to several challenges. First, we need to
be able to correctly identify the changes that were made between the different versions of
the spreadsheet. For this study, we are mainly interested in the changes that were made to
the formulas. Changes in these formulas change the behavior of the spreadsheet and could
possibly introduce errors into the spreadsheet. In this study, we developed FormulaMatch,
an algorithm that identifies and visualizes these changes.

The second challenge related to the research of spreadsheet evolution is finding a set
of different versions of the same spreadsheet that were developed and maintained over

¹http://www.eusprig.org/horror-stories.htm



4.1 Background & Related Work

4

51

a significant period of time. Dou et al. proposed a semi-automated approach to iden-
tify evolution groups within a larger spreadsheet group [62]. They applied this approach
to the Enron spreadsheet corpus [10] which resulted in a version-ed spreadsheet corpus
called VEnron that consists of 7,294 spreadsheets spread over 360 evolution groups. The
drawback of this dataset is that we have no access to the creators of the spreadsheet.

In our study, wewant to understand the changes and themotivation behind these chan-
ges that occur during the evolution of a spreadsheet. Access to the creators is therefore
crucial. For this reason, we decided not to use the VEnron corpus, but to cooperate with
Alliander. Alliander is a Dutch energy network company. They are responsible for the
distribution of electricity and natural gas in a significant part of the Netherlands. They
have 5.7 million customer connections, maintain a 90,000 km electricity network and a
42,000 km gas grid and have a yearly revenue of €1.7 billion. Alliander provided us with
two sets of spreadsheets that we could use for our analysis.

The remainder of this paper is organized in the following way. In the next section,
we provide background information on spreadsheet evolution and discuss related work.
In Section 4.2 we discuss the algorithm that we used to detect changes between different
versions of a spreadsheet. The two case studies and our findings are presented in Section
4.3. Some topics that affect the applicability and suitability of our findings are discussed
in Section 4.4 and we end the paper with concluding remarks in Section 4.5.

4.1 Background & Related Work

4.1.1 Software Evolution
The study of software evolution has provided us with insights that support developers in
creating better software. The first studies date back to the late 1960s [63] although the
term software evolution itself was not used until 1974 [64]. Lehman and Ramil published
a comprehensive summary of 30 years of research on software evolution in 2003 [59].

Research from Novais et. al. provides reasons why the study of software evolution
matters [60]. They conducted a systematic mapping study of the goals and purposes of
software evolution visualization. The 5most frequently mentioned purposes were: change
comprehension, change prediction, contribution analysis, reverse engineering, identifica-
tion of anomalies, and development communication.

In one of the early studies on software evolution, Gall et. al. studied the evolution of
the software of a telecommunication switching system over a period of 21 months [61].
The system consisted of about 1500 to 2300 programs. They based their analysis on system
properties like size, changing rate, and growing rate. They defined changing rate as the
percentage of programs of the system which changed from one release to the next. In a
similar manner, growing rate was defined as the percentage of programs of the system
which have been added (or deleted) from one release to the next. The method Gall et. al.
used to study the evolution of the telecommunication switching system could also be used
to study the evolution of spreadsheets. Gall et. al. analyzed the changes in the system on
the level of the individual programs. For spreadsheets, this could be adapted to the level
of the individual formulas.



4

52 4 Detecting and Predicting Evolution in Spreadsheets

4.1.2 Spreadsheet Evolution
Research on spreadsheet evolution is still limited. In previous work, we compared 54
pairs of spreadsheets [29]. These pairs consisted of the original spreadsheet created by a
customer and a version that was rebuilt by professional modelers from the company F1F9.
The study provided insight into the effect the rebuilding had on the occurrence of code
smells in formulas. However, each spreadsheet was analyzed for only two versions and
therefore the obtained insights about the evolution of the spreadsheet were limited.

Most related to our research is the work of Dou et. al. [62]. They propose a semi-
automated approach to identify evolved spreadsheets and recover the embedded version
information. They applied this approach to the Enron corpus [10] [65] and created VEnron,
a spreadsheet corpus with version information that consists of 360 evolution groups with
a total of 7,294 spreadsheets. An evolution group is a set of spreadsheets that are all ori-
ginated, either directly or via intermediate versions, from the same spreadsheet. Of these
360 evolution groups, 251 groups, consisting of a total of 4,149 spreadsheets, contained
spreadsheets in which formulas were used. The study was mainly focused on identifying
evolution groups within the Enron corpus, but the authors also compared the different
spreadsheets within an evolution group with Microsoft’s Spreadsheet Compare tool and
made a technical classification of the type of changes they encountered. They studied 4
types of changes:

• Structural: Changes to the structure of the spreadsheet like adding or deleting
rows.

• Entered values: Changed, added or deleted values (instead of formulas).

• Formulas: Changed, added or deleted formulas.

• Calculated values: Not a change in the formula, but in the calculated result of the
formula, caused by changes in the input values for the formula.

In this paper, we focus on changes in formulas because a change in a formula means a
change in the functionality of the spreadsheet. Furthermore, we want to investigate the
motivations behind the change. Is it, for example, because of a new feature request, to
correct an error or to optimize the performance of the spreadsheet. Dou et. al. were not
able to answer these questions because they did not have access to the creators of the
spreadsheet.

Xu et. al. proposed SpreadCluster, a different approach for recovering spreadsheet ver-
sion information [66]. Instead of clustering spreadsheets based on their filenames, they use
features of the spreadsheet, like table headers and worksheet names. Their study shows
that SpreadCluster can cluster spreadsheets with a higher precision (78.5% vs. 59.8%) and
recall rate (70.7% vs 48.7%) than the filename approach that was used in VEnron [62]. Ap-
plying SpreadCluster to the Enron corpus resulted in a new versioned spreadsheet corpus:
VEnron2. This study only focused on the clustering of spreadsheets and did not analyze
the changes within an identified evolution group of spreadsheets.

4.1.3 Comparing Spreadsheets
Chambers et. al. present SheetDiff, a method for identifying the changes between two
spreadsheets [67]. They determine all individual cell changes between two versions of the



4.1 Background & Related Work

4

53

spreadsheet. Next, they optimize the cell changes into higher level changes like adding or
deleting a column. As a result, this reduces the number of changes that are presented to
the user. In their approach, they detect changes in all cells and not only the formulas.

Inspired by SheetDiff, Harutyunyan et. al. developed RowColAlign, an algorithm that
can identify differences between two spreadsheets that is based on an algorithm for solving
the one dimensional longest common subsequence problem [68]. RowColAlign is very
successful in identifying changes caused by row insertion, row deletion, and cell level
edits. However, it does not take into account operations such as copy-paste or cell-fill.
Furthermore, the algorithm has not been applied to spreadsheets with cells containing
formulas.

4.1.4 Spreadsheet Evolution Challenges
Studying spreadsheet evolution comes with its own challenges. It starts with the lack of
version control systems (VCS). Spreadsheet users do not use Github or SVN because VCS
are in general not suited to store the version history of spreadsheets. The lack of version
control systems, also means that there are no commits and no commit messages. As a
result, it is challenging to find a group of spreadsheets that belong to the same overall
project. If such a group is found the next challenge is to determine the exact order in
which they were created.

The next step in analyzing the evolution of spreadsheets is comparing the different
versions of a spreadsheet in an evolution group. Finding changes between two versions
of a program is relatively straightforward. Most programming languages are text-based
and programs, classes and methods are organized in text files. Modern version control
systems provide ’Diff’ tools to highlight the differences between two versions on the level
of code lines or even words.

A normal ’Diff’ tool is not able to compare two spreadsheets. Spreadsheets are not
text-based files. A workbook consists of worksheets and worksheets consists of cells. The
information in a spreadsheet is entered in a cell. To track changes in a spreadsheet you
have to track changes on cell level. But what if a user inserts a row or a column or both.
How should a compare tool determine which cells should be compared to each other?

Another important difference between source code and spreadsheets is the combina-
tion of data and code. In a spreadsheet data and code exist next to each other. If a user
changes a numeric value in a single cell then all formulas that make reference to this cell
will calculate a different outcome. If you compare the spreadsheet these changes will be
detected. However, no change was made to any formula and one could argue that the
spreadsheet is still unchanged.

An additional problem is the way the structure of a spreadsheet influences the formu-
las. The example of Figure 4.1 elucidates this problem.

Figure 4.1a shows a formula in cell C1 that adds up the values in cell A1 and B1, resul-
ting in a calculated value of 25. Assume a user inserts a new column after column A. The
result is shown in Figure 4.1b. Because of a structural change in the worksheet (adding
a new column) the formula has changed. However, the function of this formula is still
unchanged, as is its calculated value.

Now imagine that this spreadsheet contained 1,000 rows and that the formula in cell
C1 of Figure 4.1a was copied down to all 1,000 rows. In that case, a single insertion of a



4

54 4 Detecting and Predicting Evolution in Spreadsheets

(a) Original formula (b) Changed formula after inserting column B

Figuur 4.1: The effect of changes in structure on formulas

new column would result in 1,000 formula changes. If these were all taken into account
while comparing the two versions of the spreadsheet, the number of reported changes
would be overwhelming and analysis of the differences between the two versions would
be challenging.

4.2 Detecting Changes
As stated in the Section 4.1, analyzing changes between two spreadsheets is difficult. Sim-
ple structural changes to a worksheet, like inserting a row or a column, can lead to a my-
riad of changes (see Figure 4.1). The goal of our study is to understand how spreadsheets
evolve. We are especially interested in how formulas change over time. The formulas in a
spreadsheet can be compared with the source code of a program. It determines its functi-
onality, and it is in the formulas where most errors emerge. Furthermore, one would not
argue that a program has been changed when it is run for a second time with different data.
The same holds true for spreadsheets. If just the data has been changed the spreadsheet
should be considered as unchanged.

The number of detected changes reduces if only changes in the individual formulas are
taken into account and all changes in structure, data and formatting are ignored. However,
it still can result in thousands of changes. More complex spreadsheets contain a lot of
formulas. For example, one of the models that we used in our case studies contained about
100,000 formulas. In such a spreadsheet, as described in the previous Section, a single
change like moving a cell, can lead to a change in thousand related formulas. Presenting
all these changes to the user, will not help them to understand the risks induced by the
applied changes.

4.2.1 Unique Formulas
For this reason, the evaluation is reduced to only the unique formulas. We make use of
the R1C1 notation of a formula to detect the unique formulas in a spreadsheet [17]. In
Figure 4.2 we illustrate this with an example. In Figure 4.2a we see a small spreadsheet
with 8 formulas. None of these formulas are the same. However, if we switch in Figure
4.2b from A1 notation (meaning the cell on the first row and the first column is referred
to as A1) to the R1C1 notation (meaning that same cell is now referred to as R1C1) most
of the formulas are the same. It turns out, as highlighted in Figure 4.2c, that there are
actually only two unique formulas.



4.2 Detecting Changes

4

55

(a) Formulas in A1 notation (b) Formulas in R1C1 notation

(c) Visualization of unique formulas

Figuur 4.2: Detecting Unique Formulas

4.2.2 Similarity score
When comparing two spreadsheets we start with detecting the unique formulas. For every
formula in the first version V0, we have to find the equivalent in the second version V1. It is
not possible to use the cell address, because it could have been changed if rows or columns
were added or deleted. Furthermore, we have to take into account that the formula itself
could have been changed.

To find a matching formula we analyze the similarity of the formulas in their R1C1
notation. As a measure of similarity we use the Levenshtein Distance [69], [70]. It denotes
theminimumnumber of operations needed to transform one string into the other. A larger
distance means that the strings are less similar.

With this similarity measure, we can match the formulas in V0 with the formulas
in V1 that have the highest similarity. Still, this does not guarantee a perfect match, as
different formulas can have the same similarity score. To overcome this the formulas are
also compared to the following additional properties:

• Calculated result: the outcome of the formula.

• Parse tree depth: This is a measure of how nested a formula is.

• Path depth: a formula in a spreadsheet canmake reference to another formulawhich
again can make a reference to another formula. The path depth is the length of the
complete calculation chain.

• Direct dependents: the number of cells that make a reference to the outcome of the
formula.

• Direct precedents: the number of cells that are used by the formula as input.

4.2.3 Matching Algorithm
Trying to match the formulas in V0 with the formulas in V1, based on the maximum simi-
larity score while taking into account the additional properties gives good results when



4

56 4 Detecting and Predicting Evolution in Spreadsheets

the number of formulas in both versions are the same and no formulas have been added
or deleted. To correctly handle the addition or deletion of formulas a more sophisticated
matching algorithm is needed.

In their paper “College Admissions and the Stability of Marriage” [71], Gale and Shap-
ley describe an easy and elegant algorithm that solves the problems caused by the adding
and deleting of formulas. They describe an algorithm that solves the so-called College
Admission problem. In this problem, colleges are considering a set of n applicants. They
can only accept a quota of q applicants. Of course, applicants want to be accepted at the
college of their preference. Gale and Shapley designed an algorithm that will lead to an
optimal stable assignment, meaning that: “every applicant is at least as well off under it as
under any other stable assignment” [71].

To accomplish this, every college should make an ordered list of their preferred appli-
cants and every applicant should make an ordered list of their preferred colleges. Then
the algorithm can be applied as follows:

1. All applicants apply to the college of their first choice.

2. A college with a quota of q places q highest ranking applicants on its waiting list
and rejects the rest.

3. Rejected applicants then apply for their second choice.

4. Each college selects the top q from the new applicants and those on its waiting list,
put these on its new waiting list and rejects the rest.

5. This is repeated until all applicants are either on a waiting list or have been rejected
by all of their preferred colleges.

Figuur 4.3: Visualization of FormulaMatch

We applied this idea to develop FormulaMatch, an algorithm that we can use for our
matching problem. For each formula in V0 (’the colleges’) we created an ordered list of
preferred formulas in V1 (’the applicants’) using the similarity score. Also for all formulas
in V1, we created an ordered list for their preferred formulas in V0. Every formula in V0



4.3 Spreadsheet Evolution in two Industrial Case Studies

4

57

can only be matched to exactly one formula in V1, so we set the quota of the V0 formulas
to 1. Then we applied the steps of the algorithm.

The result of FormulaMatch provides us for each formula in V0 with a matching for-
mula in V1. Based on the similarity scores we know if the formula was changed or not.
It is possible that no matching formula was found, meaning that this formula was deleted
in V1. It is also possible that for a formula in V1 no matching formula in V0 was found.
In terms of the algorithm, it was rejected. Rejected formulas are not existing in V0 and
therefore, were added in V1.

Figure 4.3 shows a visualization of FormulaMatch². All unique formulas are indicated
with an identifier (FXX). If they were changed, they are highlighted in orange and in a
comment the old and new version of the formula in R1C1 notation is displayed. Deleted
formulas are highlighted in red and newly created formulas in green.

4.3 Spreadsheet Evolution in two Industrial Case Studies

4.3.1 Setup
The goal of this paper is to obtain a better understanding of spreadsheet evolution. With
the results of the case studies we will answer the following research questions:

RQ1 How do spreadsheets evolve over time?

RQ2 How common are changes in formulas during the life-span of a spreadsheet?

RQ3 What are the reasons behind the changes?

RQ4 To what extent can the results of a spreadsheet evolution study, support end-users
in creating spreadsheets that are easier to maintain and contain fewer errors?

For the case studies, we cooperated with Alliander. Alliander is one of the large energy
network companies in the Netherlands and we had the opportunity to work with em-
ployees from the Analytics group of the Asset Management department. They provide
data-based insights from maintenance and failure reports to support the development
and maintenance of the energy network. We asked them to provide us with examples
of spreadsheets that they created and maintained for several years. Based on this request
we received two spreadsheet evolution groups that together contained a total of 73 spread-
sheets. Before we started the case studies we provided the owners of the spreadsheets with
information about the setup of the study and they gave us a short explanation about the
purpose and context of their spreadsheets.

In the design of our study, we followed a mixed methods approach [72]. We started
with a quantitative phase that consisted of a detailed analysis of the evolution of the re-
ceived spreadsheets and followed up with a qualitative phase that consisted of interviews
with the creators of the spreadsheets.

During the two case studies, the procedure was as follows: First, we asked the creators
of the spreadsheet to put the spreadsheets in the evolution group in the correct update

²To protect the sensitive data in the spreadsheet, all column and row headers in the example have been replaced
with the term ’label’



4

58 4 Detecting and Predicting Evolution in Spreadsheets

order. Subsequently, we analyzed the spreadsheets with our Spreadsheet Scantool and ran
for each pair of consecutive versions of the spreadsheets our FormulaMatch algorithm.
Based on the outcome of this analysis we summarized the evolution of the spreadsheet
with the below-mentioned metrics. These metrics are the same as used by Gall et. al.[61],
but we have adjusted them in the following way to make them suitable for the use with
spreadsheets.

• Size: As stated in Section 4.1, data and code are combined in a spreadsheet. The
code in a spreadsheet is formed by the formulas and the number of unique formulas
(see Section 4.2.1) is used in this study, as metric for size. Still, formulas are not the
only component of a spreadsheet that is responsible for its growth. A spreadsheet
can also grow in size by just adding data to it. Therefore, we also use the number of
non-empty cells as a metric for size.

• Changing rate: is defined as the percentage of unique formulas in the spreadsheet
that changed from one version to the next.

• Growing rate: is defined as the percentage of unique formulas that have been added
(or deleted) from one version to the next.

Subsequently, we used the results from the FormulaMatch algorithm to manually inspect
all changes that occurred in the unique formulas. After that, we interviewed the creators
of the spreadsheets and asked them the following questions:

1. How would you describe the development process of the spreadsheet?

2. Which parts in the spreadsheet do you consider complex?

3. Which important changes that you made in your spreadsheets do you remember?

4. What were the main reasons behind the changes you made in the spreadsheets?

The answer to these questions, combined with the data collected from the analysis of the
spreadsheets, provides more background and context of the evolution process and will
enable us to answer the research questions.

After these questions we discussed the findings of our analysis with the creators, to
get a better understanding of the motivations behind some of the changes. We also asked
them if and how the results of the study could help them to create and maintain better
spreadsheets.

4.3.2 Case Study I: failure density in the natural gas distribution net-
work

The first case study concerns a failure density model for the gas distribution network. It
reports monthly on failure incidents, causes of failures and it provides a forecast for the
coming months of the year. We received 35 spreadsheets that span a period of almost
3 years. The first spreadsheet dates back to February 2014 and the last version is from
January 2017.

Figure 4.4 shows the evolution of size in number of cells over the different versions
of the spreadsheet. As stated in Section 4.1, spreadsheets consist of data and code. When



4.3 Spreadsheet Evolution in two Industrial Case Studies

4

59

Figuur 4.4: Evolution of size of the spreadsheet over several versions

analyzing the size of the spreadsheet, a distinction has to be made between data and for-
mulas. Therefore, in the chart we show the number of non-empty cells as a metric for
the size of the data and the number of unique formulas as metric for the formulas. The
spreadsheet starts in version V01 with 383 non-empty cells and grows in V35 to 36,079
cells. The unique formulas grow from 8 in V01 to 87 in V35. These 87 unique formulas
represent a total of 2,046 formulas.

Although the growth of the data and the unique formulas follow a comparable pattern,
there is no relation between the two. During the interview, we discussed the growth
patterns with the creator of the spreadsheet. The two steep increases (A and B in Figure
4.4) of non-empty cells were related to adding and extending a reference table with zip
code information of the Netherlands. The increases in unique formulas that occurred at
almost the same moments were related to new information requests and were not related
to the zip code table.

Figure 4.5 displays both the changing and growing rate of the spreadsheet. In the
early versions, the model was extended with new functionality. We see this between V03
and V04 and around V11 to V14. This corresponds to the growth of the unique formulas
shown in Figure 4.4. During this time frame, new functionality was added to the model
based on requests from end-users for more detailed information. At the same time, there
were almost no changes. Only a small spike around V10 and V11 (See A in Figure 4.5)
with a changing rate of 10%. These changes coincide with a year-end rollover. Something
similar can be seen a year later from version 24 to 25. Some formulas needed to be changed
when the model was transferred from one year to another.

Until version 14 there are, except for the year-end rollover, no changes in the existing
formulas. This changed in version 15, from that moment the changing rate continuously



4

60 4 Detecting and Predicting Evolution in Spreadsheets

Figuur 4.5: Changing and growing rate of the spreadsheet over several versions

stays at a level of about 40%. We discussed this with the creator of the spreadsheet. In
V14 a set of formulas were added that needed to be adjusted every time data for a new
month was added. Therefore, it stands out that in V19 the changing rate suddenly drops
back to 0%. In this version, new data for the month was added, but the adjustments in the
formulas were forgotten.

In the 35 versions of the spreadsheet, 617 changes to unique formulas were detected.
These 617 changes were made to only 62 unique formulas, meaning that a lot of unique
formulas were changed multiple times. Figure 4.6 shows the frequency distribution of
these changes. About half of the formulas were changed between one and four times,
the other half between thirteen and twenty times. This relates to the set of formulas that
had to be changed every month. It started in V15 with 25 formulas and was later, in V20,
extended to 30 formulas.

During the interview, the creator of the spreadsheet summarized the changes that
were made in the 35 different versions as providing gradually more information to the
end-users of the spreadsheet. The spreadsheet is part of a monthly reporting cycle and
by providing more information a lot of recurring questions could already be answered
based on the information in the spreadsheet. The change that was remembered the most
coincides with the spike in the changing rate in V24 (see Figure 4.5).

According to the creator of the spreadsheet, the most complex part of the spreadsheet
are the formulas that calculate a forecast for the coming months. From the 617 changes,
only 3 were related to this part of the spreadsheet. In this case, the complexity of a formula
was not a driver for frequent change.



4.3 Spreadsheet Evolution in two Industrial Case Studies

4

61

Figuur 4.6: Frequency distribution of formula changes

The main reasons for changing formulas in the spreadsheet, mentioned during the
interview, are 1) incorporating new requests from the end-users of the spreadsheet or 2)
changing formulas to make future updates and maintenance easier. The creator of the
spreadsheet is well aware of the fact that there are areas in the spreadsheet that could be
improved. It should not be necessary to update formulas every time data is added to the
spreadsheet. However, it is not always easy to find the time to implement such changes.

4.3.3 Case Study II: Failure analysis of the Medium Voltage Grid
The second case study is a set of spreadsheets providing Alliander with an analysis and
forecast of failures in the Medium Voltage Electricity Grid. The set consists of 38 spread-
sheets with a time span of 38 months, from January 2014 to February 2017.

The evolution of size for the complete set of spreadsheets is shown in Figure 4.7. The
data component in this spreadsheet is much larger in comparison with the spreadsheets
from the first case study. The chart indicates two moments (A and B in Figure 4.7) where
the number of non-empty cells suddenly changes. In June 2014 the number of cells changes
from 99,091 cells to 695,471. In the interview, we asked the creator about the reason for
this change. Until that time the analysis was based on the last twelve months of data. As
from June 2014, this was extended to a time span of five years.

In November 2016 a large part of the data is deleted, reducing the size of the model to
529,853 cells. First, we assumed that old data was removed from the model. We discussed
this during the interview and it turned out that this was only a partial explanation of the
size reduction. Indeed one year of data was deleted but at that time the model contained



4

62 4 Detecting and Predicting Evolution in Spreadsheets

Figuur 4.7: Evolution of size of the spreadsheets over several versions

almost one million non-empty cells and it started to get really slow. Closer inspection of
the source data revealed that it was possible to reduce it by filtering out rows with a status
that was not needed for the calculations. It was this filtering that was mainly responsible
for the size reduction.

The model started with one pivot table and without formulas. in Figure 4.7 we can see
that there were three distinctive moments that new unique formulas were added to the
model: mid-2014, early 2016 and late 2016. In all cases, the reasons behind the addition of
new formulas were requests for more insights from the end-users of the spreadsheet. The
ratio of unique formulas to formulas is about 1 to 1,000, which is much higher than in the
first case study where it was about 1 to 25. This high ratio can be explained by the fact
that the model contains a data set of about 10,000 rows and that formulas are defined for
each individual row. This means one unique formula with 9,999 siblings.

The changing and growing rate are shown in Figure 4.8. The three moments when
formulas were added to the model are clearly recognizable. In comparison with the first
case study, this model is much more stable. The changing rate stays below ten percent for
most of the time. However, also in this model, there are formulas changed in almost every
version. Figure 4.9 illustrates this.

In the 38 versions of the spreadsheet 76 changes were made to only 18 unique formulas.
The majority of these formulas were only changed once but there are four formulas that
were changed multiple times. We discussed this in the interview with the creator of the
spreadsheet. There were two formulas that had to be changed every month. The range
that was used in these formulas to calculate a forecast had to be adjusted. The other two
formulas had to change only once a year. The logic for the calculation of a KPIwas different
in the last month of the year than in the other months. Finally, we saw that at the end of



4.3 Spreadsheet Evolution in two Industrial Case Studies

4

63

Figuur 4.8: Changing and growing rate of the spreadsheets over several versions

2016 a set of four new formulas were added that had the year hardcoded in the formula.
These formulas had to be changed at the beginning of 2017.

This model started with one pivot table. When we asked the creator of the spreadsheet
to summarize the development of the model in the 38 consecutive versions, he explained
that most changes had to do with new information requests from the end-users of the
spreadsheet, but also to replace the pivot table with formulas to mitigate the risk that
the spreadsheet was updated without updating the pivot table and therefore presenting
information that was outdated.

According to the creator of the spreadsheet, the most complex part of the model was
related to the calculation of the long-term and short-term trend of the failure analysis.
Although complex, the formulas used for this calculation were stable. They were not
changed in any of the 38 spreadsheets.

The changes that were remembered the most by the creator of the spreadsheet, coin-
cide with the three spikes in the growth rate in Figure 4.8.

The creator of the spreadsheet was well aware of the formulas that needed main-
tenance every month and also possesses the knowledge of how to change them. Finding
the time and priority is, in this case, the limiting factor.

4.3.4 Conclusion
Based on the information collected during the case studies, we revisit the research questi-
ons.

RQ1 How do spreadsheets evolve over time? In both cases, it is clear that the



4

64 4 Detecting and Predicting Evolution in Spreadsheets

Figuur 4.9: Distribution of change frequency of formulas

spreadsheets grow over time, both in the number of non-empty cells as unique formulas.
It also became clear that, for the cases considered, there is no direct relation between the
growth in data and the growth in unique formulas. Spreadsheets that exists for a longer
time-span are often used for reporting purposes. The growth of the data is caused by
adding more data points to the analysis. Growth in unique formulas is caused by adding
new functionality to the spreadsheet.

RQ2 How common are changes in formulas during the life-span of a spread-
sheet? For both cases, unique formulas were changed in almost every version. Only the
number of changes differed between the two cases. The addition of new data points made
it necessary to change the logic of some of the formulas. In the context of a spreadsheet
this sounds reasonable but translated to the context of software evolution it would mean
that source code need to be changed every time the program is run with new data.

RQ3 What are the reasons for the changes? The motivation for most changes
in the formulas is new feature requests from the end-users of the spreadsheet. Another
reason for change is to improve the maintainability of the spreadsheet. A third reason,
that was not mentioned during the interviews, but of which we found examples in our
evolution study, is the correction of an error that was made in a previous version.

RQ4 To what extent can the results of a spreadsheet evolution study, sup-
port end-users in creating spreadsheets that are easier to maintain and contain
fewer errors? When we discussed the results of the evolution study with the creators of
the spreadsheet, several suggestions were made about how these results could support a
spreadsheet user in making a better model:



4.4 Discussion

4

65

• Summarize the changes that are made in a new version. It helps the creator of
the spreadsheet to detect if all changes are intended and correctly implemented.
Choosing to only show the changes in unique formulas instead of all formulas helps
to present the changes in a concise way to the creator of the spreadsheet.

• Provide the creator of the spreadsheet with a list of formulas that were frequently
changed in earlier versions of the spreadsheet. This could function as a checklist to
make sure that all necessary changes have been made

• Suggest formulas that are candidates for refactoring. Formulas that have to be chan-
ged in every new version can often be rewritten in such a way that changes are not
necessary.

• Highlight sudden drops or spikes in changing and growing rates. They sometimes
indicate anomalies in the spreadsheet. For example, a sudden drop in the changing
rate from 32% to 0% between V18 and V19 in case study I revealed a set of formulas
that should have been updated but were not.

4.4 Discussion

4.4.1 Threats to validity
The cooperation with Alliander gave us a unique opportunity to study spreadsheet evo-
lution in real-life scenarios. However, a real-life dataset comes with the price of reduced
repeatability. We strongly support open data, but because the spreadsheets contain sensi-
tive information, we are not able to share them.

A threat to the external validity of our study concerns the representativeness of the
selected set of spreadsheets that we analyzed in this paper. The aim of this study is to gain
a better understanding of the evolution of spreadsheets. The direct access to the creators
of the spreadsheet is of decisive importance to obtain this understanding, but also sets
a practical limit on the number of spreadsheets that could be included. However, if we
look at properties, like size and number of formulas, of the spreadsheets then they are
comparable to the spreadsheets in the Enron corpus [10] and with this respect, they seem
to be representable.

4.4.2 VBA Code, Pivot Tables, and Charts
In this study, we have chosen to study the evolution of spreadsheets by analyzing the
changes in formulas. They determine the functionality of the spreadsheet and it is in the
formulas that most errors occur. However, there are other components in spreadsheets
that evolve over time, such as pivot tables, charts, and VBA code. In future research, we
will shift our focus to these components.

4.5 Concluding Remarks
The aim of this paper is to get a better understanding of the evolution of spreadsheets. In
the two case studies, we saw that spreadsheets grow over time, both in data as in the num-
ber of formulas. The main drivers for the growth of the formulas are new feature requests



4

66 4 Detecting and Predicting Evolution in Spreadsheets

from the end-users of the spreadsheet. Besides new feature requests also improving the
maintainability was mentioned as a motivation to implement changes and finally, we saw
that some changes were related to bug fixing. In both case studies, there was a certain
percentage of formulas (48% in study I and 22% in study II) that changed in almost every
version. Results show that these formulas had to be adjusted when new data points were
added to the spreadsheet.

The contributions of this paper are as follows:

• FormulaMatch: an algorithm to match unique formulas of two different versions of
the same spreadsheet (Section 4.2).

• Two case studies in which a detailed study is made of the evolution of a spreadsheet.
In both cases, the analyzed spreadsheets had a time-span of three years (Section 4.3).

• Insights from spreadsheet users about how the results of an evolution study can
support them in creating better spreadsheets (Section 4.3).

This research gives rise to several directions for future work. The FormulaMatch al-
gorithm in combination with the concept of unique formulas makes it possible to present
in a concise way the changes between two versions of a spreadsheet. We will research
if it is possible to further improve the results by combining the FormulaMatch algorithm
with other algorithms that detect structural changes in spreadsheets. Furthermore, the
case studies showed that measuring the change frequency of formulas over the life-span
of a spreadsheet supports 1) the identification of formulas that are good candidates for
refactoring or 2) predicting which formulas need to be changed in the version on hand.
We are planning to develop a tool that uses this change frequency analysis to present this
information to the user. Finally, we will study the evolution of VBA code, pivot tables,
and charts within a spreadsheet.



5

67

5
XLBlocks: a Block-based Formula
Editor for Spreadsheet Formulas

Spreadsheets are frequently used in industry to support critical business decisions. Unfortu-
nately, they also suffer from error-proneness, which sometimes results in costly consequences.
Experiments in the field of program education have shown that programmers tend to make
fewer errors and can better focus on the logic of a program if they use a block-based langu-
age instead of a textual one. We hypothesize that a block-based formula editor could support
spreadsheet users in a similar way. Therefore, we develop XLBlocks and conduct a think-aloud
study with 13 experienced spreadsheet users from industry. Participants are asked to create
and edit several formulas, using our block-based language. We then ask them to evaluate this
editor using the Cognitive Dimensions of Notations framework. We found that for all dimen-
sions the block-based formula editor received a better evaluation than the default text-based
formula editor.

This chapter has been published as  B. Jansen and F. Hermans. XLBlocks: a Block-based Formula Editor for
Spreadsheet Formulas, VL/HCC 2019 [31]



5

68 5 XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas

S preadsheets are widely used in industry. It has been estimated that 90% of all analysts
in industry use spreadsheets for their calculations [2]. This observation indicates that

spreadsheets are often used to support critical decisions. Unfortunately, almost all spread-
sheets contain non-trivial errors[11]. As a consequence, decisions are based on incorrect
information, which eventually can lead to significant loss of money¹. To address these
quality problems in spreadsheets, Hermans et al. researched the concept of code-smells in
spreadsheet formulas and worksheets [28],[27]. That work was later extended by Cunha
et al.[38]. Barowy et al. extended the concept of smells to also cover data [58].

Concerning errors, Panko and Halverson distinguish three types of spreadsheet errors:
mechanical (typing errors), logic (formula errors), and omission errors [73]. Panko also
found that error rates for logic errors are higher than for mechanical errors, meaning, that
most spreadsheet errors have their origin in formulas [7]. Therefore, although a spread-
sheet model consists of data, layout, and formulas, we focus in this paper on creating and
maintaining formulas in spreadsheets.

Unfortunately, the way the user interface facilitates the entering of formulas is rather
limited. For example, in Microsoft Excel, formulas can be entered directly in a cell (see
Fig. 5.1a), in the formula bar (see Fig. 5.1b), or created using the function wizard (see Fig.
5.1c).

(a) In-cell editing (b) Editing in the formula bar

(c) Using the function wizard

Figuur 5.1: three ways for entering a formula in Excel

In all 3 of the editing methods, it is difficult to get an overview of the complete formula.
For example, the double nested if formula in Figure 1.2b is represented as a string of
characters on a single line. It is difficult to distinguish the two ifs from their arguments.
The function wizard attempts to visualize this better but has the drawback that it only
shows one function at a time. In Figure 5.1c the iferror functions is highlighted, but the
ifs are ‘hidden’ in the value field of the iferror function. Especially with in-cell editing or
using the formula bar, it is easy to forget or misplace a comma, parenthesis, or quote. In
these cases, the user needs to know the exact syntax of the function, meaning, the order
and purpose of the function’s arguments and whether they are mandatory or optional.

These problems with formula syntax are similar to the challenges novice programmers
encounter when they learn to program. Research has shown that block-based program
languages improve the performance of novice programmers by minimizing the possibility
of syntax errors and removing the necessity for accurate punctuation [74, 75].

¹http://www.eusprig.org/horror-stories.htm



5.1 XLBlocks: a block-based formula editor

5

69

Wehypothesize that a block-based formula editor for spreadsheets could support spread-
sheet users in a similar way. This paper introduces XLBlocks, a block-based formula editor
for Excel and presents the results of a think-aloud study in which the participants perform
a set of typical spreadsheet task with XLBlocks. After the tasks, we interview them and ask
them to evaluate XLBlocks using the Cognitive Dimensions of Notation (CDN) framework
[26].

5.1 XLBlocks: a block-based formula editor
This paper examines to what degree a block-based formula editor could support professi-
onal spreadsheet users while developing or maintaining formulas. In this section, we pro-
vide an overview of XLBlocks (Figure 5.2). XLBlocks aims to 1) implement a block-based
interface (Section 5.1.1), 2) facilitate users to replicate formulas across rows or columns
(Section 5.1.2), and 3) introduce new functions that are easier to use than some of the
built-in Excel functions (Section 5.1.3).

Figuur 5.2: Left the traditional screen with the textual formula highlighted at the top, right the block represen-
tation of the same formula

5.1.1 XLBlocks Interface
XLBlocks is an Excel Add-in developed with the Excel JavaScript API [76]. The Blockly
library [77] was extended with custom blocks and a code generator for the definition and
generation of spreadsheet formulas. Based on frequently used functions in the Enron cor-
pus [10], we included the following functions in the research prototype: SUM, SUMIFS,
IFERROR, INDEX, MATCH, VLOOKUP, IF, -, /, >, <. Videos demonstrating the user inter-
face of XLBlocks are available online².

To use XLBlocks, a user starts the definition with a formula block (see (a) in Figure
5.3). The user can give the formula a name (b), has to specify the output range (c) (the

²https://doi.org/10.6084/m9.figshare.8863532



5

70 5 XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas

Figuur 5.3: Example of a block definition of a SUMIFS formula

cells in the spreadsheet that will receive this formula) and the functions that are used in
the formula. In Figure 5.3 the SUMIFS function is used as an example. This function will
calculate a conditional sum based on one or more criteria. Therefore, in XLBlocks, it is
possible to connect one or more filter blocks as arguments to the SUMIFS function. In
this example, two comments have been added to the formula to document the filters that
are used in this sum. These comments are not transferred to the spreadsheet but will be
available in the XLBlocks editor.

5.1.2 EACH ROW and EACH COLUMN
Within the spreadsheet paradigm, it is common practice to define a formula and then
replicate it across many rows or columns by dragging it down or to the right. To facilitate
this in the XLBlocks editor, we introduced two special blocks: ‘EACH ROW’ and ‘EACH
COLUMN’.

(a) Row totals in excel (b) EACH ROW block in XLBlocks

Figuur 5.4: Using EACH ROW to replicate formulas across multiple rows

Figure 5.4 shows an example of calculating row totals in cells H5 and H6. In Excel, a
user would define the formula in cell H5 and copy it to H6. In XLBlocks it is sufficient to
specify both cells H5 and H6 as output range (a) and use the ‘EACH ROW’ block to specify
that the sum of each row in the range D5:G6 should be calculated (b). It also means that
if the average instead of the sum should be calculated, this can be solved by editing only
the formula definition in XLBlocks instead of editing a formula and dragging it down.
The ‘EACH COLUMN’ block offers the same functionality for calculations across multiple



5.2 Setup of Think-aloud Study

5

71

columns.

5.1.3 Lookups
Excel has five functions that can be used to lookup data (similar to join functions in data-
bases): VLOOKUP, HLOOKUP, INDEX, MATCH, and LOOKUP. They differ in syntax and
arguments, and some have problematic defaults [78].

From these formulas, VLOOKUP is used the most frequently, although the combina-
tion of INDEX and MATCH is a better alternative. That combination can be used both
horizontally and vertically, there are no sorting requirements, and the lookup range can
be located anywhere. Unfortunately, it is not frequently used because of it’s complexity.
It is an excellent candidate to explore if we can replace this with a new function that is
easier to use. Therefore we define a general purpose ’LOOKUP’ block in XLBlocks (Figure
5.5).

Figuur 5.5: LOOKUP formula in XLBlocks

For this function, the user simply specifies the value they are looking for (a), the range
that contains the possible lookup values (b) and the range that contains the matching
results (c). XLBlocks translates this into the following formula:

=INDEX(C14:C19,MATCH(B5,B14:B19,0))

Using the LOOKUP block in XLBlocks give users the flexibility of the INDEX and
MATCH combination without the complexity.

5.2 Setup of Think-aloud Study

5.2.1 Research Questions
The goal of this paper is to examine to what degree a block-based formula editor could
support professional spreadsheet users while developing or maintaining formulas. To ad-
dress this goal, we develop XLBlocks, a block-based formula editor for Excel, and conduct
a think-aloud study in which participants perform eight typical spreadsheet tasks. After
the tasks, we interview the participants and ask them to evaluate the XLBlocks interface,



5

72 5 XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas

using the CDN framework. For each dimension, we ask them to answer the two following
research questions:

• RQ1: What are the benefits of XLBlocks regarding this dimension?

• RQ2: What are the drawbacks of XLBlocks regarding this dimension?

5.2.2 Participants
We invited thirteen professional Excel users by mail from nine different companies within
our network of industrial partners (Table 5.1). Included in the study were participants
who use Excel professionally and who use formulas.

Tabel 5.1: Overview of think-aloud study’s participants

Nr. Gender Age
Functional
Domain

Excel
level Frequency

Experience
(yrs)

P1 M 38 SE† 9 Daily 15
P2 M 54 SE 7 Daily 20
P3 M 51 SE 8 Daily 10
P4 M 62 Finance 8 Daily 25
P5 M 54 Operations 7 Daily 23
P6 M 25 Operations 7 Daily 4
P7 F 47 Finance 8 Daily 25
P8 M 53 Finance 9 Daily 25
P9 M 39 Finance 7 Daily 20
P10 M 50 CTO 4 Monthly 25
P11 M 56 Finance 8 Daily 25
P12 M 41 SE 8 Daily 20
P13 M 47 Finance 9 Daily 20
Average 47 8 20
† SE = Software Engineering

All participants, except one, use Excel multiple times a day and have on average 20
years of experience using Excel. We asked them to asses their level of expertise with
Excel on a ten point scale (one = low, ten = high). We used this scale because it is widely
used in (European) schools to grade work and the participants are more familiar with it
than for example a Likert scale. On average they rated themselves an eight out of ten.

5.2.3 Think-Aloud Study
In a think-aloud study, we ask the participants to perform eight typical spreadsheet tasks
in two different spreadsheets. The tasks are summarized in Table 5.2.

To ensure that the tasks would be similar to the tasks the participants perform in
their spreadsheets, we selected formulas that are frequently used in spreadsheets from
the Enron corpus [10] and our collection of industry spreadsheets [79].

Spreadsheets are on average used by 13 different users [37], which implies that there
are many moments a spreadsheet is transferred from one user to another. Therefore, we



5.2 Setup of Think-aloud Study

5

73

Tabel 5.2: Tasks to be performed by participants in think-aloud study

Task Description
T1 Create row totals with SUM function
T2 Create column totals with SUM function
T3 Move output of column totals to different range
T4 Lookup account descriptions with LOOKUP function
T5 Create a conditional sum on two conditions with the SUMIFS function
T6 Change SUMIFS formula to calculate sum of a different range
T7 Move output of SUMIFS formula
T8 Explain a formula with a nested IF structure

are interested to see if a block representation of a formula can also support a user in
explaining the formula to somebody else, for which, we added task T8.

Before the participants start with the tasks, they receive a ten to fifteen-minute in-
struction about the XLBlocks interface. They get about 40 minutes to finish the tasks, and
we ask them to think-aloud. We provided the participants with two sample spreadsheets
and explained each task. The sample spreadsheets are available online³. If a participant
created a block-model leading to an invalid formula, the formula would not be generated.
When such errors occurred during the tasks, we explained the cause of the error.

Five participants performed the tasks individually, the remaining eight participants in
pairs. All participants performed tasks T1 to T7, but we asked the participants that worked
in pairs additionally to perform T8.

Because of the exploratory nature of the study, we did not measure the time partici-
pants needed to complete the tasks. Also, the participants were not quantitatively assessed
in performing the tasks. The tasks enabled participants to get experience with XLBlocks so
that they could reflect on usability and could provide us with feedback in the interviews.

5.2.4 Interview
After the tasks, we conduct a semistructured interview of about 30 to 40 minutes with
each participant. We use the CDN framework to structure the interviews. Participants
that perform the tasks in pairs are also interviewed in pairs. We transcribed all interviews,
grouped the answers per dimension, complemented it with observations from the think-
aloud study, and used the combined information to answer the two research questions per
dimension.

The CDN framework has been used in several usability studies [80–83] and Blackwell
and Green developed a questionnaire for the CDN [84].

For the interview, we used the dimensions as defined in [85]. We made two adjust-
ments. We excluded the dimension Abstraction Gradient because users can not create
their own blocks in XLBlocks. Furthermore, we added the dimension Provisionality as
is described in [26, 86]. The dimension refers to the opportunities that users have to try
different design options. Spreadsheets are continuously evaluated, and users are used to
how easy it is to try something out. For that reason, we included this dimension. It is clo-

³https://doi.org/10.6084/m9.figshare.8863532



5

74 5 XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas

sely related to the dimension Premature commitment, and we discuss the two dimensions
together.

We do not ask participants to fill out the CDN questionnaire, but rather, we use the
questions to structure the interviews. It allows us to clarify a dimension if we notice that
participants have difficulties understanding it. In addition, we can probe participants for
additional details. Finally, for each dimension, we ask participants to grade the usability
of both XLBlocks and the built-in Excel formula editor on a scale from 1 to 10.

5.3 Results
This section describes the results of the interviews. An overview is given in Table 5.3 and
Figure 5.6. XLBlocks received a better evaluation on all dimensions. The biggest difference
is found on the dimension Secondary notation and according to the participants, the two
interfaces score similarly on the dimension Hard mental operations. In the remainder of
this section, we present the results of the user-study and interviews per dimension.

Tabel 5.3: CDN Evaluation of XLBlocks and Excel’s formula editor (average score per dimension on a ten point
scale)

Dimension XLBlocks Excel formula editor
Diffuseness 7.4 5.6
Role-expressiveness 7.9 6.3
Secondary notation 8.1 4.3
Viscosity 8.1 6.2
Visibility 8.2 5.6
Closeness of mapping 7.3 5.6
Consistency 7.6 5.4
Error-proneness 7.6 5.1
Hard mental operations 7.4 6.4
Hidden dependencies 7.8 5.6
Premature commitment & Provisionality 7.9 5.0
Progressive evaluation 8.2 4.8

5.3.1 Diffuseness
The dimension Diffuseness describes the verbosity of the language. How many symbols
and space is required to express meaning.

RQ1: Benefits XLBlocks: When block-based languages (BBL) are compared to text-
based languages, diffuseness is often seen as a drawback for the BBL. They tend to be
much more verbose and need more physical space to express the same. However, when
we asked our participants about the diffuseness, they considered it as a benefit that more
space was available. Excel does not feature a fully equipped integrated development envi-
ronment (IDE) for editing formulas, but provide the user with a formula bar that is very
limited in space (see Figure 1.2b). The additional space the XLBlocs interface provides, ma-
kes it easier to read formulas, and because of the graphical nature of the BBL, it is easier
to see and recognize the structure of the formula.



5.3 Results

5

75

Figuur 5.6: Evaluation of formula editor in XLBlocks and Excel on a ten point scale

RQ2: Drawbacks XLBlocks: Some participants (P2, P8, P11, P12) indicate that the XL-
Blocks hides parts of the spreadsheet interface, which could be a problem in the case of
larger spreadsheets. However, they still prefer the additional space to inspect and under-
stand the formula. Participants P1 and P2 noticed that in the XLBlocks interface when
additional functions or arguments are added, formulas tend to grow in width. They would
prefer if formulas grow mainly in height.

5.3.2 Role-expressiveness
Role-expressiveness concerns the ease of seeing how a part of a formula relates to the
formula as a whole. What is the meaning of every part of the formula?

RQ1: Benefits XLBlocks: According to the participants, the meaning of every individual
block is clear. As a reason, they name the text labels on every block. For function names
that is obvious, but also the arguments of every function are named (a, b, and c in Figure
5.5). This is not the case in the formula bar, and according to the participants, it makes the



5

76 5 XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas

reading of the formula much easier. Also the consistent use of colors (all functions have
the same color, see also Section 5.3.6: Consistency) support this.

RQ2: Drawbacks XLBlocks: On the other hand, when we observed the participants exe-
cuting the requested tasks, it became clear that the meaning of the special blocks ‘EACH
ROW’ and ‘EACH COLUMN’ was not as intuitive as we had hoped. Also the term ‘output
range’ lead to some confusion. Especially, in combination with the ‘LOOKUP’ function
that contained an argument that was named ‘Result range’ (See also c in Figure 5.5). Also,
although constants have a different color than functions, participants P9 and P10 interpre-
ted the constant block that was used to indicate a constant number as the function number
(which does not exist in Excel).

5.3.3 Secondary Notation
Secondary notation expresses the options user have to convey additional information
about a formula that is not part of the formal syntax of the formula. Spreadsheets as a
whole provide ample opportunity for secondary notation. Therefore, it is important to
note that we are comparing XLBlocks not with the spreadsheet, but with the formula edi-
tor of Excel.

RQ1: Benefits XLBlocks: All participants indicated that it is straightforward to add
secondary notation to the formula definition in XLBlocks. XLBlocks has special comment
blocks that can be dragged anywhere in the formula. In the excel formula bar, it is not
possible to add comments. However, a comment can be assigned to the cell that contains
the formula. According to the participants that is not optimal because 1) one can only
assign one overall comment for the complete formula, 2) the comment is visible in the
spreadsheet model and 3) if a formula has been copied across multiple rows or columns,
it is not clear to which formulas the comment belongs.

RQ2: Drawbacks XLBlocks: For secondary notation, the participants, did not mention
any specific drawbacks. Participant P2 remarked that further improvement might be pos-
sible if a text field was added to the brown formula block (See Figure 5.5) that could be
used to write some general information about the formula. On the other hand partici-
pants, P1 and P2 asked themselves if they would ever use the comments: “Because the
block definition of the formula is easier to read, the formula documents itself.”

5.3.4 Viscosity
The dimension viscosity measures the effort that is required to perform a single change.

RQ1: Benefits XLBlocks: The participants agree that changing a formula is simple in
XLBlocks. This was confirmed by the fact that none of the participants made an error in
the tasks that involved changing existing formulas. In comparison with the formula bar,
it is easy to locate the part of the formula that one wants to change. Also, in the formula
bar, users have to be very careful with the use of parentheses, commas, and quotes. This
is something that is taken care of automatically in XLBlocks. It was also stated that with
XLBlocks it is possible to change a group of formulas with a single edit.

RQ2: Drawbacks XLBlocks: Two participants (P12 and P13) comment that, when edi-
ting, they use search and replace a lot. This is possible in the formula bar but not in XL-
Blocks. Also, when a formula is not very complex, and an edit comprises only changing a
few characters, it is much quicker to edit directly in the formula bar than in XLBlocks.



5.3 Results

5

77

5.3.5 Closeness of Mapping
The dimension Closeness of mapping expresses the mapping between the programming
world and the problem world.

RQ1: Benefits XLBlocks: All participants agree that XLBlocks visualizes the calculation
that will be generated by Excel. Especially, when the formula is complex or nested this
is visualized better in XLBlocks than in the formula bar (see Figure 5.7). Also, XLBlocks
needs less interpretation. For example, the IF function has three named arguments in
XLBlocks: if, then, and else. In Excel, the arguments are not named. It is by convention
that the user knows that the first argument is the condition, the second the then statement,
and the third the else statement. Also, the user has to know that commas separate these
arguments. In XLblocks, the user does not need to know these conventions.

RQ2: Drawbacks XLBlocks: One participant (P4) argued that the XLBlocks interface
has a less direct mapping to the problem the user tries to solve. The EACH ROW and
EACH COLUMN blocks add another layer of abstraction, while in the formula bar the
user is only editing one cell. The fact that a group of formulas is edited instead of a single
formula reduces the closeness of mapping.

5.3.6 Consistency
Consistency means that parts of a formula that have a similar meaning should have a
similar appearance.

RQ1: Benefits XLBlocks: Most participants perceived the block notation in XLBlocks as
consistent. They name the use of color as the main reason. In XLBlocks each category of
blocks has its own color. It is easy to see what is a function, cell reference, or constant. In
the formula bar, this is less clear. Although Excel also colors the cell references, there is
no difference in typographic style between functions and constants (See Figure 1.2b).

RQ2: Drawbacks XLBlocks: In its current implementation, all functions in XLBlocks
have the same color (green). This could result in one big green block of functions if a
formula consists of several nested functions. Therefore, one participant (P2) suggested to
color the functions according to their category (e.g., text functions would have a different
color than math functions).

5.3.7 Error-proneness
The dimension Error-proneness indicates how easy it is to make errors while writing a
formula.

RQ1: Benefits XLBlocks: In XLBlocks, the code generator inserts commas, parentheses,
and quotes at the right place in the formula. According to several participants (P4, P7, P9,
P10, and P12), this is the main reason that fewer errors are made in XLBocks. Also, two
participants (P3 and P13) observed that the function blocks in XLBlocks guide the user
through the function. As a consequence, it is not possible that arguments are forgotten or
used in the wrong order.

RQ2: Drawbacks XLBlocks: During the tasks, we observed participants placing blocks
in thewrong position. This correspondswith feedbackwe received from other participants
(P9, P10, and P12) that it was possible to misplace blocks. Also, a participant forgot to give
the formula a name. Although this does not lead to an error in the formula, it makes it
more challenging to find the formula.



5

78 5 XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas

5.3.8 Hard Mental Operations
Working on a formula requires mental effort. The dimension Hard mental operations indi-
cates to which extent the block-based language used in XLBlocks itself causes this mental
effort.

RQ1: Benefits XLBlocks: The participants stated that in XLBlocks they had to think
less about the exact syntax of the formula, the correct order of the arguments and when
nesting functions, the order of the functions themselves.

RQ2: Drawbacks XLBlocks: For the participants, the concept of the ‘EACH ROW’ and
‘EACH COLUMN’ blocks was the most difficult to understand. Partially this is not some-
thing caused by the notation, but by the concept itself. On the other hand, participants
had difficulties placing the ’EACH ROW’ block at the right spot. They could use more
guidance from the XLBlocks interface.

5.3.9 Hidden Dependencies
Spreadsheets are disreputable for their hidden dependencies. However, they are less com-
mon in a spreadsheet formula. A hidden dependency in a spreadsheet could be a function
and its corresponding arguments. Consider, for example, the following formula:

=IFERROR(IF(C5/D5-1>1,”>100\%”,IF(\\C5/D5-1<-1,”<-100\%”,C5/D5-1)),0)

The zero at the end of the formula is an argument of the IFERROR function at the
beginning of the formula and could be considered as a hidden dependency.

RQ1: Benefits XLBlocks: According to the participants, it is much easier to see hidden
dependencies in a formula in XLBlocks than in the formula bar in Excel. They name the
previously mentioned IFERROR function as an example (Figure 5.7). Because the ‘in case
of error’ argument is physically connected to the IFERROR function, the dependency is
much more visible.

Figuur 5.7: Example of the IFERROR function, the ‘in case of error’ argument is visually connected to the function

RQ2: Drawbacks XLBlocks: The participants did not mention any drawbacks of XL-
Blocks concerning Hidden dependencies.



5.4 Discussion

5

79

5.3.10 Premature Commitment & Provisionality
The dimension Premature commitment expresses the extent to which the user is forced to
take decisions before the necessary information is available. This dimension was first defi-
ned in [85]. Later it was extended in [86] and [26] with a separate dimension Provisionality
that concerns the opportunities for the user to play around with ideas. Is it, for example,
easy to try different design options or to use ‘what-if’ scenarios?

RQ1: Benefits XLBlocks: According to the participants, the user has complete freedom
in the order that blocks are dragged onto the canvas. During the tasks, we observed that
dragging out the necessary blocks helped the participants to think about the formula. They
said things like “I will start with the blocks I know ...” (P8) and “Now I start seeing how it
will come together ...” (P7). They compared it with the formula bar where users are forced
to start with the outer function and work their way inwards. Participants also recognized
that it was possible to create two variants of a part of the formula and that they could
easily swap them to try out the different options. They liked that it was not necessary to
‘clean up your canvas’.

RQ2: Drawbacks XLBlocks: The participants did not mention any drawbacks of XL-
Blocks concerning Premature commitment and Provisionality.

5.3.11 Progressive Evaluation
While developing a formula, users often want to check if the formula gives the desired
results. The dimension Progressive evaluation focuses on how a notation facilitates this.

RQ1: Benefits XLBlocks: Theparticipants perceived the way XLBlocksmakes it possible
to check the formula during development, more comfortable to work with than the Excel
formula bar. As main reason, they named the blocking error they get in Excel when the
formula is not correct.

RQ2: Drawbacks XLBlocks: One participant would prefer if XLBlocks showed a real-
time version of the formula that is being generated.

5.4 Discussion

5.4.1 Learnability
We know that block-based languages perform well on learnability [87], [88]. This was
confirmed in our think-aloud study. After receiving only 15 minutes of instruction, all
participants were able to finish the tasks. Several participants (P1, P2, P7, and P8 ) remar-
ked that it surprised them how easy it was to learn to work with XLBlocks.

We also observed that the participants were able to create a formula with the lookup
function in XLBlocks, which does not exist in Excel. It shows that even if the function is
unknown, the blocks are intuitive enough that users can work with it.

5.4.2 Further Reduce Error-Proneness
According to the participants, it is less likely to make errors in XLBlocks than in the for-
mula bar of Excel. Nevertheless, based on the feedback we received during the think-aloud
study, it can be further improved. In the current version of XLBlocks, it is allowed to con-
nect invalid combinations of blocks (e.g., connecting a function block where a cell refe-



5

80 5 XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas

rence block is expected). This can be solved if more robust type-checking is implemented
in XLBlocks.

Users could be further supported by a preconfigured group of blocks. Instead of drag-
ging a formula block and a range block from the toolbox and connect them on the can-
vas, they can drag a preconfigured formula block with the output range already attached.
Blockly offers this feature with shadow blocks (placeholder blocks) or block groups (Figure
5.8) [89].

Figuur 5.8: An example of a formula block with a shadow range block (a) and a block group consisting of A
SUMIFS block and a filter block (b).

Inspired by this concept, some participants suggested the idea to create your own
templates of blocks for formula patterns that you use frequently and store them on your
toolbox (similar to the backpack feature in Scratch [90]).

5.4.3 Simultaneous Use of XLBlocks and the Formula Bar
XLBlocks has been developed as an alternative way to edit a formula in Excel. It is not
meant to replace the formula editor of Excel but to complement it. XLBlocks present the
block-based formula embedded into the spreadsheet itself. Some participants (P10 and
P13) named this as one of the strengths of XLBlocks. According to them some tasks, like
making small edits in simple formulas, are better suited for the formula bar, while other
tasks like editing complex formulas or explaining a formula to somebody else are better
suited for XLBlocks.

With XLBlocks it is possible to develop a block-based specification of a formula and ge-
nerate a valid spreadsheet formula. The other direction: generating a block-based formula
from a spreadsheet formula, is not yet implemented. Several participants would like to see
this feature added. Especially when explaining complex formulas to others, it would be
convenient if the user could click on the formula and see the block-based representation
in XLBlocks and use that as a basis for the explanation.

5.4.4 Threats to Validity
A threat to the external validity of our evaluation concerns the representativeness of the
participants. Future studies are necessary to generalize our findings.

Another threat to the external validity of our evaluation is the representativeness of the
tasks the participants had to perform. To mitigate this, we used formulas that professional
spreadsheet users use in real-life spreadsheets.

We did not randomly select our participants, which is a threat to the internal validity.
Nevertheless, we believe the group of participants serve as a useful reference group since



5.5 Related Work

5

81

they all work with spreadsheets daily and have on average 20 years of experience using
Excel. Furthermore, they work at different companies, have different backgrounds, and
work in different functional domains.

We are both the designers of XLBlocks and the interviewers, and this is another in-
ternal threat to the validity of our evaluation. We minimized this threat to use the CDN
framework to guide the questions in the interview and making sure that all aspects of the
usability of the XLBlocks interface were covered.

5.5 Related Work

5.5.1 Spreadsheets and Visual Languages
Most related to our research is the work of Burnet et al. [91], Leitão and Roast [92], Sarkar
et al. [93], and Abraham et al. [83].

Burnett et al. developed Forms/3, a general purpose visual language that builds upon
the spreadsheet paradigm. They leveraged the visual aspect of spreadsheets and at the
same time tried to overcome some of the spreadsheet limitations like a limited number of
types and the lack of abstraction capabilities. However, they consider the spreadsheet as
a whole as a visual language, while in this paper, we focus on a visual language for the
formula editor.

Leitão and Roast designed a visual language to represent spreadsheet formulas grap-
hically. They developed two variants: an ‘Explicit Visualization’ (EV) and a ‘Dataflow
Visualization’ (DV). In both variants, numeric values, cell references, strings, operators
and built-in spreadsheet functions are represented in different combinations of shape and
color. In EV, the visualized formula is a visual match of the original textual formula, while
in DV the formula is presented hierarchically in a syntax tree. Both are inspired by dataf-
low diagrams and are less textual than a block-based language.

Sarkar et al. propose multiple-representation editing in spreadsheets. They introduce
Calculation View, an alternative representation of the spreadsheet, primarily designed
for viewing formulas and their groupings. They use a new textual syntax for copying a
formula into a block of cells and naming cells or ranges. Calculation View uses a textual
notation in a columnar grid of pseudocells to maintain similarity with the spreadsheet
grid.

Abraham et al. introduced ViTSL, a visual specification language for spreadsheets. The
language allows the definition of spreadsheet templates that can be used by a spreadsheet
generator to create Microsoft Excel spreadsheets automatically [19]. Derived from ViTSL,
Engels and Erwig developed ClassSheets [94]. A ClassSheet represents both the structure
and relationships of the involved (business) objects within the spreadsheet. It narrows the
semantic distance between a problem domain and a spreadsheet application. A drawback
of this approach was the lack of connection between the stand-alone model development
environment where the ClassSheet was defined and the spreadsheet itself. As a result, au-
tomatic synchronization between the model and the spreadsheet was not possible. Cunha
et al. [95] embedded the ClassSheet in the spreadsheet itself and made co-evolution of the
model and the spreadsheet possible.



5

82 5 XLBlocks: a Block-based Formula Editor for Spreadsheet Formulas

5.5.2 Cognitive Dimensions of Notation
Green and Petre have used the CDN framework as an evaluation technique for visual pro-
gramming environments [85]. It provides a vocabulary for discussing the usability of pro-
gramming languages. In their study, they present an outline of the cognitive dimensions
and use them to evaluate two different visual programming environments.

The CDN were also used to design questionnaires intended for users to evaluate the
usability of programming tools. In reaction, Blackwell and Green developed a generalized
questionnaire and conducted a pilot study that used the questionnaire with a wide range
of respondents [84]. The results of that study showed that the CDN questionnaire is a
suitable tool for user evaluation of programming languages, tools, and environments.

The framework has been used to evaluate multiple programming languages. Most
related to our research is the previously mentioned research of Abraham et al.. They used
the CDN to evaluate their visual specification language ViTSL.

5.5.3 Block-Based Languages
Glinert introduced in 1986 the language BLOX, which can be considered as the first block-
based language [96]. Research into block-based languages increased after the introduction
of languages like Alice [97], Scratch [75], and Blockly [77]. These languages were designed
as programming environments for younger learners.

Related to our research is the work of Weintrop et al. [98]. They created CoBlox, a
block-based interface for programming a one-armed industrial robot. They showed that
block-based programming could make a complex task like programming an industrial ro-
bot accessible for adults with limited programming experience.

Also related to our research is the study of Holwerda and Hermans [99]. They con-
ducted a user study with Ardublockly, a block-based language derived from Blockly. In
their study, they focus on gaining an understanding of the strengths and weaknesses of
block-based languages as seen by professionals.

5.6 Concluding Remarks
This paper aims to explore if editing spreadsheet formulas can be eased by using a block-
based formula editor. We, therefore, developed XLBlocks, a block-based formula editor,
and conducted a think-aloud study in which we evaluated the usability of the editor using
the CDN framework. XLBlocks received on all dimensions a better evaluation. The dif-
ference was the most notable for the dimensions Secondary notation, Error-proneness, Pro-
gressive evaluation, Premature commitment and Provisionality.

Users recognized that in XLBlocks, they do not have to consider the correct syntax
of functions. Also editing a part of a formula is easier in XLBlocks because they can
easily drag and drop different parts of the formula on the canvas. During the think-aloud
study, we observed that dragging different blocks on the canvas also supported the user
in thinking about the formula. They started with the blocks they were sure about and
then focused on the more difficult parts. They appreciated that they could freely decide in
which order they would build the formula.

We also received feedback on areas that could be further improved. Varying the colors
of the function block (e.g., by category) could make the formulas easier to read. In the



5.6 Concluding Remarks

5

83

current prototype, it is possible to connect invalid combinations of blocks. This could be
solved by more robust type-checking and provide block groups as templates.

This paper gives rise to several directions for future work. At the moment, XLBlocks
can generate a valid Excel formula from a block-based specification. We will extend the
prototype with the possibility to generate a block-based representation of a spreadsheet
formula. Furthermore, we are planning to make XLBlocks aware of the structural changes
a user makes to the spreadsheet like inserting or deleting rows and columns. Finally, we
will explore the possibility to facilitate the user to create templates for formulas that they
use frequently.





6

85

6
The Effect of a Block-based

Language on Formula
Comprehension in Spreadsheets

The use of spreadsheets in industry is widespread. It is known that spreadsheets have an aver-
age life span of five years, and during this life span, they are used on average by thirteen
different persons. Consequently, spreadsheets need maintenance, and knowledge about the
spreadsheet needs to be transferred from one user to another. To minimize the risk of intro-
ducing new errors, a thorough understanding of the spreadsheet’s formulas is needed during
maintenance and knowledge transfer tasks.

Research on the use of block-based languages has shown that they positively affect the com-
prehension of program code. We hypothesize that using a block-based representation of a
spreadsheet formula will positively affect formula comprehension.

Hence, we extended XLBlocks, a block-based formula editor for spreadsheets, with the functi-
onality to generate a block-based representation of an existing formula. We conduct a think-
aloud study with twenty-one experienced spreadsheet users from industry and ask them to
perform a set of spreadsheet comprehension tasks using XLBlocks. During an interview, we
ask them, using the Cognitive Dimensions of Notations framework, to reflect on the use of
XLBlocks.

We found that participants preferred to use the block-based representation of formulas when
analyzing or explaining formulas or to implement non-trivial changes. Named function pa-
rameters and the absence of parentheses and commas make functions easier to understand.
Furthermore, the visualization enables the user to separate smaller parts in the formula, which
improves comprehension. Finally, the possibility to navigate from formula to formula makes
it clear how formulas work together and improve the understanding of the spreadsheet as a
whole.

This chapter has been published as B. Jansen and F. Hermans. The Effect of a Block-based Language on Formula
Comprehension in Spreadsheets, ICPC21 [34]



6

86 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

S preadsheets are ubiquitous in industry and often used for critical business decisions.
Unfortunately, spreadsheets are also known for their error-proneness. Almost all

spreadsheets contain non-trivial errors[11]. Consequently, companies are at risk of basing
their decisions on inaccurate information, which can lead to significant loss of money or
reputation.¹

Amajor part of spreadsheet research is focused on improving spreadsheets by applying
software engineering methods. For example, the concept of testing in spreadsheets was
studied by Rothermel et. al. [44] and more recently by Roy et. al. [20]. Hermans et. al.
[45] and Cunha et. al [46] introduced the idea of reverse engineering of spreadsheets and
designed methods for extracting class diagrams from spreadsheets. Several studies [57]
[38] [58] define and investigate code smells in spreadsheets. Refactoring is closely related
to code smells, and both Badame and Dig [16] and Hermans and Dig [15] developed tools
for refactoring in spreadsheets.

The common denominator in these studies is that they provide methods and techni-
ques that support users in improving spreadsheets. Nevertheless, a focus on spreadsheet
comprehension is lacking. According to Hermans et. al. [6], spreadsheets have an average
life span of five years and are on average used by thirteen different users. This means that
during a spreadsheet’s lifetime, maintenance is needed, and for that, knowledge needs to
be transferred from one user to another. During these ‘transfer scenarios’, a thorough
understanding of the spreadsheet minimizes the risk of introducing new errors.

Therefore, we focus in this paper on formula comprehension. In an earlier study [32]
we introduced XLBlocks, a block-based formula editor for spreadsheets. With this editor,
it is possible to create formulas with a block-based language instead of the default tex-
tual formula language and translate them automatically into valid spreadsheet formulas.
However, in our first implementation of XLBlocks, it was impossible to generate a block-
based representation from a formula, making it less suitable for formula comprehension.
For this study, we have extended XLBlocks with the functionality to generate from a tex-
tual formula a block-based representation of that formula. This enables users to analyze
existing spreadsheet formulas in a block-based language.

In this paper, we want to understand the effect of a block-based language for spread-
sheets on formula comprehension. To answer this question, we conduct a think-aloud
study in which we ask participants to perform a set of formula comprehension tasks with
a new version of XLBlocks. When they have completed these tasks, we interview them
and ask them to reflect on their experience with XLBlocks. To guide the interview, we use
the Cognitive Dimensions of Notation (CDN) Framework [26].

6.1 Related Work

6.1.1 Spreadsheets and Visual Languages
Related to our study is the work of Burnet et. al. [91]. They introduced the visual research
language Forms/3. This language’s goal was to eliminate some of the spreadsheet systems’
limitations without abandoning the spreadsheet paradigm. The language describes a com-

¹http://www.eusprig.org/horror-stories.htm



6.1 Related Work

6

87

plete spreadsheet model. This in contrast to XLBlocks, where we focus on an individual
formula.

Abraham et. al. [83] also introduced a visual language for spreadsheets called ViTSL.
With ViTSL, it is possible to define a spreadsheet template. From such a template, a spread-
sheet can be generated automatically. Based on this work, Engels and Erwig [94] intro-
duced ClassSheet. A ClassSheet represents both the structure and the relation between
(business) objects within the spreadsheet. With ClassSheets, the problem domain and
spreadsheet domain are brought closer together. The ClassSheets needed to be developed
in a stand-alone application, and for that reason, real-time synchronization between the
ClassSheet and the spreadsheet was not possible. Cunha et. al. [95] integrated ClassSheets
in the spreadsheet and enabled two-way synchronization between the ClassSheet and the
spreadsheet.

Leitão and Roast [92] developed a visual language for formulas. It is not a block-based
language but a data-flow language. They worked on two different variants: Explicit Vi-
sualization (EV) and Data flow Visualization (DV). In the EV, the visualization is a direct
match of the spreadsheet formula. Operators, cell references, constants, and functions
have been replaced by symbols. The DV uses the same symbols, but they are presented as
a syntax tree.

Finally, Sarkar et al. [93] introduced Calculation View, which is also an alternative
representation of the spreadsheet. Formulas are presented in a textual calculation view
adjacent to the standard grid view. One of Calculation View features is ‘range assign-
ments’, which allows the user to assign the same formula to a range of cells. This is more
efficient and less maintenance intensive than manually dragging the formula down to a
range of cells. Furthermore, with Calculation View, it is possible to name cells easily and
refer to those names in other formulas.

6.1.2 Block-based languages
BLOX can be considered the first block-based language and was introduced by Glinert
[96]. After the introduction of several block-based languages, like Alice [97], Scratch[75],
and Blockly [77] the body of research on block-based languages started to grow.

Most related to our research is a study ofWeintrop et. al. [98]. In this study, they intro-
duce CoBlox, a block-based language to program a one-armed industrial robot. They de-
monstrate that block-based languages are not only suitable for children in an educational
environment but also useful for adult novice programmers in an industrial setting. Adult
programmers successfully implemented robot programs with CoBlox faster and with no
loss in accuracy than similar programmers using one of two widely-used industrial robot
programming approaches. They also scored better on usability, learnability, and overall
satisfaction.

Weintrop et. al. also conducted a study on block-based comprehension [33]. They
asked participants to answer twenty program comprehension questions using two variants
(text-based and block-based) of pseudocode developed for the Advanced Placement CS
Principles course. They concluded that learners performed better on questions presented
in the block-based modality.

Finally, Hermans and Holwerda [100] conducted a user study with ArduBlockly. Using
a user study, they demonstrate a usability analysis of block-based editors based on the Cog-



6

88 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

nitive Dimensions of Notation (CDN) framework. Furthermore, they give an overview of
several design maneuvers to improve programming time and effort, program comprehen-
sion, and programmer comfort.

6.2 Analyzing Formulas with XLBlocks

6.2.1 XLBlocks Interface
Figure 6.1 shows the XLBlocks interface. The spreadsheet is displayed on the left side of
the screen, the XLBlocks editor on the right side. At the top of the screen is the formula bar,
which is the Excel default tool to enter formulas. A formula can be analyzed in XLBlocks
by selecting the cell with the formula and using the inspect formula button to generate
the formula’s block-based representation. A video demonstrating the user interface of
XLBlocks is available on-line.²

Highlighted Cells

Formula bar

Inspect formula

Selected function

Figuur 6.1: Left the traditional view with the formula bar at the top, right the XLBlocks interface showing the
block representation of the formula

6.2.2 Generate Block-based Formulas
We extended XLBlocks with the functionality to generate a block-model of a formula from
the textual formula. To do so, we use XLParser, a parser developed by Aivaloglou et. al
[79] [101] that produces a parse tree for spreadsheet formulas. In XLBlocks, this parse
tree is converted into an XML definition of the block model, which is then translated to
the formula’s block-based representation (see Figure 6.2).

6.2.3 Highlighting and scrolling
Spreadsheet formulas often use the outcome of other formulas in their calculation. To
completely understand a formula, users need to trace the formula’s precedents. To support
users in understanding the formula and tracing its precedents, XLBlocks highlights cells
in the spreadsheet that are referred to in the formula. In Figure 6.1 a part of the formula in
XLBlocks is selected (highlighted by a yellow border). The cells referred to in this selected
part of the formula are also highlighted in the spreadsheet.

Some cells might be out of the user’s field of view. To inspect these cells, a user can
select a single range block, and XLBlocks will automatically scroll the cursor to that cell
²https://doi.org/10.6084/m9.figshare.14268017.v1



6.2 Analyzing Formulas with XLBlocks

6

89

(a) Syntax tree

(b) XML Definition of block (c) Block representation of SUM function

Figuur 6.2: Generation of block-based formula



6

90 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

and make it the active cell. If needed, the user can immediately inspect that formula
and navigate from precedent to precedent to analyze the complete calculation chain. For
comprehension, the user must see the cell, its content, and, preferable, the corresponding
label. In most spreadsheet models, the label can be found to the left or above the cell.
Therefore, XLBlocks ensures that the columns to the left and the rows above the cell are
visible when a user scrolls to a cell.

6.2.4 Implementation
XLBlocks has been implemented as an Excel Add-in. It has been developed with the Excel
JavaScript API [76]. The Blockly Library [102] [77] is used to develop the visual program-
ming editor and was extended with custom blocks and code generators for the definition
and generation of spreadsheet formulas. Twenty-tree different spreadsheet functions have
been implemented in the research prototype of XLBlocks. Among these twenty-three func-
tions are the fifteen most frequently used functions of the Enron Corpus [10]. The current
research prototype of XLBlocks can only analyze formulas on the same worksheet.

6.2.5 Research Questions
Spreadsheets have a long lifespan, and thus spreadsheets need maintenance. Furthermore,
there will be several transfer moments during their lifespan where knowledge about the
spreadsheet needs to be exchanged between different users. For both maintenance tasks
and the transfer scenarios, a thorough understanding of the formulas is essential.

Therefore we focus in this study on the effect of a block-based formula language on for-
mula comprehension in spreadsheets. In this paper, we will answer the following research
questions:

• RQ1: What is the effect of a block-based formula editor on the users’ ability to un-
derstand a formula?

• RQ2: What is the effect of a block-based formula editor on the users’ ability to ex-
plain a formula to somebody else?

• RQ3: What is the effect of a block-based formula editor on the users’ ability to un-
derstand the spreadsheet model as a whole?

6.2.6 Participants
We invited forty-three professional Excel users by e-mail from twenty-eight different com-
panies. We were looking for experienced Excel users that use Excel in their professional
lives. Twenty-one of them, working for thirteen companies, accepted the invitation (see
Table 6.1). Five of them had participated in our earlier study [32].

All participants use Excel professionally, are accustomed to working with formulas,
and have on average twenty-five years of experience with Excel. Most of them use Excel
daily. We asked them to assess their level of expertise with Excel on a ten-point scale
(one = low, ten is high). This form of rating is widely used in (European) schools, and
the participants are more familiar with it than, for example, a five-point Likert scale. On
average, they rated themselves an eight out of ten.



6.2 Analyzing Formulas with XLBlocks

6

91

Tabel 6.1: Overview of think-aloud study’s participants

Nr. Gender Age Functional Domain L𝑎 F𝑏 E𝑐
P1 M 52 Engineering 7 D 35
P2 F 48 Controlling 8 D 25
P3 M 38 Controlling 8 D 25
P4 M 44 IT 8 D 20
P5 M 59 Finance & Control 7 D 35
P6 M 38 Consultancy 9 D 25
P7 M 43 Finance 8 D 20
P8 M 60 Finance 6 D 30
P9 M 38 Finance 8 D 18
P10 M 64 Finance 8 D 30
P11 M 55 Data analytics 8 W 30
P12 F 46 Business Intelligence 8 D 20
P13 M 49 Finance & Control 7 D 25
P14 M 49 Consultancy 6 D 25
P15 F 60 Consultancy 7 D 25
P16 M 55 General Management 7 M 25
P17 M 45 Business Control 7 D 20
P18 M 44 Finance & Control 8 D 24
P19 M 48 Finance 8 D 25
P20 M 38 Finance 9 D 20
P21 M 55 Finance 8 D 29
Average 49 8 25

𝑎Excel level, 𝑏Frequency: (D)aily, (W)eekly, (M)onthly, 𝑐Experience (yrs)

Tabel 6.2: Pacione’s comprehension activities

Activity Description
A1 Investigating the functionality of the system
A2 Adding to or changing the system’s functionality
A3 Investigating the internal structure of an artifact
A4 Investigating dependencies between artifacts
A5 Investigating run-time interactions in the system
A6 Investigating how much an artifact is used
A7 Investigating patterns in the system’s design
A8 Assessing the quality of the system’s design
A9 Understanding the domain of the system



6

92 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

6.2.7 Comprehension Tasks and Think-Aloud Study
In a think-aloud study, we asked participants to perform twelve comprehension tasks on
an existing spreadsheet model. We used the framework designed by Pacione et. al [52],
commonly used for empirical evaluation of code comprehension [53] [54] and used their
set of nine comprehension activities (see Table 6.2)

In previous research [30] we have translated Pacione’s software comprehension tasks
to the spreadsheet domain. In this study, we use similar tasks. Each tasks covers at least
one of the activities in Table 6.2 and all tasks combined to cover all activities (see Table
6.3).

Tabel 6.3: Overview of comprehension tasks

Comprehension Activities
Nr. Task A1 A2 A3 A4 A6 A8 A9 Total
T01 Explain a calculation X X X 3
T02 Adapt a calculation X X 2
T03 Explain a key concept of the model X X X 3
T04 Find and correct an error X X 2
T05 Correct an error X X 2
T06 Determine relationships between two cells X X 2
T07 Find dependents of a cell X X 2
T08 Explain how the spreadsheet can be improved X X 2
T09 Assess adaptability of the spreadsheet X 1
T10 Assess transferability of the spreadsheet X 1
T11 Explain a calculation X X X 3
T12 Explain a calculation X X X 3
Total 4 3 8 2 2 3 4 26

Because of the liveness of a spreadsheet, there is no clear distinction between coding
and runtime. We, therefore, excluded activities A5 and A7.

The spreadsheet we use for the study is defined by the Dutch Primary Education Board.
Schools can use it to calculate the annual salary costs of their employees. We choose this
model because it is publicly available³, and contains twelve of the fifteen most frequently
used functions in the Enron Corpus [10]. We adapted the model to incorporate the three
missing functions and moved all lookup tables to the same sheet as the calculation model⁴.

6.2.8 Think-Aloud study
We organized on-line meetings with the twenty-one participants. We used either Micro-
soft Teams or GoToMeeting to facilitate these meetings. At the start of every meeting,
we checked the participants’ monitor and resolution, shared our screen with them, and
asked if the different interface elements were readable. For one participant, we changed
the zoom factor of the XLBlocks interface from 80% to 110%.

³https://www.poraad.nl/files/themas/financien/werkgeverslasten_po_2020.xlsx
⁴Adapted model available at: https://doi.org/10.6084/m9.figshare.14268017.v1



6.3 Results

6

93

Before the meeting, we sent each participant an instruction video about XLBlocks,
asking them to watch it before participating in the study. Two participants were not able
to do this. At the start of their meeting, we provided the instruction live, using the same
script that was used for the video.

We shared our screen with the participants during the meeting and gave them control
over our keyboard and mouse. We also recorded the meeting on video. We asked the
participants to perform the twelve comprehension tasks and to think-aloud during the
study. If they felt silent while performing the tasks, we gave them a quick reminder to
express their thoughts.

6.2.9 Interview
Immediately after the comprehension tasks, we conducted a 45-minute interview. We used
the Cognitive Dimensions of Notation (CDN) framework to structure the interview. The
CDN Framework has been used in several usability studies [80–83, 99], and Blackwell and
Green developed a questionnaire for it [84]. In our interview, we covered the dimensions
as defined in [26]. We excluded the dimension Abstract Gradient because, in XLBlocks,
users can not create their own blocks.

We did not ask the participants to fill out the CDN questionnaire, but rather, we used
the questions to structure our interview⁵. It allowed us to clarify a question, and it enabled
us to probe participants for additional details.

We grouped all participants’ answers per cognitive dimension and complemented them
with our observations and the participant’s remarks from the think-aloud study. We used
the combined information to answer our research questions. These findings will be pre-
sented in the next section.

6.3 Results
In this section, we present the results of the think-aloud study. First, we will cover the
execution of the different comprehension tasks, after that the findings from the CDN in-
terview, and we end this section by answering the research questions.

6.3.1 Comprehension Tasks
All twenty-one participants were able to perform ten of the twelve comprehension tasks.
In the next paragraphs, we will describe our findings in detail. We grouped the findings
by the comprehension activities as defined by Pacione et al.[52].

Investigating the functionality of (a part of) the system
By design, XLBlocks displays a single formula. Nevertheless, several features helped the
participants to get an understanding of the spreadsheet model as a whole.

In the block-based representation of the formula, each cell reference is represented
by a range block (see Figure 6.3). If a user clicks on any block in the formula, XLBlocks
will highlight all cells in the spreadsheet with a range block in that part of the formula.
This gives the user an overview of the other cells in the spreadsheet that are involved in
the calculation of this formula. If users click on a single range block, they can open that

⁵Interview questions available at:https://doi.org/10.6084/m9.figshare.14268017.v1



6

94 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

Range Block

Figuur 6.3: Example of range blocks in XLBlocks

formula in XLBlocks to analyze it. In this way, users are supported in understanding the
working of the spreadsheet model as a whole.

In the current implementation, XLBlocks highlights all cells in the same color. Some
participants suggested that it would be helpful if the highlighted cells had a unique color
and that the selected range blocks would light up in the same color.

Adding or changing the system’s functionality
We confronted the participants with two erroneous formulas, and all participants were
able to find and correct the errors in these formulas. Furthermore, they were able to make
a change in a complex formula. They had to replace a nested IF structure with a VLOOKUP
function. According to the participants, this was easier to perform in XLBlocks than in
the formula bar. In XLBlocks, it is possible to drag the complete IF structure out of the
formula and replace it with a VLOOKUP function block. They did not need to consider the
exact placement of parentheses and commas’, making the change more straightforward
and quicker.

One of the errors the participants needed to find was a SUM function in which some
cells were omitted. The highlighting of the involved cells in the spreadsheet helped to
visualize the mistake, but Excel offers the same functionality in the formula bar. Eight
participants remarked that for such a small change (extending the range of a SUM func-
tion), the formula bar is more efficient than XLBlocks.

The second error that participants had to correct was a logic error in an IF formula. In
this case, according to the participants, it was easier to spot the error in XLBlocks because
the formula as a whole was easier to read.

Investigate the internal structure of an artifact
We asked the participants to explain several formulas with XLBlocks. All participants
were able to do that, even if they had no domain knowledge of the spreadsheet model. In
XLBlocks, in contrast to the formula bar, the parameters of a function are named. Accor-
ding to the participants, that makes it easier to understand a formula. For example, P19
stated: ”In XLBlocks, the IF, THEN, and ELSE parts of the formula are visible in the IF Block.
That is not the case in the Excel formula bar.”

When participants explained a formula, we observed that it took significant time to
look up a cell reference in the spreadsheet to determine its meaning. If the same reference
is used more than once in the formula, it was not uncommon that participants had to look



6.3 Results

6

95

up the meaning again. Some participants suggested that formulas would be easier to read
if the cell references had meaningful names instead of the abstract A1 naming style that
is the default in Excel (see also Section 6.4.2).

Several participants noted that in XLBlocks, a formula is visually split into different
components (instead of a long string of characters in the formula bar), making it easier to
understand the formula.

Investigating dependencies between artifacts and how much an artifact is used
The participants were asked to trace the precedents of five different formulas. They were
all able to do that. XLBlocks provide two features that supported them in these tasks:

1. When the formula is selected in XLBlocks, all cell references used in the formula
are highlighted in the spreadsheet.

2. If a user selects a single cell reference in XLBlocks, they can immediately inspect
the formula in that cell and quickly navigate from formula to formula.

Assessing the quality of the system’s design
We asked the participants how they would improve the spreadsheet model we used during
the comprehension tasks. Two of the twenty-one participants were not able to come up
with some improvements. The other participants mentioned improvements like:

• separating input, calculation, and output of the model to different worksheets

• move all parameters and lookup tables to different worksheets

• in the current model, some calculation are based on monthly amounts, other on
yearly amounts. Several participants proposed tomake these calculations consistent.
Either all based on monthly or on yearly amounts, but not mixing them.

Understanding the domain of the system
After working with the spreadsheet model in XLBlocks, participants had a better under-
standing of the functional domain (salary administration). One of the questions was if
they could tell which components make up the total salary costs. Furthermore, they had
to explain the calculation of several pension premiums. To calculate this, you have to take
into account an exemption amount. If your income is lower than the exemption amount,
you do not have to pay a premium; however, if your income is higher than the exemption
amount, you pay a percentage of your income minus the exemption amount. When the
participants had to explain these types of formulas, they first read the formula aloud, and
next, they would summarize the logic of the formula in their own words, recognizing the
pattern described above.

6.3.2 CDN Interview
In the next paragraphs, we will present the results of the interview. We will group the
observations by the different Cognitive Dimensions [26].



6

96 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

Viscosity
The dimension Viscosisty expresses the resistance to change in a language and conse-
quently has more impact on maintenance than comprehension. We included it in the
interview because one of the comprehension activities (A2 in Table 6.2) involves adding
or changing the system’s functionality. XLBlocks has a drag and drop interface. The
mouse or trackpad is the primary input device. In general, this slowed the user down,
which several participants confirmed. Because of this, participants would prefer to make
small changes in the formula bar instead of XLBlocks.

For complex formulas, this was different. In one of the tasks, they had to replace
a nested IF structure with a VLOOKUP function. This is not easy in the formula bar and
involves careful placement of the cursor, ensuring that one is not selecting one parenthesis
too many or too few. Implementing this change goes faster in XLBlocks. The user does not
have to bother about parentheses and can easily drag the IF structure out of the formula
and replace it with a VLOOKUP block.

Finally, some participants pointed out that it can be challenging to click on a range
block, mostly when used in an inline function block (for example, range $E$16 in Figure
6.3). If the click is not precisely on the range block, the function block is selected instead.

Visibility
All participants were able to see the complete formulas at a glance. To understand the
formula, it is also essential to see which cells are referenced, which can be problematic in
a large spreadsheet. If users inspect a formula in the formula bar, they have to scroll to
the cells they can not see. If a user selects a range block in XLBlocks, it will automatically
scroll to the corresponding cell in the spreadsheet.

Several participants commented thatmultiple nested binary operations (see, for example,
the else clause in Figure 6.4b) were difficult to understand. Function blocks have different
colors, depending on their category. All binary functions have the same category (Math
and Trigonometry) and, therefore, the same color. Furthermore, each function block has
its own border, but it is thin and subtly colored. These issues combined make it difficult
to distinguish the individual functions.

Premature Commitment
In XLBlocks, the user can build a formula in any order. Also, it is possible to change the
order of the functions within the formula at any given time. The only requirement is that
the output of the top-level function is connected to a formula block.

Nevertheless, some participants had the feeling they had to start with the formula
block and build the formula from there, starting with the top-level function. They even
said they liked how the blocks would force them to build the formula in a structured
manner. For example, P1 said: Ĳou are somewhat forced in a structure, and I actually like
that.”, and P7: ”I think, because it is visual, you are forced to think about the formula you are
building.”

Other participants recognized that they could start anywhere in the formula. All par-
ticipants agreed that it is easy to change the order of functions in the formula.



6.3 Results

6

97

Hidden Dependencies
In a spreadsheet, there are dependencies between functions in a formula and between cells
in the spreadsheet. Participants indicated that it is easy to see the dependencies between
functions in a formula. Each function is visualized as a puzzle piece, and the connection
between two pieces visualizes the dependency between the functions.

Concerning the spreadsheet level, participants liked that XLBlocks would highlight
all cells in the spreadsheet used in the formula. Also, the possibility to automatically
scroll to a precedent cell in the spreadsheet by clicking on the corresponding range block
was appreciated. P6 said: ”Clicking on highlighted cells and jumping from one formula to
another makes it easier to explain the spreadsheet”, or according to P7: Ĳou can click on
a cell and immediately jump to that formula, that for me is one of the biggest advantages.”
Furthermore, they liked the option that once a precedent cell was selected in XLBlocks,
they could inspect that cell’s formula in XLBlocks.

Unfortunately, once they jumped to one of the precedent cells, it was impossible to
jump back to the original formula. They also indicated that it was not possible in XL-
Blocks to see depending cells of a formula. When they had to trace dependents during the
comprehension tasks, they had to fall back to Excel’s native trace dependents function.

Role-Expressiveness
Participants said that in XLBlocks, they could ‘see’ the formula. They named the IF func-
tion as an example. ”I think you will make fewer logic errors because you really see the
formula” (P6), ”The structure is clear, it is more transparent, you see it immediately.” (P11),
and ”It is very easy to read the IF, THEN, ELSE formula.” (P21). In the formula bar (see
Figure 6.4a), the IF function is displayed as a single string. A comma separates the THEN
and ELSE parts, and by convention, the second argument is the THEN part, and the third
argument the ELSE part. In XLBlocks (see Figure 6.4b), the IF, THEN, and ELSE parts are
labeled and visualized on three different lines. Furthermore, each block has a thin border
that acts as the equivalent of parentheses. According to the participants, these features
combined made it easier to understand the formula.

(a) The IF function as a long string in the formula bar

(b) The IF function split over several lines with named parameters in XLBlocks

Figuur 6.4: Two variant of the IF Function



6

98 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

XLBlocks, like the formula bar, does not provide an explanation about the function
parameters. When working with the VLOOKUP function, participants indicated that they
were unsure about the meaning of some of the parameters, and explanation would have
helped. This could easily be solved in XLBlocks by adding tool-tips to the parameters.

Error-Proneness
As was already mentioned at Premature Commitment, some participants pointed out that
the blocks guide you through a function’s structure. It is not possible to forget a parameter
and, because they are labeled, one can not confuse them. As a consequence, this leads to
fewer errors. Additionally, most participants noted that XLBlocks places the parentheses
and commas automatically, which further reduces possible errors.

Some participants remarked that the operators in the binary function blocks (see Fi-
gure 6.7b) are hard to read, and it is easy to forget to change the default operator. Both
cases would lead to an incorrect formula.

Secondary Notation
XLBlocks has a dedicated comment block (see Figure 6.5) that can be used to annotate
a formula. Multiple comment blocks can be added to a formula, and they can be placed
freely on the canvas.

Figuur 6.5: Example of a comment block

Participants said that they would use the comment block to document the formula,
describe its purpose, explain the calculation, and describe the meaning of the cells used
in the calculation. The current comment block has been designed to accommodate short
comments, but several participants indicated they would like to enter larger text blocks.

Closeness of Mapping
Cells used in a formula are visualized in XLBlocks with range blocks (see Figure 6.3). The
cells are identified by their cell address in A1 notation. When participants had to explain
formulas, they had to look up the cell by their address in the spreadsheet to see its functi-
onal meaning. While explaining a complex formula, it occurred more than once that they
forgot the meaning of a cell and had to look it up again, which would slow down the expla-
nation. Several participants mentioned they would prefer the possibility to give the range
blocks a meaningful name. An example can be found in Figure 6.6. Figure 6.6a shows the
formula as it is currently visualized in XLBlocks, and in Figure 6.6b the cell addresses are
replaced by meaningful names.



6.3 Results

6

99

(a) Cell references in A1 style

(b) Cell references with meaningful names

Figuur 6.6: Different styles for cell references

Consistency
Participants recognized that blocks with the same purpose have the same color. Constants
have a different color than cell references, and Lookup functions have a different color than
logical functions. The use of color helped them to understand the formulas better. Some
participants remarked that it would be even better if the colors would be repeated in the
toolbox menu. In that case, it is easier to derive the meaning of a specific color.

There are over 450 functions in Excel. It is not feasible to give every function a unique
color. For that reason, functions of the same type (as defined by Microsoft⁶, such as math
and trigonometry, logical, and lookup and reference) have the same color. If in a formula
several functions of the same type are nested (for example, the addition, multiplication,
and comparison in the IF clause of Figure 6.6a), this will lead to a group of blocks with the
same color. According to the participants, this makes it less easy to read and interpreter
the formula. Some participants argued that maybe the color of a function block should
depend on the formula’s level of nestedness.

If a user selects (a part) of a formula in XLBlocks, the used cells are highlighted in
the spreadsheet. These cells get all the same highlight color. Some participants suggested
giving each highlighted cell its own color and using that color to highlight the formula’s
corresponding range block.

Diffuseness
According to the participants, the size of the formulas is adequate. This is remarkable
because block-based languages tend to be more diffuse [85] and programmers value that
as a negative because less code will fit on the screen. However, spreadsheet users are
accustomed to entering their formulas in a tiny formula bar. They are relieved that in
XLBlocks, they have more space available, and because XLBlocks focuses on one formula

⁶https://support.microsoft.com/en-us/office/excel-functions-alphabetical-b3944572-255d-4efb-bb96-
c6d90033e188



6

100 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

at a time, even complex formulas will fit on the canvas and do not require additional
scrolling.

(a) External (b) Inline

Figuur 6.7: Different input types

XLBlocks handles the input of a function block in two different ways: external (Figure
6.7a) and inline (Figure 6.7b). Basic functions such as addition, subtraction, and division
use the inline variant. The inline variant is more natural to read, but if several of these
functions are concatenated, one ends up with a wide formula block (see, for example, the
else clause in Figure 6.4b). The participants confirmed that several binary operations after
each other take more space than needed. According to the participants, also the constant
blocks (number, text, and boolean) are relatively large in relation to their importance in
the formula (see, for example, the number block in Figure 6.4b).

Hard Mental Operations
According to the participants, working with XLBlocks does not require more mental effort
than working with formulas in the formula bar. They provide two reasons for this:

• Because of the visualization in blocks, the formula is split into smaller components.
This makes it easier to understand the formula. Participants do not have to under-
stand the formula at once but can focus on a smaller component. For example, P1
noted: ”I do not have to split the formula into smaller parts, XLBlocks does that for me,
which makes it easier to understand.”

• In XLBlocks, the user does not have to think about the placement of parentheses,
quotes, or commas.

Provisionality
Participants loved the fact that they could play with formulas in XLBlocks. P13: ”Dragging
a part of formula out of the formula is very easy” and P19: ”It is very visual, you can drag a
part out of it and paste it back in very easily, I really like that.”

They could easily drag components out of the formula onto the canvas and replace
them with other functions or components. A component that is dragged out of a formula
can be parked and saved on the canvas. It will not influence the generation of the spread-
sheet formula. If they were not satisfied with their changes, they could quickly revert to
the previous state. It gave them also the opportunity to evaluate two or more variations
of the same formula. Finally, they liked the opportunity to change the order of functions
within a formula easily.



6.3 Results

6

101

Progressive Evaluation
Participants indicated that it is possible to stop working on a formula at any time. The
formula does not need to be correct before it can be saved, which is not the case in Excel’s
formula bar. It is possible to test a part of a formula as long as it will lead to a valid formula
expression. Seeing if a formula was finished was easy, according to the participants. As
long as there are no missing puzzle pieces, the formula is finished. In Excel’s formula bar,
it is much harder to see if an argument of a function, a parenthesis, or comma is missing.

Intermediate
results

Figuur 6.8: Formula wizard in Excel displaying intermediate results

The participants indicated that they were missing intermediate results in XLBlocks.
This is possible in the formula wizard in Excel (see Figure 6.8), and they would like to see
similar functionality in XLBlocks.

6.3.3 Research Questions
In the final paragraphs of this section, we will answer the research questions.

RQ1 understand a formula
Participants believe that, for complex formulas, it is easier to understand them with XL-
Blocks than with the formula bar. They have several arguments for this. First, the for-
mula’s block-based representation splits the formula into smaller components, making it
easier to comprehend. Secondly, the parameters of a function are named. Less knowledge
of the function syntax is needed to understand it, and lastly, if the user clicks on the for-
mula in XLBlocks, all cells used in the formula are highlighted in the spreadsheet. This
enables them to see which numbers are used in the calculation.

RQ2 explain a formula to somebody else
According to the participants, XLBlocks supports the user in explaining the formula. When
they click on a part of a formula, XLBlocks highlight the blocks in that part of the formula.
This helps in focusing the explanation on a specific part of the formula. Furthermore, com-
ment blocks can be used to document the purpose of a formula and explain components in
the formula, such as explaining the test performed in an IF statement. Finally, by clicking
on the individual range blocks in the formula, participants could navigate the spreadsheet,
highlighting the cells used in the formula and explaining the numbers’ functional meaning
in these cells.

RQ3 understand the spreadsheet model as a whole
XLblocks focuses on a single formula at a time. Nevertheless, participants were able to
get an understanding of the working of the spreadsheet as a whole. Even if they were



6

102 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

not familiar with the functional domain of the spreadsheet (payroll administration). Par-
ticipants could easily click from one formula to another to see how the different formulas
were related to each other and form an opinion about the workings of the model. Also, the
possibility of automatically scrolling to the different cells and quickly reading the labels
helped to understand the functional meaning of the calculation.

6.4 Discussion

6.4.1 Confusing IF statement
During the think-aloud study, several participants got confused when explaining a for-
mula that contained an IF function (see Figure 6.9). In this formula, the outcome of an IF
function is multiplied with the addition of two percentages. Because of how the blocks are
visualized, the multiplication of the sum of two percentages is displayed at the same height
as the IF statement. This led the participants to believe that the multiplication was a part
of the IF statement, leading to a logical test that did not make any sense when translated
into business terms.

multiplyIF Statement Addition

Figuur 6.9: Several participants struggled to explain this formula

Several factors are causing this misconception.

• Both the operand and the arguments of the binary function are aligned at the top. If
the multiplication symbol and the addition of the two percentages had been aligned
at the middle of the block, the formula would be less confusing.

• Except for the IF function itself, all other functions in the formula are binary func-
tions and have the same color, making it difficult to distinguish them from each
other.

• Each function has its own border, but it is very thin with a light gray color to si-
mulate a 3D effect. This makes it challenging to see where one function ends, and
another begins.

Aligning the operands and arguments at the middle of a block and making the borders
of function a fraction thicker with a more contrasting color would prevent this kind of
misconception.



6.4 Discussion

6

103

6.4.2 Giving Range Blocks Meaningful Names
As described in the previous section, several participants suggested that the readability of
formulas would benefit if range blocks got meaningful names instead of an abstract cell
address (see also Figure 6.6b). In Excel, it is possible to assign names to ranges, and se-
veral authors have advocated the use of range names [103, 104]. However, other studies
indicate that there are inherent risks in using named ranges. Panko and Ordway [1] iden-
tify the risk that named ranges can appear correct in the formula but refer to the wrong
range, and McKeever [105, 106] found that the use of named ranges decreases the ability
of novice spreadsheet users to find and correct errors. The question, if it would be pos-
sible to implement range names in XLBlocks in such a way that it would not hinder the
debugging process and makes it easy to see to which range the name refers, would make
for interesting future work.

6.4.3 Navigating Formulas
While performing task T06 Determine relationships between two cells, participants noted
that it is easy to navigate in XLBlocks to a direct precedent of the current formula but
not to navigate back. This could be solved in XLBlocks by displaying a breadcrumb trail
at the top of XLBlocks’ canvas. It would show a horizontal list of formulas that the user
has analyzed, and by clicking on any of the formulas in the list, the user would navigate
back to that formula. Another solution that could be implemented complementary to the
breadcrumb trail would be a browser-like navigate back button.

6.4.4 Intermediate Results
When answering questions about the cognitive dimension Progressive Evaluation (see Sec-
tion 6.3.2), participants indicated that it would be even easier to evaluate formulas if, in
XLBlocks, they could see the intermediate results of the calculation. Inspired by the work
of Leber et. al [107], Figure 6.10 shows an example of how this could be implemented in
XLBlocks.

If the user selects a part of a formula, a textual representation of that part of the for-
mula is displayed at the bottom left of the XLBlocks interface, while on the bottom right,
the result of the calculation is displayed. One could even consider making the textual
representation of the formula also editable. We keep this as a point for future work.

6.4.5 Threats to Validity
A threat to the external validity of our think-aloud study concerns the representativeness
of the participants. Additional studies are necessary to generalize our findings.

Furthermore, there is a risk of aptitude treatment interaction since participants of a
previous study were also invited to participate in this study. It could be the case that only
the most positive ones responded to this request. Eventually, only five of the twenty-one
participants were also a participant in the previous study, and judging by the number of
points of criticism we received from them during the think-aloud study and the interview,
we believe our finding were not impacted by the aptitude treatment.

Another threat to the external validity is the representativeness of the comprehension
tasks. We mitigated this by using a validated set of comprehension tasks defined by Paci-
one et. al [52].



6

104 6 The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

Intermediate resultTextual representation of formula

Selected part of formula

I20 < U9 / 12 TRUE

Figuur 6.10: Showing textual formula and intermediate results in XLBlocks

Participants were selected from our network, which is a threat to the internal validity
of our study. However, we believe the current group serves as a useful reference group,
as the persons were experienced professional spreadsheet users, came from different com-
panies, and worked in different functional domains.

We fulfill the role of both developer of XLBlocks and an interviewer during the think-
aloud study. This is a threat to the internal validity of the study. We lessened this risk by
using a validated set of comprehension tasks and using the CDN Framework to guide our
questions during the interview, ensuring that all aspects of the usability of the XLBlocks
interface were covered.

6.5 Concluding Remarks
The purpose of this paper is to research the effect of a block-based language on formula
comprehension in spreadsheets. We extended the block-based formula editor XLBlocks
with functionality to generate block-based representations of existing spreadsheet formu-
las. We asked participants in a think-aloud study to perform twelve comprehension task
and immediately after they finished these tasks, interviewed them about their experience
with XLBlocks.

Participants believed that XLBlocks helped them to understand formulas better. They
argued that the formula’s visualization in blocks helped separate smaller parts in the for-
mula, making it easier to comprehend. Furthermore, in XLBlocks, each function argu-
ment had a descriptive label, making the formula more comfortable to read. Finally, the
formula’s cells were also highlighted in the spreadsheet, making it easier to see what was
calculated by the formula.



6.6 Data Availability

6

105

During the study, participants had to explain three different formulas using XLBlocks.
According to participants, XLBlocks made it easier to do so. They could select a part of a
formula during an explanation, and XLBlocks would highlight the relevant blocks. This
helped both the participants and the listener to focus their attention on this part of the
formula. Participants also noted that it is possible to document a formula’s workings
with the dedicated comment blocks of XLBlocks. Finally, if a formula was part of a larger
calculation chain, users could easily navigate the formula’s precedents to show how the
formulas worked together.

This mechanic of navigating between formulas was, according to the participants, also
instrumental in gaining an understanding of the spreadsheet’s workings. The possibility
of quickly navigating to cells in the spreadsheets by selecting a cell reference in XLBlocks
and looking up the corresponding labels in the spreadsheet helped to gain more insight
into the spreadsheet’s problem domain.

This research gives rise to several directions for futurework. Tracing relations between
formulas is instrumental in understanding the workings of a spreadsheet. We have seen
that XLBlocks can help in finding precedents of a formula but lacks functionality in tracing
dependents. We will investigate what would be the best way to extend XLBlocks with
this functionality. Furthermore, we will extend XLBlocks with the possibility to show
the textual representation of (a part of) the formula and the corresponding intermediate
results of the calculation in real-time. It will enable users to receive direct feedback on
changes they make in the formula. Finally, we will explore the possibility of giving cell
references in XLBlocks a meaningful name.

6.6 Data Availability
A video of XLBlocks, the source code of XLBlocks, the spreadsheet model used during
the Think-Aloud study, and the interview questions used are available on figshare, DOI
10.6084/m9.figshare.14268017





7

107

7
Conclusion

I n this chapter, we present the conclusions of this dissertation. Our research can roughly
be divided into two phases. In phase one, we started our research by getting a better un-

derstanding of how users interact with spreadsheets and what causes the error-proneness
of spreadsheets. We looked at the occurrence of code smells in spreadsheets and if they
lead to problematic spreadsheets (Chapter 2). Besides formulas, we also researched how
the data and formulas can be organized and how that impacts comprehensibility. Finally,
we explored how spreadsheets evolve (Chapter 4).

Based on our research in phase one, we concluded that almost all errors in spreadsheets
originated in formulas and decided to focus our research in phase two on finding ways to
improve how formulas can be created, edited, and analyzed. This led to the development
of a visual language: XLBlocks (Chapter 5). With the first prototype of XLBlocks, it was
possible to create formulas with a block-based language. XLBlocks would translate the
block-based formula to a textual representation and insert it in the spreadsheet. However,
it was not possible to go the other way around. Therefore we extended XLBlocks with
the functionality to translate the textual representation of an existing formula to a block-
model in XLBlocks (Chapter 6).

In the remainder of this chapter we will describe the contribution of our research (Sec-
tion 7.1), explore avenues for future research (Section 7.2), and present our conclusions by
reflecting on the thesis statement introduced in Chapter 1 (Section 7.3).

7.1 Contributions
The contributions of this dissertation are:

• An approach to conduct a pair-wise comparison of spreadsheets on the occurrence
of smells, size metrics, and coupling metrics (Chapter 2)

• Defining a ground truth about the smelliness of a spreadsheet (Chapter 2)

• A definition of the concept of delocalized plans in spreadsheets (Chapter 3)

• Design of a controlled experiment to analyze the ability of spreadsheet users to
comprehend and adapt a spreadsheet (Chapter 3)



7

108 7 Conclusion

• Translation of the software comprehension tasks as defined by Pacione et al. [52]
to the spreadsheet domain (Chapter 3)

• An empirical evaluation of the effect of delocalized plans in spreadsheets on spread-
sheet comprehension (Chapter 3)

• FormulaMatch: an algorithm to match unique formulas of two different versions of
the same spreadsheet (Chapter 4)

• Two case studies in which a detailed study is made of the evolution of a spreadsheet.
In both cases, the analyzed spreadsheets had a time span of three years (Chapter 4)

• Insights from spreadsheet users about how the result of an evolution study can sup-
port them in creating better spreadsheets (Chapter 4)

• XLBlocks: a block-based formula editor (Chapter 5 & 6)

• Two think-aloud studies with professional and experienced spreadsheet users to
evaluate the use of XLBlocks to create, edit and comprehend spreadsheet formulas
(Chapter 5 & 6)

• Two evaluations of the visual language XLBlocks with the Cognitive Dimensions of
Notation framework (Chapter 5 & 6)

• A code-generator that translates the textual representation of a spreadsheet formula
to an XML-definition of the block-based representation of that formula (Chapter 6)

7.2 Future Work
While conducting the research for this dissertation, we encountered several topics that
warrant future work.

7.2.1 Navigating the calculation chain
In this thesis, much attention has been paid to the individual formulas in a spreadsheet.
However, for more complex calculations, a single formula is just a step in the calculation.
One could compare it with a single line of code in a program. It is the complete calculation
chain of a formula that could be compared with a function or routine within a program. In
both Chapter 2 and Chapter 3, we saw the importance of the calculation chain on compre-
hension. There are two specific areas concerning calculation chains that lend themselves
to further research.

Firstly, code smells have been defined both on the level of formulas [27] and on the
level of worksheets [28]. Would it be possible to define and recognize code smells in
calculation chains? Moreover, do these calculation chain smells differ from formula or
(inter)worksheet smells?

Secondly, to comprehend what kind of calculations are made in a calculation chain, a
user has to analyze the individual formulas of the calculation chain. To do so, a user first
needs to recognize which formulas belong to the chain and then navigate in the correct
order from one formula to another. We saw the importance of navigating a spreadsheet in



7.2 Future Work

7

109

Chapter 3 and Chapter 6. It would be interesting to see if we can assist the user in recog-
nizing the calculation chain and find easy ways to navigate through it. Also, especially if
the calculation chain is part of a delocalized plan in a spreadsheet (Chapter 3), it would be
beneficial if all elements of the calculation chain could be presented to the user in a single
glance. Some work in this area has been done by Roy et. al. [108], but the challenge that
remains is how to support users in comprehending and navigating complex calculation
chains.

7.2.2 Naming in spreadsheets
The default way for naming a cell in a spreadsheet is the A1 notation. A1 refers to the cell
in column A and row one. An alternative notation is R1C1, which refers to the cell in row
one and column one and is equivalent to A1. R[-1]C[0] is a relative reference. It means to
go back one row and stay in the same column as the cell where this reference is used. We
have used the R1C1 notation to identify unique formulas. Finally, spreadsheets have the
opportunity to give meaningful names to individual cells or a group of cells. These are the
so-called named ranges.

In XLBlocks, we refer to other cells with the A1 notation. In both think-aloud studies
in Chapter 5 and 6, we received the feedback that users thought it would be easier if they
could give meaningful names to cell references. There is some research on the effect of
naming, but there is no consensus about which notation is better. Proponents believe that
assigningmeaningful names to ranges makes it easier to comprehend formulas [103] [104].
On the other hand, Panko and Ordway [1] argue that maybe it is easier to read a formula,
but it is less transparent to which cells the names are referring. The formula could look
OK, but at the same time, the name could refer to the wrong cells. Furthermore, studies
conducted byMcKeever et. al. indicate that named ranges hinder novice spreadsheet users
in their debugging performance [105] [106]. Further research on the naming of cells and
ranges is required to understand the impact on comprehension and error-proneness.

7.2.3 Version Management
In Chapter 4 we described the challenges one faces when analyzing changes that were
made between two versions of the same spreadsheet. The challenges are twofold. First, a
simple structural change like inserting a row or removing a column can lead to changes
in sometimes thousands of formulas, while from a functional point of view, nothing was
changed. Second, the habit of spreadsheet users to copy formulas down or to the right
leads to a high number of formulas that do precisely the same, but because of the A1 nota-
tion, are different. If the user decides to change the formula for such a set of copied cells,
it will again lead to many changes, while only one calculation was changed. In Chapter
4 we attempted to solve the second problem with FormulaMatch. Using FormulaMatch
helps to detect changes in unique formulas. We think it could be further improved if it is
augmented with algorithms that detect the structural changes (inserting or deleting rows
and columns) that were made.

7.2.4 Further XLBlocks Improvements
During the think-aloud studies about XLBlocks, we received positive reactions from pro-
fessional and experienced Excel users. The prevailing impressionwas that XLBlockswould



7

110 7 Conclusion

be a valuable tool to create, edit, and analyze complex formulas. Some participants asked
if they could already get a copy of the research prototype.

However, the feedback gave us also an extensive list of possible improvements. Most
proposed improvements are engineering questions, but some of the improvements give
rise to further research.

Naming
As described in one of the earlier paragraphs in this Chapter, users indicated they would
prefer to refer to cells with meaningful names instead of the abstract A1 notation. It would
lead to more readable formulas. However, although naming cells sounds attractive, one of
the disadvantages of this approach is that it removes the relation between the reference
(A1) and the location (row one, column A). If users read a formula with names instead
of cell addresses, they may have a better understanding of what kind of calculation is
made but may have no idea where the cells that are used in that calculation are located.
As stated in Section 7.2.2, research is needed to understand if using names lead to better
comprehension and fewer errors, and if it is possible to work with names without losing
the relation to the location of the cells.

Tracing the calculation chain
In the current implementation of XLBlocks, it is possible to navigate from a formula to
its precedents. The opposite, navigating to dependents of a formula, is not possible and
should be added. Adding this functionality should ideally take into account the results of
the research we proposed in Section 7.2.1. Not only should it be easy to jump back and
forth from formula to formula, but somehow the position of the formula in the complete
calculation chain should be visualized.

Making XLBlocks Hybrid
XLBlocks is a visual, block-based language. The professional Excel users who participated
in our think-aloud studies have a long history with a formula’s textual representation.
They liked the block-based representation of formulas, but while working with XLBlocks,
they were missing the textual representation. They would prefer to construct the formula
using XLBlocks, but at the same time see the textual representation.

At the moment, it is only possible to see the textual representation when the creation
of a formula in XLBlocks is finished. However, according to the participants, it would
add value if they could see the textual formula during construction in XLBlocks. It would
be even better if they could also choose to edit the textual representation. As they said,
some changes are easier to make in the block model, while other changes could be easier
accomplished by editing text.

Another possible improvement that is closely related to this hybrid form of XLBlocks
is not only simultaneously displaying the blocks-based and textual representations but
also adding the intermediate results of the different steps in the calculation.

Quantitative evaluation of XLBlocks
Our research on XLBlocks in the last two chapters was qualitative and exploratory. This
was a well-considered choice. We were in the early phase of the development of XLBlocks
and wanted to understand how professional users experience the use of XLBlocks. A



7.3 Reflections on the thesis statement

7

111

more quantitative approach can help further development of XLBlocks. Will the use of
XLBlocks lead to fewer errors? Will editing of complex formulas be faster? Will it help
users to understand spreadsheets better? These questions could be answered with similar
controlled experiments as we used in Chapter 3.

7.3 Reflections on the thesis statement
In Chapter 1 we described the thesis statement that guided our research:

A visual language supports professional spreadsheet users in interacting with
complex formulas. This results in a reduction in the number of errorsmade during
the creation or maintenance of formulas.

In this concluding chapter, we reflect on this statement. We will confront several ele-
ments of this statement with the findings of our research.

7.3.1 Professional Spreadsheet Users
An overarching goal of our research is to support professional spreadsheet users. As de-
scribed in Chapter 1, the impact of spreadsheet errors is most felt in an industrial setting.
For that reason, we tried to involve professional spreadsheet users in our research and use,
whenever possible, real-life spreadsheets in our studies.

Our analysis of smells (Chapter 2) was based on a set of 54 spreadsheets created by
customers of the financial modeling company F1F9 and 54 spreadsheets created by the
professional modelers of F1F9.

In our experiment on the effect of delocalized plans in spreadsheets (Chapters 3), we
recruited the participants from participants of one of our MOOCs about spreadsheets and
the mailing lists of EUSPRIG and our research website. All sources make it likely that pro-
spective participants are interested in spreadsheets and have more than average spread-
sheet skills. This turned out to be true. We asked the participants to rate themselves on
their perceived skill level of Excel, and they scored on average 3.6 on a five-point Likert
scale.

We conducted our spreadsheet evaluation study (Chapter 4) together with Alliander,
an industrial partner. We used two different sets of spreadsheets from Alliander that were
used for internal reporting about occurrences of failures in the gas distribution network
and the medium voltage electricity grid of the Netherlands. Both spreadsheet models were
in use for a period of three years.

In the think-aloud studies that we used in our evaluations of XLBlocks (Chapter 5 &
6), we worked with a relatively small number of participants. We recruited them from
within our network of industrial partners, and we were looking for participants that use
spreadsheets in their daily work, have a more than average skill level, and have multi-
year experience. Twenty-eight spreadsheet users with an average of twenty-five years of
experience participated. We asked them to rate their own skill level on a scale from one
to ten, and on average, they scored themselves an eight.



7

112 7 Conclusion

7.3.2 Complex Formulas
We started our research by getting a better understanding of the term complexity in spread-
sheets. There are two approaches to analyze complexity in spreadsheets: 1) Use metrics
to measure the complexity [40] or 2) analyze the occurrence of code smells [27] [28] [38].
As shown in Chapter 2, we found that size and coupling metrics do not succeed in diffe-
rentiating between problematic and normal spreadsheets. They are not good metrics to
measure spreadsheet complexity.

In [27], [28], and [38] we find successful translations of code smells to the domain of
spreadsheets. However, these studies do not demonstrate that the presence of smells, by
definition, leads to problematic spreadsheets. In Chapter 2 we compared 54 pairs of spread-
sheets, each consisting of a spreadsheet that was perceived as problematic by its owners
and a similar version of that spreadsheet that was remodeled according to best practices
by professional financial model builders. We found that the remodeled spreadsheets suffe-
red from smells to a much lower extent than the problematic spreadsheets and concluded
that the occurrence of smells is indeed an indicator for problematic spreadsheets.

For code smells in spreadsheets, there is a trade-off between the smells Multiple Ope-
rations and Multiple References (both indications of long formulas) on the one hand, and
Long Calculation Chain on the other hand [27]. In Chapter 2 we observed this trade-off in
action. In the F1F9 (less smelly) spreadsheets, the occurrence of the Multiple Operations
and Multiple Reference smells decreased, while at the same time, the occurrence of the
Long Calculation Chain increased. With a constant business complexity, smaller formu-
las mean that calculations must be split into smaller steps, leading to longer calculation
chains. This begs the question of what is more important, making the formula smaller or
reducing the length of the calculation chain. In Chapter 3 we found an answer. Reducing
the length of the calculation chain has a more (positive) impact on the maintainability of
a formula than the length of the formula itself.

7.3.3 Interacting
In Chapter 3 and 4, we shifted our focus from formulas to the way spreadsheet users
interact with the spreadsheet.

In Chapter 3 we explore how data in spreadsheets are organized. We translated the
concept of locality in source code to spreadsheets. Often a calculation in a spreadsheet
does not consist of a single formula. In these cases, the calculation is divided into several
steps. A delocalized plan in a spreadsheet is a multi-step calculation with steps that are
spread across the spreadsheet (instead of located closely together). We found that spread-
sheet users perform significantly better on comprehension tasks when spreadsheets con-
tain less delocalized plans.

In Chapter 4 we focus our research on how users interact with spreadsheets that they
have to maintain for multiple years. We study the evolution of two sets of spreadsheets
that span three years. From the two case studies, we learned that spreadsheets grow over
time, both in data and the number of formulas. Also, we found that in almost every version
of the spreadsheets, changes were made to some of the formulas. The main reasons for
these changes were: 1) new feature requests, 2) improved maintainability, and 3) fixing
bugs.

To analyze the differences between the individual spreadsheets within the evolution



7.3 Reflections on the thesis statement

7

113

sets, we developed FormulaMatch. This algorithm makes it possible to find matching uni-
que formulas in two spreadsheets and determine if they have been changed (or if no match
is found, either created or deleted). Spreadsheet users involved in the case studies indica-
ted that it would help them if an automatic evolution analysis could provide them with:

• a summary of all changes (so that they can check if they made all necessary adjust-
ments)

• an overview of frequently changed formulas (acting as a checklist for changes that
have to be made)

• suggestions for refactoring (e.g., listing formulas that have to be adjusted every time
data is added to the model)

• highlight drops or spikes in changing and growing rates (which are often an indica-
tion something went wrong during the last update)

7.3.4 Visual Language
In Chapter 2 through 4 we focused our research on spreadsheet complexity. The findings
of these studies, together with research on spreadsheet errors [73] [7] brought us to a con-
clusion that, although spreadsheets consist of data, layout, and formulas, most spreadsheet
errors have their origin in formulas.

That is whywe shifted our research focus to the way formulas are created and edited in
spreadsheets. To make correct formulas, spreadsheet users need to know the exact syntax
of a function. Errors caused by forgetting or misplacing a comma, parenthesis, or quotes
are easily made. These problems with the formula syntax are similar to the problems
novice programmers encounter when they start programming. Research has shown that
their performance can be improved if they can use a visual instead of a textual language
[74] [75].

We hypothesize that a visual language for creating and editing spreadsheet formulas
could support spreadsheet users in a similar way. For that reason, we developed XLBlocks.
A block-based formula editor for spreadsheets. With XLBlocks, users can create new for-
mulas (Chapter 5) or inspect and modify existing formulas (Chapter 6).

7.3.5 Creation
In Chapter 5 we introduce XLBlocks. In this study, we evaluate the use of XLBlocks as a
formula editor for spreadsheets. We focus in this study on the creation of formulas.

We noted that users appreciated the space available on the canvas to create formu-
las. For us, this was surprising because, in comparisons between block-based and textual
languages, one of the disadvantages of block-based languages mentioned is the space it
occupies. However, spreadsheet users are used to the tiny space they have available in
the default formula bar, and they welcome the space available in XLBlocks.

A second advantage that the participants mentioned is that they could start anywhere
in the formula. If one creates a nested formula in the formula bar in Excel, one must
carefully think about with which function one should start. Once entering the formula (in
the formula bar), it is challenging to change the order of the functions, and if a mistake is
made and the syntax of the formula is incorrect, it is not possible to save the formula.



7

114 7 Conclusion

This is not the case in XLBlocks. Because of the drag and drop interface, it is effort-
less to change the order of the functions in the formula. XLBlocks will take care of the
correct placement of parentheses, quotes, and commas. According to the users, the func-
tion blocks guided them through the function’s syntax. All arguments were visible at a
glance, they were always in the proper order, and a missing puzzle piece would indicate
a forgotten argument.

During the think-aloud study, we observed that because participants could freely drag
and drop parts of the formula on the canvas, it helped them think about it. They started
with the elements they were sure about and continued with less clear functions. They
kept playing with the different elements until it became clear how the complete formula
should be constructed.

Participants also mentioned that they liked the possibility of dragging out a part of
a formula and replacing it with a different part to try out different variants of a formula.
They appreciated that there was no need to clean up the canvas.

Finally, they mentioned that, unlike in Excel and other spreadsheet tools, it was possi-
ble to save an unfinished (and even incorrect) formula in XLBlocks.

7.3.6 Maintenance
From prior research, we know that spreadsheets have an average lifespan of five years,
and during that period, they are used by thirteen different users [6]. A more extended life-
span makes maintenance likely, and because of the different users, knowledge about the
spreadsheet needs to transfer from one user to another. For both maintenance and know-
ledge transfer, spreadsheet comprehension is critical. We, therefore, focus in Chapter 6 on
the effect of XLBlocks on formula comprehension. For that reason, we extended XLBlocks
with the functionality to generate a block-based representation of existing formulas.

In the think-aloud study that we conducted, we asked participants to make changes to
an existing spreadsheet model and explain the working of several formulas.

We found that users find it easy to make changes to existing formulas with XLBlocks.
Because functions are visualized in blocks, it is easy to locate the formula part that needs
to be adjusted. Furthermore, they do not have to think about parentheses, quotes, and
commas. XLBlocks handles that for them.

In order to gain an understanding of formula comprehension, we asked participants
during the think-aloud study to explain the working of several formulas. We observed
that several properties of XLBlocks made it easier for the participants to understand the
formula.

First of all, in contrast to the formula bar, in XLBlocks, the arguments of a function are
named (see Figure 7.1). This means that the participants did not need to know the order
of the arguments of a function.

Furthermore, if a user selects a function in XLBlocks, all cells referenced in that func-
tion are simultaneously highlighted in the spreadsheet. It makes it easy for the user to
see which cells are used by the formula, which makes it easier to determine what kind of
calculation is made by the formula.

Several participants mentioned that because every function in a formula is a separate
block, XLBlocks splits a formula automatically into smaller parts. This makes it easier



7.3 Reflections on the thesis statement

7

115

Figuur 7.1: Example of named function arguments in IF and VLOOKUP functions

to comprehend the formula. It also literally visualizes the nested structure of a complex
formula.

We not only asked the participants to explain the working of formulas, but we also
asked them to explain the working of the spreadsheet as a whole. Being able to understand
the meaning of the individual formulas helps to get an understanding of the spreadsheet.
However, this was not the only reason why XLBlocks supported the user in understanding
the spreadsheet. In XLBlocks, the user can click on a cell reference block, and in the
spreadsheet, the cursor automatically jumps to that cell. It allows the user to read the label
of that cell, and we observed that this mechanic helped the participants quickly jump from
formula to formula, get a sense of the context in which a formula was used and form an
idea about how the spreadsheet as a whole was working.

7.3.7 Reduction in the Number of Errors
We end this section by revisiting the question of whether a visual language reduces the
number of errors made in formulas. In the think-aloud studies about XLBlocks, our pri-
mary goal was to learn from the participants’ experiences with the language. Based on
the participants’ feedback, we think several factors reduce the chance of making errors.

Most obvious is the automatic placement of commas, parentheses, and quotes. Also,
because functions are visualized as little puzzle pieces, it is difficult to forget an argument
of a function. If this happens, it is implicitly visualized by a missing puzzle piece. Because
the function’s arguments have to be connected to the function itself, the user cannot spe-
cify the arguments in the wrong order. These are properties of XLBlocks that directly
affect the error-proneness of formulas.

However, other properties also affect error proneness:

• the possibility to start anywhere in a formula
• the drag and drop interface
• the feature to easily change the order of functions in a formula
• the opportunity to try out different variants of the formula

All the above help reduce the mental effort needed to create or edit a formula, which helps
reduce the chance that errors are made.



7

116 7 Conclusion

Based on the feedback received and the observations made during the think-aloud stu-
dies, we are convinced that:

A visual language supports professional spreadsheet users in interacting with complex
formulas. This results in a reduction in the number of errors made during the creation
or maintenance of formulas.



117

Bibliography

Bibliografie
[1] Raymond R Panko and Nicholas Ordway. Sarbanes-oxley: What about all the

spreadsheets? arXiv preprint arXiv:0804.0797, 2008.

[2] WL Winston. Executive education opportunities millions of analysts need training
in spreadsheet modeling, optimization, monte carlo simulation and data analysis.
OR MS TODAY, 28(4):36–39, 2001.

[3] USA Bureau of Labor Statistics. Computer and internet use at work in 2003. https:
//www.bls.gov/news.release/pdf/ciuaw.pdf, August 2005. Accessed: 2021-10-08.

[4] Kevin Taylor. An analysis of computer use across 95 organisations in europe, north
america and australasia. https://wellnomics.com/wp-content/uploads/2020/01/
Wellnomics-white-paper-Comparison-of-Computer-Use-across-different-Countries.
pdf, August 2007. Accessed: 2021-10-08.

[5] Jonathan P Caulkins, Erica Layne Morrison, and Timothy Weidemann. Do spread-
sheet errors lead to bad decisions? perspectives of executives and senior managers.
In Evolutionary Concepts in End User Productivity and Performance: Applications for
Organizational Progress, pages 44–62. IGI Global, 2009.

[6] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Supporting professional
spreadsheet users by generating leveled dataflow diagrams. In Proceedings of the
33rd International Conference on Software Engineering, pages 451–460. ACM, 2011.

[7] Raymond R Panko. What we know about spreadsheet errors. Journal of Organiza-
tional and End User Computing (JOEUC), 10(2):15–21, 1998.

[8] Diane Janvrin and Joline Morrison. Using a structured design approach to reduce
risks in end user spreadsheet development. Information & management, 37(1):1–12,
2000.

[9] Raymond R Panko and Richard P Halverson Jr. Are two heads better than one?(at
reducing errors in spreadsheet modeling). Office Systems Research Journal, 15(1):21–
32, 1997.

[10] Felienne Hermans and Emerson Murphy-Hill. Enron’s spreadsheets and related
emails: A dataset and analysis. In Proceedings of the 37th International Conference
on Software Engineering-Volume 2, pages 7–16. IEEE Press, 2015.

[11] Raymond R Panko. Spreadsheet errors: What we know. what we think we can do.
In Proceedings of the Spreadsheet Risk Symposium, 2000.

https://www.bls.gov/news.release/pdf/ciuaw.pdf
https://www.bls.gov/news.release/pdf/ciuaw.pdf
https://wellnomics.com/wp-content/uploads/2020/01/Wellnomics-white-paper-Comparison-of-Computer-Use-across-different-Countries.pdf
https://wellnomics.com/wp-content/uploads/2020/01/Wellnomics-white-paper-Comparison-of-Computer-Use-across-different-Countries.pdf
https://wellnomics.com/wp-content/uploads/2020/01/Wellnomics-white-paper-Comparison-of-Computer-Use-across-different-Countries.pdf


118 Bibliography

[12] Carmen M Reinhart and Kenneth S Rogoff. Growth in a time of debt. American
economic review, 100(2):573–78, 2010.

[13] Thomas Herndon, Michael Ash, and Robert Pollin. Does high public debt consis-
tently stifle economic growth? a critique of reinhart and rogoff. Cambridge journal
of economics, 38(2):257–279, 2014.

[14] Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin Swidan,
andDavidHoepelman. Spreadsheets are code: An overview of software engineering
approaches applied to spreadsheets. In Proceedings of the 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, 2016.

[15] Felienne Hermans and Danny Dig. Bumblebee: a refactoring environment for
spreadsheet formulas. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 747–750. ACM, 2014.

[16] Sandro Badame and Danny Dig. Refactoring meets spreadsheet formulas. In Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Conference on, pages 399–409.
IEEE, 2012.

[17] Jorma Sajaniemi. Modeling spreadsheet audit: A rigorous approach to automatic
visualization. Journal of Visual Languages & Computing, 11(1):49–82, 2000.

[18] AAS Swidan. Challenges of end-user programmers: Reflections from two groups of
end-users. PhD thesis, Delft University of Technology, 2019.

[19] Martin Erwig, Robin Abraham, Irene Cooperstein, and Steve Kollmansberger. Au-
tomatic generation and maintenance of correct spreadsheets. In Proceedings of the
27th international conference on Software engineering, pages 136–145. ACM, 2005.

[20] Sohon Roy, Felienne Hermans, and Arie van Deursen. Spreadsheet testing in prac-
tice. In Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE 24th
International Conference on, pages 338–348. IEEE, 2017.

[21] Bas Jansen and Felienne Hermans. Using a visual language to create better spread-
sheets. Software Engineering Methods in Spreadsheets, 2014.

[22] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In 2013 35th Inter-
national Conference on Software Engineering (ICSE), pages 672–681. IEEE, 2013.

[23] Norman Fenton and James Bieman. Software Metrics: A Rigorous and Practical Ap-
proach, Third Edition. CRC Press, Inc., USA, 3rd edition, 2014.

[24] Robert K Yin. Case study research: Design and methods, volume 5. sage, 2009.

[25] K Anders Ericsson and Herbert A Simon. Protocol analysis: Verbal reports as data.
the MIT Press, 1984.



Bibliografie 119

[26] Alan F Blackwell, Carol Britton, A Cox, Thomas RG Green, Corin Gurr, Gada Ka-
doda, MS Kutar, Martin Loomes, Chrystopher L Nehaniv, Marian Petre, et al. Cogni-
tive dimensions of notations: Design tools for cognitive technology. In International
Conference on Cognitive Technology, pages 325–341. Springer, 2001.

[27] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Detecting code smells
in spreadsheet formulas. Proceedings of the International Conference on Software
Maintenance (ICSM), 2012.

[28] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Detecting and visuali-
zing inter-worksheet smells in spreadsheets. In Proceedings of the 2012 International
Conference on Software Engineering, pages 441–451. IEEE Press, 2012.

[29] Bas Jansen and Felienne Hermans. Code smells in spreadsheet formulas revisited on
an industrial dataset. In Proceedings of the 2015 International Conference on Software
Maintenance and Evolution, pages 372–380. IEEE Press, 2015.

[30] Bas Jansen and Felienne Hermans. The effect of delocalized plans on spreadsheet
comprehension: a controlled experiment. In Proceedings of the 25th International
Conference on Program Comprehension, pages 286–296. IEEE Press, 2017.

[31] B. Jansen, F. Hermans, and E. Tazelaar. Detecting and predicting evolution in spread-
sheets - a case study in an energy network company. In 2018 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), pages 645–654, Sep. 2018.

[32] Bas Jansen and Felienne Hermans. Xlblocks: a block-based formula editor for
spreadsheet formulas. In 2019 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 55–63. IEEE, 2019.

[33] DavidWeintrop, Heather Killen, Talal Munzar, and Baker Franke. Block-based com-
prehension: Exploring and explaining student outcomes from a read-only block-
based exam. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, SIGCSE ’19, pages 1218–1224, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[34] Bas Jansen and Felienne Hermans. The effect of a block-based language on formula
comprehension in spreadsheets. In Proceedings of the 29th international conference
on Software Engineeringth International Conference on Program Comprehension. IEEE
Press, 2021.

[35] Martin Fowler. Refactoring : improving the design of existing code. Addison-Wesley,
Reading, MA, 1999.

[36] FAST Standard Organisation. The fast standard - practical, structured design rules
for financial modelling, version fast02a, 2015.

[37] Felienne Hermans. Analyzing and visualizing Spreadsheets. PhD thesis, PhD thesis,
Software Engineering Research Group, Delft University of Technology, Netherlands,
2012.



120 Bibliography

[38] Jácome Cunha, João P Fernandes, Hugo Ribeiro, and João Saraiva. Towards a catalog
of spreadsheet smells. In Computational Science and Its Applications–ICCSA 2012,
pages 202–216. Springer, 2012.

[39] Bas Jansen. Enron versus euses: A comparison of two spreadsheet corpora. In
Proceedings of the 2nd Workshop on Software Engineering Methods in Spreadsheets,
Florence, Italy, 2015.

[40] A. Bregar. Complexity metrics for spreadsheet models. In Proc. of EuSpRIG ’04,
page 9, 2004.

[41] K. Hodnigg and R.T. Mittermeir. Metrics-based spreadsheet visualization: Support
for focused maintenance. In Proc. of EuSpRIG ’08, page 16, 2008.

[42] Stephen Hole, Duncan McPhee, and Alex Lohfink. Mining spreadsheet complexity
data to classify end user developers. In Proceedings of the 2009 International Confe-
rence on Data Mining (DMIN), pages 573–579, 2009.

[43] Felienne Hermans, Ben Sedee, Martin Pinzger, and Arie van Deursen. Data clone
detection and visualization in spreadsheets. In Proceedings of the 2013 International
Conference on Software Engineering, pages 292–301. IEEE Press, 2013.

[44] Karen J Rothermel, Curtis R Cook, Margaret M Burnett, Justin Schonfeld, Tho-
mas RG Green, and Gregg Rothermel. Wysiwyt testing in the spreadsheet para-
digm: An empirical evaluation. In Software Engineering, 2000. Proceedings of the
2000 International Conference on, pages 230–239. IEEE, 2000.

[45] Felienne Hermans, Martin Pinzger, and Arie van Deursen. ECOOP 2010 – Object-
Oriented Programming: 24th European Conference, Maribor, Slovenia, June 21-25,
2010. Proceedings, chapter Automatically Extracting Class Diagrams from Spread-
sheets, pages 52–75. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[46] Jácome Cunha, Martin Erwig, and Joao Saraiva. Automatically inferring classsheet
models from spreadsheets. In Visual Languages and Human-Centric Computing
(VL/HCC), 2010 IEEE Symposium on, pages 93–100. IEEE, 2010.

[47] Gerald M Weinberg. The psychology of computer programming, volume 932633420.
Van Nostrand Reinhold New York, 1971.

[48] Stanley Letovsky and Elliot Soloway. Delocalized plans and program comprehen-
sion. IEEE Software, 3(3):41, 1986.

[49] Daqing Hou, Chandan Raj Rupakheti, and H James Hoover. Documenting and eva-
luating scattered concerns for framework usability: A case study. In 2008 15th Asia-
Pacific Software Engineering Conference, pages 213–220. IEEE, 2008.

[50] Larry L Constantine. Visual coherence and usability: a cohesionmetric for assessing
the quality of dialogue and screen designs. In Computer-Human Interaction, 1996.
Proceedings., Sixth Australian Conference on, pages 115–121. IEEE, 1996.



Bibliografie 121

[51] DG Conway and CT Ragsdale. Modeling optimization problems in the unstructured
world of spreadsheets. Omega, 25(3):313–322, 1997.

[52] Michael J Pacione, Marc Roper, and Murray Wood. A novel software visualisation
model to support software comprehension. In Reverse Engineering, 2004. Proceedings.
11th Working Conference on, pages 70–79. IEEE, 2004.

[53] Felienne Hermans and Efthimia Aivaloglou. Do code smells hamper novice pro-
gramming? a controlled experiment on scratch programs. In Program Comprehen-
sion (ICPC), 2016 IEEE 24th International Conference on, pages 1–10. IEEE, 2016.

[54] Bas Cornelissen, Andy Zaidman, and Arie Van Deursen. A controlled experiment
for program comprehension through trace visualization. Software Engineering, IEEE
Transactions on, 37(3):341–355, 2011.

[55] Tiago L Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from
benchmark data. In SoftwareMaintenance (ICSM), 2010 IEEE International Conference
on, pages 1–10. IEEE, 2010.

[56] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, and Jeff Skowronek. Approp-
riate statistics for ordinal level data: Should we really be using t-test and cohen’sd
for evaluating group differences on the NSSE and other surveys. In annual meeting
of the Florida Association of Institutional Research, pages 1–33, 2006.

[57] FelienneHermans, Martin Pinzger, andArie vanDeursen. Detecting and refactoring
code smells in spreadsheet formulas. Empirical Software Engineering, pages 1–27,
2014.

[58] Daniel W Barowy, Dimitar Gochev, and Emery D Berger. Checkcell: Data debug-
ging for spreadsheets. In ACM SIGPLAN Notices, volume 49, pages 507–523. ACM,
2014.

[59] Meir M Lehman and Juan F Ramil. Software evolution—background, theory, prac-
tice. Information Processing Letters, 88(1-2):33–44, 2003.

[60] Renato Lima Novais, André Torres, Thiago Souto Mendes, Manoel Mendonça, and
Nico Zazworka. Software evolution visualization: A systematic mapping study. In-
formation and Software Technology, 55(11):1860–1883, 2013.

[61] Harald Gall, Mehdi Jazayeri, Rene R Klosch, and Georg Trausmuth. Software evolu-
tion observations based on product release history. In Software Maintenance, 1997.
Proceedings., International Conference on, pages 160–166. IEEE, 1997.

[62] WenshengDou, LiangXu, Shing-Chi Cheung, ChushuGao, JunWei, and TaoHuang.
Venron: a versioned spreadsheet corpus and related evolution analysis. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion,
pages 162–171. ACM, 2016.

[63] Meir M Lehman. The programming process. internal IBM report, 1969.



122 Bibliography

[64] Meir M Lehman. Programs, cities, students—limits to growth? In Programming
Methodology, pages 42–69. Springer, 1978.

[65] Bryan Klimt and Yiming Yang. The Enron corpus: A new dataset for email classifica-
tion research. In European conference on machine learning, pages 217–226. Springer,
2004.

[66] Liang Xu, Wensheng Dou, Chushu Gao, Jie Wang, Jun Wei, Hua Zhong, and Tao
Huang. Spreadcluster: recovering versioned spreadsheets through similarity-based
clustering. In Mining Software Repositories (MSR), 2017 IEEE/ACM 14th International
Conference on, pages 158–169. IEEE, 2017.

[67] Chris Chambers, Martin Erwig, and Markus Luckey. Sheetdiff: A tool for identi-
fying changes in spreadsheets. In Visual Languages and Human-Centric Computing
(VL/HCC), 2010 IEEE Symposium on, pages 85–92. IEEE, 2010.

[68] Anna Harutyunyan, Glencora Borradaile, Christopher Chambers, and Christopher
Scaffidi. Planted-model evaluation of algorithms for identifying differences between
spreadsheets. In Visual Languages and Human-Centric Computing (VL/HCC), 2012
IEEE Symposium on, pages 7–14. IEEE, 2012.

[69] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[70] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE Transactions
on software engineering, 33(11), 2007.

[71] David Gale and Lloyd S Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9–15, 1962.

[72] John W Creswell and J David Creswell. Research design: Qualitative, quantitative,
and mixed methods approaches. Sage publications, 2017.

[73] R. R. Panko and R. P. Halverson. Spreadsheets on trial: a survey of research on
spreadsheet risks. In Proceedings of HICSS-29: 29th Hawaii International Conference
on System Sciences, volume 2, pages 326–335 vol.2, Jan 1996.

[74] Thomas W Price and Tiffany Barnes. Comparing textual and block interfaces in a
novice programming environment. In Proceedings of the eleventh annual Internati-
onal Conference on International Computing Education Research, pages 91–99. ACM,
2015.

[75] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silver-
man, and Yasmin Kafai. Scratch: Programming for all. Commun. ACM, 52(11):60–67,
November 2009.

[76] Microsoft. Javascript API for Office. https://docs.microsoft.com/en-us/office/
dev/add-ins/reference/javascript-api-for-office. Accessed: 2021-01-29.

https://docs.microsoft.com/en-us/office/dev/add-ins/reference/javascript-api-for-office
https://docs.microsoft.com/en-us/office/dev/add-ins/reference/javascript-api-for-office


Bibliografie 123

[77] N. Fraser. Ten things we’ve learned from blockly. In 2015 IEEE Blocks and Beyond
Workshop (Blocks and Beyond), pages 49–50, Oct 2015.

[78] F. Hermans, E. Aivaloglou, and B. Jansen. Detecting problematic lookup functions
in spreadsheets. In 2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 153–157, Oct 2015.

[79] Efthimia Aivaloglou, David Hoepelman, and Felienne Hermans. Parsing excel for-
mulas: A grammar and its application on 4 large datasets. Journal of Software: Evo-
lution and Process, 29(12):e1895, 2017.

[80] Matt Bellingham, Simon Holland, and Paul Mulholland. A cognitive dimensions
analysis of interaction design for algorithmic composition software. In Proceedings
of Psychology of Programming Interest Group Annual Conference 2014, pages 135–140.
University of Sussex, 2014.

[81] Marty Kauhanen and Robert Biddle. Cognitive dimensions of a game scripting tool.
In Proceedings of the 2007 conference on Future Play, pages 97–104. ACM, 2007.

[82] Franklyn Turbak, David Wolber, and Paul Medlock-Walton. The design of naming
features in app inventor 2. In 2014 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 129–132. IEEE, 2014.

[83] Robin Abraham, Martin Erwig, Steve Kollmansberger, and Ethan Seifert. Visual spe-
cifications of correct spreadsheets. In Visual Languages and Human-Centric Compu-
ting, 2005 IEEE Symposium on, pages 189–196. IEEE, 2005.

[84] Alan F Blackwell and Thomas RG Green. A cognitive dimensions questionnaire
optimised for users. In Proceedings of Psychology of Programming Interest Group
(PPIG) Annual Conference 2000, volume 13, pages 137–154, 2000.

[85] Thomas R. G. Green and Marian Petre. Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework. Journal of Visual Languages &
Computing, 7(2):131–174, 1996.

[86] Thomas Green and Alan Blackwell. Cognitive dimensions of information artefacts:
a tutorial. In BCS HCI Conference, volume 98, pages 1–75, 1998.

[87] David Weintrop and Uri Wilensky. To block or not to block, that is the question:
Students’ perceptions of blocks-based programming. In Proceedings of the 14th In-
ternational Conference on Interaction Design and Children, IDC ’15, pages 199–208,
New York, NY, USA, 2015. ACM.

[88] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn A. Turbak. Lear-
nable programming: Blocks and beyond. CoRR, abs/1705.09413, 2017.

[89] Google. Blockly Toolbox Guide. https://developers.google.com/blockly/
guides/configure/web/toolbox#shadow_blocks. Accessed: 2019-05-06.

https://developers.google.com/blockly/guides/configure/web/toolbox#shadow_blocks
https://developers.google.com/blockly/guides/configure/web/toolbox#shadow_blocks


124 Bibliography

[90] MIT. Scratch Backpack. https://en.scratch-wiki.info/wiki/Backpack. Acces-
sed: 2019-05-06.

[91] Margaret M. Burnett, J. William Atwood, RebeccaWalpole Djang, James Reichwein,
Herkimer J. Gottfried, and Sherry Yang. Forms/3: A first-order visual language to
explore the boundaries of the spreadsheet paradigm. Journal of functional program-
ming, 11(2):155–206, 2001.

[92] Roxanne Leitão and Chris Roast. Developing visualisations for spreadsheet formu-
lae: towards increasing the accessibility of science, technology, engineering and
maths subjects. In Joint Proceedings of the MathUI, OpenMath and ThEdu Workshops
and Work in Progress track at CICM co-located with Conferences on Intelligent Com-
puter Mathematics (CICM 2014), 2014.

[93] A. Sarkar, A. D. Gordon, S. P. Jones, and N. Toronto. Calculation view: multiple-
representation editing in spreadsheets. In 2018 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 85–93, Oct 2018.

[94] Gregor Engels and Martin Erwig. Classsheets: automatic generation of spread-
sheet applications from object-oriented specifications. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering, pages 124–
133. ACM, 2005.

[95] J. Cunha, J. Mendes, J. Saraiva, and J. P. Fernandes. Embedding and evolution of
spreadsheet models in spreadsheet systems. In 2011 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), pages 179–186, Sep. 2011.

[96] Ephraim P Glinert. Towards second generation interactive graphical programming
environments. In Proceedings of IEEE Workshop onVisual Language. IEEE CS Press,
Silver Spring, MD, pages 61–70, 1986.

[97] Matthew Conway, Randy Pausch, Rich Gossweiler, and Tommy Burnette. Alice:
a rapid prototyping system for building virtual environments. In CHI Conference
Companion, pages 295–296. ACM, 1994.

[98] David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li, David C.
Shepherd, and Diana Franklin. Evaluating coblox: A comparative study of robo-
tics programming environments for adult novices. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, CHI ’18, pages 366:1–366:12,
New York, NY, USA, 2018. ACM.

[99] R. Holwerda and F. Hermans. A usability analysis of blocks-based programming
editors using cognitive dimensions. In 2018 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 217–225, Oct 2018.

[100] R. Holwerda and F. Hermans. Towards blocks-based prototyping of web applicati-
ons. In 2017 IEEE Blocks and Beyond Workshop (B B), pages 41–44, Oct 2017.

[101] XLParser web demo. https://xlparser.perfectxl.nl/demo/. Accessed: 2021-01-
29.

https://en.scratch-wiki.info/wiki/Backpack
https://xlparser.perfectxl.nl/demo/


Bibliografie 125

[102] Blockly. https://developers.google.com/blockly. Accessed: 2021-01-29.

[103] SE Kruck. Testing spreadsheet accuracy theory. Information and Software Techno-
logy, 48(3):204–213, 2006.

[104] Philip L Bewig. How do you know your spreadsheet is right? arXiv preprint ar-
Xiv:1301.5878, 2013.

[105] Ruth McKeever, Kevin McDaid, and Brian Bishop. An exploratory analysis of the
impact of named ranges on the debugging performance of novice users. In Pro-
ceedings of the 2009 European Spreadsheet Risk Interest Group (EuSpRiG) Conference,
2009.

[106] Ruth McKeever and Kevin McDaid. How do range names hinder novice spread-
sheet debugging performance? In Proceedings of the 2010 European Spreadsheet Risk
Interest Group (EuSpRiG) Conference, 2010.

[107] Ž. Leber, M. Črepinek, and T. Kosar. Simultaneous multiple representation editing
environment for primary school education. In 2019 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), pages 175–179, 2019.

[108] S. Roy, F.F.J. Hermans, and A. van Deursen. Supporting spreadsheet maintenance
with dependency notification. In Proceedings of 6th International Symposium on End-
User Development (IS-EUD 2017), pages 88–93. Technische Universiteit Eindhoven,
2017.

https://developers.google.com/blockly




127

Curriculum Vitæ

Bas Jansen

1971/12/14 Date of birth in Arnhem, The Netherlands

Education

2013-2022 Ph.D. Student, Software Engineering Research Group,
Delft University of Technology, The Netherlands,
XLBlocks: On the Effect of a Visual Language on Formula Crea-
tion and Comprehension in Spreadsheets
Supervisor: Dr. ir. Felienne Hermans
Promotor: Prof. Dr. Arie van Deursen

2003-2007 Executive Master of Finance and Control,
Post Graduate program for Controllers,
VU University Amsterdam

1990-1996 Master of Science Industrial Engineering & Management,
University of Twente

1984-1990 University Entrance Diploma,
Christelijk Lyceum Arnhem

Experience

2008-today Owner & Information Consultant, InfoAction, Zaltbommel

2004-2008 Business Controller, CIAD, Culemborg

2000-2004 Manager & Senior Consultant, KPMG Optimum, Zaltbommel

1996-2000 Project Manager & Consultant,
Akzo Nobel Information Systems, Arnhem



128 Curriculum Vitæ

Academic Service

Reviewer Computer Languages, Systems & Structures, 2016
Information and Software Technology, 2016
ICSME, 2016
ICSME, 2017
ICSME, 2018
Information and Software Technology, 2018
The Journal of Systems and Software, 2021



129

List of Publications
 11. Bas Jansen, Felienne Hermans: The Effect of a Block-based Language on Formula Compre-

hension in Spreadsheets. In the Proceedings of the 29th International Conference on Program
Comprehension (ICPC). 2021.

 10. Bas Jansen, Felienne Hermans: XLBlocks: A block-based formula editor for spreadsheet for-
mulas. In the Proceedings of the 2019 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Memphis (USA), 2019.

 09. Bas Jansen, FelienneHermans, Edwin Tazelaar: Detecting and Predicting Evolution in Spread-
sheets: A Case Study in an Energy Network Company. In the Proceedings of the 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME), Madrid (Spain),
2018

08. Bas Jansen, Felienne Hermans: The Use of Charts, Pivot Tables and Array Formulas in two
Popular Spreadsheet Corpora. In the Proceedings of the 5th International Workshop on Soft-
ware Engineering Methods in Spreadsheets (SEMS), Lisbon (Portugal), 2018.

 07. Bas Jansen, Felienne Hermans: The Effect of Delocalized Plans on Spreadsheet Comprehen-
sion: A Controlled Experiment. In the Proceedings of 25th International Conference on Pro-
gram Comprehension (ICPC), Buenos Aires, Argentina, 2017.

06. Bas Jansen: Polaris: Providing Context Aware Navigation in Spreadsheets. In the Prod-
ceedings of the 2016 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Cambridge (UK), 2016.

05. Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin Swidan, David
Hoepelman: Spreadsheets are Code: An Overview of Software Engineering Approaches ap-
plied to Spreadsheets. In the Proceedings of the 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Osaka (Japan), 2016.

04. Felienne Hermans, Efthimia Aivaloglou, Bas Jansen: Detecting Problematic Lookup Functi-
ons in Spreadsheets. In the Proceedings of 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), Atlanta (USA), 2015

 03. Bas Jansen, Felienne Hermans: Code Smells in Spreadsheet Formulas Revisited on an Indu-
strial Dataset. In the Proceedings of the 31st International Conference on Software Main-
tenance and Evolution (ICSME), Bremen (Germany), 2015.

02. Bas Jansen, Felienne Hermans: Enron versus EUSES: A Comparison of two Spreadsheet Cor-
pora. In the Proceedings of the 2nd Workshop on Software Engineering Methods in Spread-
sheets (SEMS), Florence (Italy), 2015.

01. Bas Jansen, Felienne Hermans: Using a visual language to create better spreadsheets. In the
Proceedings of the 1st International Workshop on Software Engineering Methods in Spread-
sheets (SEMS), Delft (The Netherlands), 2014.

 Included in this thesis.


