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Abstract

An approach to data-driven closure modelling in the framework of variational multiscale method
for large eddy simulation is presented. A turbulent channel flow at the friction Reynolds number
of 180 is used as a case study. Challenges in the modelling linked to the continuity closure terms
force the scope of the study to be narrowed to only momentum Navier-Stokes equations.

By using integrated forms of the resolved flow solution to train a multi-layer perceptron closure
model, high a priori correlations with true closure terms can be achieved. Validation of the data-
driven closure models a posteriori shows that the models are suitable for the computation of the
velocity field, but fail to obtain a physical pressure solution. Accumulation of the model error
leads to a decay of the kinetic energy of the mean flow, while the resolved turbulent fluctuations
become excessively energized. Novel techniques such as data augmentation, mini-batch sum loss
and filtering of the closure terms are presented and evaluated via large eddy simulations.
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Summary

In this thesis, an approach to data-driven closure modelling in the framework of variational mul-
tiscale method for large eddy simulation is presented. Using a turbulent channel flow at 𝑅𝑒𝜏 = 180
as a case study, projections of flows obtained by direct numerical simulations are used as training
data for a multi-layer perceptron closure model. By using integrated forms of Navier-Stokes com-
ponents of the resolved flow, high a priori correlations with exact closure terms can be achieved
through a practically viable neural network prediction. Chapter 1 presents the state-of-the-art
for current attempts at data-driven modelling of closure terms for multiscale simulations of fluid
flows. In chapter 2, a detailed description of variational multiscale method in fluid dynamics con-
text is given, as well as preliminary discussion on multi-layer perceptron modus operandi. After-
ward, in chapter 3, a few stabilization methods are proposed, that can possibly alleviate stability
issues present in large-eddy simulations with data-driven closure. A detailed description of data
processing and neural network training is provided in chapter 4, as well as additional considera-
tions for data-driven modelling motivated by the complexity of fluid flow simulation. In chapter 5,
the first application of data-driven closure modelling to LES simulation is presented, together with
the issues in corrector pass loop convergence due to the continuity closure predicted by a machine
learning model. Because of these issues, the scope of the problem under investigation was limited
to the three-dimensional Navier-Stokes momentum equations, with the pressure solution obtained
directly from the DNS projection. In chapter 6, a selection of simulations with data-driven closure
is presented, together with a brief discussion of their stability and accuracy. Next, in chapter 7
a more thorough examination of flow stability and kinetic energy evolution is conducted for the
selected closure models. Conclusions and answers to the research questions of this thesis, as well
as recommendations for future work, are provided in the ultimate chapter 8.
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1
Introduction

In this thesis, a non-standard approach to the idea of Large Eddy Simulation (LES) is taken - in-
stead of conventional filtering techniques, explicit projection is defined to separate the resolved
and non-resolved scales. This technique is called the variational multiscale method (VMS method),
and was initially developed to gain further insight into stable computational approaches to general
multiscale phenomena [1], i.e., physical phenomena where a variety of relevant physical scales are
present. Later on, this approach was tailored specifically to LES of turbulent flows, where a sepa-
ration is made between large resolved scales and small modelled scales of turbulent fluid motions
[2]. From the 2000s to present time the method has gained maturity, and a comprehensive review
of the VMS method and related mathematical concepts can be found in a work by Hughes et al.
[3]. There are several reasons to consider VMS method instead of traditional LES. First and fore-
most, the former avoids the filtering-differentiation commutativity issue, which is described in
depth in the contribution of Dunca et al [4]. Secondly, LES applied to wall-bounded flows necessi-
tate ad hoc fixes such as Van Driest damping for non-dynamic eddy viscosity SGS models. Lastly,
most SGS stress models do not allow for backscatter. The first applications of the VMS method to
wall-bounded flows show increased accuracy compared to consistent LES application [2]. It should
be noted that the first VMS simulations of turbulent flows employed primitive sub-grid scale (SGS)
stress models, and it is expected that leveraging more sophisticated models would further augment
the accuracy of the method.

The variational multiscale method builds upon the finite element method, which was originally
developed to solve structural mechanics and elasticity problems in civil and aerospace engineer-
ing. Its mathematical approach makes it an optimal tool for such problems since the underlying
physical equations for structural problems are often linear and self-adjoint. In such a case, the
Galerkin procedure of subdivision of continuous domain into finite elements and converting the
strong form of the partial differential equation into weak form is sufficient to arrive at an opti-
mal solution. However, for fluid dynamics problems, the convective term ∇ · (u ⊗ u) is non-linear,
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2 Chapter 1. Introduction

and straight-forward application of the Galerkin procedure results in an unstable solution [5]. For
these reasons, the popularity of finite element method in structural mechanics did not spur fluid
dynamics practitioners to adopt it. Instead, historically finite difference methods were used, and
later on these were replaced by finite-volume formulations. Finite-volume method has an advan-
tage of satisfying conservation laws over the discrete domain [6], which is an advantage in regard
to the physical fidelity of the model. Finite-difference methods were the first attempt at continuous
problems of fluid dynamics.

An important consequence of these historical developments is that closure models developed
for the simulation of turbulent flows were developed and applied without paying much regard
to the method of discretization. The Smagorinsky model, which is nowadays implemented in ev-
ery finite-volume LES solver, was originally written for a finite-difference model [7]. In contrast,
the variational multiscale framework allows for the unification of the discretization and sub-grid
model errors into a single VMS model error, which is only dependent on the closure term model.
This allows for more accurate and physical simulations of the turbulent flows. It is worth noting
that the idea of variational multiscale method for turbulence modelling has some similarities with
implicit LES, where discretization is carefully chosen in such a way that truncation error acts as
sub-grid scale model [8]. At the same time, traditional closure models applied to large-eddy or
Reynolds-averaged formulations of Navier-Stokes are known to be dissipative and improve the
stability of the simulation at the cost of its accuracy [9, 10]. Thus, if one wishes to develop a new
closure model for VMS formulations of Navier-Stokes equations, leveraging the orderly mathemat-
ical formulation for increase in accuracy, difficulties in online simulation stability are expected.

It is worth noting that this problem of stability is not unique to the VMS methodology. In fact,
most researchers attempting to use neural networks as a means of RANS or LES closure mod-
elling have to deal with stability and divergence of their simulations sooner or later. Vollant et al.
[11] considered a problem of passive scalar mixing in a plane jet and found that a multi-objective
optimization approach can lead to increased stability when compared to only ANN SGS closure
estimation. Beck et al. [12] encounters high-frequency error accumulation with ANN closure for
isotropic turbulence.

The precise mathematical framework of the VMS method shows that the unresolved component
of the solution is driven by a functional of the strong residual of the resolved solution and the
resolved solution itself [13]. The dependence of fine-scale error on the coarse-scale residual is
governed by a fine-scale Green’s function [1]. While this has been calculated analytically for a
number of simple problems [14], exact evaluation for the Navier-Stokes equations is not available.

This functional is thus responsible for both truncation and closure errors, and finding a suc-
cessful model for it can allow for significant gains in simulation fidelity. The working hypothesis is
that multi-layer perceptron [15] (MLP) neural network is a suitable tool for the approximation of
such a functional. Although MLP’s and other types of neural networks have gained immense pop-
ularity in data processing, there is limited experience in applying them to numerical modelling of
physical phenomena. One important difference is that typically the output of a neural network is
not "recycled" back into it. For example, if a neural network is used to recognize text or categorize
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images, it is only evaluated once and is not affected by an error in its prediction. However, if an
ANN SGS model is inserted into an LES solver, ANN-induced errors will cause the solution vector
to deviate. If inside the solution loop these errors accumulate, this will quickly lead to simulation
divergence and crash. Thus, a key desirable property of such ANN closure model is that it must
dampen the errors present in the solution that were induced by an imperfect ANN prediction of the
closure terms.

Initial investigations of ANN SGS models for the VMS formulation were performed on the model
problem of one-dimensional turbulence governed by forced Burgers equation [16, 17, 18, 19]. A
brief overview of the previous work at Delft University of Technology is presented here. Robijns
[18] explored the application of data-driven closures to a variational multiscale framework by con-
sidering a one-dimensional Burgers equation, with either constant or sinusoidal forcing applied. It
was found that MLP ANN can adequately describe the functional relationship between large-scale
input features and fine-scale closure terms. Janssens [16] built upon work of Robijns by applying
it to a more complex problem of atmospheric turbulence and general circulation models, still in
an one-dimensional setting but with a forcing term obtained directly from large-eddy simulations
of convective boundary layers. Although this confirmed the model’s success in offline evaluations,
two key instabilities were identified that destabilizes the simulation in an online setting. The first
one is the so corrector-pass instability (CPI), which manifests during the iterative minimization of
the coarse scale’s weak residual in the Newton root-finding procedure. The introduction of ANN
leads to additional spurious roots in the solution space that tarnish the convergence of the New-
ton loop and return non-physical local minima. The second, long-time, instability (LTI) arises from
the poor ability of ANN to generalize - in an online setting, once model-induced errors begin to
accumulate, the ANN is not able to cope with them and the solution vector diverges. Both these in-
stabilities need to be resolved for the model success in online simulations. Pusuluri [19] explored
potential solutions by augmenting the training data set with white or Gaussian noise. An increase
in stability was found, at the cost of the closure model accuracy, and Gaussian noise was found to
perform better than white noise augmentation. Rajampeta [17] further explored other stabiliza-
tion strategies. In order to address CPI, a lagged feature set (LFS) strategy was proposed, in which
the feature set for the ANN is evaluated from the previous time-step, effectively decoupling the
ANN evaluation and corrector pass loop within the time-step. It is presumed that this negatively
affects the ANN accuracy, as there is a lag introduced between the flow solution used to obtain the
ANN features and the flow solution being updated within the corrector pass loop. This effect would
be more profound at high Courant-Friedrichs-Lewy numbers. Another strategy that was proposed
is backscatter limiting, which effectively disables backscatter from the fine scale to coarse scales.
This had a positive effect on stability but eliminates one of the advantages of the VMS formula-
tion. Successful large-eddy simulations of one-dimensional turbulent flows were obtained with
backscatter limiting and lagged feature set strategies applied to ANN closure.

Bettini [20] was the first to build upon the work of aforementioned authors and apply it to a far
more ambitious problem of modelling wall-bounded three-dimensional turbulence in a channel
flow. In addition to using a deeper network architecture, they also utilized the LFS strategy. Bet-
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tini used distinct networks depending on the element shape function used to weigh the solution.
By implementing additional loss functions for force-free weak-residual error, a solver adherence
penalty, and an energy transfer penalty, high correlations (𝜌 > 0.90) were achieved for the mo-
mentum and continuity closure terms. However, a large model architecture was adopted, with 8
varying MLP models, one for each element shape function. Each MLP model had 5 hidden layers
with 600 neurons. Additional computational cost was introduced by using a large spatial features
stencil, consisting of 5 elements for momentum and 8 for continuity. For each element, coarse-scale
features over the element had to be integrated to pass them forward as model input.

It was discovered by Bettini that closure terms introduced by the ANN can strongly affect the
high-frequency components of the solution. To address these possible instabilities, Bettini has de-
veloped an energy-biased training approach. It uses an augmented Lagrangian method to trans-
form a constrained objective function into an unconstrained problem that can be readily tackled
with the current training methodology. The objective function penalizes the ANN model when it
predicts backscatter or dissipation values that exceeded the truth values obtained from projected
DNS. This constraint was implemented on element level, which is significantly more restrictive
than the global constraint, as now all the weak-forms (· , ·)𝐸𝑛 for all the elements and shape func-
tions have to satisfy the constraint, rather their net global sum (· , ·)Ω. Additionally, a 𝐻1 projector
was used to map a DNS solution to an LES solution, as in this thesis. However, the efficacy of such
an approach is not clear as no verified a posteriori evaluation has been carried out.

In this thesis, the primary subject of investigation will be the Navier-Stokes momentum equa-
tions, with the continuity equation omitted. This is because continuity closure has been discovered
to be particularly challenging to model with the data-driven methods used in this study, and is ex-
plained in more detail in chapter 5.

The main objective of this thesis is to develop effective strategies for long-term stabilization of
VMS simulations of incompressible Navier-Stokes momentum equations with data-driven closure,
as well as reducing the computational cost associated with training and executing of MLP closure
models. This leads to the following research objective:

Research Objective
To address the long-term instabilities and improve the practicality of neural network

fine-scale (i.e., sub-grid scale) model in variational multiscale framework for
incompressible Navier-Stokes momentum equations, through application to turbulent

channel flow.

The following research questions have been formulated to achieve the objective:

• RQ-1 - How is the stability of the variational multiscale flow solution affected by ANN closure?

– RQ-1a How does the flow deviate from projected DNS solution when subject to ANN
closure?

– RQ-1b Can long-term instabilities (LTI’s) be adequately addressed through additional
filtering of the DNS solution during offline ANN training?
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– RQ-1c Can LTI’s be addressed through introduction of new accuracy metrics during
offline network training?

• RQ-2 - How can the training and run-time computational cost of the neural network be re-
duced?

– RQ-2a What ANN features can be discarded without compromising accuracy?
– RQ-2b Can the feature set stencil be compacted?
– RQ-2c Can the training routine be optimized?

• RQ-3 - How does the ANN model respond to numerical refinement?

– RQ-3a What is the effect of mesh size on model accuracy and stability?
– RQ-3b What is the effect of CFL number on model accuracy and stability?

• RQ-4 - What is the effect of data augmentation on network accuracy and stability?





2
Methodology

In this chapter, the variational multiscale method and its formulation of scale separation are de-
scribed. Specifically, section 2.1 describes the governing Navier-Stokes equations for an incom-
pressible flow. Section 2.2 describes the Galerkin method formulation, while section 2.3 introduces
the scale separation and LES approach. Next, section 2.4 explains the role of unresolved-scale
Green’s function, while section 2.5 describes the finite-element spatial and temporal discretiza-
tion. Section 2.6 introduces the resolved-scale system in its final form. Section 2.7 provides some
preliminaries and a brief introduction to data-driven modelling. Section 2.8 provides a high-level
overview of the ANN closure model data curation, training and validation, and lastly section 2.9
describes the validation of the LES solver used and an alternative definition of the closure terms.

2.1. Incompressible Navier-Stokes equations and problem definition
The laws of motion for a continuum Newtonian fluid at sufficiently small Mach numbers can be
described by the incompressible Navier-Stokes equations, viz:

∇ · u = 0, x ∈ Ω (2.1)

𝜕u
𝜕𝑡

+ ∇ · (u ⊗ u) + ∇𝑝 − 𝜈Δu = f x ∈ Ω (2.2)

where u(x, 𝑡) = [𝑢 𝑣𝑤]𝑇 is the velocity vector, with x(𝑥, 𝑦, 𝑧) being the coordinate vector and 𝑡 the
time coordinate, 𝑝(x, 𝑡) is the kinematic pressure (static pressure divided by fluid density), ⊗ is the
tensor product ( [𝑢⊗𝑣] 𝑖 𝑗 = 𝑢𝑖𝑣 𝑗), 𝜈 is constant positive kinematic viscosity, f is the forcing term, and
Δ is the Laplace operator. The streamwise direction and velocity are denoted by 𝑥, 𝑢, respectively,
spanwise by 𝑧, 𝑤 and wall-normal by 𝑦, 𝑣. Consider a channel domain Ω = 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧, where
friction velocity 𝑢𝜏 =

√︁
𝜏wall/𝜌 and channel half-height 𝛿 are chosen as characteristic velocity and

length scales. The channel length is denoted by 𝐿𝑥 = 6.0𝛿, the span by 𝐿𝑧 = 4.0𝛿 and the height by
𝐿𝑦 = 2.0𝛿. From here onwards, the 𝛿 symbol is dropped for brevity in notation. The geometry is

7
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shown in Figure 2.1. The spatial boundary 𝜕Ω consists of the 6 edge faces: two walls at 𝑦 = 0 and
𝑦 = 2.0, and two coupled pairs of periodic boundary conditions at 𝑥 = 0, 𝑥 = 6.0 and 𝑧 = 0, 𝑧 = 4.0.

x−z

y

Lx

Ly

Lz

Figure 2.1: Turbulent Channel Flow Geometry. White planes denote periodic boundary conditions, gray planes denote
wall boundaries.

Of interest is the time evolution of the flow variables in this domain, namely the solution vector
U = [u; 𝑝] (x, 𝑡).

2.2. Galerkin formulation
The continuous problem defined through equations 2.1 and 2.2 on Ω is cast into the integral for-
mulation by following the Galerkin procedure as described in [21] and [13]. First, differential
operators LM ,LC are introduced:

LM (u, 𝑝) = 𝜕u
𝜕𝑡

+ ∇ · (u ⊗ u) + ∇𝑝 − 𝜈Δu (2.3)

L𝐶 (u) = ∇ · u (2.4)

Then eqs. (2.1) and (2.2) can be written as:

LC (u) = 0, x ∈ Ω (2.5)

LM (u, 𝑝) − f = 0, x ∈ Ω (2.6)

The space of solution functions is denoted by V𝑠 (Ω), and the space of weighting functions by
V𝑤(Ω). Please note that these spaces are infinite-dimensional, and the solution U lives in the space
V𝑠, i.e., U(x, 𝑡) ∈ V𝑠.

The objective of the continuous formulation is to find such U = [u; 𝑝] (x, 𝑡) that the weak formu-
lation of incompressible Navier Stokes is satisfied for all weighting (test) functions W = [w; 𝑞] ∈
V𝑤, assuming an initial condition U0 ∈ Ω is provided:

(w,LM (u, 𝑝))Ω − (w, f)Ω = 0

(𝑞,L𝑐 (u))Ω = 0 (2.7)
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Alternatively, equation 2.7 can be expressed in terms of the linear form L, bilinear form B1, trilin-
ear form B2, all defined as follows:

L(W) =
(
w, f

)
Ω

B1(W,U) =
(
w,

𝜕u
𝜕𝑡

+ ∇𝑝 − 𝜈Δu
)
Ω

+
(
𝑞,∇u

)
Ω

B2(W,U,V) = (w, (u · ∇)v)Ω

B1(W,U) + B2(W,U,U) − L(W) = 0 (2.8)

This formulation is used as it streamlines the decomposition of the solution space V𝑠, which is
the next item of discussion.

2.3. Scale separation
The key idea of the variational multiscale method lies in invoking the scale separation, or equiva-
lently the separation of numerical approximation and error of the solution explicitly ab initio. The
space of approximation functions V𝑠 (Ω) is separated into resolved-scale solution space V𝑠, which
is finite-dimensional, and unresolved-scale solution space V′

𝑠 , which is infinite-dimensional:

V𝑠 = V𝑠 ⊕ V′
𝑠 (2.9)

The resolved-scale solution space V𝑠 is defined through the discretization introduced in the finite
element formulation. This space contains the numerically resolved resolved-scale solution U =

[u; 𝑝], while the "error" in the solution U′ = [u′; 𝑝′] lies in the unresolved-scale space V′
𝑠 . The

scale separation of U and U′ is visualized for 1-dimensional scenario in fig. 2.2a. The separation of
scales is also conducted for the weighting function space:

V𝑤 = V𝑤 ⊕ V′
𝑤, (2.10)

withV𝑤 being the resolved-scale weighting function space, which is equivalent toV𝑠 in this thesis
(as Bubnov-Galerkin approach is implemented), andV′

𝑤 is the unresolved-scale weighting function
space.

For an explicit definition of the resolved and unresolved solution a resolved-scale projector is
defined, which finds a resolved solution U as a minimum of a specified norm N|U,U|:

U = projV𝑠

N U (2.11)

It should be noted that this projector also accounts for the spatial discretization of the resolved-
scale solution U, as the basis functions used to reconstruct the solution live in space V𝑠. The choice
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x

f(x)

u(x)

u′(x)

u(x)

xi−1 xi xi+1 xi+2

(a) Scale decomposition in 1-D.

x

f(x)

ϕi ϕi+1
1

∆x
Eiφi,1

φi,2

xi−1 xi xi+1 xi+2

(b) Shape and basis functions for element 𝐸𝑖

Figure 2.2: Scale decomposition and discretization.

of basis functions will be further explained in section 2.5.

W = projV𝑠

N W (2.12)

Resolved-scale projector also implicitly defines an unresolved-scale projector from the difference
with the identity projector:

U′ = U − U =

(
iden − projV𝑠

N

)
U

W′ = W − W =

(
iden − projV𝑠

N

)
W

Now that the discretization of the continuous problem has been introduced through the scale
separation, separate resolved- and unresolved-scale equations can be defined from equation 2.8,
through substitution of U = U + U′:

B1(W,U + U′) + B2(W,U + U′,U + U′) − L(W) = 0 (2.13)

Using the linearity of functional forms, eq. (2.13) is equivalent to:

B1(W,U) + B2(W,U,U) − L(W) =

− B1(W,U′) − B2(W,U,U′) − B2(W,U′,U) − B2(W,U′,U′)

As this holds for any W ∈ V𝑤, separate systems of partial differential equations can be derived
for resolved-scale quantities, with W ∈ V𝑤 ⊂ V𝑤, and for unresolved-scale quantities with W′ ∈
V′
𝑤 ⊂ V𝑤:
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B1(W,U + U′) + B2(W,U + U′,U + U′) − L(W) = 0

B1(W′,U + U′) + B2(W′,U + U′,U + U′) − L(W′) = 0

Applying linearity and re-arranging:

B1(W,U) +B2(W,U,U) −L(W) = −B1(W,U′) −B2(W,U,U′) −B2(W,U′,U) −B2(W,U′,U′) (2.14)

B1(W′,U′) + B2(W′,U′,U′) − L(W′) = −B1(W′,U) − B2(W′,U,U′) − B2(W′,U′,U) − B2(W′,U,U)
(2.15)

Equation 2.14 is an exact equation for the resolved-scales, while equation 2.15 is an exact equa-
tion for the unresolved-scale component of the solution.

2.4. Unresolved-scale Green’s function
Equation 2.15 can be rewritten to show that the unresolved-scale component is forced by its strong
residual of the resolved solution, i.e., Ress

(
U
)
= LM (u, 𝑝) + LC (u) − f:

B1(W′,U′) + B2(W′,U′,U′) + B2(W′,U,U′) + B2(W′,U′,U) = −(W′,Res𝑠
(
U
)
) (2.16)

This means that the unresolved-scale component is determined by a functional 𝑓 ′,
U′ = 𝑓 ′

(
U,Res𝑠

(
U
) )

. This functional is closely related to the idea of unresolved-scale Green’s func-
tion 𝑔′, see eq. 65 in [3]:

U′ = −
∫
𝑄
𝑔′ Res𝑠

(
U
)
𝑑𝑄 (2.17)

For a detailed overview of the derivation of the unresolved-scale Green’s function, reader is
referred to work by Hughes et al. [3]. In the given problem, it is important to realize that nei-
ther the functional 𝑓 ′ nor the unresolved-scale Green’s function 𝑔′ can be determined exactly.
Limited insights can be gained from analytically derived unresolved-scale Green’s functions for
simpler partial differential equations. Hughes and Sangalli [14] have observed that locality of the
unresolved-scale Green’s function (in other words, how spread out is the influence of the strong
residual Res𝑠

(
U
)

on the unresolved-scale component U′) strongly depends on the projector used to
define the resolved-scale component in eq. (2.11). They have found that 𝐿2 norm projection leads
to strongly non-localized unresolved-scale Green’s function, while 𝐻1 projector leads to a more
localized 𝑔′, see figure 2.3. The definition of this 𝐻1 projector is given in equation 2.19. In short, it
considers the 𝐿2 norm of both the solution and its spatial gradient. The unresolved-scale Green’s
function, which is unknown for Navier-Stokes equations, is only helpful in the current context to
provide limited insight onto the spatial dependence of U′ due to the strong residual of the resolved
solution. In this thesis, the 𝐻1 projector is used, due to the improved locality of U′ observed for
two-dimensional problems, which might also be the case for the Navier-Stokes equations.

It should be noted that only integrated forms of U′ directly contribute to the evolution of the
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resolved-scale solution, not U′ directly. The precise definition of these integrals is introduced in
section 2.6. The spatial dependence of U′ is only discussed here to motivate the choice of projector
used to define the coarse-scale solution.

∥𝑣∥𝐿2 (Ω) =
(∫

Ω
|𝑣|2𝑑Ω

)1/2
= (𝑣, 𝑣)1/2Ω (2.18)

∥𝑣∥𝐻1 (Ω) =
(
∥𝑣∥2

𝐿2 (Ω) + ∥∇𝑣∥2
𝐿2 (Ω)

)1/2
(2.19)

Figure 2.3: Unresolved-scale Green’s function for based on the 𝐻1 seminorm projector (left) and 𝐿2 projector (right)
for a two-dimensional advection–diffusion problem. The global Péclet number is 𝑃𝑒 = 1000. Adapted from [3], figs.

27-28.

2.5. Space and time discretization
Further steps need to be taken to reduce the equation 2.14 into a fully discrete system. The finite
element method primarily consists of separating the continuous problem domain into a multitude
of discrete finite elements, over which the solution is defined as a product of a scalar coefficient
and a shape/basis function. While some VMS applications use a time-space finite-element method,
in the current work, a semi-discrete approach is taken, where the finite-element method is only
employed for the spatial discretization. For the time discretization of the resolved-scale equation,
the time derivative term 𝜕u/𝜕𝑡 is computed using the backward finite-difference second-order ac-
curate scheme, viz: ����𝜕u

𝜕𝑡

����
𝑛

=
1
2Δ𝑡

��3u𝑛 − 4u𝑛−1 + u𝑛−2
�� + O(Δ𝑡2), (2.20)

where u𝑛 is the discretized resolved-scale solution of the velocity field at time 𝑡 = 𝑛Δ𝑡. Addition-
ally, the error term O(Δ𝑡2) is also part of the closure term and is thus evaluated implicitly by the
closure terms of the resolved system. It should be noted that the pressure field does not require a
temporal discretization.
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The spatial discretization, which is needed for the complete resolved solution U (both pressure
and velocity fields) is introduced as follows:

U𝑡=𝑡𝑛 =

𝑁3
elem∑︁
𝑖=1

a𝑖 (𝑡, x𝑖)𝜙𝑖 (x, x𝑖), (2.21)

with 𝜙𝑖 (x, x𝑖) being the basis function centered at x𝑖 , the node coordinates of element 𝑖. Trilin-
ear spatial discretization is used, thus the basis function is defined as follows:

𝜙𝑖 (x, x𝑖) = Λ
(𝑥 − 𝑥𝑖

Δ𝑥

)
Λ

(
𝑦 − 𝑦𝑖
Δ 𝑦

)
Λ
( 𝑧 − 𝑧𝑖

Δ𝑧

)
, (2.22)

where Λ(𝑥) = max(1− |𝑥 |, 0) is a regular hat function, and Δ𝑥, Δ 𝑦, Δ𝑧 are the constant element
width in 𝑥−, 𝑦− and 𝑧−directions, as a homogeneous LES mesh is used. The discretization can alter-
natively be defined through a combination of element shape functions, which do not span multiple
elements but are contained within a single mesh element. This is advantageous during the assem-
bly process of the discrete system. Considering a 1D case with only Λ

( 𝑥−𝑥𝑖
Δ𝑥

)
, both basis functions

(𝜙𝑖 , 𝜙𝑖+1) and element shape functions (𝜑𝑖,1, 𝜑𝑖,2) are shown in fig. 2.2b. For a three-dimensional
case with homogeneous cuboid mesh elements, there will be 8 element shape functions per ele-
ment, in total 8 ·𝑁3 element shape functions for the whole mesh (assuming an equal number 𝑁 of
elements in 𝑥, 𝑦 and 𝑧 directions).

2.6. Resolved-scale system
As was mentioned previously in section 2.4, the LES closure problem in the VMS framework com-
prises the approximation of quantities that drive the resolved-scale equation 2.14, which is rewrit-
ten here with operator notation. Importantly, one is not interested in U′ itself, but rather the inte-
grated forms of the unresolved-scale solution, which force the resolved solution U. These spatial
integrals of U′ are denoted by F ′, and are defined as follows:

F ′ = F ′(U,Res𝑠 (U)) = −B1(W,U′) −B2(W,U,U′) − B2(W,U′,U)︸                                  ︷︷                                  ︸
Cross stress

−B2(W,U′,U′)︸             ︷︷             ︸
Reynolds stress

(2.23)

Then the resolved-scale equation 2.14 can be rewritten as follows:

B1(W,U) + B2(W,U,U) = L(W) + F ′(U,Res𝑠 (U)) (2.24)

Alternatively, equation 2.24 can be rewritten with operator notation, introducing new LM
′

and LC
′ operators that represent the total closure of the momentum and continuity equations,

respectively:

LM
′(u,u′, 𝑝′) = LM (u′, 𝑝′) + ∇ ·

(
u′ ⊗ u

)
+ ∇ ·

(
u ⊗ u′)
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LM
′(u,u′, 𝑝′) = 𝜕u′

𝜕𝑡
+

Reynolds term︷          ︸︸          ︷
∇ · (u′ ⊗ u′) +

Cross term︷                             ︸︸                             ︷
∇ ·

(
u′ ⊗ u

)
+ ∇ ·

(
u ⊗ u′)︸                                                  ︷︷                                                  ︸

convective term

+∇𝑝′ − 𝜈Δu′ (2.25)

LC
′(u′) = ∇ · u′ (2.26)

This allows to rewrite equation 2.24 as separate resolved-scale momentum and continuity equa-
tions, viz.: (

w,LM (u, 𝑝)
)
𝑄 =

(
w, f

)
𝑄 −

(
w,LM

′(u,u′, 𝑝′)
)
𝑄(

𝑞,LC (u)
)
𝑄 = −

(
𝑞,LC (u′)

)
𝑄 (2.27)

It should be noted that these equations are solved at every LES time step, with the time-derivative
term obtained through equation 2.20.

2.7. Data-driven modelling of the closure terms
The approach adapted in this thesis is to model the LM

′ and LC
′ terms by using a multi-layer per-

ceptron (MLP) architecture of a neural network with resolved-scale terms as input features. Neural
networks have been recently used (usually with partial success) for a wide range of CFD-related
problems, such as RANS or LES closure modelling, deconvolution operation in LES, dynamic co-
efficient procedures, and others [9]. As this is a relatively young effort, improvements in such
approaches are expected, and they can potentially break the deadlock in turbulence modelling
and lead to new physical insights. Even more recently, new efforts have been made to embed ex-
isting physical insight into the architecture of the neural network and its associated data curation
[22]. For example, Ling et al [23] took advantage of an integrity basis to force the neural network
to search for a RANS closure that was invariant to rotation. Raissi et al [24] added additional loss
terms during the training of the network to further constrain it to obey physical principles, such
as periodicity. Not surprisingly, such developments have led to training acceleration accuracy im-
provement.

The multilayer perceptron neural network architecture was chosen for the purposes of this
thesis. It is the simplest architecture available, as it is in our interest to maintain the dependence
of ANN performance to its specific parameters to the minimum, in order for our results to be
generalizable to other problems. The first perceptron was developed by Rosenblatt in 1958 [25],
which consisted of only one layer with a single scalar output. It was later quickly improved by other
researchers, leading to the emergence of multilayer perceptron, the variant used in this study. A
detailed overview of the perceptron model is given in [15], while a brief version will be given here
for the present context.

A schematic of an MLP neural network is provided in figure 2.4. The network consists of nodes
organized into several layers. The first layer is an input layer, where the resolved-scale input fea-
tures vector x is inserted, built up from relevant resolved-scale features. For example,

(
𝜙𝑖 , 𝑢

)
𝑄𝑛

,(
𝜙𝑖 , 𝑣

)
𝑄𝑛

,
(
𝜙𝑖 , 𝑤

)
𝑄𝑛

,
(
𝜙𝑖 , 𝑝

)
𝑄𝑛

(with 𝑖 being the element shape function index) are all fitting choices,
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but more features can be added. The nodes make up the heart of the network, and each node has
an associated scalar weight and bias. First, these parameters are initialized from a random distri-
bution, usually limited between 0 and 1. Afterward, they are adjusted during the training of the
neural network with reference data. This happens in two passes, so-called forward and backward
passes. During the forward pass, the MLP computes a prediction based off the currently stored
node parameters (weights 𝑤𝑖 𝑗 , biases 𝑏𝑖). This computation proceeds layer-by-layer. First, infor-
mation passes from the input layer x to the first hidden layer h. Each entry of the vector x then
contributes to an input to the first hidden layer, viz:

ℎ𝑖, input =

𝑛𝑖∑︁
𝑗=1

𝑤1
𝑖 𝑗𝑥 𝑗 + 𝑏

1
𝑖

This input to the hidden layer is fed through an activation function 𝑓activation:

ℎ𝑖 = 𝑓activation(ℎ𝑖, input)

The forward pass from the first hidden layer to the next hidden layer or output layer proceeds
in the same way. In the end, the forward pass is finished with a prediction vector y, which is solely
determined by the input vector x and all the weights and biases, or the current state of the MLP.
After this stage, the error is computed through a loss function, which compares the prediction
vector to the truth vector ỹ. The error vector e = 𝐿(y, ỹ) is then returned. This vector can be
thought of as an alternative input vector x, but for the backward pass. Thus, backward pass begins
with an output layer and proceeds backwards, first to the ultimate hidden layer, then penultimate,
until it reaches the first hidden layer. At each stage, the backpropagation algorithm adjusts the
weights and biases of the MLP to reduce the net error. For more details on this procedure, please
refer to section 4.4 in the book by Haykin [15]. In short, it takes advantage of the chain rule to
compute how much each weight/bias scalar contribute to the error in the output vector and adjusts
it accordingly. After both passes are finished for the complete dataset (all the pairs x, ỹ), one epoch
of training is said to be passed. The process is repeated until the loss function 𝐿 returns a net error
below a certain tolerance.

2.8. Modeling workflow
In this section, a high-level overview is provided of the data curation, training and validation. A
flowchart is given in figure 2.5. First, DNS data of TCF at 𝑅𝑒𝜏 = 180 is generated with cha.cpp

solver. This is a hybrid solver, specifically developed for an efficient simulation of a turbulent
channel flow, which uses a spectral method in span- and streamwise directions, while a finite-
volume method is used in the wall-normal direction. The DNS mesh contains𝑁𝑥,DNS = 𝑁𝑧,DNS = 128
spectral modes, and 𝑁𝑦,DNS = 164 finite-volume elements.

The DNS solver is called within the main routine, where DNS snapshots at given time intervals
(consistent with LES time step) are used to:
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Figure 2.4: Schematic of a multilayer perceptron neural network (Own Work). Black arrows denote the forward pass,
blue arrows denote the backward pass of the training procedure.

• Compute a "perfect" (LES) U as the𝐻1 projection of DNS onto LES grid. The LES mesh is made
up of 𝑁𝑥,LES = 𝑁𝑦,LES = 𝑁𝑧,LES = 16 (or 32) elements in three coordinate directions.

• Using both the DNS and U solution, compute the "perfect" closure terms LM
′ and LC

′, ac-
cording to equations 2.25 and 2.26.

• Also compute the feature quantities based on the LES solution. These will be used as inputs
to the MLP.

• Save both the closure terms and features to file.

Afterward, a script named readCT.py is called to convert the raw ASCII closure and feature
term files into binary NumPy arrays pdata.npz, which are more convenient to pre-process and
manipulate.

At this point, the resolved-scale input features are assembled into the time-space stencil in
src/data.py (explained in more detail in section 4.1). In short, src/data.py handles the complete
transformation of snapshots of training data (defined per element and per time step) into complete
feature vectors x, which span across multiple time steps and elements. It should be noted that as
in [26], in this thesis LFS approach is taken, meaning that features from the current and previous
time steps are used to predict closure terms for the next time step.

Finally, the prepared feature-label pairs are either written to disk as NumPy files or are saved
in RAM. The complete dataset is split into training and validation sets, and only the training set
is available to the model during the training phase. Training examples are fed into the Tensor-
Flow framework to train the parameters of the neural network. Once the MLP is sufficiently con-
verged, the resulting model is compared against the validation set for the first indication of its
performance. Afterward, a posteriori validation is completed through insML.cpp, where an ANN
generated closure model is injected into the TCF solver and compared against the projected DNS.
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Figure 2.5: Methodology flow chart.

2.9. Solver validation and new closure term definition
To validate insML.cpp and confirm that DNS projection can be reconstructed when provided with
the perfect closure terms, a validation study was carried out. The DNS was marched for 600 time
steps (equivalent to 10 LES time steps), and LES projection of the DNS solution was carried out
each LES time step. The LES mesh in this case was chosen to have 163 elements. The perfect
closure terms, computed directly after subtracting the DNS from the DNS projection, were written
to file. After the run was completed, these closure term files are used to reproduce the perfect DNS
projection through an LES simulation.

Previously, the closure terms were defined based on the unresolved-scale velocity field, as fol-
lows. From the DNS velocity field, an exact solution vector U is obtained. Then, the resolved ve-
locity field is obtained as DNS projection, i.e., U = projV𝑠

N U. Afterward, the unresolved-scale field
is computed simply as U′ = U − U. The closure terms are then computed based on equations 2.25
and 2.25.

While this seems an entirely reasonable approach, completely following the earlier discussion
in section 2.3, it assumes that the DNS solution is exactly equivalent to the true solution, which is
not always true in practice, unfortunately. In particular, it was found that the DNS solution doesn’t
satisfy the continuity equation sufficiently, see figure 2.6. The original DNS solution is obtained
with a spectral method in span- and streamwise directions and with a finite volume method in
the wall-normal direction. However, to compute the closure terms, grid points need to be defined,
and the spectral solution needs to be interpolated in span- and streamwise directions, and this can
introduce additional errors, in particular with the continuity terms.

Likely because of this, when it was attempted to march the LES with "exact" closure terms, the
solution couldn’t reach a sufficient tolerance in the corrector pass loop and stalled. This indicates
that the Jacobian used in the corrector pass loop could not effectively handle the provided closure
terms in their current form. To further investigate this issue, the pressure field was constrained
by inserting the exact pressure (obtained as projection of DNS at the next time step). This solved
the issue and corrector pass tolerance could be reached, further indicating that the continuity
closure is the cause of the problem (due to strong coupling between the continuity equation and
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Figure 2.6: Divergence of velocity field obtained from (interpolated) DNS, computed with the ParaView "Divergence"
filter.

the pressure field).
An alternative formulation for the closure terms was sought to alleviate this issue. It was found

that "enforcing" the closure terms to satisfy equation 2.27 removes the need to insert exact pres-
sure and also significantly reduces an error between the LES solution computed from exact closure
terms and one obtained directly as projection of the DNS. As figure 2.7 shows, this drastically de-
creases the error between the obtained LES and computed DNS projection, in contrast to closure
term computation obtained with the previously used formulation.

0 1 2 3 4 5 6 7 8 9

LES timestep

10−11

10−9

10−7

10−5

10−3

R
M

S
(u

L
E

S
−
u

p
D

N
S
)

new CT old CT, p = pDNS

Figure 2.7: Root-mean-square error of the streamwise velocity obtained directly from DNS projection and indirectly
from the perfect closure terms.

To conclude, the closure terms are defined in a new manner, as follows:(
w,LM

′(u, 𝑝,u′, 𝑝′)
)
Ω =

(
w, f

)
Ω −

(
w,LM (u, 𝑝)

)
Ω(

𝑞,LC
′(u′)

)
Ω = −

(
𝑞,LC (u)

)
Ω ,
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where the closure terms on the left-hand side are determined solely by the weak resolved-scale
forms on the right-hand side. Implicitly, this leads to:

(
𝑞,LC

′(u)
)
Ω =

(
𝑞,LC

′(u + u′)
)
Ω = 0, (2.28)

by linearity of the continuity (divergence) operator. Thus, the new closure terms are defined to
enforce the continuity of the complete velocity field solution u.

This formulation circumvents the need to perform computationally expensive integration pro-
cedures over the unresolved-scale solution U′ and avoids the possible errors due to integration
of weak forms. Additionally, it removes the need to explicitly define the unresolved-scale con-
tributions to the closure terms, in particular the unresolved-scale time derivative term, 𝜕u′/𝜕𝑡.
This term is defined from varying time-instances for resolved-scale (LES or DNS projection) and
unresolved-scale (DNS) simulations. While they both use the same second-order approximation
for the time-derivative, DNS uses a much smaller time step size compared to LES (coarse-scale
quantities). However, the newly introduced approach completely avoids this issue.

It should be noted that for a given element, there are three scalar closures for momentum,
LM

′(u,u′, 𝑝′) and one for continuity, LC (u′). On an element level, each of these terms is weighted
with the element shape functions 𝜓𝑞 or 𝜑𝑞 =

[
𝜑𝑥,𝑞 𝜑 𝑦,𝑞 𝜑𝑧,𝑞

]
, of which there are 8 (𝑞 = 1, . . . , 8),

corresponding to 8 vertices of an individual element. Thus, in total, the model needs to predict
32 closure scalars. However, element shape functions predictions are only implemented in the
solver for the parallelization of the assembly procedure. Thus, as the final solution vector U =[
u 𝑝

]
is tested with test functions w (equal to basis functions in our case of Galerkin method)

that span multiple elements, the sum of these contributions over eight element shape functions is
the determining contribution.





3
Stabilization strategies

In this chapter, stabilization strategies, their implementation and effects are described. Firstly,
section 3.1 discusses the physical impact of 𝐻1 and nodal projectors on the turbulent energy spec-
trum. Next, three stabilization strategies are proposed, which could lead to improved stability of
the LES simulations with ANN closure. Section 3.2 introduces the idea of convolution of the train-
ing dataset with a filter to impose a prescribed energy spectrum. Section 3.3 introduces a new loss
function that can improve the accuracy of the network when it has to carry out a large number
of predictions simultaneously. Lastly, section 3.4 explains how training data can be augmented
through a rotation of the coordinate axes to aid the generalization abilities of an ANN model.

3.1. Effect of 𝐻1 projector on energy spectrum
As was mentioned previously, 𝐻1 projector was chosen in this thesis due to a possible advantage
it may provide in terms of the locality of the fine-scale Green’s function. However, no further
analysis was carried out on what such projection implies in terms of the turbulence characteris-
tics. Although it seems to be beneficial to use 𝐻1 projection from a mathematical point of view, it
can have undesirable effects from a physical standpoint. Referring to equation 2.19, it is straight-
forward to see that involvement of the gradient in the projector is likely to skew the turbulence
properties. This is evidenced by the shift in the energy spectra, shown in figure 3.1. Using an 𝐻1

projector leads to increased energy content away from the wall and skewed energy spectrum in
the first element at the wall (𝑦+ = 20) when compared to real DNS. This is not the case for a nodal
projector, which returns an energy spectrum that lies much closer to the DNS energy spectrum.
While both nodal and 𝐻1 spectra can be reproduced without issue if the completely exact closure
terms are provided, it is possible that the 𝐻1 energy spectrum, with its relatively increased high-
wavenumber energy content, might be more sensitive to errors in the closure terms induced by
the machine learning model. The errors in the closure term predictions are also likely to be of
high-frequency (small wavelength), as the model prediction is based on local input features and

21
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Figure 3.1: One-dimensional energy spectra from the DNS solution (black) and projections onto LES 323 mesh, P0 -
nodal, P1 − 𝐻1

0 projection.

are provided for each element shape function specifically.

3.2. Strategy 1: Filtering the ANN target
There are several ways to introduce physical insights into the design of a neural network. One
of them is through careful selection and manipulation of the desired output, i.e., the truth vector
that the machine learning model must predict based on the given output. As was shown in the
previous section, due to inaccuracies in this approximation of F ′, the resolved scales vector U
accumulates energy at the finest scales. Thus, a potentially effective strategy would be to somehow
direct the network to decrease the amount of energy that is transferred to the smallest resolved
scales of U through the forcing of F ′. This is not as straightforward as tuning some coefficients
in eddy-viscosity models, since there are many more degrees of freedom in the ANN that are not
easily interpretable. However, one can "teach" the network to decrease the energy transfer by
introducing a filter for the LES field used for target closure term computation. In other words, now
the closure terms are defined through DNS solution U and Fourier filtered projected solution Uf .
The network will then be rewarded for dampening high frequency modes, which can potentially
be an effective approach to tackle high-frequency numerical instabilities introduced due to ANN
error.
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Filtering Approach
A filtering function was implemented inside the training data generation routine in insML.cpp.
Simply put, it takes as an input the resolved-scale solution vector U, performs a three-dimensional
Fourier transform to arrive at Ũ, then performs multiplication with the filter weight 𝑤(𝜿) to pro-
duce filtered Fourier modes Ũf . Finally, these Fourier modes are used to reconstruct the physical
LES solution Uf . This LES solution is consequently used to calculate the exact filtered closure terms
through comparison with DNS projection onto LES mesh, i.e. vector U is substituted by Uf in equa-
tion 2.23, leading to new F ′

f defined in equation 3.2.

x =

[
𝑥 𝑦 𝑧

]𝑇
𝜿 =

[
𝜅𝑥 𝜅𝑦 𝜅𝑧

]𝑇
= 2𝜋

[
𝑖
𝐿𝑥

𝑗
𝐿𝑦

𝑘
𝐿𝑧

]𝑇
F ( 𝑓 (x)) =

∫
Ω
𝑓 (x) exp(−𝜿 · x) 𝑑x = 𝑓 (𝜿)

F −1( 𝑓 (𝜿)) =
∫
Ω𝜅

𝑓 (𝜿) exp(𝜿 · x) 𝑑𝜿 = 𝑓 (x)

Uf = F −1(𝑤(𝜿) F (U)), (3.1)

F ′
f = −B1(W,U′) − B2(W,Uf ,U′) − B2(W,U′,Uf) − B2(W,U′,U′) (3.2)

where 𝜿 is the element wavenumber, computed from 𝑖, 𝑗, 𝑘 indices of the element at location x.
The filter weight is defined based on the spectral distance from the so-called Nyquist wavenumber,
which is the ultimate wavenumber 𝜿 that can be resolved by the mesh. For a 163 mesh, this Nyquist
wavenumber corresponds to:

𝜿Nyq = 2𝜋
[
8
𝐿𝑥

8
𝐿𝑦

8
𝐿𝑧

]𝑇
(3.3)

If this spectral distance is below a given cut-off distance Δc/o, then the filter weight is given as:

𝑑 = | |𝜿 − 𝜿Nyq | | =
(
(𝜅𝑥 − 𝜅𝑥,Nyq)2 + (𝜅𝑦 − 𝜅𝑦,Nyq)2 + (𝜅𝑧 − 𝜅𝑧,Nyq)2

)1/2
𝑤(𝜿) = 1, 𝑑 > Δc/o

𝑤(𝜿) = min
[
𝑠 · 𝑑
Δc/o

, 1
]
= [0, 1], | |𝜿 − 𝜿Nyq | | ≤ Δc/o

Here, ramp slope 𝑠 and filter width Δc/0 are manually chosen. This ramp filter is designed to leave
the large spatial modes unaffected, while dampening the small spatial modes, which are likely to
be inaccurate as they are close to the resolution limit of the LES mesh and suffer the most from
closure term errors. By providing filtered closure terms as the goal to the neural network, we teach
the network to dampen small scale flow fluctuations.

The effect of filtering on the streamwise energy spectrum is shown in figure 3.2 for a 323 case,
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with 𝑠 = 0.09 and Δc/0 = 15.0. It should be noted that this stabilization strategy allows for an
arbitrary filter choice.
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Figure 3.2: Filtered and unfiltered LES streamwise energy spectra.

3.3. Strategy 2: Mini-batch sum loss
Mean squared error loss is the most popular loss mechanism used for ANN regression models.
However, this approach only computes the difference in the prediction on the element level, which
can lead to systematic biases in the ANN predictions if the model is repeatedly executed many
times (such as predicting closures on a CFD mesh with thousands of degrees of freedom). Very
small systematic errors in ANN predictions can lead to nonphysical kinetic energy input or drain
into/from the flow, as the error is compounded with the number of elements and with each time
step. A proposed solution to alleviate this problem is a so-called batch sum loss, defined as follows.
For a given (mini-)batch prediction matrix Y and truth matrix Ỹ, both of size 𝑁𝑏 × 𝑁𝑜, (number of
examples in a batch times the number of outputs in the output vector) the batch sum loss is:

𝐿Σ
(
Y, Ỹ

)
=

𝑁0∑︁
𝑗

[
𝑁𝑏∑︁
𝑖

Y𝑖 𝑗 −
𝑁𝑏∑︁
𝑖

Ỹ𝑖 𝑗

]2
(3.4)

Of course, if only this loss is used, the optimizer will force the individual predictions off their
truth values, as only the sum will contribute. Thus, the combination of 𝐿MSE and mini-batch sum
loss is used. For a mini-batch, it is computed in a straightforward way:

𝐿MSE
(
Y, Ỹ

)
=

𝑁𝑏 ·𝑁𝑜∑︁
𝑖 𝑗

[
Y𝑖 𝑗 − Ỹ𝑖 𝑗

]2 (3.5)

The actual loss subject to minimization is then:
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𝐿
(
Y, Ỹ

)
=

𝑁0∑︁
𝑗

©«
𝑁𝑏∑︁
𝑖

[
Y𝑖 𝑗 − Ỹ𝑖 𝑗

]2 + [
𝑁𝑏∑︁
𝑖

Y𝑖 𝑗 −
𝑁𝑏∑︁
𝑖

Ỹ𝑖 𝑗

]2ª®¬ (3.6)

3.4. Strategy 3: Rotational data augmentation
As the orientation of the coordinate axis is purely arbitrary and primarily chosen based on con-
vention, a way to augment the training dataset is by rotating the coordinate axis and thus rotating
the feature and label vectors as well. This way, the model is trained to be invariant to rotation of
the coordinate axis, which is an important physical consideration. The original coordinate axes
𝑥, 𝑦, 𝑧 can be rotated by yaw angle 𝛼 about 𝑧−axis, pitch angle 𝛽 about 𝑦−axis and roll angle 𝛾
about the 𝑥−axis, by multiplying with the rotation matrix 𝑅, defined as follows [27]:

𝑅 = 𝑅𝑧 (𝛾)𝑅 𝑦 (𝛽)𝑅𝑥 (𝛼) =


cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1




cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽



1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼


(3.7)

Three rotational data augmentations are applied, described in table 3.1 and figure 3.3. The pur-
pose of the first rotation is to ensure that the network can predict accurately if the feature vectors
orientation is completely changed in opposite direction). Rotations 2 and 3 are to account for mis-
alignment of the feature vectors with the mean flow direction and directions of homogeneity of
the flow. It thus enforces new constraints on the model. The addition of this data augmentation
should make the network more general (as it exposes it to new data), and hopefully more robust.

Table 3.1: Rotational data augmentations applied.

Rotation Yaw Angle (deg) Pitch Angle (deg) Roll angle (deg)
Original 0 0 0

Rotation 1 180 90 0
Rotation 2 45 45 45
Rotation 3 -45 -45 -45

(a) Original (b) Rotation 1 (c) Rotation 2 (d) Rotation 3

Figure 3.3: Rotational Data Augmentation visualized.





4
Neural network closure model design

In this chapter, a detailed description is given of the design of ANN closure model, a priori val-
idation results and the final selection of ANN models. Specifically, in section 4.1 the description
of preliminary ANN closure model design is given. In section 4.2, the training approach for mini-
mization of mini-batch sum loss is described. Lastly, three sensitivity studies were carried out. In
section 4.3 the effect of varying ANN architecture on a priori correlations with true terms is dis-
cussed. Similarly, sections 4.4 and 4.5 discuss the effect of varying the input features and feature
stencil on a priori correlations. The final selection of ANN closure models is provided in section
4.6.

4.1. Preliminary network design
An initial network design was developed for an explorative study, mostly inspired by previous
work of A. Bettini [26]. In this section, a description is given of the training approach, which is
visualized as a flowchart in figure 4.1. Additionally, values chosen for network hyperparameters
are explained.

Several steps were taken in order to reduce network size and complexity. The model now con-
sists of 1 network, which outputs weighted momentum and continuity closures associated with
𝜑𝑞 and 𝜓𝑞 element shape functions in the element. This model is trained on the data for all eight
element shape functions, and uses coarse-scale features as input. Referring to equation 2.25:

(
𝜑𝑞,LM

′(u, 𝑝,u′, 𝑝′)
)
e = ANN

((
𝜑𝑞,

𝜕u
𝜕𝑡

)
e
, . . .

)
(4.1)

The same model is re-used for all 8 element shape functions. This significantly decreases the total
model training time and computational resources, as well as increasing the total amount of data
that is being fed into the model (as now data for 𝑞 = 1, . . . , 8 is provided). Additionally, this train-
ing approach is more generalizable, as it doesn’t pay attention to arbitrary indexing of the shape
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Figure 4.1: Neural network pipeline.

functions. Previously, 8 networks were used (one per shape function), which added to model com-
plexity and increased training time, although the accuracy was likely higher as well.

By stencil hereafter it is meant the time-space domain from which features are taken to predict
the closure for a given element. The most compact stencil thus spans the element itself at the
current time step. Larger stencils provide more information and may improve model accuracy,
up until a given point. The fine-scale Green’s functions that were derived for simpler PDE’s (see
figure 2.3) were used as inspiration for the spatial stencil. Three options for the stencil selection
are provided, visualized in figure 4.2. For the first one, only one element upstream in 𝑥 and one
from the previous time step is taken, in addition to the element itself, which leads to 4 elements in
total. This stencil is used for most initial designs. Stencil 2 is significantly extended, and includes
the original element, one upstream and one downstream element, as well as one lateral element
to each spanwise side. Thus, 16 elements in total over two time steps. Stencil 3 includes only the
element itself at current and previous time step.
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Figure 4.2: Three stencil options - default stencil 1, expanded stencil 2 and single element stencil 3. The labels
(predictions) are closures associated to shape functions 𝜙𝑖 of the element highlighted by blue.
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Bettini [26] suggests using coarse-scale integrated sums/features, which can be succinctly ex-
pressed using equations 2.3 and 2.4 as

(
𝜑𝑞,LM (u), 𝑝)

)
or

(
𝜑𝑞,LC (u)

)
. Using these input features

leads to very high a priori correlations with exact terms, and for this reason they are also adopted
in this thesis. As features averaged coarse-scale terms that are found on the left-hand side of mo-
mentum equation 2.2, as well as resolved divergence and basis coefficients of velocity amplitudes
a𝑖 , (equation 2.21) are adopted. Each term is weighted with the given element shape function 𝜑𝑞

for momentum terms and velocity basis coefficients and𝜓𝑞 for continuity. At the end of the feature
vector, the wall-normal coordinate is inserted. The feature vector x is given in equation 4.2.

The true labels (perfect predictions) are momentum and continuity closures per shape function,
for assembly purposes (4 in total). The output vector y is given in equation 4.2.

x =



(
𝝋𝑞,

𝜕u
𝜕𝑡

)
e
(x, 𝑡)(

𝝋𝑞,∇ ·
(
u ⊗ u

) )
e
(x, 𝑡)(

𝝋𝑞,∇𝑝
)
e
(x, 𝑡)(

𝝋𝑞,−𝜈Δu
)
e
(x, 𝑡)

a𝑖 (x, 𝑡)(
𝜓𝑞,∇ · u

)
e
(x, 𝑡)

...(
𝝋𝑞,

𝜕u
𝜕𝑡

)
e
(x − Δx, 𝑡)
...(

𝝋𝑞,
𝜕u
𝜕𝑡

)
e
(x, 𝑡 − Δ𝑡)
...(

𝝋𝑞,
𝜕u
𝜕𝑡

)
e
(x − Δx, 𝑡 − Δ𝑡)
...(

𝜓𝑞,∇ · u
)
e
(x − Δx, 𝑡 − Δ𝑡)
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𝜓𝑞,LC (u′)
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(x, 𝑡 + Δ𝑡)

︸                              ︷︷                              ︸
4 labels

(4.2)

To accelerate the training and evaluation of the initial network designs, LES mesh of 163 and 323

elements were used. As shown in figure 4.3, a time-sequence of 48 snapshots of the closure terms
and features was used for the validation dataset, starting from the initial condition at 𝑡 = 0.0 up to
𝑡 = 0.3456. For the training dataset (on a 163 mesh) 480 snapshots were recorded from 𝑡 = 1.0 up
until 𝑡 = 4.455, while for 323 mesh this had to be decreased to 360 snapshots, from 𝑡 = 1.0 up until
𝑡 = 3.592, due to large file sizes (the memory requirement is increased by factor of 8 if the mesh is
refined by factor of 2).

There is a time separation of 90 LES time steps between the data used for training and valida-
tion for both 163 and 323 cases. Additionally, the validation dataset relates directly to a posteriori
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validation, as there the networks are evaluated together with solver coupling, also starting from
the initial condition at 𝑡 = 0. It is thus expected that for the first time step the model will show the
same correlations when tested a posteriori as when tested a priori.

During data pre-processing, input features were normalized to the range of [0, 1]. The net-
work architecture comprised an input layer with 65 entries of the feature vector (corresponding
to stencil version 1 and a complete feature set), a varying number of hidden layers with a constant
number of neurons in each, and an output layer of 4 closure predictions. The rectified linear unit
activation function was used for the hidden layers and the linear activation function was used for
the output layer.

0 1 2 3 4 5

t

15.60

15.61

15.62

15.63

u
/u

τ

validation training 323 training 163

Figure 4.3: Bulk history of DNS flow. Validation data (48 snapshots), training data for 323 case (360 snapshots) and for
163 case (480 snapshots) highlighted.

The Adam optimizer with the learning rate of 10−4 was used to converge the neural network.
The loss 𝐿 was computed as the mean-squared error:

𝐿 = 𝐿MSE(y, ỹ) =
1
𝑁𝑦

𝑁𝑦∑︁
1
( 𝑦𝑖 − �̃�𝑖)2 (4.3)

To avoid overfitting, an early stopping criterion was used. This Keras library feature moni-
tors the validation loss and stops training early once it stops improving. The patience parameter
was set to 5, meaning that the validation loss is monitored for over the last 5 epochs, and if no
improvement in the loss metric greater than a custom tolerance min_delta is found, the training
is stopped. For the 163 model this value was set to 10−6, while for the 323 model it was lowered
to 10−8, to account for the decreased magnitude of the closure terms and consequently the loss
function values themselves.

The batch size for the training and validation was chosen to be 𝑁𝑏 = 104. It was found that
using larger batches utilizes the GPU more effectively and decreases the training time per epoch,
while smaller batch sizes improve overall convergence (decrease in the loss metric gained over 1
epoch). A batch size of 104 examples has been found to provide optimal performance in terms of
network convergence and total training time.
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4.2. Mini-batch sum loss implementation
One of the stabilization measures aimed to improve the quality of ANN model prediction is the
mini-batch sum loss, previously introduced in section 3.3. At first, both the standard mean-squared
error and new mini-batch sum loss were used together. However, it was discovered through ob-
serving the loss plot in figure 4.4, that the mini-batch sum loss doesn’t show good convergence
when used directly together with the mean-squared error.

An improved and more controlled approach is to first subject the network only to the mean
squared error loss function and train it until it reaches a sufficiently good correlation and the loss
function plateaus. This can be considered an initial phase of model training. The resulting loss
function is shown in figure 4.5, and there is a considerable improvement in convergence. The
resulting correlation plots are given in figure 4.7, where a probability density function of true
output vectors and ANN predictions is shown for each scalar term in the closure vector.

The Pearson correlation coefficient is also used as a measure of ANN model accuracy a priori:

𝜌𝑋,𝑌 =
E [𝑋 𝑌 ] − E [𝑋] E [𝑌 ]√︃

E
[
𝑋2

]
− (E [𝑋])2

√︃
E
[
𝑌 2

]
− (E [𝑌 ])2

(4.4)

Additionally, expected value (average) of the predictions is computed as

𝐸truth =
1
𝑁val

𝑁val∑︁
�̃�𝑖 𝐸pred =

1
𝑁val

𝑁val∑︁
𝑦𝑖 ,

with �̃�𝑖 and 𝑦𝑖 being the 𝑖-th entry in true output and model prediction vectors, respectively.
Clearly, the model achieves quite high correlation coefficients between the predicted and true

values of the closure terms. However, comparing the expected value (average) of its predictions
to the true expected value (obtained from the exact validation data) shows that it has difficulty
correctly predicting the average of its predictions. Thus, deviations can be expected in integral
flow quantities such as flow kinetic energy from the DNS results. The most significant error is in
the continuity term - despite having (almost) perfect correlation, the model’s errors still lead to
high values of 𝐸pred when comparing it to its truth counterparts.

After the model is converged using the MSE loss, the model weights are reloaded, and a new
training loop is commenced. Here, only the mini-batch sum loss is active, but the optimizer learn-
ing rate is decreased drastically from 10−4 to 10−9. It was found through experimentation that
mini-batch sum loss is extremely sensitive to the model’s weights and biases, and very small up-
dates are needed. The model is then trained until the mini-batch sum loss stops improving and
converges. The resulting loss is shown in figure 4.6, and the correlations are provided in figure
4.8. Clearly, even though the model is not aware of the mean-squared loss during the second train-
ing phase, the MSE loss is not negatively impacted, and neither are the closure term correlations.
This is due to the extremely low learning rate. However, some improvement can be observed in
the accuracy of model predictions when considering the averages, comparing figures 4.7 and 4.8.
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Figure 4.4: Loss evolution (MSE loss in green, mini-batch sum loss in red).
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Figure 4.5: Loss evolution, with model subject only to MSE loss.
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Figure 4.6: Loss evolution, with model re-trained with mini-batch sum loss.
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Figure 4.7: True closures from validation (unseen) data against ANN predictions of validation features, for a model
subject to only MSE loss. Red line shows the perfect line of best fit, yellow line shows the actual line of best fit.

Expected values (averages) of true and predicted closure terms in top left corners, Pearson’s correlation coefficient in
bottom right corners.
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Figure 4.8: True closures from validation (unseen) data against ANN predictions of validation features, for a model
re-trained with mini-batch sum loss. Red line shows the perfect line of best fit, yellow line shows the actual line of best
fit. Expected values (averages) of true and predicted closure terms in top left corners, Pearson’s correlation coefficient

in bottom right corners.
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4.3. Sensitivity of model accuracy to model architecture
To determine the best model architecture in terms of model accuracy and computational cost as-
sociated with the model training and execution, a range of models was trained, with varying ar-
chitecture. To measure the accuracy, correlations of predictions with true labels, computed on the
validation dataset, are used. In all cases, only MSE loss was used. There was no significant differ-
ence in the observed Pearson correlation coefficients with or without additional mini-batch sum
loss training, which only has an influence on 𝐸pred term. This is also the case for sections 4.4 and
4.5. An example of correlation plot for a model with one hidden layer with 100 neurons is given
in figure 4.7. Tested model architectures together with resulting correlation coefficients are given
in figure 4.1. Evidently, there is a gain in accuracy when comparing perceptron model with zero
hidden layer to one hidden layer models, in particular with 100 or 200 neurons in the hidden layer.
However, not much improvement is found with a larger model architecture beyond one hidden
layer with 100 neurons. For this reason, this will be the adopted architecture from here onwards.

Table 4.1: Effect of model architecture on a priori correlations.

𝑁layers 𝑁neurons 𝜌M𝑥 𝜌M 𝑦 𝜌M𝑧 𝜌C
0 0 0.820 0.930 0.920 0.999
1 30 0.879 0.948 0.940 0.999
1 100 0.904 0.961 0.957 0.999
1 200 0.911 0.963 0.959 0.999
2 30 0.894 0.947 0.954 0.999
2 100 0.911 0.965 0.960 0.999
2 200 0.916 0.966 0.962 0.999

4.4. Sensitivity of model accuracy to input features
Another aspect of the model is what coarse-scale features are to be used to predict the closure
terms. A sensitivity study was thus carried out to determine the relative importance of the coarse-
scale terms that are found on the left-hand side of momentum equation 2.2, the resolved diver-
gence, and basis coefficients of velocity amplitude a𝑖 . Utilizing model architecture with 1 hidden
layer with 100 neurons, a series of models was trained. One model was trained with all the fea-
tures of equation 4.2. Then six other models were trained, each with one of the features missing.
The results are provided in table 4.2. Evidently, the coarse-scale time-derivative and convective
terms are the most important for the momentum closure, while unsurprisingly, the resolved di-
vergence term is needed for high-correlation predictions of unresolved divergence. The pressure
gradient term, diffusion term and basis coefficients have little effect on the a priori accuracy. They
were omitted to minimize the input data to the model and accelerate the solver, as less integration
procedures have to be carried out over the coarse scale solution.
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Table 4.2: Effect of input features on a priori correlations.

Features x 𝜌M𝑥 𝜌M 𝑦 𝜌M𝑧 𝜌C
complete 0.904 0.961 0.957 0.999
no

(
𝝋𝑞,

𝜕u
𝜕𝑡

)
e

0.721 0.779 0.764 0.999

no
(
𝝋𝑞,∇ ·

(
u ⊗ u

) )
e

0.812 0.915 0.896 0.999

no
(
𝝋𝑞,∇𝑝

)
e

0.901 0.961 0.956 0.999

no
(
𝝋𝑞,−𝜈Δu

)
e

0.894 0.962 0.956 0.999

no
(
𝜓𝑞,∇ · u

)
e

0.863 0.947 0.940 0.891
no a𝑖 0.894 0.956 0.952 0.999(
𝝋𝑞,

𝜕u
𝜕𝑡

)
e
,
(
𝝋𝑞,∇ ·

(
u ⊗ u

) )
e
,
(
𝜓𝑞,∇ · u

)
e

0.884 0.958 0.954 0.999

4.5. Sensitivity of model accuracy to the feature stencil
Last, but not least, the model accuracy was evaluated with respect to the width of the input stencil
in the physical and temporal domains. Again, a model architecture with 1 hidden layer of 100
neurons was used, with

(
𝝋𝑞,

𝜕u
𝜕𝑡

)
e
,
(
𝝋𝑞,∇ ·

(
u ⊗ u

) )
e
,
(
𝜓𝑞,∇ · u

)
e

as input features (for each time
and space element). The results are presented in table 4.3, where the light blue denotes the element
for which the closure is predicted, and the dark blue denotes its neighbors (in space or time).
Stencils D, G and B correspond to stencils 1, 2 and 3 in figure 4.2.

Table 4.3: Effect of stencil width on a priori correlations. For space stencil, right is upstream, up/down is spanwise.
For time stencil, right is in the past.

Name Space stencil Time stencil 𝜌M𝑥 𝜌M 𝑦 𝜌M𝑧 𝜌C
A 0.350 0.347 0.313 0.999

B (3) 0.783 0.875 0.858 0.999

C 0.808 0.907 0.891 0.999

D (1) 0.904 0.957 0.961 0.999

E 0.888 0.961 0.954 0.999

F 0.901 0.965 0.959 0.999

G (2) 0.886 0.957 0.955 0.999

It is evident that only including the element itself at 𝑡 = 𝑡𝑛 (stencil A) is not sufficient and provides
very poor correlations. Including coarse-scale information from the previous time-step enhances
the quality of predictions (comparing stencils A and B). Including one element upstream further
improves the correlations for all three momentum components (comparing B and D). It should be
noted that adding any other elements in space, as well as including information at 𝑡 = 𝑡𝑛−2 doesn’t
significantly improve model accuracy. Thus, the most promising stencil is still stencil D (1), which
includes features at current and previous time step (𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛−1) and element itself with its
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upstream neighbor (𝑥 = 𝑥𝑖 , 𝑥 = 𝑥𝑖−1). Another interesting stencil is stencil B (3), as it still provides
reasonable correlations without including other elements.

4.6. Chosen Network Designs
In this section, an overview of finalized ANN models is provided. An emphasis was placed on
network simplicity, to decrease the training and execution cost. Two input feature stencils will
be tested - stencil 1 and 3. Only the most relevant features were chosen, namely resolved time-
derivative term

(
𝝋𝑞,

𝜕u
𝜕𝑡

)
e
, resolved convective term

(
𝝋𝑞,∇ ·

(
u ⊗ u

) )
e
, and resolved divergence

term
(
𝜓𝑞,∇ · u

)
e
. A single model was trained over all the element shape functions 𝝋𝑞 and 𝜓𝑞, and

re-used 8 times during solver deployment to predict the unresolved closure terms weighted with a
given element shape function, based off the resolved terms weighted with the same element shape
function. All the models are trained in two phases as described in section 4.2, except for model
M116MSE, which only experienced the first training phase, in order to quantify the impact of mini-
batch sum training loss. As accuracy metrics, correlation coefficients for the 𝑥− and 𝑦−momentum
terms were used, as well as percentage error calculated in the prediction of average closure terms:

𝜖(𝐸M𝑥 ) =
𝐸pred,M𝑥 − 𝐸truth,M𝑥

𝐸truth,M𝑥

(4.5)

The model M116 was also tested with both a filtered (M116F) and a rotationally augmented
(M116A) training dataset. To investigate the effect of mesh refinement, both 163 and 323 LES meshes
are used, with default model configuration for stencil 1 and 3. The 323 models are also trained at
varying CFL numbers (i.e., LES time steps) of the training dataset - 0.5 and 1.0.

Table 4.4: Selected Network Designs.

Name Mesh CFL 𝜌M𝑥 𝜌M 𝑦 𝜖(𝐸M𝑥 ) Note
M116 163 0.5 0.884 0.958 19 %
M116F 163 0.5 0.823 0.938 19 % Filtered
M116A 163 0.5 0.848 0.946 71 % Augmented
M116MSE 163 0.5 0.884 0.958 73 % only MSE loss
M316 163 0.5 0.783 0.875 24 %
M132CFL0.5 323 0.5 0.922 0.978 9%
M332CFL0.5 323 0.5 0.887 0.959 25 %
M132CFL1.0 323 1.0 0.889 0.943 9 %
M332CFL1.0 323 1.0 0.685 0.845 14%

All the chosen network configurations were tested a posteriori. The feature and labels vectors
are the same for all M1 models (for M3 models all x−Δx entries are omitted) and are given below:
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Application of data-driven closure to the

complete Navier-Stokes equations

In this chapter, the first attempt at large-eddy simulation with data-driven modelling of the com-
plete Navier-Stokes closure is presented. As was briefly mentioned previously in section 4.2, de-
spite the ANN models achieving good a priori correlations for the continuity closure term, a large
relative error is present when considering the averages of model predictions over many examples.
While deploying the model into the solver, this led to issues in the corrector pass convergence,
which are discussed in more detail below. The impact of machine learning continuity closure pre-
dictions on the solver convergence is explained, and an equation for resolved pressure is derived,
illustrating close coupling between ANN closure and the resolved pressure term.

For all the large-eddy simulations discussed in this and consequent chapters, a finite-difference
Jacobian matrix was used for the corrector pass loop. This Jacobian matrix was also augmented
with the terms from the algebraic model (see Akkerman et al [28]) for the continuity and pressure
entries, in order to assist with corrector pass convergence.

Figure 5.1 shows the convergence history for the corrector pass loop at the first LES time step,
when using the model M116 with a complete machine-learning closure, i.e., one closure term for
each momentum component and one for continuity, four in total. While the residuals for the ve-
locity components 𝑢, 𝑣, 𝑤 are steadily decreasing, the pressure residual is stalled. The corrector
pass procedure is ineffective at improving the accuracy of the pressure field. This is likely related
to the poor ability of machine learning model to predict the continuity closure term (𝜓𝑞,LC

′)e on
average, as can be seen in the top left corner of the continuity prediction in figure 4.8.

This issue can be alleviated by replacing the continuity closure prediction with either an alge-
braic model prediction or an exact continuity closure term, if available. The corrector pass con-
vergence plot is shown for the latter, i.e., exact continuity closure, in figure 5.2. Now the corrector
pass loop can reach a sufficient tolerance and displays a linear curve, even though many iterations

39
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are still needed (≈ 100). For comparison, the corrector pass convergence history is shown in figure
5.3 for a simulation with exact closure terms obtained from a DNS projection. Also then, a similar
number of corrector pass iterations are needed, although the 𝑣 residual is decreasing much more
rapidly.

Figure 5.1: Corrector pass convergence plot, using continuity closure provided by ANN model.

Figure 5.2: Corrector pass convergence plot, using exact continuity closure with ML momentum closure terms.

However, even when replacing the ML continuity closure term prediction by an exact or alge-
braic model alternative, large errors were observed in the LES pressure field, immediately after
the first time step. This indicates that also machine learning predictions for the momentum terms
lead to a spurious pressure solution field. However, the associated velocity field is not strongly
affected. The spurious pressure field is compared to the proper pressure solution obtained from
DNS projection in figure 5.4. As can be seen, the magnitude of the pressure is completely off, al-
ready after the first LES time step. In addition, the pressure field is modulated by high frequency
pressure fluctuations.
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Figure 5.3: Corrector pass convergence plot, using exact closure terms.

Figure 5.4: Pressure oscillations captured for model M116 (ML momentum closure, exact continuity closure) on the
left, compared to projected DNS solution on the right. First LES time step.

Pressure Poisson equation
To further elucidate the link between momentum and continuity closure terms and a pressure
field, consider equation 2.2:

𝜕u
𝜕𝑡

+ ∇ · (u ⊗ u) + ∇𝑝 − 𝜈Δu = f , x ∈ Ω

Applying the divergence operator on both sides:

𝜕(∇ · u)
𝜕𝑡

+ ∇ · (∇ · (u ⊗ u)) + Δ𝑝 − 𝜈∇ · (Δu) = ∇ · f

As the forcing field is constant, it is divergence free. Using the vector identity Δu = ∇(∇·u)−∇×(∇×
u), and taking advantage of the fact that divergence of a curl is zero, leads to∇·(Δu) = ∇·(∇(∇ · u)).
Then:

𝜕(∇ · u)
𝜕𝑡

+ ∇ · (∇ · (u ⊗ u)) + Δ𝑝 − 𝜈∇ · (∇(∇ · u)) = 0



42 Chapter 5. Application of data-driven closure to the complete Navier-Stokes equations

Rearranging:

Δ𝑝 = −∇ · (∇ · (u ⊗ u)) −
(
𝜕

𝜕𝑡
− 𝜈∇ · ∇

)
(∇ · u), x ∈ Ω (5.1)

Introducing the scale separation: u = u + u′, 𝑝 = 𝑝 + 𝑝′ and isolating Δ𝑝 on the left-hand side:

Δ𝑝 =

(
− 𝜕

𝜕𝑡
+ 𝜈∇ · ∇

)
(∇ · u) +

(
− 𝜕

𝜕𝑡
+ 𝜈∇ · ∇

)
(∇ · u′)

− ∇ ·
(
∇𝑝′ + ∇ ·

(
u ⊗ u

)
+ ∇ · (u′ ⊗ u′) + ∇ ·

(
u ⊗ u′) + ∇ ·

(
u′ ⊗ u

) )
(5.2)

If u′ term is exact, by equation 2.1 the first two terms will sum to zero (∇ ·u = ∇ ·u+∇ ·u′ = 0).
More specifically, if the machine learning approximation for the continuity closure term LC is
replaced by its exact counterpart, then the resolved pressure is only influenced by unresolved
pressure and unresolved convective terms, which all are part of the momentum closure LM

′:

Δ𝑝 = −∇ ·
(
∇𝑝′ + ∇ ·

(
u ⊗ u

)
+ ∇ · (u′ ⊗ u′) + ∇ ·

(
u ⊗ u′) + ∇ ·

(
u′ ⊗ u

) )
(5.3)

Using equation 2.25:

Δ𝑝 = −∇ ·
(
u ⊗ u

)
− ∇ ·

(
LM

′(u′,u, 𝑝′)
)
+ ∇ ·

(
𝜕u′

𝜕𝑡

)
− 𝜈Δu′

Δ𝑝 = −∇ ·
(
u ⊗ u

)
− ∇ ·

(
LM

′(u′,u, 𝑝′)ANN
)
+
(
𝜕

𝜕𝑡
− 𝜈∇ · ∇

)
(LC (u′)exact) (5.4)

Once again, equation 5.4 is only valid if the exact continuity closure term is used. This equation
shows that pressure is directly influenced by ANN predictions in the momentum terms. This con-
trasts with the standard momentum equations, i.e., first equation of the system in equation 2.27,
where the ANN predictions instead influence the time derivative term 𝜕u/𝜕𝑡. Thus, for a velocity
field, starting from a projected DNS initial condition, several time steps are needed to deviate from
the evolving projected DNS solution due to errors induced by ANN momentum closure terms pre-
dictions. In a solution to a pressure Poisson equation 5.4, a local error deviation will be propagated
globally and instantaneously, and the projected DNS initial condition for pressure has no influence
on the pressure solution in the following time steps.

To limit the effects of erroneous pressure fields on the velocity field, in all the large-eddy sim-
ulations considered hereafter, the exact pressure solution is injected from projected DNS into the
LES system. This way, complete ANN closure term predictions can be used, and the effect of errors
in the closure terms is only limited to the velocity field. The corrector pass history for the first time
step of the pressure-constrained system is given in figure 6.1.

Remarkably, the previously discussed continuity closures and the resulting pressure field have
a very profound effect on the number of corrector pass iterations with the adopted Jacobian ma-
trix. While running with a full ANN closure, even 2000 corrector passes only lead to pressure
residual of O(10−2), see figure 5.1. If the exact closure for continuity is inserted instead, in just
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over 100 corrector passes, a pressure residual of O(10−6) can be achieved, see figure 5.2. With the
exact pressure obtained from DNS projection, velocity residuals of O(10−12) can be reached with
less than 10 corrector passes, see figure 6.1.





6
Evaluation of stabilization techniques and

discretization effects

In this chapter, the results from LES simulations with ANN model closure are shown, including a
description of post-processing and a discussion on solution stability. The ANN model performance
is compared against algebraic model as introduced by Akkerman et al [28]. In section 6.1, the effect
of stabilization techniques, such as data augmentation, closure terms filtering and mini-batch sum
loss, is discussed. Next, in section 6.2, the impact of varying the CFL number, mesh refinement and
ANN stencil on solution stability is presented.

As was mentioned previously, in all the LES simulations considered in this and the next chap-
ter, pressure solution was inserted from the DNS projection, while the momentum equations are
solved. This led to acceleration of the corrector pass loop, shown in figure 6.1, and lower simulation
times.

Figure 6.1: Corrector pass convergence plot, constraining pressure to projected DNS pressure

45
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To quantify the stability of the flow solution and the model error introduced through the clo-
sure terms, three metrics are used. Firstly, specific resolved instantaneous energy in the flow is
computed as:

𝑘 =
1

2𝑉 (Ω)

∫
Ω

u · u 𝑑Ω (6.1)

A numerical flow solution is said to be stable if the value of 𝑘 in the domain is bounded, or 𝜕𝑘/𝜕𝑡 ≤
0. This is a necessary condition to allow for longer simulation times but doesn’t guarantee that the
solution is physical.

Secondly, as an indirect metric of closure model error, the root mean square error between
streamwise velocities of LES and PDNS is computed as:

RMS(𝑢LES, 𝑢PDNS) =

√︄∑
𝑁 (𝑢LES − 𝑢PDNS)2

𝑁𝑢2𝜏
, (6.2)

with 𝑁 being the number of elements in the mesh. Lastly, the Pearson correlation coefficient (de-
fined in equation 4.4) is used to directly compare the true closure term for streamwise momentum
LM𝑥,exact with the ANN approximation LM𝑥 . This term specifically is picked as the mean flow is
oriented in streamwise direction. It should be noted that both of these last two metrics will grow in
time, due to the chaotic nature of the turbulence. Thus, a zero/low correlation coefficient doesn’t
necessarily mean that the closure model is inaccurate, as it can also be due to the flow solution
developing in a different, but still physical manner when comparing to the DNS projection. How-
ever, comparing the correlation coefficients and RMS errors across different closure models for the
same simulation setup with the same initial condition can provide some insights into the effect of
model parameters, especially immediately after the simulation start. A more advanced discussion
with the flow statistics computed through spatial averaging is presented in chapter 7 for a few
selected models.

6.1. Effect of stabilization techniques
The ANN closure models from table 4.4 are first tested with an initial condition at 𝑡 = 0.0, corre-
sponding to the beginning of the validation dataset, see figure 4.3 for reference. They are immedi-
ately exposed to an unseen flow solution. Additionally, model M116 is also tested starting from the
initial condition at 𝑡 = 1.0, corresponding to the beginning of training dataset. This way, general-
ization ability of the model can be evaluated.

Figure 6.2 shows the a posteriori performance, quantified by the metrics mentioned above, of
these models on the 163 element LES mesh at CFL = 0.5. It should be noted that the correlation
evolution, shown on the bottom plot of figure 6.2, is expected to approximate a power law such as:

𝜌(𝑡) = 𝜌𝑡/Δ𝑡a priori (6.3)

This is because at such coarse resolution, the closure terms directly influence the resolved scales
used as input features for the machine learning model. Thus, the reader should not be alarmed by
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the decrease in the correlation coefficient.
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coefficient of the streamwise momentum closure prediction of the LES and PDNS.

Notably, there are no stark differences between the flow statistics of model M116 when initial-
ized from 𝑡 = 0.0 or 𝑡 = 1.0, leading to a conclusion that the network can generalize beyond its
training data to unseen turbulent channel flow. Expanding the training dataset by simply using
more snapshots of DNS projections is not likely to improve the network performance.

Examining the performance of models M116 and M116A, shows that the data augmentation does
not lead to an improved flow solution. It is likely that augmenting the training dataset will only
show improvement in the validation test case if the mean flow direction is misaligned with the
coordinate axes, which was not the case currently.

Looking at the models M116 and M116F, it is clear that enabling filtering leads to different kinetic
energy evolution compared to other cases, hinting that the flow evolves in a different manner. In
the beginning, just like all the other models, 𝜕𝑘/𝜕𝑡 < 0, but at 𝑡 = 0.2 the slope changes and
excessive kinetic energy is gained. Interestingly, the RMS error of the M116F model is lower than
all other models when considering later development of the flow, meaning that excessive kinetic
energy gain (i.e., solution instability) does not directly manifest itself in the RMS error evolution.

Neither M116F nor M116A provide a better performance as is, when comparing to all the other
models, as they both fail to satisfy the stability constraint. Comparing model M116 and M116 MSE
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(with and without mini-batch sum loss respectively) shows no effect on the correlation or RMS
error evolution, but a difference can be observed in flow kinetic energy evolution, where inclusion
of mini-batch sum loss leads to a slightly better match with projected DNS flow kinetic energy.
Even though the improvement is marginal, it leads to an important conclusion that training with
additional metrics such as mini-batch sum loss during ANN training can be used to affect the a
posteriori stability of the closure model.

6.2. Effect of mesh refinement, CFL number and input stencil
In this section, ANN models with varying input stencils (M116 vs. M316), different mesh refinement
(163 vs. 323) and CFL numbers (0.5 vs 1.0) are compared in terms of the previously mentioned
three metrics. The results are shown in figure 6.3.
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Surprisingly, the coarse resolution model M116 performs the best across all the three metrics.
When comparing input stencil 1 to 3 (see figure 4.2), a considerable drop in correlation is observed,
as well a greater RMS error and kinetic energy deviation. Nonetheless, the two models show very
similar trends. The most surprising result is that increasing the resolution of the mesh does not
have a clear benefit on stability or accuracy of the model. Comparing model M116 and M132, M116

maintains higher correlations for considerably longer, and the M132 RMS error curve transitions
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into an exponential already at 𝑡 > 0.10, signalling divergence. This model instability can also be
aggravated by the fact that the M132 model handles many more closure terms than the M116 model,
and there could be more opportunities for significant errors. Lastly, increasing the CFL number
at mesh resolution of 323 doesn’t show a strong effect on correlations, but strongly degrades the
ability of the model to maintain the correct kinetic energy already after several time steps. It should
be noted that the models have a varying LES time step: models M116, M316, M132 (CFL = 1.0) are all
running with Δ𝑡 = 0.0072, while model M132 (CFL = 0.5) is running at Δ𝑡 = 0.0036. Thus, over the
same time period this model experiences twice as many ANN inputs, and has more opportunities
for significant error, which can explain why the RMS metric of model M132 (CFL = 0.5) exceeds that
of M132 (CFL = 1.0). To summarize, coarse mesh size and low CFL number seem to be stabilizing
factors for ANN closure models.





7
Results

In this chapter, a closer view is presented of the machine learning closure model error and its
impact on the flow solution for models M116, M116F and M132. In section 7.1, new quantities nec-
essary for a detailed discussion of simulation stability are introduced. Afterward, in section 7.2,
evolution of kinetic energy for model M116 is examined in more detail. In section 7.3 the effect of
Fourier filtering is discussed in depth through comparison of models M116 and M116F. Lastly, in
section 7.4 the flow evolution for model M132 is discussed.

7.1. Instantaneous kinetic flow energy evolution
In this section, a more detailed investigation is carried out into the evolution of the flow subject to
machine learning closure models. Namely, instead of using only specific resolved instantaneous
kinetic energy 𝑘 as the metric, is split up into its mean and fluctuating components. First, the mean
resolved velocity is defined as spanwise and streamwise average of resolved velocity field, viz:

ave𝑥,𝑧 (u) =
1

𝑁𝑥 · 𝑁𝑧

∑︁
𝑁𝑥 ·𝑁𝑧

u (7.1)

Next, resolved fluctuating velocity is given as:

u′′
= u − ave𝑥,𝑧 (u) (7.2)

Then, the resolved Reynolds stress tensor 𝑅𝑖 𝑗 can be defined as follows:

𝑅𝑖 𝑗 = ave𝑥,𝑧
(
𝑢𝑖

′′𝑢 𝑗
′′) , (7.3)

with 𝑢1′′ = 𝑢′′, 𝑢2′′ = 𝑣′′ and 𝑢3′′ = 𝑤′′.
With these new quantities introduced, the resolved kinetic energy can be split into various

parts. It is composed of turbulent specific resolved kinetic energy 1
2𝑅𝑖𝑖 and (spatial) mean specific

51
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resolved kinetic energy 𝑒, defined as follows:

𝑒 =
1

2𝑉 (Ω)

∫
Ω
ave𝑥,𝑧 (u) · ave𝑥,𝑧 (u) 𝑑Ω (7.4)

In a projected DNS solution, no mean (average) flow is expected in wall-normal or spanwise
directions, i.e., ave𝑥,𝑧 (𝑣) = 0, ave𝑥,𝑧 (𝑤) = 0. Even though LES runs with ANN closure can introduce
slight deviations, they are negligible compared to the streamwise average flow ave𝑥,𝑧 (𝑢). Equa-
tion 7.5 shows that the instantaneous kinetic flow energy is composed of 4 contributions.

𝑘 = 𝑒 + 1
2
𝑅𝑖𝑖 ≈ ave𝑥,𝑧 (𝑢)2 +

1
2
𝑅11 +

1
2
𝑅22 +

1
2
𝑅33 (7.5)

An evolution equation for resolved instantaneous flow kinetic energy can be found by replacing
the weighting function w with u in equation 2.27:

(
u,LM (u, 𝑝)

)
Ω =

(
u, f

)
Ω −

(
u,LM

′(u,u′, 𝑝′)
)
Ω (7.6)

Expanding the momentum operator LM :

𝜕
(
u · u

)
Ω

𝜕𝑡
+
(
u · ∇ ·

(
u ⊗ u

) )
Ω +

(
u · ∇𝑝

)
Ω −

(
u · 𝜈Δu

)
Ω =

(
u, f

)
Ω −

(
u,LM

′(u,u′, 𝑝′)
)
Ω (7.7)

Considering that the forcing term f is constant, it can be taken outside the integral. This leads to:

2
𝜕𝐾

𝜕𝑡
= 𝑓𝑥

(
𝑢
)
Ω −

(
u,LM

′(u,u′, 𝑝′)
)
Ω −

(
u · ∇ ·

(
u ⊗ u

) )
Ω +

(
u · 𝜈Δu

)
Ω −

(
u · ∇𝑝

)
Ω (7.8)

Dividing by twice the domain volume 2𝑉 (Ω):

𝜕𝑘

𝜕𝑡
=
𝑓𝑥𝑈bulk

2
−

(
u,LM

′(u,u′, 𝑝′)
)
Ω

2𝑉 (Ω) −
(
u · ∇ ·

(
u ⊗ u

) )
Ω

2𝑉 (Ω) +
(
u · 𝜈Δu

)
Ω

2𝑉 (Ω) −
(
u · ∇𝑝

)
Ω

2𝑉 (Ω) (7.9)

With 𝑈bulk being the bulk flow velocity. Equation 7.9 explicitly shows the effect of momentum
closure term on the evolution of instantaneous specific kinetic energy. Considering that the ANN
models have shown a tendency to (on average) overestimate the closure term LM

′(u,u′, 𝑝′), as is
shown in table 4.4 with positive values of 𝜖(𝐸M𝑥 ), this leads to an initial decay of 𝑘 for all the net-
works. Thus, 𝜖(𝐸M𝑥 ) ≥ 0 can be considered the a priori approximation for the stability constraint
𝜕𝑘/𝜕𝑡 ≤ 0. To be more precise,(

u,LM
′(u,u′, 𝑝′)

)
pred ≥

(
u,LM

′(u,u′, 𝑝′)
)
truth (7.10)

is the condition that should be enforced in the next iterations of the model to guarantee a posteriori
stability of 𝑘.
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7.2. Flow evolution for the model M116
The components of 𝑘 described in equation 7.5 are computed for the LES simulation with closure
model M116 and are shown in figure 7.1. The top subplot is showing the instantaneous specific
kinetic energy, the second from top is showing the evolution of the largest turbulent contribution
1
2𝑅11, the third is showing less significant spanwise and wall-normal contributions, and the last
plot on the bottom is showing the mean flow kinetic energy.
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Figure 7.1: Evolution of mean and turbulent kinetic energy for model M116 (red), compared against algebraic model
(gray).
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Please note that the initial computation of 𝑘, presented in chapter 6, was carried out during
runtime with higher number of integration points. The values of 𝑘 and its components presented in
this chapter have been computed via a post-processing routine, where only the element-averaged
solution has been saved, leading to slightly different values of 𝑘, when comparing to figures 6.2
and 6.3.

There are three important parts in the flow system: mean flow, whose energy is 𝑒, resolved tur-
bulent flow, whose energy is mostly 1

2𝑅11, and unresolved turbulence (fine-scale), whose energy is
unknown, but which takes energy from the resolved flow via the modelled term

(
u,LM

′(u,u′, 𝑝′)
)
Ω

Evidently, the closure term has a strong influence on the mean flow, immediately draining en-
ergy from it. At the same time, turbulent resolved energy components 𝑅22 and 𝑅33 show a good
match with PDNS values, but the largest component 𝑅11 grows linearly until 𝑡 = 0.3, then grows
exponentially beyond that point, completely deviating from projected DNS solution. The strong
effect of the closure model on the mean flow can be explained by an extremely coarse resolution
of the mesh, meaning that there is no sufficient separation between the mean flow, large resolved
scales and modelled fine scales. The fact that the algebraic model shows a poor match with the
projected DNS solution is an indication that this model also cannot handle the coarse 163 mesh.

Figure 7.2 shows streamwise energy spectra of the solution at 𝑡 = 0.11, at varying wall distance.
Please note that this and the following spectra are computed based on the resolved fluctuating
velocity u′′.
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In general, the ANN model matches reasonably with the DNS projection, and fine resolved scales
are found below the DNS projection, as would be expected given an excessively dissipative model
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(due to a larger average magnitude of closure predictions). However, the problem lies in the largest
resolved scales, in particular in the first element near the wall (𝑦+ ≈ 20). These seem to gain energy,
meanwhile the mean flow is losing energy (figure 7.1, bottom plot, 𝑡 = 0.11).

To further examine the influence of the wall-normal coordinate, the streamwise mean velocity
profile and resolved Reynolds stress components 𝑅11, 𝑅12 are shown in figure 7.3 at 𝑡 = 0.10. Both
algebraic and M116 models show a good match for the mean flow profile and for the most of the
𝑅11 profile. However, 𝑅11 is overestimated strongly at the first element at 𝑦+ ≈ 20, although M116

model is more accurate. Similarly, a better match is found with the M116 model for the 𝑅12 profile,
but still a strong error is present in the first element near the wall.
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compared against algebraic model (gray).

The model M116 immediately leads to decrease of mean flow kinetic energy and increase of
large resolved turbulent energy when compared to projected DNS. This is likely an important con-
tributing factor in the fast decrease of accuracy of closure predictions, as the network has only
been exposed to projected DNS snapshots. It is thus likely to be strongly dependent on the mag-
nitudes of the largest resolved turbulent flow scales. These evolved large resolved scales in the
present large-eddy simulation are drastically different from the large resolved scales of DNS pro-
jection, due to the increase in resolved turbulent kinetic energy.

The largest deviations from projected DNS solutions are observed in the first element at the
wall, meaning that near-wall closure predictions need to be prioritized during network training.
This can be achieved by using a loss function weighted by the wall-normal distance, with higher
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weights given to elements near the wall.

7.3. Flow evolution for the model M116F
Next, the effect of filtering on the flow evolution and streamwise turbulent energy spectra is dis-
cussed by the means of comparing models M116 and M116F. Their streamwise energy spectra are
compared in figure 7.4.
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Figure 7.4: Stream wise resolved fluctuation 𝑢′′ energy spectra at varying wall distance at 𝑡 = 20Δ𝑡 = 0.14 for closure
model M116 (red) and M116𝐹 (yellow) both with constrained pressure.

Clearly, the filtering of the training data has the expected influence on the energy spectra, even
after several time steps. At the same time, a slight accumulation of energy can be observed at the
end of the 𝑦 = 𝐻/2 spectrum. The components of resolved instantaneous kinetic energy for the
two models are compared in figure 7.5. For the filtered model, a good match with the projected
DNS solution is observed until 𝑡 = 0.2, after which the resolved Reynolds tensor components 𝑅11,
𝑅22, and 𝑅33 start to diverge. It is unclear why the filtered model gains excessive energy in both
the resolved turbulent energy 1

2𝑅𝑖𝑖 and mean-flow kinetic energy 𝑒. In conclusion, filtering of the
training data can be used to modify the resulting spectra of the resolved flow, but other more
critical stability issues need to be addressed first to make filtering a viable technique over longer
run-times. Additionally, the current choice of the filter is likely not optimal and required further
consideration.
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7.4. Flow evolution for the model M132
In this section, the flow evolution of model M132 is described. Although a gain in stability and
accuracy would be expected with a gain in mesh resolution, this has not been the case. Models
used on a finer mesh led to solution divergence much sooner, both in terms of simulation time and
number of LES time steps. Analyzing the resolved-flow kinetic energy evolution for model M132,
shown in figure 7.6, and comparing it to model M116 in figure 7.1, leads to the similar conclusions,
and the underlying stability issues are likely the same regardless of the mesh refinement.
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In both cases, quite soon after initialization, the resolved turbulent kinetic energy components
𝑅𝑖𝑖 start to grow, while the mean-flow energy is decaying. At first, up until to 𝑡 = 0.20 they deviate
from the DNS projection linearly, but afterwards exponentially, which coincides with the complete
loss of correlation accuracy. However, when observing the streamwise energy spectra, shown in
figures 7.7 and 7.8 for the 323 case and in figure 7.2 for the 163 case, the effect of increased mesh
refinement is seen. Initially, at 𝑡 = 3Δ𝑡, the M132 model is excessively dissipative near the wall, but
provides extra energy in the center of the channel. Afterward, the model begins to significantly
drain energy from the mean flow, but instead of delivering it to the largest turbulent scales, follow-
ing the idea of turbulent energy cascade, the smallest resolved scales are excessively energized.
The cause of this is not clear.

Figure 7.7: Stream wise resolved fluctuation 𝑢′′ energy spectra at varying wall distance at 𝑡 = 3Δ𝑡 for closure model
M132 (purple) and algebraic closure (gray), both with constrained pressure. High wave number region zoomed-in on

the right, with algebraic spectrum omitted for visibility.
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Figure 7.8: Stream wise resolved fluctuation 𝑢′′ energy spectra at varying wall distance at 𝑡 = 10Δ𝑡 = 0.03 for closure
model M132 (purple) and algebraic closure (gray), both with constrained pressure.
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The mean flow profiles and Reynolds stress components are shown in figure 7.9.
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Figure 7.9: Mean flow and components of resolved Reynolds stress at 𝑡 = 14Δ𝑡 = 0.05 for model M132 (purple),
compared against algebraic model (gray).

Again, deviations are strongest near the wall, particularly for 𝑅11. A much better match is ob-
served for 𝑅12 for the algebraic model, but not for model M132. It should also be noted that profiles
shown for coarse case M116 in figure 7.3 are actually further in time from the initial condition than
for M132, due to a larger time-step, again highlighting seemingly improved stability at the lower
mesh refinement.

The cause for a more rapid breakdown of the flow with M132 model compared to M116 is likely
the increased separation of turbulent modes in spectral space. Both models provide excessive
energy to the turbulent fluctuations, but in the 163 case all the turbulent spectral modes gain a
relatively equal amount of energy, while in the 323 case the smallest resolved modes are energized
considerably more than the large resolved modes, which is more destabilizing to the flow solution
as no energy cascade is observed. However, it is still not clear why a decrease in the mean flow
energy in the 323 case does not lead to increased energy of largest turbulent modes. In order to
further investigate this issue, a turbulent kinetic energy budget needs to be evaluated.

To conclude, in all the networks tested a posteriori, a significant and systematic deviation from
the projected DNS solution is observed in the first element near the wall. This deviation leads to
an increase in streamwise resolved turbulent energy 𝑅11 near the wall, and may be linked to the
drain of mean flow energy. While in the 163 case, this additional energy is transferred across all the
resolved turbulent modes, in the 323 case it is mostly transferred to high frequency wavenumber
modes. An improved accuracy in the ANN model predictions for near-wall elements is necessary
to alleviate this issue. Filtering of the training dataset can be used to manipulate the resolved
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energy spectra in simulations with ANN closure, but the effectiveness of this technique is still not
clear. At the same time, a rapid degradation of ANN closure accuracy has been observed for all
the models. Expanding the training dataset with features that are representative of ANN error
statistics is likely a good strategy to address this degradation.





8
Conclusions

In this thesis, a data-driven approach to modelling the closure terms in variational multi-scale
framework has been presented. By using integral forms of coarse-scale features, very high a priori
correlations can be achieved for momentum closure terms, even with a relatively compact feature
stencil of two elements and two time steps. However, a posteriori evaluations of LES simulations
equipped with ANN closure show that the model cannot maintain high correlation accuracy and
provides a poor match of the resolved Reynolds stress components in the first element near the
wall. An excessive gain in turbulent energy is observed, while simultaneously a decay in mean
flow energy is found.

RQ-1. How is the stability of the variational multiscale flow solution
affected by introduction of ANN closure?
Using the current ANN closure models leads to the steep decrease in the correlation of modelled
and exact momentum terms after 10–20 LES time steps.

RQ-1a. How does the flow deviate from projected DNS solution when subject to
ANN closure?
With all the models tested a posteriori, significant deviations have been observed in the near-
wall elements, hinting that the ANN models fail to correctly estimate the turbulence production
in this region. After some simulation time, a deviation becomes so significant that the difference
between resolved turbulent energy of DNS projection and LES grows exponentially, eventually
leading to solution instability. At the same time, the mean flow energy is observed to be decreasing,
suggesting that the energy is transferred from the mean flow into turbulent fluctuations, but this
has not been explicitly confirmed.

63
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RQ-1b. Can long-term instabilities (LTI’s) be adequately addressed through addi-
tional filtering of the DNS solution during offline ANN training?
Filtering the DNS projection to modify the closure terms has been shown to be effective in ma-
nipulation of the run-time turbulent spectra of LES simulations. However, it is not clear whether
this technique is advantageous for simulation stability. The accumulation of turbulent energy is
likely linked to erroneous predictions in the near wall element layer(s), possibly leading to over-
estimation of turbulent energy production, and filtering technique has only been observed to
change how excess turbulent energy is distributed among turbulent modes. A more detailed eval-
uation of filtering technique on multiple cases is needed to fully answer this sub-question.

RQ-1c. Can LTI’s be addressed through introduction of new accuracy metrics during
offline network training?
It has been confirmed that achieving high a priori correlations doesn’t guarantee flow stability
in an a posteriori setting, as the model accuracy quickly degrades when it is faced with inputs
corrupted by closure term error. Instead, to improve a posteriori solver performance, new a priori
metrics need to identified and implemented during the model training, to account for adverse
effects of erroneous closure terms. One such metric has been identified to be the mini-batch sum
loss, which punishes the model deviations from the truth values in terms of averages over large
batches of predictions. Inclusion of this metric has shown an advantage in terms of conservation
of total kinetic energy within the flow, without any adverse effects on closure term accuracy. Thus,
it has been shown that a suitable accuracy metric can be beneficial for online model stability, but
further steps are needed to achieve full model stability.

RQ-2. How can the training and run-time computational cost of the
neural network be reduced?
The training cost of the model has been significantly reduced by adopting a universal model strat-
egy, which is unaware of the index of element shape function used for integration. This way, the
training dataset can be expanded by a factor of 8, which is beneficial for model generalization, but
only 1 model needs to be trained. In addition, the network architecture has been radically down-
sized from 5 hidden layers of 600 neurons each to a network with a single hidden layer of 100
neurons. Still correlations of approximately 0.90 for streamwise momentum term are observed,
0.95 for span- and wall-normal momentum closures, and over 0.99 for continuity closure.

RQ-2a. What input features can be discarded without compromising the accuracy?
By performing a small sensitivity study, three most relevant and important coarse-scale feature
terms have been identified. These are the time-derivative term

(
𝝋𝑞,

𝜕u
𝜕𝑡

)
e
, resolved convection term(

𝝋𝑞,∇ ·
(
u ⊗ u

) )
e

and resolved divergence term
(
𝜓𝑞,∇ · u

)
e
. Pressure gradient and diffusion terms

contribute very little to higher correlation coefficients with exact closure terms.
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RQ-2b. Can the feature set stencil be compacted without compromising network
accuracy?
The feature set has been compacted in comparison to the stencil used by A. Bettini [20]. The stan-
dard stencil includes the original element together with its upstream neighbor, with information
from the current and previous time steps. Including more elements or having a longer flow his-
tory has not led to increased accuracy in closure term correlation, and thus no accuracy losses are
expected by using a compact stencil.

RQ-2c. Can the training routine be optimized?
Besides reducing the simplicity and cost of training methodology by adopting a single network
formulation, two options are now available for network training:

• Training with full dataset in RAM - taking advantage of large RAM of work stations used (64
GB), a training dataset of up to 30 GB can be loaded into RAM (accounting for the generous
memory allocation by Linux kernel). Once the dataset is loaded, the training is accelerated,
as the data can be shuffled in RAM much faster.

• Another option is pre-processing the training data into NumPy shard files, each of up to 5
GB. While previously binary TensorFlow files are used, these files can not be opened or used
for anything else besides training in TensorFlow framework. Meanwhile, NumPy files can
be directly used for post-processing, data augmentation such as rotation of coordinate axes,
etc.

Using the first option has shown a massive acceleration in model training, leads to a more than
10x speed-up.

RQ-3. How does the ANN model respond to numerical refinement?
The ANN model shows the most promising results at 163 mesh resolution with a CFL number of
0.5. For this specific case, a better match with DNS projection has been observed for the first 15
LES time steps with an ANN model than with the algebraic model.

RQ-3a. What is the effect of mesh size on model accuracy and stability?
The error accumulation induced by the ANN model is sensitive to the mesh refinement. For 163

LES mesh case, the model inserted excessive kinetic energy in the near wall region, without strong
preference for high- or low wave number regions. While for 323 mesh case, high wave number
energy accumulation has been observed. Filtering the training data-set can be used to manipu-
late the energy spectra induced by the model, but no improvement in solution stability has been
observed for 163 the case, likely as this technique does not address the cause of excess turbulent
kinetic energy production.

Comparing LES mesh of 163 elements to 323 elements, an improvement in simulation stability
and accuracy over longer simulation times have been observed for a coarser mesh.
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RQ-3b. What is the effect of CFL number on model accuracy and stability?
The effect of CFL number was investigated by comparing two 323 cases at CFL number of 0.5 and
1.0. While the correlations of closure terms and RMS error of streamwise velocity field are very
similar (accounting for longer time steps), running the model at CFL number of 1.0 is detrimental
to evolution of instantaneous flow kinetic energy. Therefore, it is recommended to keep the CFL
number at 0.5 or below.

RQ-4. What is the effect of data augmentation on network accuracy
and stability?
No improvements in stability or accuracy have been observed through the augmentation of train-
ing dataset by a rotation of coordinate axes. It is likely that this approach will only show improve-
ment if the test case experiences a mean flow direction misaligned with the coordinate axes, which
was not the case for the current validation tests.

Recommendations
There are several recommendations and research avenues that can lead to potential improvement
in data-driven closure modelling:

• Turbulent kinetic energy budget evaluation. The turbulent energy budget should be com-
puted to further explain the accumulation of turbulent kinetic energy and decay of mean
flow kinetic energy. The most relevant terms, such as the energy transfer term from the mean
flow into turbulent kinetic energy, can be evaluated during the training and introduced as a
new loss function, to penalize the ANN model from significant deviations in energy transfer.

• Training dataset diversification. The training dataset of the model should be expanded by
including input features that are corrupted with ANN-induced error. Including snapshots
of simulations with accumulation of ANN error during training would help the network to
maintain accurate closure term predictions even when faced with its own error in coarse-
scale features. Alternatively, projected DNS flow fields can be filtered by using already de-
veloped methodology to "simulate" the spectra contaminated with ANN error, or the training
dataset can be directly augmented with Gaussian noise, as was done in 1-D simulation by [19].

• Adjusted training approach. Given that the most significant errors have been observed at
the near-wall element, the model has to be tuned more aggressively in the near-wall region.
This can be achieved by using a varying factor loss function, that leads to higher loss values
near the walls and decreases in the center of the channel, i.e. 𝐿𝑧 ( 𝑦, �̃�, 𝑧) = 𝑓 (𝑧) · 𝐿( 𝑦, �̃�)

• Further investigation into the resolved pressure equation. A cause for divergence of the
pressure solution is still not clear, but is likely linked to ∇ ·

(
LM

′(u′,u, 𝑝′)ANN
)

and(
𝜕
𝜕𝑡𝜈∇ · ∇

)
(LC (u′)exact) terms. A Fourier transform of eq. (5.4) can perhaps explain the high-

frequency pressure fluctuation observed when using ANN model momentum predictions.
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