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Abstract

Efficiency in handling instructions within compilation and control processes is essential for scala-
bility and fault-tolerant quantum computation. To mitigate the limited bandwidth for transmission of
instructions and energy bottlenecks in cryogenic control architectures, this thesis aims to develop a
compressed representation of quantum circuits. To achieve this goal, we study the concepts of algo-
rithmic information theory and resource theory of computation. We focus on description complexity and
establish compression as a useful estimate of algorithmic description complexity. With this motivation,
we develop a generalized framework for the synthesis of quantum unitaries into a set of native gates
and present a Huffman-encoded representation of the instruction stream that has a short code dictio-
nary and offers a 60% compression over binary encoded representations. The developed framework
offers 2 major contributions: an energy-efficient encoded representation of the quantum instruction
stream and an estimate of the description complexity for quantum circuits. It qualifies as a success-
ful algorithmic approach towards optimizing the QISA and aids the discovery of high-level quantum
programming constructs.

Sibasish Mishra
Delft, February 2024
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1
Introduction

A classical computation is like a solo voice—one line of pure tones succeeding each other. A quantum
computation is like a symphony—many lines of tones interfering with one another.

- Seth Lloyd, MIT

Before introducing the project, we begin by setting up the premise of motivating quantum computing
from an investor’s and a theorist’s point of view. Developing this dual motivation is essential as it also
resonates with the inspiration and development of the project and its contributions.

1.1. Investor's Motivation for Quantum Computing
Starting with a brief overview of the history of computation, we follow the tide of new innovations

and technology to further the scope of computation. We confront the challenges and roadblocks in
the way of advancing hardware for improving computational power. We explore the possibilities of
quantum computing, its advantages, and also the roadblocks and challenges on the way to achieving
large-scale fault-tolerant quantum computing.

1.1.1. Evolution of Computation: A Concise Historical Overview
The history of computation is one of the most fascinating stories of human progress, marked by

distinct eras and breakthroughs. Originating in the pre-mechanical era, dating back to as early as 1500
BC, manual tools such as the counting board and abacus defined this period. Then came the mechan-
ical era of computers, which started with the development of mechanical clocks that were capable of
performing astronomical calculations. The most notable innovations of this era are Blaise Pascal’s arith-
metic machine (1642), Charles Babbage’s Difference engine (1822), and the analytical engine (1837).
The invention of the vacuum tubes in the mid-20th century and the subsequent development of tran-
sistors replaced the mechanical parts with the dawn of the electronic age, resulting in the development
of the first computers. The microelectronics era introduced the integrated circuit, allowing us to place
several miniature transistors on silicon chips. The development of integrated circuits led to an era of
rapid growth and innovation, encapsulated by Moore’s Law, which predicted the doubling of transistors
on a chip approximately every two years. This exponential growth spurred unprecedented advances in
every sector of society, from science and medicine to business and entertainment. The genesis of the-
oretical computer science coincided with the evolution of computer hardware technologies, both of the
domains influencing and shaping each other’s trajectory. The Universal Turing Machine, a theoretical
construct presented by Alan Turing in 1936 [1], is capable of simulating the behavior of any computa-
tional device by employing an algorithmic approach. The universality of the Turing machine concept
played a pivotal role in the theoretical understanding of computation and the potential limitations of
computation.

1.1.2. Slowdown of Moore's Law; Accelerators, ASICs, and Quantum Computing
The period of exponential increase [2] in computational power, as encapsulated by Gordon Moore,

held true for several decades. However, as silicon-based technologies neared their physical limits,
the pace of improvement began to slow, leading to a plateau in computational power. Conventional

1



2 1. Introduction

computing started facing significant challenges, notably in solving complicated problems requiring mas-
sive computer resources, such as modeling molecular interactions or optimizing enormous systems [3].
To address the diminishing returns of traditional CPU scaling, the industry has turned towards spe-
cialized hardware accelerators, parallel computing, and application-specific integrated circuits (ASICs).
Accelerators are specialized processors designed to handle specific kinds of workloads with greater ef-
ficiency than general-purpose processing units. Examples are graphics processing units (GPUs), tensor
processing units (TPUs), and field programmable gate arrays (FPGAs). Enter quantum computing, a
revolutionary approach leveraging the principles of quantum mechanics to process information. Quan-
tum computing offers a promising choice as an accelerator due to some remarkable attributes such
as parallelism and superposition, quantum entanglement, speed-up, and the potential to be imple-
mented in hybrid approaches and machine learning. Quantum computing promises to break through
the plateau, offering solutions to problems once thought intractable and paving the way for a new era
of discovery and innovation.

1.1.3. NISQ era: Roadblocks and Challenges on the Path to FTQC
While the potential of quantum computing is compelling, there are several challenges that must be

addressed. Quantum bits (qubits) are prone to several imperfections. The current era of quantum com-
puting is constrained by the limited qubit count and the susceptibility of these qubits to decoherence
and environmental errors, commonly referred to as quantum noise. Consequently, it has been termed
the Noisy Intermediate-Scale Quantum (NISQ) era[4]. Numerous devices embodying the characteris-
tics of this era have been developed and tested, providing an immediate platform for experimentation.
This period has also spurred innovation in algorithms and compilation strategies tailored to noisy envi-
ronments, such as Variational Quantum Eigensolver (VQE)[5] and Quantum Approximate Optimization
Algorithm (QAOA)[6], which utilize classical optimization techniques to mitigate the constraints posed
by limited quantum resources. However, the qubit counts in the few-hundreds, symbolic of the NISQ
era, fall short of enabling fault-tolerant operation and demonstrating quantum advantage. Noise and
scalability continue to pose significant roadblocks toward achieving Fault-Tolerant Quantum Computing
(FTQC). Intensive research endeavors are underway to surmount these obstacles by exploring quantum
systems with enhanced scalability potential, engineering solutions for prolonged coherence times, and
devising error correction techniques through the development of diverse logical architectures. Overcom-
ing these hurdles will pave the way for FTQC to unlock new realms of application, offering substantial
computational advantages in addressing practical problems.

1.2. Theorist's Motivation for Quantum Computing
Quantum computing has revolutionized computation and information theory, challenging classical

assumptions and inspiring new research. Its emergence has expanded the domains of information
theory, complexity theory, and the theory of computation. In this section, we see some distinctive
features of quantum computation and its impact.

1.2.1. Distinctive Features in Comparison to Classical Computing
Quantum computing is quite a distinct and novel field that fundamentally diverges from classical

computing paradigms. This uniqueness can be attributed to many quantum properties such as (1)
Superposition: Unlike classical bits that exist in a state of 0 or 1, qubits can exist in multiple states
simultaneously; (2) Entanglement: The phenomenon where qubits become correlated, and the state of
one qubit influences the state of another; (3) Reversibility: Quantum operations that are performed us-
ing quantum gates are inherently reversible that can be possibly exploited to bypass the thermodynamic
costs of computation; (4) Quantum measurement: A probabilistic process introducing uncertainty in
quantum systems.

1.2.2. Impact
The field of quantum information is well-established as an interdisciplinary field involving quan-

tum mechanics, computer science, and information theory. It encompasses critical domains such as
quantum algorithms and computing, communication and cryptography, and the extension of classical
information theory definitions to encompass quantum information. Moreover, its impact on theoretical
computer science and complexity theory is profound. For instance, the introduction of quantum Turing
machine models was driven by generalizing the definitions and incorporating principles of quantum me-
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chanics into the universal Turing machine model. The emergence of quantum computing algorithms
for solving problems in polynomial time, with a bounded error probability, described by the complexity
class BQP [7], violates the extended Church-Turing thesis [8].

1.3. Roadmaps
At present, the trajectory of quantum computing research can be broadly mapped across four

distinct avenues. Listed below are the key avenues following a bottom-to-top stack approach, where
substantial advancements are being pursued to drive forward the field of quantum computation:

1. At the hardware level, the research community is actively exploring new materials for the fabrica-
tion of qubits [9] and engineering of better design features [10]. These endeavors are targeted at
mitigating the cause behind different noise factors that are currently responsible for plaguing the
quantum processors, improving coherence times, and building space-efficient and more accurate
control and measurement circuitry, leading to higher scalability.

2. The current road map in Quantum Error Correction focuses on improving both the number and
fidelity of logical qubits through the application of various techniques tailored to specific platforms
[11]. This pursuit involves exploring novel logical architectures [12] and error correction codes
[13] designed to achieve lower error rates and increased scalability. These efforts represent a
crucial pathway toward unlocking quantum advantage and facilitating the realization of practical
quantum computing applications.

3. Conventional research in low-level control/compilation in quantum systems emphasizes the inte-
gration of software and hardware through advanced low-level control techniques. The community
and industry are taking initiatives for the adoption of standardized representations such as Open-
QASM3 [14] and the exploration of multi-level intermediate representations (MLIR) to streamline
quantum programming and compilation processes [15]. Exploration of a cryogenic control archi-
tecture for scalable and integrated control processes [16], the quest for building more efficient
QISA by handling trade-offs between different resources [17], and engineering optimal pulse
shaping are some of the approaches that hold great promise.

4. Variational circuits and algorithms are finding novel applications in developing new hybrid algo-
rithms ranging from solving optimization problems to performing molecular simulations. Quantum
machine learning (QML) is a fascinating field leveraging quantum computation in different ma-
chine learning models for classification and clustering, feature selection [18], and optimization.
QML techniques aim to offer advantages in areas such as generalization, accelerated learning
rates, and exploration of higher-dimensional data spaces [19, 20].

Building upon the outlined roadmaps, this project is targeted at the 3rd avenue, involving improve-
ments in compilation and more efficient QISA design. Embracing concepts from resource theory and
descriptive complexity and taking cues from the efficiency gains seen in code compression within em-
bedded systems, this endeavor seeks to harness similar principles for quantum computation.

1.4. Research Question: Compressed Representation of Quantum Computation
The central idea of this thesis revolves around the synthesis of quantum circuits into a discrete basis

and finding a compressed expression of the quantum instruction stream. With the growing need for
higher computational power and the functional limits of conventional circuitry, the size of the instruction
stream going to the processor increases significantly, exerting a substantial and unproductive overhead
in terms of system energy and processor core power. This problem is ominously present in quantum
systems as well. The growing number of qubits and more sophisticated quantum algorithms and
protocols, such as error-correcting regimes intensify the need for effective control processes. Against
this backdrop, the research question at the heart of this study emerges:
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How can we compress the representation
of decomposed quantum circuits?

Estimation of descrip-
tion complexity for

quantum computation

Design of new com-
pressed quantum in-

struction set architecture

Discovering high-level quantum
programming abstractions

Optimizing the energy effi-
ciency of quantum control

This thesis aims to answer the main research question and, in the process, address its sub-aspects.
The study starts with a review of computational resources with a particular focus on description com-
plexity and its relation with other resources. This exploration prompts the analysis of quantum circuits
from an information theory viewpoint and establishes a theoretical foundation that supports compres-
sion strategy as an estimate of the description complexity. The following two aspects are geared toward
the practical application of encoding decomposed quantum circuits for generating compressed repre-
sentations of quantum instruction streams, eventually empowering energy-efficient quantum control.

1.4.1. Relevance
Theoretical Justification

In the field of theoretical information theory and resource theory of computation, efforts have been
made to establish a link between the thermodynamic cost of computation and the associated evolution
of algorithmic complexity.

One of the most notable results in this field is the Landauer limit [21] which presents a bound on the
minimum energy dissipation for performing an irreversible computation. Following this seminal result,
significant attention, most notably by [22], [23], [24] and [25] has been directed towards establishing
a direct correlation between the thermodynamic cost of computation in the form of change in entropy
and the change in algorithmic complexity. Despite these attempts, practical methods to estimate the
algorithmic description complexity remain limited. In this project, we develop and propose an estimate
of the description complexity stemming from the encoded representation of decomposed quantum
circuits. This method will offer a lens to evaluate quantum circuits based on their description complexity
and help discover high-level quantum programming abstractions.

Practical Justification
Quantum processors operate on quantum principles, yet their control mechanisms remain classical.

Control instructions, such as pulse information or Quantum Assembly Language (QASM), vary depend-
ing on the abstraction level. Therefore, the description of quantum processes has to be established
at the Quantum Instruction Set Architecture (QISA) level. The thesis offers the way of estimating this
description complexity by building a compressed instruction stream based on updated definitions of
code-words.

The exploration of the design space of code compression in low-power embedded systems is mo-
tivated from the increasing computational load and constrained chip resources.. This thesis aims to
perform this exploration of code compression in the domain of quantum computing.

Contemporary attempts at engineering cryogenic control architecture encounter challenges posed
by stringent power budget as operational temperatures decline. The utilization of compressed in-
struction streams presents an avenue for mitigating energy consumption concerns within cryogenic
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environments. Such compression not only enhances operational efficiency but also diminishes noise
levels during the transmission of instructions from ambient to cryogenic temperatures.

1.4.2. Methods to be Explored
The quantum compilation process is essential for implementing quantum unitaries or circuits on

quantum hardware. Central to this process is the synthesis of the quantum unitary in terms of a native
gate-set. The investigation of this thesis starts with the exploration of decomposition of Harr-Random
unitaries for 1q systems into a discrete basis of gates using Solovay-Kitaev decomposition (SKD). We
adopt the qiskit implementation of the SKD algorithm and expand its scope from a hardcoded set of
single qubit gates to operate with any general set of gates input by the user.

Figure 1.1: Pipeline of compression framework

Following this foundational exploration, the investigation proceeds to delve into the application of
Huffman Encoding in three distinct iterations integrated with the decomposition function. The objective
is to derive a compressed instruction stream. This effort results in the development of a Python tool
capable of returning an encoded instruction stream

Subsequently, the scope is broadened to include multi-qubit systems, wherein the decomposition
and compression techniques are scaled up to accommodate the complexities inherent in such systems.
The decomposition and compression scheme are then tested on selected benchmark circuits. These
circuits are real quantum algorithms that are popularly studied and used and this experiment aims to
quantify the description complexity of ‘useful’ circuits and potentially discover high-level contexts.

1.4.3. Overview of the Thesis
The thesis is segregated into 6 chapters and follows a structured narrative that mirrors the sequential

progression of the project’s development.

• In Chapter 2, the story starts with a build-up of the background of algorithmic information theory
and the foundation for this thesis: description complexity.

• Chapter 3 describes different ways of describing a quantum system and explains our choice of
the unitary matrix as the quantum description. Methods for the decomposition of single and
multi-qubit unitaries into quantum circuits and the proposed methodology of reconstructing the
circuits using Solovay-Kitaev basis sequences are delineated in great detail.

• Chapter 4 lays down the framework of Huffman coding and explains the integration of Huffman
coding in our decomposition method to obtain encoded quantum instruction streams for describ-
ing the unitary.

• In Chapter 5, we will have a broader look at the quantum stack and contemporary design of
QISA. We evaluate the methods proposed in the thesis and elucidate the theoretical and practical
contributions of the work.

• Finally, in Chapter 6, we conclude the thesis with an outlook of the project.





2
Background

This chapter contains the theoretical background for the thesis project. It outlines the literature
review phase of the project and covers essential concepts in the resource theory of computation,
algorithmic information theory, and the extension of these ideas in quantum computing. We focus
particularly on description complexity, its formulation, related measures, and ways to estimate it. We
analyze compound measures that involve multiple computational resources and eventually present a
table that aggregates these measures.. This activity is significant in laying the groundwork for the
project and inspires the development of experiments for the estimation of description complexity for
quantum circuits and the subsequent search for practical applications.

2.1. Resources for Computation
The study of computational resources is essential for understanding the capabilities and limitations

of computing systems and the algorithms that run on them. Computational resources refer to the
various means and constraints under which computational tasks are executed. The expenditure of
computational resources, as studied and formulated in the domain of classical computing, also holds
analogous significance in quantum computing systems. Therefore, we need to build a comprehensive
background on resource theory for computation in order to understand the resource costs for quantum
computing and control and, in turn, improve the resource efficiency of quantum algorithms and other
processes in quantum computation.

2.1.1. Different Resources for Computation
Defining something as a resource for computation involves identifying factors that influence the

efficiency, scalability, and feasibility of computational tasks. While traditional resources like time and
space complexity provide foundational metrics, novel resources encompassing unconventional mea-
sures and domain-specific considerations are valuable to assess the computational workload. Below
are some computational resources that are foundational and find relevance to this project:

1. Time Complexity: The amount of time taken by an algorithm or process to complete. The
asymptotic time complexity is the hardware agnostic measure of the number of time steps that
scales as a function of the input size. The runtime or actual time is the time taken by the algorithm
that depends on both the input size and the execution time on the machine.

2. Space Complexity: The amount of memory or storage space an algorithm uses during its
execution. Total space complexity includes the input space taken by the algorithm depending on
the input size and the auxiliary space, which is the extra/temporary space taken by the algorithm
during execution.

3. Energy: Energy, or the thermodynamic cost of computation, is a crucial computational resource.
It can be characterized by the heat incurred by running an algorithm. Studying the energy cost of
algorithms can be motivated by operational power limitations of low-power or cryogenic devices
or be aimed at reducing the carbon footprint and operational costs of devices.

7
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4. Description Complexity: The description complexity, formally known as the Kolmogorov com-
plexity, measures the amount of information required to describe an object (such as a string or
a data structure) in the shortest way possible. This measure is theoretically well-formulated and
studied in the domain of classical information theory. It sets a theoretical bound on the minimum
size of programs running on a formal universal automata for performing a particular task.

5. Approximation: In certain situations, obtaining an exact deterministic solution is expensive in
terms of specific computational resources such as time or space. Approximation algorithms aim
to provide near-optimal solutions with guaranteed bounds on their performance.

2.1.2. Units and Ways of Estimation of Resources
One of the most essential characteristics of computational resources is quantifiability. A resource

should be measurable or quantifiable in a meaningful way. This provides insight into the impact of
resource costs on computation and helps in a comparative analysis of different algorithms or processes.
Going over the units and ways of estimation and quantification of the resources listed in the above
subsection:

1. Time Complexity: The asymptotic time complexity can be expressed in different notations and
is estimated by counting the number of time steps in different situations based on the size of the
input 𝑁:

• Big-theta notation Θ(𝑁) represents both the upper and lower bound on the number of time
steps for an algorithm and is often used to analyze the average-case time complexity.

• Big-O notation 𝑂(𝑁) represents the upper bound on the number of time steps for an algo-
rithm and describes the worst-case time complexity.

• Big-omega notation Ω(𝑁) represents the lower bound on the number of time steps for an
algorithm and describes the best-case time complexity.

The actual time or runtime, on the other hand, also includes the time taken for compilation
and execution of an algorithm on a hardware device and would be ideally quantified in terms of
wall-clock time (Seconds) or in the number of clock cycles.

2. Space Complexity: Similar to asymptotic time complexity, the asymptotic space complexity
can be estimated in different notations (Big-𝑂, Big-Θ and Big-Ω). These estimates are again
expressed as functions of the input size. The auxiliary space includes the program memory
(instruction fetch) and the working memory (data fetch). The program memory is nonvolatile
and stores the hardware-level instructions, and the data memory is used to store the values of
variables and parameters during the execution of a process. Both program and working memory
are quantified in units of bytes and their multiples: Megabytes and gigabytes.

3. Energy: The energy consumption can be measured in Joules (J) or kilowatt-hours (kWh), de-
pending on the scale and context of computation. The energy consumption can be estimated
by power monitoring tools to determine the energy consumption per cycle and clock speed of
specific computing devices and account for the energy cost of the transmission of information in
cables.

4. Description Complexity: There is no general routine to calculate the exact Kolmogorov com-
plexity of an arbitrary string. This limitation bears a resemblance to the halting problem, un-
decidable problems, or Gödel’s incompleteness theorem. However, the description complexity
can be approximated using different techniques. Standard ways of estimating the description
complexity can be the compressed bit-length of a string or program using lossless compression
methods such as BZip2 [26] and LZ [27] that are aimed at exploiting statistical regularities. Al-
ternate ways, such as BDM [28], estimate the algorithmic complexity of smaller blocks of strings,
which are then summed up to reconstruct the original data. BDM offers a hybrid approach to
evaluating the complexity by combining Shannon entropy in the long-range with local predictions
of algorithmic complexity.
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5. Approximation: The performance of approximation algorithms is typically measured in terms of
the approximation ratio or factor, which compares the algorithm’s solution to the optimal solution.
Approximation algorithms can be implemented in many ways:

• Approximate Circuits can be substituted in place of blocks of complicated circuits for perform-
ing arithmetic operations that reduce the time/space overhead. Software-level approxima-
tion techniques such as memoization, loop perforation, and task skipping are some strategies
that aim to trade off the accuracy of the program with execution time.

• Approximate storage and memory refer to devices with lower /controlled refreshed rates
that lead to improvement in the working memory cost and also energy consumption.

2.1.3. Quantum Computing vs Classical Computing Based on Resources
Drawing parallels between computational resources in a classical and quantum setting involves

accounting for the principles of quantum mechanics and how they impact the estimation of these re-
sources. We’ll focus on the gate-based model of quantum computing for this comparison and through-
out the thesis, although other models exist, such as adiabatic quantum computing, measurement-based
quantum computation, and QTM. Exploring how these resources translate into the context of quantum
computing as listed in the preceding subsections:

Resources Classical Computing Quantum Computing
Time Asymptotic Time Complexity: Number of

time steps for the algorithm, considering
unit time for each operation as a function
of the input size. Total time complexity
includes the runtime in addition to the

asymptotic time complexity.

Quantum Circuit Depth: Total execution
time of all the gates in a quantum circuit.
Parallel operations can be performed in the
same time step. Gate execution times and
coherence time specific to hardware

platform.
Space Asymptotic space complexity: Amount of

“memory units” needed for the algorithm
as a function of the input size. Memory

units are abstract in nature and can denote
bits, words, or the number of nodes,
depending on the problem and data

structure used. Total space complexity also
includes the runtime memory (in bytes).

Number of qubits required for algorithmic
operations, with qubits representing
multiple classical parameters/variables
simultaneously through superposition.
Offers space-efficient solutions for

complicated problems, yet qubit resources
are still low for a definite quantum

advantage.
Energy Energy in Joules/KWh expended by the

processor while performing an algorithm or
computational process.

Operational energy costs incurred by the
control architecture and the refrigeration
process (usually very energy expensive).
Algorithmic energy cost potentially more

efficient than classical computing.
Description The shortest description of the algorithm

or problem instance in a fixed
computational model (UTM model).

The shortest quantum description of the
circuit/algorithm that generate a specific
quantum state starting from an initial state.
Depends on the theoretical model for
formulation of the quantum description
complexity and the description of the

quantum states themselves.
Approximation Near optimal solutions by modified

algorithm design, memory and time
management for execution with a
guaranteed performance bound.

Approximate quantum algorithms with
upper bounded error probability.

Exploration of trade-offs between process
fidelity and depth / no. of qubits /
compressed quantum circuit.

Table 2.1: Quantum Computing vs Classical Computing based on Resources

2.2. Examples of How Resources Become a Bottleneck
Example 1:

NP-Hard problems: This is the complexity class of problems that are as hard to solve as the hardest
problem in the NP (non-deterministic polynomial time) class. Some examples of this class of problems
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are the traveling salesman problem, the knapsack problem, and the satisfiability problem. The solutions
to these problems take polynomial time in non-deterministic Turing machines; however, simulating them
on deterministic Turing machines–those that model real-world computers–can cost exponential time in
the worst case. As the problem size increases, it becomes infeasible to solve them with conventional
computational strategies and resources.

Mitigation: Approximation Algorithms; Instead of aiming for the exact solution, approximation al-
gorithms provide solutions that are close to optimal within a reasonable time frame.

Example 2:
The number of qubits for useful quantum computing applications such as drug discovery and molecular
simulations. The quantum resource cost, such as the number of qubits, scales exponentially with
molecule/problem size and often faces a bottleneck, given the contemporary platforms in the NISQ-
era.

Mitigation: Incorporation of classical optimization and hybrid strategies for faster spanning of the
solution space and convergence to compensate for the limited qubit count. Exploration of analog and
digital-analog hybrid computation strategies specialized for specific class of problems designed to har-
ness particular benefits of the hardware platform.

Example 3:
Theoretical limits and bounds:

• Landauer Limit: The theoretical limit of the minimum cost of energy for erasing 1 bit of informa-
tion.

𝐸 ≥ 𝑘𝐵𝑇 ln2 (2.1)

𝑘𝐵 is the Boltzmann constant and 𝑇 is the operation temperature of the system. Essentially a
thermodynamical limit in computation, this bound sets a constraint on the number of irreversible
logical operations that can be performed while dissipating a fixed amount of energy.

• Quantum Speed Limit Theorems: Theoretical limitations that set a constraint on the minimum
time it takes to evolve from one orthogonal state to another. Two popular theorems are Mandelstam-
Tamm theorem [29]

𝑡 ≥ ℎ
4𝛿𝐸 ; where, 𝛿𝐸 = ⟨𝜓∣𝐻2∣𝜓⟩ − (⟨𝜓∣𝐻∣𝜓⟩)2 is the variance in system energy (2.2)

and the Margolus–Levitin theorem [30].

𝑡 ≥ ℎ
4⟨𝐸⟩ ; ⟨𝐸⟩ = ⟨𝜓∣𝐻∣𝜓⟩ is the average energy (2.3)

• Beckenstein’s Bound: This limitation was proposed by Jacob Beckenstein in 1981 [31] that im-
poses a bound on the maximum entropy that can be contained in a finite region of space and
energy. In the context of computation, it can be seen as a limitation on the amount of information
that can be processed or stored within a physical system.

𝑆 ≤ 2𝜋𝑘𝑅𝐸
ℎ̵𝑐 (2.4)

𝑆 represents entropy, 𝑘 is the Boltzmann constant, 𝑅 is the radius of a sphere that can enclose
the system, 𝐸 is the total mass-energy (including rest masses), ℎ̵ is the reduced Planck constant,
and 𝑐 is the speed of light.

2.3. Description Complexity
The Description Complexity for an object is the measure of the amount of information required to

describe it. It is also known as Kolmogorov Complexity, Algorithmic Complexity, or Algorithmic Entropy.
In the context of information theory, the description complexity of an object can be defined as the length
of the shortest program written in a set language/description that can compute the object as output.
It forms an essential concept in Algorithmic Information Theory and is named after the mathematician
Andrey Kolmogorov, who introduced this idea for the first time in 1963 [32]. Mathematicians Ray
Solomonoff and Gregory Chaitin are also accredited for contributing independently to the study of
algorithmic complexity and laying the foundations of algorithmic information theory.
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An illustrative example of a binary string of length 48 is adopted. The string can possess varying
levels of description complexity. The 3 cases shown below are Python codes for printing the string. It
must be noted that the instruction for printing the string in any other language also qualifies for a valid
description complexity, which may be even more concise.

1 print('010101010101010101010101010101010101010101010101') # 57 characters

1 [print('010101010101', end="") for _ in range(4)] # 49 characters

1 [print(_ % 2, end="") for _ in range(48)] # 41 characters

2.3.1. Turing Machines
Before delving into the formal definition of description complexity, it is essential to lay the ground-

work for a (Universal) Turing machine. Proposed by the British mathematician Alan Turing in 1936,
the Turing machine stands as a cornerstone in the theory of computation, providing a fundamental
framework for comprehending the constraints and potentials inherent in algorithmic processes.

Figure 2.1: An imaginary physical Turing machine with its various components labeled

As shown in the diagram above, it consists of the following components:

1. Tape: An infinitely long tape divided into cells, where each cell contains a symbol from a finite
alphabet. The tape serves as the machine’s memory. There’s the possibility of an output tape
along an input tape as well (not shown in the figure)

2. Head: A read/write head that can move left or right along the tape.

3. State Register: The specific state of the machine at any given time that determines its behavior.

4. Transition Function: A set of rules or transitions that specify the machine’s behavior. The transition
function dictates what action to take (read, write, move left, move right, change state) based on
the current state and the symbol read from the tape. The

The key idea behind the Universal Turing Machine (UTM) is its capability to interpret and execute
the instructions of any Turing Machine, effectively making it a universal model for computation. It
involves encoding the descriptions of other Turing Machines and their inputs on its tape. The UTM
reads this encoded information, interprets it as the description of another Turing machine, and sim-
ulates its operations. The notion of a Universal Turing Machine is fundamental to the Church-Turing
thesis, which suggests that any effectively calculable function can be computed by a Turing machine
(or equivalent model). The algorithmic information of quantum computation can be described using
classical instructions [33]. Therefore, the classical construct of UTM, which will form the foundation
for discussing Kolmogorov complexity, can be extended to the domain of quantum computing.

Now that we have established the basis of a UTM, we can move back to description complexity. We
say that a program 𝑝 is a description of a string 𝑠 if the program 𝑝 when run on a UTM 𝑈, outputs
the string 𝑠. We can write it as 𝑈(𝑝) = 𝑠. The length of the shortest description for the string can be
stated as:
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𝐾(𝑠) = min
𝑝

{𝑙(𝑝) ∶ 𝑈(𝑝) = 𝑠} (2.5)

Here, 𝑙(𝑝) represents the length of the program 𝑝 measured in bits. Hence, 𝐾(𝑠) is the minimal
length of the program that computes the output string 𝑠. Therefore, the Kolmogorov complexity pro-
vides an estimate of the intrinsic complexity or compressibility of a string. In fact, it can be considered
as the theoretical limit on the highest compression that can be achieved by a general-purpose com-
pression technique, and it inspires researchers and developers to reach as close to this limit as possible.
Some of the key properties of Description Complexity are listed below:

Key Properties
• Invariance Theorem: The description complexity of a string is “nearly” invariant of the choice
of the description language or the UTM 𝑈. If we go from a description language 𝐿1 to 𝐿2, the
description complexity changes at most by a constant 𝑐 that is independent of the string 𝑠 and
only depends on the description languages 𝐿1 and 𝐿2. The constant factor can be interpreted
as the cross-compiler length between languages. The proof for this theorem was proposed
independently by the three mathematicians, Kolmogorov in [32], Solomonoff in his two-part paper
[34], and Chaitin in [35]. This property shows the universal nature of description complexity and
marked a pivotal moment in the birth of algorithmic information theory.

• Semi-computability: It is not possible to have a program that can take an object or string as
input and compute the exact Kolmogorov complexity as the output. However, it can be approxi-
mated and bounded using different techniques and heuristics.
Upper Bounds: The description complexity for a string cannot be greater than the length of the
string, i.e., 𝐾(𝑠) ≤ 𝑙(𝑠) + 𝑐. The constant factor 𝑐 follows from the invariance theorem.
Determining the actual value of description complexity is challenging due to the halting problem.
Techniques such as lossless compression, block decomposition, prefix encoding and concept dis-
covery help in improving estimation strategies of description complexity.

• Symmetry of Information: For strings 𝑠 and 𝑡, 𝐾(𝑠, 𝑡) ≈ 𝐾(𝑠) + 𝐾(𝑡∣𝑠), where 𝐾(𝑠, 𝑡) repre-
sents the description complexity of the pair (𝑠, 𝑡), and 𝐾(𝑡∣𝑠) is the complexity of 𝑡 conditional on
𝑠. The conditional Kolmogorov complexity 𝐾(𝑡∣𝑠) can be interpreted as the information content
of the process that computes the string 𝑡 with string 𝑠 as the input.
In essence, this property illustrates that the complexity of both the strings together roughly equals
the complexity of the first string and the complexity of the second string that is not contained
in the first one. This property explains the interconnectedness of information and forms the
foundation for the study of thermodynamics of quantum computation in [23]

2.3.2. Related Measures and their Estimation
The extensive study of description complexity in the context of algorithmic information theory has

led to the formulation of different related measures that provide meaningful insights.

Martin Löf Randomness
Martin Löf randomness, named after Swedish mathematician Per Martin-Löf is a formalism that

classifies whether binary sequences (or strings in general) are “random” based on a number of tests.
Strings that pass the tests are termed as being Martin-Löf random and are incompressible. These
tests are heuristic in nature can be set according to the problem at hand and are aimed to recognize
statistical patterns or context in sequences. These statistical patterns are exploited by compression
algorithms. In their absence, the data is said to have a high description complexity and is rendered
incompressible.

Algorithmic Solomonoff Probability (AP)
Ray Solomonoff presented this approach in his Theory of Inductive Inference [34] as an a priori

probability that can be used to predict future data from a string of past data. Mathematically, the
Solomonoff probability of a string 𝑠 is given by

𝐴𝑃(𝑠) = ∑
𝑝∶𝑈(𝑝)=𝑠 2

−𝑙(𝑝) (2.6)



2.3. Description Complexity 13

where, the sum is taken over all the programs 𝑝 which when run on a UTM 𝑈 output the string 𝑠. 𝑙(𝑝)
denotes the length of the program 𝑝, and the term 2−𝑙(𝑝) is associated with the universal probabil-
ity distribution of all such programs. Solomonoff probability has a close connection with description
complexity from the evident major contribution to the Solomonoff probability from simple/shorter pro-
grams [36]. His theory formalizes Occam’s razor by allocating higher probabilities and favoring pro-
grams with shorter descriptions. However, the key challenge with Solomonoff’s probability is that it’s
non-computable and can only be estimated in a practical setting. This also stems from the fact (as in
the case of Kolmogorov complexity) that there is no general method to enumerate all the programs
that compute the output string 𝑠 and halt.

2.3.3. Review of AIT in Quantum Information
Many of the above-discussed concepts of algorithmic information theory can be extended to the

scope of quantum computation. This is a promising field of study aimed at understanding the resource
costs of quantum computation and contributes to the design and optimization of quantum algorithms
at a higher abstraction level. Before delving into this section, it is essential to select a formal model of
quantum computation for discussing further ideas. Just as Kolmogorov complexity is formally defined
on a UTM model of computation, the introduction of quantum Kolmogorov complexity necessitates a
quantum Turing machine model (QTM). The concept was introduced by David Deutsch by presenting
the QTM model as an extension of the Church-Turing thesis [37].

The notion of quantum Kolmogorov complexity for a quantum state refers to the minimum amount
of either quantum [38] or classical [33] information needed to describe a program. This program,
when executed on a universal quantum computer, produces the desired quantum state with high ac-
curacy. In this thesis, we delve into techniques for estimating the description complexity, which has
a classical representation, for quantum computation. One of the most fascinating articles that propels
our investigation in this thesis is ‘The second law of quantum complexity’ by Brown and Susskind [22].

This paper sets forth a correlation between the quantum complexity of a system with 𝐾 qubits
and the evolution of the entropy of a classical system with 2𝐾 degrees of freedom. The analysis
starts with the formal introduction of both the quantum and classical systems. The circuit complexity
of the quantum system is explained as an evolution of Hamiltonian for the quantum system on a
curvature termed as ‘complexity geometry’ [39]. The authors develop the premise for the auxiliary
classical system by studying the progression of the total entropy of a non-relativistic particle. The total
entropy evolution is influenced by two factors: the change in positional entropy, which parallels the
evolution of quantum computational complexity, and the shift in kinetic entropy, which is analogous to
the quantum Kolmogorov complexity. All this study eventually leads a connection between the second
law of thermodynamics and its proposed “second law of quantum complexity” in quantum information
theory.

Figure 2.2: Corollary from the above correspondence between thermodynamics and algorithmic complexity theory: Free
energy as a resource for performing useful work translates to ”uncomplexity” as a resource for performing quantum

computation.

2.3.4. Compound Metrics and Trade-offs
The resource expenditure for a program can be evaluated as a cost function involving more than one

computational resource. Such measures can be called composite resource costs (or compound metrics
in this thesis). They serve a great importance in the study of information and resource theory, as com-
posite measures provide a trade-off between the involved resources. The exploration and fine-tuning
of these trade-offs aid in developing algorithms that are optimized for the multiple constraints present
in real-world applications. This section enumerates some compound metrics involving the resources
introduced in 2.1.1 and subsequently presents a table 2.3 that offers a concise and comparative study
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of different compound metrics, the involved resources, and the nature of their inter-relation in the cost
measure.

Levin Complexity
Leonid Levin introduced the Levin complexity [40], or 𝐾𝑡 as a refinement of the Kolmogorov com-

plexity by incorporating the time it takes to use that description to reconstruct the original string. It
can be of greater practical interest, as it is a more nuanced view of complexity that considers both the
description length and computational time.

𝐾𝑡(𝑠) = min𝑝 (𝑙(𝑝) + log(𝑡(𝑝))) (2.7)

where 𝑝 is a program, when run on a UTM 𝑈, outputs the string 𝑠, 𝑙(𝑝) is the length of the program, and
𝑡(𝑝) is the time taken by the program to return the string 𝑠 as output [41]. The logarithm balances
the contribution of time complexity and the length of the program in bits towards the total Levin
complexity. Levin complexity qualifies as a composite resource measure that is covered in greater detail
in the following subsection. The uncomputability problem common to the above measures related to
description complexity also translates to Levin complexity, and it can only be estimated in experiments.
For example, imposing an additional time-bound during the estimation of Kolmogorov complexity.

Logical Depth
Logical depth [42], formulated by Charles Bennett captures the intuitive notion of “depth of infor-

mation” in addition to the description complexity of an object. It can be considered as a composite
resource measure, as it is the time taken by a UTM to compute a string using the minimal program
that outputs the string.

𝐷(𝑠) = min
𝑝

{𝑡(𝑝) ∶ 𝑙(𝑝) − 𝑙(𝑝0) < 𝑆 ∧ 𝑈(𝑝) = 𝑠} (2.8)

where, 𝑙(𝑝) is the length of a program 𝑝, 𝑝0 is the shortest program that outputs the string 𝑠 and 𝑡(𝑝)
is the time taken by the program to run and halt on UTM 𝑈. 𝑆 is the significance parameter that is set
to pick only those programs whose lengths differ within that range from that of the minimal program.
It adds a temporal dimension to the measure of the information content of strings.

An approximate version of the logical depth can be defined by modifying the second requirement
of the above relation 2.8. This can be done by selecting an error bound and widening the range of
programs that generate an output within the error bound of the target string 𝑠. This process extends
the scope of this composite resource to also include approximation as a resource.

Speed Prior
Following along the same line as Solomonoff’s algorithmic probability, speed prior [43] is a prior

probability distribution proposed as a computable precursor for inductive inference. It extends the
scope of AP to also account for the time complexity of programs and resonates more deeply with
Occam’s razor by favoring not only the most simplistic programs, but also those with a lower time cost.
The relation between AP and Kolmogorov complexity is equivalent to that between Speed prior and
Levin complexity.

Energetic Costs of Computation
The composite resources listed so far earlier involve resources such as description, time, and some-

times space, yet a connection with energy remains absent. Many efforts have been made to establish
a connection between algorithmic information theory and thermodynamics [44], particularly in devel-
oping a theoretical framework for understanding the thermodynamic costs of computation [25] [24].

One of the most influential works in this field was proposed by Zurek in the ‘Thermodynamic cost
of computation’ [23]. It presents a lower bound on the increase in entropy caused by a computational
process that takes an input string 𝑠 to an output string 𝑡. This lower bound is equal to the conditional
Kolmogorov complexity involving the two strings.

Δ𝑆(𝑠 → 𝑡) ≈ 𝐾(𝑠∣𝑡) ≥ 𝐾(𝑠) − 𝐾(𝑓) (2.9)

Landauer’s principle is invoked in the analysis, and it is explained that compression of information
(from an original string 𝑠 to 𝑠′) can be performed reversibly without any expenditure of energy but
that it leads to the expense of storing (the number of bits corresponding) to the shortest program that
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performs the change (𝑠 → 𝑠′) that is, 𝐾(𝑠∣𝑠′). Based on these arguments, the author has refuted
Maxwell’s demon’s challenge to the second law of thermodynamics.

As an extension to this paper, a generalized version [45] has been formulated to extend its ap-
plication to any practical computation and also quantum computation. This generalization has been
attained by considering an ensemble of computational processes for a given pair of input and output
in place of a single process.

Figure 2.3: Table enumerating compound metrics involving multiple computational resources.

2.3.5. Estimation of Description Complexity
At this point, we have established the limitation in the computability of Kolmogorov complexity and

its related measures. Despite these limitations, it can be approximated in practical settings, such as
compression. Reiterating the definition of description complexity, it is the shortest possible description
of a piece of data, and a compressed version is essentially a concise description of that data.

Lossless compression techniques attempt to find patterns and regularities in data and exploit these
to generate a shorter description. The more patterns there are, the more it can be compressed,
and the lower the description complexity. The fabrication of a better compression technique that can
achieve a higher compression ratio (size of original data/size of compressed data) leads to an improved
lower bound for description complexity. The widespread compatibility of compression techniques with
diverse data types such as text, code, and images aid in extending the information-theoretic measure of
description complexity to larger domains. The normalized information distance [46] uses compression
as an estimate of Kolmogorov complexity for data and puts forth the information distance between two
objects as a function of their description complexities. An application of this concept, the normalized
Google distance [47], is implemented in the Google search engine to group similar data based on the
number of hits on the search engine.

The block decomposition method (BDM) [28] is a computational technique proposed to circumvent
the direct computational limitation of Kolmogorov complexity and provide an estimate of the algorithmic
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complexity. It is based on the premise that, while description complexity of massive objects are non-
computable, approximating it for smaller blocks of data is feasible. The technique aims to do this by
breaking up the original data into smaller chunks of size 𝑛 × 𝑛. The algorithm constructs a database
that maps all possible 𝑛 × 𝑛 blocks to their respective description complexities by a method known
as the coding theorem method (CTM). The method hinges on using algorithmic probability 2.3.2 for
defining the complexity of strings.

𝐶𝑇𝑀(𝑡,𝑘)(𝑥) = − log2 𝐷(𝑡,𝑘)(𝑥) (2.10)

Where 𝐷(𝑡,𝑘)(𝑥) is the probability distribution for a Turing machine 𝑈 with 𝑡 states and 𝑘 symbols to
halt for the string 𝑥.

𝐷(𝑡,𝑘)(𝑥) = 𝑛{𝑈 ∈ (𝑡, 𝑘) ∶ 𝑈 produces 𝑥}
𝑛{𝑈 ∈ (𝑡, 𝑘) ∶ 𝑈 halts} (2.11)

𝑛(𝑆) is the cardinality of the set 𝑆. The formalism for this finite Turing machine and the condition of
its halting for small values of (𝑡, 𝑘) are defined in the Busy Beaver problem [48]. For 𝑡 = 4, 𝑘 = 2, the
Turing machine has a maximum runtime of 𝑙(𝑥) = 107 [49], beyond which it’s assumed not to halt.
The total complexity by the BDM method for the original data (x) as a sum over fragments 𝑥𝑖 is:

𝐵𝐷𝑀(𝑥) = ∑
𝑖
𝐶𝑇𝑀(𝑥𝑖) + log(𝑛(𝑥𝑖)) (2.12)

where, 𝑛(𝑥𝑖) is the number of times the fragment 𝑥𝑖 occurs in the original data. BDM provides a good
approximation for the algorithmic complexity of objects; however there can be some limitations to
using it as an estimation tool of description complexity for a wider domain of data.

1. At a local level, it offers a close estimate of the description complexity. It is guaranteed by
the CTM, which uses principles from Solomonoff’s probability 2.3.2 and Levin complexity 2.3.4.
However, at a global level, it behaves close to the Shannon entropy of the data and, therefore,
fixates on the statistical regularities.

2. Extending its application to the domain of quantum computing can prove challenging as quantum
states and operations might not lend themselves to decomposition into blocks in the same way as
classical data structures do, considering quantum entanglement and superposition. In the way
the measure is defined, it may fail to capture the description and context of quantum operations
that are necessary for estimating the quantum description complexity

To conclude this section, we established the concept of description complexity and listed related
measures that can be used to gather insights about the complexity of objects. We conducted a review
of algorithmic information theory and looked at various compound measures that involve description
complexity and other computational resources. After studying multiple ways of estimating description
complexity, we choose compression as an estimation for description complexity. To reinforce this
decision, the following section sheds light on some implementations of code compression for improving
the efficiency of computation in related domains.

2.4. Code Compression in the Domain of Low-Power Embedded Systems
The last section of this chapter covers the application of code compression in the domain of low-

power embedded systems. Low-power embedded systems are computing systems designed for specific
functions with a primary focus on minimizing energy consumption. These systems are integral to a wide
range of applications, from consumer electronics to industrial control systems, where power efficiency
is critical. Code-compression techniques are advantageous in overcoming the energy cost, size, and
memory limitations of such systems.

The study of design space of code compression [50] is an active field of research, and it involves the
choice of encoding techniques: statistical vs. dictionary-based schemes, minimizing the decompression
overhead, hardware cost, and power usage. The RISC-V ISA developed by UC Berkeley [51] is an
open-source ISA for standard and special purpose utility and natively operates with fixed-length 32-
bit instructions. It has many extensions for applications in embedded systems, personal computers,
supercomputers and also quantum computation. It has extensions like RVC [52] for employing variable-
length op-codes and bringing down the bandwidth of the instructions. Approaches like [53] compare
the performance of some of these extensions and explore the design space of compressed ISA by
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employing arithmetic encoding to assign shorter-length opcodes to more commonly used instructions
and increase the code density.

Extending the principles of code compression and efficient encoding to the domain of quantum
computation is meaningful for multiple reasons. Investigation of compression in the field of quantum
computation grants a strategy for estimating the quantum description complexity of quantum circuits.
Secondly, the attempts to move the quantum control architectures closer to the operating tempera-
tures of quantum processors impose severe limitations on the energy budget. Cryogenic control of
qubits offers better integration with the processor and shorter process times, eventually qualifying for
a promising scalable alternative for quantum control [54]. Increasing the code density can decrease
the energy cost of information transfer from room temperature to cryogenic temperatures and also
permit lower cycle frequencies leading to a lower running power cost.

We conclude this chapter with the tagline ‘Compression is comprehension’ [55]. We established the
basics of resource theory of computation. We direct our focus on description complexity and dedicate
a significant portion of this chapter to understanding the formal definition, the significance and the
limitations of description complexity as a computational resource. We perform a review of algorithmic
information theory and conclude the review with a table that aggregates and summarizes different
compound computational resource measures. Finally, we explore the ways to estimate description
complexity and motivate the adoption of compression as an estimate for description complexity. Quan-
tum algorithms are hard to understand, with quantum mechanics being notoriously counter-intuitive;
studying the compressed forms of algorithms can help us understand the algorithmic structure and
eventually prove useful for establishing the quantum advantage.





3
Unitary Sequences: Description for

Quantum Computation

Brevity is the soul of wit.
- William Shakespeare

This chapter will delve into the theoretical underpinnings of quantum description, different ways
of quantifying quantum description and inter-converting between them. Description complexity, in its
classical form, measures the amount of information needed to describe or specify an object or sequence,
typically represented by a binary string. In the quantum context, where quantum bits or qubits are
considered, Quantum Description Complexity aims to quantify the information content of quantum
states or processes. Following the analysis of quantum description and it’s different formulations, the
trade-offs between quantum circuit complexity and description complexity will be presented.

3.1. Quantum Description
A quantum description serves as a model for encapsulating information regarding quantum com-

puting processes, encompassing quantum states, gates, and operations. It’s important to tailor the
representation to suit the task, hardware, or theoretical framework. A handful of different descriptions
for quantum computation are listed below, and we follow a common example of the creation of the
bell state ∣Φ+⟩ as the process that we are trying to describe.

∣Φ+⟩ = 1√
2
[∣00⟩ + ∣11⟩] (3.1)

1. Quantum Circuit
Quantum circuits are popularly adopted for expressing the quantum description. It starts with
formulating a problem, such as integer factorization, search problem, or some cryptography pro-
tocol. After the problem formulation, a quantum circuit is designed by using a specific set of
operations and instructions that can be performed in a step-by-step manner on a quantum com-
puter. Quantum gates, serving as basic building blocks, are utilized for specific operations on
qubits.

∣0⟩ 𝐻

∣0⟩
2. Unitary Matrix A unitary matrix represents the transformation of a quantum state in a closed
quantum system. For an 𝑛-qubit system, they can be represented as a square matrix with size

19
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2𝑛 having complex entries 𝑈 and obeying 𝑈𝑈† = 𝐼. Unitary transformations are reversible and
conserve the sum of probabilities in a quantum system. They provide mathematically elegant and
computationally efficient descriptions of a quantum system. The unitary transformation can also
be parameterized in terms of a Hamiltonian of evolution, which can be regarded as a separate
quantum description along with the time of evolution.

𝑈 = 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 0 0
0 0 1 −1
0 0 1 1
1 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.2)

3. QASM [56, 57]
QASM, or Quantum Assembly Language, serves as a quantum programming language. This code
serves as a textual representation of quantum circuits, allowing for a concise and human and
machine-readable depiction of the quantum computation process, making it a propitious choice
for quantum description.

1 OPENQASM 2.0 ;
2 i n c l ude ” qe l i b1 . i n c ” ;
3 qreg q [2 ] ;
4 h q0 [0 ] ;
5 cx q0 [0] , q0 [1 ] ;
6

Listing 3.1: OPENQASM code for Bell-state creation circuit

4. native-mapped QASM [58] The designed quantum algorithm or written QASM code can sel-
dom be directly implemented on an actual quantum backend. Factors such as connectivity con-
straints and unique executable gate sets contribute to the inability to directly implement quan-
tum algorithms or QASM instructions on specific hardware platforms. The process also includes
optimization steps to reduce the depth overhead to account for gate inaccuracies and limited
coherence times. Therefore, Native-mapped QASM is designed to be compatible or mapped di-
rectly to the native instructions or operations of any particular quantum processor. For example,
choosing the 127-qubit processor ibm_sherbrooke as the backend, which has the native gates
['id', 'rz', 'sx', 'x', 'ecr', 'reset']. The same Bell-state preparation circuit
can be tranpiled into native-mapped QASM instructions:

1 OPENQASM 2.0 ;
2 i n c l ude ” qe l i b1 . i n c ” ;
3 gate rzx (param0) q0 , q1 { h q1 ; cx q0 , q1 ; r z (−p i /4) q1 ; cx q0 , q1 ; h q1 ; }
4 gate rzx (param0) q0 , q1 { h q1 ; cx q0 , q1 ; r z ( p i /4) q1 ; cx q0 , q1 ; h q1 ; }
5 gate ecr q0 , q1 { rzx ( p i /4) q0 , q1 ; x q0 ; rzx (−p i /4) q0 , q1 ; }
6 qreg q [127];
7 sx q [0 ] ;
8 r z (−p i /2) q [1 ] ;
9 sx q [1 ] ;
10 ecr q [1] , q [ 0 ] ;
11 r z ( p i /2) q [0 ] ;
12 sx q [0 ] ;
13 r z ( p i /2) q [0 ] ;
14 r z ( p i /2) q [1 ] ;
15 sx q [1 ] ;
16 r z ( p i /2) q [1 ] ;

Listing 3.2: Native-mapped QASM for Bell-state creation circuit on ibm_sherbrooke

5. QISA microcode The quantum instruction set architecture(QISA) microcode represents a layer
of abstraction closer to the physical operation of a quantum processor. It is constructed at the
architecture level, which defines how the quantum gates or operations are implemented on a
processor. Going down one level brings us down to the control layer, which can contain the
instructions in the form of timed microwave pulses tuned for executing desired operations on
superconducting platforms. Alternatively, the instructions can be in the form of magnetic fields
or laser pulses used to control trapped-ion and trapped-atom systems. Going back to our run-
ning example of Bell-state preparation, the microcode or pulse-level schedule of instructions for
implementing the same circuit on the ibm_sherbrooke processor is:
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1 Schedule (
2 (0 , Sh i f tPhase (1 .57 , Dr iveChannel (1) ) ) ,
3 (0 , Sh i f tPhase (1 .57 , Contro lChannel (0) ) ) ,
4 (0 , Sh i f tPhase (1 .57 , Contro lChannel (4) ) ) ,
5 (0 , P lay (Drag ( dura t ion=120, amp=(0.0932+0.0013 j ) , sigma=30, beta=−0.0571, name= ’

X90p_d0 ’ ) , Dr iveChannel (0) , name= ’ X90p_d0 ’ ) ) ,
6 (0 , P lay (Drag ( dura t ion=120, amp=(0.0955+0.00038 j ) , sigma=30, beta=−0.00989, name= ’

X90p_d1 ’ ) , Dr iveChannel (1) , name= ’ X90p_d1 ’ ) ) ,
7 (120 , P lay ( GaussianSquare ( dura t ion=600, amp=(0.0332+0.00057 j ) , sigma=32, width=472,

name= ’ CR90p_d0_u2 ’ ) , Dr iveChannel (0) , name= ’ CR90p_d0_u2 ’ ) ) ,
8 (120 , P lay ( GaussianSquare ( dura t ion=600, amp=(−0.1263−0.0271 j ) , sigma=32, width=472,

name= ’ CR90p_u2 ’ ) , Contro lChannel (2) , name= ’ CR90p_u2 ’ ) ) ,
9 (720 , P lay (Drag ( dura t ion=120, amp=(0.1908+0 j ) , sigma=30, beta=−0.0158, name= ’ Xp_d1 ’ )

, Dr iveChannel (1) , name= ’ Xp_d1 ’ ) ) ,
10 (840 , P lay ( GaussianSquare ( dura t ion=600, amp=(−0.0332−0.00057 j ) , sigma=32, width=472,

name= ’CR90m_d0_u2 ’ ) , Dr iveChannel (0) , name= ’CR90m_d0_u2 ’ ) ) ,
11 (840 , P lay ( GaussianSquare ( dura t ion=600, amp=(0.1263+0.0271 j ) , sigma=32, width=472,

name= ’CR90m_u2 ’ ) , Contro lChannel (2) , name= ’CR90m_u2 ’ ) ) ,
12 (1440 , Sh i f tPhase (−1.57 , Dr iveChannel (0) ) ) ,
13 (1440 , Sh i f tPhase (−1.57 , Dr iveChannel (1) ) ) ,
14 (1440 , Sh i f tPhase (−1.57 , Contro lChannel (0) ) ) ,
15 (1440 , Sh i f tPhase (−1.57 , Contro lChannel (2) ) ) ,
16 (1440 , Sh i f tPhase (−1.57 , Contro lChannel (30) ) ) ,
17 (1440 , Sh i f tPhase (−1.57 , Contro lChannel (4) ) ) ,
18 (1440 , P lay (Drag ( dura t ion=120, amp=(0.0932+0.0013 j ) , sigma=30, beta=−0.0571, name= ’

X90p_d0 ’ ) , Dr iveChannel (0) , name= ’ X90p_d0 ’ ) ) ,
19 (1440 , P lay (Drag ( dura t ion=120, amp=(0.0955+0.00038 j ) , sigma=30, beta=−0.00989, name=

’ X90p_d1 ’ ) , Dr iveChannel (1) , name= ’ X90p_d1 ’ ) ) ,
20 (1560 , Sh i f tPhase (−1.57 , Dr iveChannel (0) ) ) ,
21 (1560 , Sh i f tPhase (−1.57 , Dr iveChannel (1) ) ) ,
22 (1560 , Sh i f tPhase (−1.57 , Contro lChannel (0) ) ) ,
23 (1560 , Sh i f tPhase (−1.57 , Contro lChannel (2) ) ) ,
24 (1560 , Sh i f tPhase (−1.57 , Contro lChannel (30) ) ) ,
25 (1560 , Sh i f tPhase (−1.57 , Contro lChannel (4) ) ) ,
26 name=” c i r c u i t −14”
27 )

Listing 3.3: Pulse schedule for bell-state creation circuit on ibm_sherbrooke

These varied choices underscore the flexibility in choosing a particular technique and don’t affect
the final description complexity as the choice of description language only leads to a constant factor
difference. This constant factor equivalence is, however, subjected to no additional restrictions in
defining the description languages. For example, the unitary vs the QASM representation should not be
limited by the number of digits in entries of the matrix or the number and type of distinct allowed gates
in the circuit. However, it is essential to note that this near independence of the choice of description
is justified at the level of ensembles of systems and not at the level of an individual quantum system.
The description complexity of a specific quantum system can be genuinely simplistic in one description
while being highly convoluted in an alternate description.

3.1.1. Estimating Quantum Description via Circuit Compression
As described in Chapter 2 of the thesis, description or algorithmic complexity approximates an

object’s information content or randomness. Therefore, compression serves as a valid candidate for
estimating the description complexity. Akin to simplifying classical logic circuits or compressing classical
information, compression of quantum circuits offers a highly concise and efficient description of the
quantum process or algorithm. The investigation into the compression of quantum circuits offers
numerous valuable insights and applications, to name a few:

1. Gate Simplification and Circuit rewriting: This approach for circuit compression targets to redefine
gates or sequences of gates to remove redundancy or to discover patterns of usage in quantum
circuits. Such rewriting schemes contribute to the search for new and more efficient quantum
instruction set architectures.

2. Approximate Compilation: Approximate representation of quantum circuits in scenarios with an
admissible error rate can prove to be highly simplistic or compressible and offer a higher imple-
mentation efficiency in terms of execution time or energy cost.
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3.2. Unitary Decomposition
The unitary matrix for a quantum system captures the information of the continuous evolution of

the input state to the output state in a succinct and mathematically rigorous manner. The choice
of the unitary as a quantum description is universal and hardware-agnostic. The process of decom-
position of a unitary matrix into a sequence of quantum gates or operations is crucial in translating
an abstract quantum algorithm/evolution into a practical implementation that can be executed on a
quantum computer.

3.2.1. Why we target this level: The Continuous-Discrete Divide
Performing a decomposition of the unitary matrix into a discrete basis of gates and synthesizing it

into a quantum circuit takes the description from a continuous (𝑆𝑈(𝑛)) space to a discrete one. The
choice of this level as the target for quantum description is motivated by this continuous-discrete divide.
It facilitates the search for optimization of the circuit synthesis process by offering flexibility in selecting
a discrete basis of universal gates and setting an arbitrary accuracy of decomposition.

The initial set of experiments in the thesis begins with the study of unitary matrices 𝑈 for 1-qubit
systems sampled at random from the Harr measure and performing the decomposition into quantum
circuits. Such a set of random unitary matrices is distributed uniformly in the space of 2×2 unitary ma-
trices, namely the 𝑆𝑈(2) space, and is widely preferred in quantum computation and information theory
experiments. The unitary matrices were prepared using qiskit.quantum_info.random_unitary
function that returns a random unitary matrix with the selected dimensions. After establishing the gen-
eralized decomposition routine in later sections of this chapter, we extend our model to multi-qubit
systems.

3.3. YAQQ: Experiments with Random and Solovay-Kitaev Decomposition
One of the main visions behind this thesis project is to investigate the design and search for optimal

quantum architectures. Conventional quantum architecture schemes are strongly dependent on the
design of the quantum hardware platform, the connectivity constraints, and the native gate-sets. Yet
Another Quantum Quantizer (YAQQ) [59] is a software tool that functions as a design space exploration
of the choice of discrete basis of gates and the decomposition routines of unitary transformations. It
offers functionalities for:

1. Performing the decomposition of unitary matrices into quantum circuits with user-defined gate-set
and decomposition methods.

2. Search for optimal gate-set for a given data set of unitary matrices by searching for convergent
solutions of a cost function with parameters such as process fidelity, circuit depth, and novelty.

3. Comparison of the performance of different gate sets and visualization of performed decomposi-
tions on the Bloch sphere and Weyl chamber.

Translating from the higher abstract level of quantum algorithms expressed in terms of unitary
matrices to the level of sequences of quantum operations/gates involves the process of decomposition.
Decomposition routines constitute an essential component of the quantum compiling process as they
synthesize the quantum circuits in terms of the native gates and the form of quantum instruction set
architecture that can be parsed by the control architecture. Decomposition techniques can be exact or
approximate in nature.

Approximate decomposition offers the ability to resolve a unitary 𝑈 into a quantum circuit using a
finite discrete set of basis gates. The Solovay-Kitaev Theorem [7] formulated independently by Robert
M. Solovay(1995) and Alexei Kitaev(1997) is one of the most celebrated results in quantum computation.
In single-qubit systems, the theorem states that if we have a set of quantum gates that densely span
the space of 𝑆𝑈(2), then it is possible to approximate any quantum operation by a sequence of gates
from the set. The following subsection would focus more deeply on the Solovay-Kitaev Algorithm.

Another approximate decomposition technique implemented in the YAQQ package is the Random
decomposition. It forms random sample sequences of arbitrary lengths from a set of gates and chooses
the sequence with the highest fidelity among multiple trials.
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3.3.1. Preliminary Experiments
For these experiments, we build a dataset of 10,000 random single-qubit Harr-random unitaries.

We subject these unitaries to random and Solovay-Kitave decomposition with the chosen gateset [h,
t, tdg]. We undertake these experiments with the goal of studying the general behavior in terms of
decomposed circuit depth and process fidelity of these random unitaries under both types of decompo-
sition. We visualize these sample random unitaries on the Bloch sphere with a colormap depicting the
circuit depth, process fidelity, and compression ratio (described in the subsequent paragraph). These
experiments serve the dual purpose of both testing the decomposition routines in the framework YAQQ
and studying the data set of random unitaries and choosing an appropriate decomposition method.

𝐻 = 1√
2
[1 1
1 −1] ; 𝑇(𝜋/8) = [1 0

0 𝑒𝑖𝜋/4] ; 𝑇† = [1 0
0 𝑒−𝑖𝜋/4]

Following the decomposition of the unitaries in the data set with the two techniques, Random and
Solovay-Kitaev, the QASM code of the quantum circuit was cast into a string and compressed using
the open-source bz2 package in Python. bzip2 [26] is a lossless compression technique that uses
the Burrows-Wheeler transform [60] and Huffman Coding [61]. For this phase of experiments, bzip2
serves as the estimate for the description complexity of the quantum circuits. A comparative study
was undertaken between the two decomposition routines to make the best choice from an information
theoretic perspective using the parameters circuit depth, fidelity, and compression ratio.

Figure 3.1: (a) Figure 3.2: (b)

Figure 3.3: Circuit Depth after decomposition depicted using a colormap on the Bloch Sphere for the data set of Harr-random
unitaries. (a) Random Decomposition, (b) Solovay-Kitaev Decomposition

Figure 3.4: (a) Figure 3.5: (b)

Figure 3.6: Process Fidelity for decomposition depicted using colormap on the Bloch sphere for the data set of Harr-random
unitaries. (a) Random Decomposition, (b) Solovay-Kitaev Decomposition
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Figure 3.7: (a) Figure 3.8: (b)

Figure 3.9: Compression Ratio = len(original QASM)/len(compressed QASM) for decomposed quantum circuits depicted using
colormap on the Bloch sphere for the data set of Harr-random unitaries. Higher compression ratio value ⟹ better

compression (a) Random Decomposition, (b) Solovay-Kitaev Decomposition

Figure 3.10: Histograms of Circuit Depth after decomposition for the data set of Harr-random unitaries. (a) Random
Decomposition and (b) Solovay-Kitaev Decomposition

Figure 3.11: Histograms of Process Fidelity of Decomposition of samples from the data-set of Harr-random unitaries. (a)
Random Decomposition and (b) Solovay-Kitaev Decomposition
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Figure 3.12: Histograms of Compression Ratio = len(original QASM)/len(compressed QASM) for decomposed quantum
circuits of the data set of Harr-random unitaries with bands of allowed fidelities represented by different colors (a) Random

Decomposition and (b) Solovay-Kitaev Decomposition

3.3.2. Observations and Conclusions from Above Results
• In the case of Random decomposition, the distribution of samples is generally uniform across
different circuit depths of decomposed quantum circuits implying that unitaries are equally likely
to have short quantum circuit expressions as extended expressions. This outcome is based on
the design of the method in YAQQ. Such behavior contradicts the general insight from information
theory that most objects in nature have complex descriptions. Extending this logic to the case
of computing, most unitaries can be expected to possess long quantum-circuit descriptions (or a
high quantum-circuit complexity).

Solovay-Kitaev
Decomposition

Exact
Decomposition

Circuit Depth
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um
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Figure 3.13: (a)Expected Curve for Circuit Depth(for Exact Decomposition) (b)Observed Curve for Circuit Depth(for
Solovay-Kitaev Decomposition)

In the case of Solovay-Kitaev Decomposition, we see this rise in the number of samples with
higher circuit depth of decomposition; however, the drop in the number of samples with higher
circuit depths is due to the approximate nature of decomposition. The decomposition algorithm
is designed to generate finite sequences of gates from a set that approximates a quantum oper-
ator with a bounded error. Therefore, the Solovay-Kitaev Algorithm is the better choice for an
information-theoretic study, which conforms with the goal of this thesis. Additionally, the much
higher fraction of samples with higher process fidelity for the Solovay-Kitaev Decomposition is
another plus point.

• In most popular studies the “compression factor” which is defined as the ratio of the size of
compressed data to the size of original data is used for compression techniques and routines.
This parameter would be the inverse of the compression ratio plotted in the preceding figures
and will vary in the range 0 to 1 with lower values indicating better compression. Here are the
comparison plots for the compression factor corresponding to fig 3.12
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Figure 3.14: Histograms of Compression Ratio = len(original QASM)/len(compressed QASM) for decomposed quantum
circuits of the data set of Harr-random unitaries with bands of allowed fidelities represented by different colors (a) Random

Decomposition and (b) Solovay-Kitaev Decomposition

The rest of the thesis will consider the compression factor when assessing compression techniques.
In the above plots, we can observe a small number of samples at compression factor = 1.0. This
is due to the phenomenon of the pigeonhole principle, which explains the non-existence of a
universal lossless compression algorithm that can compress all possible data. In the cases when
the data has a low entropy or description complexity, the extra bookkeeping needed to encode
the data using lossless compression methods eventually ends up increasing the file size.
Following the remark in the first observation on the expected circuit complexity trends, a majority
of the samples from the data set of unitaries are predicted to have a low compression ratio or
high compression factor. An object having a higher description complexity or randomness has a
lower compressibility.
On this aspect, both decomposition techniques offer excellent compression for a majority of
samples. It is essential, however, to note that compression with bzip2 doesn’t capture the “quan-
tumness” of the circuits and interprets the QASM strings simply as ASCII text and searches for
statistical patterns. It’s imperative to recognize patterns and relationships among the sequences
of quantum gates to develop a meaningful estimation of quantum description complexity. This
point will be taken care of, while formulating optimal coding techniques for devising an estimation
of quantum description complexity in Chapter 4

The following sections in this chapter will introduce and elaborate on the decomposition techniques
that will be implemented in integration with the coding techniques in the next chapter.

3.4. Solovay-Kitaev Decomposition
The Solovay-Kitaev decomposition algorithm presented by Christopher M. Dawson and Michael A.

Nielsen in [62] in 2006 is one of the best reviews and applications of the Solovay-Kitaev Theorem for
decomposition of quantum operators into a sequence of quantum gates. The algorithm finds approx-
imate sequences of length 𝑂(log3.97(1/𝜖)) within a time 𝑂(log2.71(1/𝜖)) both characterized by the
precision 𝜖. In it’s implementation, it includes a preprocessing step that generates a search space of
composite sequences up to a length 𝑙0 of gates that belong to a finite discrete basis. This search space
is referred to as the Solovay-Kitaev (S-K) basis in the remainder of the thesis. The maximum length of
sequences 𝑙0 is referred to as the depth 𝑑 of the S-K basis. The chosen set of fundamental gates and
the group generated by the set, that is, the S-K basis, must fulfill the following conditions generalized
for an 𝑚-qubit system:

1. All the gates in the set belong to the group of special unitary matrices 𝑆𝑈(𝑚) and have a deter-
minant 1

2. The set of gates is closed under inversion, implying that for every gate in the set, its hermitian
conjugate must also belong to the set
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3. The group that is generated by the set must densely span the space 𝑆𝑈(𝑚). This means that,
for every arbitrary unitary operation 𝑈, there must exist a product sequence of gates from the
set that can approximate 𝑈 with a bounded error 𝜖

The Solovay-Kitaev algorithm exhibits a refined design with apparent conciseness and succinctness,
yet its practical performance entails intricate complexities. The goal of devising a methodology for
reconstructing the original circuit from base-case approximation drives us to probe into the algorithm’s
intricate operation. This goal was achieved by a rigorous examination of the algorithm across various
recursion depths and keeping track of the re-arrangement of sequences at each level of progression.
As a first step to this undertaking, a flowchart [3.15] has been created after careful study of the
pseudocode of the algorithm presented in [62] and its implementation on qiskit.

Start

initiate Solovay_Kitaev (U,n)

check if n == 0

𝑈𝑛−1 = Solovay_Kitaev(U, n-1)

𝑉𝑛, 𝑊𝑛 = balanced_commutator_decompose(𝑈𝑈†
𝑛−1)

𝑉𝑛−1 = Solovay_Kitaev(𝑉𝑛, n-1) 𝑊𝑛−1 = Solovay_Kitaev(𝑊𝑛, n-1)

return 𝑈𝑛 = 𝑉𝑛−1𝑊𝑛−1𝑉†𝑛−1𝑊†
𝑛−1𝑈𝑛−1

return best_approximation to U

False

True

Figure 3.15: Flowchart of the Solovay-Kitaev Decomposition Algorithm for 1-qubit unitary quantum operator 𝑈 and recursion
depth 𝑛. Returns the 𝜖𝑛 approximation to the target unitary 𝑈 computed from call of the function at the 𝑛 − 1 degree of

recursion, and returns the 𝜖0 approximation in the base case

3.4.1. The Algorithm
The algorithm functions in a recursive fashion, and the degree of recursion is denoted by 𝑛 in the

flowchart 3.15. In the course of the process, the algorithm returns a sequence that approximates the
unitary operator 𝑈 up to an error 𝜖𝑛. The approximation error at each recursion level 𝑟 is related to
that at the level (𝑟 − 1). This goes on till the base case that returns the best_approximation to a
matrix 𝑈, that is bounded by 𝜖0.

The algorithm is designed to obtain an improved approximation accuracy 𝜖𝑟 < 𝜖𝑟−1. The ap-
proximation accuracy tends to reach 0 as the recursion depth 𝑛 increases indefinitely. The bal-
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anced_commutator_decompose method performs a balanced group commutator decomposition
of the accuracy at level 𝑟 defined as Δ = 𝑈𝑈†

𝑟−1 = 𝑉𝑊𝑉†𝑊† for matrices 𝑉 and 𝑊. (𝑟 − 1) level
approximation accuracies are computed by the call of the function again for matrices 𝑉 and𝑊 and the
𝑟th level approximate sequence 𝑈𝑟 = 𝑉𝑟−1𝑊𝑟−1𝑉†𝑟−1𝑊†

𝑟−1𝑈𝑟−1, consisting of all 5 terms computed form
the (𝑟 − 1)th level is returned.
3.4.2. Performance Analysis of Decomposition Process

This subsection is dedicated to evaluating the performance of the Solovay-Kitaev decomposition
algorithm for various configurations of depth 𝑑 and degree of recursion 𝑛. This empirical analysis of
performance is undertaken based on the process fidelity of decomposition and the circuit depth of the
decomposed quantum circuits. The process fidelity of the decomposition process is computed using the
qiskit.quantum_info.process_fidelity function. It computes the state fidelity between two
quantum channels that are supplied as normalized Choi matrix representations of the target unitary
operator and its decomposed quantum circuit.

In the subsequent plots, the average trends of process fidelity and circuit depth are depicted against
varying depths of the SK basis while maintaining a fixed degree of recursion, and similarly, against
varying degrees of recursion while holding the depth of the SK basis constant.

(a) (b)

Figure 3.16: Average trend of fidelity of Solovay-Kitaev decomposition with varying (a) depth of SK-basis 𝑑 and (b) degree of
recursion 𝑛

(a) (b)

Figure 3.17: Average trend of circuit depth of Solovay-Kitaev decomposition with varying (a) depth of SK-basis 𝑑 and (b)
degree of recursion 𝑛

The first two plots in Fig. 3.16 depict the average fidelity of decomposition of single qubit Harr-
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random unitaries over varying depth 𝑑 and degree of recursion 𝑛 for SKD. Generally speaking, an
increase in fidelity and circuit depth is expected for increasing 𝑑 and 𝑛. The impact of change in these
parameters, however is different on the overall decomposition.

Increasing the depth of SKD increases the maximum length of the gate sequences in the SK basis,
and in turn increases how densely the sequences in the basis span the total space of unitaries. This
improves the 𝜖0 precision, at the base layer of the algorithm leading to a more consistent approximation
as we will see the upcoming subsection. An interesting inference on this note can be observed from
the trends of fidelity and circuit depth of decomposition vs 𝑑. At 𝑑 = 3, we observe a saturation of
fidelity close to 1; this indicates the universality of the SK-basis of 𝑑 = 3 in mapping the space, and this
set forms a subset of basis sets of all higher depths. With increasing 𝑑, the length of gate sequences
in the search space gets longer, leading to an increase in circuit depth.

The degree of recursion of SKD specifies the number of recursion steps undertaken by the algorithm
for approximating the target unitaries, with the precision of the approximation increasing with each
level of recursion. The circuit depth increases exponentially with increasing degree of recursion, while
the fidelity follows an exponential saturation.

3.4.3. Structuring of Sequences in Decomposed Circuits and Reconstruction
An intuitive tree diagram depicting the working of the algorithm is presented in fig. 3.18. The

bottom-most layer consists of 3𝑛 blocks and corresponds to the base case of the algorithm. For each
block, the best_approximation method finds the sequence of gates from the search space that
approximates it up to 𝜖0. Each node in the level 𝑟, 𝑈𝑟 is a composite sequence constructed from its
three daughter nodes in the 𝑟 − 1 level such that 𝑈𝑟 = 𝑉𝑟−1𝑊𝑟−1𝑉†𝑟−1𝑊†

𝑟−1𝑈𝑟−1.

𝑈𝑛level 𝑛

𝑈𝑛−1 𝑉𝑛−1 𝑊𝑛−1level 𝑛 − 1

𝑈𝑛−2 𝑉𝑛−2 𝑊𝑛−2 𝑈𝑛−2 𝑉𝑛−2level 𝑛 − 2 𝑊𝑛−2 𝑈𝑛−2 𝑉𝑛−2 𝑊𝑛−2

level 0

Figure 3.18: Tree of sequences depicting the working of the Solovay-Kitaev algorithm. Recursion levels are indicated on the
left.

This tree diagram is a crucial contribution of this thesis as it explains the hierarchical re-arrangement
of approximate gate sequences. To reconstruct the decomposed quantum circuit from its bottom-most
layer of gate sequences, it is imperative to traverse the tree diagram in a bottom-up manner. As
mentioned earlier, the bottom-most layer is constituted of gate sequences from the search space for
the best_approximation function. The implementation of the decomposition algorithm on qiskit
includes the construction of this basis for a specified depth 𝑑. In this project, qiskit’s implementation of
the Solovay-Kitaev algorithm has been used as the base to build up the encoded quantum instruction
set model. The decomposition and subsequent reconstruction process can be elucidated through the
following example. Consider a Harr-random matrix denoted as 𝑈 prior to undergoing decomposition in
terms of the gate set [h, t, tdg]:

𝑈 = [0.50359966 + 0.62609046𝑗 −0.07233711 + 0.59090224𝑗
0.31138773 + 0.50738132𝑗 0.19782201 − 0.77876077𝑗 ] (3.3)
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The resulting decomposed quantum circuit, achieved via Solovay-Kitaev decomposition with a recursion
degree 𝑛 = 2 and depth 𝑑 = 3, is depicted below:

Figure 3.19: Decomposed circuit. Process fidelity is the fidelity of the decomposed circuit from the target unitary operation.

The gate sequences returned by the best_approximation from the SK basis at the base layer
can be stored as a list. These sequences for the above case of decomposition are listed below as
printed console output:

best_approximation gate sequence S1: ['t', 'h']
best_approximation gate sequence S2: ['h', 'tdg', 'h']
best_approximation gate sequence S3: ['tdg']
best_approximation gate sequence S4: []
best_approximation gate sequence S5: ['h', 'tdg', 'h']
best_approximation gate sequence S6: ['t']
best_approximation gate sequence S7: ['t']
best_approximation gate sequence S8: []
best_approximation gate sequence S9: ['h', 'tdg', 'h']

We can observe that sometimes the empty sequence [] is the best approximation. These instructions
are redundant and can be omitted while storing the frequencies of gate sequences. The decomposed
circuit 3.19 can be rewritten in terms of above gate sequences 𝑆𝑖 such as:

q 𝑆1 𝑆†3 𝑆†2 𝑆3 𝑆2 𝑆†8 𝑆†9 𝑆8 𝑆9 𝑆†7 𝑆†5 𝑆†6 𝑆5

q 𝑆6 𝑆†4 𝑆7 𝑆†9 𝑆†8 𝑆9 𝑆8 𝑆4 𝑆†6 𝑆†5 𝑆6 𝑆5

Figure 3.20: Quantum Circuit using gate sequences from the S-K basis as the building blocks.

This completes the reconstruction of the decomposed quantum circuit using the gate sequences
from the base layer. The decomposed quantum circuit 3.19 has a depth of 40, is expressed as a stream
of 25 instructions in 3.20. A frequency map is created based on how many times which instruction
from the SK-basis gets picked in the base layer. This frequency map will be the input for the encoding
process for creating the compressed instruction stream. This will be covered in detail in the following
chapter.
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The paper [62] also presents an extension of the algorithm for single-qubit systems to the general
case of 𝑚-qubit systems. This extension is possible in theory with the modification in only one step of
the algorithm – the balanced commutator group decomposition to an approximate version of itself. This
change appears reasonably straightforward, albeit leading to a significant implementation complication.
The depth of the S-K basis scales exponentially with the dimension of the system, causing the look-
up routine to scale poorly for higher-dimensional systems. Therefore, generalizing SKD to higher
dimensions doesn’t pay well. This necessitates an exploration of Quantum Shannon Decomposition, an
exact decomposition technique covered in the upcoming subsection.

3.5. Quantum Shannon Decomposition
The quantum Shannon decomposition(QSD) was proposed by Shende Bullock and Markov in [63]

as a technique for expressing any 𝑛-qubit quantum operator as an exact decomposition into single-
qubit rotations and 2-qubit controlled gates. The algorithm follows a divide-and-conquer strategy
in a recursive fashion and breaks down the 𝑛-qubit unitary matrix into smaller submatrices. The
algorithm starts with cosine-sine decomposition (CSD), a well-known technique in linear algebra that
divides the target matrix 𝑈 into smaller blocks. The algorithm recursively performs CSD and other
decomposition techniques such as eigenvalue decomposition and Euler decomposition to eventually
express the original complex operator as a sequence of single-qubit gates and CNOTs that can be
passed as an executable stream of instructions for the hardware. This synthesis technique functions
as a quantum version of the classical Shannon decomposition of boolean functions.

A quantum operation on 𝑛-qubits is represented by a unitary matrix 𝑈 of dimensions 2𝑛 × 2𝑛. Ac-
cording to CSD, 𝑈 = 𝐿𝑀𝑅† where 𝐿 and 𝑅 are block-diagonal matrices representing uniformly controlled
gates and the middle matrix 𝑀 that represents a controlled 𝑅𝑦 rotation on the MSB.

𝑈 = [ 𝑈00 𝑈01
𝑈10 𝑈11 ] = [ 𝐿1 0

0 𝐿2 ] [ 𝐶 −𝑆
𝑆 𝐶 ] [ 𝑅1 0

0 𝑅2 ]† (3.4)

𝐿1, 𝐿2, 𝑅1 and 𝑅2 are unitary matrices of size 2𝑛−1. 𝐶 and 𝑆 are diagonal matrices such that 𝐶2+𝑆2 = 𝐼,
thereby justifying the name of the decomposition technique. The matrices 𝐿 and 𝑅 are termed as
quantum multiplexors and they enact 𝐿1 (𝑅1) or 𝐿2 (𝑅2) conditioned on the state of the MSB. The
middle matrix resembles the 𝑅𝑦 rotation matrix that is targetted on the MSB and controlled by the
states of the lower-order qubits.

Figure 3.21: The Cosine-Sine decomposition acting on 𝑛-qubit gate 𝑈. The slash represents a bundle of wires and the box
control symbol indicates multiple control wires

The left and right gates undergo a demultiplexing routine that performs an eigenvalue decomposi-
tion of the matrices. [𝐴1 0

0 𝐴2] = [𝑃 0
0 𝑃] [Λ 0

0 Λ†] [𝑄 0
0 𝑄] (3.5)

Where 𝑃 and 𝑄 are unitary matrices, and Λ is a unitary diagonal matrix. The left and right matrices can
be represented as quantum gates operating on the lower-order qubits and independent of the MSB.
The middle matrix corresponds to a 𝑅𝑧 operation on the MSB controlled by the lower qubits.

This process of CSD, followed by subsequent demultiplexing operation, is performed recursively
until the algorithm reaches the base case. At the base level, the operator sequence consists of only
single qubit gates. At this point, any single-qubit unitary operation is changed into a rotation gate
following Euler decomposition. The implementation of the algorithm is presented with two optimization
strategies a1 and a2. Following the first strategy, the multiplexed 𝑅𝑦 operation in 3.21 is implemented
using C-Z gates. In the second strategy, the recursion is stopped at the level of 2-qubit operations,
and the resulting circuit is decomposed into CNOT gates and single-qubit rotation gates. With the
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Figure 3.22: Demultiplexing of a multiplexor

optimization strategies, the algorithm yields an efficient synthesis of complicated quantum operators
with a minimized number of CNOT gates.

Figure 3.23: Final decomposed form of a 2-qubit arbitrary unitary operator expressed as a sequence of 1-q rotations and
CNOT gates.

In this project, the qiskit implementation of the QSD algorithm is employed. The QSD process
is fixed to run with the a2 optimization as mentioned above, and it returns a decomposed quantum
circuit consisting of single qubit unitary rotations and CNOT gates as depicted in fig 3.23 for a 2-qubit
system. At this point, we perform SKD on the single-qubit unitary rotations to express them in terms of
the native gates(h, t, tdg), and leave the cx gates untouched. As a result, the multi-qubit random
unitary operator is expressed as a quantum circuit built of gates from the discrete gate set h, t, tdg,
cx. Adopting SKD for breaking down the intermediate gates enables the application of the modified
alphabet of instructions from the S-K basis to express the decomposed quantum circuit.

3.5.1. QSD + SKD Performance for 2Q and 3Q Systems
The aim of this subsection is to perform a similar empirical performance analysis of the combined

QSD + SKD technique for the decomposition of multi-qubit unitaries, as done for single-qubit systems
in section 3.4.2. For the following plots, we select a dataset consisting of 200 Harr-random unitaries
each for 2-qubit and 3-qubit systems. Analogous to what we did for 1q systems, the average trends
for process fidelity and circuit depth are plotted against the depth of SK basis, keeping the degree of
recursion fixed and vice versa.

The goal of these experiments is to observe the performance of the adopted multi-qubit decomposi-
tion routine and make a choice of optimal values of parameters 𝑑 and 𝑛. The choice of these parameters
derived from averaged runs over ensembles of random circuits would be adopted for employing the
decomposition routine for benchmark circuits.

The trends followed by average process fidelity and circuit depth remain mostly similar to the case
of 1q systems. The impact of 𝑑 and 𝑛 on the decomposition remain largely analogous to the case 1q
systems, but they are more accentuated because of multiple instances of single qubit decompositions
in 2q and 3q systems.

An example of this accentuation is a lower starting process fidelity at lower degrees of recursion
resulting from a build-up of inaccurate single-qubit decompositions at lower recursion levels. The
growth of circuit depth over increasing depth 𝑑 is more moderate in comparison to the exponential
growth observed against the degree of recursion.

Focussing on plots 3.24 (b) and 3.25 (b), we observe an improved fidelity of decomposition at depth
𝑑 = 5 as compared to 𝑑 = 4 and 𝑑 = 6. This improvement in the accuracy of decomposition does not
incur any significantly higher cost in terms of circuit depth as supported by plots 3.26 (b) and 3.27
(b). Akin to the circuit depth of decomposed circuits, the execution time also scales exponentially with
the degree of recursion. Therefore, one has to strike a trade-off between the process fidelity and the
execution time of decomposition. Taking into consideration these observations, the depth of SK-basis
𝑑 = 5 and degree of recursion 𝑛 = 4 is decided as the best configuration for multi-qubit decomposition.
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(a) (b)

Figure 3.24: Average trends of fidelity for decomposed 2-qubit circuits with QSD+SKD with varying (a) depth of SK-basis 𝑑
and (b) degree of recursion 𝑛

(a) (b)

Figure 3.25: Average trends of fidelity for decomposed 3-qubit circuits with QSD + SKD with varying (a) depth of SK-basis 𝑑
and (b) degree of recursion 𝑛

(a) (b)

Figure 3.26: Average trends of circuit depth for decomposed 2-qubit circuits with QSD + SKD with varying (a) depth of
SK-basis 𝑑 and (b) degree of recursion 𝑛

In this chapter, we have explored the intricacies of quantum description through various represen-
tational forms, from algorithms and unitary matrices to assembly languages like QASM. We adopt the
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(a) (b)

Figure 3.27: Average trends of circuit depth for decomposed 3-qubit circuits with QSD+SKD with varying (a) depth of
SK-basis 𝑑 and (b) degree of recursion 𝑛

unitary matrix as the description of a quantum algorithm and approach it from the design space of
synthesis into a quantum circuit made up of a discrete set of gates via the experiments with YAQQ.
Following this analysis, we dived in great detail into the Solovay-Kitaev decomposition algorithm and es-
tablished a general decomposition routine for any single-qubit unitary into a user-defined set of native
gates. Subsequently, we scaled up this routine to perform the decomposition of multi-qubit unitaries
with the incorporation of Quantum Shannon decomposition. We ran experiments on these decomposi-
tion routines with varying parameters: depth of SK basis and the degree of recursion to arrive at an
optimal choice for multi-qubit systems.

As we move forward, the next chapter will introduce Huffman encoding as a promising technique
for compressing these quantum instructions. By applying Huffman encoding to the sequences derived
from the Solovay-Kitaev basis, we aim to craft our estimate of quantum description complexity and its
application for more efficient quantum control.



4
Huffman Coding for Quantum

Instructions

If I had more time, I would have written a shorter letter.
- Blaise Pascal

4.1. Prefix Codes
In the field of information theory, coding is the process of changing the form of information into a

different form that is more convenient for performing specific operations, storage, or communication.
Reverting it back to the original form is decoding. Codes are popularly used for:

• Data compression

• Error correction

• Encryption

Throughout modern history, codes have made communication more efficient by making messages
shorter or more understandable. The first electric telegraph was invented by Samual Morse in 1837,
marking a notable achievement in the evolution of long-distance communication. Morse codes are
an example of variable-length codes. Variable-length codes are widely used in lossless compression
techniques and are essential to entropy encoding techniques. Entropy encoding methods prioritize fre-
quently used symbols or characters with shorter codes while assigning longer codes to less commonly
used symbols or characters. This attribute is significant for data compression. Encoding the stream
of instructions with variable-length encoding is reasonably straightforward, but the process gets more
involved when it comes to decoding it [64]. The choice of encoding must be made with special con-
sideration to make the decoding unique, which is a prerequisite for lossless compression. This special
consideration is the prefix property.

‘Prefix-free’ or simply ‘prefix’ refers to the property of a set of symbols or strings such that no
element of the set is a prefix of another member of the set. Similarly, a prefix code is a coding scheme
in which no code word is a prefix of another code word in the set. An example of two sets of code
words is illustrated below: Set A is a prefix code while Set B is not.

Set A

“qubit”
“algorithm”
“photon”
“quantum”

Set B

“bit”
“bitcoin”
“algorithm”
“logarithm”

Prefix codes are essential in data compression as they allow efficient, unambiguous decoding, which
makes them particularly suitable for compression algorithms. Huffman codes extend this concept by
constructing the most efficient compression for a given set of frequencies.

35
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4.2. Huffman Coding
David A. Huffman introduced Huffman coding [61] in 1952 as an optimal prefix code. Given a source

stream of symbols, it tabulates prefix codes of variable length for each constituent symbol based on
the frequency of occurrence of the symbol. It works by creating a binary tree of nodes called the
Huffman tree, where each symbol gets a unique binary code. More frequently occurring symbols are
placed closer to the root of the tree and are assigned shorter codes, while those that are less frequent
are placed further from the root and are assigned longer codes. Consider the following application of
Huffman coding for the encoding and compression of the word ‘entanglement’. The first step starts with
creating a dictionary of the characters used in the word arranged in descending order of the number
of times they are used. The next step for building the Huffman tree involves creating leaf nodes for

character frequency
e 3
n 3
t 2
a 1
g 1
l 1
m 1

Table 4.1: Character frequency distribution for ‘entanglement’

each of these characters corresponding to their frequencies. Two less frequent nodes are combined to
form a new node with their frequencies combined. This step is repeated until there is only one node
left which will be the root of the Huffman tree.

12

5

t n

7

e 4

2

g a

2

m l

0

0 1

1

0 1

0

0 1

1

0 1

Figure 4.1: Huffman coding tree for ‘entanglement’ with leaf nodes as gray boxes and binary path labels for encoding.

Huffman Codes are assigned to the characters by traversing along the edges from the root and
appending a 0 for a left edge and 1 for a right edge until we reach a leaf.

Character Huffman Code
'e' 10
'n' 01
't' 00
'a' 1101
'g' 1100
'l' 1111
'm' 1110

Table 4.2: Table with Huffman codes for characters in the word ‘entanglement’
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Concatenating these, the Huffman encoded string becomes: 10 01 00 1101 01 1100 1111
10 1110 10 01 00 which is 32 bits long. Encoding the word using standard ASCII encoding requires
8 × 12 = 96 bits.

Just as lexical constructs(words) are sequentially composed of individual units(characters), so too
are quantum circuits systematically constructed through the sequential application of quantum opera-
tions. These operations or fundamental units for building the quantum circuit can be quantum gates (as
represented in 3.19) or composite gate sequences (as represented in 3.20). This research explores the
Huffman coding of the fundamental units in these two representations, leading to different description
complexities of the same quantum circuit.

The subsequent analysis is structured into different subsections highlighting the different versions
of encoding for quantum examining different fundamental components (building blocks) of quantum
circuits. The gate set [h, t, tdg] has been selected consistently for all analyses of the thesis.

4.2.1. v0: Binary Encoding
To establish a baseline for encoding efficiency, we implement a uniform binary encoding scheme for

quantum circuits. Each gate within the circuit is represented by a fixed-length binary code. The length
of each code, denoted as 𝑏, is calculated based on the total number of distinct gates in the dictionary:

𝑏 = ⌈log2(𝑁)⌉
where 𝑁 is the number of distinct gates in the gate-set. This approach ensures each gate is uniquely
representable and uses the minimal number of bits required for such representation. For the gate set
[h, t, tdg], we need 2 bits per gate. The total information content of the circuit, measured in
bits, is the product of 𝑏 and the total number of gates in the circuit. Following the example of the
unitary matrix 3.3 and its decomposed circuit 3.19, which has a depth of 40, that implies that it needs
40 × 2 = 80 bits of information. This metric serves as the foundation for comparing the efficiency of
Huffman encoding in the subsequent versions, which aims to reduce the overall bit-length of quantum
circuit representations.

4.2.2. v1: Huffman Encoding the Gateset
The first version of Huffman coding for the decomposed quantum circuits is based on using the

gates in the chosen gate-set as the building blocks of the quantum circuit. The gates are assigned
codes based on the number of times they appear in a circuit.

We return to the example of the unitary matrix 3.3 and its decomposed quantum circuit 3.19.

gate frequency
h 21
t 10
tdg 9

Table 4.3: Frequency distribution of gates in decomposed circuit 3.19

It is straightforward to construct the Huffman tree for the frequency distribution in 4.3:

40

19

𝑇† 𝑇

𝐻

0

0 1

1

(a) Huffman Tree representation for encoding quantum gates

'Gate' | Huffman Code
-------------------------------
'h' | 1
't' | 01
'tdg' | 00

(b) Huffman code table corresponding to adjoining tree

Figure 4.2: (a) Huffman Tree Representation and (b) table of codes for Encoding of Quantum Gates

The number of bits needed for describing the quantum circuit using this version of Huffman coding is,
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therefore, 21×1+10×2+9×2 = 59. This is a notable improvement over binary encoding, which needs
80 bits. The compression factor for this particular decomposition comes out to be 59/80 = 0.7375.

In order to assign a general code for the gates, a data set of 200 Harr-random unitaries was
selected. Following Solovay-Kitaev decomposition with a depth 𝑑 = 3 and varying the degree of
recursion 𝑛 = 1, 2, 3, the gate frequencies in the decomposed circuits were stored.

(a) 𝑛 = 2 (b) 𝑛 = 3 (c) 𝑛 = 4

Figure 4.3: Bar charts showing the average distribution of gate frequencies (h, t, tdg) in decomposed circuits obtained from
Solovay-Kitaev decomposition of the data set of unitaries with 𝑑 = 3 and 𝑛 = 2, 3, 4

This distribution of frequencies is observed consistently over varying choices of the depth 𝑑 and
𝑛. This lends generality to the adoption of this distribution of frequencies is consistently observed for
varying choices of 𝑑 and 𝑛, which supports the adoption of a general Huffman code for encoding the
decomposed quantum circuit for any random unitary matrix.

4.2.3. v2: Encoding the SK-Basis
The second version of Huffman coding for the decomposed quantum circuits leverages gate se-

quences derived from the Solovay-Kitaev basis as the fundamental building blocks. The Solovay-Kitaev
basis of depth 𝑑 is the set of gate sequences up to length 𝑑. The Solovay-Kitaev basis for depth 𝑑 = 3
is shown in the table. It should be noted that the null sequence [] is also a member of the basis,
though it is not included in the table.

['h']
['t']
['tdg']

['h', 't']
['h', 'tdg']
['t', 'h']
['t', 't']

['tdg', 'h']
['tdg', 'tdg']
['h', 't', 'h']
['h', 't', 't']

['h', 'tdg', 'h']
['h', 'tdg', 'tdg']

['t', 'h', 't']
['t', 'h', 'tdg']
['t', 't', 'h']
['t', 't', 't']

['tdg', 'h', 't']
['tdg', 'h', 'tdg']
['tdg', 'tdg', 'h']

['tdg', 'tdg', 'tdg']

Revisiting our ongoing example of unitary matrix 3.3, its decomposed circuit 3.19. The subsequent
step involves generating the frequency distribution of gate sequences, derived from the representation
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SK basis element frequency
['h'] 0
['t'] 4
['tdg'] 4

['h', 't'] 0
['h', 'tdg'] 0
['t', 'h'] 1
['t', 't'] 0

['tdg', 'h'] 0
['tdg', 'tdg'] 0
['h', 't', 'h'] 5
['h', 't', 't'] 0

['h', 'tdg', 'h'] 5
['h', 'tdg', 'tdg'] 0

['t', 'h', 't'] 0
['t', 'h', 'tdg'] 0
['t', 't', 'h'] 0
['t', 't', 't'] 0

['tdg', 'h', 't'] 0
['tdg', 'h', 'tdg'] 0
['tdg', 'tdg', 'h'] 0
['tdg', 'tdg', 'tdg'] 0

Table 4.4: Frequency Distribution of Solovay-Kitaev Basis Elements in the Decomposed Quantum Circuit

of the quantum circuit in terms of gate sequences from the Solovay-Kitaev basis, as depicted in figure
3.20.

The Huffman tree for these gate sequences is structured to minimize the path lengths for the most
frequent sequences, thereby reducing the total number of bits required for the entire circuit description.
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𝐻𝑇†𝐻 𝐻𝑇𝐻

0
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0
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0 1

1

1

1

1

0 1

Figure 4.4: Huffman Tree for Solovay-Kitaev Basis Encoding. Leaves with a parent node value of 0 are not used in the
quantum circuit. The dotted edge represents continued branching for brevity.

The Huffman codes for the SK basis elements are listed below after traversal through the tree 4.4
The number of bits required to describe the quantum circuit using Huffman coding of Solovay-Kitaev
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'Instruction' | Huffman Code
--------------------------------------------------
"['h', 't', 'h']" | 11
"['h', 'tdg', 'h']" | 10
"['t']" | 00
"['tdg']" | 011
"['t', 'h']" | 0101
"['h']" | 01001
"['h', 't']" | 010001
"['h', 'tdg']" | 0100001
"['t', 't']" | 01000001
"['tdg', 'h']" | 010000001
"['tdg', 'tdg']" | 0100000001
"['h', 't', 't']" | 01000000001
"['h', 'tdg', 'tdg']" | 010000000001
"['t', 'h', 't']" | 0100000000001
"['t', 'h', 'tdg']" | 01000000000001
"['t', 't', 'h']" | 010000000000001
"['t', 't', 't']" | 0100000000000001
"['tdg', 'h', 't']" | 01000000000000001
"['tdg', 'h', 'tdg']" | 010000000000000001
"['tdg', 'tdg', 'h']" | 0100000000000000001
"['tdg', 'tdg', 'tdg']" | 0100000000000000000

Figure 4.5: Huffman codes for instructions from the Solovay-Kitaev basis

basis (v2) is 44. This is a substantial improvement over binary encoding, which needs 80 bits, and
Huffman v1, which needs 59 bits. The compression factor for this particular decomposition comes out
to be 44/80 = 0.55.

Analogous to the experiments to evaluate the generality of the generated Huffman codes in v1, as
illustrated in Fig. 4.3, we proceeded with a similar analysis for v2 and performed the Solovay-Kitaev
decomposition of the same data set of unitaries with depth 𝑑 = 3 and degree of recursion 𝑛 = 2, 3, 4
and stored the frequencies of usage for the instructions from the Solovay-Kitaev basis.

(a) 𝑛 = 2 (b) 𝑛 = 3 (c) 𝑛 = 4

Figure 4.6: Bar charts showing the average distribution of frequencies of instructions from the Solovay-Kitaev basis in
decomposed circuits obtained from Solovay-Kitaev decomposition of the data set of unitaries with 𝑑 = 3 and 𝑛 = 2, 3, 4

Again, we observe a consistency in the instructions in Fig. 4.6, that are most frequently used and
ones that are not. This pattern of usage holds true of a varying choice of recursion depth 𝑛; however
remains specific to the depth. For different depths, we would obtain a basis set different from the one
in the table, and consequently, a different distribution of usage frequencies. The significant remark on
the observed average usage frequencies in Fig. 4.6 is that there’s only a handful of instructions that are
used much more frequently compared to the remaining instructions in the set. This trend opens the
possibility of not including all the elements of the basis set in the coding process, and thereby leading
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to a shorter dictionary. This is undertaken in the next version (v3)

4.2.4. v3: Encoding a Selection from SK-Basis
The third version of Huffman coding (v3) proposed in this thesis is based on the encoding of the

quantum circuit in terms of the instructions in the Solovay-Kitaev basis, which is the same as in v2.
However, the fundamental novelty in this version is that we make a selection of instructions form
the basis and only include these selected instructions in the Huffman coding. The fundamental gates
'h', 't' and 'tdg' are trivially included in this selection. Any other instruction appearing in the
decomposed quantum circuit that doesn’t belong to the selection gets broken down in terms of the
fundamental gates, and their usage frequencies are updated. The selected Huffman instructions from
the original basis are depicted in red color in the box 4.7.

['h']
['t']

['tdg']
['h', 't']

['h', 'tdg']
['t', 'h']
['t', 't']

['tdg', 'h']
['tdg', 'tdg']
['h', 't', 'h']
['h', 't', 't']
['h', 'tdg', 'h']

['h', 'tdg', 'tdg']
['t', 'h', 't']
['t', 'h', 'tdg']
['t', 't', 'h']
['t', 't', 't']
['tdg', 'h', 't']

['tdg', 'h', 'tdg']
['tdg', 'tdg', 'h']

['tdg', 'tdg', 'tdg']

Figure 4.7: Elements of the Solovay-Kitaev basis of depth 𝑑 = 3, selected instructions for v3 printed in red

This selection of instructions is made from the observed trend of usage frequencies over changing
degrees of recursion presented in Fig. 4.6. To clarify this argument, a raincloud plot for the usage
frequencies of instructions from the Solovay-Kitaev basis is presented in Fig. 4.8. The width of the
‘cloud’ and the density of the scattered points represent the number of samples at a certain usage
frequency. The mean and standard deviation of usage frequencies are depicted by the diamond markers
and error bars, respectively. The instructions portrayed in red color have a much higher average usage
frequency. ['h'] as an instruction has a low average usage, while 𝐻 gate has a higher average
frequency in the decomposed quantum circuits 4.3. It can then be inferred that the dominant usage
of 𝐻 gate comes from the ['h', 't', 'h'] and ['h', 'tdg', 'h'] instructions.

The Huffman tree and table of codes for the selected Solovay-Kitaev basis instructions are presented
in Fig. 4.9. The number of bits for describing the quantum circuit using this version of Huffman coding
is 45, and the compression factor comes out to be 45/80 = 0.5625. This number is only marginally
higher than the number of bits required in v2 of Huffman coding (44), but the dictionary of codes is
appreciably smaller.

To answer the concern of generality, we go back to the trends in Fig. 4.6. The pattern of average
frequency remains consistent over different degrees of recursion 𝑛 for a set depth 𝑑. Therefore, a
particular selection of instructions for the encoding also remains consistent for a particular depth 𝑑
over any choice of 𝑛.

4.2.5. Handling the Qubit IDs
Scaling up the decomposition and encoding routine to multi-qubit systems requires some changes

to the stream of instructions describing the quantum circuit. In addition to the stream of encoded
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Figure 4.8: Raincloud plot of usage frequencies of SK-basis instructions in decomposed circuits performed with 𝑛 = 4.
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(a) Huffman Tree representation for encoding selected quantum
instructions

'Instruction' | Huffman Code
-----------------------------------------
"['t']" | 01
"['h', 't', 'h']" | 00
"['h', 'tdg', 'h']" | 11
"['tdg']" | 101
"['h']" | 100

(b) Huffman code table corresponding to adjoining tree

Figure 4.9: (a) Huffman Tree Representation and (b) table of codes for Encoding of selected instructions from the
Solovay-Kitaev basis(huff_v3)

⋯ 11 101 10001 101 1000001 0 ⋯

⋯ 0 0 0, 1 1 1 0 ⋯

Figure 4.10: Example segment of a Huffman v3 encoded instruction stream and the corresponding strip of qubit ID stream.
The code 10001 corresponds to a cx gate and, therefore, has two entries in the qubit ID specifying the control and target.

opcodes from the SK-basis, we also need to send the stream of qubit IDs to direct the operation of
instructions on the designated qubit. In this project, a simple binary encoding is chosen for encoding
the qubit IDs with the number of bits for encoding scaling at log2(𝑁), where 𝑁 is the size of the
system. The qubit ID stream is tailored according to the version of Huffman encoding adopted for the
instruction stream, such that each opcode corresponds to one (or two in the case of cx) entry in the
qubit ID stream. An example segment of an encoded instruction stream and the corresponding qubit
ID stream for a 2 qubit system is shown in Fig. 4.10. In the event of scaling up this routine to much
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larger size systems, Huffman coding can be employed to encode the qubit ID stream as well, but at
the moment, that is a future outlook of this project.

4.2.6. Results and Comparison
In the prior subsections, we have outlined the three variations of Huffman coding for developing

a compressed representation of decomposed quantum circuits. This section focuses on analyzing the
performance of these encoding techniques. Prior to discussing the experimental setups and results,
we will first establish the context and methodology used in our investigation.

The initial experiments are conducted using datasets of Haar-random unitaries for quantum systems
of one qubit (1q), two qubits (2q), and three qubits (3q). These tests primarily examine the perfor-
mance of random circuits. In these experiments, binary coding is utilized as the reference standard to
determine the compression efficacy of the Huffman coding methods. The effectiveness of each encod-
ing method is quantified by the compression factor, which is calculated by dividing the bit-length of
the Huffman encoded representation of a decomposed quantum circuit by the bit-length of the same
circuit encoded in binary. Fig 4.11 displays the average trends of compression factor for the 3 ver-
sions of Huffman coding for the dataset of single-qubit unitaries that are decomposed into quantum
circuits using SKD. Similarly, the subsequent plots 4.12, 4.13 display the average compression factors
for datasets of 2-qubit and 3-qubit unitaries, respectively, that are decomposed into quantum circuits
using QSD + SKD.

Figure 4.11: Trend of average compression factor len(huff encoded)
len(bin encoded) vs degree of recursion 𝑛 for Solovay-Kitaev

decomposition for data set of 200 1q Harr-random unitaries.

Let’s drive our attention to v3 of Huffman coding. As explained in subsection 4.2.4, it involves a
selection of gate sequences from the S-K basis, and the selection trivially includes the fundamental
gates. The gate sequences appearing in the quantum circuit that don’t belong to the selection are
simply expressed as a sequence of usage of the fundamental gates. Based on the updated usage
frequencies of elements in the selection, a Huffman code is generated. This process can be imagined
to have an intermediate extent between two limits. The lower limit would be v1, which only has the
fundamental gates as the basic units for coding. And the higher limit is v2, which includes all the
instructions of the S-K basis for coding. v3 is designed to screen off the instructions from coding that
are used very rarely on average and lead to a much smaller Huffman tree and code dictionary.

On that note, the noteworthy inference drawn from the preceding plot is the observed performance
trend of v3 Huffman coding compared to its predecessor, v2, which can be regarded as the most
optimal in terms of compression. As apparent, v3 initially exhibits inferior performance to v2 at lower
levels of 𝑛. However, as the degree of recursion for the S-K decomposition increases, v3 gradually
achieves a compression factor comparable to that of v2. As evident from 3.16, the process fidelity of
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Figure 4.12: Trend of average compression factor len(huff encoded)
len(bin encoded) vs degree of recursion 𝑛 for Solovay-Kitaev

decomposition for data set of 200 2q Harr-random unitaries.

Figure 4.13: Trend of average compression factor len(huff encoded)
len(bin encoded) vs degree of recursion 𝑛 for Solovay-Kitaev

decomposition for data set of 200 3q Harr-random unitaries.

decomposition increases for increasing degree of recursion.
Therefore, the principal conclusion is that at elevated levels of recursion, where the decomposed

quantum circuit reliably approximates the target unitary, v3 of Huffman coding attains compression
efficiency equivalent to that of v2 while concurrently maintaining a significantly reduced code dictionary.
This observation underscores the assertion that v3 of Huffman coding represents the most accurate
estimation of description complexity for quantum circuits, as delineated in the thesis’s findings.

The observation of analogous trends for 2-qubit and 3-qubit systems presented in 4.12, 4.13 offer
the same inferences in general from that of the 1-qubit system. The length of decomposed circuits for
2-qubit and 3-qubit systems is generally much longer in comparison to that of 1-qubit systems due to
the nature of QSD + SKD. At the same time, the compression factors are also smaller for these larger
systems. This observation reinforces the characteristic of Huffman coding, which is that its compression
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efficiency becomes more pronounced when handling larger systems of data.

Figure 4.14: Trends of average encoded bit-length are examined for three versions of Huffman coding and binary coding,
plotted against the degree of recursion 𝑛 for Solovay-Kitaev decomposition. The analysis is based on a dataset of 200 2-qubit

Harr-random unitaries.

Figure 4.14 illustrates the bit-length of the encoded instruction stream for decomposed quantum
circuits as a function of the degree of recursion for SKD. Previous figures in this subsection have
concentrated on the compression factor, which serves to determine the compressibility or provide an
indirect measure of the description complexity of decomposed quantum circuits. In contrast, this figure
focuses on the absolute encoded length of the instruction stream, offering a more direct quantification
of the description complexity.

4.3. Benchmarks Results
In the past section 3.5.1, we evaluated the performance of the SKD+QSD decomposition scheme

and selected the optimal values of parameters: a depth 𝑑 = 5 and a degree of recursion 𝑛 = 4. In
the preceding subsections, we defined three versions of Huffman coding, along with standard binary
encoding, as our baseline.

This subsection deals with the performance of the decomposition and encoding routine for bench-
mark circuits. We use benchmark circuits sourced from MQT Bench [65], a curated library within the
Munich Quantum Toolkit. The selection of benchmarks for our experiment consists of 79 scalable
benchmark circuits ranging from system sizes 2 to 6 qubits. The chosen benchmark circuits are listed
in a table in the Appendix. So, far we have implemented and tested our decomposition and encod-
ing routine on Harr-random unitaries. These circuits, though being very general, don’t necessarily
have practical applications in the real world. Therefore, we are going to execute our routine on these
benchmark circuits which are algorithms developed for real-world use cases. We aim to study the
performance of the routine on benchmarks to test whether its performance is consistent with that on
sets of Harr-random unitaries. If the algorithmic insights drawn from sets of random circuits also apply
to benchmark circuits of the same size, and to explore if we get any new or interesting insights.

An insight of the performance of the decomposition is depicted in 4.15 with the process fidelity
as the red line plot. The circuit depth for decomposed circuits is presented as a bar plot in blue and
follows a logarithmic scale on the y-axis. The benchmarks are sorted according to the increasing size
of the system. The drop in the fidelity and exponential increase of circuit depth for higher system sizes
is indicative of the inefficiencies of the Solovay-Kitaev decomposition process with the limited gate set
[h, t, tdg].

To further examine the performance of the decomposition routine with the depth of SK-basis set at
𝑑 = 5 and degree of recursion 𝑛 = 4 on the benchmark circuits, we prepare small datasets of 20 Harr-

tab:benchmarks_list
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Figure 4.15: Process fidelity and circuit depth of benchmarks post decomposition into [h, t, tdg, cx]

Figure 4.16: Mean and standard deviation of process fidelity and circuit depth plotted for benchmark circuits and sets of 20
random circuits for each size.

random unitaries for each size ranging from 2 to 6. The average fidelity of decomposition and circuit
depth over benchmarks and random circuits grouped according to their size is presented in 4.16. We
observe a closely similar performance of decomposition for benchmark and random circuits; however,
the standard deviation is higher for the benchmarks, which might be an indication of the decomposition
method being more sensitive to the complexity of the benchmarks.

The compression factor trends remain consistent over different benchmarks of the same size. There
is a greater variation in compression factor for smaller benchmarks as compared to larger systems. The
number of bits for binary encoding of the qubit IDs increases by 1 when the system size increases from
2 to 3 and at 4 to 5. At these changing points, we see a slight drop in the average compression factor
for the v2 and v3 versions. This is because the v0 binary encoding suffers a larger increase in the
size of the qubit ID stream, whereas the increase in the size of v2 and v3 Huffman encoded streams
is not that much. The increase in the size of the total description stream is offset by the improved
performance of Huffman coding for larger systems, therefore leading to a gentle drop in compression
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Figure 4.17: Compression factor = len(huff encoded)
len(bin encoded) for benchmark circuits. Benchmarks sorted according to system size.

factor. The plot reveals that Huffman v2 and v3 maintain a stable and low compression factor across
various benchmarks, suggesting robustness and effectiveness in different circuit configurations. The
consistency in performance across diverse benchmarks indicates that these Huffman encoding schemes
generalize well across different types of quantum circuits.

Another takeaway from these results stems from the consistent performance of the decomposition
and encoding routine on benchmarks as compared to sets of Harr-random unitaries. The similarity in
performance is evidenced in Fig. 4.16. Harr-random unitaries with larger sizes are general, easy to
initialize, and run the decomposition and encoding routine on ensembles of samples. In this process,
we discover high-level abstractions that also carry over to algorithms of the same size for real-world
use cases. The dataset of real-world quantum algorithms is limited in number. Hence, this convenience
of running experiments on analogous Harr-random unitaries to gain valuable algorithmic insights has
great significance.

4.4. Action of Lossless Compression: Bzip2
Lossless compression is a method of data compression that preserves all the original data ensuring

no loss of information in the compression process, allowing the exact original data to be reconstructed
from the compressed data. These algorithms operate by searching for patterns and redundancies in
data that can be expressed in a shorter and more concise way. bzip2 [26], developed by Julian Seward
in 1996, is an efficient and popular lossless compression technique attributed to its excellent balance
of compression efficiency and speed.

The pipeline depicted in Fig. 4.18 consists of a sequence of steps for transformations and encoding
that rearrange and encode the data. These steps and their order are adopted to complement each
other and improve overall efficiency. The distinguishing innovation of bzip2 is the Burrows-Wheeler
transform (BWT) [60]. It is a transformation algorithm that rearranges the data to have runs of similar
symbols and improves the effectiveness of the subsequent move-to-front transform (MTF) and run-
length encoding. As a result, bzip2 is very efficient in the compression of text that contains repeated
patterns and is asymmetric in nature; the decompression is faster than the compression. These qualities
make it a suitable choice for the compression of QASM instructions of quantum circuits, which contain
repeated instances of gate operations and qubit IDs.

4.4.1. Bzip2 over Encoded Instruction Streams
After achieving significant data compression through various Huffman encoding techniques tailored

to quantum circuits, the application of further compression using bzip2 presents an interesting avenue
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Figure 4.18: Pipeline of operations undertaken in bzip2 compression.

to explore. Given the nature of encoded quantum instruction streams, which often contain repetitive
sequences of 0s and 1s, bzip2 can further optimize the transmission efficiency of these streams.

The process involves taking the binary encoding (v0) and the Huffman-encoded streams from the
three variations described earlier— Huffman gate encoding (v1), Solovay-Kitaev basis encoding (v2),
and selective SK-basis encoding (v3)— and subjecting them to bzip2 compression. The aim is to
evaluate how much further reduction in bit-length can be achieved.

Figure 4.19: Mean program sizes plotted in log2 scale for benchmark circuits grouped according to the size of the system.
Overlaid bars depict post-bzip2 compression program sizes.

Each encoded stream is compressed using bzip2, and the resultant sizes are recorded. The average
original and the bzip2-compressed program sizes are compared on a log2 scale in Fig. 4.19 to assess
the effectiveness of applying a secondary compression stage. The additional compression achieved
suggests that layering compression techniques, starting with Huffman encoding tailored to capture the
quantum ‘context’ of circuits effectively, followed by bzip2, provide a robust method for minimizing
quantum program size.
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To conclude, this chapter offers a detailed and comprehensive exploration into the application of
Huffman coding techniques for the compression of decomposed quantum circuit instruction streams.
The experiments began with adopting a binary encoding scheme as the baseline and progressively in-
corporating more sophisticated Huffman encoding strategies. These strategies leverage the individual
gate frequencies(v1) and the Solovay-Kitaev basis instructions (v2 and v3) to optimize the encoding
schemes for quantum instructions. Significant improvements in compression efficiency were demon-
strated through these methods, which were then further enhanced by applying bzip2 compression,
illustrating the effectiveness of combining multiple compression strategies. The chapter sets the stage
for evaluating these methodologies in the subsequent chapter. The next chapter will delve into the
practical utility of the proposed methods in more efficient quantum control, estimation of information-
theoretic measures for quantum computation, and discovery of contextual abstractions in quantum
circuits.





5
Optimal QISA Design

Compression is Comprehension.
- Gregory Chaitin

This chapter involves optimal QISA design. Quantum instruction set architecture is an essential
component of the quantum compiling process, and it serves as an interface between the high-level
software level stack and the lower hardware components.

5.1. The Quantum Stack
As the name suggests, the quantum stack refers to the layered architecture used in the design

and development of quantum computing systems. The topmost layers in the stack correspond to the
application layers. They involve the computation model, the quantum algorithm for a specific applica-
tion, and its programming in a quantum programming language like Qiskit [56], Cirq [66], PennyLane
[67] or Q# [68]. The application layers deal with theoretical constructs of quantum computation and
higher-level abstraction of the computation process.

Next comes the compilation layers. These are the layers that serve as an interface between the
software layers on top and the hardware layers below. They consist of subroutines like mapping, de-
composition, routing, and scheduling operations. These layers consider the specific device constraints
and capabilities and compile the high-level quantum algorithms into Quantum Instruction Set Archi-
tecture (QISA) instructions. These levels play a pivotal role in bridging the gap between quantum
and classical descriptions of systems. An optimized design of the QISA improves the efficiency of the
subsequent control operations in terms of energy and execution times.

In the hardware layers, the control architecture manages classical operations on the qubits, including
gate operations and readout, and incorporates error correction mechanisms. At the base of the stack
lies the quantum processor itself, which can be implemented through various technologies, including
superconducting qubits, neutral atoms or trapped ions, and semiconductor or photonic systems.

Figure 5.1: Quantum stack. Levels 3, 4, and 5 involve the compiling steps, with this project focussing specifically on level 4.
Source: [17]

5.2. Energy Bottlenecks in Quantum Control Architecture
Quantum control architecture is a crucial component in the development of quantum computing

technologies. The devices are essential for qubit manipulation, error correction, and feedback control.

51
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Based on the nature of the implementation of the qubits, control is performed by various methods:
superconducting qubits use microwave pulses, trapped ions are manipulated with laser pulses, photonic
qubits via optical devices like beam splitters, and silicon quantum dots through electrical pulses. Most
of the systems operate at extremely low temperatures close to the absolute 0. Fault-tolerant quantum
computation dictates that the readout, calculation, and correction steps be performed in real-time, all
occurring before the qubits decohere.

Cryogenic control architectures hold significant potential for scalable quantum control [16]. Being
close to the operation temperature of the qubits, they offer a compact solution for performing local-
ized readout and feedback-controlled qubit manipulation. These qualities provide a substantial benefit
in performing error correction integrated with the qubits [16] and overcoming wiring bottlenecks in
systems with a large number of qubits [69]. Field programmable gate arrays (FPGA) are a suitable
candidate for these low-time and energy-consuming devices as they are programmable and can be
reconfigured to implement diverse computing routines [54].

Figure 5.2: Implementation of a cryogenic control platform. Source: [54]

One of the most important limitations of these devices is the tight power consumption budget as-
sociated with their cryogenic operation temperatures. Employing these devices at temperatures far
lower than their rated operating temperature range is challenging because of anomalous behaviors
and non-idealities in the I-V characteristics [54]. Dilution refrigerators, which are popularly used for
cooling the quantum processors to sub-Kelvin temperatures, are incredibly sensitive to the power con-
sumption of the devices. At these temperatures, even small amounts of heat can significantly impact
the performance of the system, including introducing thermal noise and reducing coherence times of
quantum states. The power dissipation budget of dilution refrigerators for cooling quantum proces-
sors determines the maximum allowable heat load to maintain ultra-low temperatures. It ranges from
around 1W at 4K and goes down to the order of several 𝜇W at 10 mK [70]

Huffman-encoded quantum instruction sets offer a redefined, dense (along the depth) represen-
tation of quantum circuits in terms of S-K basis instructions. The choice of an optimal gate set of
decomposition along with Huffman version v3 4.2.4 proposed in the thesis aims to provide a reliable
description of the quantum circuit that can be executed in fewer operations compared to the execution
of native gates. The reduced throughput requirement for the encoded instructions also offers a key
advantage in the transmission of the instruction stream from room temperature to the operating tem-
perature of the control architecture. Therefore, the method of compression of quantum instructions
qualifies as a high-level approach towards energy-efficient cryogenic quantum control.

5.3. Contemporary QISA Design
QISA is analogous to classical instruction set architectures such as Intel x86, ARM, and RISC-V and

serves as a crucial intermediary between the higher-level quantum programming languages and the
lower-level quantum hardware operations. It plays a significant role in providing a level of abstraction
that is more comprehensive in describing the physical details of the micro-architecture and hardware
than high-level quantum programs and algorithms [71]. eQASM [58] tackles such shortcomings of
existing frameworks such as Quil[72], QuMIS[73] and openQASM[56] in offering a scalable and com-
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prehensive program flow control. It features an executable instruction set architecture framework that
is more scalable and flexible and allows the configuration of quantum operations with explicit timing
specifications.

Alongside the efforts to enhance ISAs by incorporating specific control and hardware details, insights
from overlying quantum algorithms and program synthesis can be incorporated into the design space
exploration of QISAs to better bridge the gap between high-level quantum semantics and underlying
control and hardware execution. This integration will not only streamline the translation from theory to
practice but also expand the scalability and applicability of QISAs, as well as the resource efficiency of
quantum computation for a broader array of experiments. Notable contributions to this field have been
made by Butko et al. at the Lawrence Berkeley National Laboratory in their paper [17]. The authors
propose a scalar quantum extension termed QUASAR and a vector extension qV based on the existing
RISC-V ISA [51]. The authors highlight the efficacy of their proposed QISA frameworks by comparing
them with existing frameworks(eQASM) in terms of metrics such as encoding efficiency and execution
times. Assessment of ISAs by characterizing the control processor performance in terms of parameters
such as circuit complexity, gate density, and diversity offers an ‘algorithmic evaluation’ of the QISA.

5.4. Advantages of Proposed QISA
The following two subsections respectively focus on the practical and theoretical advantages of the

proposed QISA.

5.4.1. Estimation of Energy Gains
The adoption of cryogenic control architectures as motivated in Sec. 5.2 necessitates the devel-

opment of efficient methods for transmitting instructions from room temperature (around 300K) to
cryogenic environments (typically around 4K). This requirement stems from the need to control quan-
tum processors operating at extremely low temperatures without introducing excessive heat that could
disturb the delicate quantum states necessary for computation. Efficient transmission methods must,
therefore, minimize thermal load while maintaining high data integrity and speed.

To this aid, different technologies have been proposed in the recent past for establishing high-speed,
low-power transmission links between room temperature(RT) and 4K. The energy per bit of data ranges
from a few hundred fJ/bit [74, 75] using optical fibers with photonic links and CMOS-based transceiver
chip [76] to a few pJ/bit using CMOS DAC-based wireline transmitter [77].

The Huffman encoding routine followed by bz2 compression offers a significant reduction in the
bit-size description of quantum circuits. In this subsection, we aim to perform an estimation of energy
gains for the cryo-CMOS DAC-based wireline transmitter technology presented in [77] with an energy
rate of 2.46 pJ/bit and data rate of 40 Gbps.

The figure 5.3 depicts the mean energy load for transmission of the quantum program (instruction
stream + qubit ID stream). Adopting v3 Huffman coding proposed in this thesis brings down the heat
load to approximately 2.5 % of the that incurred by QASM format (and 40% of that incurred by binary
encoded format). Performing lossless compression(bzip2) on the Huffman v3 encoded instructions
brings the heat load down to around 1 % of that by the QASM. Paying attention to some caveats, the
subsequent bzip2 compression adds an additional overhead for decompression at the cryo-level. bzip2
is asymmetric, taking less time for decompression than compression, and is a characteristic that makes
it a good choice for lossless compression. Huffman v3, offering asymptotically identical compression
as v2, is a better choice for encoding because of its shorter code dictionary.

The diminished heat load during data transmission signifies a promising avenue for scalability in
program size. As we envisage the era of fault-tolerant quantum computation, the complexity and
size of quantum programs are poised to expand significantly, encompassing logical-level operations.
The decreased energy overhead resulting from instruction transmission alleviates the stringent power
constraints in cryogenic environments, particularly on control processors.

5.4.2. Estimation of Theoretical Measures
In this subsection, we evaluate the methods presented in the thesis from a theoretical perspective

and assess the decomposition and encoding routine as an estimate for quantum description complexity.
Enumerating some criteria or factors that can be considered as requirements for a practical estimate
of description complexity:
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Figure 5.3: Mean Energy Consumption for Quantum Program Transmission in three formats: QASM, Binary encoded, Huffman
v3 encoded, and bz2 compression on Huffman v3 encoded data. Each bar represents the mean energy consumption for a

given program size, with bars for each format overlaid for direct comparison. Energy per bit = 2.46 pJ/bit [77]

• Minimality: The complexity measure should capture the shortest possible description of an ob-
ject (or a quantum circuit in this context), implying the optimal compression of the information
contained within the object. We observe a consistent compression factor of 0.4 for the Huffman
v2 and v3 methods over binary encoded streams 4.17.

• Universality: The Solovay-Kitaev theorem essentially states that if we have a universal gate
set, we can approximate any single-qubit gate to precision 𝜖 with a circuit length that is poly-
logarithmic in 1/𝜖. Therefore, the SK basis made from a gate set (e.g. [h, t, tdg]) is capable of
modeling the behavior of a universal quantum computer.

• Invariance: Choosing an alternate gate-set for the decomposition of the unitary matrix results in
an alternate language of description of the same program. As per the Solovay-Kitaev theorem, if
we change from one universal set to another, both of which are capable of densely spanning the
space of SU(2), the decomposition length changes at most by a constant factor. This is because
the efficiency of the algorithm fundamentally hinges on the density of the gates in SU(2) and not
strictly on their individual characteristics.

Based on these criteria, the Huffman encoding of SK instructions offers a practical and effective
method to approximate the description complexity of quantum circuits. Next, inspired by [22], we aim
to describe the total quantum complexity as the sum of the quantum circuit complexity and quantum
description complexity. The quantum circuit complexity can be defined as the size of the system (no.
of qubits) multiplied by the depth of the circuit. Adopting this definition as the measure of circuit
complexity and Huffman v3 as the measure for description complexity, the circuit and description
complexity for benchmarks is presented in 5.4

We observe that the description complexity does not increase as rapidly as the circuit complexity
with the growing system size. This suggests that the Huffman encoding of SK basis instructions is
successful in capturing significant contextual or abstract information about the quantum circuits, which
simplifies their representation without losing essential details necessary for accurate computation.

5.5. Usefulness in Discovering High-Level Q-Programming Abstractions
Studying high-level quantum programming abstractions through program synthesis is crucial for

advancing the field of quantum computing. This approach is akin to understanding language through
common substrings or patterns, which simplifies the creation and comprehension of new words or
phrases.
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Figure 5.4: Circuit Complexity and Description complexity plotted for benchmark circuits arranged according to increasing size.

For example, in classical programming, identifying common patterns such as loops and conditional
statements has led to the development of higher-level programming constructs like for-each loops and
lambda expressions, which simplify coding tasks and enhance readability and maintainability. Similarly,
in quantum computing, recognizing and formalizing frequently occurring sequences of quantum gates
(like those from the Solovay-Kitaev (SK) basis) as high-level constructs can provide similar benefits.
These sequences, once identified and abstracted, can serve as fundamental ”building blocks” or macros,
which encapsulate complex quantum operations into single, reusable components.

Selection for 𝑑 = 4
['cx']
['h']
['t']
['tdg']
['h', 't', 'h']
['h', 'tdg', 'h']
['h', 't', 'h', 't']
['h', 't', 'h', 'tdg']
['h', 'tdg', 'h', 't']
['h', 'tdg', 'h', 'tdg']
['t', 'h', 't', 'h']
['t', 'h', 'tdg', 'h']
['tdg', 'h', 't', 'h']
['tdg', 'h', 'tdg', 'h']

Selection for 𝑑 = 5
['cx']
['h']
['t']
['tdg']
['h', 't', 'h']
['h', 'tdg', 'h']
['h', 't', 'h', 't']
['h', 't', 'h', 'tdg']
['h', 'tdg', 'h', 't']
['h', 'tdg', 'h', 'tdg']
['t', 'h', 't', 'h']
['t', 'h', 'tdg', 'h']
['tdg', 'h', 't', 'h']
['tdg', 'h', 'tdg', 'h']
['t', 'h', 't', 'h', 'tdg']
['t', 'h', 'tdg', 'h', 'tdg']
['tdg', 'h', 't', 'h', 't']
['tdg', 'h', 'tdg', 'h', 't']

Selection for 𝑑 = 6
['cx']
['h']
['t']
['tdg']
['h', 't', 'h']
['h', 'tdg', 'h']
['h', 't', 'h', 't']
['h', 't', 'h', 'tdg']
['h', 'tdg', 'h', 't']
['h', 'tdg', 'h', 'tdg']
['t', 'h', 't', 'h']
['t', 'h', 'tdg', 'h']
['tdg', 'h', 't', 'h']
['tdg', 'h', 'tdg', 'h']
['t', 'h', 't', 'h', 'tdg']
['t', 'h', 'tdg', 'h', 'tdg']
['tdg', 'h', 't', 'h', 't']
['tdg', 'h', 'tdg', 'h', 't']
['t', 'h', 't', 'h', 'tdg', 'tdg']
['t', 'h', 'tdg', 'h', 'tdg', 'tdg']
['t', 't', 'h', 't', 'h', 'tdg']
['t', 't', 'h', 'tdg', 'h', 'tdg']
['tdg', 'h', 't', 'h', 't', 't']
['tdg', 'h', 'tdg', 'h', 't', 't']
['tdg', 'tdg', 'h', 't', 'h', 't']
['tdg', 'tdg', 'h', 'tdg', 'h', 't']

Analyzing average frequencies of usage of SK basis instructions leads to the identification of in-
structions that are used much more frequently than others, as depicted in Fig. 4.8 for the case of SK
basis depth 𝑑 = 4. This observation served as the inception for v3 of Huffman encoding, where we
selected these frequently occurring SK basis instructions and included only them in the code dictionary
to describe the circuit. These selected instructions for SK basis of depth 𝑑 = 4, 5 and 6 are depicted in
the table 5.5. The instructions are selected by observing average frequencies of usage over a dataset
of 200 random unitaries. We observe that the gate sequences at lower depths also have a consistently
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high usage at higher depths as well. The growing number of these abstractions with growing system
size enables in capturing more complexity of the quantum circuits which is also observed in 5.4.

Similar approaches to discovering programming abstractions from program synthesis have been
carried out in [78] by using deep reinforcement learning techniques to teach the compiler to synthesize
unitaries and constantly updating the library of gates and using this library to solve similar synthesis
problems.

Finding these abstractions not only streamlines the quantum programming process but also aids in
developing new algorithms by reusing and combining these high-level constructs, much like forming
new words in a language by understanding and applying common suffixes or prefixes.



6
Conclusion

Driven by both an investor’s and a theorist’s motivation, this project delivers 2 major contributions:
An energy-efficient QISA and a practical estimate of the description complexity of quantum circuits.
As a part of the optimal firmware design suite, this project is targeted to augment the compilation
and control performance from an algorithmic point of view. To answer this, we turn to algorithmic
information theory, or description complexity in particular. Based on this premise, we started with the
research question:

How can we compress the representa-
tion of decomposed quantum circuits?

The main contribution of this thesis is a generalized framework for the synthesis of quantum unitaries
into a native set of gates and the subsequent representation of the decomposed circuit in terms of
Huffman-encoded opcodes from the SK basis.

The background provides a detailed theoretical exploration of resource theory, algorithmic infor-
mation, and complexity theory. It culminates in a concise table that aggregates various compound
complexity measures, facilitating a clear comparison.

Chapter 3 deals broadly with the choice of the unitary matrix as the quantum description and meth-
ods for the decomposition of the unitary into a native set of gates. We begin with the lossless com-
pression method bzip2 as our preliminary estimate of description complexity. The initial experiments
on YAQQ serve as a sandbox for setting up a dataset of Harr-random unitaries and the performance
of decomposition routines. The Solovay-Kitaev decomposition, one of the most important components
of the project, was studied extensively, and the reconstruction of the decomposed circuit from the
base-layer sequences from the SK basis forms the cornerstone of this project. A generalized version
of SKD was developed to operate with any set of native gates input by the user. The routine was then
scaled up to multi-qubit systems with the implementation of Quantum Shannon Decomposition inte-
grated with SKD. A range of experiments were conducted to study the performance of decomposition
routines for 1q, 2q, and 3q systems. These experiments also helped in the choice of optimal values
of the parameters for SKD: depth 𝑑 = 5 and degree of recursion 𝑛 = 4, which will be used for the
decomposition of benchmark circuits in the next chapter.

The foundation and implementation of Huffman coding are covered in Chapter 4. Three different
versions of Huffman coding with an increasing level of sophistication are developed and presented with
a comparative analysis of the average compression factor over datasets of random unitaries for differ-
ent configurations of the SK decomposition. The average compression factor for Huffman v3 closely
approaches Huffman v2 (the most optimal encoding in terms of compression) for higher degrees of re-
cursion. Huffman v3, having an optimal compression performance and a much shorter code dictionary,
is, therefore, the most optimal method developed in the thesis. The efficacy of the decomposition
and encoding routine is then portrayed on a set of real benchmark circuits. We observe a consis-
tent compression performance over a range of benchmarks, indicating that these encoding schemes
generalize well over different quantum circuits. A subsequent lossless compression with bzip2 over
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Huffman-encoded instruction streams further improves the compression and brings down the total
program size.

In Chapter 5, we assess the methods and findings discussed in Chapters 3 and 4, taking a bird’s-eye
view of the quantum computation stack, with a particular focus on the QISA level and modern design
strategies. We emphasize the crucial role of cryogenic control architecture in facilitating scalable, fully
integrated quantum computation at qubit operation temperatures. We address the energy bottlenecks
and constraints within these systems, proposing the use of encoded and compressed quantum instruc-
tion streams as a solution to reduce the heat load of transmission of instruction from RT to cryogenic
temperature. Our discussion then shifts to the theoretical metrics demonstrated by our work. We
argue that the Huffman-encoded representation of decomposed circuits provides a practical measure
of quantum description complexity and observe that it is successful in capturing high-level quantum
programming abstractions, offering valuable insights into the semantics of quantum algorithms and
fostering the development of novel algorithms.

6.1. Outlook
Having successfully implemented the decomposition and encoding framework for quantum circuits,

our focus now shifts towards exploring future avenues. This project was conceived within the context
of a broader initiative aimed at optimal quantum firmware design alongside YAQQ and ‘Energy Efficient
Pulse Control’.

6.1.1. Implementation on Hardware
The compression experiments averaged over sets of samples 4.11, 4.12, 4.13 were conducted to

obtain a fixed encoding (for a chosen depth of SKD) that performs consistently for different quantum
circuits. This encoding scheme can be implemented on real hardware/ cryo-control processors to study
the efficiency and processing heat load with the proposed encoded instruction streams. The SK-basis
instruction stream offers a fewer number of operations as compared to the stream of gates. This can
lead to a reduced heat load and a relaxation in the clock frequencies for control processors. Collabora-
tions with research efforts on cryogenic control hardware will prove fruitful in studying these techniques
with greater detail and help assess the ability to meet real-time control of quantum processors and an
estimate of the processing energy efficiency of encoded quantum instruction streams.

6.1.2. Connection with YAQQ
The gateset [h, t, tdg] has been chosen consistently in the thesis for the Solovay-Kitaev

decomposition. The decomposition and encoding framework is designed to work for any general gate
set, and searching for an optimal gate set can lead to a more efficient and reliable decomposition. The
YAQQ framework, which operates at a level just above DECQA in the optimal firmware suite, searches
for an optimal gate set over an ensemble of random unitaries by minimizing a cost function that has
the parameters fidelity, circuit depth, and novelty. The optimal gates found over 500 random unitaries
are:

P1𝑜𝑝𝑡.500�⃗� = [ −0.99891178 + 0.𝑗 −0.01683013 − 0.04349723𝑗
−0.0406026 + 0.02294975𝑗 +0.7722138 + 0.63364862𝑗 ]

P1𝑜𝑝𝑡.500�⃗� = [ +0.54683177 + 0.𝑗 −0.52979855 − 0.64829662𝑗
+0.8231603 + 0.15291220𝑗 +0.26287606 + +0.47950095𝑗]

By adopting these gates as native gates for decomposing our target unitaries, we can achieve an
improved decomposition in terms of fidelity and circuit depth.

6.1.3. Connection with Energy Efficient Pulse Control
As we discussed in 5.3, designing the QISA to be aware of the micro-architecture and control

systems makes it more ”comprehensive” [71] in describing the physical details of the program. An
extension of this project in this direction would be to integrate the DECQA framework with a micro-
architecture. This will help translate the compressed and encoded representation of decomposed
quantum circuits to the pulse level.

On this aspect, connecting this framework with the ‘Energy Efficient Pulse Control’ framework which
is envisioned to operate just below DECQA in the suite and deliver optimized pulse instructions for
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our compressed circuit representations. This upgrade would complete the algorithm and information-
theory-driven approach toward building an optimal quantum firmware.

6.1.4. Algorithmic Information Theory
The concept of description uncomplexity as a resource for performing computation is put forth in

[22] and also proved in [79].

Resource = ΔC = (Cmax − C) (6.1)

In the above equation taken from [22], C is the complexity. Following these ideas, the algorithmic
randomness for quantum circuits can be estimated from the incompressibility. The higher the compres-
sion factor, the higher the incompressibility and the higher the algorithmic randomness. The quantum
circuits with low algorithmic randomness can be imagined to have a higher untapped resource for per-
forming the target computation. This analogy can be used to prove quantum supremacy for circuits
that have a high algorithmic randomness.

6.1.5. Improvements in Encoding and Decomposition
The encoding schemes proposed in this thesis are integrated with the Solovay-Kitaev decomposition.

The composite instructions from the SK basis are chosen as fundamental units for defining the circuit.
The scope of the encoding schemes can be expanded to other decomposition methods or reinforcement
learning-based circuit compilation methods [78, 80]. Huffman coding can be employed on alternate
decomposition methods by selecting relevant fundamental units that can be identified through a study
of decomposed quantum circuits over sets of samples analogous to the experiments done in Chapter
4.

While scaling up the framework for multi-qubit systems, we implemented an additional qubit ID
stream corresponding to the instruction stream, specifying the qubit to operate on. Currently, we are
utilizing binary encoding for the qubit ID stream. As the system size increases, the number of bits per
qubit ID and the total length of the qubit ID stream also scale up. We can implement Huffman coding
on the qubit ID. This would help compress the qubit ID stream.

Another possible avenue would be to add the qubit ID to the gate/instruction. For example, [h,
t, h] q[0] and [h, t, h], q[1] would be two different opcodes instead of counting them
as the same instruction and specifying the qubit ID in a separate stream. The high-level quantum
programming abstractions would be different in this case and may be useful in getting deeper insights
that also describe/distinguish qubits in the register.
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Appendix

List of benchmark circuits taken from the MQTBench[65] library. The suffix _indep_qiskit de-
notes that the circuits are described at a target-independent level using qiskit as the compiler. The
chosen benchmarks are all scalable algorithms with system sizes in the range 2-6.

Benchmark Codename Circuit Name and Size

ae_indep_qiskit_2 Amplitude Estimation, 2 qubit

ae_indep_qiskit_3 Amplitude Estimation, 3 qubit

ae_indep_qiskit_4 Amplitude Estimation, 4 qubit

ae_indep_qiskit_5 Amplitude Estimation, 5 qubit

ae_indep_qiskit_6 Amplitude Estimation, 6 qubit

dj_indep_qiskit_2 Deutsch Josza, 2 qubit

dj_indep_qiskit_3 Deutsch Josza, 3 qubit

dj_indep_qiskit_4 Deutsch Josza, 4 qubit

dj_indep_qiskit_5 Deutsch Josza, 5 qubit

dj_indep_qiskit_6 Deutsch Josza, 6 qubit

ghz_indep_qiskit_2 GHZ State, 2 qubit

ghz_indep_qiskit_3 GHZ State, 3 qubit

ghz_indep_qiskit_4 GHZ State, 4 qubit

ghz_indep_qiskit_5 GHZ State, 5 qubit

ghz_indep_qiskit_6 GHZ State, 6 qubit

graphstate_indep_qiskit_3 Graph State, 3 qubit

graphstate_indep_qiskit_4 Graph State, 4 qubit

graphstate_indep_qiskit_5 Graph State, 5 qubit

graphstate_indep_qiskit_6 Graph State, 6 qubit

grover-noancilla_indep_qiskit_2 Grover’s Algorithm (no ancilla), 2 qubit

grover-noancilla_indep_qiskit_3 Grover’s Algorithm (no ancilla), 3 qubit

grover-noancilla_indep_qiskit_4 Grover’s Algorithm (no ancilla), 4 qubit

grover-noancilla_indep_qiskit_5 Grover’s Algorithm (no ancilla), 5 qubit

grover-noancilla_indep_qiskit_6 Grover’s Algorithm (no ancilla), 6 qubit

grover-v-chain_indep_qiskit_2 Grover’s Algorithm (v-chain), 2 qubit

grover-v-chain_indep_qiskit_3 Grover’s Algorithm (v-chain), 3 qubit

grover-v-chain_indep_qiskit_4 Grover’s Algorithm (v-chain), 4 qubit

grover-v-chain_indep_qiskit_5 Grover’s Algorithm (v-chain), 5 qubit

portfolioqaoa_indep_qiskit_3 Portfolio Optimization with QAOA, 3 qubit

portfolioqaoa_indep_qiskit_4 Portfolio Optimization with QAOA, 4 qubit

portfolioqaoa_indep_qiskit_5 Portfolio Optimization with QAOA, 5 qubit

portfolioqaoa_indep_qiskit_6 Portfolio Optimization with QAOA, 6 qubit

portfoliovqe_indep_qiskit_3 Portfolio Optimization with VQE, 3 qubit

portfoliovqe_indep_qiskit_4 Portfolio Optimization with VQE, 4 qubit

portfoliovqe_indep_qiskit_5 Portfolio Optimization with VQE, 5 qubit

portfoliovqe_indep_qiskit_6 Portfolio Optimization with VQE, 6 qubit
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qaoa_indep_qiskit_3 Quantum Approximation Optimization Algorithm (QAOA), 3 qubit

qaoa_indep_qiskit_4 Quantum Approximation Optimization Algorithm (QAOA), 4 qubit

qaoa_indep_qiskit_5 Quantum Approximation Optimization Algorithm (QAOA), 5 qubit

qaoa_indep_qiskit_6 Quantum Approximation Optimization Algorithm (QAOA), 6 qubit

qft_indep_qiskit_2 Quantum Fourier Transformation (QFT), 2 qubit

qft_indep_qiskit_3 Quantum Fourier Transformation (QFT), 3 qubit

qft_indep_qiskit_4 Quantum Fourier Transformation (QFT), 4 qubit

qft_indep_qiskit_5 Quantum Fourier Transformation (QFT), 5 qubit

qft_indep_qiskit_6 Quantum Fourier Transformation (QFT), 6 qubit

qftentangled_indep_qiskit_2 Entangled QFT, 2 qubit

qftentangled_indep_qiskit_3 Entangled QFT, 3 qubit

qftentangled_indep_qiskit_4 Entangled QFT, 4 qubit

qftentangled_indep_qiskit_5 Entangled QFT, 5 qubit

qftentangled_indep_qiskit_6 Entangled QFT, 6 qubit

qnn_indep_qiskit_2 Quantum Neural Network (QNN), 2 qubit

qnn_indep_qiskit_3 Quantum Neural Network (QNN), 3 qubit

qnn_indep_qiskit_4 Quantum Neural Network (QNN), 4 qubit

qnn_indep_qiskit_5 Quantum Neural Network (QNN), 5 qubit

qnn_indep_qiskit_6 Quantum Neural Network (QNN), 6 qubit

qpeexact_indep_qiskit_2 Quantum Phase Estimation (QPE) exact, 2 qubit

qpeexact_indep_qiskit_3 Quantum Phase Estimation (QPE) exact, 3 qubit

qpeexact_indep_qiskit_4 Quantum Phase Estimation (QPE) exact, 4 qubit

qpeexact_indep_qiskit_5 Quantum Phase Estimation (QPE) exact, 5 qubit

qpeexact_indep_qiskit_6 Quantum Phase Estimation (QPE) exact, 6 qubit

qpeinexact_indep_qiskit_2 Quantum Phase Estimation (QPE) inexact, 2 qubit

qpeinexact_indep_qiskit_3 Quantum Phase Estimation (QPE) inexact, 3 qubit

qpeinexact_indep_qiskit_4 Quantum Phase Estimation (QPE) inexact, 4 qubit

qpeinexact_indep_qiskit_5 Quantum Phase Estimation (QPE) inexact, 5 qubit

qpeinexact_indep_qiskit_6 Quantum Phase Estimation (QPE) inexact, 6 qubit

qwalk-noancilla_indep_qiskit_3 Quantum Walk (no ancilla), 3 qubit

qwalk-noancilla_indep_qiskit_4 Quantum Walk (no ancilla), 4 qubit

qwalk-noancilla_indep_qiskit_5 Quantum Walk (no ancilla), 5 qubit

qwalk-noancilla_indep_qiskit_6 Quantum Walk (no ancilla), 6 qubit

qwalk-v-chain_indep_qiskit_3 Quantum Walk (v-chain), 3 qubit

qwalk-v-chain_indep_qiskit_5 Quantum Walk (v-chain), 5 qubit

vqe_indep_qiskit_3 Variational Quantum Eigensolver (VQE), 3 qubit

vqe_indep_qiskit_5 Variational Quantum Eigensolver (VQE), 5 qubit

vqe_indep_qiskit_6 Variational Quantum Eigensolver (VQE), 6 qubit

wstate_indep_qiskit_2 W-State, 2 qubit

wstate_indep_qiskit_3 W-State, 3 qubit

wstate_indep_qiskit_4 W-State, 4 qubit

wstate_indep_qiskit_5 W-State, 5 qubit

wstate_indep_qiskit_6 W-State, 6 qubit

Table 6.1: List of benchmarks selected for the experiments in the thesis.
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