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Abstract A probabilistic projection of sea-level rise uses a probability distribution to represent scientific
uncertainty. However, alternative probabilistic projections of sea-level rise differ markedly, revealing
ambiguity, which poses a challenge to scientific assessment and decision-making. To address the challenge of
ambiguity, we propose a new approach to quantify a best estimate of the scientific uncertainty associated with
sea-level rise. Our proposed fusion combines the complementary strengths of the ice sheet models and expert
elicitations that were used in the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate
Change (IPCC). Under a low-emissions scenario, the fusion's very likely range (5th-95th percentiles) of global
mean sea-level rise is 0.3—1.0 m by 2100. Under a high-emissions scenario, the very likely range is 0.5-1.9 m.
The 95th percentile projection of 1.9 m can inform a high-end storyline, supporting decision-making for
activities with low uncertainty tolerance. By quantifying a best estimate of scientific uncertainty, the fusion
caters to diverse users.

Plain Language Summary A probabilistic projection of sea-level rise uses a probability distribution
to represent uncertainty. Using differing methods, scientists have constructed several alternative probabilistic
projections of sea-level rise. By considering their complementary strengths, we propose to combine the
alternative projections into a single fusion. The fusion quantifies our best estimate of the uncertainty associated
with future sea-level rise. Under a low-emissions scenario, the fusion's very likely range of global mean sea-level
rise is 0.3—1.0 m by 2100. Under a high-emissions scenario, the very likely range is 0.5-1.9 m. The fusion is easy
to interpret and caters to diverse users.

1. Introduction

Probabilistic projections of sea-level rise support climate risk assessment and adaptation planning (Hermans
et al., 2023; Rasmussen et al., 2020; Rodziewicz et al., 2022). Each probabilistic projection uses a probability
distribution to represent uncertainty (Kopp, Garner, et al., 2023). However, probabilistic projections are under-
mined by ambiguity (Text S1 in Supporting Information S1; Ellsberg, 1961; Kopp, Oppenheimer, et al., 2023).
Much of this ambiguity is due to ice sheet processes (Bamber et al., 2022; Fox-Kemper et al., 2021). Ice sheet
models may skillfully represent many important processes, enabling model ensembles to explore the uncertainty
associated with these processes (Goelzer et al., 2020; Payne et al., 2021). However, models may fail to represent
other important processes (Aschwanden et al., 2021). To complement the models, experts can consider the po-
tential impact of these poorly-understood processes (Bamber et al., 2022). To project sea-level rise, scientists
have developed alternative model-based and expert-based methods (Horton et al., 2018). Differing methods drive
differences between alternative probabilistic projections (Kopp, Garner, et al., 2023). We refer to this ambiguity
as “method ambiguity”.

Method ambiguity poses a challenge to scientific assessment (Kopp, Oppenheimer, et al., 2023). For example, the
Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) distinguishes be-
tween medium confidence and low confidence projections (Fox-Kemper et al., 2021). Using the medium confi-
dence projections, the AR6 authors derive a likely range (17th-83rd percentiles). However, considering the
substantial method ambiguity, they note they are unable to derive a very likely range (5th-95th percentiles; Fox-
Kemper et al., 2021, p. 1298). This poses a challenge to decision-making: the absence of a very likely range and
the associated 95th percentile high-end projection undermines planning of activities with low uncertainty
tolerance.
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Figure 1. Expert judgment is integral throughout the process of projecting sea-level rise. Arrows indicate the flow of
information from expert judgment (green arrows) and from probabilistic projections (blue arrows).

To address the challenge of method ambiguity, we propose a new approach to obtain a best estimate of the
scientific uncertainty. We apply an additional layer of expert judgment to combine the complementary strengths
of alternative probabilistic projections (Figure 1). We assume that the medium confidence projections reliably
sample the most-likely central possibilities but underestimate the full range of the uncertainty distribution. We
also assume that the low confidence projections offer valuable information about less-likely possibilities in the
tails of the uncertainty distribution. Our proposed fusion is an informed best estimate of the scientific uncertainty,
conditioned on our assumptions and a specific emissions scenario. We apply our fusion approach under both a
low-emissions and a high-emissions scenario. Using the fusion, we can derive a very likely range and a 95th
percentile projection, supporting decision-making.

2. Methods
2.1. IPCC ARG Projection Workflows

We use data from the IPCC ARG sea-level projections (Fox-Kemper et al., 2021; G. G. Garner et al., 2021; Kopp,
Garner, et al., 2023). The global mean sea level (GMSL) projections are relative to the 1995-2014 baseline period
(Kopp, Garner, et al., 2023). We present GMSL projections under the low-emissions SSP1-2.6 and high-
emissions SSP5-8.5 scenarios (O’Neill et al., 2016).

The ice sheet and glacier components differ across the alternative IPCC AR6 projections. These alternative
projections are referred to as “workflows” (Kopp, Garner, et al., 2023). We use workflows le, 2e, 3e, and 4
(Kopp, Garner, et al., 2023). Workflow le uses Antarctic ice sheet, Greenland ice sheet, and glacier components
from a statistical emulator (Edwards et al., 2021; Fox-Kemper et al., 2021) of the multi-model ensembles of the
Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6; S. Nowicki et al., 2020; S. M. J. Nowicki
et al., 2016) and the Glacier Model Intercomparison Project (GlacierMIP; Marzeion et al., 2020). Workflow 2e
uses different Antarctic ice sheet components, also based on statistical emulation of a multi-model ensemble
(Levermann et al., 2020). Workflow 3e uses different Antarctic ice sheet components, based on results from a
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Figure 2. Quantile functions of GMSL in 2100 under SSP5-8.5. (a) The four alternative IPCC AR6 workflows. (b) The low confidence p-box (which spans the four
workflows), the low confidence outer bound, and the ambiguity-neutral effective distribution (with equal weighting between the lower and upper bounds of the p-box).
(c) The medium confidence mean (the mean of workflows le and 2e), the low confidence outer bound, and the fusion (which combines these distributions using the

weighting function shown in Figure 3).

single Antarctic ice sheet model (DeConto et al., 2021) that includes a representation of marine ice cliff instability
(MICI; Pollard et al., 2015). Workflow 4 uses different Antarctic and Greenland ice sheet components, both
derived from structured expert judgment (Bamber et al., 2019). The structured expert judgment approach differs
from that of an expert survey (Horton et al., 2020), which is not used here.

ARG distinguishes between better-understood medium confidence processes, which can be explored using multi-
model ensembles such as ISMIP6, and poorly-understood low confidence processes, such as MICI (Fox-Kemper
et al., 2021; Kopp, Oppenheimer, et al., 2023; Slangen et al., 2023). Workflows le and 2e are categorized as
medium confidence projections; workflows 3e and 4 are categorized as low confidence projections (Fox-Kemper
et al., 2021; Kopp, Garner, et al., 2023).

2.2. Existing Approaches: Quantile Functions, p-Box, Bounds, and Effective Distribution

We define each probability distribution as a quantile function. A quantile function maps probability to values. A
quantile function is the inverse of a cumulative distribution function, which maps values to probability. Following
the IPCC ARG sea-level projections (G. G. Garner et al., 2021), we use non-parametric quantile functions, defined
at the following probabilities: 0.00 to 1.00 with an interval of 0.01 (corresponding to each integer percentile) and
also at 0.001, 0.005, 0.995, and 0.999 (corresponding to the 0.1st, 0.5th, 99.5th, and 99.9th percentiles).

A p-box (probability box) is an envelope that spans the range of multiple quantile functions (Kopp, Oppenheimer,
et al., 2023; Le Cozannet et al., 2017). The range across the p-box indicates ambiguity (Kopp, Oppenheimer,
etal., 2023), “what is unknown” (Rohmer et al., 2019). There is no upper limit on the number of quantile functions
that can be used to construct a p-box. In this paper, we construct the p-box using four quantile functions that
correspond to the workflows described above: workflows le, 2e, 3e, and 4 (Figure 2b). This approach corresponds
to the low confidence p-box of AR6 (Fox-Kemper et al., 2021).

The p-box is bounded by two quantile functions: a lower bound and an upper bound (Le Cozannet et al., 2017).
The lower bound (L) corresponds to the minimum of the four workflows at each probability level (0<p <1):

L(p) = min{W,(p). Wo(p), W3(p). Wa(p) } (1)

where W, W,, W3, and W, refer to the quantile functions of workflows le, 2e, 3e, and 4. Similarly, the upper
bound (U) corresponds to the maximum of the four workflows:

U(p) = max{W;(p), W1(p), W3(p). Wa(p) } )

Following the IPCC ARG sea-level projections, we derive a low confidence outer bound (B) using the upper bound
for probabilities above the median and the lower bound for probabilities below the median:
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U(p), 0.5<p<1
B(p) = {undefined, p=0.5 3)
L(p),0<p<0.5

At the median (p = 0.5), we adopt a convention that the median is undefined. This differs from the convention
followed by the IPCC ARG6 projections, where the median is defined as the mean of the medians across the
workflows (G. G. Garner et al., 2021). Either way, the outer bound is not continuous across the median
(Figure 2b). This discontinuity informs our decision to specity the median as undefined.

The effective distribution (E,) is a weighted mean of the upper and lower bounds:
E(p)=a-U(p) + (1 -a)-L(p) 4)

where the constant weight a (0 <a < 1) corresponds to a decision-maker's degree of ambiguity aversion (Dubois
& Guyonnet, 2011; Rohmer et al., 2019). The choice of weight a is subjective (Dubois & Guyonnet, 2011). Here,
we aim to provide an ambiguity-neutral estimate of the scientific uncertainty. Therefore, we show results for
a = 0.5 (Rohmer et al., 2019): the ambiguity-neutral effective distribution (E(s) is the mean of the lower and
upper bounds (Figure 2b). However, even this ‘neutral’ choice is subjective and may not align with the ambiguity
aversion of a downstream decision-maker.

2.3. Fusion

We aim to provide a best estimate of the scientific uncertainty by considering the complementary strengths of the
alternative workflows. Our proposed fusion is a quantile-dependent weighted-mean of other quantile functions.
To identify these quantile functions, we ask two questions.

First, which quantile function do we assess to be most reliable in the center of the distribution? In other words,
which quantile function provides the best estimate of the most-likely central possibilities? The two medium
confidence workflows are strong candidates. Multi-model ensembles—such as ISMIP6—may skilfully represent
many important ice sheet processes, enabling these ensembles to explore the uncertainty associated with these
medium confidence processes (Goelzer et al., 2020; Payne et al., 2021). We therefore assume that the medium
confidence workflows reliably sample the most-likely central possibilities, an assumption consistent with AR6
(Fox-Kemper et al., 2021). We have no preference between the two medium confidence workflows. Therefore,
instead of selecting a single workflow, we choose to use the medium confidence mean (M), the mean of the
quantile functions of workflows le and 2e:

Wi(p) + Wa(p)

: )

M(p) =
Second, which quantile function do we assess to be most reliable in the tails of the distribution? In other words,
which quantile function provides the best estimate of the unlikely tail possibilities? The low confidence outer
bound (B) is the strongest candidate. The outer bound incorporates uncertainty from all four workflows, including
the low confidence workflows that account for poorly-understood ice sheet processes that increase the scientific
uncertainty. In contrast, the medium confidence workflows may underestimate the full range of scientific un-
certainty (Aschwanden et al., 2021).

Having answered these questions, we use a weighting function (w) to construct the fusion (F) using the quantile
functions of the medium confidence mean (M) and the low confidence outer bound (B):

F(p) =w(p)-M(p) + (1 —w(p))-B(p) (6)

We now ask, what function should we choose for the weighting function (w)? Considering our assumptions, we
seek a quantile-dependent weighting function that prioritizes the medium confidence mean in the center of the
distribution and low confidence outer bound in the tails. A simple option would be to use a triangular weighting
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'E 'E (Fox-Kemper et al., 2021; Kopp, Oppenheimer, et al., 2023), we use a trap-
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w08 g 3
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206 9 o p
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2 3 : 3 0.17
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t -l -l
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he bound in the tails. This is approximately consistent with the /ikely range of
'g, ARG, which was derived from the medium confidence outer bound (not the
‘o 02 medium confidence mean). By assigning all the weight to the medium con-
= fidence mean in the center of the distribution, we avoid the discontinuity in the
outer bound. This ensures that the fusion is continuous (Figure 2c). We also
0.0 note that the medium confidence mean is contained within the p-box from
0.0 0.2 0.4 0.6 0.8 1.0 which the outer bound is constructed. This ensures that the fusion is
Probability monotonic.

Figure 3. The trapezoidal weighting function (Equation 7) that combines the

The fusion differs from a mixture distribution consisting of a weighted-mean

quantile functions of the medium confidence mean and the low confidence of cumulative distribution functions. We have chosen to mix the quantile

outer bound to produce the fusion (Equation 6).

functions instead, because a quantile-dependent weighted-mean of quantile
functions more accurately reflects our assumptions about the complementary
strengths of the medium confidence and low confidence workflows.

3. Results
3.1. Alternative Workflows, p-Box, and Outer Bound

Model ambiguity drives uncertainty within each workflow (Figure 2a). For example, the ice sheet components of
workflow le are derived from an ensemble of multiple ice sheet models. We do not know which model provides
the most accurate description of real ice sheet behavior. By sampling multiple models through subjective aver-
aging, workflow le effectively treats the multi-model ensemble as a proxy for scientific uncertainty.

Method ambiguity drives difference between workflows (Figure 2a). For example, medium confidence model-
based and low confidence expert-based projections of ice sheet mass loss differ markedly, driving differences
between workflows le and 4: workflow 4 has a higher median and covers a much wider uncertainty range. The
low confidence p-box quantifies the method ambiguity (Figure 2b).

The low confidence outer bound is discontinuous at the median (Figure 2b). The discontinuity corresponds to a
gap in the probability density function (Figure 4). Due to the discontinuity, the outer bound is not a well-behaved
probability distribution.

3.2. Fusion

To provide a best estimate of the scientific uncertainty, the fusion combines information from the medium
confidence and low confidence workflows. The fusion follows the medium confidence mean in the center of the
distribution, whilst simultaneously incorporating the thick upper tail of the low confidence outer bound
(Figures 2c and 4).

The fusion differs from the outer bound and the effective distribution. In contrast to the outer bound, the fusion is a
well-behaved probability distribution, with no discontinuity at the median (Figure 2c). In contrast to the
ambiguity-neutral effective distribution, the fusion has a lower median yet also has thicker tails, because it in-
corporates the full uncertainty range of the outer bound (Fig. S1 in Supporting Information S1).
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Figure 4. Probability density functions of GMSL in 2100 under SSP5-8.5. Each probability density function is derived from
the corresponding quantile function using Monte Carlo sampling (with 1 million random samples drawn from a uniform
distribution of probabilities) and is plotted as a kernel density estimate (using Scott's rule for bandwidth selection and
limiting the range to that of the samples). The median, 83rd, 95th, and 99th percentiles are indicated by vertical lines. The
median of the low confidence outer bound is undefined.

As a probabilistic projection, the fusion provides probabilistic answers. For example, the probability of GMSL
exceeding 1.0 m by 2100 is 4% under the low-emissions SSP1-2.6 scenario (Figure 5). Under the high-emissions
SSP5-8.5 scenario, the probability increases substantially to 16%. These precise probabilities summarize our best
estimate of the scientific uncertainty. In contrast, the lower and upper bounds of the p-box quantify method
ambiguity: across the four alternative workflows, the probability of GMSL exceeding 1.0 m ranges from 0% to 7%
under SSP1-2.6 and from 2% to 51% under SSP5-8.5 (Figure 5).

3.3. Median, Likely Range, Very Likely Range, and High-End Projection

The fusion provides a median projection (50th percentile), likely range (17th—83rd percentiles), very likely range
(5th-95th percentiles), and high-end projection (95th percentile) that are consistent with our assumptions about
the complementary strengths of the alternative workflows. For GMSL in 2100 under SSP1-2.6, the median is
0.4 m, the likely range is 0.3-0.6 m, and the very likely range is 0.3—-1.0 m (Figure 6a; Table 1). Under SSP5-8.5,
the median is 0.8 m, the likely range is 0.6—-0.9 m, and the very likely range is 0.5-1.9 m (Figure 6b; Table 1). For
both scenarios, the likely range and median follow the medium confidence mean (Fig. S2 in Supporting Infor-
mation S1). The very likely range falls between the 5th-95th percentile ranges of the medium confidence mean and
the low confidence outer bound (Fig. S2 in Supporting Information S1).

A high-end projection can be derived from the upper end of the very likely
range (95th percentile). For GMSL in 2100 under SSP5-8.5, this high-end
projection is 1.9 m. This falls between the 83rd and 95th percentiles of the

Probability of GMSL > 1.0 m by 2100

100% low confidence outer bound (1.6 and 2.3 m; Fig. S2 in Supporting

SSP1-2.6 7% Information Sl)
4. Discussion
SSP5-8.5 51%
0% 4.1. A Best Estimate of Scientific Uncertainty
Lower bound Upper bound ’

The fusion provides an informed best estimate of scientific uncertainty,
described probabilistically. To provide this best estimate, we have made

Figure 5. Probability of GMSL exceeding 1.0 m by 2100. Results are shown
for the fusion, the lower bound of the low confidence p-box, and the upper
bound, under both SSP1-2.6 and SSP5-8.5.

transparent assumptions about the complementary strengths of existing pro-
jection workflows.
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Figure 6. Median, likely range, and very likely range of GMSL, derived from the fusion under two emissions scenarios:
(a) SSP1-2.6; (b) SSP5-8.5.

The fusion integrates information from models and experts. Expert judgment is necessary and valuable, informing
model building, model evaluation, and the quantification of scientific uncertainty (Majszak & Jebeile, 2023).
Climate scientists are the experts who are most qualified to characterize, assess, and convey the scientific un-
certainty associated with climate change (Fischhoff & Davis, 2014). Accordingly, expert judgment is integral
throughout the process of producing probabilistic projections (Figure 1; Majszak & Jebeile, 2023). We have
proposed an additional layer of expert judgment in which experts consider the complementary strengths of
alternative projections and identify a corresponding weighting function to produce the fusion. This additional
layer of expert judgment could be provided by assessment panels, such as the IPCC. We anticipate, however, that
consensus may pose a major challenge: Can the panel reach consensus on assumptions about the strengths of
alternative projections and the corresponding weighting function to use? For example, experts may disagree about
which projections to use for the most-likely central possibilities. One possible solution would be to use a weighted
mean of alternative medium confidence workflows, with the weights determined by the votes of different experts.

The fusion is consistent with a Bayesian interpretation of probability. A probabilistic projection describes sci-
entific uncertainty (Millner et al., 2013), a type of epistemic uncertainty (Dubois & Guyonnet, 2011; Hinkel
et al., 2021; Shepherd, 2019): we possess only incomplete and imprecise knowledge of the physical climate
system. A probabilistic projection must therefore be interpreted from a Bayesian (or “subjective”) perspective: the
probability distribution represents “degrees of belief” about possible future outcomes (Hajek, 2019). These de-
grees of belief are conditioned on the assumptions and methods used to construct the probabilistic projection.
Although a probabilistic projection may misrepresent the uncertainty when misinterpreted (Katzav et al., 2021),
we would argue that probabilistic projections remain both justifiable and useful. Although a probability distri-
bution derived from climate models may be distorted, this does not mean that we should abandon a probabilistic
approach—idealized models can still provide valuable information about the real world (Dethier, 2023).

The fusion represents model ambiguity and method ambiguity consistently. Both model ambiguity and method
ambiguity are represented probabilistically. This contrasts with the approach adopted in AR6 (Fox-Kemper
et al., 2021), where model ambiguity was represented probabilistically within each workflow while method
ambiguity was represented using p-boxes.

Table 1
Comparison of Published Projections of GMSL in 2100

GMSL in 2100 under SSP1-2.6, m GMSL in 2100 under SSP5-8.5, m

Source Median Likely range Very likely range Median Likely range Very likely range High-end projection
Fusion 0.4 0.3-0.6 0.3-1.0 0.8 0.6-0.9 0.5-1.9 1.9
IPCC ARG medium confidence (Fox-Kemper et al., 2021) 0.4 0.3-0.6 0.8 0.6-1.0

IPCC ARG low confidence (Fox-Kemper et al., 2021) 0.9 0.6-1.6 1.6 (83rd percentile)
2.3 (95th percentile)

van de Wal et al. (2022) 1.6
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The fusion complements and builds on the p-box approach. A p-box excels at emphasizing ambiguity. The ex-
istence of both a medium confidence p-box and a low confidence p-box in AR6 communicates an additional layer
of ambiguity. However, the substantial ambiguity communicated by the p-boxes may hinder decision-making
(Rohmer et al., 2019). Furthermore, although the p-box is not a probabilistic projection, there is a danger that
users may misinterpret the outer bound as a precise probabilistic projection (cf. van der Pol & Hinkel, 2019).
Additionally, the discontinuity in the outer bound can influence downstream results, such as the projected timing
of decreased coastal protection (Hermans et al., 2023). In contrast to the outer bound, the fusion is a probabilistic
projection and is continuous. We propose that climate scientists consider using both the p-box and the fusion: the
p-box quantifies method ambiguity, while the fusion quantifies a best estimate of scientific uncertainty, condi-
tioned on the scientists' assumptions.

The fusion complements and supports a storyline approach. A physically self-consistent storyline (Shep-
herd, 2019; Shepherd et al., 2018) can be referenced to a specific percentile of a probabilistic projection (Palmer
et al., 2024). For example, we could develop a high-end sea-level storyline based on the 95th percentile of the
fusion under SSP5-8.5.

4.2. Comparison With Other Projections

Importantly, the fusion provides a meaningful median (50th percentile), likely range (17th—83rd percentiles), very
likely range (5th-95th percentiles), and high-end projection (95th percentile). Although any probabilistic pro-
jection can provide percentile ranges, the ranges are only meaningful if we trust the general reliability of the
projection at those percentiles. Scientists must therefore consider their degree of trust in the underlying methods
and assumptions, including our assumptions about the complementary strengths of the alternative workflows. If
the fusion provides an informed best estimate of scientific uncertainty in both the center and the tails of the
distribution, then the fusion provides a meaningful median, likely range, very likely range, and high-end
projection.

These ranges can be interpreted as credible intervals. This differs slightly from the “imprecise” likely range of
ARG, which was derived from the medium confidence outer bound (Fox-Kemper et al., 2021; Kopp, Oppen-
heimer, et al., 2023). Nevertheless, the fusion's median and /ikely range are very similar to those of the [IPCC AR6
medium confidence projections (Table 1). In contrast, the very likely range is novel. By providing a meaningful
very likely range, the fusion addresses the absence of a very likely range in AR6 (Fox-Kemper et al., 2021, p.
1298).

Under SSP5-8.5, the fusion's high-end projection is 1.9 m in 2100 (Table 1). This falls between the IPCC ARG6's
high-end projections of 1.6 and 2.3 m, which were derived from the 83rd and 95th percentiles of the low con-

fidence outer bound. The fusion's high-end projection of 1.9 m is a little higher than van de Wal et al. (2022)'s

high-end projection of 1.6 m, which was based on expert judgment of available evidence. In general, published
high-end projections vary widely: A. J. Garner et al. (2018) reported that the range of published “upper pro-
jections” has expanded to 0.5-2.5 m since 2013. The fusion's high-end projection falls well within this range.

4.3. Meeting the Needs of Diverse Users

The fusion caters to diverse users with differing levels of uncertainty tolerance (Blankespoor et al., 2023; Hinkel
et al., 2019). The assessment of scientific uncertainty is entrusted to sea-level scientists who can make informed
choices about the complementary strengths of alternative projections. The downstream user only needs to choose
which percentiles to use, supporting usability. Even though coastal practitioners may consider only a small
number of decision-oriented scenarios (A. J. Garner et al., 2023; Hirschfeld et al., 2023), such scenarios can be
derived from the fusion by selecting specific percentiles (Kopp, Oppenheimer, et al., 2023). For example, the 95th
percentile is useful when planning activities with low uncertainty tolerance (New Jersey Department of Envi-
ronmental Protection, 2021). The fusion also caters to users who require a full probability distribution of scientific
uncertainty (Fischhoff & Davis, 2014; Rasmussen et al., 2020). For example, the fusion could facilitate more
accurate estimation of coastal adaptation costs (Wong et al., 2022).

However, users must remember that sea-level projections remain subject to ambiguity (Kopp, Oppenheimer,
etal., 2023). To quantify the influence of the method ambiguity, users can conduct sensitivity tests using the lower
and upper bounds of the p-box. Alternatively, users may choose to adopt a “multiple priors” approach
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(Hansen, 2014; Heal & Millner, 2014), treating the fusion as a “benchmark” projection (Text S1 in Supporting
Information S1; Hansen, 2014). To communicate method ambiguity, we recommend that assessment panels
publish either the p-box or individual workflows alongside the fusion.

Users must also remember that the fusion describes scientific uncertainty. The fusion does not describe other
policy-relevant categories of uncertainty (Millner et al., 2013). The fusion does not incorporate decision-makers’
values (Fischhoff & Davis, 2014). The fusion does not circumvent the need for local contextualization of sea-level
assessments (Blankespoor et al., 2023). Beyond assessment, other aspects of the coastal adaptation cycle—
planning, implementation, and monitoring—are essential and require further research (Cabana et al., 2023).
Diverse disciplinary experts, practitioners, and local stakeholders offer complementary perspectives that can
enrich sea-level science, enabling usability (Durand et al., 2022; Kopp et al., 2019).

5. Conclusions

Sea-level projections must cater to users with diverse needs and differing tolerance for uncertainty. Although
many users may choose to use a single estimate of sea-level rise, the sea-level science community can simplify the
choice by providing a single probabilistic projection from which users can select their preferred percentiles
according to their uncertainty tolerance. We have proposed that this single probabilistic projection can be a fusion
of alternative probabilistic projections. To produce the fusion, we have considered the complementary strengths
of alternative projections. The fusion is an informed best estimate of scientific uncertainty, quantified using a
probability distribution. Beyond quantification of uncertainty, the fusion also supports communication of un-
certainty. The fusion caters to diverse users by providing meaningful information in both the center and the tails of
the distribution.

The fusion will need to be updated periodically. We have demonstrated the fusion approach using the current
generation of projections used by the IPCC (Fox-Kemper et al., 2021). As sea-level science, observations, and
projections continue to evolve (A. J. Garner et al., 2018; Slangen et al., 2023), climate scientists will need to
reconsider the strengths of alternative projections.

The fusion approach could be applied in various ways beyond those demonstrated here. We could produce a
fusion using two or more alternative probabilistic projections of any variable. For example, we could produce a
fusion that combines alternative probabilistic projections of Greenland ice sheet mass loss, vertical land move-
ment, or global mean surface temperature. Most intriguingly, we could produce a fusion that combines alternative
emissions scenarios. We intend to explore this topic further in future research.

Data Availability Statement

We downloaded the IPCC ARG sea-level projections from https://doi.org/10.5281/zenodo.6382554 (G. G. Garner
et al., 2021). We have published our analysis and figure-production code at https://doi.org/10.5281/zenodo.
13627262 (Grandey, 2024).
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