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Report Outline

The outline of this report is as follows. Part I of the report is the scientific paper that has been
written to show the results of the experiments performed to answer the research question: "Which
methods are suitable to automate aircraft sequencing and spacing tasks when a controller is trained
using reinforcement learning?’. Part II of the report is the preliminary thesis, which includes the
literature study as well as preliminary research and the research plan. Finally, additional results that
are not in the paper can be found in the appendix.
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Exploring reinforcement learning methods for autonomous sequencing
and spacing of aircraft

B. Vonk
Supervisors: J. Ellerbroek, J.M. Hoekstra
Delft University of Technology, Kluyverweg 1, Netherlands

Abstract— Research on reinforcement learning algorithms
to play complex video games have brought forth controllers
surpassing human performance. This paper explores the pos-
sibilities of applying these techniques to the sequencing and
spacing of aircraft. Two experiments are performed. First
a single aircraft must learn to fly a 4D trajectory using
only heading commands. To train an agent Duelling Deep Q-
Networks has been applied to learn a successful policy, however,
learning is unstable and does not provide a suitable basis
for extending this to a multi-agent setting. Second a multi-
agent experiment is performed where aircraft have to sequence
and space themselves for landing without a 4D constraint. A
Bidirectional Communication Net has been trained using Deep
Deterministic Policy Gradients first on a single traffic scenario
and then on multiple traffic scenarios. Emerging strategies have
been seen in the single scenario training eg. a holding, but no
optimal policy was found. Training on multiple traffic scenarios
showed no coordination efforts between the aircraft. Further
analysis showed the importance of a proper reward function
and exploration strategies which were likely the cause of not
finding an optimal policy for a multi-agent setting.

I. INTRODUCTION

Terminal airspace is characterized by the need for many
tactical decisions by air traffic controllers (ATCos). This is
due to high density traffic situations where aircraft flows
must be merged into landing sequences while also main-
taining safe separation. Additionally, the terminal area is
low altitude airspace, which can be subject to restriction
such as aircraft noise regulations and adverse meteorological
conditions. Separation is assured by vector commands from
ATCos. As air travel has become a commodity due to
cheap ticket fairs, the demand for air travel has increased
1 Also, the number of minimum separation violations in
Dutch airspace has grown. Most occurrences appear in the
flight phase just before or during approach 2. Hence, there
is room for improvement in the sequencing and spacing of
air traffic in terminal airspace.

A way of improving sequencing and spacing operations
is to restructure the terminal airspace to better accomodate
the process like with the Point-Merge (PM) system [1].
Other solutions to automate the sequencing and spacing use
algorithms for conflict detection and resolution. [2], [3], [4].
Conflicts are probed based on 4D trajectories. Then resolu-
tions are proposed based on a set of aircraft manoeuvres from
which the best manoeuvre is chosen to resolve the conflict.

! Annual Report Schiphol Group 2017
2 Annual Report LVNL 2016

Engineering a system like PM is essentially designing the
solving strategy for the sequencing and spacing problem of
aircraft. Could it instead be possible to have an algorithm
learn how to efficiently solve the sequencing and spacing
problem autonomously to learn from the emerging strategies?
Developments in Artificial Intelligence have shown that an
agent can learn to play complex video games in an unsuper-
vised manner without human demonstration with emerging
performance surpassing human performance. For instance
on a simple game like Breakout [S] to more recently very
complex games that take humans years to master like Dota
2 3. The machine learning technique used in learning these
games is reinforcement learning.

To surpass human-level performance on Breakout the
Deep Q-Networks (DQN) algorithm was developed, which
used neural networks as a function approximator for the
value of the state-action space. Many improvements have
been made on the DQN algorithm since it was introduced.
Improvements were based on the double Q-learning algo-
rithm [6], [7] or network architecture [8]; sampling and
training techniques [9] and an emperical study of combi-
nations of mentioned improvements [10]. Next to that other
traditional reinforcement learning algorithms have also been
extended with neural network function approximators such
as Deep Deterministic Policy Gradients (DDPG)[11] and
Asynchronous Actor Critic (A3C) [12].

An ATCo must, however, control multiple aircraft. The se-
quencing and spacing problem is thus a multi-agent problem.
One of the assumptions underlying reinforcement learning is
that the environment in which the agent is learning is sta-
tionary. When extending reinforcement learning algorithms
to a multi-agent setting in a naive way the problem arises
that training is unstable due to the fact that the environ-
ment becomes non-stationary from the perspective of a
single agent. Solutions to this issue involve using centralized
policies during training and decentralized execution at test
time [13]. This means that during training the agents have
access to each others policy so they know how other agents
evolve. Other solutions use communication between agents
to remove the non-stationarity issue [14], [15]. An advantage
of a continuous communication channel is the possibility of
having a variable number of agents present at runtime.

3OpenAI research team, 'OpenAl Five’, 2018, url: https://blog.
openai.com/openai-five/, [accessed: June 25, 2018]



Related work in applying reinforcement learning in air
traffic management used a reinforcement learning controller
to control the ’time in trail’ between arriving aircraft on the
merge point of the PM system. When looking particularly at
sequencing and spacing a step towards this objective is taken
by [16] who used a hierarchical controller approach to solve
the sequencing and spacing of two aircraft in the game Sector
33 by NASA. The hierarchical controller is build up on an
outer and an inner controller. The outer controller chooses
the aircraft route from a set of available routes at the start
of the episode after which it cannot be changed. The inner
controller then controls the aircraft speed during the episode.
Limitations of this approach are the fixed approach set of
aircraft and aircraft trajectories that are embedded in the
action design. Hence, the solution cannot be used for any
new situations.

This paper aims to explore the possibilities to apply
reinforcement learning techniques to the sequencing and
spacing of aircraft in the TMA and work towards discovery
of more efficient and safe operation strategies in the TMA.
Therefore the question: *Which methods are suitable to
automate sequencing and spacing tasks when a controller
is trained using reinforcement learning?’, must be answered.
To this end multiple reinforcement learning techniques have
been implemented and tested on different environments and
traffic scenarios.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning is a class of machine learning
used to solve sequential decision making problems and is
modelled as a Markov Decision Process (MDP). In short
in a MDP the goal of an agent is to maximize the reward
it receives from an unknown environment with which it
interacts by performing actions. A MDP is represented by
(S, A, P,R,~) where:

o S is the set of states.

o A is the set of actions.

¢ P is the transition probability that action a; in state s;
will lead to state s;;; at the next timestep.

o 1 is the immediate reward received by the agent for the
state transition from s; to s;11 by performing action a;.

e v is the discount factor, which represents the relative
importance of future and immediate rewards.

Using this framework the actions an agent takes in the
environment is represented by the policy m, which is thus
a mapping from state to action. The optimal policy is
represented as the maximum of the sum of expected rewards
over the course of an episode in the environment. The process
is visually shown at Figure 1. The agent observes state s; and
reward 7; and at timestep ¢, chooses an action a; according
to its policy. The action changes the state of the environment
in the next timestep ¢ + 1. This process repeats itself during
an episode until the episode terminates.

|
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Fig. 1: Block diagram describing the reinforcement learning
process. An agent observes the current state and reward in
an environment. According to its policy the agent selects an
action, which changes the state of the environment and the
agent observes the reward and state in the next timestep.

state
5

B. Q-learning

Q-learning, introduced by Watkins [17], is one of the
most fundamental reinforcement learning algorithms, and is
classified as a value-based method. This means that it tries
to learn how valuable it is to take a particular action in a
particular state by learning the Q-value of every state-action
combination in the environment. This Q-value represents the
expected value of the discounted cumulative reward for that
action when following policy 7 in Equation 1 with k the
number of steps in the future and the current timestep f,
which must be learned for each state-action pair.

Q(s,a) =Ex Z’Ykrt+k+1|sva ey
k=0

The value of each state-action pair can be stored in
a Q-table for discrete state-action spaces. For continuous
state spaces function approximation with a Q-function is
used. When taking a greedy approach the policy is 7(s) =
arg max Q(s, a), which takes greedily takes the action yield-
ing the highest expected cumulative reward. The agent can
learn about the value of each state-action pair by visiting
all of them a sufficient number of times and observing
the reward from the environment, after which the following
update step is applied in Equation 2 with learning rate o and
where state and action in the next timestep will from now on
by indicated by s’ and a’ respectively. To ensure all states
are visited the agent explores the environment by sometimes
choosing a random action with probability e. This is called
an e-greedy policy. The process of exploring the environment
is called exploration.

Q(s,a) + Q(s,a) + a(r + ymax Q(s', a’) — Q(s, a)) (2)

Q-learning is only suitable for discrete action spaces, due
to the fact that it compares the Q-value for multiple actions
to choose an action.

C. Deterministic Policy Gradient

Another family of RL algorithms are formed by the policy
gradient algorithms, which do not learn value but directly try
to find an optimal policy. Where in Q-learning the policy is
to e-greedy choose the highest Q-value in a state in policy



gradient the policy has parameters and is thus a function.
A policy is parametrized with parameters 6 and the action
output is modelled as a probability distribution over the
actions (als,). An objective function J(6) is specified
which is the equivalent of the cost function in an optimization
process, see Equation 3 where p,r is the discounted state
distribution [18]. The discounted state distribution describes
the probability that an agent will visit state s after when
executing policy 7. The objective function is used to optimize
the policy for the objective using gradient ascend. The
gradients are computed by taking actions according to the
policy and observing the reward. The policy 7 is stochastic
because the action output is a probability distribution over
the actions. This is also necessary to properly explore the
environment.

50) = [ o s)r(s. () s

— Eypn, (s, p0(5))]

Note that a deterministic policy gradient (DPG) also exists
[19]. Instead of using a stochastic policy = (als,f) actions
are selected deterministically using policy p(s, #). The DPG
is a limiting case of the stochastic policy gradient when
the variance goes to zero. However, to properly explore
the environment exploration noise must be added, making
the policy stochastic again. Therefore the DPG is often
implemented as an actor-critic method to allow for off-policy
exploration. Actor-critic architecture will be discussed next.
Off-policy learning is when policy updates are not computed
using actions sampled from the current policy. Hence, noise
can be added to the action output for additional exploration
without creating a stochastic policy. An advantage of policy
parametrization over action-value modelling is that the form
of the policy can be used to include knowledge into the
learning system [20].

3)

D. Actor-Critic

Actor-critic methods are a combination of a policy gradi-
ent method and value based method and are separated into an
actor and a critic [18]. The critic learns a value function that
takes as input the action taken and the state and produces a
Q-value which is used to ’criticize’ the value of the state-
action pair. The actor is a parametrized policy as in the
policy gradient. Actor-critic is thus a combination of a value
based method and policy gradients. The critic estimates the
error that is used to update the parameters of the actor, see
Figure 2. The actor does not have direct access to the reward
signal.

By using this construction of decoupling the action selec-
tion from learning a value function the variance of the policy
gradients is reduced at the cost of introduction of a bias due
to the approximation of the policy gradient with the use of
a value function. Policy gradients are known to have high
variance due to the way they are computed. The gradients
are computed by a randomly sampling a trajectories during
an episode. The computation of the gradient relies on these
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Fig. 2: Actor-critic architecture. The critic learns a value
function which it uses to ’criticize’ the action taken by the
actor. The critic delivers a gradient the actor which is used
to update the actor’s policy. The actor has no direct access
to the reward received from the environment.

random sampled trajectories and therefore have variance. In
other words, the computed gradient does not always point in
the right direction. In actor-critic methods the actor updates
the policy in the direction suggested by the critic which
learns a value function similar to Q-learning, which has lower
variance. The reduction in variance of the policy gradient
means fewer samples are required for learning.

E. Deep reinforcement learning

Deep reinforcement learning uses neural networks from
the field of deep learning as a non-linear function approxima-
tor for the parametrized policy and the value function. Deep
neural networks are useful because they are very versatile
in their architecture and applications. They are used in the
field of supervised learning for applications such as function
approximation, image classification, and natural language
processing. These allow each different sensory inputs, such
as values, pixel data and sequence data respectively.

In DQN a neural network is used to approximate the Q-
function [5]. The application of neural networks as function-
approximator allows for end-to-end learning. This means
that it directly maps sensory inputs to action outputs, e.g.
image frames to actions. However, when using a non-linear
function approximator to learn state-action values reinforce-
ment learning is unstable [21]. The instability is caused
by correlation in sequential observations and correlation
between action values and the target value for Q-learning. To
stabilize the training of neural networks in a reinforcement
learning setting additional measures are introduced. A replay
memory is introduced, which is filled with experiences. At
every timestep the experience (8¢, as, ¢, S¢4+1) is saved in the
replay memory. Experiences are sampled randomly from the
replay memory to prevent temporal correlation in training
data. To decorrelate the Q-values and the target Q-values a
separate target network is introduced which estimates the
target value. The target network is only updated every c
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Fig. 3: Dueling-DQN network architecture. The network is
separated into a value stream and an advantage stream, which
combined are equal to the state-action values (Q-values).
Advantage estimation implicitly learned in this network
architecture. [8]

number of iterations to keep the optimization target for the
network constant over a number of consecutive optimization
epochs thereby reducing correlation with the Q-values.

A disadvantage of DQN is that difference between Q-
values relative to their magnitude is often very small, which
may result in poor action choices. Advantage estimation is
used to subtract a baseline value from all Q-values in a given
state without introducing a bias to obtain a larger differ-
ences in Q-values relative to their absolute value. Advantage
is simply the Q-values subtracted by a common baseline
A(s,a;0) = Q(s,a;0) — V(s;0). This advantage is then
used as Q-value estimate rather than the actual Q-value in
the Q-learning update step. The relative difference between
the advantage estimates is larger than the relative difference
between Q-values and thereby speeds up learning. [22]

Dueling-DQN [8] incorporates this principle in its network
architecture by splitting the network into two streams. The
first estimates the state value V(s;6) and the second the
action advantage (A(s,a;0) and merge them later to obtain
the Q-values. Hence, Equation 4 is implicitly modelled in the
network architecture to leverage advantage estimation and
improve learning performance. The different streams in the
network architecture are visualized in Figure 3.

Q(s,a;0) =V(s;0) + <A(s7 a;0) — ﬁ ZA(& a'; 9)
: )

F. Multi-agent reinforcement learning

Sequencing and spacing requires multiple aircraft to coor-
dinate their actions. Reinforcement learning must be applied
to a multi-agent setting, but doing so naively does not work.
One of the assumptions underlying reinforcement learning is
that the environment does not change, it is stationary. When
multiple agents learn a policy independently this assumption
is violated. From the perspective of a single agent the other
agents are part of the environment, it does not know it

shares the environment with other learning agents. When
all agents update their policy independently based on their
own observations and the rewards they have received the
environment becomes non-stationary from the perspective of
a single agent. This is because the behaviour of the other
agents, which are part of the environment, changes with
policy updates and subsequently the environment dynamics
have changed.

The Bidirectional Communication Net (BiCNet) [15]
solves this issue by representing all agents in a single
policy network with shared parameters. The architecture
of the neural network allows information to be exchanged
between agents. BiCNet makes use of a recurrent neural
network (RNN). A RNN is used to learn to predict se-
quence data (eg. a sentence or time series data). A se-
quence with length 77 is defined by a set of input vectors
x = {x<1> 2<?> . 2<T=>} where <> represents the
sequence entry number. The RNN will output a sequence
with length T}. An RNN [23] takes two inputs, namely the
entry of a sequence x<'> and hidden state h<¢!~1> at time
step t where h<° is initialized with a zero vector. It outputs
a new hidden state h<!> and estimate §<!>. The hidden
state contains the information passed from one sequence
entry to the next Contrary to a feed-forward neural network,
a RNN has multiple input and output vectors. Thus, every
input/output pair has its own set of network weights. A RNN
only allows information to be passed from the start of the
sequence towards the end of the sequence. Hence, BiCNet
uses a Bidirectional-RNN which processes the sequence in
both directions and adds the output estimates so information
is exchanged in both directions.

y<2z> §<3> 5}<Ty>
t t t
SP = I
O O O
O O O
t t t
x<2> x<3> x<T>

Fig. 4: Unrolled recurrent neural network that shows the
information flow trough the network of a sequence x with
length Tx. All neurons shown in the image use the same set

of network weights.
4

BiCNet is built up of three parts. First there is a pre-
processing layer of the network which is the same for
all agents. The preprocessed observations are then passed
through an N-to-N bidirectional recurrent neural network
which outputs the entire sequence again. N-to-N means
that the input sequence length T, = 7. This layers acts
as a communication channel between agents so the agents
can learn an effective communication strategy. Thirdly the
sequence is post-processed similar to the pre-processing

4Andrew Ng, *Coursera Deep Learning Specialization - Sequence Mod-
els’, [Lecture Notes]



layers to output an action for each agent. A key advantage
of this architecture is that the number of agents can vary at
runtime, because the network maps any number of agents to
the same number of aircraft.

To train BiCNet an actor-critic architecture is used along
with the DPG, where both the actor and the critic have
the BiCNet network architecture. The objective function
for a multi-agent setting where all agents are collectively
represented in a single policy becomes a sum over the
rewards of N agents, see Equation 5. Each agent receives
individual rewards.

N
J(9> = ESprs [Z ’I“(S, aG(S))] ()

Then according to the Multiagent Deterministic Policy
Gradient Theorem where agents are collectively represented
in a policy, the policy gradients is as in Equation 6 [15], with
N the number of agents.

N N
Vo0 =Eanp., | DD Voajols) Va,Qi(s,a4(s))
i=1 j=1

6)

III. EXPERIMENT 1: SINGLE-AGENT SIMULATION

Existing sequencing and spacing automation systems are
built up of a number of components. A 4D trajectory
predictor to predict the time of arrival for aircraft at key
points along the route. A second component is a controller
that chooses manoeuvres (e.g. a path stretch manoeuvre) for
an aircraft to perform to arrive at the correct time as assigned
by the third component, the Arrival Manager(AMAN), or to
keep spacing with other aircraft.

To find emerging strategies for sequencing and spacing this
setup is used for which an aircraft is assigned a scheduled
time of arrival (STA). The goal of the experiment is then
to simultaneously learn to navigate to the final approach fix
(FAF) while also arriving at the correct time as to mimic the
interaction with the arrival manager.

A. Environment description

The experiment is performed using the BlueSky Open Air
Traffic Simulator [24]. At the start of an episode an aircraft is
initialized at initial approach fix (IAF) SUGOL with heading
to equal to the bearing towards the FAF at waypoint EH609,
see Figure 5. At the start of the episode a delay time is
sampled from a uniform distribution in the range [0, 100]
seconds that the agent has to absorb to arrive at FAF on the
STA. The episode terminates if the FAF is reached or if the
absorbed delay falls below a negative threshold. The aircraft
has three states available for observation. The distance d to
the target waypoint, the relative 1), to the track angle to
the target waypoint and the delay ?4eq, that must still be
absorbed along the route This state is computed using a basic
4D trajectory predictor which calculates the fastest possible
flight path to the target waypoint with the current speed

Fig. 5: The environment for the single agent experiment. An
aircraft is initialized at SUGOL and must fly to EH609 to
make an approach for Schiphol RWY06

and uses the information to compute the excess time which
still must be absorbed along the route. The action space is
discrete, the agent can turn left, right or do nothing. The
aircraft will then make the maximum turn possible within
one timestep.

S= [da tdelaya ¢Tel]
A = {left, straight, right }

The reward function in Equation 7 is built up of three
components: distance, time, and a binary reward based on
a time derivative. If the episode terminates without reaching
the goal, a penalty is given via the t,.,. The distance is
added as a shaped reward to give the agent an indication
of where to go. The time reward is added to promote the
absorption of time. Finally the binary reward based on the
change of ?4¢4, in between states is used to encourage good
behaviour once the agent overshoots the tg¢;q, . If the episode
terminates without reaching the FAF a penalty is given.

R == (3 + O[dd) + trew + dt're’wA'l/J

B —100 if term. penalty
where t,.c,, = { 10 + a4 if not term. penalty ’
and

—1 if (¢ >0 and dt > 0) or
B if (t <0 and dt > 0)
where dtye, = 1 if (t>0and dt <0) or
if (¢ <0 and dt <0)
(7N
TABLE I: Reward function parameters
o 0.22
o 02
Chag || 007

B. Model and training

To model the discrete action space in a continuous state
space the Dueling-DQN network architecture is chosen.
Subsequently the model will be trained using the DQN



algorithm listed in the Appendix as algorithm 1, which makes
use of experience replay and a separate target network. The
network summary is found in Table II. The network is a
fully connected neural network. The Rectified Linear Unit is
chosen as activation function, because of its computational
efficiency. The output layer of the Advantage estimation
stream ’Advantage 3’ has 3 neurons corresponding to the
size of the action space of the environment. Analogously
the output of the Value stream ’Value 3’ has 1 neuron
corresponding to the state value. Both these layers have a
linear activation function because they are estimating values
that are not restricted to a particular range. In the output layer
of the network the advantage prediction and value prediction
are added to output a Q-value prediction. Finally to train
the network a mean squared error loss function is used and
to perform gradient descent the Adam optimization scheme
is used. During the optimization the computed gradient is
clipped between a minimum and maximum value as it was
empirically found that this adds stability to the training
process [5]

TABLE II: Dueling DQN network summary

[ Layer [ Activation [ Neurons | Connected to |
Advantage 1 ReLu 128 Input
Advantage 2 ReLu 128 Advantage 1
Advantage 3 Linear 3 Advantage 2
Subtract mean | - - Advantage 3
Value 1 ReLu 128 Input
Value 2 Relu 128 Value 1
Value 3 Linear 1 Value 2
Add outputs - - Subtract mean,

Value 3
Loss function | Mean squared error
Optimizer Adam

During training it is important the agent properly explores
the state space to visit a large diversity of state-action com-
binations. Once the agent has acquired sufficient knowledge
about the environment it must start exploiting its acquired
knowledge to strengthen it in the network. To explore the
environment an e-greedy action selection strategy is taken.
The agent will greedily choose the action with the highest g-
value, but with probability € a random action is chosen. Over
time € is annealed to move from exploration to exploitation
of the learned policy. An overview of all hyperparameters
used in training is given in Table IIT

C. Results

Numerous training runs with different hyperparameters
have been attempted. The most successful run is shown here.
Hyperparameters used are listed in Table III.

TABLE III: Hyperparameter overview for Experiment 1.

Replay memory size 2000
¥ 0.98
Estart 1.0
Emin 0.01
€decay 0.99
A 0.001
Batch size 32
[ 1000
Gradient clip value 0.5

The training curve is shown in Figure 10 with a running
average over 10 episodes to smoothen the curve. The agent
quickly learns how it can obtain a high reward, after which
performance oscillates and slowly with a downwards trend.
The best performance is observed after approximately 250
episodes episode for which a 25 test runs with different initial
delay times is performed. This does not coincide with the
peak in the training curve in Figure 10. This can be explained
by a combination of random exploratory action and a difficult
initialization of the episode.

A boxplot of tgeiqy at termination in Figure 9 shows
that for most initializations the learned policy is capable of
arriving at the FAF at the STA of arrival with an error smaller
than 5 seconds. The to be absorbed delay is plotted over time
during these runs in Figure 8. This shows that the runs that
have failed are those with an assigned delay smaller than 10
seconds. When inspecting the trajectories flow in Figure 7
it shows that successful trajectories offset from the nominal
path and then fly towards the FAF in a curved path.

D. Discussion

As mentioned the agent learns a policy with which it per-
forms well and achieves the intended goal of the experiment,
but when the exploration of the agent stops and it starts
exploiting the policy for learning (e has been annealed to its
minimum value), the agent unlearns its good behaviour, also
called catastrophic forgetting. This training instability has
been observed on all of the training runs performed in this
experiment. This training instability was also observed when
training on a simple environment where the agent must learn
to balance an inverted pendulum. Therefore this phenomenon
is not an artefact of the experiment environment. Stopping
training early is thus necessary to obtain a satisfactory result,
or subsequently save the network weights of intermediate
solutions.

To add, many training attempts failed completely. Due
to the reward of 4.4, becoming negative once the agent
overshoots the STA it becomes difficult for an agent to even
learn where EH609 is located. Overshooting the STA is
easily done by flying in the wrong directon. Terminating
the episode as soon as the delay time has been surpassed
resulted into learning ’suicidal behaviour’. The agent never
discovered how it could obtain good rewards and instead
learned to terminate the episode as quickly as possible by
flying in the opposite direction. This yields high rewards in
the short term because the state tge1qy goes to 0 quickly, but
once the aircraft overshoots the expected STA there is no
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way to recover because the aircraft is flying in the wrong
direction. Thus, in the long run this is a bad policy. This
shows a good exploration is key to having a successful
training run as well as setting up a good reward function
and termination conditions.

Next the strategies that have emerged to absorb the de-
lay are discussed. The flown trajectories do not resemble
manoeuvres a ATCo would issue. Instead the trajectories
are more curve-like and most closely resemble a path-
stretch manoeuvre. High penalties are given when an aircraft
overshoots the STA. This causes the aircraft to fly a more
conservative path rather than making aggressive manoeuvres
right at the start of the episode. The trajectories also show
oscillations in its path where the agent has sequentially
chosen the actions left, right, left, right. This is an artefact
of the discrete action representation. The policy failed for
starting tqeiay < 10 seconds, because this leaves very little
room for error. Considering the oscillations present in the
aircraft trajectory cost precious time in this case this could
be a reason why it is difficult to learn a policy for this limiting
case.

IV. EXPERIMENT 2: MULTI-AGENT SIMULATION

To model a complete sequencing and spacing system it
is necessary to use a multi-agent setting. Training in a
multi-agent setting adds complexity to the system as the

with Dueling-DQN

state-action space grows rapidly. Training instabilities were
already observed in the single agent experiment. These were
partly accredited to the difficulties with the time reward in the
4D-trajectory optimization and artefacts of a discrete action
space. Therefore, to remove complexity from the multi-agent
setting these are removed.

For this part 3 separate experiments are performed using
the same environment definition to find a suitable training
method. The first to determine the reward function. The
second to find emerging strategies with a single scenario and
the third attempts to find a policy to generalize over multiple
scenarios.

A. Environment Description

To simulation environment is again designed in the
BlueSky Open Source Air Traffic Simulator [24]. An episode
starts by loading a scenario file, initializing the aircraft. An
episode terminates when all aircraft have landed, a loss of
separation has occurred or the time limit of 175 timesteps
with for the episode has been reached. Each timestep has
At = 15 seconds. A time limit for an episode has been set to
prevent infinite episodes when aircraft never land or collide.
All aircraft fly at a constant speed of 200kts and constant
altitude at FL200. Aircraft do not actually land due to the
constant altitude flight, but are considered to have landed
when they fly over AMS. The following states and actions



are available to the agent.

S = [lat,lon,hdqur, d, (lat;, lon;, qdr;, Adi)?zl]
A = [Ahdg]

The states are latitude, longitude, the difference between
the aircraft heading relative to the aircraft bearing to AMS in
range [—180, 180]; and the distance to AMS. Additionally the
agent observes a sequence of other aircraft including itself
in case it is the only aircraft currently in the simulation. The
action space is a heading change, which is a continuous vari-
able in the range [—Ahdg,,,., Ahdg,,,.]- "Max’ indicates
the maximum possible heading change within one timestep
to enable aircraft to make smooth turns over consecutive
timesteps. This is dependent on the turning radius of the
aircraft and aircraft speed, which are constant. To complete
the environment description the reward function is required,
which will be specified later.

B. Model and Training

One of the issues in a multi-aircraft simulation is that the
number of aircraft at runtime is not fixed due to aircraft
landing. This is an issue because the input size of a neural
network is fixed and cannot be changed and hence the aircraft
cannot be represented in a policy. However, by modelling the
aircraft as sequence data, where each aircraft is a sequence
entry, this issue can be bypassed as demonstrated with
BiCNet. Therefore the policy network is designed along this
principle.

The network architecture is shown in Figure 11. To ensure
full state observability each aircraft agent has as input
its own set of states and the sequence of other aircraft
position relative to itself. Inputs are normalized to the range
[—1,1] for faster training convergence. The aircraft relative
position sequence passes through a fully connected hidden
layer to preprocess the merged states after which a max-
pool operation along the aircraft axis is performed for
dimensionality reduction. A max-pool operation is a method
for dimensionality reduction where the maximum value is
taken along an axis to reduce the number of dimensions of
a tensor. This is concatenated with the aircraft own state
after which it is again passed through a fully connected
hidden layer. The parameters of these pre-processing layers
are shared among all aircraft. This is done for all aircraft
after which the sequence of pre-processed data is passed
through a bidirectional recurrent neural network, which acts
as a communication layer between aircraft agents. Finally
the processed sequence is passed through the output layer
which also shares its parameters among the agents. Both
the actor and the critic use the network. All hidden layers
use a ReLU activation function except for the output layer.
The output layer of the actor is a hyperbolic tangent. Using
this activation function limits the output value range to [-
1, 1] which is convenient for scaling the action output
to [—~Ahdg,,,., Ahdg,,...]- The activation function for the
output layer of the critic is linear to output a real number
for the Q-values.
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Fig. 11: Neural Network architecture for the experiment,
the blue squares represent the aircraft sequence as input to
the system. The yellow blocks are the aircraft states, the
purple blocks are network layers. The green blocks are extra
operations and the red block represents the network output.

For training of the model the DDPG extended with
the Multi-agent Deterministic Policy Gradient Theorem as
described earlier is implemented. The algorithm can be
found in the Appendix at algorithm 2 The action output is
deterministic so to explore the environment noise is added
to the action outputs. Exploration noise is sampled from an
Ornstein-Uhlenbeck (OU) process which satisfies Equation 8.
An OU process is a random walk with the tendency to
move back to a mean location. The long term mean p
random process dW; and tuning parameters S and o. OU
noise is selected over Gaussian noise because the OU noise
samples are correlated between timesteps. The dynamics
of the aircraft position approach integrator dynamics with
respect to the action and therefore act as a low-pass filter.
Gaussian noise applied to action selection is thus filtered out
by the aircraft dynamics over sequential actions whereas this
is not the case for OU noise.

dX, = —B(X, — p) dt +o dW, (8)

The training of neural networks occurs in batches. This is
done to speed-up training and larger batch sizes provide a
more accurate estimate of the gradient due to the reduction of
variance. A batch of experiences is sampled from the replay



memory. However, not each sample in the batch contains the
same number of aircraft. In order to use batch-processing
efficiently all sequence samples must have equal length.
To achieve this sequences within a batch are padded with
zeros to equal length. During network inference and gradient
computation these padded zeros are masked to prevent them
from affecting the computed gradient and action values,
while enabling their efficient computation.

TABLE IV: Actor network summary

[ Layer [ Activation [ Neurons [ Connected to |
Shared Dense | ReLU 32 Shared Input
Max pool - - Shared TimeDistributed
Concatenate - - Max pool, Local Input
Pre Bi-RNN ReLU 32 Concatenate
Bi-RNN ReLu 32 Pre Bi-RNN
Post Bi-RNN | Tanh 1 Bi-RNN

TABLE V: Critic network summary

[ Layer [ Activation [ Neurons [ Connected to ]
Shared Dense | ReLU 32 Shared Input
Max pool - - Shared TimeDistributed
Concatenate - - Max pool, Local Input
Pre Bi-RNN ReLU 32 Concatenate
Bi-RNN ReLu 32 Pre Bi-RNN
Post Bi-RNN | Linear 1 Bi-RNN

TABLE VI: Hyperparameters used in the multi-agent exper-
iments governing the reinforcement learning process.

[ Parameter [[ Value |
BlueSky update interval 15
Memory length 10000
Batch size 32
¥ 0.99
)\critic 0.0005
Aactor 0.0005
o (OU) 0.2
6 (OU) 0.2
1 (00) 0
dt (OU) 0.12
T 0.9

C. Experiment A

1) Description: This experiment focusses on the design
of the reward function. The reward function must reflect the
learning goal for the agents. When the goal is to land aircraft
at Schiphol a reward can be given each time an aircraft
lands on Schiphol. This is a sparse reward as the agent
only receives a reward when the aircraft lands and not in
intermediate timesteps. The reward reflects the goal of the
experiment, however, it may be so that the agent will fail to
learn how to fly to Schiphol, because it never observes this
reward during exploration when it cannot find the airport.
Sparse rewards can therefore be a weak learning signal as
it only receives reward once it has reached its goal. Many
actions were taken to reach the goal so it is hard to assign
credit to the actions that actually helped reaching the goal.
A shaped reward on the other hand, is a reward structure

that provides the agent with intermediate feedback guide
it into the right direction. A shaped reward can speed up
and stabilize learning. However, a shaped reward can also
change the optimal policy because the agent now also starts
to optimize to obtain these intermediate rewards.

This first experiments is conducted to determine whether
a shaped reward function is necessary. Therefore two reward
functions are designed of which one has an additional
shaping component as shown in Table VII. A reward of 10
is given to an aircraft that has landed, a penalty of —0.05 at
each timestep so the aircraft learns to fly the fastest route. A
penalty of —5 is given to aircraft that violate the separation
criteria. Finally the shaped component is a reward based on
the heading of the aircraft to encourage it to align its heading
with the bearing to AMS.

To leave multi-agent complexities out of this this experi-
ment is performed with a single aircraft. At the start of each
training episode an aircraft is initialized 120nm from AMS
at a random direction with heading equal to the bearing to
AMS. The aircraft must learn to navigate to AMS and fly
the fastest route possible.

TABLE VII: Reward function components

Trigger Value Sparse | Shaped

Landed at AMS 10 X X

Timestep —0.05 X X

Loss of separation —5 X X
hd

Timestep 0.2—-04 ‘ % X

2) Results: Three runs with different random seeds have
been performed for both reward functions. The progress of
episode length during training is shown Figure 12. The runs
with shaped reward converge much faster to the optimal
solution than the runs with sparse rewards. In one of the runs
with sparse reward the agent never discovered AMS during
exploration and hence failed to learn any useful behaviour.
With the addition of loss of separation penalties in a multi-
agent setting, it will be even more difficult to learn how to
navigate to AMS without a shaped reward. Therefore the
shaped reward is implemented in further experiments.

To gain further insight in what actions a single agent has
learned to take across the state space, heatmaps are drawn
to visualize the learned policy in Figure 13. As expected the
agent has learned to choose actions to fly straight to AMS
to take actions that will align its heading with the track to
AMS.

D. Experiment B

1) Description: The goal for this experiment is for aircraft
sequence and space themselves in a multi-agent setting when
making an approach for AMS. Each episode 4 Aircraft are
initialized in a symmetric diamond shape west of AMS.
Aircraft must organize themselves into a landing sequence
while maintaining safe separation. After every 25 episodes
of training a test run is performed. Test runs are performed
without exploration noise to test the performance of the
deterministic policy.
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Fig. 12: Training progress for two reward functions with
different random seed.

2) Results: The learning curve in Figure 14 shows that
over time many feasible solutions have been found where
no loss of separation occurs. If loss of separation has
occurred the episode length is set to 200 in order to see the
difference between successful episode a LOS or an episode
that has reached its maximum time length. The learning
curve also shows that the policy also moves away from these
solutions again to finally result into catastrophic forgetting
after approximately 40000 episodes after which all aircraft
got stuck in a permanent right turn and never recovered.

Despite the algorithm not converging to the optimal so-
lution, some interesting trajectories can be sampled from
the successful runs in between, as shown in Figure 15.
Aircraft will be referred to by their starting position being
left, right, top, or bottom. In Figure 15a the left aircraft flies
straight to AMS after which the top aircraft moves in to
land. The right and bottom aircraft both move out of the
way. A clear hierarchy is visible in the way the aircraft
sequence. As soon as the first aircraft lands the next aligns
its heading with AMS while the remaining aircraft keep out
of the way. A holding pattern emerges in episode 22700 as
shown in Figure 15d. The top aircraft would have violated
separation criteria if it would have kept its heading, instead
it flies a short holding pattern before successfully landing at
AMS. Figure 15e displays a totally different strategy, despite
failing. The two outer aircraft manoeuvre behind the two
centre aircraft, but do so in a symmetric way causing them
to collide into each other. In Figure 15f an phenomenon
occurs that occurs frequently during training. The aircraft
just misses AMS and ends up circling it before meeting the
termination criteria.

After approximately 18000 episodes the aircraft some-
times start to show oscillatory behaviour by continuously
overshooting the track angle to AMS in consecutive actions.
The agent saturates the action space and is effectively only
choosing a binary left or right.

E. Experiment C

1) Description: An attempt is made for agents to learn to
generalize across multiple scenarios and expose the agent to
a large variety of states. The previous experiment is repeated
using an extended set of scenarios. This should improve
exploration by exposing the model to a larger variety of
scenarios within the same environment and possibly reduce
overfitting. This may allow it to better generalize to situations
it has not seen before.

The scenarios contain 4 types of formation in which the
aircraft start: a triangle, a line of 3 aircraft, a line of 4 aircraft
and a rectangle. The orientation and angles in these formation
are randomized in each scenario as well as the scenario
selection during training. This also means that in some of
these scenarios a landing sequence is pre-embedded in the
shape of the formation (e.g. the line) and in many of the
scenarios a symmetric shape with limited manoeuvrability
option must be sequenced and spaced (e.g. the rectangle).

The network is trained using 1000 different scenarios and
will be evaluated on 100 scenario’s it has never seen during
training. These are 25 of each formation where the line
formations do not form natural sequences.

2) Results: The learning curve for this experiment is
shown in Figure 16. It shows a very chaotic progress of
the learning process. Aircraft have learned to fly towards
AMS in the multi-agent setting very well, however, there
is a complete lack of coordination in the observed learned
behaviour. The aircraft seem to be completely unaware of
each others presence and show no signs of sequencing and
spacing attempts. Rather, each aircraft flies straight towards
AMS and as each aircraft converges to AMS they violate
the separation minima. Feasible solutions where all aircraft
land originate from scenarios that naturally form a landing
sequence and don’t require coordination if all aircraft follow
a selfish policy as occurs for the rectangle formation in
Figure 17.

F. Discussion

Three experiments have been performed to test a multi-
agent setup. Experiment A showed that training with a
shaped reward is more robust in this environment than a
sparse reward. In this case it also did not change the optimal
policy, because the optimal policy is still to align the heading
of the aircraft with the bearing to Schiphol. In terms of
the state space this means servo to hdgqqr = 0. hdgqqr
is the third state available for observation for the aircraft.
If hdgqqr = O then this means the heading of the aircraft
is aligned with the bearing to AMS. It is interesting to
realize that for the single aircraft case this is similar to a
control task where the error is hdggq, and the controller
directly controls the aircraft target heading. The position of
the aircraft becomes almost irrelevant to learn the optimal
policy in the single aircraft case. Except that sensitivity to
action outputs become larger nearby the airport. If the aircraft
just misses the airport the aircraft may end up circling the
airport.
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Fig. 14: Training progress for multi-agent training on a single
scenario. If a loss of separation occurs episode length is set
to 200, maximum episode length was 175 steps.

In experiment B BiCNet was unable to learn a optimal
policy. For the multi-aircraft case the control problem anal-
ogy does not hold as hdgqq, is no longer the only error that
must be taken into account. The reward earned for flying
in the direction of AMS is now contested by the additional
loss of separation penalty. Therefore, in this case the addition
of the shaped reward does change the optimal policy. Still,
observing the trajectories flown by the aircraft do not show
that aircraft are solely trying to follow hdg,q, = 0. Instead
aircraft do actively try to avoid each other. However, it
could be that the policy simply learned a trick that only
works on this scenario which does not generalize to unknown
situations.

When attempting to find a policy that generalizes better
over multiple scenarios in Experiment C, all aircraft started
to ignore each others presence and started flying like in the

single aircraft case. This inevitably leads to loss of separa-
tion. To find an explanation for this suboptimal behaviour
the network weights are plotted. The weights of first hidden
layer of the network are visualised in Figure 18. The row
that lights up corresponds to the hdg,q, state. Inspecting the
weights in the first layer of the network shows that the agent
heavily relies on heading information and much less so on
the other states. This means that the information that passes
on to the communication layer in the network is strongly
composed of heading information. This suggests that it may
be beneficial to use regularization techniques during network
training to prevent action outputs from over relying on the
aircraft heading. On the other hand it is true that the hdgyq,
state is the most important state when considering aircraft
flying in a solo setting. This suggests that better solutions
may be obtained if a shaped reward structure is designed
that is not directly linked to a single state.

When comparing the setup of Experiment B with that of
Experiment C the only difference are the scenarios used
during training. Experiment B does show some emerging
strategies where Experiment C only shows a selfish strategy
and therefore fails to achieve the goal of the experiment.
The failure of experiment C cannot be blamed completely
on the reward function design. As also shown in Experiment
A, a training run in reinforcement learning can succeed
or fail based on a random seed set at initialization. All
hyperparameters are equal, the traffic scenario is the same
and the environment is identical. Yet, using a different
random seed at the initialization of the experiment for the
network weights and exploration noise can be the difference
between finding an optimal policy and a failed training run.

V. RECOMMENDATIONS

Sequencing and spacing is a problem in 3D space, even
though in this paper it has been simplified as a 2D problem
where aircraft fly with constant speed. It actually becomes
easier for aircraft to sequence and space when aircraft are
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received during and episode training for Experiment C.

also allowed to make speed changes as it opens up a larger
solution space. However, this does make the state-action
space more complicated with the addition of an extra action.
Therefore further research should focus on extending the
environment to better represent the real world.

Another recommendation is to use shaped reward in a
different form, because in the multi-agent environment as
used in this paper it interferes with the optimal solution. This
can for instance be done by setting intermediate objectives,
e.g. setting up zones around the aircraft where an aircraft
receives a reward when crossing from one zone to the other.

A way to not rely on the shaped reward is to utilize human
demonstrations for the problem. Human demonstration can
accelerate learning and provide safe exploration as shown by
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Fig. 17: Boxplot showing the test reward for 25 samples on
each of the 4 formations in experiment C.

[25]. The human demonstration is not used to demonstrate
the correct solution, because that would forfeit the purpose
of searching for emerging strategies. Rather, it can be used
as a means for efficient initial exploration. The reason the
run with sparse reward failed in experiment A failed was
that it never observed the reward for landing. This could be
solved with human demonstrations.

VI. CONCLUSION

In the search for emerging strategies, multiple environment
designs and reinforcement learning techniques were applied
and assessed. A successful policy is found for learning to
navigate under a 4D constraint for single aircraft using
Duelling DQN. The aircraft arrived within 5 seconds of the
STA while absorbing a delay in the range 0 to 100 seconds.
The strategy it used is to fly a curved path to the FAF
that somewhat resembles a path stretch manoeuvre. Delays
assigned close to 0 seconds and 100 seconds failed. This was
due to the discrete action space overshooting small delays.
Additionally difficulties encountered with the Duelling-DQN
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algorithm and architecture include catastrophic forgetting
as well as finding a good balance between exploration
and exploitation. This made the algorithm and environment
difficult to work with.

To address shortcomings and eliminate obstacles found in
the experiment Duelling DQN, the 4D constraint is removed
and a continuous action space was created to prevent oscil-
lation artefacts due to the discrete action space. The DDPG
algorithm with actor-critic formulation is implemented to
train multiple agent collectively represented in a single policy
network inspired by BiCNet. Training on a single scenario
with 4 aircraft showed the emergence of a holding and
emergence of priority among an aircraft sequence, but failed
to converge to an optimal solution. Late in the training phase
aircraft also started to oscillate, meaning they saturate the
action space available. This effectively made the action space
discrete and is a sign of overfitting.

Training on multiple scenarios using different scenarios
with the aim to generalize better to unknown scenarios
and reduce overfitting led to an absence of coordination.
The shaped reward on the heading angle acted as a direct
error signal and dominated the collective action inference
and thereby preventing any coordination from emerging.
The best improvement when continuing research on this
environment design would be to improve the design of the
reward function. The reward function should better reflect
and encourage over-reliance on a single state.
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APPENDIX
APPENDIX A

The algorithm for training Deep Q-Networks with experience replay is written down in algorithm 1. [5]

Algorithm 1: Deep Q-networks with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function ) with random weights 6
Initialize target action-value function Q with weights 0~ =6
for episode=1, M do
Initialize sequence s; = {z1}
for t=1,T do
With probability e select a random action ay
otherwise select a; = argmax,Q (s, a;0)
Execute action a; in simulator and observe reward 7; and state s;41
Store transition (s¢, ag, r¢, S¢41) in D
Sample random minibatch of transitions (s, at, ¢, S¢41) from D
if episode terminates at step j+1 then
‘ Set y; =1,
else
‘ Set y; =17j + ’YH}La,XQ (st+1,a’507)
end
Perform a gradient descent step on (y; — @ (s;, a;; 6))? with respect to the network parameters 6
Every c steps set target network parameters 0~ < 0

end

end

The Deep Deterministic Policy Gradient Algorithm extended for multi-agent communication with BiCNet is shown in
algorithm 2.



Algorithm 2: BiCNet algorithm [15]

Initialize actor network and critic network with & and 6

Initialize target actor network and target critic network with & < £ and 6’ < 6
Initialize replay memory R

for episode=1, E do

Initialise a random process U for action exploration

Receive initial observation state s'

for 1=1,T do

For each agent i, select and execute action af = a; g(s') + M

Receive reward [r{]Y; and observe new state s'*!

L t t 1N t+1 :
Store transition {s, [af,7{]¥,, s} in R

M
t t t ]N t+1 from R

Sample random minibatch of transitions {sm, (@ is T iliz15 S 1
Compute target value for each agent in each transition using the Bi-RNN:
for m=1, M do

‘ Qumi = Tmi + )\Qf,lm- (st ag(shit) for each agent i
end
Compute critic gradient estimation according to:

AE = 3 Yy S (@i — Q5 i(5ms0(5m))) - Ve, s(5mra0(sm)|

Compute actor gradient estimation:

A0 = S S S [Veaso(sm) - Va, @, i(sms a(si))]

and replace Q-value with the critic estimation

Update the networks based on Adam using the above gradient estimators
Update target networks:

e+ (L=, 0 10+ (1)

end
end
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Chapter 1

Introduction

For en-route air traffic, 4D-trajectory based operation provides a way to automate the task of
an air traffic controller. However, in the terminal area closer to the airport the combination of
interaction and unpredictability still requires tactical decisions. The unpredictability originates from
departing pop-up flights and multiple air traffic flows merging into landing sequences. In addition,
lower airspace is subject to environmental restrictions due to noise and emissions. Air travelling
has become a commodity due to cheap tickets fairs, increasing the demand for air traffic. ' The
increased amount of air traffic also leads to more incidents. Minimum separation violations have in-
creased in Dutch air space, most of which occurred in the flight phase just before or during approach 2.

The Terminal Manoeuvring Area (TMA) is a complex airspace. Currently, in approaches to Schiphol
aircraft are procedurally separated by following a Standard Terminal Arrival Route (STAR) or a
Standard Instrument Departure (SID). Aircraft are placed in holding stacks before they are cleared
to proceed to the runway. Then arriving aircraft are guided to the runway by Air Traffic Control
(ATC) vectors for the last part of the flight. Placing aircraft in holding stacks is very inefficient as
aircraft are flying extra distance while flying in circles, which is not fuel efficient. Improvements have
been made by recent attempt as part of Single European Sky ATM Research (SESAR) with the new
Point Merge (PM) system, which allows the implementation of continuous descend approaches under
high traffic loads. The PM system is already in use in Paris and Oslo. New sequencing and spacing
techniques are still continuously researched 3.

Air traffic controllers are constrained in the way they work by the procedures in which they oper-
ate. The backbone of the arrival and departure system around Schiphol are the SIDs and STARs
with sequencing and spacing. New structures are being investigated, like the Point-Merge system.
Engineering a system like PM is essentially designing the strategy for the sequencing and spacing of
aircraft. Could it instead be possible to have a computer learn how to efficiently solve the sequencing
and spacing problem within constraints drawn from safety criteria and workload to learn from the
emerging strategies? Recent developments in Artificial Intelligence have shown emerging strategies
in complex video games which surpass human level performance. Initial results range from relatively

! Annual Report Schiphol Group 2017

2Annual Report LVNL 2016

3Eric Hoffman, ’Point Merge: Improving and Harmonising Arrival Operations’, 2016, url: https://www
.eurocontrol.int/services/point-merge-concept [accessed: July 6, 2018]
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2 Introduction

simple games like breakout Mnih et al. (2013) to most recently very complex games that take humans
years to master like Dota 2 4. This work explores the possibilities to apply these techniques to the
sequencing and spacing of aircraft in the TMA and work towards discovery of more efficient and safe
operation strategies in the TMA.

The layout of this work is as follows. First the research question aims are presented in chapter 2.
After the objective of the research is clear relevant literature on the subject is discussed in chapter 3.
A preliminary analysis has already been performed based on the literature. This can be found in
4. Finally a proposal for the final thesis research is done in chapter 5 followed by the conclusions in
chapter 6.

4OpenAl research team, ’OpenAl Five’, 2018, url: https://blog.openai.com/openai-five/, [accessed:
June 25, 2018]
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Chapter 2

Research question, aims and objectives

The objective of this research is to find emerging strategies for air traffic control in the TMA by
applying reinforcement learning to the sequencing and spacing problem and identify the emerging
strategies. This will be done while answering the research questions: What is the safety and efficiency
of the emerging strategies for sequencing and spacing aircraft in the TMA, learned by a controller
trained using reinforcement learning?

The following subquestions can be defined:

1. What reinforcement learning techniques are suitable to learn the sequencing and spacing tasks
in the terminal area?

2. What emerging strategies can be identified when looking at conflict resolution, flown trajectories
and sequence order?

3. What is the safety and efficiency of the controllers actions in terms of fuel, delay and controller
robustness to alternate scenarios?

The following subgoals have to be reached to answer the research questions:

1. Study reinforcement learning techniques.

2. Model the environment and agents in terms of state observations and action sets.

3. Implement a reinforcement learning algorithm in BlueSky.

4. Create traffic scenarios for training and validation.

5. Have the controller learn by an iterative process of training and tuning the hyper-parameters.
6. Identify emerging control strategies.

7. Evaluate the safety and efficiency and robustness of the learned controller.

Towards Emerging Sequencing and Spacing Strategies for a self-learning ATC Bart Vonk
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Chapter 3

Literature

Machine learning can be divided into three categories: supervised learning, unsupervised learning and
reinforcement learning. In this literature study only reinforcement learning is studied. Reinforcement
learning is a suitable method to apply to the research problem, because it requires no supervision
during learning. Time is also important in reinforcement learning as opposed to unsupervised learning
where data points are not time dependent. Reinforcement learning is capable of learning sequential
decision making and is therefore suitable for the task.

The literature is split into two parts. The first part is concerned with the technical aspects of rein-
forcement learning. The second part will deal with automation of air traffic management.

3-1 Introduction to reinforcement learning

Reinforcement learning is a machine learning technique in which an agent tries to optimize the reward
it receives for performing actions in an environment. The basic block diagram that describes a rein-
forcement learning process is shown in Figure 3-1. At each timestep the agent chooses an action from
its policy. The agent interacts with the environment by executing the action, which changes the state
of the environment. It then observes the reward it receives and the new state of the environment.
The agent’s policy is thus a mapping from state to action. The controller can then optimize its policy
based on the reward the environment returns to maximize the sum of the future rewards received
from the environment. Since the agent is optimizing its actions such that it receives high reward, the
foundation for the desired behaviour of an agent lies in the reward function. The reward can be seen
as a learning signal and is often compared with how humans learn. If an action leads to a high reward,
this behaviour is reinforced as opposed to when an action leads to a punishment. The reward function
should steer the agent to the desired result, but does not necessarily specify how the agent should
achieve this result. In soccer one is rewarded for scoring the goal, however, there are multiple ways of
doing this. The environment with which the agent interacts can either be episodic or have an infinite
time horizon. The environment is reset when a termination conditions is met, or when the agent has
achieved the goal. This is also referred to as an episode.

3-1-1 Markov decision processes

Reinforcement learning is based on a Markov Decision Process (MDP) Sutton and Barto (1998). A
MDP is a form of a sequential decision model. The state transition of a MDP satisfies the Markov

Towards Emerging Sequencing and Spacing Strategies for a self-learning ATC Bart Vonk
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Agent
state reward action
S, 4 a,
L/ |
<L Environment |<—
I

Figure 3-1: Block diagram of a reinforcement learning process

Property that the transition is independent of previous states and actions and thus only depends on
the current state s and action a. A MDP can be represented by the tuple (S, A, P,, Ry, ) where:

S is the set of states.

o A is the set of actions.

P, is the transition probability that action a in state s will lead to state s’ at that timestep.

R, is the immediate reward received by the agent for the state transition from s to s’ by
performing action a.

~ is the discount factor, which represents the relative importance of future and immediate
rewards.

At every timestep ¢t an agent will select an action a from A using policy m. The goal is to find
an optimal policy m* to maximize the total future reward. In order to choose the right actions a
prediction of future rewards has to be made. The discount factor v € [0, 1] represents the relative
value of immediate rewards with respect to delayed rewards. The total discounted reward R; is
computed using the discount factor as in Equation 3-1. Rewards are discounted to avoid infinite
returns for MDPs with infinite time horizons. A second reason to discount future rewards is the
growing uncertainty of obtaining the rewards and the value of the rewards when predicting further
into the future. There are two equations that help predicting the total future discounted reward.
The first is the value function V™, which represents the expected future reward in the current state
when following policy w, where 7 is modelled as a probability distribution over the actions A. See
Equation 3-2. The second is the Q-function Q™, which represents the expected reward for state-action
pairs for a policy 7. See Equation 3-3. It is important to note that both V' and @ are strictly linked
to a policy m. They return different values for the same state when following a different policy. The
intuition behind this is that the behaviour of the agent is inherently different when following another
policy, hence being in a state may be more valuable depending on the behaviour a policy prescribes.
The definition of V' and @ also use the expectation operator to deal with the randomness in the process
as a policy and/or the environment may be stochastic.

R =711 + 972 + 7V Regs + . = ZWthJrkﬂ (3-1)
k=0

V7(s) = Ex(Ri|st = s) (3-2)

Q7 (s,a) = E(R¢|st = s,a; = a) (3-3)
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3-1 Introduction to reinforcement learning 7

In order to compute the values for the value function and the Q-function the Bellman equations are
used. They are derived by substituting the expected value for the discounted return R; as RZ,, into
the value functions and using transition probability P2, to manipulate them into a recursive form
as shown in Equations 3-4 3-5. The recursive form is of fundamental importance to solving MDPs
as it allows to express the value of a state as the value of other states. This allows for iterative
calculations (temporal difference) of Q-values, which is the foundation for the algorithms used to solve

reinforcement learning problems.
VT(s) =Y w(s,a) Y PR, +7V7(s)] (3-4)

Q"(s,a) = PLIRL, +v>_ Q7(s',d)] (3-5)

3-1-2 Semi-Markov decision process

In a MDP there is the underlying assumption that each state transitions consumes the same amount of
time. However, in some situations this is not a realistic assumption. In a Semi-Markov Decision Process
(SMDP) a generalisation is made to allow for temporally extended actions Sutton, Precup, and Singh
(1999). These actions can be considered higher-level policies or macro-actions with arbitrary length.
The transition time can thus be modelled as a random variable. Consequentially the value function
definition for discounted reward changes to Equation 3-6 and the Q-function update function changes
to Equation 3-7. The parameter 7 represents the possible duration of the temporally extended action.
The discount factor is now adjusted to the actual time the action took and the rewards that were
accumulated during the temporally extended action are also incorporated. In this way the rewards
are accredited to the agent over a consistent time domain.

Take for example a normal MDP where an action could be to take a step left or a step right. This
action will always consume the same amount of time. In a acSMDP the equivalent would be to walk
towards a landmark. The duration of the action then depends on the relative position to the landmark.

V7™ (s) =r(s,a) + Z’YTP(S/,T|S, a)Vy(s') (3-6)
Qr+1(s,a) = Qu(s,a) + ay [rey1 + 72 + o 77 s + 97 max Qp(s’, d)] (3-7)

3-1-3 Example: Nchain environment

To illustrate the above a practical example is given. A game is being played called Nchain available
in OpenAl gym Brockman et al. (2016). Nchain is a simple game with a state set S consisting of 5
states shown in Figure 3-2. The player starts at state 0 and can perform two actions from action set
A. Action 0 means moving forward to the next state, and action 1 means moving back to state 0.
The agent receives 0 reward for moving forward in all states except in state 4, where it will receive 10
reward for moving forward. The agent will always receive 2 reward for choosing action 1. Additionally
there is a small probability that the action chosen by the agent is flipped by the environment, which is
the transition probability P,. There is a clear distinction between the immediate reward received and
a delayed reward, which can be earned by moving forward long enough without earning any reward in
intermediate step.

The problem may be tackled in many ways. A very simple approach greedy approach where choosing
the action with highest reward in each state will not yield the optimal policy. for which it receives 0
reward or it can be return to state 0, for which it receive 2 reward. Only when the agent is in state 4
it will receive 10 reward for moving forward, in which case it will remain in state 4. The agent has to

Towards Emerging Sequencing and Spacing Strategies for a self-learning ATC Bart Vonk



8 Literature

- w
non
N -
o
- |
"
Qlo
>
- |
mwin
olo

= |
i fn
oo
L
EoS
oW
|
oo

a
r

1
2

Figure 3-2: Nchain environment diagram showing state transitions, actions and rewards *

choose between immediate reward and a higher delayed reward obtained after reaching state 4. The
agent can learn to deal with a delayed reward by making use of the discount factor to discount future
rewards. Thus the value of the discount factor controls to what extend the agent uses possible future
rewards to make a decision about the actions used. These will be illustrated in the following sections
when methods for solving reinforcement learning problems are explained.

3-1-4 Policy gradient methods

The formulation of a reinforcement learning problem is now clear. The next step is to find an optimal
policy. Policy gradient methods directly try to find an optimal policy by performing gradient ascent
on the policy to maximize the expected return Sutton and Barto (1998). The gradients are calculated
using a objective function, which can be considered the equivalent of the cost function in a optimization
process. Therefore it is a on-policy algorithm, because it bootstraps gradients calculated by evaluating
a policy to update the same policy. Policy gradient methods are guaranteed to converge to at least a
local minimum. Again this may also be a disadvantage as it may be hard to find a global optimum.
They can handle both discrete and continuous states and actions. Policy gradient methods make use
of a parametrized policy 7(#). The policy is updated with the update rule § = 6 — Af. In order to find
the gradients an objective function J(6) is specified, which is then maximized. Example objectives
are start value of the value function of each episode, average value over an episode or the average
reward per timestep. So eg. when optimizing for the start value objective function, the policy will be
optimized for the highest start value of an episode.

J1(0) =V (sl) = E[V4]

o

Javgv (8) =D d™ ()V™(s)

S

Javgr(0) =Y d™(s) Y mo(s, a) RS

S

(3-8)

d™ in the objective functions is the static state distribution. The static state distribution can be seen
as the distribution of visited states when the amount of steps taken in the environment goes to infinity
and the distribution of value over the states does not change any more. This can be rewritten as the
expected value of the return, which is what is being optimized with reinforcement learning. The policy
gradients are then defined as VyJ(0) and A0 = aVyJ(6) with step size (learning rate) a.

! Andy, ’Adventures in Machine Learning - Reinforcement learning tutorial using Python and Keras’ [BLOG]
http://adventuresinmachinelearning.com/reinforcement-learning-tutorial-python-keras/, visited 27-
09-2018
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Table 3-1: Example value table for Nchain environment at initialization

State 0/1|12|3|4
Value V™(s) || 0|0 [0 |0] 0

The first are finite-difference methods that use finite-difference between two transitions to estimate
the policy gradients. This stochastic optimization introduced a lot of variance but low bias. Another
well-known policy gradient algorithm is REINFORCE Williams (1992), which uses episodic updates
to measure the discounted return R; for the entire episode to compute the state-action value for the
policy gradient calculation. Therefore it can be considered a Monte Carlo method as well. In general
the policy gradient methods tend to suffer from high variance because the direct updates of the policy
can reinforce good action, but also weaken them. Imagine when an agent is at a three forked road,
of which all actions yield negative reward. Choosing the action with the highest reward still leads to
discouraging of choosing that action even though it was the best choice in that situation. This leads
to a very noisy update signal.

Gradients may also be computed analytically rather than relying on sampling. This can be done using
likelihood ratios. The likelihood ratio method exploits the following property of likelihood ratios as
shown in Equation 3-9. Then using the policy gradient theorem as derived by Sutton, Mcallester,
Singh, and Mansour (1999) the policy gradients can be computed analytically. The policy gradient
theorem states that for any differentiable policy 7y (s, a) the policy gradient is as shown in Equation 3-
10

Vomo(s,a)
mo(s,a) (3-9)
= my(s,a)Vyglogme(s,a)

Vormg(s,a) = mp(s,a)

VoJ(0) = E[Vglogmy(s,a)Q™ (s,a)] (3-10)

As an example the policy gradients for the REINFORCE algorithm are shown for the Nchain environ-
ment. The policy 7 is a function with parameters 6 and objective function Jaugv (6) = >, d™ (s)V 7™ (s)
will be used to optimize. The objective function can therefore also be seen as the cost function for the
optimization process. The Nchain environment has a discrete state space, therefore the value function
can be represented by as a value table with an entry for every state. As the agent samples transitions
from the environment and observes the reward, the value table can be updated using the discounted
reward as defined in Equation 3-6. Over time when all states have been visited a sufficient amount
of times the value function represents the value of a state. It does not only say something about
the immediate reward that can be earned when transitioning to that state, but it also reflects the
opportunity that state offers to earn higher rewards in the future. The value of states is part of the
objective function and thus used to deliver a gradient to the policy. The stochastic policy is simply a
function of the state that outputs a probability distribution over the actions, from which the action
can be sampled. So for the Nchain environment one can imagine that the value of state 4 is much
higher than that state 0.

3-1-5 Deterministic policy gradients

Traditional policy gradient method rely on sampling a stochastic policy to compute the policy
gradient and update the policy parameters using gradient ascent. Silver et al. (2014) have proven that
a Deterministic Policy Gradient (DPG) exists. Instead of using a stochastic policy 7(als) the action
is selected deterministically according to a deterministic policy u(s). Analogous to the stochastic
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policy gradient the deterministic policy gradient methods use an objective function as shown in
Equation 3-11, where p* is the state distribution. The deterministic policy gradient theorem as
derived by Silver et al. (2014) then provides that the gradient can be calculated by Equation 3-12.

They also proved that the deterministic policy gradient is a limiting case of the stochastic policy
gradient when the policy variance goes to zero. For stochastic policies, the policy gradients are
integrated over the action and state space, where the deterministic policy gradient are integrated only
over the state space. This means that the environment can be sampled much more efficiently. The
fact that the deterministic policy gradient is in fact a limiting case of the stochastic policy gradient
means that the methods used in policy gradient can also be applied to deterministic policy gradients.

To illustrate the difference between a stochastic policy and a deterministic in practice, the following
illustration is given. A stochastic policy learns a probability distribution for its actions. Say, it uses a
Guassian to sample its actions from. Since the deterministic policy is a limiting case of the stochastic
policy with zero variance, the deterministic policy directly outputs the action without the need to
sample. One issue with DPG is that when there is not sufficient noise in the environment exploration
will be poor. This can be countered by adding noise to the DPG, but this makes it stochastic again.
Therefore DPG is often used with off-policy actor-critic algorithms to learn a deterministic target
policy from trajectories that have been been generated by a stochastic policy. Actor-critic methods
will be discussed later in subsection 3-1-9

Tpg = /S () (s, o (5)) dis

= Esnpn[r (5, 10(5))]

(3-11)

Vod(uo = [ p"(s)V VaQ"(8,a)|a=pe(s) d
oJ (1o Sp (8)Vona(s)VaQ" (S, a)|a=p,(s) ds (3-12)

=E s~ pU [VGMG (S)VaQu(Sa a) |a:m)(5)]

3-1-6 Q-learning

Previously described methods were all based on calculating the gradients of the policy directly. Q-
learning is a value based method, which means it uses values to learn a policy. More specifically,
Q-learning utilizes the Q-function as defined in Section 3-1-1 to choose actions that will yield the
highest reward at termination of the episode Watkins (1989). It is a model-free approach, which
means it directly tries to learn an optimal policy by interacting with the environment, rather than
trying to learn transition and reward models for the environment. The policy in Q-learning can be
represented as taking a greedy approach as 7(s) = arg max Q(s, a) for a discrete action set. Choosing
the action with the highest Q-value thus results in the highest total reward if an optimal Q-function
Q" can be found. Using the Bellman equation in Equation 3-5, the Q-function can iteratively be
updated by interacting with the environment to learn @* by using the update rule in Equation 3-13
with learning rate . The tuple (s, a,r, s’) is obtained by performing action a in state s and observing
reward 7 and next state s’. The error to update Q is computed by taking the maximum Q-value in
the next state s’ and subtracting it from the Q-value of the action. It is thus an off-policy algorithm,
because it uses the Q-value of the greedy action in the next state s’ to update the current Q-values.
The Q-value represents the expected discounted future reward so this update takes the Q-function
closer to the real Q-function. In order to learn the correct Q-values for all states the agent must visit
these states a sufficient number of times to learn the Q-values. Therefore the agent must explore the
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Table 3-2: Q-table for Nchain environment after learning 2

[State [ 0 [ 1 | 2 | 3 [ 4 |
Action 0 [[ 62.74 [ 66.32 | 70.83 | 76.64 | 84.51
Action 1 || 61.35 [ 62.27 | 63.26 | 64.76 | 66.50

environment sufficiently during training. For discrete state spaces, the Q-function can be represented
by a table with Q-values for each discrete state. This is also called the Q-table.

Q(s,a) = Q(s,a) + a(r + ymax Q(s',a’) — Q(s,a)) (3-13)

A practical example using the Nchain environment. In Q-learning the Q-values are learned, which
are state-actions pairs. Again, a table can be used to represent the Q-values for discrete state-actions
pairs. For the Nchain environment this means two values have to be learned for every state, because
for each state there are two possible actions. The Q-table is used by the agent to choose an action. It
will choose the action with the highest Q-value, because the Q-value represents the highest expected
future discounted reward. The Q-values in Table 3-2 are the result of applying Q-learning to the Nchain
environment. As expected the agent learned that choosing action 0 yields a higher future discounted
reward. Also the value of the progressive states show that the value of the states are higher, which is
expected due to the delayed reward that can be obtained in state 4.

3-1-7 SARSA

Just like Q-learning SARSA is also a value based method. State Action Reward State Action (SARSA)
is an abbreviation for the tuple S (s, a,r, s’, ') Rummery and Niranjan (1994) Singh and Sutton (1996).
The agent interacts with the environment by choosing an action a in state s from policy 7. It will
then observe the reward r and the next state s’ and use the same action a’ to estimate the error for
the Q-value. The Q-value is then updated with learning rate o as shown in Equation 3-14. The error
by inferring the same policy as for the action selection is computed using the same policy, because
the same action is used in the next state s’. Hence, SARSA is an on-policy algorithm. The SARSA
algorithm approaches the optimal policy during exploration, because it learns a sub-optimal policy.
This means the policy receives penalties for wrong exploration moves as well. Due to this aspect
SARSA can be viewed upon as a more conservative algorithm than Q-learning as it is less likely to
take actions that yield negative reward during exploration. An illustration for this given in Sutton
and Barto (1998) is an cliff-walking agent. Q-learning will directly learn the optimal policy by falling
of the cliff many times due to the nature of random off-policy exploration where SARSA will more
likely avoid the cliff because the actions are directly discouraged by updating the current policy.

Q(Saa) = Q(S,CL) +Oz(r+ny(s/,a/) - Q(S,CL)) (3_14)

3-1-8 The exploration versus exploitation dilemma

The term exploration and the importance of exploration for the learning process have been highlighted
a number of times already. This subsection discusses the concept in more depth. When an agent
is learning to maximize a reward obtained from an environment it has to explore the environment
around him. More specifically when taking Q-learning as an example, the agent has to learn the

2 Andy, ’Adventures in Machine Learning - Reinforcement learning tutorial using Python and Keras’ [BLOG]
http://adventuresinmachinelearning.com/reinforcement-learning-tutorial-python-keras/, visited 27-
09-2018
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Value function for each state or the Q-function for each state-action pair. To do this the agent must
visit these states or state-action pairs. This is called exploration. Once the agent has learned enough
about the environment it can start to exploit what it has learned by following the learned policy. The
question when and how to switch from exploration to exploitation is also known as the exploration
versus exploitation problem in reinforcement learning.

Numerous strategies exist to explore the environment for discrete action space:

e c-greedy policy. That is with probability € a random action is choosen using a uniform distribu-
tion over the action set A. If no random action is selected the agent will select the action with
a greedy approach by choosing an action with the highest expected reward. ¢ is annealed over
time to gradually move from pure exploring to pure exploration.

e cfirst policy. search. The agent will select random actions during exploration for x episodes
and will then switch to exploitation.

e Contextual e-greedy policy. The context of in which the agent is located with respect to the
environment determines whether the agent will employ and e-greedy or a greedy approach. If
a critical situation occurs the agent will not explore but rely on what it has already learned to
resolve the critical situation.

The € - greedy policy is used in most application due to its simple implementation and easier tuning
of its parameters.

For reinforcement learning problems with a continuous action space, forms noise is added to the action
output to explore. For

3-1-9 Actor-critic methods

Actor-Critic methods are build up of two components as first proposed by Sutton, Mcallester, et al.
(1999). As the name suggests the method is now separated into two components: the actor and the
critic. The schematic is shown in Figure 3-3. First, there is the actor which uses a parametrized policy
to select an action. Second, there is the critic, which evaluates the action to provide a feedback signal
to the actor. The motivation behind this construction is to reduce the high variance of the policy
gradients by using an actor to represent the policy independently of the value function (critic). actor-
critic is thus a combination of the policy gradient methods and value based methods. The actor itself
has no access to the reward signal, but only to the state observation. To put this in perspective relative
to earlier method the following comparison can be made. Q-learning can be categorized as a critic-only
method, because it directly estimates the value of a given state-action pair without a parametrized
policy as usually a greedy approach is taken to select the action. Policy gradient methods can be
categorized as actor-only method. There is a policy that is directly updated from the reward signal.
In actor-critic the critic estimates the value function (like in Q-learning) but instead uses it to update
the policy in the direction of most likely improvement, which is the gradient of the value function.
The policy is a probability distribution over the actions.

The critic estimates the error using the temporal difference error in Equation 3-15, with V' the value
function of the critic. So after an action is taken by the actor, the critic evaluates the value function
with the new state to determine if the expected result is achieved. A positive error means that selection
of a; in s; should be encouraged. The error signal produced is used to update the actor policy according
to update rule in Equation 3-16. Numerous methods modify the update rule to accommodate different
behaviours. The critic is updated according to the selected value-based methods like eg. SARSA.

6 = rep1 +Y(V(st41) — V(st) (3-15)
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Figure 3-3: Schematic of Actor-Critic Architecture

p(st,ar) = p(st, ar) + B (3-16)

The critic in actor critic methods is used to reduce the variance found in policy gradient methods.
However, this does come at the cost of some bias due to the approximation of the policy gradient
with the use of a value function. A biased policy gradient can fail to converge to the correct solution.
To avoid this a value function approximation must be chosen compatible to the policy. Therefore
the compatible function approximation theorem by Sutton, Mcallester, et al. (1999) prescribes that a
compatible value function approximator must satisfy Equation 3-17 and minimize the mean-squared
error to the function parameters w.

Vwa(Saa) =V 1og7rg(s,a) (3_17)

To further reduce variance a baseline can be substracted from the critic values eg. by using an
advantage function. The advantage represents the relative value of the possible action in a given
state (the advantage one action has over another action). This is also useful to prevent discouraging
an action that was the best choice when only poor actions are available. The advantage function
can be defined as the difference between the Q-value and state value V, because the Q-value of a
state-action pair represents the expected discounted reward for that state-action pair where the value
function represents the value of the a state. A(s,a) = Q(s,a) — V(s). What is left is the advantage
for individual actions with respect to each other. In actor-critic the Q-function is not estimated so it
may be approximated using the discounted returns: A = Gy — V (s). A more advanced algorithm to
estimate the advantage with lower bias is Generalized Advantage Estimate (GAE) Schulman, Moritz,
Levine, Jordan, and Abbeel (2016) following the notation from the paper in Equations 3-18, 3-19 with
tuning parameter \.

k—1
6t+k = Z’yl * Tl + ’}/k * V(St+k) - V(St) (3—18)
=0
AFAE =3 " (90) Sy (3-19)
=0
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3-1-10 Hierarchical reinforcement learning

Hierarchical reinforcement learning can be described as setting up different abstractions levels of control
in a reinforcement learning problem. When using a humanoid navigation example, the lowest level of
abstraction could be a controller that moves the joints of the humanoid. A higher level controller can
eg. walk to a waypoint by switching between lower level controllers. A higher level controller can thus
choose between eg. macros, which is a predefined sequence of actions, or completely different policies
that solve a problem. Many flavours exist. A motivation for hierarchical reinforcement learning is to
divide a complex problem into simpler sub-problems which helps addressing the curse of dimensionality
Durugkar, Rosenbaum, Dernbach, and Mahadevan (2016). Another advantage of having hierarchies
is the possibility of longer time horizon strategies to emerge, because the controllers at the higher
abstraction level can operate on different time scales than the lower level controllers.

3-1-11 Learning aids

It can be hard for an agent to learn complex tasks from scratch in a complex environment.
Therefore the agent can train on simplified environments first and so gradually increase its skill.
This is called curriculum learning Narvekar (2017). In a multi-agent competitive setting this is
less of an issue as the difficulty of the environment is determined by the skill of the opponent.
If agents are co-learning, the difficulty of the environment will gradually increase. In cooperative
tasks where full-cooperation is required this is not the case as the task at hand is equally diffi-
cult from start to end. In these settings designing a curriculum of task difficulty can speed up learning.

Another way to accelerate learning is reward shaping a.D. Laud and Laud (2004). Providing the
correct reward signal to the model while learning can significantly enhance learning. This is also
justified from a psychological point of view. With the right feedback you can learn faster.

3-2 Deep reinforcement learning

So far the presented methods are all described as discrete in both state and action space. In order to
have a continuous model a function approximator should be utilized. Recent work in reinforcement
learning uses deep neural networks as a function approximators for Value functions, Q-functions and
parametrized policies. New challenges arise when applying neural networks to reinforcement learning,
because the training of neural networks is a supervised learning problem that must be integrated in a
reinforcement learning framework.

3-2-1 Deep Q-networks

The search for an end-to-end learning solution in reinforcement learning had a major breakthrough
when neural networks were first successfully used to approximate the Q-function, referred to as a
Deep Q-Network (DQN) Mnih et al. (2015). Inspiration was taken from image processing techniques
where neural networks are used to interpret images for classification and detection. A DQN is used
to map the pixel states of video games to actions, which means it uses end-to-end learning. It learns
a state representation directly from the raw pixel input and map this state representation directly
to state action-values. The DQN architecture is as follows. First convolutional layers are used to
reduce the dimensionality of the image data followed by fully connected layers. The output layer has
an output number matching the size of the action space. The fully connected layers make use of the
rectified linear unit (ReLu) as activation function. The output layer uses linear activation function
and outputs the estimated Q-value for the state-action pair.
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Approximating the Q-function using non-linear function approximators is unstable as shown by
Melo, Meyn, and Ribeiro (1997). Neural networks can therefore not readily replace the Q-table to
represent the Q-function. The main reasons for the training instability of the neural network are the
correlations present in the sequence of training data when using online Q-learning. The sequential
observations are from the same episode and therefore introduce high variance (overfitting) in the
function approximation. Typically when training neural networks, a large and diverse dataset reduces
the variance of the network output and thus increases its power to generalize over the dataset. In
reinforcement learning the distribution of samples is dominated by the action that maximizes the
reward and biases the training to the dominant action. The parameters are likely to end up in
a non-optimal local minimum or training may even diverge. To tackle this problem Mnih et al.
(2015) introduce experience replay to train the network. Each experience is saved as a transition
tuple e; = (s,a,r,s’) in the replay memory D; = {eq,...,e,}. When training the network a batch of
experiences is randomly sampled from the replay memory. This decorrelates the experiences when
training the network.

Training a neural network is a supervised learning problem, so the network should have a target value
to compute the loss. Therefore off-policy learning is applied with the use of a target network Q
Off-policy learning is when a separate target policy is used to update the actual policy. Q is used to
generate target y; in Equation 3-20 for training the network Q and has the same architecture as the
Q-network. Then after the back-propagation step the target network parameters 6~ are updated with
the network parameters 6 from the Q-network.

y; =1+ Wme/LxQ (5¢41,a5607) (3-20)
a

To stabilize training the target network is only updated every ¢ amount of iterations as reinforcement
learning requires a stationary environment to learn. This is useful because training a neural network
with gradient descent takes a number of iterations to converge. By keeping the target network
constant for a longer period of time does stabilize training.

The optimization algorithm is thus very similar to that of Q-learning with the addition of experience
replay and delayed updates of the target network. The DQN architecture managed to surpass human
level performance in many Atari games.

3-2-2 Double deep Q-networks

DQN is known to be bias to overestimating the Q-values as shown by van Hasselt, Guez, and Silver
(2016). The overestimation also occurs with other function approximators even if the method is unbi-
ased. This may no t be a large problem if it still learns the optimal policy. However, as demonstrated
by van Hasselt et al. (2016) it slows down learning and in some cases may even hinder learning. The
overoptimism is caused by estimation errors. These errors can be introduced by stochasticity of the
environment and inaccuracies that are caused because the true values for the function approximations
are not known initially. This is mainly due to the fact that only the highest target Q-values are used
to update the network. Double Q-learning separates the action selection from the action evaluation by
learning two separate value functions, which are updated with separate random experiences. So first
an action is selected using a greedy policy. Next this action is evaluated by the second value function
to produce the target value for training as also shown in Equation 3-21. It is shown that this in fact
reduces the overestimation bias.

y?oubleDQN = + ’YQ (S/7 arg maX(Q(s’; 9)’ 9—) (3_21)

Towards Emerging Sequencing and Spacing Strategies for a self-learning ATC Bart Vonk



16 Literature

3-2-3 Dueling deep Q-networks

Another shortcoming of the DQN is that sometimes the difference in relative value of the Q-values
is very small compared to the absolute value of the Q-values. This was one of the reasons to use
an advantage function in the actor critic methods. The Dueling DQN architecture implements the
advantage function inside the network by using two separate streams for the value function and the
advantage function Wang, de Freitas, and Lanctot (2016). When reviewing the definition of the
advantage function A(s,a) = Q(s,a) — V(s,a) it can be rewritten to a Q-function, which now also
depends on the network parameters 6. The state-value is a scalar value where the advantage and
Q-value are vectors with size |A|. Naive implementation of this equation in the network leads to
poor performance due to an identification problem. The network will output a Q-value, so when back
propagation is applied from the target Q-value it is not identifiable what the value of V' and A were,
hence there is no use for having an architecture with a separate value and advantage stream. To
tackle this problem the advantage is forced to zero for the chosen action by subtracting the maximum
advantage value. Alternatively to using the max operator is subtracting the mean from the advantage.
These operations are allowed because they do not change the relative rank of the advantage function.
In short, this means that the result of the estimated Q-values still yields the same action when applying
a greedy policy. The neural network architecture is shown schematically in Figure 3-4

Q(s,a;0) = V(s;0) + A(s, a; 0) (3-22)
Q(s,a;0) =V (s;0) + (A(s,a; 0) — aI’Ié?ﬁ\ A(s,d; 9) (3-23)

Q(s,a;0) =V(s;0) + (A(s, a;0) — |17‘ ZA(S, a’; 0) (3-24)

.. State Value
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Figure 3-4: Dueling DQN architecture

3-2-4 Deep deterministic policy gradients

Deep Deterministic Policy Gradient (DDPG) Lillicrap et al. (2015) is an adaptation DPG with
neural network representation of the policy and critic. To apply the neural network for function
approximation, concepts such as experience replay are borrowed from the DQN. DDPG is thus
off-policy algorithm. The advantage of the algorithm being off-policy her is the fact that exploration
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of the environment is separated from learning. A stochastic policy is used to sample trajectories from
the environment (exploration). Think of this as simply adding noise to the output of the policy. These
trajectories are then used to train the deterministic policy (learning). Like in DQN a replay buffer
is used to store all the transitions. This buffer can be very large because the learning is off-policy.
Exploration of continuous actions can be ensured by adding noise to the output of the actor policy.

The DPG and DDPG benefit from a different exploration method than than stochastic policy
gradient. Where stochastic policy gradients use a Gaussian noise for action exploration, this is not
suitable for the deterministic policy gradient. Take the locomotion environment Brockman et al.
(2016) as an example. In this environment humanoids must learn to walk/run a course. The action of
an agent is to apply a (muscle) force, which causes an acceleration in the joints. In order to translate
this into a change into a position change the acceleration will have to be integrated twice. Since
an integrator works as a low pass filter, exploration noise sampled from a Gaussian with zero mean
will not make the agent to explore new positions. This is because the noise is filtered by the double
integrator. Therefore to ensure proper exploration, noise generated by an Ornstein-Uhlenbeck (OU)
process is preferred over Gaussian noise.

An OU is governed by the stochastic differential equation in Equation 3-25. Therefore in an OU
process, each timestep is correlated to the previous timestep and is not merely a sample from the
probability distribution. The OU process is build up of two components. The first part is pushing
the state back to the mean pu, scaled by the parameter 5. The second part is a sample from a normal
distribution scaled by the parameter ¢. Therefore this process will still oscillate around the mean
. However, due to the correlation of the timesteps an OU process will have a more constant output
almost resembling a very noisy cosine of which the ’frequency’ that can be tuned using the parameters
B and o. Although there is no real frequency, this can be interpreted as the urgency of returning to the
mean value. By tuning the process to the problem OU noise will not be filtered out in the integrators
and therefore aids exploration.

dX, = —B(X, — p) dt +o dW, (3-25)

3-2-5 Asynchronous advantage actor-critic

Asynchronous Advantage Actor-Critic (A3C) Mnih et al. (2016) provides an alternative way to decor-
relate the training data without using experience replay. The method distributes the learning over a
number of independent agents interacting with independently running environments. This diversifies
the data samples and allows training on CPU’s with a single core for each instance. The distributed
system is then kept to a single machine, removing communication overhead found in systems dis-
tributed over multiple computers. Memory replay is limited to off-policy methods only, so by applying
A3C it is now also possible to apply on policy methods to Deep Reinforcement Learning. Incorporating
experience replay on top of A3C could improve the data efficiency, which reduces training times when
interacting with the environment is expensive.

3-3 Multi-agent reinforcement learning without communication

In order for multiple aircraft to exist in the TMA the single-agent reinforcement learning techniques
have to be extended to Multi-Agent Reinforcement Learning (MARL). Every aircraft can be considered
an independent agent. In a multi-agent setting the desired behaviour may be fundamentally different.
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3-3-1 Learning type settings

In a multi-agent setting agents can interact with certain objectives. The setting can be cooperative,
competitive or a mixed. The specifics of these settings are addressed here.

The air traffic management problem in that aspect is a environment where multiple-agents (aircraft)
interact while attempting to reach their destination in a fly to their destination in an efficient. The
operation is not fully cooperative. In a fully cooperative setting, all agents will receive the same global
reward rather than the local reward earned by an individual agent. This global reward can for instance
be the worst reward of any individual agent. This forces cooperation to maximize all rewards. In a
fully competitive setting the agents will receive only the local reward and try to optimize their local
reward. The Air Traffic Management (ATM) task can be described as a fully cooperative setting.
Even though individual pilots may not desire an optimal global reward, from the perspective of an air
traffic controller this is desirable.

3-3-2 Challenges in multi-agent reinforcement learning

A number of challenges arise when moving to the multi-agent domain. First of all there is variable
amount of agents in the simulation during runtime as aircraft enter the TMA and land. This means
the reinforcement learning architecture should be able to handle this. Second, is the credit assignment
problem. Global rewards give no information about the utility of individual agents’ actions. Third
there is the awareness of other agents’ information states. Furthermore, MARL implementations suffer
from the curse of dimensionality. That is the discrete state-action space grows exponentially with the
number of agents as it represents all possible state-action. This means that the computational com-
plexity grows exponentially with the number of agents, making learning difficult and prohibitively slow.

To make the step from single-agent reinforcement learning to multi-agent reinforcement learning
(MARL) some additional issues arise. The most straight-forward approach to implement MARL
would be to put multiple agents in an environment and have them learn independently as if they
were single-agents using Q-learning or DQN. This does not work in practice, because it violates the
Markov Assumption of a stationary environment. The non-stationary violation comes from the fact
that each agent tries to learn a policy based on its own observations from the environment. Thus,
each agent updates its policy based on the actions of concurrent agents. Due to the changing of the
behaviour of other agents the environment is non-stationary from the perspective of an individual
agent. Therefore the memory replay required for stabilizing DQN learning cannot be applied.

3-3-3 Multi-agent deep deterministic policy gradients

Multi Agent Deep Deterministic Policy Gradients (MADDPG) is an extension of DDPG to the multi-
agent setting. It tackles the non-stationary environment issue by implementing centralized training
with decentralized execution Lowe et al. (2017). It exploits of having central knowledge of all policies.
The schematic of shown in Figure 3-5. Having knowledge of the actions of other agents (by inferring
their policy) makes the environment stationary. This means experience replay techniques are applicable
again. This does however, assume that the policy of all other agents is known. This is possible at
training time by centrally training all policies at training time and executing decentralized at test
time. This is achieved by simultaneously training a function Q(aq, as, ..., a,) which takes as input the
actions of all the agents. The action represents the inference of an agents policy, because a policy is
just a mapping from state to action. By using this function during training all agents have knowledge
on how the other agents are evolving as well. This makes the environment stationary. To make an
agent more robust to changes in other agents policy a policy ensemble K of consisting of k sub-policies
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execution

_________________________________

Figure 3-5: MADDPG training vs. execution phase Lowe et al. (2017)

is introduced. These are trained side by side. Every timestep a policy from the ensemble is randomly
chosen. At execution time the policies are sampled. For every policy of every agent a replay memory
must be kept to update. The disadvantages of MADDPG are that it does not scale well to larger
number of agents and a fixed number of agents is required at runtime to perform the centralized
training in a stationary environment, because the input of the function @) has a fixed size, so the
number of agents present at runtime must also be fixed.

3-3-4 Event-driven multi-agent reinforcement learning

An event-driven multi-agent decision process is proposed by Menda et al. (2018). Rather than learning
all the low-level actions it may be more beneficial to learn higher-level actions or macro-actions. This
is sometimes also referred to as hierarchical reinforcement learning to classify tasks to multiple levels
of abstraction. A most primitive action for aircraft would be to control the actuators of the aircraft
to fly it. Then a higher level policy would utilize these primitive policies to perform e.g. a turn.
Macro-actions are characterized by the fact that they temporally extended. For example, a left turn
with an aircraft is performed by issuing a new heading command. The action is finished once the
aircraft is on it’s new heading. This raises an issue in a multi-agent setting because agents will have
to act asynchronously when executing macro-actions. The Macro Decentralized Partially Observable
Markov Decision Process (MacDEC-POMDP) is optimized using an extended Paramater Sharing Trust
Region Policy Optimization (PS-TRPO) algorithm while preserving the continuous action and state
space without requiring expert-demonstrations. This means that the agents share parameters and
must consequently be homogeneous.

An issue that rises when using event-based actions in a multi-agent environment with discretized time
is the possibility of a race condition. This is when multiple events occur within a discrete timestep.
Temporal information about the events is lost, because it is impossible to know which one occurred
first. This could potentially cause issues when the actions are not working together. Since BlueSky is
a fixed timestep simulator, care has to be taken to prevent race conditions or handle them well.

3-3-5 Proximal policy optimization

A more advanced family of algorithms that can be classified as a policy gradient method fall under
the name Proximal Policy Optimization (PPO) by Schulman, Wolski, Dhariwal, Radford, and Klimov
(2017). PPO are trust region methods. This means that policy gradient is computed using a ’surrogate’
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objective function. The update size in the maximization process is constrained to a region in which the
update size is trusted. This ensures that the new policy does not diverge from the existing policy in
the update step and thereby ensuring near monotonic performance improvements. The new policy will
be in the ’proximity’ of the old policy. Trust Region Policy Optimization (TRPO) uses the Kullback-
Leibler (KL) divergence to constrain the policy updates as shown in Equation 3-26. A downside is that
this is difficult to implement and requires expensive matrix inversions to compute the KL constraint.

maximize L1 (0) = £ [M(at'St)At} =E {(Tt(e)At}

ﬂ-‘gold(at|5t)

subject tol& [KL[ma,,,(-|s¢), ma(:]|s¢)]]

(3-26)

Instead of using a KL divergence constraint, PPO suggests using simpler constraints. Most simple
and effective is applying a clipped objective function. This enforces a pessimistic lower bound on the
gradient similar to the KL penalty and reduces the gradient computation to a first order approximation
within the clipped region with clipping hyperparameter € to define the clipping range.

LCLIP () = 1 [min (rt(Q)At, clip (r4(8),1 — ¢, 1 + ¢) At)} (3-27)

To train the network a trajectory will be sampled by interacting with the environment, after which
multiple batches of gradient descend can be run on the policy network. The new policy is then used
to sample a new trajectory. A prerequisite is that an estimation of the advantage must be computed
to calculate the surrogate loss and subsequently the policy gradients.

3-4 Multi-agent reinforcement learning with communication

Another way to try speed up learning and reduce the curse of dimensionality found in MARL is to use
a communication channel between the agents. If agents communicate essential information through a
dedicated channel, there is no need for every agent to know all the observation and states of all the other
agents to obtain sufficient information about the intended actions of other agents. In the reinforcement
learning community new challenging benchmarks are being setup. One of these is StarCraft Vinyals et
al. (2017). Starcraft is a game where a player has to control multiple units in an army to kill the enemy
army. The environment is characterised by a dynamically changing army size as well as the need for
cooperation within the army. In this section first in a short introduction on sequence modelling is
given followed by two notable approaches that use inter-agent communication to StarCraft. Another
advantage of using a communication channel is that the output shape of the communication channel
is independent of the number of agents communicating over the channel. Therefore the number of
agents can be changed dynamically at runtime without compatibility issues.

3-4-1 Sequence data modelling

For communication among multiple aircraft in a decentralized approach or modelling a sequence or-
der, neural network may play an important role. In Natural Language Processing (NLP), where
temporal dependency of sequences play an important role, a Recurrent Neural Network (RNN) is
used to build a language model. A sequence with length T, is defined by a set of input vectors
x = {z<> 2<?> .., 2<T=>} where <> represents the sequence number. The RNN will output a
sequence with length T,

3 Andrew Ng, ’Coursera Deep Learning Specialization - Sequence Models’, [Lecture Notes]
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Figure 3-6: Unrolled recurrent neural network *

An RNN Pineda (1987) takes two inputs, namely the entry of a sequence <!> and hidden state
a<t~1> at time step t where <% is usually initialized with a zero vector. It outputs a new hidden
state a<'> and outputs estimate §<!>. Contrary to standard neural networks, a RNN has multiple
input and output vectors. Thus, every input/output pair has its own set of network weights. W,
Waa, Wye. This means the equations for forward propagation are presented Equations 3-28, 3-29 for
network layer i and biases b and activation function g. The activation function for the hidden states
are usually tanh or Rectified Linear Unit (ReLU). Common activation functions in the output layer are
sigmoid or softmax depending on the intended purpose of the network. As an RNN models temporal
dependencies the backpropagation step is called backpropagation through time. The loss function used
is the cross-entropy loss in Equation 3-30, which is also used in binary classification tasks.

Equations
a(O<t> — g(Wé?a(iKt_D + Wé;)x(i)<t—1> + bt(zi)) (3—28)
()<t i) (i)<t i

GO = g(WDaD<t> 4 pl0) (3-29)
£<t>(g<t>7y<t>) — _y<t> 10g(g<t>) _ (1_<t>) 10g(1 _ y<t>) (3_30)

T?/
LGy) =Y LG y<7) (3-31)

t=1

RNNs exist in many forms. There are the many-to-many architecture where every timestep the
network also produces an output so that T, = T,. Many-to-one architectures also exist as well as
one-to-many. RNNs only utilize information earlier in the sequence due to information passing in one-
direction through the network. Hence, there is upstream information available and a certain hierarchy.
When not dealing with time sequences it may also be useful to include information from upstream in
the sequence. This is what a Bidirectional Recurrent Neural Network (Bi-RNN) does Schuster and
Paliwal (1997). The Bi-RNN is a network composed that simultaneously processes information from
the left side of the sequence as well as from the right side of the sequence. The outputs of both
traversal directions are combined to produce an output composed of both upstream and downstream
information.

3-4-2 BiCNet

The first approach to achieving human-level performance in the learning to play StarCraft combat
games is with the use of a Bidirectional Communication Network (BiCNet) Sukhbaatar, Szlam, and
Fergus (2016). BiCNet makes use of a Bi-RNN, see Figure 3-7. An actor-critic approach is used where
both the actor and critic use a BiCNet architecture. Bidirectional neural networks take sequence data
as input. For the actor the sequence in this case is series of embeddings of each agents’ observations.
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Figure 3-7: BiCNet architecture

By using a many-to-many architecture for the network, every sequence entry produces an output
corresponding to the actions. The critic takes as input a shared observation as well as the actions
chosen by each agent and outputs a Q-value for every agent as well as a global value used to determine
the global value. To train the network a multi-agent deterministic policy gradient approach is taken
applied to the actor-critic framework as opposed to the centralised training decentralized execution
method found in MADDPG as also mentioned by Sukhbaatar et al. (2016)

3-4-3 CommNet

The Communication Network (CommNet) proposed by Sukhbaatar et al. (2016) uses an explicit com-
munication model independent of the number of agents participating in the communication. CommNet
is composed of a series of communication steps. The CommNet architecture is presented in Figure 3-8.
For every communication step an agent is represented by a module f* where i denotes the communica-
tion step. The mean of all module outputs is taken as a communication signal. Every module has the
communication signal C; and the previous communicaton step module output h; which are multiplied
by their respective weights matrics and then fed through a tanh activation function to produce hé“.
The CommNet model ¢ is composed of n communication steps 7%,...,7". The communication steps
can also be replaced by ’timesteps’ of RNNs. In order to train the network policy gradient methods are
used. The architecture has been succesfull at solving traffic junction tasks with partial observability
and Sukhbaatar et al. (2016) also applied it as a baseline for their StarCraft benchmark.

3-4-4 Algorithm Overview

This section provides an overview of the algorithms presented and their applicability to different
problem domains. The overview is given in Table 3-3.

Bart Vonk Towards Emerging Sequencing and Spacing Strategies for a self-learning ATC



3-5 Automation in TMA for ATC 23

Module for agent j 7 communication step CommNet model
i+1 B - - - —_ .
A Vil I Vi) B ) B V) )
’,‘J f'T2
(’f . .]-w

Figure 3-8: CommNet architecture

Table 3-3: Overview and classification of reinforcement learning algorithms. D is for Discrete and C is
for Continuous

Algorithm Type on/off-policy | State space | Action space | Exploration

Q-learning Value-based off-policy D e-greedy

SARSA Value-based on-policy D D e-greedy

DPG Policy gradient | on-policy C C OU noise

DQN Value-based off-policy D and C D e-greedy

Double DQN Value-based off-policy D and C D e-greedy

Duelling DQN || Value-based off-policy D and C D e-greedy

A3C Actor-critic on-policy D and C D and C e-greedy and Gaussian noise
DDPG Actor-critic off-policy C C OU noise

PPO Policy gradient | on-policy D and C D and C e-greedy and Gaussian noise
Commnet Policy gradient | on-policy D and C D and C e-greedy and Gaussian noise

3-5 Automation in TMA for ATC

The terminal manoeuvring area is a complex airspace where traffic streams have to be merged and
sequenced into one or two traffic streams in for landing, depending on how many runways are in
use. Many approaches have been taken automate this sequencing and spacing process. Although the
solution presented in this section do not use machine learning techniques to address the sequencing
and spacing, the problem breakdown can be useful. A lot of research has been performed in this area
so only a few notable once will be mentioned.

3-5-1 Terminal AutoResolver

The Terminal Auto Resolver (TAR) by Nikoleris, Erzberger, Paielli, and Chu (2014) is an iterative
solver for the sequencing and spacing problem. It works by probing the 4D aircraft trajectories for
conflicts when a new aircraft is eligible for scheduling. If a conflict is detected a set of resolutions are
generated using pool of manoeuvres regularly issues by ATC. Some moves are preferred over others
due to their simplicity in execution. They are listed below with an explanation of the effect they have
and why they may be used in Table 3-4. Next, the generated trajectories are then probed for conflicts
again. The best trajectory is chosen, but if no feasible solution was found an additional iteration is
performed. Also runway reassignments can also be a tool if the incurred delay becomes too large.
The assumption is that the aircraft 4D trajectory is known and aircraft thus fly a predefined routes
to the runway.
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Table 3-4: Confict resolution manoeuvres

Speed change

The speed change is usually a speed reduction as there are usually maximum
speed restriction enforced in the TMA.

Hold speed

The aircraft will hold its current Calibrated Airspeed (CAS) longer than required
by the nominal arrival trajectory. This allows the aircraft to arrive at the Fi-
nal Approach Fix (FAF) earlier if necessary without violating maximum speed
restrictions.

Offset of base leg

The extension of a leg when approaching a downwind turn. Often combined with
speed reduction when speed reduction alone is insufficient.

Path stretch

Path stretches are used to lengthen the path of the trailing aircraft to resolve a
conflict. Two types of path stretch manoeuvre exist: symmetric path stretches
and elliptical path stretches. Elliptical path stretches may be used when a sym-
metric path stretch does not resolve a conflict while preserving the aircraft’s
Scheduled Time of Arrival (STA).

Horizontal  Vector

Turn

This manoeuvre is a resolution manoeuvre intended for short range use that takes
into account the turn rate of an aircraft by specifying an auxiliary waypoint that
aircraft have to fly over.

Delayed turn back
for departures

Much like the offset of base leg manoeuvre this can be used for departures with
a large heading change in the departure route.

Fanning

This is an extension of the final approach. The final approach is a straight
segment from the final approach fix to the runway. When fanning this segment
is extended. The effect is similar to a path stretch.

Compound horizon-
tal manoeuvres

These include combination of above mentioned horizontal manoeuvres.

Temporary altitude
climb

Temporarily hold altitude during climb/descend to resolve a vertical conflict.

Bart Vonk
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Figure 3-9: Schematic overview of the Point Merge System Man (2015)

3-5-2 Point merge system

In Europe research has been done to a new system to allow continuous decent approaches to be
performed. This resulted in the PM system where a single merge point of multiple traffic flow is
defined. Arriving aircraft will fly along a semi-circle around the merge point, the sequencing legs,
until they are cleared to proceed to the merge point and subsequently the runway. Advantages of
this arrival structure are a reduced workload and a more predictable traffic flow. The continuous
descend approach allows for fuel saving and noise reduction. 4. The point merge has already proven
its operational benefits as it has been implemented at many airport in Europe.

3-5-3 Sequencing and spacing with genetic algorithms

Another approach to strategically optimize the sequencing and spacing of air traffic is with the
use of genetic algorithms. Zuniga, Delahaye, and Piera (2011) defined main approach routes with
alternative routes spaced sufficiently far apart to ensure separation. Using genetic algorithms an
optimal route within the constraint route system are found for every aircraft while ensuring optimal
runway throughput. The sequencing and spacing problem could be solved effectively around Mallorca,
Spain.

3-6 Application of reinforcement learning in ATM

This work is not the first to apply reinforcement learning methods to ATM. Alves, Weigang, and
Souza (2008) were among the first to apply reinforcement learning in ATM. A decision support system
was built for tactical air traffic flow management. The task of the system is to provide flow balancing
resolution over a set of sectors to prevent sector saturation. This is comparable to structuring aircraft
in the TMA, but at a higher abstraction level. Meta-level control is used to deliver a flow distribution

4F.J.M. Wubben and J.J. Busink, ’Environmental benefits of continuous descent approaches at Schiphol
Airport compared with conventional approach procedures’, 2000, National Aerospace Laboratory NLR
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over the sectors. Both egalitarian distribution policies and distribution with flow prioritization were
applied successfully.

Attempts to automate air traffic control tasks using machine learning have been made. Crespo,
Weigang, and de Barros (2012); Tumer and Agogino (2007) both use a reinforcement learning
controllers to delay upstream traffic to manage the congestion of airspace upstream. Tumer and
Agogino (2007) uses a multi-agent reinforcement learning controller. The agents are distributed as
fixtures rather than aircraft. The main advantages are that this provides a scalable approach. The
fixtures control the 'miles in trail’ of the aircraft passing over them. In this way the agents can
introduce delays into the system. Focussed on the delaying air traffic downstream to manage the
congestion of the airspace.

Another application to air traffic flow management is proposed by Tumer and Agogino (2007). To
manage the congestion a reinforcement learning controller learns to delay traffic upstream. The
agents in this system are located at fixtures. The main advantage is that this provides a scalable
approach. A global reward and local ’difference’ reward for an agent to learn is specified. The agent
action is to set the amount of spacing the aircraft should have when arriving at the node. The aircraft
will have to ensure they meet this requirement. The Q-learning algorithm is used to learn an op-
timal policy. Usin this method the air traffic flow could be successfully balanced to prevent congestion.

Then moving from air traffic flow management to merging of 4D traffic on the point-merge system.
An agent-based approach to automatically merge 4D trajectories is presented by Man (2015). The
aircraft agents, a 4D trajectory planning agent, a flow manager agent and a Conflict Detection &
Resolution (CD&R) agent work together to merge the air traffic flow into a landing sequence. The air
traffic low manager is modelled as a reinforcement learning agent situated on the Merge point. The
agent learns the required times in trail for multiple aircraft, much like the situation much like the
approach taken Tumer and Agogino (2007) which used miles in trail for en-route traffic separation on
merge points.

Finally, an approach towards the completely automated sequencing and spacing using reinforcement
learning techniques using deep reinforcement learning is presented by Brittain and Wei (2018). Hierar-
chical reinforcement learning is applied to a simplified sequencing and spacing problem on a web-based
game developed by NASA called Sector33. In the game the player must control the route and speed
of aircraft to ensure they arrive at the final approach fix at a specified time. In order to do this
a nested controller is used. The high-level controller selects the route at the start of the level. The
lower-level controller then sets the aircraft speed at fixed time intervals. Thus, both controllers operate
at different time scales. The episode terminates early when aircraft collide. The algorithm could find
optimal solutions to beat the game. The controllers are trained using the DQN algorithm. Although
this it is an achievement still important limitations apply. The controller does not generalize to other
situations as it learns to control a fixed number of aircraft in a relatively simple environment. These
are obstacles that must be overcome.

All the approaches mentioned provide ways to automate the sequencing and spacing of aircraft in the
TMA or have contributed towards this goal, but none of them are engineered specifically with the goal
to study emerging strategies learned by the controller. When reviewing the latest developments in the
reinforcement learning community there is a move towards general intelligence, which is also the focus
of this research. The application of these techniques to air traffic control could be the next step in
automation of air traffic control tasks.
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Chapter 4

Preliminary Analysis

Preliminary analysis has been performed to help answer the first research subquestion "What rein-
forcement learning techniques are suitable to learn the sequencing and spacing tasks in the terminal
area?’. The analysis is performed using the BlueSky Open Air Traffic simulator by Hoekstra and
Ellerbroek (2016). The goal of the preliminary analysis is to establish an understanding of the nuts
and bolts of reinforcement learning as well as to explore the possibilities for a suitable representation
of the sequencing and spacing of aircraft in a reinforcement learning framework and to try out some of
the methods described in chapter 3. Methods applied are the Multi-Agent Deep Deterministic Policy
Gradients , Deep Q-Networks and the Dueling Deep Q-networks, Deep Deterministic Policy Gradients
while also exploring network representations as well as a suitable problem representation.

4-1 Conflict resolution using MADDPG

4-1-1 Experiment description

A very first experiment was performed to see how to implement a reinforcement learning algorithm in
BlueSky. The problem representation was very simple. 3 aircraft are spawned in close proximity in a
conflict. The goals was to solve the conflict without violating minimum separation limits. Negative
reward is given for violating the minimum separation limits. The episode terminates if the aircraft
have not crashed after 100 timesteps. The aircraft states are S = {lat,lon, ¢} and the actions were
A = {left, straight, right} where the aircraft would perform the action until selecting a new action at
the next timestep. The size of the timestep does determines how far the aircraft turns per action
selection.

4-1-2 Method

The method used to solve this problem was MADDPG. As a first experiment the MADDPG Lowe et
al. (2017) is implemented in BlueSky, which uses a centralized learning and decentralized execution.
This means that during learning the aircraft have access to each others policy. In that way they
have knowledge on what actions the agents are going to take when choosing their actions. When the
algorithm is deployed the agents do not have access to each others policy but will have learned implicit
behaviour.
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Figure 4-1: Coordinated turning manoeuvre by 3 aircraft observed when training with MADDPG
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Figure 4-2: Component break down of the problem representation

4-1-3 Results

The aircraft have learned to fly in a coordinated fashion, by al choosing to turn left to solve the
problem after a short period of training. In retrospective, however, the exhibition of this behaviour
after such a short learning period is very likely caused by divergence of the Q-values to NaN as was
sometimes also encountered when using DQN as will be discussed later. The actual behaviour was
never fully analysed because another restriction of MADDPG arose that was too large a restriction
to continue investigating the algorithm. It was not possible to change the number of flying aircraft
during runtime, because the number of aircraft were embedded in the network architecture during the
‘centralized learning’ phase. The formation flying is shown in Figure 4-1. This marks the first challenge
in finding a suitable problem representation combined with a reinforcement learning algorithm: How
to handle a variable amount of aircraft at runtime.

4-2 4D trajectory navigation with DQN and Dueling DQN

In search for a suitable problem representation the following problem setup has been investigated.
When reviewing what components existing automation systems for sequencing and spacing are
composed of a set of useful components has been identified. In Figure 4-2 the components of
potential sequencing and spacing automation are displayed. The first component is 4D trajectory
predictor. Its task is to predict the time of arrival for aircraft at keypoints along the route.
This could be a waypoint eg. the FAF. The second component is the AI controller, which will
control the aircraft by choosing action according to a policy learned with reinforcement learning.
Finally there is the sequence scheduler or Arrival Manager (AMAN). Its task is to determine
the landing sequence and assign a scheduled time of arrival to aircraft and thereby satisfying the
minimum wake separation requirements. This AMAN can be a controller following a deterministic al-
gorithm for generating the sequence or also be a controller trained using a machine learning algorithm.
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Figure 4-3: Airspace layout for problem design

With these components of the system established the details of how the reinforcement learning is going
to control the aircraft is still undefined. The following airspace structure is proposed with the aid of
Figure 4-3. Aircraft can enter the experiment area at the boundary of the experiment area. From the
entry point the aircraft must fly towards the FAF or any other merge point that is defined along the
route towards the FAF. The sequence scheduler will assign the aircraft a STA at which the aircraft
must arrive at this waypoint. The aircraft must than make sure the aircraft arrives at this waypoint
at the designated time while maintaining the minimum separation criteria with the aircraft around
it. In this setup the responsibility of maintaining sequence spacing and the responsibility to adhere to
minimum separation criteria is divided over the the sequence scheduler and the reinforcement learning
controller respectively. Without further specifying how the sequence scheduler will work, the current
description of the reinforcement learning controller is experimented with.

4-3 Experiment description

The goal of the experiment is for a reinforcement learning controller to learn to navigate an aircraft
towards a goal while incorporating time restrictions. The aircraft enters the simulation at the Initial
Approach Fix (IAF) in the EHAM TMA to navigate to the final approach fix to make an approach
at RWY06 of Schiphol airport. When arriving at IAF SUGOL the aircraft is assigned a STA as to
mimic an arrival manager. The task of the agent is to arrive at the FAF at the STA. So the agent
must simultaneously learn to navigate to the FAF at waypoint EH609 and to absorb a delay assigned
at the start of the episode. The delay is tgeiqy is sampled randomly from a uniform distribution from
the range [0, 100] seconds. So sometimes the aircraft is ordered to fly a direct route towards the
waypoint, while at other times it must find a way to delay its arrival.

The agents observation is a set of augmented states. S = [d, tdelayﬂ/}rel] with d the distance to
the target waypoint, tge1qy the time to still be absorbed and ,¢; the relative heading to the target
waypoint as shown schematically in Figure 4-4. 1, is normalized to the range [-1, 1] where 0 means
flying straight towards the target. The agent does not need to know its actual position with respect
to the target waypoint, it only needs to know what it’s position is relative to the waypoint in order
to have an incentive of what direction to fly in. This does mean that the state of the aircraft can
be ambiguous with regards to absolute position. The absolute position is however, not relevant to
the experiment. tgeqy is computed by making use of 4D trajectory prediction. A deterministic 4D
trajectory predictor plug-in is written for BlueSky. The 4D trajectory predictor computes the time
to a waypoint by making use of the flight plan of the aircraft. All altitude constraints and speed
constraints are recorded in the flight plan. Then the arrival times at every waypoint is computed
based on the behaviour of the autopilot for both lateral and vertical navigation and the aircraft
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Table 4-1: Reward function components

State || Description Gradient | Bias
d Distance to FAF Qg by
Ldelay Time to absorb before arrival | oy by

performance and flight phase in BlueSky. If the aircraft heading is not aligned with the next waypoint
in the flight plan, the 4D trajectory predictor will first compute the shortest turn to the desired
heading iteratively and correct for the additional flight time. The 4D trajectory predictor allows the
state tqelay to be computed at each timestep during an episode by computing the shortest flight time
from the current position to the FAF within the constraints of the flight plan.

Next the action for the agent. To keep the experiment simple the action space of the aircraft is
limited to heading changes and flying straight. A = {left, straight, right} Inspiration in the action
selection is taken from robotics where robots tasked with navigation in unknown environment Sharma
and Taylor (2012). Robots have to choose a waypoint on a grid inside their field of view to navigate
to. The lower-level path planning navigates the robot to the waypoint. The aircraft will also choose
a waypoint to navigate to. It has three options: Fly straight for 0.25nm change heading by 15
degrees left or change heading by 15 degrees to the right. A path planning module will then compute
the location of the waypoint that coincides with the termination location of the action. When the
aircraft reaches the waypoint a new action has to be chosen. This approach fits well into the design
of BlueSky. When using heading changes there will be no active waypoint in BlueSky, which restricts
the use of the VNAV module for vertical navigation. With the perspective of BlueSky handling
vertical navigation in more complicated scenarios it is desirable to add new waypoints to the route.
The autopilot in BlueSky will then navigate the aircraft to the calculated waypoint. A schematic
of the action space is shown in Figure 4-5. These actions are temporally extended because they
do not follow a fixed time step. Therefore the problem is modelled as a SMDP for this particular setup.

re = aqgd + bg + ot + by (4-1)

Finally a reward function must be specified to supply the action feedback to the model. As the
reward function has been altered many times through the experiment runs a basic reward structure
can be identified to which modification are made in Equation 4-1. The reward is constructed of three
components which are the states also used in the simulation and are shown in Table 4-1. Distance is
important because the aircraft should learn to fly towards the FAF. By providing a reward based on
the distance from the FAF the aircraft is given an incentive to fly towards the FAF. Time is important
because the main goal of the experiment is to arrive on time. Finally heading is important to have
the aircraft arrive at the correct heading with respect to the runway. Rewards can either be sparse
or dense, eg. only given when agent reaches the FAF or continuously each timestep. The reward
should be well balanced to prevent reward hacking by the agent. Reward hacking occurs when the
agent exploits flaws in the reward signal that lead to undesired results. The episode terminates when
the aircraft has reached the FAF or when the aircraft is no longer on track to meet the experiment
objective to speed up learning. Exploring the environment will be done using an e-greedy strategy.

4-4 Method

To solve this environment DQN and Dueling DQN are used. The training algorithm is the same for
DQN and Dueling-DQN, but with a different network architectures. the DQN algorithm is used as
shown in Algorithm 1. Additional parameters that need tuning in order for the process are called
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Figure 4-4: State representation Figure 4-5: Action Space

hyperparameters. Any optimization problem has its own set of hyperparameters to tune in order
to obtain satisfactory results. These influence process characteristics as convergence speed as well
quality of the steady state error in the optimization process. Reinforcement learning has many
hyperparameters and when deep neural networks are applied to reinforcement learning, many more
hyperparameters are added to the list. An overview of additional hyperparameters that control the
learning process is given in Table 4-2. Additionally, choices for the neural network architecture, loss
function and optimization algorithm should be made.

Algorithm 1: Deep Q-networks with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function @) with random weights 6
Initialize target action-value function Q with weights 6~ = 6
for episode=1, M do
Initialize sequence s = {x1}
for t=1,T do
With probability € select a random action a;
otherwise select a; = argmax,Q (s, a;0)
Execute action a; in simulator and observe reward r; and state s;y1
Store transition (s, at, ¢, S¢+1) in D
Sample random minibatch of transitions (s, ag, ¢, $¢41) from D
if episode terminates at step j+1 then
‘ Set y; =r;
else
\ Set y; = 7j +ymax Q (se+1,a'07)
end

Perform a gradient descent step on (y; — Q (s;, a;; 9))2 with respect to the network
parameters 6

Every c steps set target network parameters 6~ «+ 6

end

end

4-4-1 Results for DQN

The first experiment is performed with DQN. Many runs have been performed to find a set of hyper-
parameters that were appropriate to find a policy to solve the problem. The DQN were trained in the
BlueSky environment. The network weights were saved every 10 episodes. When testing the results
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Table 4-2: Hyperparameter overview
Hyperparameter || Description Origin
Memory size Maximum number of entries for the replay memory. Deep  reinforce-
ment learning
¥ Discount factor for future rewards. This hyperparame- | Reinforcement
ter controls the time horizon in which the agent consid- | learning
ers future rewards to be of importance during learning
€ Probability of choosing a random actions Exploration  vs.
exploitation
€Emin Minimum probability of choosing a random actions dur- | Exploration  vs.
ing learning exploitation
€decay Annealing factor for the e Exploration  vs.
exploitation
A Learning rate Optimization
Batch size Number of experiences sampled from the replay memory | Neural  network
for each training step optimization
c Target network reset factor. FEvery c training steps, | Deep  reinforce-
the target network weights are set to the current pol- | ment learning.
icy weights to stabilize training.

the saved network weights are loaded into the DQN and the simulation is runs with deterministic
action selection for 25 episodes. The best results obtained with DQN are shown in the Figures 4-6 to
4-11. Hyperparameters used along with network architecture can be found in the Appendix A. As
can be seen the aircraft learned to consistently fly towards the FAF. In Figure 4-7 the t4.iqy for the
aircraft is plotted over time for all 25 episodes. Even the aircraft that have to fly a direct route still
loose time. This can partly be considered an artifact the discrete action space. The aircraft can simply
not fly in a perfect straight line to the FAF. The aircraft have a tendency to make a manoeuvre early
in the approach to absorb the delay. The reason for doing this becomes evident when looking at the
reward received at every timestep in Figure 4-8. Higher rewards are given for a lower t4eiqy and d. An
early manoeuvre is the fastest way of obtaining a high reward. Then as the aircraft approach FAF the
reward continuous to increase due to the d component. Sometimes some time is lost due to overshoot
the the STA 50 tgeiay becomes negative, for which penalties are given. It can be argued whether this
is the smartest approach in a real-life situation, but it is evident that this behaviour is induced by the
design of the reward function. The end result is that the aircraft overshoots the desired time of arrival.

Figure 4-11 shows the running average of the final reward received at termination for every episode of
training. The closer tgeiqy is to 0, the higher the reward at termination. The best result is obtained
after about 1000 episodes of training. This graph can be interpreted as a learning curve for the
aircraft. The agent shows some clear signs of converging at least to a local optimum around 1000,
3200, 7500 episodes where a increase in reward over episodes is very clear. In between the policy
fails to find a feasible solution to the problem. After 9000 episodes of training performance drops
dramatically. During training the Q-values were constantly growing in magnitude, while their relative
value remained very close to each other. After 9000 episodes the Q-values diverged to NaN, explaining
the sudden drop in performance.

4-4-2 Results for Duelling DQN

In order to suppress the overestimation of the Q-values that may be a possible cause of solution
divergence the Dueling DQN algorithm is implemented. The dueling DQN uses advantage estimation
inside the network, which should limit the overestimation of the Q-values and also speed up training.
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DQN

Figure 4-9: Trajectories for 25 test episodes
after 1000 episodes of training with DQN

Again hyperparameters en setup for this run can be found in the Appendix B. A different set of
hyperparameters and reward function design is used in the Dueling DQN setup as in the DQN setup
due to improvements on earlier iterations. Therefore it would not be fair to compare the two methods
in this experiment. For comparison of the performance of these two methods please refer to Wang et
al. (2016). Again the best results obtained with the Dueling DQN method are presented in Figures
4-12 to 4-16. The reward function in this setup has been changed to give high penalties when the
aircraft arrives too late at the FAF. It is interesting to see how this has affected the behaviour of the
aircraft. When looking at the trajectories flown by the aircraft in Figure 4-15 it is evident that these
show many similarities to path stretch techniques and looks a lot like a real approach from SUGOL
to EHAM RWYO06. This also shows that the aircraft has become more conservative in the way it
absorbs the delay. No aggressive early manoeuvre but gradual absorption through path stretch. Still,
the aircraft has a bias to overshoot the STA. The penalties are clearly reflected by the sudden drops
in the rewards received over time in Figure 4-14. The resulting performance is more consistent as can
be seen by the compactness in box plot in Figure 4-16. For two runs the reward and tgeiq, suddenly
drop for the final timestep. To calculate t4eiqy also a turn is iteratively computed towards the next
waypoint. The calculation did not converge if the aircraft is too close to the waypoint for a normal
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Box plot of tgey at termination Cumulative reward during episode
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Figure 4-10: t4ciqy at termination for 25 test Figure 4-11: Running average of 10 samples
episodes after 1000 episodes of training with for the final reward received during an episode
DQN while training with DQN

turn to be calculated. This is undesired as it adds noise to the reward signal and should be addressed.

Figure 4-17 shows the learning curve for the Dueling DQN architecture. The graphs do not show the
same metric as Figure 4-11, but shows the running average of cumulative reward collected during an
episode during training. The interpretation is similar. The Dueling DQN learns faster than the DQN,
which was observed consistently between runs. The highest performance is observed at 375 episodes
of training. Although the overestimation of the Q-values in Dueling DQN setup was less the training
was still unstable as can be deduced from the large fluctuations in the learning curve.
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Figure 4-12: Distance vs. time for 25 test Figure 4-13: t{4ciqy vs time for 25 test
episodes after 375 episodes of training with episodes after 375 episodes of training with
dueling DDQN dueling DQN

4-4-3 Discussion

Even though the results presented look very promising, obtaining these result was far from trivial.
As mentioned before the reward function should be well balanced to prevent reward hacking. During
training some reward hacking examples have been observed. To speed up learning, it was thought
to be useful to terminate episodes early if a satisfactory result could no longer be obtained, because
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tdelay had become too small. As a result episodes terminate very early while the aircraft is trying to
explore the environment, because random actions prevent a good solution. Therefore the exploration
of the environment is restricted too much. In the end the agent failed to learn how to fly to the FAF
due to lack of proper exploration. It never learned where and how good rewards could be obtained.
The end result was immediate ’suicide’ by turning instantly to ramp up tqeiqy and quickly terminating
the episode as suicide was the fastest way to prevent receiving many negative rewards. Adding a high
penalty for terminating an episode through the wrong terminating condition also did not prevent
the aircraft from learning ’suicidal’ behaviour. This shows that a proper exploration strategy for the
environment is of key importance for learning a successful policy. A good exploration strategy in
conjunction with poor termination conditions still results in a failure.

Exploration is also accompanied by the term exploitation. Together they form the exploration vs.
exploitation dilemma. When is it time to stop exploring and start exploiting the learned policy.
As mentioned in the results, there were many issues with the algorithm diverging from an optimal
solution, even when a good solution had already been discovered. It was observed that the divergence
and the annealing of the e-greedy policy were related in all successful training runs. Every successful
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training run diverged again when continuing to train with an exploitation policy after the e was
annealed to €,;,. Exploitation should serve to strengthen the learned policies in the network.
However, this did not seem to be the case. This diverging behaviour was also observed when applying
the method to a simple 2D inverted pendulum balancing problem when applying DQN, which means
it is not an artefact of the environment design in BlueSky.

To Elaborating further on the topic of training instability: This seems to be an issue with applying
reinforcement learning that is not mentioned in papers. In a blogpost Google researcher Alex Irpan
elaborates on the current status of reinforcement learning !. Where supervised learning is a very stable
learning process, reinforcement learning is not. The tuning of hyperparameters has become almost
almost trivial in training Deep Neural Networks due to the experience empirical results in this research
area. Deep reinforcement learning however, is not a stable process at all, as has also become evident
in this preliminary analysis. Adding to that the high sample inefficiency of the methods employed,
it slows down research. Runs may fail or be successful based on random seed for an identical set of
hyperparameters. This also makes reproduction of the work very hard because another implementation
of the same algorithm will not produce the same result. To put in this in context for this work. To
learn a relatively simple problem of an aircraft flying towards a FAF, a run of 1000 episodes could range
from 6-8 wall-clock time of training. This training time mostly to the fact the BlueSky environment
is expensive to evaluate. Then there is a high chance that the run fails based on random seed. This
makes debugging very slow, because it is hard to determine what the cause of a failure may be.

4-5 Navigation by waypoint selection

In order to provide a more stable learning signal an alternative problem representation for free
flight is investigated. Instead of freely navigating through the airspace, the aircraft is on-route to
the airport and has to build the actual route from waypoints that are layed out in a cross-track
fashion as shown in Figure 4-18. There are multiple reasons for doing so. First of all the flight paths
observed in section 4-2 did not represent realistic aircraft flight paths. Secondly, an advantage of
abandoning complete free flight is that the agent now has to build a route from flight segments.
That means when the agent starts learning, it will always arrive at the FAF, which is not guar-
anteed in free flight. The aircraft no longer has to learn how to navigate to the FAF in the first
place, but rather what the most efficient choice of routing is in the current traffic situation. This
provides a more stable reward signal for the agent. It is expected that this will stabilize the learn-
ing process by providing a stronger learning signal as compared to 4D trajectory learning in section 4-2.

A A

A

Figure 4-18: Cross track navigation with waypoint

!Alex Irpan (Google), 'Deep Reinforcement Learning Doesn’t Work Yet’, 2018 https://www.alexirpan
.com/2018/02/14/r1l-hard.html [accessed 8 August 2018]
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4-6 Experiment description

The observation set S for the aircraft is a combination of a local observation and a
shared observation.  The local observation is build up of properties of the aircraft itself,
namely the calibrated airspeed, the segment index on which it flies, latitude and longitude.
S = [Veas, lat, lon, latprey, lonprey, latiarget, 1ongarget]. The shared observation is a global encoding of
the environment. The shared observation is added to give aircraft more situational awareness in the
multi-agent setting. Intuitively this makes sense. It can be compared to two persons standing in a
room filled with obstacles. They have to walk towards each other to shake hands, using their own
observations and communication. This will be much easier to achieve when the light is on (shared
observation) than when the room is pitch black. However, for this experiment the shared observation
is not yet included and hence also not yet designed, because only one aircraft will be present in the
simulation.

Next is the action set, which is comprised of a waypoint selection and speed selection. In order to
keep the optimization simpler there are no separate actions heads for the waypoint selection and
action selection. Rather the two are combined into an action set, which can be represented as a
matrix for n waypoint options and m calibrated airspeed options. During runtime invalid actions are
masked to make sure aircraft has to stay on route to the selected waypoint. This does slow down
learning, because aircraft have to learn all 4 trajectories separately.

wpiVi - wp,V1
A=| o
wpVin -+ wp,Vm

4-7 Method

The BiCNet architecture was selected to solve the problem and to try out communication interface
for multiple aircraft. The network architecture provides the mapping from observations to action.
The network architecture for BiCNet is displayed in Figure 4-19. The actor is a mapping from
state to actions and the critic is value-function and thus a mapping from state and actions to value.
First the shared observation is fed through a fully connected layer with ReLu activation to learn a
representation for the occupancy of the segments. The local observations are also not fed to the main
network directly. Because the segment index would be represented by a one-hot vector it is better to
learn an embedding for this parameter. The other input will be normalized at runtime using a all
observations collected so far and will be updated each timestep. All the preprocessed observations are
then fed through a fully connected layer that shares the same parameters for all aircraft. The sequence
of aircraft is then fed to the communication layer, which is a bidirectional recurrent neural network
with Long Short Term Memory (LSTM) activations. The output is then again fed through a fully
connected layer with shared parameters after the segment and speed action selection is performed
using a softmax operation. The critic is a value function and will have the same input as the actor
with the addition of the selected actions in the actor and will output the Q-values. The gradient for
the network updates will be computed using DDPG for multi-agent systems and a replay memory.

A flow-chart describing the information flow through the simulation is shown in Figure 4-20. The
simulation environment is already provided by BlueSky. However, the desired states and actions are
not directly available in BlueSky. Therefore a communication interface is created, which translated
the action selection into the correct BlueSky commands and uses the states available in BlueSky to
deliver compose observations in the correct format. A reinforcement learning plug-in is written for
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BlueSky created that interacts with the communication interface. This allows for easy swapping of
network architectures and training methods if deemed necessary. Illegal actions must be masked so
they cannot be selected. Illegal actions can occur when the aircraft will eventually as invalid otherwise
there will always remain a small probability that the action is chosen. Training will be performed
with the BiCNet algorithm. The flowchart is accompanied by the algorithm used for the BiCNet
architecture which is shown in Algorithm 2.

Algorithm 2: BiCNet algorithm

Initialize actor network and critic network with £ and 6

Initialize target actor network and target critic network with ¢ < £ and 6’ < 0
Initialize replay memory R

for episode=1, E do

Initialise a random process U for action exploration

Receive initial observation state s!

for t=1,T do

For each agent i, select and execute action af = a; g(s') + M

Receive reward [r]Y, and observe new state s'*!

Store transition {s’, [af,7f]¥,,s'*1} in R

t
m,i’

M
rt N gttl from R

. o ¢
Sample random minibatch of transitions {sf,, [a el Sm fo )

Compute target value for each agent in each transition using the Bi-RNN:
for m=1, M do
‘ Qi = Tmi + )\Qf,;’i (shFt, ag (shF) for each agent i
end
Compute critic gradient estimation according to:

A= 7 Sl X [( Qi = Q5 (5 20(80))) - Ve, (5 20(510)|

Compute actor gradient estimation:

80 = 3 0 S 0 [Veajo(sm) - Va, Qi (Smea0(sm))]

and replace Q-value with the critic estimation

Update the networks based on Adam using the above gradient estimators
Update target networks:

e+ Q-8 0«10+ (1—7)0

end

end

4-8 Results and Discussion

Unfortunately there are no valid results for this experiment. A mistake had been made in the training
method choice with the problem setup. DDPG is not compatible with discrete actions. Therefore
the results are not meaningful. The experiment was discontinued without first trying other training
algorithms with the BiCNet architecture. More issues emerged with the whole problem setup. Due to
the fact that the actual choice of aircraft speed and waypoint selection at different time scales, while
both actions were coupled in the action choice this causes noise in the action selection. The problem
would have to be modeled as a SMDP problem. This leads to compatibility issues with the BiCNet
architecture because. Aircraft do not select actions simultaneously due to the SMDP while BiCNet
outputs actions for every aircraft in a forward network pass. This will give issues in the training phase
where backpropagation is actually only applicable to one of the actions heads and does provides false
gradient information to all the other action heads. A hierarchical model architecture similar as was
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demonstrated by Brittain and Wei (2018) would be more suitable. This however, gives other problems
in the multi-agent setting with the variable number of aircraft because a fixed network architecture is
used. Therefore navigation by waypoint selection is abandoned for now.

4-9 Conclusion

To conclude the preliminary analysis. The experiments have yielded successful results. Aircraft could
learn consistently fly towards the final approach fix while absorbing an assigned delay. The arrival
time was generally biased to arriving late in both the DQN approach as well as the Dueling DQN
approach. Due to the different hyperparameters, reward function and the stochastic in the simulation
the results if both methods cannot be compared directly. The influence of a strong exploration
strategy on the end result was very evident. The exploration strategy can speed up learning, or
prevent the aircraft from learning anything useful at all. Deep reinforcement learning has many
pitfalls and instabilities that are sometimes difficult to avoid.

To come back to the initial question what reinforcement learning techniques are suitable to model
the sequencing and spacing of aircraft in the TMA. Some single-agent techniques have been tried
that handle a continuous state space and discrete action space. The technique of learning to fly to
waypoints is likely not the most suitable way to model the navigation of an aircraft. When looking
ahead, the simulation will contain multiple aircraft. It is already hard to find a suitable policy for
a single agent. Therefore a new model of the environment should be considered for the final experiment.

Other less-successful representations were explored in the form of navigation by waypoints. The
BiCNet architecture was applied here to guide aircraft. However, the BiCNet algorithm, which is
based on the DDPG was not compatibly with the problem representation.

In general when applying reinforcement learning, it is good to strip the problem down as much as
possible initially. There are so many possible causes for failure that learning and debugging is al-
most a prohibitive task. Good habits would include implementing the intended learning algorithm
and applying it to a known benchmark problem such as balancing an inverted pendulum. In that
way the expected behaviour and a working set of hyperparameters are readily available to verify the
implementation of the learning algorithm. Next apply it to the environment of a unknown problem.
Start with a very basic version to do a basic hyperparameter search and start designing the reward
function and expand the problem from there.
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Chapter 5

Thesis proposal

Based on the findings from the preliminary analysis a proposal for further thesis work is constructed.
To answer the research question: "What is the safety and efficiency of the emerging strategies for
sequencing and spacing aircraft in the TMA learned by a controller trained using reinforcement learn-
ing?’, further research must be conducted. The first research sub-question has been answered by the
combination of a literature study and a research question. To find an answer to the remaining two
research sub-questions an additional experiment must be designed.

To move into the realm of multi-agent simulation some additional representation challenges must be
met. First of all, the number of aircraft present at runtime must be variable. Therefore the network
architecture must be able to handle this. Previous approaches tried like MADDPG and DQN do not
support multi-agent simulations with variable number of agents at runtime. The reasons usually are
that every agent will be trained with its own unique policy. When aircraft are added or removed from
the simulation this becomes a problem, because the trained data cannot be applied to the new agent.
These challenges will be overcome with the use of BiCNet.

5-1 Problem statement

The experiment will be a experiment with multiple aircraft. The air traffic control problem is modelled
as a multi-agent reinforcement learning problem. In order to study emerging strategies aircraft will be
given the freedom of free flight, but in a slightly different fashion than the 4D trajectory navigation in
section 4-2. In this way aircraft are given enough freedom for strategies to emerge. Aircraft will enter
the experiment area when entering the Dutch airspace to land at Schiphol airport. The simulation
will be run in the BlueSky Open Air Traffic Simulator Hoekstra and Ellerbroek (2016). The goal
for the aircraft is to maximize runway throughput while maintaining safe separation and adhering to
minimum wake separation criteria using the times in trail criteria. All information available can be
used to allow for full observability of the state space.

The observation set S = [Siocal, Sshared] for the aircraft is a combination of a local observation and
a ’shared observation’. The local observation consists of the relevant states of the aircraft itself.
Siocal = [lat,lon, hdg, qdry, 4, d] contains the aircraft latitude, longitude, heading, bearing with
respect to the destination and the distance to the destination. The shared observation is designed
to create situational awareness for an aircraft by observing the state of other aircraft. Intuitively
this makes sense. It can be compared to two persons standing in a room filled with obstacles. They
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Figure 5-1: Heading range for action selection

have to walk towards each other to shake hands, using their own observations and communication.
This will be much easier to achieve when the light is on (shared observation) than when the room
is pitch black. Therefore each aircraft observes the following set of states for every other aircraft
Sshared = [lat, lon, hdg, qdr, d]. So the shared observation is a sequence of aircraft states, where every
sequence entry contains the latitude, longitude, heading, bearing with respect to the other aircraft
and the distance to the other aircraft. The shared observation is almost the same for every aircraft,
hence its name.

The action space will only contain a heading selection for each aircraft, thus A = [hdg]. This choice
is made to keep the action space relatively more simple and may be extended in the future. To find a
compromise between learnability and freedom of action, the actions are bounded to the range —90 deg
and 90 deg with respect to the bearing to the target as shown in Figure 5-1. This forces the aircraft
towards the target.

To complete the description of the reinforcement learning method a reward function must be specified.
Every aircraft will receive its own individual reward. This is necessary, because it is difficult to
assign credit to individual agents’ actions based on a single global reward. The individual rewards
are a combination of local reward and a global reward. The local reward shall have the following
components: loss of separation, progress Global reward: fuel used. The goal is to maximize runway
throughput while maintaining a safe separation and efficient flight. Therefore these components will
be in the reward function. Wake separation criteria for miles in trail as listed in Table 5-1 must be
met as well as minimum spatial separation criteria.

5-1-1 Generating traffic scenarios

A traffic scenario is generated using data from Demand Data Repository II (DDRII) repository pro-
vided by EuroControl. This repository contains historical flight data ranging from filed flight plans to
the actual flown trajectories. To simulate real world traffic demand historical data filtered for EHAM
arrivals is downloaded. A flight consists of a set of flight segments where each flight segment is marked
with a start position, start speed, start time, start altitude, end position, end speed, end time, end
altitude, the length of the segment and the heading on that segment. For each flight, the segment
where the aircraft enters Dutch airspace is found and interpolated to define the starting data of the
aircraft.
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Table 5-1: RECAN-EU minimum wake separation criteria during approach Rooseleer et al. (2015)

Follower || Super Upper Lower Upper Lower Light
Heavy Heavy Heavy Medium | Medium
Leader A B C D E F

3 NM 4 NM 5 NM 5 NM 6 NM 8 NM

3 NM 4 NM 4 NM 5 NM 7 NM
25 NM | 3 NM 3 NM ANM 6 NM

Super Heavy
Upper Heavy
Lower Heavy

| || Q| Q| W] =

Upper Medium 5 NM
Lower Medium 4 NM
Light 3 NM

5-2 Method

In order to solve this problem, multiple aircraft must be controlled simultaneously with a variable
number of aircraft during runtime. The network architecture provides the mapping from observations
to action. The network architecture for BiCNet is displayed in Figure 5-2 and has been changed in
some location with respect to the architecture proposed in chapter 4. The actor is a mapping from
state to actions and the critic is value-function and thus a mapping from state and actions to value.
First the shared observation is fed through a fully connected layer with ReLu activation, which has
the same weights for every sequence entry in the shared observation. The result is then max-pooled
along the aircraft axis to obtained a vector that is fixed in size to be concatenated with the local
observation. The local observations are also not fed to the main network directly, but are also fed
through a shared fully connected layer with ReLu activation of which the weights are the same for
every aircraft. All the preprocessed observations are then fed through a fully connected layer that
shares the same parameters for all aircraft. The sequence of aircraft is then fed to the communication
layer, which is a bidirectional recurrent neural network with LSTM activations. The output is then
again fed through a fully connected layer with shared parameters after the segment and speed action
selection is performed with a tanh activation to obtain a value in the range[-1, 1]. The critic is a
value function and will have the same input as the actor with the addition of the selected actions in
the actor and will output the Q-values.

The gradient for the network updates will be computed using DDPG for multi-agent systems and a
replay memory. Training will be performed with the BiCNet algorithm. The flowchart is accompanied
by the algorithm used for the BiCNet architecture which is shown in Algorithm 2. A flow-chart
describing the information flow through the simulation is shown in Figure 4-20. The simulation
environment is already provided by BlueSky. However, the desired states and actions are not directly
available in BlueSky. Therefore a communication interface is created, which translated the action
selection into the correct BlueSky commands and uses the states available in BlueSky to deliver
compose observations in the correct format.

5-3 Verification & Validation

In order to verify the correct implementation Tensorboard will be used, which is a tool included in
the TensorFlow library. As verification is not possible in the sense of a traditional verification process.
Van Wesel and Goodloe (2017) divides the process into offline and online verification and identifies
the following that can be verified:

Offline:
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Actor Critic

[ _ Aircraft N [ _ Aircraft N
| Aircraft 2. | Aircraft 2.
Aircraft 1 Aircraft 1
| Aircraft Al | | Aircraft Al |
_ Aircraft ... _ Aircraft ...
Aircrait 2 Latitude, Longitude, Alreraft 2 Latitude, Longitude,
Lat, Lon, gdr, d, hdg, Calibrated airspeed, Lat, Lon, gdr, d, hdg, Calibrated airspeed,
cas Altitude cas Altitude
Fully Connected - Input Fully Connected - Input
RelLu normalisation RelLu normalisation
Max-pool » concatenate Max-pool » concatenate
Fully Connected - Fully Connected -
RelLu Relu
T L~ |
OOBBF__MS: on layer Ooashﬁ_nm on layer
1 2 N-1 N 1 2 N-1 N
|‘_ LSTM LSTM ||L LSTM |L LSTM |‘_ LSTM LSTM ||L LSTM |L LSTM f——p
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Heading Q-value

Figure 5-2: Network architecture of the BiCNet implementation in BlueSky to control air traffic simulation
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e State to action mappings - Verify the correct input output shape and data type as well as the
correct masking of illegal actions.

e Action sequences - Check if the selected actions lead to the correct corresponding state transition.

e Algorithm properties independent of data - Check the convergence properties of the algorithm
independently. Proof of the algorithm convergence is already given in the papers.

e Validating assumptions on training data - Check if the variable ranges that are present in the
training data reflect what is to be expected.

Online:

e Tensorboard visualisation of weight evolution and variable evolution. The rewards obtained can
be visualized live to see training progress. The gradients can be monitored as well to see if the
optimization process is healthy. Additionally, the evolution of distribution of the weights can
be monitored in Tensorboard using histograms.

Validation of a reinforcement learning is not the same thing as validation of a supervised learning
application. Usually, in machine learning applications a training set, a test set and a validation set
are used to make sure the learned model fits the problem well. The training set is used to train the
network, the test set is used as independent test set to compare with the training result to prevent
overfitting the training set. Multiple iterations are done to obtain the same accuracy for the training
and test set. Finally the validation set is used as a final test to see how the algorithm will do in the
real world as the hyperparameters were tuned to fit both the training and test set well.

Reinforcement learning is different, because it doesn’t just use a dataset to train on, but interacts with
an environment to learn to maximize an expected reward. The reward is designed to promote desired
behaviour. The received reward can thus act as a measure for the performance. However, separate
measures can be used to see if the agent actually learned a desired behaviour rather than just a trick
to obtain a high reward. The controller is trained on a traffic load for arriving flights to Schiphol.
Therefore a number of traffic scenario’s adapted from historical flight data must be run tested with
the reinforcement learning controller serving as the actual controller. Real flight data can be taken
from the DDRII repository from EuroControl. The score of the controller can then be compared with
the score obtained from simulating the actual flight data separated by human air traffic controllers as
a baseline.

Metrics used are:

e Sequence stability
e Fuel used per aircraft by calculating work done of an aircraft.
e Number of conflicts

e Number of intrusions

5-4 Outcome

The research questions states the interest in the safety and efficiency of the emerging strategies of the
controller. Next to that it also interesting to identify some of the strategies to get insight in what the
agents have actually learned. The most interesting part is to see how well the controller generalizes
to situations it has not seen before. Reinforcement learning is not known for its power to generalize.
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It is interesting to see if the controller then generalizes to solve a real-traffic scenario to compare with
the baseline or if additional training on a specific scenario is required to achieve better performance.
The generalization power is also a good prospective of the feasibility for the implementation of a
reinforcement learning controller for eg. airspace design.

To assess the safety and efficiency following will be computed:

e Fuel used per aircraft by calculating work done of an aircraft.
e Number of conflicts
e Number of intrusions

e Sequence stability

Sequence stability is a measure to assess the efficiency and workload of sequencing and spacing and
is defined by positional changes in the sequence. The sequence is determined by computing expected
arrival time deterministically from the current aircraft state and the optimal trajectory to the runway.
Sequence changes can be detected by comparing the expected arrival sequence on multiple snapshots
in time to see when the aircraft will change position in the sequence and what caused this, eg. relative
speed, entry position, position compared to other agents.

It is interesting to see if the controller then generalizes to solve a real-traffic scenario to compare with
the baseline or if additional training on a specific scenario is required to achieve better performance.

5-5 Planning

The progress and planning of the thesis project is elaborated upon. A Gantt chart showing the global
progress can be found in Figure 5-3. The final experiment phase has started. The main tasks left
are programming the final experiment environment in BlueSky, followed by an experiment phase and
analysing and writing the thesis.
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Chapter 6

Conclusion

To apply the recent developments in artificial intelligence to air traffic management a literature study
has been conducted where both reinforcement learning as well as automation of air traffic control in
the terminal manoeuvring area have been studied. Methods like the DQN

A preliminary analysis was conducted aiming at the complete autonomy of individual aircraft. Using
the reinforcement learning methods Deep Q-Networks and Dueling Deep Q-Networks a single aircraft
was trained to navigate a 4D trajectory. Policies to control the aircraft were learned successfully,
despite a unstable learning process. The Dueling DQN showed faster learning than the DQN. The
importance of a properly tuned exploration strategy and reward function became evident through the
occurrence of reward hacking and clear improved learning results based on varied exploration rates.
Causes of which were the training instability of the training method, the problem set-up, exploration
vs. exploitation choices and reward function shaping. Finally a navigation by cross-track waypoint
selection has been investigated as well, but is abandoned due to the incompatibility of that problem
setup with the desired architectures of the multi-agent network.

A thesis proposal has been made to answer the latter to answer the research question: What is the
safety and efficiency of the emerging strategies for sequencing and spacing aircraft in the TMA learned
by a controller trained using reinforcement learning? The problem setup is transferred to a multi-agent
setting. Due to the observed learning difficulties encountered in the single agent setting a simplified
problem is first solved in the multi-agent setting. The aircraft should learn to avoid each other and line
up for sequencing and spacing. Safety and efficiency will be measured by sequence stability, number of
intrusions, fuel used by aircraft. The results will be compared to a baseline produced from historical
flight data, which represents the current efficiency.

Towards Emerging Sequencing and Spacing Strategies for a self-learning ATC Bart Vonk



52 Conclusion

Bart Vonk Towards Emerging Sequencing and Spacing Strategies for a self-learning ATC



Appendix A

DQN Summary

In this appendix all hyperparameters values used in the preliminary analysis experiment runs that
have been presented in this report are listed.

Reward function

R = (54 aqd) + (10 + o At) + apag Ay

Table A-1: Reward function parameters

Qq -0.3
Qg -0.2
Qhdg -0.07

Table A-2: DQN network summary

Layer 1 Dense 24 - Rectified linear unit
Layer 2 Dense 24 - Rectified linear unit
Layer 3 Dense - Linear

Loss function Mean squared error
Optimizer Rmsprop

Table A-3: Hyperparameter overview

Memory length 2000
5y 0.98
Estart 1.0
€decay 0.9954
A 0.001
Batch size 32
c 1000
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Appendix B

Dueling DQN summary

Reward function

The reward function in Equation B-1 is build up of three components: Distance, time, and a binary
reward based on a time derivative. If the episode terminates without reaching the goal, a penalty is
given via the t,.¢.

R= (3 + add) F trew + dtrewA¢

—100 if termination penalty

10 + a4 if not terminationpenalty »and

where t,e = {

—1 if (t>0and dt>0)orif (¢ <0 and dt > 0)

where dreu, = { 1 if(t>0and dt <0)orif (¢<0anddt<0)

Table B-1: Reward function parameters

aq -0.22
Ot -0.2
Qhdg -0.07

Table B-2: Dueling DQN network summary

Advantage Layer 1 | Dense 128 - Rectified linear unit
Advantage Layer 2 | Dense 128 - Rectified linear unit
Advantage Layer 3 | Dense 3 - Linear

Advantage Layer 4 | Subtract mean Advantage Layer 3

Value Layer 1 Dense 128 - Rectified linear unit
Value Layer 2 Dense 128 - Rectified linear unit
Value Layer 3 Dense 1 - Linear

Add Advantage Layer 4, Value Layer 3
Loss function Mean squared error

Optimizer Adam
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Table B-3: Hyperparameter overview

Memory length 2000
v 0.98
Estart 1.0
Emin 0.01
€decay 0.99
A 0.001
Batch size 32
c 1000
Gradient clip value 0.5
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Appendix A

Trajectories experiment 3

This appendix shows learned trajectories sampled from the set of test scenario’s for experiment 3 after
30740 episodes of training.
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Figure A-1: Test trajectories for experiment 3 after 30740 episodes of training.
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