
Delft Center for Systems and Control

Tensor-Networked Square-Root
Kalman Filter for Online Video
Completion

P. van Klaveren

M
as

te
ro

fS
cie

nc
e

Th
es

is

Tensor-Networked Square-Root
Kalman Filter for Online Video

Completion

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

P. van Klaveren

June 25, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Online video completion aims to complete corrupted frames of a video in an online fashion.
Consider a surveillance camera that suddenly outputs corrupted data, where up to 95% of
the pixels per frame are corrupted. Real time video completion and correction is often de-
sirable in such scenarios. Therefore, this thesis improves the Tensor-Networked Kalman Fil-
ter (TNKF) as presented in [12] by developing the Tensor-Networked Square-Root Kalman
Filter (TNSRKF). The TNSRKF is a Square-Root Kalman Filter (SRKF) realized in a Tensor
Networks (TN) structure. The square-root Kalman filter is an inherently stable algorithm,
and indirectly allows for more information retention throughout the algorithm. Thereby, the
filter aims to improve the performance of the TNKF. Furthermore, implementing the filter
in TN results in an intuitive implementation of the filter while allowing for larger video di-
mensions than the widely used matrix format. This thesis concludes that the TNSRKF is
too computationally burdensome to complete a video in an online fashion due to the imple-
mentation of the Modified Gram-Schmidt (MGS) algorithm in Tensor-Train (TT)-format. In
addition, results demonstrate that a low-rank orthogonality matrix is not realizable, making
it impractical to update the state covariance matrix via any method that uses an orthonormal
matrix.

Master of Science Thesis P. van Klaveren

ii

P. van Klaveren Master of Science Thesis

Table of Contents

Preface ix

1 Introduction 1
1-1 Notation . 3

2 State of the Art for Online Video Completion 5
2-1 Adaptive Online Low-Rank Matrix Completion 5
2-2 Tensor-Networked Kalman Filter . 6

2-2-1 Discrete State-Space Model . 6
2-2-2 Recursive Kalman Filter . 7
2-2-3 Initialization of the Kalman Filter . 8

2-3 Computational Load Comparison . 8

3 Tensor Networks 11
3-1 Tensor . 11
3-2 Tensor Operations . 12

3-2-1 Multi-index Ordering . 13
3-2-2 Inner Product . 13
3-2-3 Matricization . 13
3-2-4 n-mode Product . 13
3-2-5 Kronecker, Khatri-Rao and Hadamard Product 14
3-2-6 Rank-1 Tensors . 14

3-3 Tensor Decompositions . 15
3-3-1 Tensor-Train . 15
3-3-2 Tensor-Train Matrix . 16
3-3-3 Other Decompositions . 16

3-4 TT(m) Operations . 18
3-4-1 Basic TT Operations . 18
3-4-2 TT Contractions . 20
3-4-3 Matrix and Vector Product . 20
3-4-4 TT-rounding . 22

Master of Science Thesis P. van Klaveren

iv Table of Contents

4 Square-Root Kalman Filter 25
4-1 State-Space Representation . 25
4-2 Kalman Filter . 26

4-2-1 Time Propagation . 26
4-2-2 Measurement Update . 27
4-2-3 Positive Definiteness of State Covariance Matrix 27

4-3 Cholesky Factorization . 28
4-4 General Approach for the Square-Root Kalman Filter 29

4-4-1 Square-Root Time Propagation . 29
4-4-2 Square-Root Measurement Update . 30
4-4-3 Modified Gram-Schmidt Orthogonalization 31
4-4-4 Partitioned Measurement Update . 33

5 Square-Root Kalman filter for Online Video Completion 35
5-1 State-Space System of a Video . 35

5-1-1 Process Noise Covariance Matrix . 36
5-1-2 Selection of Quantization . 37

5-2 Modified Gram-Schmidt in TT-format . 37
5-3 Combining TTs into one TTm . 43
5-4 Low-Rank Orthogonal TTm . 45
5-5 Implementation of the Tensor Network Square-Root Kalman Filter 48

5-5-1 Time Propagation in TT-format . 49
5-5-2 Measurement Update in TT-format . 50
5-5-3 Bottleneck of the Algorithm . 53

6 Conclusion and Future Work 55

A Algorithms 57
A-1 TT Operations . 57

A-1-1 TT Addition . 57
A-1-2 TT Subtraction . 58
A-1-3 TT Matrix-Vector Product . 58
A-1-4 TT Inner Product . 59
A-1-5 Site-k Orthogonalization . 59

A-2 Other Functions . 60
A-2-1 Multi-index . 60

Bibliography 61

Glossary 65
List of Acronyms . 65
List of Symbols . 65

P. van Klaveren Master of Science Thesis

List of Figures

1-1 Example of corrupted frame in surveillance footage [12, 1]. 1
1-2 This diagram visualizes the structure of the report. 3

2-1 This figure shows the transition from a frame of a video to an 8-bit integer valued
matrix [1, 12]. 7

3-1 This figure shows the tensor diagrams of a scalar, a vector, a matrix and a 3-way
tensor respectively. 12

3-2 This figure shows the mode-n fibers of a 3-way tensor [20]. From left to right, the
mode-1 or column fibers, mode-2 or row fibers and mode-3 or tube fibers can be
seen. 12

3-3 This figure shows the slices of a 3-way tensor [20]. From left to right, the horizontal
slices, the lateral slices and the frontal slices can be seen. 12

3-4 This figure illustrates the matricization process for a 4-way tensor. 13
3-5 This figure shows the n-mode product in tensor diagram format. 14
3-6 This figure shows the TT decomposition of any given 4-way tensor in a tensor

diagram. 15
3-7 This figure shows the Tensor-Train Singular Value Decomposition (TT-SVD) al-

gorithm in tensor diagram format. 17
3-8 This figure shows the optimal order of contraction according to [36]. 20
3-9 This figure illustrates the matrix-vector product in TT-format in tensor diagrams. 21
3-10 This figure illustrates the QR-orthogonalization part of the TT-algorithm. 23

4-1 This figure shows the order of the scanning procedure of a random matrix to
generate the Cholesky factorization [25]. 29

4-2 A graphical illustration of vector projection. The horizontal black arrow represents
the vector qi and the inclined black arrow represents the vector vi+1. The projec-
tion of vi+1 on qi is indicated by the red striped arrow v1

i+1 and the blue, striped
arrow indicates the orthogonal part of vi+1 on qi and is denoted by v2

i+1. The
updated Vi+1 is equal to v2

i+1. 32

Master of Science Thesis P. van Klaveren

vi List of Figures

5-1 This figure shows how to reshape a matrix into a vector by stacking its columns [12]. 36
5-2 Multiplying each of the TT-cores with a unit vector to select a specific column

from the TTm, resulting in a TT. 40
5-3 The orthogonality error of the MGS algorithm for a rank threshold value Rmax

equal to 5. 42
5-4 The orthogonality error of the MGS algorithm for a rank threshold value Rmax

equal to 20. 42
5-5 The orthogonality error of the MGS algorithm for a rank threshold value Rmax

equal to 50. 42
5-6 The orthogonality error of the MGS algorithm for a rank threshold value Rmax

equal to 90. 42
5-7 This figure shows how a TT can be extended to a Tensor-Train matrix (TTm) by

multiplying each of the TT-cores with a unit vector. 44
5-8 This figure shows the orthogonality error obtained after Algorithm 6 relative to the

identity matrix. The rank threshold is set to: {50, 150, 250}, which are represented
by the black, blue and red line respectively. 45

5-9 This figure shows the relative error of the product of the truncated TTm with its
transpose QTQ with respect to the identity matrix. The truncation parameter used
in the rounding function, ε, is located on the horizontal axis. The black line shows
the various errors obtained for truncating the TTm. The red asterisk indicates the
relative error when no truncation is called. Hence, placing it at ε = 10−6 is not
correct. It should be located at ε = 0. 46

5-10 This figure shows the relative error of QTQ to the identity matrix I. The black
line indicates the relative error of the truncated orthonormal matrix Qtrun and the
red line indicates the relative error of the original orthonormal matrix Q. The last
one is placed at ε = 10−20 because 10− inf is not on the horizontal axis. 48

5-11 This figure shows the TT Kronecker product of a vector v and the TTm L. As
can be seen the vector is attached the last core of L, this is because of little endian
ordering of the indices. 50

5-12 This figure presents the structure of the matrix R. 51
5-13 This figure shows the relative error per estimated frame. The figure consists of

two error plots: the black line represents the relative error of the TNSRKF and the
red line represents the relative error of the SRKF in matrix format. The video that
is used for this simulation is the Town Center video [1]. Furthermore, 95% of the
pixels are corrupted and the video is gray-scaled, and has a resolution of 9 by 16. 52

P. van Klaveren Master of Science Thesis

List of Tables

1-1 Notation used throughout this thesis. 3

2-1 Complexity for one update of the Adaptive Singular Value Thresholding (ASVT)
and TNKF algorithm. I is the row dimension and J is the column dimension of the
frame of the video. Furthermore, R is the maximum rank of the TT decomposition
in TNKF, d equals the amount of TT-cores and α is the fraction of observed pixels.
Furthermore, (IJ)max equals max{(IJ)1, (IJ)2, . . . , (IJ)d}. 9

3-1 Storage complexity for tensor decompositions for tensor X ∈ RI1×I2×···×Id . Fur-
thermore, I = max{I1, I2, . . . , Id}, R = max{R1, R2, . . . , Rd−1} and d is the
amount of TT-cores [9]. 18

5-1 This table provides insight in the running time of various child functions of Algo-
rithm 5. Only the most computationally burdensome child functions are given. . 41

5-2 This table shows the TT-ranks of the truncated TT for different values of the
truncation parameter ε. 47

5-3 This table shows the relative error of the truncated TT in comparison to the original
TT. 47

5-4 This table shows the relative error of the truncated TT in comparison to the original
TT. For values of ε smaller than 10−6 the TT-ranks and error are identical as for
ε = 10−6, as is also seen in Figure 5-10. 49

Master of Science Thesis P. van Klaveren

viii List of Tables

P. van Klaveren Master of Science Thesis

Preface

This report is part of my Master of Science graduation thesis. This thesis continues the
work of S. de Rooij’s thesis [12] by expanding the research in a new direction. The code
used for this thesis can found on Gitlab: https://gitlab.tudelft.nl/msc-projects/
tn-square-root-kalman.

Furthmore, I want to express my gratitude to my supervisor dr. ir. Kim Batselier for his
guidance and assistance during the last year. I have learned a lot from his academic insight
and his approach towards challenges we faced. Secondly, I want to thank my parents, family,
and friends for their continual support during my academic career.

Delft, University of Technology P. van Klaveren
June 25, 2021

Master of Science Thesis P. van Klaveren

https://gitlab.tudelft.nl/msc-projects/tn-square-root-kalman
https://gitlab.tudelft.nl/msc-projects/tn-square-root-kalman

x Preface

P. van Klaveren Master of Science Thesis

Chapter 1

Introduction

Online matrix completion has quickly become a hot topic, boasting applications in different
industries and ranging over various fields of study. Online matrix completion techniques aim
to fill in the missing entries of a matrix in an online way, implying that new measurements
or data are immediately used to update the matrix. Examples of implementations are: the
recommendation algorithm of Amazon [24], the movie recommendation system of Netflix [21]
and video completion of a corrupted video [12].

The application of this thesis is in corrupted video completion. Specifically, the videos consid-
ered in this thesis are surveillance footage. Figure 1-1 is an example of such corrupted footage.
As can be seen below, the video becomes corrupted at a certain moment in time, where frames
of a Town Center’s security video are shown [1]. The surveillance footage preceding the cor-
rupted frame shown in Figure 1-1 is uncorrupted. The degree of corruption considered in this
thesis is approximately 95% of each frame’s pixels, and can be caused by a technical error or
an obstruction of the camera’s view. Moreover, direct access to the uncorrupted pixels and
stationary camera positioning is assumed. The goal is to make an algorithm that performs
online video completion on corrupted footage by recovering the corrupted pixels.

Figure 1-1: Example of corrupted frame in surveillance footage [12, 1].

Master of Science Thesis P. van Klaveren

2 Introduction

A recently developed technique for performing online video completion is via the Tensor-
Networked Kalman Filter (TNKF) [12]. The approach taken by TNKF aims to model any
video as a state-space model wherein the consecutive frames of the video are modeled as a
state vector of the state-space system. Moreover, based on this underlying state-space system
the recursive Kalman filter is utilized to estimate and predict the missing entries of the
state vector. Hence, the video is completed via matrix completion. Due to the large matrix
dimensions the operations of the Kalman filter cannot be executed on a regular computer.
Take for example a Full HD video, consisting of 1080 by 1920 pixels, which has a storage
complexity of approximately O(106). The covariance matrix has a complexity of O(1012),
requiring approximately 32 thousand GB of RAM. Hence, the operations are performed in a
Tensor Networks (TN). Via a TN the storage complexity of the matrices and time complexity
of the algorithm decreases, making it possible to execute the algorithm on a regular computer.

One of the assumptions of the Kalman filter is that the covariance matrix is (semi-)positive
definite. This is to ensure a converging state. However, due to the nature of the Kalman
filter itself it can lose this condition during the optimization. Hence, a major difficulty is that
the covariance matrix loses its positive definiteness property, resulting in diverging states. In
this thesis a solution for this problem is proposed: Tensor-Networked Square-Root Kalman
Filter (TNSRKF). This technique uses a square-root factorization of the covariance matrix
and updates this matrix instead of the covariance matrix itself.

The filter guarantees a numerically stable algorithm and converging state updates. Hence,
the covariance matrix is positive definite by definition. The square-root Kalman filter is also
implemented in TN and therefore is called Tensor-Networked Square-Root Kalman Filter
(TNSRKF). Thus, the TNSRKF is an algorithm made to perform online matrix completion
where the frame of the video is the matrix.

The research in this thesis addresses the following research question.

• How can TNSRKF be implemented to recover a corrupted video?

In addition, multiple other research questions are formulated, each deepening the research in
a different way:

• How can the square-root Kalman filter be implemented in Tensor-Train (TT)-format?

• How can the Modified Gram-Schmidt (MGS) orthogonalization procedure be implemented
in TT-format and how can orthogonality be preserved?

• Is it possible to represent an orthogonal matrix as a low-rank Tensor-Train matrix
(TTm)?

An understanding of the problem at hand and insight into the proposed solution can lead to
a deeper understanding of how the TNSRKF can be implemented. The hypothesis is that the
TNSRKF can be used to estimate and complete the sparse matrix. However, the implemen-
tation of the MGS in TT-format can become very time consuming due to orthogonalization
of column vectors.

This thesis is outlined as follows. First, online matrix completion or existing video completion
techniques will be discussed. They will be referred to as the state of the art video completion

P. van Klaveren Master of Science Thesis

1-1 Notation 3

Figure 1-2: This diagram visualizes the structure of the report.

techniques and are presented in Chapter 2, which focuses on introducing the use of the
Kalman filter in TN-format for online video completion. Chapter 3 begins by explaining
what a tensor is and dives deeper into the notation of and operations with TTs and TTms.
Chapter 4 begins with a introduction of a state-space representation, followed by a derivation
and definition of the Kalman filter, and ends with a general implementation of a Square-Root
Kalman Filter (SRKF). Chapter 5 combines insights from the previous two chapters. Its focal
point is the implementation of a SRKF in TN for online video completion. Finally, Chapter 6
provides a reflection on the work and answers the research questions. In addition, it provides
some thoughts concerning the improvement of the TNSRKF and future work. The structure
can be summarized by means of Figure 1-2.

1-1 Notation

Throughout this thesis the following notation is used. Table 1-1 displays example notations
using the generic placeholder A.

Notation Definition
a scalar
a vector
a(i) = ai ith entry of the vector a
A Matrix
A(i, j) = ai,j entry (i, j) of the matrix A
A Tensor
A(i1, i2, . . . , id) = ai1,i2,...,id entry (i1, i2, . . . , id) of the tensor A
A(i) ith TT-core of a TT(m)
A−1 matrix inverse
AT matrix transpose
‖·‖F Frobenius norm
⊗ Kronecker product

Table 1-1: Notation used throughout this thesis.

Master of Science Thesis P. van Klaveren

4 Introduction

P. van Klaveren Master of Science Thesis

Chapter 2

State of the Art for Online Video
Completion

This chapter introduces the notion of matrix completion in a general form in Section 2-1
by presenting the algorithm in [38] named Adaptive Online Low-Rank Matrix Completion.
This section is not closely related to the problem at hand but sketches a general idea of
matrix completion. The next section continues by introducing the Tensor-Networked Kalman
Filter (TNKF) algorithm, which is specifically meant for streaming video completion but can
be generalized to other applications. This chapter aims to identify the TNKF on which this
thesis is built.

2-1 Adaptive Online Low-Rank Matrix Completion

Unless stated otherwise, this section is based on [38] .
The aim of adaptive low-rank matrix completion is to reconstruct an incomplete and noise
corrupted sequence of measurement matrices online. The general idea of this method is based
on stochastic gradient descent of a Least-Mean Squares (LMS) cost function. In their paper,
Tripathi et al. describe the problem as follows. A low rank measurement matrix M ∈ RI×J is
obtained and observed over a subset Ω. A matrix J with its entries equal to 1 if (i, j) ∈ Ω is
also obtained. The state matrix X can then be imputed using the rank minimization problem
defined in (2-1)

min
X

rank(X)

s. t. M(i, j) = X(i, j) (i, j) ∈ Ω.
(2-1)

However, as stated in the paper, this problem is non-convex and NP-hard to solve. Thus,
the rank function is replaced by the nuclear norm function of X (2-2), which still gives
exact results [35]. Since the application of the methods are in noise corrupted matrices, the

Master of Science Thesis P. van Klaveren

6 State of the Art for Online Video Completion

constraint of the minimization is ‖J ∗ (M−X)‖2F ≤ ε

min
X
‖X‖∗

s. t. ‖J(i, j) ∗ (M(i, j)−X(i, j))‖2F ≤ ε.
(2-2)

The Least-Mean Squares algorithm makes use of stochastic gradient descent to compute the
next state of the system according to a defined loss function `k(X̂k). The next state X̂k+1
can be estimated via minimization of a loss function and regularizer term as seen in (2-3),
where µ is the learning rate. Further steps are taking the first order Taylor approximation
of (2-3), differentiating with respect to X and setting this to zero to find the optimum. This
yields the update equation for X̂k+1 as presented in (2-4)

X̂k+1 = argmin
X

µ
k∑

κ=1
`k(X) + 1

2 ‖X‖
2
F , (2-3)

X̂k+1 = X̂k − µ∇`k(X̂k). (2-4)

2-2 Tensor-Networked Kalman Filter

Online video completion can also done via the TNKF as presented by [22] and further devel-
oped in [12]. This method focuses on using a recursive Kalman filter to estimate corrupted
pixels in a frame.

2-2-1 Discrete State-Space Model

For the TNKF to work the video has to be transformed into a discrete-time state-space system,
where each frame can be seen as the current state of the state-space system. To model a
frame into a state vector, each frame is transformed into a 8-bit integer valued matrix and
transformed into a vector, x[k]. Figure 2-1 illustrates this by considering a randomly chosen
frame of the Town Center video. The state vector is created by reshaping the matrix into
a vector by stacking its columns. Furthermore, the assumption is made that the difference
between two successive frames is minimal. Hence, the state transition matrix is assumed to
be equivalent to the identity matrix and the difference between each frame is caused by the
dynamic driving noise or process noise. Moreover, uncorrupted access to the measurements
is assumed. Thus, there is no measurement noise present in the state-space system. This
results in the following state-space system:

x[k + 1] = x[k] + w[k]
y[k] = Cx[k].

(2-5)

The state vector can be remodeled by subtracting the background from the state. This
background can be estimated prior to the video corruption and is assumed to equal the mean
of the prior frames. One benefit of subtracting the background is that the vector-rank is
lower, which will decrease computational load when working with Tensor-Train (TT) because
a lower rank approximation can be used.

P. van Klaveren Master of Science Thesis

2-2 Tensor-Networked Kalman Filter 7

Figure 2-1: This figure shows the transition from a frame of a video to an 8-bit integer valued
matrix [1, 12].

2-2-2 Recursive Kalman Filter

The recursive Kalman filter that is applied for the video completion can be subdivided into
two recursive updates, the time propagation update and the measurement update as presented
in (2-6) and (2-7),

x̂[k]− = x̂[k − 1]+

P[k]− = P[k − 1]+ + Q[k],
(2-6)

v[k] = y[k]−Cx̂[k]
S[k] = CP[k]−CT

K[k] = P[k]−CS[k]−1

x̂[k]+ = x̂[k]− + K[k]v[k]
P[k]+ = P[k]− −K[k]S[k]K[k]T .

(2-7)

The time update gives a one-step ahead prediction state estimate and the measurement up-
date gives a filtered state estimate [41]. Via these two equations the state x can be estimated
and completed. Besides its format, the TNKF is in essence the same as the Kalman filter,
since the matrices that are permuted into TT or Tensor-Train matrix (TTm), matrix-vector,
and matrix-matrix products are done in TT-format. The Tensor Networks (TN)-format is
introduced to compute the recursive Kalman steps in an efficient way and are used for all
matrices such as the state vector, state-space matrices and covariance matrices.
As will be discussed in Chapter 3, matrix-vector and matrix-matrix product can easily be
performed in TT-format. However, matrix inversions are more difficult. Hence, the imple-
mentation of the TNKF measurement update steps are performed via the so called Partitioned
Update Kalman Filter (PUKF) to avoid matrix inversions:

For j = 1 : J
vj [k] = yj [k]− x̂j−1(cj)[k]
sj [k] = P[k−](cj , cj)
kj [k] = P[k−](:, cj)sj [k]−1

x̂j [k+] = x̂j−1[k−] + kj [k]vj [k]
Pj [k+] = Pj−1[k−]− kj [k]sj [k]kj [k]T .

(2-8)

Master of Science Thesis P. van Klaveren

8 State of the Art for Online Video Completion

2-2-3 Initialization of the Kalman Filter

The Kalman filter needs initial information about the state, state covariance matrix and the
process noise covariance matrix. The initial state is chosen as the last uncorrupted frame
and is denoted by x[0]. According to the assumption of the Kalman filter all the states are
Gaussian distributions and can be denoted by (2-9)

x[0] ' N (x̄[0],P[0]), (2-9)

where x̄[0] is the mean x[0] and P[0] is the initial state covariance matrix equaling P[0] =
E
[
(x[0]− x̄[0])(x[0]− x̄[0])T

]
. Both these variables can be determined and updated in the

background by using the final uncorrupted frame. This can lead to a very small covariance
matrix. The state covariance matrix cannot equal zero since it must be symmetric positive
definite. Therefore, another way of initializing the state covariance matrix is to define it by
P[0] = σP I, where σP is equal to the variance of each pixels. This last method also ensures
positive definiteness of the initial state covariance matrix.
The process noise covariance matrix is a prominent factor in the Kalman filter. Because
the state-transition matrix is the identity matrix, all new information for the next state is
captured in the process noise covariance matrix. Therefore, an accurate estimation of this
matrix is important. The process noise covariance matrix can be estimated by (2-10)

Q[k] = E
[
w[k]w[k]T

]
= E

[
(x[k + 1]− x[k])(x[k + 1]− x[k])T

]
. (2-10)

2-3 Computational Load Comparison

In this section a comparison will be carried out. This comparison will be done over a specific
adaptive matrix completion technique called Adaptive Singular Value Thresholding (ASVT)
and TNKF. The main focus of this section is to identify the computational load of each
algorithms and thereby identify the most computationally expensive calculation.
To begin, the ASVT algorithm is analyzed. The assumption is made that only a fraction α
of the pixels are observed. This directly implies that 1 − α of J’s entries are equal to zero,
which will reduce the amount of computations. The computation of Yk+1 has a complexity of
O(2αIJ) due to the Hadamard matrix multiplication and the matrix that is multiplied by a
constant. The calculation of X̂k+1 consists of a SVD of Yk+1 and subtractions. The SVD can
be generated via various algorithms. Here, the complexity is obtained from the truncated-
SVD. Li et al. determined that the complexity of the truncated-SVD equals O(2IJ2 + J3 +
J + IJ) [23]. Hence, the total complexity of the ASVT algorithm is O(2IJ2 + J3).
The complexity of the Tensor-Networked Kalman Filter algorithm can be computed once the
amount of TT-cores, the partitioning of the row and column of the matrix and the TT-ranks
are known. Note that I in TNKF equals I multiplied with J and is denoted by (IJ), where
I and J are the matrix dimensions of the frame. From this point onward, the remaining part
of this chapter will use (IJ) instead of I to avoid confusion. The TT of the state vector
has d cores, the partition of the state vector is [(IJ)1, (IJ)2, . . . , (IJ)d], and (IJ)max equals
max{(IJ)1, (IJ)2, . . . , (IJ)d}. Furthermore, the TT-ranks are [R0, R1, . . . , Rd] and Rmax

x is
the maximum TT-rank. The TTm of the covariance matrix can be denoted in the same
way. The only difference is that the row and column indices of the matrix are defined by

P. van Klaveren Master of Science Thesis

2-3 Computational Load Comparison 9

Algorithm Complexity
ASVT O(2IJ2 + J3)
TNKF O(αIJd(IJ)2

maxR
4)

Table 2-1: Complexity for one update of the ASVT and TNKF algorithm. I is the row dimension
and J is the column dimension of the frame of the video. Furthermore, R is the maximum rank
of the TT decomposition in TNKF, d equals the amount of TT-cores and α is the fraction of
observed pixels. Furthermore, (IJ)max equals max{(IJ)1, (IJ)2, . . . , (IJ)d}.

[(IJ)1, (IJ)2, . . . , (IJ)d]. For simplicity, it is assumed that all TTs have the same amount of
cores, partitions and ranks, also all the TTms have the same amount of cores, partitions and
ranks. The most expensive calculation is the calculation of Pj because an outer product of
two vectors is required. These vectors are composed of a row of the covariance matrix. The
other computations require only additions in TT-format or scalar operations. Hence, the most
complex computation has a complexity equal to O(d(IJ)2

maxR
4) [12]. Since this operation is

called L times, the total complexity of this function equals O(Ld(IJ)2
maxR

4), where L equals
αIJ . Thus, the complexity of TNKF equals O(αIJd(IJ)2

maxR
4).

An analysis of the complexities shows that the complexity of TNKF can only match the
complexity of ASVT for R < 1. Since this is not a realistic TT-rank value, TNKF will most
likely be more complex than ASVT considering a full HD resolution.

Master of Science Thesis P. van Klaveren

10 State of the Art for Online Video Completion

P. van Klaveren Master of Science Thesis

Chapter 3

Tensor Networks

As stated in the introduction of this thesis, this chapter covers the fundamental methods
of tensor networks, which are important to be able to understand and improve the existing
technique: Tensor-Networked Kalman Filter (TNKF). Therefore, the focus of this chapter
is on Tensor Networks (TN). TN are efficient in data storage and are intuitive in their
application for matrix-matrix and matrix-vector computations. First, the basic definition
of a tensor is described and graphically explained, after which basic tensor operations are
covered. The chapter continues with tensor decompositions in which mainly the Tensor-Train
(TT) decomposition will be discussed. Furthermore, TT and Tensor-Train matrix (TTm)
operations and functions are explained.

3-1 Tensor

Unless stated otherwise, this section is based on [20].
A tensor can be described as a type of array, where an array has d indices, a vector has 1
index, a matrix has 2 indices and a tensor can have d ≥ 3 indices. Hence, a tensor is also
known as a d-way or dth order tensor. Tensors can be visualized by means of tensor diagrams,
as Penrose presented in [34]. Figure 3-1 shows the tensor diagram of a scalar, a vector, a
matrix and a 3-way tensor in that specific order. It makes use of closed loops nodes and
branches. Each branch stands for a single index of the tensor. This definition will be used
throughout this whole chapter to demonstrate the various algorithms that will be presented.
Mode-n fibers are defined by fixing all but one index and are equivalent to a single row or
column of a matrix. Here, n stands for the nth index that is not fixed. As portrayed for a
3-way tensor in Figure 3-2, the subfigures respectively show the mode-1 fibers, mode-2 fibers
and the mode-3 fibers. Hence, if we consider a 3-way tensor X , the mode-1 fibers are denoted
by the vector x:jk.
Tensor slices are generated when two indices are free and all others are fixed. Again, an
example is shown for a 3-way tensor in Figure 3-3. From left to right, the subfigures portray
the horizontals slices, the lateral slices and the frontal slices. The horizontal slices of tensor

Master of Science Thesis P. van Klaveren

12 Tensor Networks

Figure 3-1: This figure shows the tensor diagrams of a scalar, a vector, a matrix and a 3-way
tensor respectively.

Figure 3-2: This figure shows the mode-n fibers of a 3-way tensor [20]. From left to right, the
mode-1 or column fibers, mode-2 or row fibers and mode-3 or tube fibers can be seen.

Figure 3-3: This figure shows the slices of a 3-way tensor [20]. From left to right, the horizontal
slices, the lateral slices and the frontal slices can be seen.

X are matrices given by Xi::.
The norm of a tensor X is equivalent to the square-root of the sum of the elements squared
(3-1). This is equivalent to the Frobenius norm for a matrix

‖X‖ =
√∑

i1

∑
i2

. . .
∑
id

x2
i1,i2,...,id

. (3-1)

3-2 Tensor Operations

This section is based on [20] unless stated otherwise.
This section covers the basic tensor operations, such as the inner product, matricization of a

P. van Klaveren Master of Science Thesis

3-2 Tensor Operations 13

tensor and the n-mode product.

3-2-1 Multi-index Ordering

The indices in this thesis are ordered according to the little-endian ordering, in order to be
compatible with Matlab and de Rooij’s thesis [12]. The ordering is given by (3-2),

i1i2 . . . id = i1 + (i2 − 1)I1 + (i3 − 1)I1I2 + . . .+ (id − 1)I1I2 · · · Id−1. (3-2)

3-2-2 Inner Product

The inner product of two tensors X ∈ RI1×I2×···×Id and Y ∈ RJ1×J2×···×Jd is the sum of the
multiplication of each of the elements and only possible if Ii = Ji ∀i (3-3)

〈X ,Y〉 =
∑
i1

∑
i2

· · ·
∑
id

xi1,i2,...,idyi1,i2,...,id . (3-3)

3-2-3 Matricization

A given tensor X ∈ RI1×I2×···×Id can be unfolded into a matrix X ∈ RIn×I1···In−1In+1···Id .
Hence, the n-mode matricization of tensor X is such that the nth index are the rows of the
matrix Xn and all other indices form one new index. The indices (i1, i2, . . . , id) of tensor X
transfer to a indices in the matrix Xn denoted by (in, j), where j is defined as in (3-4)

j = 1 +
d∑

k=1
(ik − 1)

k−1∏
m=1

Im. (3-4)

In Figure 3-4 an example is given regarding the matricization of a 4-way tensor. In this figure
it can be seen that the second index is isolated as a separate index, while the other indices
are merged into j = [i1i3i4].

Figure 3-4: This figure illustrates the matricization process for a 4-way tensor.

3-2-4 n-mode Product

In this section the n-mode product is discussed. The n-mode product is the multiplication of
a tensor by a matrix over a certain index n. To perform this tensor multiplication one first

Master of Science Thesis P. van Klaveren

14 Tensor Networks

needs to convert the tensor into matrices. Hence, the n-mode product uses the matricization
procedure discussed in Section 3-2-3. The n-mode product is most clearly and very simply
explained by use of tensor diagrams, such as the example of a 4-way tensor multiplied by a
matrix displayed in Figure 3-5. As one can see, the indices i4 and j1 are connected. Hence,
the tensor-matrix multiplication is performed over the fourth index of the tensor. Written in
tensor format, the n-mode product is defined by Y = X ×n U . In matrix format the formula
becomes: Yn = U ×Xn.

Figure 3-5: This figure shows the n-mode product in tensor diagram format.

3-2-5 Kronecker, Khatri-Rao and Hadamard Product

Unless stated otherwise, this section is based on [9].
The theory is presented for completeness but is assumed to be known. In this section some
matrix/tensor products will be shortly discussed since they will be applied during the deriva-
tions of the tensor networks.
The tensor Kronecker product is denoted by ⊗ and computes the Kronecker product of two
tensors. The general idea is that each element of tensor X is multiplied by tensor Y. Consider
X ∈ RI1×I2×···×Id and Y ∈ RJ1×J2×···×Jd . Computing the Kronecker product of these tensors
results in Z = X ⊗Y ∈ RI1J1×I2J2×···×IdJd . The Khatri-Rao product [19] is a matrix product
and is denoted by �. The general idea of the Khatri-Rao matrix product is to define a matrix
whose columns equal the Kronecker product of the earlier two matrices’ columns. Consider
X ∈ RI×K and Y ∈ RJ×K , then the Katri-Rao product is defined as in (3-5)

X�Y =
[
x1 ⊗ y1 x2 ⊗ y2 . . . xd ⊗ yd

]
, (3-5)

where Z ∈ RIJ×K . The Hadamard product, also known as elementwise multiplication, is
denoted by ∗. The product computes the product of single elements of two tensors. Consider
X ∈ RI1×I2×···×Id and Y ∈ RI1×I2×···×Id . The result of the Hadamard product, denoted by
Z, has the same dimensions as X and Y and its elements can be defined as, zi1,i2,...,id =
xi1,i2,...,idyi1,i2,...,id .

3-2-6 Rank-1 Tensors

As stated by Kolda [20], tensors can be composed via outer product of vectors. As a result,
a d-way tensor can be formed out of the outer product of d vectors, X = x1 ◦ x2 ◦ · · · ◦ xd.
Furthermore, the idea is proposed that every tensor that can be exactly represented by the
outer product of d vectors is a dth-order rank-1 tensor.

P. van Klaveren Master of Science Thesis

3-3 Tensor Decompositions 15

3-3 Tensor Decompositions

This section will address tensor decompositions, mainly the TT and TTm decompositions.
The theory presented in this section is based on [29] and [36]. The section will start off
by obtaining a TT out of a tensor using the Tensor-Train Singular Value Decomposition
(TT-SVD) algorithm. Moreover, the TTm and some other decompositions will be discussed.

3-3-1 Tensor-Train

As mentioned before, the Singular Value Decomposition (SVD) is used to obtain the cores of
the TT. In short, the SVD is the decomposition of a matrix as seen in (3-6)

X = UΣVT, (3-6)

where X ∈ RI×J , U ∈ RI×I and V ∈ RJ×J are orthogonal matrices containing the left- and
right singular vectors respectively and Σ ∈ RI×J is a diagonal matrix containing the singular
values of the matrix X [37, 41].
Before describing the TT-SVD in detail, the definition of a TT will be discussed. Consider
a d-dimensional tensor X ∈ RI1×I2×···×Id , that is written in TT-format. The tensor can be
decomposed into d cores, where each core is 3-way tensor. Hence, each core represents a single
index of the original tensor as seen in (3-7)

X (i1, i2, . . . , id) = X (1)(i1)X (2)(i2) · · · X (d)(id). (3-7)

Each core has dimension X (k) ∈ RRk−1×Ik×Rk . Thus, when the index ik is known and after
permutation the core is a matrix with dimension RRk−1×Rk . The TT-ranks are indicated by
Rk, and R0 = Rd = 1. Because a specific element of a tensor is computed. In Figure 3-6 a
graphical representation of a TT decomposition of a random 4-way tensor is given. Note that
a 4-way tensor will result in 4 TT-cores. Thus, the information of the original d-way tensor
is stored in d 3-way tensors and each element of the original tensor can be obtained by means
of matrix-matrix multiplications.

Figure 3-6: This figure shows the TT decomposition of any given 4-way tensor in a tensor
diagram.

TT-SVD is an algorithm that computes these TT-cores via the SVD. The procedure of the
algorithm will be given in tensor diagrams and will be further explained in words. Let X be
the original tensor and Y be the TT approximation of X . The goal of the algorithm is to
approximate the tensor X by d TT-cores named Y. The approximation Y must satisfy (3-8)

‖X − Y‖F ≤ ε ‖X‖F . (3-8)

Master of Science Thesis P. van Klaveren

16 Tensor Networks

The full algorithm is presented in Figure 3-7. Initially, a new variable C = X is created and
used in the for-loop. In the first iteration C is reshaped into a matrix C. Throughout the
rest of the algorithm C is a matrix. Each iteration reshapes C into a matrix with dimensions
RRk−1Ik×Ik+2···Id . Then, the SVD of this matrix is taken. The matrices generated by the
SVD can be truncated. Truncation is an important procedure since it is a way of keeping
the TT-ranks small. The TT-rounding algorithm will be discussed in Section 3-4-4. How-
ever, truncation also means that information is thrown away. Therefore, consider (3-8), since
throwing away information results in a worse approximation of X . A solution to this is to
limit the Frobenius norm of E, ‖E‖F , by δ, which is a function of ε, see (3-9). Algorithm 1
gives the pseudo-code of the TT-SVD procedure.

‖E‖F ≤ δ, δ = ε√
d− 1

‖X‖F . (3-9)

Algorithm 1: TT-SVD [28, 29]
Data: d-dimensional tensor X ∈ RI1×I2×···×Id , truncation parameter: ε
Result: A TT approximation Y = 〈〈Y(1),Y(2), . . . ,Y(d)〉〉 of X . Y must have an

approximation error smaller than ε as given by:

‖X − Y‖F ≤ ε ‖X‖F

Truncation parameter: δ = ε√
d−1 ‖X‖F

Temporary tensor: C = X
for k = 1 to d - 1 do

C← reshape(C, [rk−1ik,
numel(C)
rk−1nk

])
Uδ(rk−1ik, rk)Σδ(rk, rk)Vδ(αk, rk)T + E← SVDtrun(C), ‖E‖F ≤ δ
Y(k) ← reshape(Uδ, [rk−1, ik, rk])
C← ΣδVT

δ

end
Y(d) ← C
Return Y = 〈〈Y(1),Y(2), ...,Y(d)〉〉.

3-3-2 Tensor-Train Matrix

The TTm decomposition can be obtained from a TT, as stated in [28]. Consider a very large
matrix X ∈ RI1···Id×J1···Jd . X can be reshaped and permuted into a tensor X ∈ RI1J1×···×IdJd .
Now the TT-SVD algorithm can be used to obtain a TT approximation of X. When doing
this, the TT-cores are X (k) ∈ RRk−1×IkJk×Rk . Then, the cores can be reshaped into X (k) ∈
RRk−1×Ik×Jk×Rk . Hence, the TTm is obtained.

3-3-3 Other Decompositions

This section is based on [9] unless stated otherwise.
Besides the TT(m) decomposition there are many other tensor decompositions. In this section,
the general idea of some of these decompositions will be covered and a table presenting storage

P. van Klaveren Master of Science Thesis

3-3 Tensor Decompositions 17

Figure 3-7: This figure shows the TT-SVD algorithm in tensor diagram format.

complexities is presented.
Two-way Component Analysis (CA) aims to decompose a matrix X ∈ RI1×I2 into two matrices
A ∈ RI1×J and B ∈ RI2×J . Constraints or a priori knowledge about the process can be
imposed on the matrices A and B. Two-way CA can be seen as a very general form of SVD,
PCA, ICA and other forms of CA. The general formula for Two-way Component Analysis is
given in (3-10) [8, 11]

X = ABT + E, (3-10)

where E ∈ RI1×I2 is the residual matrix or noise. The Canonical Polyadic Decomposition
(CPD), which is also known as PARAFRAC or CANDECOMP decomposes a tensor X ∈
RI1×I2×···×Id into a linear combination of multiple d vector outer products multiplied by a
constant λr, where the vectors are defined as xnr ∈ RIn×1. Considering Section 3-2-6, this

Master of Science Thesis P. van Klaveren

18 Tensor Networks

Decomposition Storage Complexity
Tensor O(Id)
TT O(dIR2)
TTm O(dI2R2)
CPD O(dIR)
TD O(dIR+RN)

Table 3-1: Storage complexity for tensor decompositions for tensor X ∈ RI1×I2×···×Id . Further-
more, I = max{I1, I2, . . . , Id}, R = max{R1, R2, . . . , Rd−1} and d is the amount of TT-cores
[9].

means that tensor X can be decomposed into R rank-1 tensors, see (3-11) [4, 16, 17]

X =
R∑
r=1

λrx1
r ◦ x2

r ◦ . . . ◦ xNr . (3-11)

The Tucker Decomposition (TD) method decomposes the tensor X ∈ RI1×I2×···×Id into a
core tensor G ∈ RR1×R2×···×Rd and the mode-n unfoldings of X named Xn ∈ RIn×Rn . The
tensor can thus be expressed as in (3-12) [39, 42]. TD can be seen as a generalization of the
Canonical Polyadic Decomposition (CPD), since the core tensor G is not diagonal as in CPD.

X = G ×1 X1 ×2 X2 · · · ×d Xd (3-12)

Besides the Two-way Component Analysis (CA), Canonical Polyadic Decomposition (CPD),
and Tucker Decomposition (TD) there are other versions of these decompositions. More
information is given by [9]. Furthermore, Cichocki compares the storage complexities of
various tensor decompositions, which can be seen in Table 3-1. This table describes the
storage complexities of a d-way tensor and four decompositions: TT, TTm, CPD and TD.
This thesis will continue using the TT decomposition because it is simpler to implement
low-rank matrix approximations [9], which allows for simple and intuitive implementation of
tensor operations [10, 29] and efficient data storage.

3-4 TT(m) Operations

Unless stated otherwise, this section is based on [36, 29, 28].
This section will cover the most important operations in TT(m)-format, such as addition, mul-
tiplication, contraction and matrix and vector products. Furthermore, the section concludes
with the TT-rounding function.

3-4-1 Basic TT Operations

TT addition

The addition of two d-dimensional TTs can be performed by addition of the single cores of
each of the TTs. Consider two TTs, A and B, as defined in (3-13)

A = 〈〈A(1)(i1),A(2)(i2), . . . ,A(d)(id)〉〉, B = 〈〈B(1)(i1),B(2)(i2), . . . ,B(d)(id)〉〉. (3-13)

P. van Klaveren Master of Science Thesis

3-4 TT(m) Operations 19

The addition of A and B results in another TT named C. Moreover, the TT-cores of C = A+B
are given in (3-14),

C(1)(i1) =
[
A(1)(i1) B(1)(i1)

]
, C(k)(ik) =

[
A(k)(ik) 0

0 B(k)(ik)

]
, C(d)(id) =

[
A(d)(id)
B(d)(id)

]
.

(3-14)
The procedure can be checked in a very simple manner. When an addition of the same TT is
done, the norm of the resulting TT must be equal to two times the norm of the original TT.
In addition, the algorithm can be found in Appendix A-1-1.

Concatenation of two TTms

Concatenating two TT(m) is an operation that consists of multiple steps. Consider a TTm
A and a TTm B that are being concatenated. It holds that both TTms must be of equal size
and the partitioning of the row and column index must be identical. Both TTms must be
extended with zero columns which can be realized by using the kronecker product of a vector
with the TTms,

kron([1 0], A) =
[
A 0

]
,

kron([0 1], B) =
[
0 B

]
.

(3-15)

The concatenation of the TTms can be concluded by addition of the extended TTms explained
in Section 3-4-1.

TT multiplication with a constant

Multiplying a TT(m) with a constant is as trivial as multiplying a vector or a matrix with a
constant. The TT(m) is scaled by the multiplication of a constant with one of its TT-cores.

Transpose

The transpose of a TTm is done by permuting the TTm-cores. Consider the following
TT-cores of a random TTm: G(k) ∈ RRk−1×Ik×Jk×Rk . The transpose of the TTm is ob-
tained by permuting the second and third index of each TT-core. The cores become G(k) ∈
RRk−1×Jk×Ik×Rk .

TT matrix inversion

As stated by Osedelets et al. in [30], an inverse can be approximated via a linear system
since this is less computationally expensive. Different approaches have been found when the
matrix has a typical structure, such as a Toeplitz matrix [32], sparse approximates [7], or
low kronecker-rank matrices [27, 31]. For all these specific matrix inversions Newtons matrix
inversion formula was used, where X is the inverse of A.

Xk+1 = 2Xk −XkAXk (3-16)

In their paper it is concluded that the various ways of finding the inverse of a TTm are
preconditioners. Hence, more research must be done on the topic of TTm inversion.

Master of Science Thesis P. van Klaveren

20 Tensor Networks

Figure 3-8: This figure shows the optimal order of contraction according to [36].

3-4-2 TT Contractions

Contraction is a very general procedure to combine connected TTs. This can be done in
various manners, however [36] has presented an optimal way of contraction. In Figure 3-
8 the order is presented, where the numbers at the connections indicate the right order of
contraction.

Dot product

An application of TT contraction is the dot product. The dot product computes the inner or
scalar product of two TTs, which can be done by contracting the connected TTs. The time
complexity of the dot product equals O((d− 2)(I(RS)2) where the each of the d cores of the
two TTs are defined by: A(k) ∈ RRk−1×Ik×Rk and B(k) ∈ RSk−1×Ik×Sk and R = max(Rk),
S = max(Sk) and I = max(Ik) [10, 12]. The algorithm of the inner product can be found in
Appendix A-1-4.

3-4-3 Matrix and Vector Product

One of the most important functions in algebra is the matrix-vector and matrix-matrix prod-
uct, since these operations are used in many applications. Formally, the matrix-vector product
is computed as, b = Ax. When matrix A and vector x are defined in TT-format, it is possi-
ble to compute the product in TT-format and the structure of the TT(m)s is used. Suppose
matrix A is represented by a TTm A with cores A(k) and vector x is be represented by a TT
X with cores X (k). The product can be computed as a contraction per core, where the new
cores of the TT of b are defined as in (3-17). The time complexity of the matrix vector prod-
uct is O(dIJ(RS)2) where the TTm and the TT both have d cores, and each of the cores are
defined by: A(k) ∈ RRk−1×Ik×Jk×Rk and X (k) ∈ RSk−1×Jk×Sk . Furthermore, R = max(Rk),
S = max(Sk), I = max(Ik) and J = max(Jk) [10, 12].

B(k)(ik) =
∑
jk

A(k)(ik, jk)⊗X (k)(jk). (3-17)

Hence, the product is shown in Figure 3-9. The TT-ranks of the matrix are denoted by Rk
and the TT-ranks of the vector are denoted by Sk. Furthermore, the matrix-vector product
displayed in this figure is Ax, with the row indices of the matrix A denoted by Ik and the
column indices denoted by Jk. Obviously, the column partitions of the matrix and the row

P. van Klaveren Master of Science Thesis

3-4 TT(m) Operations 21

Figure 3-9: This figure illustrates the matrix-vector product in TT-format in tensor diagrams.

partitions of the vector must be identical. Therefore, both are denoted by Jk. Moreover, the
algorithm of the matrix-vector is given in Appendix A-1-3.
The matrix-matrix product follows the same procedure as the matrix-vector product. Con-
sider the matrix-matrix product, C = AB. Both the matrices A and B can be decom-
posed into TTms. Hence, the product of the TTm of A and B will yield the TTm of C,
which can be expressed as in (3-18). The time complexity of the matrix vector product
is O(dIJL(RS)2) where the TTms both have d cores, and each of the cores are defined
by: A(k) ∈ RRk−1×Ik×Jk×Rk and X (k) ∈ RSk−1×Jk×Lk×Sk . Furthermore, R = max(Rk),
S = max(Sk), I = max(Ik), J = max(Jk) and L = max(Lk) [10, 12].

C(k)(ik, lk) =
∑
jk

A(k)(ik, jk)⊗ B(k)(jk, lk). (3-18)

Consider the Algorithm 2 for matrix-matrix product in TT-format. It should be noticed

Algorithm 2: MatMatTT: Matrix-matrix product [29]
Data: A = 〈〈A(1),A(2), . . . ,A(d)〉〉 with A(k) ∈ RRk−1,Ik,Jk,Rk ,

B = 〈〈B(1),B(2), . . . ,B(d)〉〉 with B(k) ∈ RSk−1,Jk,Lk,Sk .
Result: C = 〈〈C(1), C(2), . . . , C(d)〉〉 with C(k) ∈ RRk−1Sk−1,Ik,Lk,RkSk , as the product of

A and B.
for k = 1 to d do

A(k)(rk−1ikrk, jk)← A(k)(rk−1, ik, jk, rk)
B(k)(jk, sk−1lksk)← B(k)(sk−1, jk, lk, sk)
C(k)(rk−1ikrk, sk−1lksk)← A(k)(rk−1ikrk, jk)B(k)(jk, sk−1lksk)
C(k)(rk−1sk−1, ik, lk, rksk)← C(k)(rk−1ikrk, sk−1lksk)

end
Return C = 〈〈C(1), C(2), ..., C(d)〉〉.

Master of Science Thesis P. van Klaveren

22 Tensor Networks

that the TT-ranks of the resulting matrix-vector and matrix-matrix product are equal to the
product of the TT-ranks of the matrix and the vector. Hence, these ranks will grow for each
product, which can cause computational problems. Therefore, the ranks have to be truncated
to decrease the computational load. This can be done by using the TT-rounding algorithm
which will be discussed in Section 3-4-4.

3-4-4 TT-rounding

As stated before the TT-rounding algorithm can be used to perform rounding. This procedure
starts with a random existing TT with cores G(k). Identical to the TT-SVD algorithm, the
TT-rounding algorithm makes use of the SVD. However, when considering a random TT(m),
one can not assume the norm is in one core. Hence, it is first required to bring the norm of
the tensor into one single core. This is done via QR-factorization [37] of the core from left
to right or from right to left meaning that the norm of the tensor is either in the leftmost
or in the rightmost core. From this point onward, the truncated-SVD procedure can be used
to truncate the TT-cores. This algorithm is presented in Algorithm 3. Performing the QR-

Algorithm 3: TT-rounding [29]
Data: X = 〈〈X (1),X (2), . . . ,X (d)〉〉 with X (k) ∈ RRk−1,Ik,Rk , truncation parameter: ε
Result: Y = 〈〈Y(1),Y(2), . . . ,Y(d)〉〉 with Y(k) ∈ RSk−1,Ik,Sk , where Y is a TT

approximation of X with δ-truncated cores. Y must have an approximation
error smaller than ε as given by:

‖X − Y‖F ≤ ε ‖X‖F

Truncation parameter: δ = ε√
d−1 ‖X‖F

for k = d to 2 step -1 do
[X(k)(βk−1, ikβk),R(rk−1, βk−1)]← QR(X(k)(rk−1, ikβk))
X (k)(βk−1, ik, βk)← reshape(X(k), [Bk−1, Ik, Bk])
X (k−1) ← X (k−1) ×3 R

end
for k = 1 to d - 1 do

Y(k) ← reshape(X (k), [Sk−1Ik, Bk])
Uδ(sk−1ik, sk)Σδ(sk, sk)Vδ(βk, sk)T + E← SVDtrun(Y(k)), ‖E‖F ≤ δ
Y(k) ← reshape(Uδ, [Sk−1, Ik, Sk])
Y(k+1) ← Y(k+1) ×1 ΣδVT

δ

end
Return Y = 〈〈Y(1),Y(2), ...,Y(d)〉〉.

factorization from right to left, as is done in the Algorithm 3, is a procedure that is used to
bring the norm into one TT-core. This specific procedure is highlighted in tensor diagram
format for one random TT-core G(k) in Figure 3-10. The TT-core G(k) is reshaped into a
matrix G(k). Furthermore, a QR-factorization of the matrix G(k) is done, resulting in an
orthogonal matrix Q and a triangular matrix R. Note that the norm of the original TT-core
is in R. Hence, the orthogonalized TT-core G(k) is, after reshaping, equal to Q and the next
TT-core Gk−1 is equal to G(k−1)×3 R. Thus, the next TT-core contains its own norm and the

P. van Klaveren Master of Science Thesis

3-4 TT(m) Operations 23

norm of the previous TT-core. When this procedure is initialized at k = d, the kth TT-core
will contain the norms of all TT-cores from k = d to k = k. In addition, the computational
complexity of the TT-rounding function equals O(dIR3), where d equals the amount of cores,
I = max{I1, I2, . . . , IN} and R is the maximum TT-rank [10].

Figure 3-10: This figure illustrates the QR-orthogonalization part of the TT-algorithm.

Master of Science Thesis P. van Klaveren

24 Tensor Networks

P. van Klaveren Master of Science Thesis

Chapter 4

Square-Root Kalman Filter

This chapter is a continuation and generalization of Chapter 2, such that it takes a step
back from the Tensor-Networked Kalman Filter (TNKF) to the conventional Kalman filter.
Section 4-1 introduces a general state-space system that is used by Section 4-2 to derive the
Kalman filter. Next, the proposed solution is introduced: a square-root Kalman filter.
A famous moment in history was defined by the space race of the 1960s, in which both the
United States and the Soviet Union competed. The space race created a great need for
research and development. One of those needs was the real-time positioning of spaceships
when only discrete time information about the location of the ship was known. The Kalman
filter proposed a solution to this problem. First introduced in 1960 by Rudolf Kalman [18], the
Kalman filter proposed a new solution to linear filtering and prediction for discrete modeled
systems with measurement and process noise. It is now a widely applicable theory. Among
other uses, the Kalman filter can be applied to analytical chemistry [3], to economics, for
example the estimation of assets pricing [33], to signal processing, for example when applied
to solve robotics vision problems [6] and to navigation, such as in the first Global Positioning
System (GPS) and inertial navigation [13].
In this chapter the Kalman filter will be discussed in Section 4-2 along with the Square-Root
Kalman Filter (SRKF) in Section 4-4.

4-1 State-Space Representation

In this section the Kalman filter will be derived. The derivation is based on the Bayesian
point of view, in which the mean and covariance of the state can be described as a function
of Gaussian processes as is discussed in [26].
The linear time-variant state-space model of any given system is given by (4-1)

x[k + 1] = A[k]x[k] + B[k]u[k] + w[k]
y[k] = C[k]x[k] + D[k]u[k] + v[k].

(4-1)

From now on, the following definitions will be used. x[k] ∈ RN is the state vector, u[k] ∈ RM
is the input vector and y[k] ∈ RL is the output vector. Furthermore, w[k] ∈ RN is the

Master of Science Thesis P. van Klaveren

26 Square-Root Kalman Filter

process noise and v[k] ∈ RL is the measurement noise. The system matrices are defined as:
A[k] ∈ RN×N is the state transition matrix, B[k] ∈ RN×M is the input matrix, C[k] ∈ RL×N
is the output matrix and D[k] ∈ RL×M is the feedforward matrix.
Furthermore, an assumption of the Kalman filter is that the process and measurement noise
are white Gaussian noise. This implies statistical properties on w[k] and v[k] as defined in
(4-2)

w[k] ' N (0,Q[k]), v[k] ' N (0,V[0]), (4-2)
where Q ∈ RN×N and V ∈ RL×L. The initial condition of the state x[0] may not be known a
priori and can therefore be modeled by a mean vector and a covariance matrix, in which the
covariance matrix is semi-positive definite (4-3)

x[0] ' N (x̄[0],P[0]), (4-3)

where P[0] ∈ RN×N . Finally, a record of all the measurements for k equaling 1 to k are stored
into a large vector Y[k] = [y[1],y[2], . . . ,y[k]]T ∈ RLk, which is realized by Yk.

4-2 Kalman Filter

In order to derive the Kalman update equations, proof by induction is used. The assumption
that x[k] depending on Yk ∀k are Gaussian distributions is the basis for this derivation. For
a proof by induction, two cases are needed: the base and the induction step. The base step is
given by (4-3) which states that x[0] is Gaussian. In the derivation of the Kalman filter the
notation of a probability density functions will be used. An example is the probability density
function of x[k]: P(x[k]). The distribution of x[0] depending on Y0 equals the distribution
of x[0] because there are no measurements at time k = 0 or prior. Hence, P(x[0]|Y[0]) equals
P(x[0]) and is a Gaussian distribution. In the induction step, the distribution of x[k − 1]
depending on Yk−1 is assumed to be Gaussian. Furthermore, the propagation of the distri-
bution is analyzed from time t+k−1 to t+k . This can be subdivided into two parts, from t+k−1
to t−k , which is the time propagation step and from t−k to t+k , which is the measurement update.

4-2-1 Time Propagation

The distribution P(x[k]|Y[k − 1]) is of interest after the time propagation. The state-space
model in (4-1) shows that x[k] is a linear combination of x[k − 1], u[k − 1] and w[k − 1].
Thus, P(x[k]|Y[k− 1]) is a Gaussian distribution if P(x[k− 1],u[k− 1],w[k− 1]|Y[k− 1]) is
a Gaussian distribution. Note that u[k− 1] is a known value, independent of Y[k− 1] and is
not a distribution. Hence, it can be ignored in determining the distribution P(x[k]|Y[k− 1]).
Further derivations are shown in (4-4)

P(x[k − 1],w[k − 1]|Y[k − 1]) = P(x[k − 1],w[k − 1],Y[k − 1])
P(Y[k − 1])

= P(x[k − 1],Y[k − 1])P(w[k − 1])
P(Y[k − 1])

= P(x[k − 1]|Y[k − 1])P(w[k − 1]),

(4-4)

P. van Klaveren Master of Science Thesis

4-2 Kalman Filter 27

where w[k − 1] is independent of Y[k − 1] and can be separated. The final equation of (4-4)
is a multiplication of two Gaussian distributions, which is still a Gaussian distribution. Thus,
P(x[k]|Y[k− 1]) is a Gaussian distribution. Its mean and covariance are specified as follows,
(4-5)

E [x[k]|Y[k − 1] = Yk−1] = x̂[k−] = A[k − 1]x[k − 1+] + B[k − 1]u[k − 1]

E
[
(x[k]− x̂[k−])(x[k]− x̂[k−])T |Y[k − 1] = Yk−1

]
= P[k−] =

A[k − 1]P[k − 1+]A[k − 1] + Q[k − 1].

(4-5)

4-2-2 Measurement Update

To complete the proof by induction, it must be shown that P(x[k]|Y[k]) is a Gaussian dis-
tribution. Hence, the new measurement that is available at time k must be used to update
the estimates of x̂[k]− and P[k]−. First, the distribution will be rewritten by means of the
Bayes’ rule P(x[k]|Y[k]) with the aim of using the second part of (4-1) later on,

P(x[k]|Y[k]) = P(x[k],Y[k])
P(Y[k])

= P(x[k],y[k],Y[k − 1])
P(y[k],Y[k − 1])

= P(y[k]|x[k],Y[k − 1])P(x[k]|Y[k − 1])
P(y[k]|Y[k − 1]) .

(4-6)

Note that P(x[k]|Y[k − 1]) is a Gaussian distribution as is discussed in Section 4-2-1. The
distribution P(y[k]|x[k],Y[k−1]) is Gaussian because y[k] is a linear combination of a known
vector x[k] with realization ξ and a white Gaussian noise vector v[k]. Furthermore, the
distribution in the denominator P(y[k]|Y[k − 1]) is also a Gaussian distribution because
it can be rewritten into a multiplication of P(v[k]) and P(x[k]|Y[k − 1]), which are both
Gaussian distributions. Thus, P(x[k]|Y[k]) is a Gaussian distribution and the measurement
updates can be written as in (4-7)

x̂[k+] = x̂[k−] + P[k−]C[k]T
[
C[k]P[k−]C[k]T + Rc[k]

]−1 (
y[k]−C[k]x̂[k−]

)
P[k+] = P[k−]−P[k−]C[k]T

[
C[k]P[k−]C[k]T + Rc[k]

]−1
C[k]P[k−].

(4-7)

Furthermore, the Kalman gain K[k] is defined as P[k−]C[k]T
[
C[k]P[k−]C[k]T + Rc[k]

]−1
.

4-2-3 Positive Definiteness of State Covariance Matrix

As explained in [14], computing the covariance matrix as presented in (4-7) requires a L× L
matrix inversion. A large problem with calculating the covariance matrix P[k] on a computer
is finite word length or computer round-off. This can cause the covariance matrix to lose its
positive definiteness condition on which the time propagation (4-5) and measurement update
(4-7) equations are based. In some scenarios this can result in a covariance matrix with
negative values, which can further develop into a negative Kalman gain and diverging state

Master of Science Thesis P. van Klaveren

28 Square-Root Kalman Filter

estimations. Based on [40], upper bounds on the error propagation for computation can
be given. Assigning upper bounds to the conventional Kalman filter and the SRKF shows
that the bound on the square-root covariance matrix L[k] is tighter, where L denotes the
square-root covariance matrix. A square-root Kalman filter reformulates the Riccati update
equations such that the square-root of the covariance matrix is updated. In the next section,
various square-root Kalman filters will be discussed.

4-3 Cholesky Factorization

Unless stated otherwise, this section is based on [25].
As was stated before, square-root Kalman filters differ from conventional Kalman filters be-
cause the algorithm updates the square-root of the covariance matrix. This enforces P[k]
to be positive definite and symmetric. The need for a square-root filter may seems to be a
problem at the time that computers used a smaller word length. It can however still be a
problem as is seen in [12] for example. Therefore, this section introduces the square-root or
the Cholesky factorization of a matrix.
Let P be an n × n positive semidefinite, symmetric matrix. By definition P can be written
as a multiplication of a matrix L times its transpose in which L is the square-root of P (4-8)

LLT = P. (4-8)

There are many matrices L that satisfy this condition. A unique solution can be imposed
by adding constraints to the factorization matrix. The Cholesky factorization does this by
constraining L to be lower or upper triangular, in which L is defined as c

√
P. Assume that

the initial covariance matrix P[0] is given, then the Cholesky factorization must be computed
such that it can be used for the recursive covariance matrix updates. To obtain a lower
triangular square-root of a matrix, the procedure scans through the matrix, as can be seen in
Figure 4-1. A lower triangular Cholesky square-root matrix can be computed in the following
way, iterating for i = 1, 2, . . . , N :

c
√

Pij =

(1/ c
√

Pjj)

Pij −
j−1∑
k=1

c
√

Pik
c
√

Pjk

 j = 1, 2, . . . , i− 1

(
Pii −

i−1∑
k=1

c
√

P2
ik

)1/2

j = i

0 j > i,

(4-9)

where i and j are the row and column index respectively. If an upper triangular Cholesky
factorization is desired, which is denoted by c′√P, the same algorithm can be used backwards.
See (4-10) when iterating for j = N,N − 1, . . . , 1

c′√Pij =

0 i > jPjj −
n∑

k=j+1

c′√P
2
jk

1/2

i = j

(1/ c′√Pjj)

Pij −
n∑

k=j+1

c′√Pik
c′√Pjk

 i = j − 1, j − 2, . . . , 1.

(4-10)

P. van Klaveren Master of Science Thesis

4-4 General Approach for the Square-Root Kalman Filter 29

Figure 4-1: This figure shows the order of the scanning procedure of a random matrix to generate
the Cholesky factorization [25].

4-4 General Approach for the Square-Root Kalman Filter

A general approach for a square-root implementation is presented by F. Gustafsson in his
book Adaptive Filtering and Change Detection [15]. It is important to understand the move
towards a square-root Kalman filter. From [12] it became very clear that no increase in
performance was seen when more pixels are observed. This is caused by the forced rank-1
approximation of the covariance matrix. Due to this limitation a lot of information is thrown
away. This is exactly where the square-root Kalman filter comes into play. The square-root
version ensures that the covariance matrix P is symmetric, positive definite and ensures a
numerically stable algorithm [25].

4-4-1 Square-Root Time Propagation

The time propagation as described in Chapter 7.5 of [25] will be used to compute the square-
root prediction update of the covariance matrix. Recall equation (7-28) from that chapter,
where a orthonormal transformation matrix T is found to make sure the update of L is square.
This can be done via the QR factorization. The update equations for the time propagation
are presented in (4-11),

x̂[k−] = x̂[k − 1+][
L[k−]T

0

]
= TT

[
L[k − 1+],W

]T (4-11)

Consider the covariance matrix P that is equal to LLT as is described in (4-8). This is true
because L is the Cholesky factor of P. The time propagation formula for the update of the
covariance matrix is given in (4-5). Note that the transition matrix is identity. Combining
these two equation yields,

P[k−] = L[k−]L[k−]T = P[k − 1+] + Q. (4-12)

Master of Science Thesis P. van Klaveren

30 Square-Root Kalman Filter

Furthermore, P[k − 1+] + Q can be decomposed into
[
L[k − 1+] W

] [
L[k − 1+], W

]T
. In-

tegrating this into (4-12) concludes,

L[k−] =
[
L[k − 1+] W

]
. (4-13)

Since this update of the covariance matrix yields a covariance matrix that is non-square, it
will not be accepted. A QR decomposition of the matrix results in the following,[

L[k − 1+] W
]T

= TR. (4-14)

Hence, it can be seen that the covariance matrix is equal to the product of the transposed
upper-triangular matrix and the upper-triangular matrix,

P[k−] = RTTTTR = RTR. (4-15)

The QR decomposition is used to compute the orthogonal transformation matrix T and the
upper-triangular matrix R containing the norm. The dimension of L[k − 1+] is RN×N and
of W is RN×N . Hence, the dimension of

[
L[k − 1+] W

]T
equals R2N×N . This implies that

applying the QR decomposition of this matrix results in the orthogonal transformation matrix
T ∈ R2N×2N and the upper triangular matrix R ∈ R2N×N . Since R is upper-triangular, it
can be partitioned into two parts: R1 ∈ RN×N and R2 ∈ RN×N , where R2 has only zero
rows.

R =
[
R1
R2

]
=
[
R1
0

]
. (4-16)

Filling this result into (4-15) yields:

P[k−] =
[
RT

1 0
] [R1

0

]
= RT

1 R1 (4-17)

The final step is to combine (4-12) and (4-17) to state that L[k−] = RT
1 . This concludes the

proof that the square-root update can be found via a QR decomposition of
[
L[k − 1+] W

]T
.

4-4-2 Square-Root Measurement Update

An intuitive approach would be that of the Carlson filter. However, in this section the
measurement update can be derived analogously to the time propagation. First, consider
(4-7) where the update of the covariance matrix P[k − 1+] is presented. A matrix needs to
be constructed such that the desired result is obtained after performing a QR decomposition.
This specific matrix is given in (4-18)[

R1/2
c CL[k−]
0 L[k−]

]
. (4-18)

Although, there is no measurement uncertainty in this state-space model, it is used here
to proof the approach. When the measurement covariance matrix is a zero matrix, this

P. van Klaveren Master of Science Thesis

4-4 General Approach for the Square-Root Kalman Filter 31

approach is still valid. Taking the QR decomposition of this matrix results in (4-19), where
RT is lower-triangular and can be partitioned according to (4-20)[

R1/2
c CL[k−]
0 L[k−]

]
= RTTT , (4-19)

RT =
[
RT

11 0
RT

12 RT
22

]
. (4-20)

Hence, R11, R21 and R22 can be computed. The matrix given in (4-18) can be multiplied by
its transpose: RTR,[

R1/2
c CL[k−]
0 L[k−]

] [
R1/2
c CL[k−]
0 L[k−]

]T
=
[
CL[k−]L[k−]TCT CL[k−]L[k−]T
L[k−]L[k−]TCT L[k−]L[k−]T

]

= RTTTTR = RTR =
[
RT

11R11 RT
11R12

RT
12R11 RT

12R12 + RT
22R22

] (4-21)

From (4-21) it can be concluded that:
RT

11R11 = Rc + CL[k−]L[k−]TCT = S
RT

12R11 = L[k−]L[k−]TCT

RT
12R12 + RT

22R22 = L[k−]L[k−]T
−→

RT

11 = S1/2

RT
21 = L[k−]L[k−]TCTS−1/2

RT
22 = L[k+]

(4-22)

The last case will be elaborated more. When R12 equals L[k−]L[k−]TCTS−1/2 then RT
12RT

12
is equal to L[k−]L[k−]TCTS−1CL[k−]L[k−]T . Bringing this to the other side of the equal sign
in the last case of (4-22) gives: RT

22R22 = L[k−]L[k−]T −L[k−]L[k−]TCTS−1CL[k−]L[k−]T ,
which is identical to the measurement covariance update equation presented in (4-7). Hence
RT

22R22 equals L[k+]L[k+]T . This means that the QR decomposition of the matrix presented
in (4-18) results in the measurement updated state covariance matrix.
Hence, the final equations of the measurement update are:

x̂[k+] = x̂[k−] + L[k−]L[k−]TCTS−1(y[k]−Cx̂[k−])
L[k+] = RT

22
(4-23)

4-4-3 Modified Gram-Schmidt Orthogonalization

As seen in Section 4-4-1 and Section 4-4-2, there is the need for a procedure that creates an
orthonormal matrix T that reshapes the matrices into square-root covariance matrix update.
There are several ways to implement this strategy: Modified Gram-Schmidt (MGS), House-
holder transformation, or Givens rotation.
The Householder transformation computes a reflection of the column of the matrix n times
in order to make a triangular matrix. The creation of this matrix requires a column vector
that determines the subspace over which the reflection is made. It is in the composition of
the vector that certain entries of the original matrix are needed. This is not convenient when
working with Tensor-Train matrices (TTm) since the TTms have to be fully contracted. The
Givens rotation creates a triangular matrix by multiplying the original matrix with rotation

Master of Science Thesis P. van Klaveren

32 Square-Root Kalman Filter

matrices. Hence, for a large matrix many rotational matrices have to be composed and many
matrix-matrix products have to be executed. As was seen in Section 3-4-3, a matrix-matrix
product causes the TT-ranks to grow exponentially, resulting in high computational cost and
demanding the TT-rounding function to be called relatively often. Hence, this thesis will
continue by using MGS to find the triangular matrix R. In this procedure, no single entries
of the matrix are needed, nor are matrix-matrix or matrix-vector products. The TT-ranks
grow due to vector subtraction and hence, the TT-rounding is called fewer times than when
using Givens rotation.
The MGS orthogonalization will be explained and its use for the Tensor-Networked Square-
Root Kalman Filter (TNSRKF) will be elaborated upon. What is known now as the Classical
Gram-Schmidt orthogonalization was originally discovered by Laplace and appeared later as a
solution to a set of linear equations in Schmidt’s work. However, the Classical Gram-Schmidt
orthogonalization suffers from a loss of orthogonality due to its inability to correct for errors.
Hence, MGS is used because it is numerically more stable than the classical Gram-Schmidt
and is less sensitive to round-off errors [2].

Figure 4-2: A graphical illustration of vector projection. The horizontal black arrow represents
the vector qi and the inclined black arrow represents the vector vi+1. The projection of vi+1 on
qi is indicated by the red striped arrow v1

i+1 and the blue, striped arrow indicates the orthogonal
part of vi+1 on qi and is denoted by v2

i+1. The updated Vi+1 is equal to v2
i+1.

The MGS algorithm takes each of the columns of the matrix and creates an orthonormal
subspace of these vectors by iteratively orthogonalizing the vector with respect to each other,
making use of vector projection. Consider a vector qi with ‖qi‖2 = 1 that is orthonormal to
the set of unit vectors {q1,q2, . . . ,qi−1}. Consider also a vector vi+1 that is made orthogonal
to {q1,q2, . . . ,qi−1} but that is not yet orthogonal to qi. The next step is to make vi+1
orthogonal to qi. In Figure 4-2 one can see the vectors qi and vi+1. The red, striped arrow is
the projection of vi+1 onto qi and is denoted by v1

i+1 and can be computed via (4-24). Note
that qTi qi equals 1 and can be neglected, saving computational cost.

v1
i+1 = qTi vi+1

qTi qi
qi (4-24)

Subtracting the projection v1
i+1 from vi+1 results in v2

i+1, which is orthogonal to qi. The
MGS algorithm is presented by Algorithm 4. The algorithm is given for a general matrix

P. van Klaveren Master of Science Thesis

4-4 General Approach for the Square-Root Kalman Filter 33

A ∈ RM×N with arbitrary dimensions. For M ≤ N , the algorithm gives M orthonormal
vectors qi ∈ RM . For M > N the algorithm could be stopped after the first N vectors, and
will output N orthonormal vectors qi ∈ RM . The reason is that the other possible orthogonal
vectors correspond to the zero part of R, as is seen in (4-16). Therefore, it not needed to find
this set of orthonormal vectors.

Algorithm 4: Modified Gram-Schmidt algorithm
Data: Matrix A ∈ RM×N .
Result: Orthonormal set of vectors: {q1,q2, . . . ,qM}.
for i = 1 to M do

vi = A(:, i)
end
for i = 1 to M do

qi = vi
‖vi‖2

for j = i+1 to M do
vj = vj − (qTi vj)qi

end
end
Return {q1,q2, . . . ,qM}.

4-4-4 Partitioned Measurement Update

The method described in the previous section makes use of all the available measurements
to update the state and the state covariance matrix at once. This method causes S to be a
matrix with dimensions RL×L, equal to the amount of observations. As is seen in (4-23), the
inverse of S is computed. This is a relatively computationally expensive task, O(L3), and
can be avoided by using a Partitioned Update Kalman Filter (PUKF) as is done in [12] as
well. The PUKF algorithm updates the state vector and state covariance matrix iteratively
for each observation, implying that the measurement update is done L times and that the
innovation covariance matrix is a scalar. Hence, taking the inverse of S is now a simple task.
This change means that C is a row vector. The matrix in (4-18) has dimensions R1+N×1+N .

Master of Science Thesis P. van Klaveren

34 Square-Root Kalman Filter

P. van Klaveren Master of Science Thesis

Chapter 5

Square-Root Kalman filter for Online
Video Completion

This chapter merges the results of the previous two chapters by introducing the implementa-
tion of the Tensor-Networked Square-Root Kalman Filter (TNSRKF) for online video com-
pletion. According to [25], there are various ways of updating the Cholesky factor of the
covariance matrix. As of now, the general thought that is proposed in Section 4-4 will be
used to derive a TNSRKF. The outline of this chapter is the following. First, the state-
space system that describes the video will be discussed. Second, the general approach for a
Square-Root Kalman Filter (SRKF) as presented in Chapter 4 will be elaborated upon with
the implementation of Tensor-Train (TT)-format as is introduced in Chapter 3. Finally, a
detailed explanation of the implementation is given, concluding203. with a pseudo-algorithm.

5-1 State-Space System of a Video

This section presents the discrete time state-space system that is used to describe the video.
The model and assumptions are mainly based on [12] and will be discussed here for compre-
hensiveness.
First of all, the video frames must be transformed into a vector. The pixels of the video
are expressed as 8-bit integers on a gray-scale, see Figure 2-1. Where the integer value of 0
represents black pixels and 255 represents white pixels. Matlab works with double-precision
arrays and thus the double function in Matlab is used to convert the matrix from a uint8
class to a double class. The second step is to reshape the matrix into a vector by sequentially
stacking the vectors as is seen in Figure 5-1. This gives a state vector where each of the pixels
are represented by a state in the state-space system. Furthermore, the state transition matrix
A is assumed to be identity by approximation. De Rooij’s thesis [12] shows that difference
between two consecutive frames throughout the whole video can be approximated by a zero
mean Gaussian distribution. For this analysis the Grand Central Station video is used, out
of which all the consecutive frames are analyzed against each other. By approximation it is

Master of Science Thesis P. van Klaveren

36 Square-Root Kalman filter for Online Video Completion

Figure 5-1: This figure shows how to reshape a matrix into a vector by stacking its columns [12].

allowed to say that the mean of the data equals zero, implying that the next frame is equal to
the next frame. Hence, the state-transition matrix is chosen to be the identity matrix. The
difference between the pixels in consecutive frames is solely introduced by the process noise
w, which is statistically determined by (4-2). Hence, the process noise covariance matrix
becomes an important factor on which the working principle of the Kalman filter relies. In
Section 5-1-1 more information is given regarding the process noise covariance matrix.
Moreover, the output matrix C is a transformation matrix from the observations y to the
state x and consists only of ones and zeros. No measurement noise is required, since direct
and uncorrupted access to the batch of observed pixels is assumed. Finally, the input matrix
B and the feedforward matrix D are zero, this is because there is no input in the video and
hence, not in the state-space system.
All in all, the discrete state-space system that describes the dynamics of the video is:

x[k + 1] = x[k] + w[k]
y[k] = C[k]x[k],

(5-1)

where the process noise is statistically given by the initial part of (4-2).

5-1-1 Process Noise Covariance Matrix

Unless stated otherwise, this section is based on [12].
The process noise covariance matrix must represent the difference between two consecutive
frames. This difference can be determined by investigating the correlation between the pixels
in the frame. The correlation value between two pixels decreases when the distance between
two pixels increases. In [12], a bandwidth equal to 15 is used for the Town Center video
with a frame resolution of 480 by 720. This bandwidth is used to compose the process noise
covariance matrix, and its value equals the distance between pixels when the correlation is
less than 0.2. However, the bandwidth is dependent on the frame’s resolution. As will be
discussed in the next section, the resolution of the Town Center video is down scaled to 9 by
16. For this resolution the bandwidth equals 1, resulting in a process noise covariance matrix
equal to the identity matrix. This also implies that the square-root process noise covariance

P. van Klaveren Master of Science Thesis

5-2 Modified Gram-Schmidt in TT-format 37

matrix is equal to the identity matrix. Because the columns of the original frame are stacked,
neighboring pixels are not neighbors in the process noise covariance matrix. For this reason
the process noise covariance matrix is created out of two smaller matrices: Q1 ∈ RJ×J and
Q2 ∈ RI×I , see their structure in (5-2). The process noise covariance matrix must be positive
definite, which can be ensured when Q1 and Q2 are positive definite because the Kronecker
product of two positive definite matrices results in a positive definite matrix [12, 5].

Qn =

w(0) w(1) . . . w(α) 0 . . . 0
w(1) w(0) w(1) . . . w(α) . . . 0

.
0 . . . 0 w(α) . . . w(1) w(0)

 , n = 1, 2 (5-2)

where w is a function that denotes the correlation between the pixels and is defined in (5-3)

w(d) = max
(

0, 1− d

α+ 1

)
, (5-3)

where d is the distance and α is the bandwidth. The state space system and the noise
covariance matrix are known and implemented into TT-format. The next sections implement
the SRKF in TT-format.

5-1-2 Selection of Quantization

Before the TNSRKF algorithm is discussed, the quantization of the frame’s row and column is
defined. Due to the computational complexity of the algorithm, the video is down scaled from
1080 by 1920 to a resolution of 9 by 16. The partitioning of the row is chosen to be [3, 3] and
the partitioning of the column is chosen to be [4, 2, 2]. In general is it preferred to select low
values for the partitioning in order to obtain the largest information compression rate in the
TT, [12]. However, the downside of choosing low indices is that there are more cores, resulting
in more calls of the Singular Value Decomposition (SVD) function. Therefore, the choice of
the quantization is a trade-off between maximum compression rate and computational speed.

5-2 Modified Gram-Schmidt in TT-format

The application of Modified Gram-Schmidt (MGS) in TNSRKF follows the same structure
as the MGS procedure in matrix format, which can be found in Section 4-4-3. In this
section, the MGS algorithm will be applied on an arbitrary Tensor-Train matrix (TTm)
A = 〈〈A(1),A(2), . . . ,A(d)〉〉 with A(k) ∈ RRk−1,Mk,Nk,Rk . The procedure that is discussed is
valid for the matrices stated in the time propagation (4-15) and in the measurement update
(4-19). First, some functions that are needed for understanding the Tensor-Train Modified
Gram-Schmidt (TT-MGS) algorithm are presented, after which Algorithm 5 is presented. Sec-
ond, a detailed explanation of all the MGS steps in TT-format is given. Finally, a parameter
choice analysis will be completed.

Master of Science Thesis P. van Klaveren

38 Square-Root Kalman filter for Online Video Completion

Multi-index

The multi-index function can be used to extract a specific TT out of a TTm or extend a
TT into a TTm based on a given column partitioning: [I1, I2, . . . , Id]. The extraction pro-
cess can be seen as taking a specific column out of a matrix. The extension process can be
seen as extending a vector into a matrix by placing the vector in the correct column of the
matrix. The set of unit vectors are given by: {e1, e2, . . . , ed}. Consider an arbitrary TT:
A = 〈〈A(1),A(2), . . . ,A(d)〉〉 with A(k) ∈ RRk−1,Ik,Rk . Given the dimension of the TT, the di-
mensions of the unit vectors are given by: ek ∈ RIk . The unit vectors all have a ’1’ placed at a
specific location. This location is determined by the column dimension partitioning. Consider
that the column dimension equals: [I1, I2, I3] = [2, 3, 2] and the 5th column is selected. The
indices can be determined via (3-2) in Section 3-2-1. Filling in (3-2) for the example results
in:

5 = i1 + (i2 − 1)2 + (i3 − 1)6.

Algorithm 13 in Appendix A-2-1 searches for the index in increments from the last index
to the first index. For the last index i3 the algorithm searched in increments of I1I2 = 6.
Hence, for the last index, the algorithm divides the column number 5 by I1I2 = 6. It observes
between which integer values the fraction is and selects i3 to be equal to the upper bound.
Hence, in this case i3 is set to 1. The updated equation is:

5 = i1 + (i2 − 1)2 + (1− 1)6→ 5 = i1 + (i2 − 1)2.

The same procedure is followed for index i2 and i1. For i2 the algorithm searches in increments
of I1 = 2, meaning that it checks between what integer value, the fraction of 5 and 2 is. Since
this fraction is between 2 and 3, the second index i2 equals 3, and the updated equation is:

5 = i1 + (3− 1)2→ 1 = i1.

This automatically gives the solution for the first index: i1 = 1. Furthermore, the indices
represent the 5th vector and indicate the location of the ’1’ in the unit vectors. Hence, the
unit vectors for this example are:

e1 =
[
1
0

]
, e2 =

0
0
1

 , e3 =
[
1
0

]
.

Subtraction of TTs

The subtraction of two d-dimensional TTs can be performed by subtraction of the single cores
of each of the TTs. Consider two TTs, A and B, as defined in (5-4)

A = 〈〈A(1)(i1),A(2)(i2), . . . ,A(d)(id)〉〉, B = 〈〈B(1)(i1),B(2)(i2), . . . ,B(d)(id)〉〉. (5-4)

The subtraction of A and B result in another TT named C. Moreover, the TT-cores of
C = A− B are given in (5-5),

C(1)(i1) =
[
A(1)(i1) −B(1)(i1)

]
, C(k)(ik) =

[
A(k)(ik) 0

0 B(k)(ik)

]
, C(d)(id) =

[
A(d)(id)
B(d)(id)

]
.

(5-5)

P. van Klaveren Master of Science Thesis

5-2 Modified Gram-Schmidt in TT-format 39

Site-k orthogonal TT

This section quickly discusses the site-k orthogonalization procedure of a given TT. The
function is given by using the SVD function to orthogonalize the TT-cores. This function
aims to bring the norm of any TT to the specified kth TT-cores. The site-k function also
compresses the TT-ranks and can be used to compress the TT-ranks without performing
truncation. See Algorithm 12 in Appendix A-1-5 for more information. The first nested

Algorithm 5: TT-MGS: Tensor-Train Modified Gram-Schmidt
Data: TTm A = 〈〈A(1),A(2), . . . ,A(d)〉〉 with A(k) ∈ RRk−1,Mk,Nk,Rk . Rthres denotes

the rank threshold, the maximum TT-rank that is allowed in a TT and ε is
the truncation parameter.

Result: Orthonormal set of Tensor-Train vectors: {Q1,Q2, . . . ,Qm}
for i = 1 to M do

Set of d unit vectors: e← multi-index(M, i)
for j = 1 to d do
V(j)
i ← reshape(permute(A(j), [1, 2, 4, 3]), [Rj−1MjRj , Nj])× ej

end
end
for i = 1 to M do
Qi ← Vi
Qi ← sitek(Qi, 1)
normQi ← norm(reshape(Q(1)

i , [R0M1R1, 1]), ’fro’)
Q(1)
i ← Q

(1)
i /normQi

for j = i+1 to M do
Temporal TT:QQ ← Qi
projVjQi ← innerprodTT(Vj ,QQ)
QQ(1) ← projVjQi ×QQ(1)

Vj ← subTT(Vj ,QQ)
if max(r) ≥ Rthres then
Vj ← roundTT(Vj , ε)

end
end

end
Return {Q1,Q2, . . . ,Qm}

for-loop in Algorithm 5 describes how all the columns of the TTm of A can be extracted
iteratively. Given the partitioning of the columns of A and the desired column that is to be
extracted, multiple unit vectors ei can be formed. This is done via the multi-index function.
These unit vectors are multiplied with the respective TT-cores of A. Figure 5-2 displays how
the contraction works. The unit vector ei and A(i) are contracted over the index, as is seen
in (5-6). After contraction of the cores of A and e, a TT will remain, which represents the
selected vector.

A(k)(mk) =
∑
nk

A(k)(mk, nk)⊗ ek(nk) ∀k. (5-6)

Master of Science Thesis P. van Klaveren

40 Square-Root Kalman filter for Online Video Completion

The orthogonalization process starts, which is indicated by the second nested for-loop, as
soon as all the columns are extracted. In order to normalize the vectors, the rank is brought
to the first TT-core via the site-k function, as can be seen in Appendix A-1-5. By bringing
the norm to the first TT-core, the norm function in Matlab can be used to compute the norm
of the first norm. The complexity of this method equals O((d − 1)R3N) + O(2RN) and is
less computationally expensive than computing the norm via the innerprodTT function. The
norm is used to normalize the TT by dividing the first TT-core with the norm.
Consider that the ith vector was just normalized, and is indicated by Qi. The next step is
to make Vi+1 through Vm orthonormal to Qi. This is done by computing the inner product
between Vi+1 and Qi and multiplying the result with the first TT-core of QQ, which a
substitute TTm for Qi. Furthermore, QQ is subtracted from Vi+1 to make Vi+1 orthogonal
to Qi. This is realized by the subTT function, presented in Appendix A-1-2.
An important notion is the growth of the TT-ranks while performing MGS on a set of

Figure 5-2: Multiplying each of the TT-cores with a unit vector to select a specific column from
the TTm, resulting in a TT.

vectors. Each subtraction results in a summation of the TT-ranks of Vi+1 and Qi. Hence, the
TT-ranks of the updated TT vector Vi+1 are equal to the sum of the TT-ranks of the current
TT vector Vi+1 and of the TT-ranks of the TT vector Qi. In order to prevent this growth from
exceeding memory capabilities the TT-rounding function is utilized, as explained in Section
3-4-4. This process of activating and performing the truncation depends on two parameters:
the rank threshold parameter Rmax, and the truncation parameter ε which determines the
maximum amount of information that is thrown away.
Now the influence of the two variables in the MGS algorithm on the orthogonality of the TTs
will be analyzed. To do so, the orthogonality vectors are analyzed for a varying rank threshold
parameter Rmax and a varying truncation parameter ε. The aim of the MGS algorithm is
to create a set of orthonormal TTs. Hence, the inner product between these vectors can be
computed to analyze what error is introduced as a result of the truncation function. Note
that the inner product between the same vectors is also taken into account, only the error is
measured relative to 1. In Figure 5-3, Figure 5-4, Figure 5-5, and Figure 5-6, the orthogonality
errors with respect to the identity matrix can be seen for a rank threshold of 5, 20, 50, and
90 respectively. The figures display the orthogonality error with respect to the truncation

P. van Klaveren Master of Science Thesis

5-2 Modified Gram-Schmidt in TT-format 41

parameter, which is located on the horizontal axis. Interestingly, the rank threshold does not
affect the orthogonality error. This is because this parameter only affects the initialization
of the truncation but has no direct or indirect influence on the truncation itself. However,
it does influence the necessary time to complete the MGS algorithm. The running time of
one orthogonalization procedure via Algorithm 5 took approximately 7.8 seconds for a rank
threshold equal to 5, 8.9 seconds for a rank threshold of 20, 19.6 seconds for a rank threshold of
50 and 66.3 seconds for a rank threshold of 90. The difference in running time is significant.
For a rank threshold of 5 and 20 seconds, the most burdensome part of the algorithm is
the TT-rounding function. This is because of the SVD that is used to orthogonalize and
truncate the TT. For a rank threshold of 50 the most computationally burdensome part is
the computation of the inner product. The computational complexity of the inner product
heavily depends on the TT-ranks, scaled with R4. The same phenomena can be observed for
a rank threshold of 90, where the computation of the inner product is approximately 90% of
the running time. See Table 5-1 for a complete overview of the most burdensome parts of
Algorithm 5’s running time per child function. It can be seen that when the TT-ranks grow,
the computational load of the inner product grows respectively to the other functions. Hence,
it serves the algorithm well to choose a low rank threshold. Moreover, Figure 5-3 through

Rank threshold 5 20 50 90
subTT 20.1% 25% 16% 5.9%

roundTT 55.5% 39.5% 13% 4.7%
inner product 17.7% 29.4% 67.1% 87.9%

Table 5-1: This table provides insight in the running time of various child functions of Algorithm
5. Only the most computationally burdensome child functions are given.

Figure 5-6 show a direct relation between the truncation parameter and the orthogonality
error, which is nearly identical for all the figures. Therefore, for this part of the algorithm,
a rank threshold equal to 5 gives a satisfactory result. The truncation parameter is chosen
such that the orthogonality error is minimal. Based on the figures, ε = 10−6 is a satisfactory
choice. However, the orthogonalization procedure is not finished yet. The TTs still have to be
concatenated to form an orthonormal TTm Q. Therefore, this thesis will continue by diving
deeper into the concatenation of the TTs in the next section.

Master of Science Thesis P. van Klaveren

42 Square-Root Kalman filter for Online Video Completion

Figure 5-3: The orthogonality error of
the MGS algorithm for a rank threshold
value Rmax equal to 5.

Figure 5-4: The orthogonality error of
the MGS algorithm for a rank threshold
value Rmax equal to 20.

Figure 5-5: The orthogonality error of
the MGS algorithm for a rank threshold
value Rmax equal to 50.

Figure 5-6: The orthogonality error of
the MGS algorithm for a rank threshold
value Rmax equal to 90.

P. van Klaveren Master of Science Thesis

5-3 Combining TTs into one TTm 43

5-3 Combining TTs into one TTm

This section focuses on the concatenation of the set of TTs {Q1,Q2, . . . ,Qm} into one TTm.
For this part of the SRKF a specific algorithm, Algorithm 6, is made, which will be presented
first, followed by a detailed explanation regarding the algorithm.

Algorithm 6: CombineTT: Combine Tensor-Trains into a Tensor-Train matrix.
Data: Given a set of orthonormal Tensor Trains: {Q1,Q2, . . . ,Qm}, where each of

the TT is defined as: Qi = 〈〈Q(1)
i ,Q(2)

i , . . . ,Q(d)
i 〉〉 with Q

(k)
i ∈ RRk−1,Mk,Rk .

Rthres is the maximum allowed TT-rank. ε is the truncation parameter.
Result: Orthonormal Tensor-Train matrix: Q
Extend the TTs into TTms:
for i = 1 to prod(M) do

Set of d unit vectors: e← multi-index(m, i)
for j = 1 to d do
Q(j)
i ← reshape(Q(j)

i , [Rj−1MjRj , 1])⊗ ej
Q(j)
i ← reshape(Q(j)

i , [Rj−1,Mj , Rj ,Mj])
Q(j)
i ← permute(Q(j)

i , [1, 2, 4, 3])
end
Qi ← TTm2TT(Qi)

end
Addition of the TTms:
QQ ← Q1
for i = 2 to prod(M) do
QQ ← addTT(QQ,Qi)
if max(r) ≥ Rthres then
QQ ← roundTT(QQ, ε)

end
end
Q ← TT2TTm(QQ)
Return: Q

The algorithm starts by extending all the TTs to TTms. This is done in the nested for-loop
via the multi-index function, which creates a set of d unit vectors: {e1, e2, . . . , ed}. The unit
vectors are multiplied with the respective TT-core by summing over the index 1, as seen in
(5-7) and is visualized in Figure 5-7. Summation over an index that equals 1 is the Kronecker
product between Q(i) and ei. Hence, the unit vectors are used to place the information of the
TT in the right column in the TTm. The next line introduces a new function, the TTm2TT
function. The idea of this function is that the the rows and columns of the TTm are being
brought together into one index and a TT is created. It is required to bring the extended
TTms back to TTs because of the addTT function.

Q(i)(mi,mi) = Q(i)(mi, 1)⊗ ei(1,mi) (5-7)

The final step of the algorithm is to add the TTms up in order to obtain one TTm. Again,

Master of Science Thesis P. van Klaveren

44 Square-Root Kalman filter for Online Video Completion

Figure 5-7: This figure shows how a TT can be extended to a TTm by multiplying each of the
TT-cores with a unit vector.

when performing addition of the TT, the TT-ranks grow. Therefore, the rounding function
is introduced to keep the TT-ranks small. This introduces two parameters that need to be
tuned: the rank threshold Rthres and the truncation parameter ε. In Figure 5-8 the influence
of the rank threshold and the truncation parameter is analyzed. Note that this analysis is a
continuation of the previous section. Hence, the minimum orthogonality error that is possible
is approximately 10−9. What can be seen is that the error always reaches this minimum level
when the epsilon is smaller than 10−4. Furthermore, it can be stated that the rank threshold
parameter has little influence on the orthogonality error. This does not only hold for the rank
threshold shown in the plot but for all feasible rank threshold parameters. When allowing
the ranks to grow up to approximately 150 the running time was empirically found to be the
smallest. This is related to the slow TT-rank growth in the addition of TTs in combination
with choosing a high rank threshold to decrease the amount of calls of the rounding function.
However, selecting an over sized rank threshold will cause the rank to grow too large, resulting
in a larger running time of the addTT function. The orthogonality error is slightly larger
for a rank threshold of 50 and slightly lower for a rank threshold of 250. A possible reason
for this phenomena can be found in the rounding function. Initially, the rounding function
orthogonalizes the TT via the site-k function. This function outputs a TT with the norm
in the kth core and with compressed ranks. Compressed ranks imply that if the ranks are
larger than the full rank case, they are being brought back to the full rank state. Consider
a TT with indices equal to [9, 9, 16, 4, 4] with a current TT-rank equal to [1, 54, 151, 64, 32, 1]
and a full TT-rank state of [1, 9, 81, 16, 4, 1]. Employing the site-k function for k equal to
d, meaning that the norm is brought to the last core, will result in the following TT-ranks:
[1, 9, 81, 64, 32, 1]. This is because of the economical SVD, which causes the new right rank
of the 1st till the d − 1th core to be equal to the minimum of current right TT-rank or the
product of the current left TT-rank and the index: Rk = min{Rk, Rk−1Ik}. Thereby, the
TT is partially truncated without loss of information. The influence of the rank threshold is
found in the fact that more information is stored in the TTm before the rounding function
is called, which means that the compression is more effective and the information stored is
more dense.

P. van Klaveren Master of Science Thesis

5-4 Low-Rank Orthogonal TTm 45

Figure 5-8: This figure shows the orthogonality error obtained after Algorithm 6 relative to the
identity matrix. The rank threshold is set to: {50, 150, 250}, which are represented by the black,
blue and red line respectively.

Finally, the rank threshold parameter equal to 150 is chosen because it was empirically found
to result in the lowest running time. Furthermore, the truncation parameter is set to be
10−6, because this results in the minimal orthogonality error. Even though the minimal
orthogonality error is reached for ε = 10−4, due to a different structure of the square-root
covariance the minimal orthogonality error may not be reached for this truncation parameter’s
value. Hence, a lower value is preferred to ensure orthogonality up to a higher degree. It
must be noted that the TTm tends to grow to full TT-rank, which is determined by the
index. Through investigation it is seen that even when the rank threshold is smaller than the
individual maximum full TT-rank, the TT-rank is larger than the rank threshold after the
addition of all the TTms. This is simply because the information that is stored cannot be
thrown away. Therefore, the next section investigates whether or not is it possible to store
an orthogonal matrix in a low-rank TTm.

5-4 Low-Rank Orthogonal TTm

This section discusses whether a low-rank orthogonality TTm is possible. This is investigated
by performing simple experiments to check whether it is possible to truncate the ranks of an
orthogonal TTm. One test will be done on the square-root covariance TTm of the previous
section with full TT-ranks equal to: [1, 9, 81, 16, 4, 1]. Another test is done with a random
matrix, which has the structure of a square-root covariance matrix but has larger dimensions
than the dimensions used, namely 1024 by 1024. Truncation can be performed by specifying
the maximum amount of information that can be thrown away or by selecting the desired

Master of Science Thesis P. van Klaveren

46 Square-Root Kalman filter for Online Video Completion

Figure 5-9: This figure shows the relative error of the product of the truncated TTm with
its transpose QT Q with respect to the identity matrix. The truncation parameter used in the
rounding function, ε, is located on the horizontal axis. The black line shows the various errors
obtained for truncating the TTm. The red asterisk indicates the relative error when no truncation
is called. Hence, placing it at ε = 10−6 is not correct. It should be located at ε = 0.

TT-ranks. Firstly, truncation based on the amount of information that is thrown away is
analyzed. Secondly, truncation is analyzed by pre-selecting the desired TT-ranks.
In Figure 5-9 the relative error of the truncated orthonormal TTm multiplied by its transpose
to the identity matrix is shown. As can be seen by the black diamonds, the relative error is
measured for various increments of ε. The smallest relative error that can be obtained is equal
to what is seen in Figure 5-8, which is approximately 10−9. This relative error can be obtained
for values of ε ≤ 10−2. When ε equals 100 or 10−1 the relative error is significantly large and
the orthonormal basis disappeared. The truncated TT-ranks corresponding to each of the
values of ε are presented in Table 5-2. Notice that what is seen in Figure 5-9 is directly related
to the TT-ranks presented in Table 5-2. For ε = 100 and for ε = 10−1 truncation occurs, as
can be seen by the lower TT-ranks in comparison to the TT-ranks of the untruncated TTm.
For ε < 10−2 no truncation takes place, since the TT-ranks are identical to the TT-ranks of
the untruncated TTm. This information concludes that a low-rank TTm representation of a
orthonormal matrix is not possible. To strengthen this claim, observe Table 5-3. It is seen that
when truncating any of the TT-ranks by reducing the dimension of each of the respective ranks
with 1, a significant error arises. This means that all the information stored in the TT-cores
is relevant to preserve the orthonormal basis. The magnitude of the relative errors, presented
in the second column, are also worth mentioning: truncation of the largest TT-rank: 81 to 80,
results in the smallest relative error and truncation of the smallest TT-rank: 4 to 3, results
in the largest relative error. The other TT-ranks also correspond to this trend, with the

P. van Klaveren Master of Science Thesis

5-4 Low-Rank Orthogonal TTm 47

ε TT-ranks
100 [1, 1, 1, 1, 2, 1]

10−1 [1, 9, 77, 16, 4, 1]
10−2 [1, 9, 81, 16, 4, 1]
10−3 [1, 9, 81, 16, 4, 1]
10−4 [1, 9, 81, 16, 4, 1]
10−5 [1, 9, 81, 16, 4, 1]

0 [1, 9, 81, 16, 4, 1]

Table 5-2: This table shows the TT-ranks of the truncated TT for different values of the
truncation parameter ε.

TT-ranks Relative error
[1, 8, 81, 16, 4, 1] 0.1783
[1, 9, 80, 16, 4, 1] 0.0215
[1, 9, 81, 15, 4, 1] 0.0956
[1, 9, 81, 12, 3, 1] 0.2573

Table 5-3: This table shows the relative error of the truncated TT in comparison to the original
TT.

truncation of the TT-rank equal to 16 resulting in the second smallest relative error and the
truncation of the TT-rank of 9 resulting in the second largest relative error. This could be
clarified by the fact that relatively more information is stored in smaller TT-ranks because
of the higher compression rate than larger TT-ranks. To complement this section, it must be
noted that this phenomena is valid for most orthogonal and orthonormal matrices. To further
investigate this, multiple test are done on various matrices, such as random matrices with
structures varying from completely random to lower triangular, to structures similar to the
structure of the state square-root covariance matrix. These matrices are formed for different
dimensions and in matrix format. Next, the orthogonal matrix of these matrices are computed
in matrix format via the orth function in Matlab, which produces an orthogonal matrix with
a tolerance based on the maximum singular value. The orthonormal matrix is converted
into TT-format via the Tensor-Train Singular Value Decomposition (TT-SVD) function as
presented in Algorithm 1. In this way one can already specify how much information the
TT must contain, and thereby have an indirect influence on the TT-ranks. The truncation
parameter is chosen such that all the information is kept, resulting in full TT-ranks.
An example will be provided, a matrix A ∈ R1024×1024 which has a structure similar to a lower
triangular square-root covariance matrix and is equal to: A = tril(rand(1024)+eye(1024)∗10).
Moreover, let Q ∈ R1024×1024 be the orthonormal basis of A. The matrix Q is converted
to TT-format: Q. The partitioning of the row and column of the orthogonal matrix are
identical and their structure is such that the index of each core equals 2. Thus, there are
10 cores and the full TT-rank equals [1, 4, 16, 64, 256, 1024, 256, 64, 16, 4, 1]. The TTm of Q
can be truncated for different truncation parameters Atrun(ε) and brought back to matrix
format Atrun(ε) to compute: Atrun(ε)TAtrun(ε). Lastly, the error relative to the identity
matrix is calculated and the TT-ranks of Atrun(ε) are stored for later comparison. Figure 5-
10 shows the relative error of Atrun(ε)TAtrun(ε) to the identity matrix. The black line shows
the relative error of the truncated matrix, and the red star shows the relative error of the

Master of Science Thesis P. van Klaveren

48 Square-Root Kalman filter for Online Video Completion

Figure 5-10: This figure shows the relative error of QT Q to the identity matrix I. The black line
indicates the relative error of the truncated orthonormal matrix Qtrun and the red line indicates
the relative error of the original orthonormal matrix Q. The last one is placed at ε = 10−20

because 10− inf is not on the horizontal axis.

original orthonormal matrix. The figure clearly shows a large error when truncation takes
place, as is seen for larger values of ε. To emphasize the general message from the earlier
part of this section, see Table 5-4. Table 5-4 shows the truncated TT-ranks for the various
truncation parameters used for the truncation. Next to the truncation parameter and the
TT-ranks, the relative error of the respective truncation is also provided. The TT-ranks show
that all information is kept for ε < 10−6. Furthermore, the TT-rank in the middle, r5, is
the only one truncated for values of ε between 10−5 and 10−1. Only when ε equals 1, are
almost all TT-ranks truncated. Thus, for ε < 10−1 the TT-ranks are always high, with the
largest TT-rank above 908. This indicates that the TT-ranks are always close to full TT-rank
and cannot be truncated while maintaining orthogonality. Thus, it can be concluded that a
low-rank orthonormal TTm is not possible.

5-5 Implementation of the Tensor Network Square-Root Kalman
Filter

This section combines and includes all the information presented in the previous sections. A
complete overview of the TNSRKF will be given which will be finalized with the algorithm
designed for this thesis work. The algorithm aims to complete a video with corrupted pixels

P. van Klaveren Master of Science Thesis

5-5 Implementation of the Tensor Network Square-Root Kalman Filter 49

ε TT-ranks Relative error
100 [1, 2, 11, 45, 170, 323, 150, 47, 14, 4, 1] 0.8459

10−1 [1, 4, 16, 64, 256, 908, 256, 64, 14, 4, 1] 0.0468
10−2 [1, 4, 16, 64, 256, 999, 256, 64, 14, 4, 1] 0.0046
10−3 [1, 4, 16, 64, 256, 1018, 256, 64, 14, 4, 1] 4.6538× 10−4

10−4 [1, 4, 16, 64, 256, 1023, 256, 64, 14, 4, 1] 1.3706× 10−6

10−5 [1, 4, 16, 64, 256, 1023, 256, 64, 14, 4, 1] 1.3706× 10−6

10−6 [1, 4, 16, 64, 256, 1024, 256, 64, 14, 4, 1] 1.6058× 10−14

Table 5-4: This table shows the relative error of the truncated TT in comparison to the original
TT. For values of ε smaller than 10−6 the TT-ranks and error are identical as for ε = 10−6, as is
also seen in Figure 5-10.

in an online fashion using a combination of a SRKF and Tensor Networks (TN).
The general form of the SRKF in Section 4-4 is implemented into TT-format. In theory,
the TNSRKF works the same as the general SRKF. However, the introduction of TTs have
changed some approaches to solving specific steps in the algorithm. All the steps will be clearly
explained in this section. To make this section clearer, it is divided into two subsections:
the time propagation and the measurement update. In addition, the performance of the
algorithm on the Town Center video is shown and a subsection is devoted to describing the
computationally burdensome part of the algorithm.

5-5-1 Time Propagation in TT-format

The time propagation follows the update equations given in (4-11), where the next state is
equal to the previous state and the state covariance matrix is updated by means of a trans-
formation matrix T . Such a transformation matrix must be found in order to make sure the
update of the covariance matrix does not increase in dimension. In TT-format, the state
update is simple. However, the update of the state covariance matrix requires more thought.
First of all, the creation of the matrix

[
L[k − 1+] W

]
can be done by concatenating the

two matrices. The dimensions of L[k − 1+] and W are both RN1×N2×···×Nd×N1×N2×···×Nd .
This is important because when stacking the matrices next to each other, the row dimensions
must be equal. However, in TT-format it is also required that the column dimensions are
equal. Concatenation in TT-format is done by first extending the matrices separately with
zero columns, as is done by the Kronecker product of the matrix and a vector v = [1 0].
This process can be seen in Figure 5-11. The resulting TTm now represents

[
L[k − 1+] 0

]
,

following the same idea as the concatenation in Section 5-3. It must be pointed out that the
same is done for W, however v is equal to [0 1]. Thus W is extended to

[
0 W

]
. To finalize

the concatenation of L[k− 1+] and W, the TTms must be added together, which is discussed
in Section 3-4-1.
Following the concatenation, the TTm is transposed. This is done to constrict the procedure
to computing the correct orthonormal TTm Q in the QR-decomposition. Because of the
growth of the ranks and due to the addition of two TTm’s, the site-k function is placed to
truncate the ranks without throwing away information. After this process the concatenated
matrix is created and the QR orthogonalization procedure can be initialized. The QR de-

Master of Science Thesis P. van Klaveren

50 Square-Root Kalman filter for Online Video Completion

Figure 5-11: This figure shows the TT Kronecker product of a vector v and the TTm L. As
can be seen the vector is attached the last core of L, this is because of little endian ordering of
the indices.

composition of the concatenated matrix is discussed in Section 5-2. This procedure outputs
n orthonormal TTs, Qk ∈ RN1×N2×···×2Nd ∀k = 1, 2, . . . , N . To complete the time prop-
agation of the TNSRKF, it is necessary to combine the orthonormal Tensor Train vectors:
{Q1,Q2, . . . ,Qn} into one Tensor Train matrix named Q, as is explained in Section 5-3. When
the TTm Q is finalized R can be computed, which is the final step of the time propagation.
Because only the first N TTs are computed and placed in Q, R is immediately the desired
part of the matrix, denoted by R1 in Section 4-4-1. Hence, the time propagated update of
the square-root covariance matrix equals L[k−] = R.

5-5-2 Measurement Update in TT-format

The measurement update used in TNSRKF is the partitioned measurement update as de-
scribed in Section 4-4-4. A result of using the partitioned measurement update is that the
output matrix C becomes a row vector. Hence, the correct row of the TTm of C corresponding
to the measurement must be selected. This is realized by generating d unit vectors based on
the quantization of the rows of C and multiplying these with the corresponding cores of C.
The next step is the computation of the state update based on the measurement that is just
observed, as is identified by the first equation of (4-23). This can be done in steps: computing
the residual vector, the residual covariance matrix which is a scalar, the Kalman gain, and the
state update. Furthermore, the update of the square-root covariance matrix is equal to RT

22 as

seen in (4-23). Therefore, the matrix
[
R1/2
c CL[k−]
0 L[k−]

]
must be concatenated and transposed.

However, direct access to the measurements is assumed, which results in R1/2
c equaling 0.

This matrix will thus be a matrix with one zero column. For the QR-decomposition of the
matrix, this column does not need to be included to find the orthonormal basis of the matrix.

P. van Klaveren Master of Science Thesis

5-5 Implementation of the Tensor Network Square-Root Kalman Filter 51

Hence, the matrix that is given to the TT-MGS algorithm is,[
CL[k−]
L[k−]

]T
. (5-8)

A problem could arise with the concatenation of this matrix because the rows of CL[k−] are
not equal to the rows of L[k−]. However, one way to solve this is by not performing the
concatenation. The TT of CL[k−] and the TTm of L[k−] can be individually presented to
the TT-MGS algorithm and the first vector of the orthonormal basis of the matrix is simply
the normalized TT of CL[k−]. Furthermore, the algorithm of TT-MGS extracts the columns
out of L[k−] to create a TT for each of the columns by using the multi-index function as
was described before for identical processes. Thus, the matrix dimension of the matrix in
(5-8) is RN+1×N . Because this thesis computes QR, and not LQT , the matrix must trans-
posed as was explained in Section 4-4-2. As the matrix is transposed, the orthonormal basis
is Q ∈ RN×N . In order to compute R, the TTm of Q and of the transpose of the matrix
in 5-8 have to be composed. However, the dimension of N + 1 cannot be partitioned over

d cores. Hence, after having computed Q, the columns of
[
CL[k−]
L[k−]

]T
have to be comple-

mented by N − 1 zeros columns, see (5-9). The complemented square-root matrix now is
RN1×N2×···×Nd×N1×N2×···×Nd , which can be partitioned over d cores by a row partitioning of
[N1, N2, . . . , Nd] and a column partitioning of [N1, N2, . . . , 2Nd].

L[k−] =

CL[k−]
L[k−]

0

T

∈ RN×2N (5-9)

Figure 5-12: This figure presents the structure of the matrix R.

The TTm of this matrix can be built up by first collecting all the columns as TTs and
extending them into TTm’s. The individual columns are already known, since CL[k−] is
known and the individual columns of L[k−] are already extracted in the TT-MGS algorithm.
Furthermore, the zero columns are TTs with TT-ranks equal to 1 and are filled with zeros. By
extending these TTs into TTms and then adding to the correct square-root covariance matrix,
L[k−] according to (5-9) is created in TT-format. As a result of this, R can be computed out
of the product of the transposed TTm of the orthonormal basis QT and L[k−]. The matrix

Master of Science Thesis P. van Klaveren

52 Square-Root Kalman filter for Online Video Completion

Figure 5-13: This figure shows the relative error per estimated frame. The figure consists of two
error plots: the black line represents the relative error of the TNSRKF and the red line represents
the relative error of the SRKF in matrix format. The video that is used for this simulation is the
Town Center video [1]. Furthermore, 95% of the pixels are corrupted and the video is gray-scaled,
and has a resolution of 9 by 16.

structure of R is presented in Figure 5-12.
The final step of the measurement update is to obtain R22 from the matrix structure. This is
done by subtracting the 2nd through the n+ 1th vector out of the R, such that R12 and R22
are obtained. Furthermore, these vectors must be concatenated to a TTm and transposed.
Out of the transposed TTm, the 2nd through the nnd columns are subtracted and one zero
column is added to the set of columns. Hence, now

[
R22 0

]
is obtained. The last column

is equal to zero because the first column of the matrix in (4-19). However, because this zero
column is left out before starting the computation, the zero column has to be added to R22. In
addition, multiple other TTm operations such as, matrix-matrix multiplication in TT-format,
are performed to compute the update of square-root covariance matrix in the partitioned
measurement update. Because these operations increase the TT-ranks, the rounding function
is called to truncate the TT-ranks. The truncation parameter is set to be 10−6, equaling
the truncation parameters for Algorithm 5 in Section 5-2 and Algorithm 6 in Section 5-3. In
Figure 5-13 the relative error of the TNSRKF and its matrix form equivalent can be seen.
The video on which this simulation is done is the Town Center Video from [1]. The video is
originally in Full HD resolution, but is down scaled to a resolution of 9 by 16. Furthermore,
the video is in gray scale. For this simulation, 95% of the pixels are corrupted. This is done
randomly for each frame. As can be seen, the relative error is initially equal to zero, because
the first frame is assumed to be known. Hence, from there on the relative error increases until
it hovers within a certain margin of error, namely between 0.04 and 0.09. Only at the end
of the simulation does the error make a sudden jump. This could be due to a item entering

P. van Klaveren Master of Science Thesis

5-5 Implementation of the Tensor Network Square-Root Kalman Filter 53

the screen that is only observed in the measurements and accounted for in the state estimate
at a later stage. A major downside of the algorithm is its high computational complexity,
especially on computing the orthonormal basis TTm Q. The total estimation of 300 frames,
each having a resolution of 9 by 16, took approximately 8.3 hours, equaling an estimation
time per frame of 100 seconds. Meanwhile, the complete estimation of the Town Center video
took the SRKF only 100 seconds, resulting in a estimation time of 0.33 seconds per frame.
Since, the frame dimensions of the Town Center video in [12] are not down-scaled as much as
in this thesis, the running times cannot be compared directly. However, it must be stated that
for a resolution equal to 480 by 720, the estimation of one frame via Adaptive Singular Value
Thresholding (ASVT) and Tensor-Networked Kalman Filter (TNKF) takes 0.568 seconds and
38 seconds respectively. The difference in estimation time per frame is significant, especially
when identical frame resolutions are considered. When larger dimensions are chosen, the
storage complexity would quickly slow the SRKF down until it exceeds RAM capabilities.
Note that these simulations are carried out on an Intel Core i7-6700HQ @2.60GHz with 8GB
of RAM. In the next section, a deeper analysis and a critical view on the computational
complexity of the algorithm will be presented.
All in all, 5-5 can be summarized by Algorithm 7, showing all the steps that are taken in
order to complete one time propagation step and one measurement update of the TNSRKF.

5-5-3 Bottleneck of the Algorithm

This section discusses the bottleneck of the algorithm by analyzing and pointing out the com-
putationally expensive steps.
One of the major drawbacks of the TNSRKF is the way in which the orthonormal basis TTm
Q is computed. Consider a random matrix with dimensions: RN×N . This requires

∑N
i=1(i−1)

vector to vector orthogonalization procedures, which individually have to compute the inner
product between Vj and QQ, subtract QQ from Vj and perform rounding on Vj . Consider
that the cores of Vj are defined as: V(k)

j ∈ RRk−1×Ik×Rk and the cores of QQ are defined as:
QQ(k) ∈ RSk−1×Ik×Sk . The computational complexities of the inner product and the rounding
function are O((d− 2)I(RS)2) and O(dIR3) respectively, where R = max(Rk), S = max(Sk)
and I = max(Ik). Over the course of one call of the TT-MGS function this function is called∑N
i=1(i − 1) times. For a video resolution of 9 by 16 with 5% pixel observation, this boils

down to approximately 10296 calls.
Another disadvantage in terms of computational speed is the implementation of the parti-
tioned measurement update. This requires L repetitions of the complete measurement update
procedure, which includes one call of the TT-MGS function. Hence, expanding the amount of
calls of the inner product to include the estimation of one frame, the inner product function
is called on average 82368 times.
The most burdensome part of the algorithm is the rounding function. On average, this frame
is called 86474 times for the estimation of one frame, costing approximately 61% of the esti-
mation time.
Finally, this thesis only discussed the case in which 95% of the pixels are corrupted. In [12] a
case in which 75% of the pixels are corrupted is also discussed, resulting is more measurement
data and more iterations of the measurement update. As a result, TNSRKF’s computational
speed will decline drastically, therefore removing it from consideration.

Master of Science Thesis P. van Klaveren

54 Square-Root Kalman filter for Online Video Completion

Algorithm 7: TNSRKF
Data: State vector: X [k − 1] = 〈〈X (1),X (2), . . . ,X (d)〉〉 with X (k) ∈ RRk−1,Nk,Rk .

Square-root covariance matrix: L[k − 1] = 〈〈L(1),L(2), . . . ,L(d)〉〉 with
L(k) ∈ RSk−1,Nk,Nk,Sk . Square-root process noise matrix:
W[k − 1] = 〈〈W(1),W(2), . . . ,W(d)〉〉 with W(k) ∈ RQk−1,Nk,Nk,Qk . Output
matrix: C[k − 1] = 〈〈C(1), C(2), . . . , C(d)〉〉 with W(k) ∈ RPk−1,Nk,Nk,Pk .
Measurements y ∈ RL and location of measurements: c ∈ RL, both are not in
TT-format.

Result: X [k], L[k]
Time propagation:
L[k]← [L[k − 1],W]
L[k]← TransposeTTm(L[k])
{Q1,Q2, . . . ,Qn} ← TT-MGS(L[k])
Q ← CombineTT({Q1,Q2, . . . ,Qn}, [N1, N2, . . . , Nd])
L[k]← MatMatTT(TransposeTTm(Q),L[k])
Measurement update:
for i = 1 to l do

Set of d unit vectors: e← multi-index(n, cj)
for j = 1 to d do
C(j)
i ← reshape(permute(C(j), [1, 2, 4, 3]), [Pj−1NjPj , Nj])× ej

end
v← yi − innerprodTT(Ci,X [k])
s← innerprodTT(Ci,MatVecTT(L[k],MatVecTT(TransposeTTm(L[k], Ci)))
K ← MatVecTT(L[k],MatVecTT(TransposeTTm(L[k]), Ci))
K(1) ← v

sK
(1)

X [k]← addTT(X [k],K)

{Q1,Q2, . . . ,Qn} ← TT-MGS(
[
MatVecTT(L[k], Ci)

L[k]

]T
)

Q ← CombineTT({Q1,Q2, . . . ,Qn}, [N1, N2, . . . , Nd])
L[k]← CombineTT({MatVecTT(L[k], Ci),Q1,Q2, . . . ,Qn, }, [N1, N2, . . . , 2Nd])
R ← MatMatTT(TransposeTTm(Q),L[k])
L[k]←

[
R22 0

]
end
Return: Xk+1, Lk+1

P. van Klaveren Master of Science Thesis

Chapter 6

Conclusion and Future Work

This thesis investigated the application of the Tensor-Networked Square-Root Kalman Fil-
ter (TNSRKF) for online video completion. Starting with the definition of a Tensor-Train
(TT), the thesis continued by applying a square-root Kalman filter to a state-space system.
Chapter 5 presents the TNSRKF, a way to combine the TT decomposition from Chapter 3
and the Square-Root Kalman Filter (SRKF) from Chapter 4 into an online video completion
algorithm. The following responses are this thesis’ answers to the research questions posed
in Chapter 1.

• How can TNSRKF be implemented to recover a corrupted video?
All in all, this thesis shows that a general form of the SRKF can be implemented in TT-
format and that the algorithm is able to complete a video with a relative error around
0.04 to 0.09. However, the implementation is slower than Adaptive Singular Value
Thresholding (ASVT) and Tensor-Networked Kalman Filter (TNKF). Because of the
high computational complexity of the Tensor-Train Modified Gram-Schmidt (TT-MGS)
algorithm and the unobtainable low-rank orthonormal Tensor-Train matrix (TTm), it
becomes clear that it is impossible to perform online video completion via the TNSRKF
using a Modified Gram-Schmidt (MGS) orthogonality procedure.

• How can the SRKF be implemented in TT-format?
The SRKF can be implemented in its general format, in which the update of the co-
variance matrix is found via the QR-decomposition. To obtain the orthogonal matrix,
the MGS orthogonalization procedure is implemented. In TT-format, this can be im-
plemented by using the TT operations presented in Chapter 3.

• How can the MGS orthogonalization procedure be implemented in TT-format and how
can orthogonality be preserved?
MGS can be implemented in TT-format, following the same steps as the MGS algorithm
in matrix format. The TT operations are provided in Chapter 3 and provide an intu-
itive tool for the orthogonalization procedure of large vectors. Furthermore, TT-MGS

Master of Science Thesis P. van Klaveren

56 Conclusion and Future Work

is proven to produce orthonormal vectors for certain rank threshold conditions and
truncation parameters.

• Is it possible to represent an orthogonal matrix as a low-rank TTm?
A low-rank orthonormal TTm is not realizable. Any truncation of the TT-ranks result
in a large relative error, indicating that important orthogonality information is stored
in the complete range of the TT-ranks.

Recommendations to speed up calculations

A significant improvement in the algorithm’s calculation speed can be obtained by the paral-
lelization of the orthogonalization procedure in the TT-MGS algorithm. The computing time
can be reduced significantly, depending on the amount of threads the computer at hand has.
Parallelization is possible because the orthogonalization of vector a to vector c is indepen-
dent to the orthogonalization procedure of vector b to vector c. Matlab’s Parallel Computing
Toolbox can be used for this.
Another computationally burdensome part of the algorithm is the implementation of the par-
titioned measurement update. By implementing the partitioned measurement update, the
computation of the inverse can be bypassed. This is desired since no proven technique for
computing the inverse in TT-format is available, implying that the inverse must be com-
puted in matrix format, requires a conversion between matrix and TT-format. However, a
trade-off could be found between the conventional measurement update and the partitioned
measurement update could be found by considering a batch-based measurement update.

Recommendations on orthogonal matrix computation methods

In this thesis, the MGS procedure is taken to compute the orthonormal basis matrix in TT-
format named Q. However, the number of orthogonalization procedures between individual
vectors increases drastically with the dimension of the state square-root covariance matrix.
Therefore, scaling this procedure to higher resolution videos is not feasible. Other techniques,
such as the Givens rotation and the Householder transformation will most likely give an
identical problem. One option would be to use an alternating least-squares procedure in
which the cores of the square-root covariance TTm are updated according to an objective
function.

P. van Klaveren Master of Science Thesis

Appendix A

Algorithms

A-1 TT Operations

A-1-1 TT Addition

Algorithm 8: addTT : Addition of TTs [29]
Data: Given two Tensor-Train (TT)s: A = 〈〈A(1),A(2), . . . ,A(d)〉〉 with

A(k) ∈ RRk−1,Ik,Rk and B = 〈〈B(1),B(2), . . . ,B(d)〉〉 with B(k) ∈ RSk−1,Ik,Sk .
Result: C = 〈〈C(1), C(2), . . . , C(d)〉〉 with C(k) ∈ RRk−1Sk−1,Ik,RkSk equaling the sum of

A and B.
A(1) ← reshape(A(1), [1, I1R1])
B(1) ← reshape(B(1), [1, I1S1])
C(1) ← reshape

([
A(1) B(1)

]
, [1, I1, R1 + S1]

)
for k = 2 to d-1 do

A(k) ← reshape(A(k), [Rk−1, IkRk])
B(k) ← reshape(B(k), [Sk−1, IkSk])

C(k) ←
[
A(k) 0

0 B(k)

]
C(k) ← reshape

(
C(k), [Rk−1 + Sk−1, Ik, Rk + Sk]

)
end
A(d) ← reshape(A(d), [Rd−1, I1])
B(d) ← reshape(B(d), [Sd−1, I1])

C(d) ← reshape
([

A(d)

B(d)

]
, [Rd−1 + Sd−1, I1, 1]

)
Return: C

Master of Science Thesis P. van Klaveren

58 Algorithms

A-1-2 TT Subtraction

Algorithm 9: subTT : subtraction of TTs [29]
Data: Given two TTs: A = 〈〈A(1),A(2), . . . ,A(d)〉〉 with A(k) ∈ RRk−1,Ik,Rk and

B = 〈〈B(1),B(2), . . . ,B(d)〉〉 with B(k) ∈ RSk−1,Ik,Sk .
Result: C = 〈〈C(1), C(2), . . . , C(d)〉〉 with C(k) ∈ RRk−1Sk−1,Ik,RkSk equaling the sum of

A and B..
A(1) ← reshape(A(1), [1, I1R1])
B(1) ← reshape(B(1), [1, I1S1])
C(1) ← reshape

([
A(1) −B(1)

]
, [1, I1, R1 + S1]

)
for k = 2 to d-1 do

A(k) ← reshape(A(k), [Rk−1, IkRk])
B(k) ← reshape(B(k), [Sk−1, IkSk])

C(k) ←
[
A(k) 0

0 B(k)

]
C(k) ← reshape

(
C(k), [Rk−1 + Sk−1, Ik, Rk + Sk]

)
end
A(d) ← reshape(A(d), [Rd−1, I1])
B(d) ← reshape(B(d), [Sd−1, I1])

C(d) ← reshape
([

A(d)

B(d)

]
, [Rd−1 + Sd−1, I1, 1]

)
Return: C

A-1-3 TT Matrix-Vector Product

Algorithm 10: MatVecTT : matrix-vector product of TTm and TT [29]
Data: A = 〈〈A(1),A(2), . . . ,A(d)〉〉 with A(k) ∈ RRk−1,Ik,Jk,Rk ,

B = 〈〈B(1),B(2), . . . ,B(d)〉〉 with B(k) ∈ RSk−1,Jk,Lk,Sk .
Result: C = 〈〈C(1), C(2), . . . , C(d)〉〉 with C(k) ∈ RRk−1Sk−1,Ik,Lk,RkSk , as the product of

A and B.
for k = 1 to d do

A(k)(rk−1ikrk, jk)← A(k)(rk−1, ik, jk, rk)
B(k)(jk, sk−1lksk)← B(k)(sk−1, jk, lk, sk)
C(k)(rk−1ikrk, sk−1lksk)← A(k)(rk−1ikrk, jk)B(k)(jk, sk−1lksk)
C(k)(rk−1sk−1, ik, lk, rksk)← C(k)(rk−1ikrk, sk−1lksk)

end
Return C = 〈〈C(1), C(2), ..., C(d)〉〉.

P. van Klaveren Master of Science Thesis

A-1 TT Operations 59

A-1-4 TT Inner Product

Algorithm 11: innerprodTT : Inner product two TTs [29]
Data: Given two TTs: A = 〈〈A(1),A(2), . . . ,A(d)〉〉 with A(k) ∈ RRk−1,Ik,Rk and

B = 〈〈B(1),B(2), . . . ,B(d)〉〉 with B(k) ∈ RSk−1,Ik,Sk .
Result: c, the inner product of A and B
for k = 1 to d do

A(k) ← reshape(permute(A(k), [1, 3, 2]), [Rk−1Rk, Ik])
B(k) ← reshape(permute(B(k), [2, 1, 3]), [Ik, Sk−1Sk])
C(k) ← reshape(A(k)B(k), [Rk−1Rk, Sk−1Sk])
C(k) ← reshape(permute(C(k), [1, 3, 2, 4]), [Rk−1Sk−1, RkSk])

end
c = C(1)

for k = 2 to d do
c← c×C(j)

end
Return: c

A-1-5 Site-k Orthogonalization

Algorithm 12: site-k: k orthogonal TT [29]
Data: A = 〈〈A(1),A(2), . . . ,A(d)〉〉 with A(k) ∈ RRk−1,Ik,Rk , k
Result: k-orthogonal TT A.
for j = 1 to k-1 do

A(j) ← reshape(A(j), [Sj−1Ij , Rj])
U(sj−1ij , sj)Σ(sj , sj)V(rj , sj)T ← SVD(A(j)) where Sj = min{Rj , Sj−1Ij}
A(j) ← reshape(U, [sj−1, ij , sj])
A(j+1) ← A(j+1) ×1 ΣVT

end
for j = d to k+1 step -1 do

A(j) ← reshape(A(j), [Rj−1, IjSj])
U(rj−1, sj−1)Σ(sj−1, sj−1)V(ijsj , sj−1)T ← SVD(A(j)) where
Sj−1 = min{Rj−1, IjSj}
A(j) ← reshape(VT , [sj−1, ij , sj])
A(j−1) ← A(j−1) ×3 UΣ

end
Return A = 〈〈A(1),A(2), . . . ,A(d)〉〉.

Master of Science Thesis P. van Klaveren

60 Algorithms

A-2 Other Functions

A-2-1 Multi-index

Algorithm 13: Multi-index
Data: Given the column partitioning of a Tensor-Train matrix (TTm):

M = [M1,M2, . . . ,Md] with length equal to d and that the selected column is
the ith column. The algorithm is based on the little endian ordering, as seen
in Section 3-2-1.

Result: Set of unit vectors: {e1, e2, . . . , ed}
num = i
for j = d to 1 step -1 do

for s = 1 to Mj do
if s− 1 < num

prod(M(1:j−1)) and num
prod(M(1:j−1)) ≤ s then

ej = zeros(Mj , 1)
ej(s) = 1
num = num− (s− 1)prod(M(1 : j − 1))

end
end

end
Return: {e1, e2, . . . , ed}

P. van Klaveren Master of Science Thesis

Bibliography

[1] Ben Benfold and Ian Reid. Stable multi-target tracking in real-time surveillance video.
In CVPR 2011, pages 3457–3464. IEEE, 2011.

[2] Åke Björck. Numerics of gram-schmidt orthogonalization. Linear Algebra and Its Appli-
cations, 197:297–316, 1994.

[3] Steven D Brown. The kalman filter in analytical chemistry. Analytica chimica acta,
181:1–26, 1986.

[4] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of “eckart-young” decomposition. Psychome-
trika, 35(3):283–319, 1970.

[5] Pattrawut Chansangiam, Patcharin Hemchote, and Praiboon Pantaragphong. Inequal-
ities for kronecker products and hadamard products of positive definite matrices. Sci.
Asia, 35:106–110, 2009.

[6] SY Chen. Kalman filter for robot vision: a survey. IEEE Transactions on Industrial
Electronics, 59(11):4409–4420, 2011.

[7] Edmond Chow and Yousef Saad. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM Journal on Scientific Computing, 19(3):995–1023, 1998.

[8] Andrzej Cichocki. Generalized component analysis and blind source separation methods
for analyzing mulitchannel brain signals. Statistical and Process Models for Cognitive
Neuroscience and Aging, 1:201–272, 2007.

[9] Andrzej Cichocki. Era of big data processing: A new approach via tensor networks and
tensor decompositions. arXiv preprint arXiv:1403.2048, 2014.

[10] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, and Danilo P
Mandic. Tensor networks for dimensionality reduction and large-scale optimization: Part
1 low-rank tensor decompositions. Foundations and Trends® in Machine Learning, 9(4-
5):249–429, 2016.

Master of Science Thesis P. van Klaveren

62 Bibliography

[11] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi Amari. Nonnegative
matrix and tensor factorizations: applications to exploratory multi-way data analysis
and blind source separation. John Wiley & Sons, 2009.

[12] Seline de Rooij. Streaming video completion using a tensor-networked kalman filter,
2020.

[13] Mohinder S Grewal and Angus P Andrews. Applications of kalman filtering in aerospace
1960 to the present [historical perspectives]. IEEE Control Systems Magazine, 30(3):69–
78, 2010.

[14] Mohinder S Grewal and Angus P Andrews. Kalman filtering: Theory and Practice with
MATLAB. John Wiley & Sons, 2014.

[15] Fredrik Gustafsson and Fredrik Gustafsson. Adaptive filtering and change detection,
volume 1. Citeseer, 2000.

[16] Richard A Harshman et al. Foundations of the parafac procedure: Models and conditions
for an" explanatory" multimodal factor analysis. 1970.

[17] Frank L Hitchcock. Multiple invariants and generalized rank of a p-way matrix or tensor.
Journal of Mathematics and Physics, 7(1-4):39–79, 1928.

[18] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

[19] CG Khatri and C Radhakrishna Rao. Solutions to some functional equations and their
applications to characterization of probability distributions. Sankhyā: The Indian Jour-
nal of Statistics, Series A, pages 167–180, 1968.

[20] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[21] Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize documenta-
tion, 81(2009):1–10, 2009.

[22] Willem Laurenszoon van Doorn, Gijs Groote, Aniek Hiemstra, Thijs Veen, and Maarten
ten Voorde. Reconstruction of faulty video data using the kalman filter and tensor
networks. 2019.

[23] Xiaocan Li, Shuo Wang, and Yinghao Cai. Tutorial: Complexity analysis of singular
value decomposition and its variants. arXiv preprint arXiv:1906.12085, 2019.

[24] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations: Item-to-
item collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

[25] Peter S Maybeck. Square root filtering. Stochastic models, estimation and control, 1:368–
409, 1979.

[26] PS Maybeck. Optimal filtering with linear system models. Stochastic Models, Estimation,
and Control, 1:203–279, 1979.

P. van Klaveren Master of Science Thesis

63

[27] Vadim Olshevsky, Ivan Oseledets, and Eugene Tyrtyshnikov. Superfast inversion of
two-level toeplitz matrices using newton iteration and tensor-displacement structure. In
Recent Advances in Matrix and Operator Theory, pages 229–240. Springer, 2007.

[28] Ivan V Oseledets. Approximation of 2d× 2d matrices using tensor decomposition. SIAM
Journal on Matrix Analysis and Applications, 31(4):2130–2145, 2010.

[29] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[30] Ivan V Oseledets and Sergey V Dolgov. Solution of linear systems and matrix inversion
in the tt-format. SIAM Journal on Scientific Computing, 34(5):A2718–A2739, 2012.

[31] Ivan Valer’evich Oseledets and Eugene Evgen’evich Tyrtyshnikov. Approximate inver-
sion of matrices in the process of solving a hypersingular integral equation. Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 45(2):315–326, 2005.

[32] Victor Y Pan, Youssef Rami, and Xinmao Wang. Structured matrices and newton’s
iteration: unified approach. Linear algebra and its applications, 343:233–265, 2002.

[33] Gurnain Kaur Pasricha. Kalman filter and its economic applications. 2006.

[34] Roger Penrose. Applications of negative dimensional tensors. Combinatorial mathematics
and its applications, 1:221–244, 1971.

[35] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solu-
tions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471–
501, 2010.

[36] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix prod-
uct states. Annals of physics, 326(1):96–192, 2011.

[37] G Strang. Linear algebra and its application, 3rd. Brooks Cole, 1988.

[38] Ruchi Tripathi, Boda Mohan, and Ketan Rajawat. Adaptive low-rank matrix completion.
IEEE Transactions on Signal Processing, 65(14):3603–3616, 2017.

[39] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychome-
trika, 31(3):279–311, 1966.

[40] Michel Verhaegen and Paul Van Dooren. Numerical aspects of different kalman filter
implementations. IEEE Transactions on Automatic Control, 31(10):907–917, 1986.

[41] Michel Verhaegen and Vincent Verdult. Filtering and system identification: a least
squares approach. Cambridge university press, 2007.

[42] Guoxu Zhou and Andrzej Cichocki. Fast and unique tucker decompositions via multiway
blind source separation. Bulletin of the Polish Academy of Sciences. Technical Sciences,
60(3):389–405, 2012.

Master of Science Thesis P. van Klaveren

64 Bibliography

P. van Klaveren Master of Science Thesis

Glossary

List of Acronyms

LMS Least-Mean Squares
ASVT Adaptive Singular Value Thresholding
TNKF Tensor-Networked Kalman Filter
TNSRKF Tensor-Networked Square-Root Kalman Filter
PUKF Partitioned Update Kalman Filter
TTm Tensor-Train matrix
TT Tensor-Train
TT-SVD Tensor-Train Singular Value Decomposition
SVD Singular Value Decomposition
CA Component Analysis
CPD Canonical Polyadic Decomposition
TD Tucker Decomposition
PUKF Partitioned Update Kalman Filter
MGS Modified Gram-Schmidt
TT-MGS Tensor-Train Modified Gram-Schmidt
SRKF Square-Root Kalman Filter
TN Tensor Networks

Master of Science Thesis P. van Klaveren

66 Glossary

P. van Klaveren Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface

	Main Matter
	Introduction
	Notation

	State of the Art for Online Video Completion
	Adaptive Online Low-Rank Matrix Completion
	Tensor-Networked Kalman Filter
	Discrete State-Space Model
	Recursive Kalman Filter
	Initialization of the Kalman Filter

	Computational Load Comparison

	Tensor Networks
	Tensor
	Tensor Operations
	Multi-index Ordering
	Inner Product
	Matricization
	n-mode Product
	Kronecker, Khatri-Rao and Hadamard Product
	Rank-1 Tensors

	Tensor Decompositions
	Tensor-Train
	Tensor-Train Matrix
	Other Decompositions

	TT(m) Operations
	Basic TT Operations
	TT Contractions
	Matrix and Vector Product
	TT-rounding

	Square-Root Kalman Filter
	State-Space Representation
	Kalman Filter
	Time Propagation
	Measurement Update
	Positive Definiteness of State Covariance Matrix

	Cholesky Factorization
	General Approach for the Square-Root Kalman Filter
	Square-Root Time Propagation
	Square-Root Measurement Update
	Modified Gram-Schmidt Orthogonalization
	Partitioned Measurement Update

	Square-Root Kalman filter for Online Video Completion
	State-Space System of a Video
	Process Noise Covariance Matrix
	Selection of Quantization

	Modified Gram-Schmidt in TT-format
	Combining TTs into one TTm
	Low-Rank Orthogonal TTm
	Implementation of the Tensor Network Square-Root Kalman Filter
	Time Propagation in TT-format
	Measurement Update in TT-format
	Bottleneck of the Algorithm

	Conclusion and Future Work

	Appendices
	Algorithms
	TT Operations
	TT Addition
	TT Subtraction
	TT Matrix-Vector Product
	TT Inner Product
	Site-k Orthogonalization

	Other Functions
	Multi-index

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

