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Abstract 

Management of large hydrologic datasets including storage, structuring, indexing and query is one of the crucial challenges in the 
era of big data. This research originates from a specific data query problem: time series extraction at specific locations takes a long 
time when a large multidimensional dataset is stored in non-chunked NetCDF classic or 64-bit offset format. The essence of this
issue lies in the contiguous storage structure adopted by NetCDF. In this research, NetCDF file based solutions and a 
multidimensional (MD) array database management system (DBMS) applying chunked storage structure are benchmarked to 
determine the best solution for storing and querying large hydrologic datasets. To achieve this, expert consultancy was conducted
to establish benchmark sets. To guarantee a fair benchmark test environment, HydroNET-4 system was utilized and adapters for 
NetCDF files and SciDB were developed to manage and query data. In final benchmark tests, effect of data storage configurations
such as chunk size and compression on query performance is also explored. Results indicate that SciDB arrays utilizing small 
chunk sizes show favorable performance. However with current implementation of SciDB, large numbers of small chunks cause 
huge overload of main memory which constraints SciDB's scalability. Compression of SciDB can either have negative or no effect 
on query performance, while it causes significant query degradation to NetCDF-4 solution. The research illustrates that for big
hydrologic array data management, the properly chunked NetCDF-4 solution without compression is in general more efficient than 
the SciDB DBMS. So under current big data environment, traditionally adopted file-based hydroinformatic solutions can still be 
applicable after proper updating.  
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1. Introduction 

In hydrologic domain, original data collecting techniques with improved accuracy become increasingly prevalent 
currently, radar systems for instance. Meanwhile, new sensor platforms and sources such as citizen-supplied 
observations are arising all the time. All kinds of simulation models never stop running to produce essential results for 
decision making. These large amounts of datasets are normally stored and distributed in diverse formats, which brings 
inconvenience for professionals to extract effective information for certain applications efficiently. These commonly 
used formats include Hierarchical Data Format (HDF), Network Common Data Form (NetCDF) and Gridded Binary 
(GRIB) which are originally designed for meteorological purposes. Among them, NetCDF is notable for its simple 
data model, ease of use, portability, and strong user support infrastructure [1]. It is widely applied to record 
meteorological, oceanographic as well as hydrologic observation or simulation results. 
However, according to practical experience, traditional NetCDF solutions perform inefficiently in retrieving 
information from large spatio-temporal datasets for certain queries. This is caused by the way it stores variable values, 
which is known as contiguous storage structure. Basically, for a grid full of variable values in a certain spatial area, 
NetCDF stores values into a one-dimensional array according to a row-majored order (Fig.1. a-c). And in this way, to 
query the value in a particular cell, calculating position of the cell in the one-dimensional array is needed. Extraction 
of a time series (Fig.1. a) becomes more expensive due to accessing required cell values, which are widely spread over 
the disk in a one-dimensional array (Fig.1. c). Alternatively, it is possible to store time series of every location as a 
one-dimensional variable in NetCDF, but then retrieving the complete grid at a single time step becomes the problem. 
Although chunked storage structure is introduced to the later version of NetCDF, i.e. NetCDF-4, contiguous storage 
structure is still the solution applied in most cases as we learnt through discussions with geo-data experts as well as 
checking NetCDF data offered by popular providers on the Internet.  

When managing large numbers of MD array datasets, it is natural to adopt a DBMS solution as it could provide an 
easier to use and more scalable alternative. In practice, organizations can have a range of different datasets and types: 
administrative data, point cloud data, temporal data, etc. A standardized and generic DBMS solution would be 
preferable when combining, for example, vector and raster data in a query. In addition, NetCDF file-based solutions 
normally offer a limited range of functionalities while DBMS have rich functionality thanks to ad hoc query support 
and declarative programming models. Most modern DBMSs also offer automatic parallelization in query execution. 
Within DBMS scope, MD array DBMS is optimized further for MD array data management. It can specify metadata 
[2] and supports storage of MD arrays. It employs the chunked storage structure (Fig.1. d-e) which divides a whole 
dataset into separate chunks with specified chunk sizes [3,4]. Based on this storage structure, MD array DBMSs then 
apply specific array addressing and relative offset calculation to index values, which is proved to be of high query 
efficiency [5]. Hence, this research is aimed at investigating whether the MD array DBMS can achieve better 
performance in processing queries on large MD hydrologic datasets than classic non-chunked NetCDF solution and 
competitive performance when compared to chunked NetCDF-4 file based solution. 

To address the main research question, benchmark tests are executed. Several steps should be performed: define 
benchmark, select MD array DBMS, create benchmark test environment, execute benchmarks and analyze results. 
Several solutions are going to be benchmarked in this research: 

Contiguous data in NetCDF 64-bit offset format without compression 
Chunked data in NetCDF-4 format without compression 
Chunked data in NetCDF-4 format with compression  
Chunked data in MD array DBMS without compression 
Chunked data in MD array DBMS with compression 

The structure of this paper is as follows: In Section 2, expert consultancy to determine final queries and datasets is 
described. This is then followed by an explanation of the benchmark test environment and discussion of benchmark 
results in Section 3. The paper finishes with conclusions and future work. 
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(a) 
(b) 

(c) 

(d) 

(e) 

Fig.1. storing a three dimensional precipitation dataset with contiguous storage structure and chunked storage structure. (a) a sample 3 

dimensional precipitation dataset and a time series at a specific location shown in purple. Only cell values in the first grid are shown; (b) storing 

each grid in a row-majored order. Purple cells are in the time series; (c) concatenating all grids into a one-dimensional array, which is the 

contiguous storage structure (d) storage of the precipitation dataset with chunked storage structure while the chunk size is 2 (longitude) x 2 

(latitude) x 2 (time). Each chunk is also stored as one dimensional array on disk in the end but chunks are independent from each other; (e) 

chunked storage of the precipitation dataset with 2 (longitude) x 4 (latitude) x 1 (time) as chunk size.

2. Preparation for benchmark test 

In order to assess the various solutions for managing MD array data it is important to clearly specify representative 
types of data and corresponding series of queries. Performance of different solutions depends on how similar the data 
is organized and stored compared to the requested selection. Designing an optimal solution is a challenge in which a 
proper balance has to be found, which can then be evaluated with the benchmark. Therefore, several experts were first 
interviewed. Next a representative dataset and set of queries were specified for the benchmark.  

In total 6 hydrologic experts are consulted. In this research, processes on data that can be executed with SQL are 
regarded as queries based on selection and operations (sum, difference, min, max, avg,..). Tasks such as numerical 
computations and simulations provided by professional software are not included. To clearly define query types a 
classification is performed (Table 1). 
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 Table 1. Classes of queries collected from consultancy
Query/operation class  
A. Selection based on dimension value B. Selection based on variable value 
C. Spatial join/ combination/ masking operations D. Mathematical calculation (sum, avg,…) 

Based on previous related studies [6,7] and practical experience, four main query classes are defined. In most cases, 
users first select the area of interest or a certain period of time (Class A), i.e. selection according to spatio-temporal 
dimension values and then focus on variable values. Class D, i.e. mathematic calculation is also quite often applied 
by hydrologists. While class B is the least crucial type. As to spatial operations such as joining or combining spatial 
data (class C), this is not very common in the daily work of hydrologic experts. Therefore, classes A and D get priority 
in the benchmark. In practice, classes are often combined as one query type. 

The size of datasets for benchmarking needs to be sufficiently large and has the potential to exceed TB level. 
Dimensions of the dataset should focus on spatial and temporal dimensions, this conforms to the datasets described 
by experts. After considering all requirements for datasets, i.e. data size, dimension and accessibility, the MPE (Multi-
Sensor Precipitation Estimate) dataset is selected for testing (Table 2).  

Table 2. MPE dataset for benchmarking 

Information stored 
Dimension 
count 

Temporal 
resolution

Spatial resolution and 
coverage 

Dimension Span 
(single file) 

Single file 
size

Data format

Rainfall rate (IRRATE); 
Availability; Quality 

3 15 minutes 
0.03 degree (3.3 km), 
1/3 world 

x, y, time 
(4 000, 4 000, 4) 

250 MB 
64-bit 
offset 

Dataset MPE stores the rainfall rate data processed from raw satellite data. The Availability information indicating 
whether a grid at a certain time step is missing and the Quality marking if the satellite data have been corrected 
according to ground measurements are also recorded. Hydrologic Research BV can provide records for more than two 
years, which results in the total amount of data larger than 4.18 TB (2 x 365 x 24 x 250 MB). 

According to most important classes of query types and the dataset selected, conceptual queries for benchmarking 
are designed as follows: 

Q1: Selection based on spatial dimensions for Delft (Class A) 
Q2: Selection based on spatial dimensions for north Netherlands (Class A) 
Q3: Extraction of time series for a single location in the Indian Ocean (Class A) 
Q4: Historical one month average value for the Netherlands (Class D) 

3. Result of benchmark test 

The benchmark test environment is based on the HydroNET-4 system [8] from Hydrologic Research B.V. The 
system can parse queries encapsulated in HTTP POST requests and then execute NetCDF queries using HydroNetCDF 
library developed and optimized by the company. While NetCDF-4 component is constructed on standard library 
NetCDF-4.1.3. SciDB database is communicated through a connecter developed on top of shim which is a super-basic 
SciDB client that exposes limited SciDB functionality through a simple HTTP API. The whole benchmark 
environment is installed on a Dell Inc. OptiPlex 745 server. The sever has one Intel processor with 2 cores, 6600 at 
2.4 GHz, 4 x 2 GB DDR2 RAM, 3 TB SATA 5400 rpm Western Digital hard disk. Data used for benchmarking are 
stored in NetCDF 64-bit offset format, NetCDF-4 format and SciDB separately (Table 3). Regarding benchmarking, 
a query is executed 20 times alternating between different storage solutions. The final number for query response time 
is the average of the middle 12 time records with the largest 4 and the smallest 4 values removed for each solution. 
Benchmark performance for different solutions is provided in Fig. 2. 

Table 3. Storage details of NetCDF solutions and SciDB 
Solution name Chunk size (Longitude x Latitude x Time) Compression (y/n) Total storage size 
NetCDF_64bit_offset_tiny - n 500M 
NetCDF4_4000_tiny 4 000 x 4 000 x 1 n 500M 
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NetCDF4_4000_C_tiny 4 000 x 4 000 x 1 y 6M 
SciDB_4000_tiny 4 000 x 4 000 x 1 n 40.1M 
SciDB_4000_C_tiny  4 000 x 4 000 x 1 y 11.1M 
SciDB_800_tiny 800 x 800 x 1 n 40.2M 
SciDB_800_C_tiny  800 x 800 x 1 y 11.3M 
SciDB_100_tiny 100 x 100 x 1 n 42.3M 
SciDB_100_C_tiny  100 x 100 x 1 y 12.8M 
NetCDF_64bit_offset_small - n 1.46G 
NetCDF4_4000_small 4 000 x 4 000 x 1 n 1.46G 
NetCDF4_4000_C_small 4 000 x 4 000 x 1 y 18M 
SciDB_4000_small 4 000 x 4 000 x 1 n 115.9M 
SciDB_4000_C_small  4 000 x 4 000 x 1 y 32.1M 
SciDB_800_small 800 x 800 x 1 n 116.4M 
SciDB_800_C_small  800 x 800 x 1 y 32.8M 
SciDB_100_small 100 x 100 x 1 n 122.2M 
SciDB_100_C_small  100 x 100 x 1 y 37.1M 
NetCDF_64bit_offset_medium - n 5.86G 
NetCDF4_4000_medium 4 000 x 4 000 x 1 n 5.86G 
NetCDF4_4000_C_medium 4 000 x 4 000 x 1 y 72M 
SciDB_4000_medium 4 000 x 4 000 x 1 n 489M 
SciDB_4000_C_medium  4 000 x 4 000 x 1 y 136.2M 
SciDB_800_medium 800 x 800 x 1 n 491M 
SciDB_800_C_medium  800 x 800 x 1 y 139M 
SciDB_100_medium 100 x 100 x 1 n 514.7M 
SciDB_100_C_medium  100 x 100 x 1 y 157.3M 
NetCDF_64bit_offset_large - n 41G 
NetCDF4_4000_large 4 000 x 4 000 x 1 n 41G 
NetCDF4_4000_C_large 4 000 x 4 000 x 1 y 504M 
SciDB_800_large 800 x 800 x 1 n 2.98G 
SciDB_800_C_large  800 x 800 x 1 y 864M 
NetCDF_64bit_offset_vlarge - n 176G 
NetCDF4_4000_vlarge 4 000 x 4 000 x 1 n 176G 
NetCDF4_4000_C_vlarge 4 000 x 4 000 x 1 y 2.1G 
SciDB_800_vlarge 800 x 800 x 1 n 13.7G 
SciDB_800_C_vlarge  800 x 800 x 1 y 3.88G 

(a)                      (b)               
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(c)                      (d) 

Fig. 2. performance of diverse solutions, (a) retrieving grid covering Delft at one time step; (b) retrieving time series of different lengths from a 
single location in the Indian Ocean at medium level; (c) retrieving time series of different lengths from a spot location in the Indian Ocean at very 

large level; (d) average calculation with different time steps at the Netherlands scale at very large level. 

4. Discussions 

A The results of the sub grid selection for Delft show that overall NetCDF-4 without compression is faster than 
other solutions (Fig.2. a). NetCDF 64-bit offset solution ranks second, followed by various SciDB solutions. However, 
by subtracting the additional noise introduced by SciDB connector, SciDB solutions can probably achieve the same 
performance as 64-bit offset solution, especially the arrays with small chunk sizes. When DEFLATE compression is 
applied to NetCDF-4 storage, the query performance degrades severely and it takes around 40 times longer to extract 
the sub grid than for uncompressed NetCDF-4 files. The compression of SciDB does not have significant influence 
on query response time. SciDB builds an index on RLE encoded data and the compression done by DEFLATE in this 
case, i.e. a secondary (de)compression, does not take that much time. All solutions scale well, that is performance 
keeps at a constant level as data size gets larger. Query performance on north Netherlands is not shown for the sake 
of its similar patterns to that of Delft. 

Two test groups are developed to investigate performance of time series extraction: medium (1 day) and very large 
(30 day) datasets (Fig.2. b ~ c). The first test is to extract time series of various lengths from NetCDF files and SciDB 
medium arrays (1 day of data). Benchmark results indicate that the NetCDF-4 solution without compression and 
SciDB_100 solutions are the fastest. SciDB solutions with large chunk sizes take more time. The negative effect of 
compression on SciDB arrays with chunk size 4 000 x 4 000 x 1 is significant. For small chunk sizes, compression 
does not have a negative impact. The DEFLATE compression of NetCDF-4 on the other hand still causes severe 
degradation of query performance (Due to visual effect, only numbers representing query response time are shown in 
Fig.2. c). Regarding scalability, as the amount of data increases, the average time to extract a time series reduces for 
NetCDF-4, SciDB_800 and SciDB_100 solutions. For others, the scalability keeps at a constant level. The second test 
focuses on very large arrays of SciDB. Due to the large query response time of compressed NetCDF-4 solution in the 
initial tests, it is excluded from benchmarking. Uncompressed NetCDF-4 remains the fastest solution, the 64-bit offset 
solution is nearly 10 times slower than NetCDF-4. Besides, the NetCDF-4 solution once again presents the pattern 
that the average time to extract the time series of one time step decreases when more data is queried. From the raw 
test records, it is found that NetCDF-4’s favorable scalability is due to the Windows caching mechanism: after the 
first query execution, response time decreases dramatically to a certain level. DEFLATE compression on SciDB array 
does not have significant effect on query performance. For SciDB solutions, an odd pattern arises that the average 
time to extract time series of one time step reach its minimum in the 96 steps case, while it rises again after that. The 
reason is that during the whole process of executing the query 20 times on a SciDB array, relevant data is cached into 
memory very slowly instead of cached completely into memory after executing the same query 2 or 3 times. So by 
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removing the 4 slowest response time records, some slower response times will remain and be used for calculating 
average query response time. 

The fourth query is average calculation (Fig.2. d). NetCDF-4 shows the best performance. The 64-bit offset solution 
comes second while SciDB solutions take more time to finish. Performance of the normal SciDB array and its 
compressed version do not vary much. The execution of average calculation is composed of two phases for NetCDF 
file solutions. First phase is to extract the related spatiotemporal sub cube from the whole dataset. Then aggregation 
is performed on the selected data later in a second phase. HydroNET-4 records required time for both phases, this 
indicates that average calculation is hundreds of times faster than sub selection. But the combination of operators 
“aggregate” and “between” for average calculation in SciDB results in much more overhead than only sub selection 
with the “between” operator. Inefficient processing ability with combined operators is a problem indicated by the 
SciDB team. A noticeable point for NetCDF solutions is that when the average is calculated for 2 880 time steps, the 
average query response time suddenly increases several times, especially for the NetCDF-4 solution. The raw 
measurements of the NetCDF-4 solution show that all 20 measurements are at nearly the same level. This indicates 
that Windows cached little relevant data for the aggregation query. The reason for this is that the query executed for 
the 64-bit offset solution flushes cached NetCDF-4 data due to the benchmarking method (i.e. For (int i = 0; i < 20; 
i++){Q4(64bitoffset); Q4(NetCDF-4); Q4(SciDB);}). Average calculation with less time steps results in smaller query 
results of sub selection, which is probably the reason why cache flushing does not occur in that case. 

5. Summary 

Queries and datasets frequently used by water experts are collected by means of interviews. After query 
classification and designing, specific datasets and queries used for benchmarking are determined. In total 9 criteria 
are defined to compare MD array DBMSs, as a result SciDB is selected for benchmarking. After constructing a test 
environment in the HydroNET-4 system, NetCDF and SciDB solutions are benchmarked and analyzed. The overall 
result indicates that the solution of NetCDF-4 without compression and 64-bit offset solution outperform SciDB 
solutions. Although SciDB query response time include additional noise like HTTP communication and data transfer, 
the noise does not change the final conclusion due to the large gap of overall query performance between solutions. 
As the benchmark results indicate, chunk size plays an important role in query performance and small chunk sizes are 
preferable for SciDB data management. But small chunk sizes in the current implementation are not feasible because 
it requires too much main memory. DEFLATE compression of SciDB can either have negative effect or no effect on 
query performance. DEFLATE compression of NetCDF-4, on the other hand causes significant query performance 
degradation. The benchmark tests also reveal the complexity of query execution. Cached NetCDF data may be flushed 
by another query executed and SciDB’s slow caching method makes it miss benefits as a result of caching. Nonetheless, 
based on the research results, a general suggestion for data management is that before importing all data into specific 
DBMSs, ICT architects can first spend some time on improving available file based solutions. Besides, for a given 
storage solution, it is suggested to optimize chunk size for the most important queries. If a sufficiently fast solution 
for all queries cannot be found, a multiple representation solution can be considered. 
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