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Introduction

With the recent advancements in Artificial Intelligence (AI), innovative applications are being devel-
oped for all branches of science and technology. This thesis started with the goal in mind of finding
advantageous ways of combining AI with Aerospace Engineering. This topic was chosen as the cur-
rent methods of automated aerospace design struggle to be widely adopted professionally, despite
their effectiveness [1, 2]. The addition of AI to aerospace design could help uncover innovative aircraft
designs.

In this thesis, a ML algorithm is selected to construct an optimization framework. This ML framework is
then tasked to perform the constrained optimization of a wing shape for a specific aircraft at the concep-
tual design phase level. The adaptation of the ML framework to the design problem is quite complex
and is a trial and error process. This adaptation is not only dependent on the specific ML algorithm
selected, but also requires knowledge of the design space of the particular design problem. Once the
framework is created, the ML model is trained to improve itself by repeatedly performing the same op-
timization and learning from its results. The performance of the model throughout its training phase is
studied in order to select the best model. The performance of the final ML framework is then compared
to a traditional optimization algorithm commonly found in automated aerospace design frameworks.
Performance parameters like the reached objective value, consistency and time per optimization to
solve the design problem are evaluated.

The training of a ML algorithm can be computationally costly. In order for the ML framework to be
competitive with the traditional optimization algorithms, the training time has to be justified. The trained
ML frameworks are able to be repurposed through a technique called Transfer Learning (TL). The
purpose of TL is to reduce the overall computational costs of the optimization process and allows the
framework to optimize the wings of different aircraft.

This report consists of three parts. In part I, a scientific paper is presented that details the final results
and conclusion of the research. In part II, the literature study discusses the research done on the
relevant topics to formalize the thesis objective. This objective has shifted since the literature study
has concluded, so the conclusion of this study diverges slightly from the research paper. The research
paper is written with the assumption that the reader possesses some knowledge on the basics of ML
and is advised to refer to the literature study if additional information is required. This report concludes
with part III. Here, additional results and insights are given to support the findings of the research paper.

xi
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Abstract

In this paper, the Proximal Policy Optimization (PPO) algorithm is used to perform a constrained wing shape
optimization. The PPO algorithm is a Machine Learning (ML) algorithm that improves itself by repeatedly
performing the same optimization and learning from its results. The complete adaptation of the PPO framework to
the design problem is detailed and evaluated. Not only was the PPO framework able to consistently optimize the
wing 4% further than the Particle Swarm Optimization (PSO) algorithm, it was able to do so 35 times faster once the
model is fully trained. The PPO framework was able to find more efficient wing shapes than the PSO framework.
The trained PPO model was able to optimize the wing of other similar aircraft, even without direct retraining.
These results illustrate that PPO could be a promising technique for automated aerospace design problems. Due to
the significant training time of the ML approach, the PPO algorithm is not an effective replacement of traditional
optimization algorithms for design problems where only a single optimization is required.

Nomenclature

CD f Friction drag coefficient
CDp Profile drag coefficient
FF Form factor
ϵ Twist angle
Γ Dihedral angle
λ Taper ratio
ΛC/4 Quarter chord sweep angle
ΛLE Leading edge sweep angle
σ Standard deviation
d⃗v Design vector
ai Action at step i
AR Aspect ratio
b Wing span
CD Drag coefficient
C f Friction Coefficient
CL Lift coefficient
ckink Kink chord length
croot Root chord length
ctip Tip chord length
fi Objective value at step i
gn Constraint n
j Design variable from the design vector
jLB Lower bound value of design variable j
jUB Upper bound value of design variable j
M Mach number
m f uel Fuel mass
mtot Total aircraft mass
nz Ultimate load factor
Pn Penalty value n
q Dynamic pressure
Re Reynolds number

Si State at step i
Swet Wetted surface area
Swing Wing surface area
t/c Chord thickness
ttrain Time required to train the DRL framework
Vwing Volume of wing
W/S Wing loading
x/cmax Chord-wise location of maximum chord thick-

ness
Xtr Transition point
ykink Span-wise location of the kink chord
ztip Z-location of the tip chord

1 Introduction

One of the main points of focus of the aviation industry
is reducing the environmental impact of aircraft [1]. In
order to achieve this, the efficiency and performance of
designed aircraft have to be optimized as much as possi-
ble. The optimization of an aircraft design is a very com-
plex process as many fields are dependent on each other.
This leads to a lot of time spent on inter-department com-
munication which results in many small changes during
the conceptual design phase. The field that specializes
in addressing this problem is called Multi-Disciplinary
Design Optimization (MDAO) [2]. The main focus of
MDAO is to develop techniques and tools that allow
engineers to simultaneously design and optimize all
components of the aircraft. However, MDAO techniques
are currently not widely utilized professionally as the
set-up and expertise required prove to be too great of a
hurdle [3, 4].

The aim of the thesis is to investigate the possible
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advantages and limitations of Machine Learning (ML)
applications to automated aerospace design. ML ap-
plications have inherent synergies with automated pro-
cesses and its application to automated design problems
could prove advantageous. However, ML applications
for aerospace problems are limited, especially regard-
ing automated design. ML algorithms can be used as
optimization frameworks similar to those employed in
MDAO. As ML employs a fundamentally different strat-
egy from traditional optimization algorithms, exploring
this could uncover potential advantages. A traditional
optimization algorithm refers to an algorithm that is
used for automated design optimization and can com-
monly be found in MDAO applications.

In this paper, the Proximal Policy Optimization (PPO)
algorithm [5] is selected to perform the constrained op-
timization of a wing shape at the conceptual design
phase level. Due to limited computational resources,
the design problem is kept as simple as possible. The
performance of the RL framework is then compared to
the performance of the Particle Swarm Optimization
(PSO) algorithm [6]. Performance parameters like the
reached objective value, time per optimization and ratio
of converged to failed optimizations are evaluated. Then,
the trained ML model is repurposed to solve the design
problem for an altered design space with the goal of
gaining computational advantages.

2 Literature Review

ML techniques offer many opportunities to improve the
efficiency of automated aerospace design while simul-
taneously improving the performance of the designed
aircraft components [7, 8]. Within aerospace, the data-
driven ML frameworks are most common and are often
combined with Aerodynamic Shape Optimization (ASO).
While these ML frameworks offer great advantages, a
large data-set is required to effectively train these mod-
els. Reliable and high quality data is not always avail-
able for design projects. Deep Reinforcement Learning
(DRL) is an alternative ML method that has been suc-
cessfully implemented as an optimization framework [9,
10, 11]. DRL differs from the data-driven ML approach
by directly interacting with physics based solvers and
optimizing a design on the basis of the results. A key
advantage of the DRL framework is that its results are
based on the output from the solvers. This makes the
results from the DRL framework match the accuracy of
those solvers, while the data-driven frameworks simply
predict their results.

Y. Azabi and collegues have created a framework us-
ing the PSO algorithm with an interactive approach to
perform an ASO for a UAV [12]. In their framework, a
separate ’Decision Maker’ interacts with both the aero-
dynamic solver and the optimization algorithm. The
Decision Maker guides the optimization algorithm to ad-
vantageous locations in the design space, similarly to the

DRL frameworks. This framework resulted in computa-
tional costs being halved to reach similar results as the
traditional optimization approach. The DRL framework
iteratively learns how to best solve a problem and can
be set-up to directly comply with constraints. Because
the DRL algorithms has learned how to most effectively
explore a design space, it is able to significantly reduce
the required computational costs. The DRL frameworks
are able to perform ASO in only a fraction of the time
compared to traditional optimization frameworks [13,
14]. These efforts illustrate the increase in computational
efficiency that DRL frameworks can offer. Discovering
more efficient design techniques could aid in creating an
interactive design tool for an engineer to rapidly iterate
and generate new designs [15, 16].

A big hurdle for the use of all ML framework types
is that they require a costly training phase before they
exhibit adequate performance [17]. ML frameworks are
typically designed to solve a single problem. This means
that an entirely new ML framework has to be trained
when changes are made the design problem. This
severely off-sets the computational advantages gained
from a trained ML framework. Transfer learning (TL) is
a technique that tries to alleviate this problem. The goal
of TL is to leverage the knowledge of a trained frame-
work to solve similar but new problems [17, 18, 19]. This
has the potential to greatly increase the computational
efficiency of any optimization framework. DRL tech-
niques have shown some resilience to small changes to
the design space. These DRL frameworks can generalize
their design strategy to solve design problems without
the need for direct retraining [9, 10, 20].

A DRL algorithm that has already shown great
promise in aerospace optimization problems is called
PPO [5]. For example, PPO was successfully used for
a constrained optimization problem of an airfoil shape
and was able to do this more efficiently than a tradi-
tional optimization framework [21]. The PPO algorithm
also shows great results when used in conjunction with
transfer learning techniques [22].

Data-driven approaches are quite popular applications
of ML frameworks, where large data sets are leveraged
to train ML models. This allows a ML model to replace
high-fidelity CFD solvers to predict the aerodynamic
performance of an aerodynamic body [23, 24, 25]. A
key advantage of using a ML framework to achieve this
is that the evaluation can be completed almost instan-
taneously, allowing an engineer to rapidly explore a
design space [24, 25]. These ML frameworks can also be
used as an optimization framework for aerospace design.
A model can be trained to generate new airfoil or wing
shapes that exhibit certain aerodynamic performance
parameters [26, 27]. This methodology is able to signif-
icantly decrease computational costs compared to the
traditional optimization strategies [28]. While the data-
driven ML approaches have been extensively explored,
the implementation of DRL methods to aerospace prob-
lems remain somewhat undefined. The general adap-

2



tation of a DRL framework to a design problem has
not been formalized as the DRL applications described
above all employ their own unique strategies to solve
their respective design problems. In this paper, the
adaptation of the DRL framework to the optimization
problem is documented and evaluated.

3 Methodology

An optimization problem is solved with both a DRL
and the PSO algorithm. The available computational
resources greatly determined the fidelity of the solvers
used in this project. All computations performed during
this project are done using a Windows PC equipped
with an i9-13900F CPU and a Nvidia 3060 GPU.

3.1 The basics of Deep Reinforcement
Learning

In DRL, an agent continually takes actions and reacts to
the response of its environment on a trial and error basis
[29]. The agent is the main component of a DRL model
and determines what actions ai should be performed
on the basis of the policy function and the current state.
The state Si is typically an array comprised of the design
vector at the current step i. The environment consists
of a structure of physics based solvers and calculations
that use the design variables as input and generates an
output. This output is then evaluated by generating a
reward signal Ri. The reward is a scalar variable that
determines whether the response of the environment
to the selected action of the agent is favorable. The
main goal of the agent is to maximize the total reward it
receives during the training phase and update its policy
function accordingly. The agent will continue to take
actions until a terminal state is reached.

3.2 The Proximal Policy Optimization
algorithm

The PPO algorithm is selected as the DRL algorithm
used to solve the design problem. The PPO algorithm
utilizes two separate artificial neural networks (ANN)
to represent its policy function. In the context of an
optimization problem, the policy network is concerned
with taking the best action to increase the objective value
at the current step. The value network tries to guide
the agent through the design space to find the best final
objective value. The input for both networks are the
state vector, action and reward. The policy network tries
to predict what action would be best, given the current
state. A policy evaluation is then performed to improve
the policy network. The value network determines the
expected cumulative reward given the current state, this
is known as the state value. The state value is then
evaluated using an advantage function. The output of

the advantage function is used to update and improve
both networks, see Fig 1. The PPO algorithm limits the
maximum policy-updates made to these networks at
each step. This increases the stability during the training
phase.

Figure 1: PPO diagram showing the interaction between the compo-
nents of the algorithm, adapted from [30].

For this project, a python package called Stable Base-
lines1 is used. This package has made improvements
to the PPO algorithm presented in the original paper
[5] to increase consistency and performance. For this
project the hyper parameters suggested by Stable Base-
lines were unaltered except for the size of the networks.
An additional hidden layer of 64 neurons was added to
both the policy and value networks, as this appeared
to have favourable performance while not significantly
increasing computational time of the training phase. The
hyper parameters can be found in Table 7 in Appendix
A.

3.3 The Particle Swarm Optimization
algorithm

The gradient-free PSO is selected as a baseline compari-
son to the DRL framework results. This is chosen as its
capabilities more closely match those of the DRL frame-
work than gradient-based algorithms [12, 14, 20]. The
gradient-free optimization algorithms are well suited for
the optimization of complex design problems and are
good at finding global optima.

PSO distributes a number of random design vectors,
called particles, across the entire design space [6]. The
total number of particles is referred to as the swarm
size. The design variables of these particles are then
adjusted to look for local optimum solutions distributed
across the entire design space. These particles share in-
formation with each other to attempt to look for a global
optimum together. PSO is known to be a robust method
but can become computationally expensive, depending
on the number of particles and design vector length.

1 https://stable-baselines3.readthedocs.io/en/master/
modules/ppo.html, accessed on 26-02-2024
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A python package called indago2 is used to perform
the PSO optimization. This package contains an inte-
grated method for incorporating constraints into the
optimization algorithm. Most of the hyper-parameters
are unaltered from the recommended setting as this de-
livered adequate performance. These hyper parameters
can be found in Table 8 in Appendix A. The optimiza-
tion was set to a maximum of 7500 evaluations and the
swarm size was set to 100.

3.4 Design problem setup

The design problem concerns a simplified wing shape
optimization of a Cirrus SR22 wing. The Cirrus SR22 is
a single-engine 4-seat aircraft with a maximum take-off
mass of 1633 kg. A full overview of the parameters of
this aircraft can be found in Table 13 in Appendix B. The
design problem is setup to be able to be solved using
low fidelity solvers and empirical formulas appropriate
for the conceptual design phase.

Design problem definition The objective of the design
problem is to maximize the CL

CD
for the cruise condi-

tion. The optimization objective is given in Eq. 1, its
constraints gi are discussed in an upcoming section.

max f (x) = [
CL
CD

]cruise

s.t. gi(x) ≤ 0, i = 1, 2, .., 9
(1)

The design vector d⃗v consists of the following param-
eters: wing span b, root chord croot, kink chord ckink, tip
chord ctip, sweep angle ΛLE, span-wise kink location
ykink, Z-location of the tip chord ztip, twist angle ϵ and
chord thickness t/c, see Eq. 2. In Fig. 2, a diagram is
shown of the isolated wing planform. The wing of the
SR22 aircraft is used as the design vector at the start of
the optimization. The parameters of this wing can be
found in Table 9 in Appendix B.

d⃗v = [b, croot, ckink, ctip, ΛLE, ykink, ztip, ϵ, t/c] (2)

Calculations During the optimization, the maximum
take-off mass of the reference aircraft minus the weight
of its wings is kept constant. During the optimization,
the mass of the wing is calculated using the Raymer
wing weight equation [31], see Eq. 3. This equation is
calculated using the ultimate load factor nz, the dynamic
pressure at cruise flight q, the total mass of the aircraft
mtot and the fuel mass m f uel of the SR22 aircraft. An
equivalent trapezoidal wing is created on the basis of
the design vector that is used solely for the empirical
weight calculations [31]. The following parameters are
determined for the equivalent wing: surface area Seq,
aspect ratio AReq, taper ratio λeq, quarter chord sweep
ΛC/4 and chord thickness t/ceq.

2 https://pypi.org/project/Indago/0.2.2/, accessed on
23/10/2023

Figure 2: Planform of the isolated wing used in the design problem
setup, including the fuselage-covered section.

mwing = 0.036 S0.758
eq m0.0035

f uel (
AReq

cos2(ΛC/4)
)0.6 q0.006

× λ0.04
eq (

100 (t/c)eq

cos(Λc/4)
)−0.3(nzmtot)

0.49
(3)

The cruise lift coefficient CLcruise is determined using
the mass of the reference aircraft combined with the
estimated mass of the wing, see Eq.4. The Athena Vortex
Lattice (AVL) solver is used to determine the induced
drag CDi at this lift condition [32]. In order to strike
a balance between computational efforts and accuracy,
the wing is divided into 8 chord-wise and 22 span-wise
elements.

CLcruise =
mtot

q Swing
(4)

An empirical equation by Raymer is used to determine
the profile drag coefficient CDp [31]. The profile drag is
calculated using the friction drag coefficient CD f and the
form factor FF, see Eq. 5.

CDp = CD f ∗ FF (5)

The form factor is calculated to determine the pres-
sure drag. The form factor is dependent on the chord
thickness, cruise Mach number M, the point of maxi-
mum chord thickness x/cmax and the sweep angle at
maximum chord thickness Λtmax , see Eq. 6.

FF = [1 +
0.6

x/cmax
t/c + 100(t/c)4]

× [1.34M0.18 cos(Λtmax )
0.28]

(6)

Due to the presence of the kink, the wing is span-wise
divided into two sections in order to calculate the fric-
tion drag coefficient of each wing section. The inboard
section consists of the wing section from the symmetry
axis up to the kink chord. The outboard section consists
of wing section from the kink chord to the tip chord. The
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friction drag coefficient is determined using the friction
coefficient C fsection

and wetted surface area Swet,section of
both sections of the wing, see Eq. 7.

CD f =
Swet

Swing

C finboard
Swet,inboard + C foutboard

Swet,outboard

Swet
(7)

The friction coefficient of both wing sections are calcu-
lated using the friction coefficient of each chord C f,chord,
see Eq. 8. The chord friction coefficients are determined
using the transition points Xtr, the chord length c and
the Reynolds number Re at cruise condition, see Eq.
9. The transition point is set at a fixed location on the
airfoil. On the basis of the average angle of attack at
the cruise condition, the transition point was set to 30
percent of the top chord and 60 percent of the bottom
chord.

C f ,inboard =
C f ,sym + C f ,kink

2

C f ,outboard =
C f ,kink + C f ,tip

2

(8)

X0

c
= 36.9 (

Xtr

c
)0.625(

1
Re

)0.375

C f ,chord =
0.074
Re0.2 (1 − Xtr − X0

c
)0.8

(9)

The total drag CD is calculated by adding the profile
drag to the induced drag calculated by AVL, see Eq. 7.
The objective value is determined using this drag coeffi-
cient and lift coefficient at cruise condition previously
discussed.

CD = CD f FF + CDi (10)

Geometry constraints The constraints are divided into
geometric and design constraints. The geometric con-
straints are chosen to reject unacceptable wing shapes,
like reverse tapered wing sections, see Eq. 11. In order to
speed up the optimization, the aerodynamic evaluation
is skipped when any of the constraints are not met and
the wing design is rejected.

g1 = ckink − croot

g2 = ctip − ckink

g3 = 0.5 croot − ckink

g4 = ykink − 0.75 b/2

g5 = 0.25 b/2 − ykink

(11)

Design constraints The design constraints are chosen
to limit the resulting wing shapes to be more realistic.
The constraints are picked with the low fidelity of the
optimizer in mind. The mass of the wing is constrained
to be within a range of 13 to 27 percent of the empty
weight mempty of the reference aircraft [33].

For the volume constraint, the fuselage-covered sec-
tion of the wing is excluded from the wing volume. This
is done to ensure that the wing volume is able to store

the required fuel and flight systems in the wings. The
wing volume Vwing is estimated using the volume of
frustum formula. This formula determines the volume
of a body with two parallel planes. The volume of each
wing section is calculated individually using the area
of the relevant chords Achord, and the span wise length
of both sections, see Eq.12. The span wise length of
the inboard section b1 extends from the root chord to
the kink chord. The span wise length of the outboard
section b2 extends from the kink chord to the tip chord.
The volume constraint condition scales with the total
mass of the aircraft relative to the reference aircraft. This
constraint serves as a penalty for increasing the wing
weight.

Vinboard =
2 b1

3
[Aroot + Akink +

√
Aroot Akink]

Voutboard =
2 b2

3
[Akink + Atip +

√
Akink Atip]

Vwing = Vinboard + Voutboard

(12)

The wing loading (W/S) constraint is created to en-
sure the designed wing belongs to the same aircraft
category as the reference wing. For this constraint, the
wing is able to increase the wing loading by 10 percent
relative to the reference aircraft. The design constraint
equations are listed in Eq. 13.

g6 = mwing − 0.27 mempty

g7 = 0.13 mempty − mwing

g8 =
mtot

mtot,re f
Vwing,re f − Vwing

g9 = (W/S)− 1.1 (W/S)re f

(13)

3.5 PPO environment design

The DRL framework is setup to solve the optimization
problem in a gradual manner. Complex optimization
problems are typically setup to be solved iteratively. The
gradual exploration of the design space encourages the
DRL framework to avoid violating the constraints and
work towards finding the global optimum [12, 13, 34].
For the selected design problem, the objective function
can be evaluated at each step. This means that many
reward signals can be determined which should increase
the learning performance [35]. If the DRL framework
is trained to complete the optimization within a single
step, it could exclusively generate constraint violating
designs when a shift to the design space occurs. An
iterative optimization framework could therefore also
exhibit increased TL capabilities.

It is important to understand that the PPO framework
will not maximize the objective value directly but in-
stead tries to maximize the cumulative reward it collects
within the environment. The shaping of the rewards is
arguably the most important part of the DRL framework
[35]. Reward shaping is typically a trial and error pro-
cess [36]. The rewards structure within the environment
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should be constructed to reflect the desired optimization
behaviour. If this is not done properly, the DRL algo-
rithm could learn to exploit the environment. This has
the potential to degrade the generated results [37, 38].
There are many different strategies to shape the rewards,
as a consensus has not been established [39].

Termination condition The agent is only able to end
the optimization when it has collected a certain num-
ber of termination counters. The environment includes
3 separate termination conditions for each design con-
straint and a termination condition for failing to improve
the objective value. During the optimization, termina-
tion counters are collected when a termination condition
occurs. These counters only increase when each sub-
sequent step of the optimization triggers the same ter-
mination condition. The termination counters are reset
once a new state complies with its respective condition.
The termination counter limit for the design constraints
is 25. The termination counter limit for not improving
the objective value is 50. These counters are chosen to
help the agent avoid the constraints and generate better
designs.

Reward shaping The rewards of the environment are
split into gains and penalties. The gains have a positive
value and are generated to encourage good behaviour by
the agent. The penalties have a negative value and are
used to deter the agent from exhibiting bad behaviour.
The gain R1 is generated when the agent is able to find a
new maximum objective value. As for most optimization
problems, the optimization problem becomes increas-
ingly more difficult to improve, the closer it gets to the
global optimum. To alleviate this, the gain scales ex-
ponentially on the basis of the difference between the
objective value at the current step fi and the starting ob-
jective value fstart, see Eq.14. This encourages the agent
to continue finding higher objective values.

R1 = [20
fi − fstart

fstart
+ 1]3 (14)

This gain does not scale on the basis of how much the
objective value has increased. This could have negative
effects as the agent could decide to farm small rewards
by improving the design as little as possible, thus gen-
erating a high cumulative reward. However, the agent
can also learn how to exploit this. The agent can learn
to increase the objective value while violating the design
constraints. This means it will not collect a gain until it
has reached its maximum objective value. This results in
the agent exclusively collecting one disproportionately
large gain.

Once the agent terminates the optimization, it collects
the final gain R2. This final gain also scales exponentially
in a similar manner to R1. However, now the maximum
objective value reached during the optimization fmax is
compared with the starting condition, see Eq.15.

R2 = [
fmax − fstart

fstart
28 + 1]4 (15)

The collected penalties have a negative value and are
generated when the agent is unable to find a higher
objective value. When the design at a step of the opti-
mization would violate the design constraints, a penalty
is awarded. These penalties should train the agent to
comply with all constraints as it searches for higher ob-
jective values [39]. P1 and P2 are the penalties generated
when the wing weight is either too high or too low, re-
spectively. P3 is the penalty generated when the volume
of the wing is too low. P4 is the penalty generated when
the wing loading exceeds the upper bound , see Eq.16.

P1 = −[6
mwing,i − 0.27 mempty

0.27 mempty
+ 1]2

P2 = −[3
mwing,i − 0.13 mempty

0.13 mempty
+ 1]2

P3 = −[5

mtot,i
mtot,re f

Vwing,re f − Vwing,i
mtot,i

mtot,re f
Vwing,re f

+ 1]2

P4 = −[5
(W/S)i − 1.1 (W/S)re f

1.1 (W/S)re f
+ 1]2

(16)

A set of additional penalties is created for when the
design complies with all constraints but was unable to
find a new maximum objective value. These penalties
use the objective value of the previous optimization step
to tailor the penalty signal, this technique is known as
reward saltation [40]. These penalties are constructed to
help the agent understand if the action it has taken at
the current step is advantageous, relative to the state of
the previous step. The penalty P5 is collected when the
objective value has decreased, relative to the previous
step. Penalty P6 is collected when the objective value at
the current step has not changed. Penalty P7 is collected
when the objective value has increased relative to the
previous step. The equations for these penalties can
be found in Eq. 17 together with the corresponding
parameters in Table 1. A relatively small penalty P8
of -0.05 is awarded when the current design is stuck
at the optimum design. This is done to prevent the
agent from unnecessarily delaying the termination of
the optimization.

P5,6,7 = [
fi − fi−1

fstart
X1] + X2 (17)

- X1 X2
P5 10 -0.4
P6 5 -0.2
P7 1.5 -0.1

Table 1: Failure penalty parameters

The coefficients in all the reward equations are se-
lected by estimating the cumulative gain collected dur-
ing a single optimization. The cumulative gain is then
balanced with the expected cumulative penalties to en-
sure that the agent will be properly rewarded on the
basis of the reached objective value. Thus the setup of
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the reward signals requires knowledge of the design
space.

Interaction between the agent and environment At the
start of the optimization the environment is reset. This
includes setting the state Si to the starting design vector,
and setting all termination counters to zero. The first
thing the agent does in the environment is determine an
action ai. The action vector generated by the model at
each step is a vector equal to the length of the design
vector and contains values between 1 and -1. Eq. 18
shows how each design variable j is altered at each step,
on the basis of the suggested action from the agent. The
action is calculated using the upper bound jUB and lower
bound jLB of that design variables. The design variable
changes are then dividing by a factor of 75. This should
increase the stability of optimization, as the agent is
limited in how much it can change the design vector at
each step.

Si+1[j] = Si[j] + ai+1[j]
jUB − jLB

75
(18)

The new state is evaluated to determine if it complies
with all geometry constraints. If the wing design does
not comply with these constraints, the design vector is
adjusted by setting the design variables equal to the
bounds of the violated constraints.

Subsequently, the design is evaluated on the basis
of the design constraints. If the state does not comply
with all constraints, it ends the optimization step and
generates a penalty (P1, P2, P3, P4) and a termination
counter is awarded on the basis of the violated constraint.
When the state complies with all constraints, the new
objective value is calculated. If the new objective value
is not higher than the maximum objective value it has
currently reached, a penalty (P5, P6, P7, P8) is generated,
a termination counter is awarded and the agent exists
the optimization step. When a new maximum objective
is reached a gain R1 is generated and the agent exits
the optimization step. The agent will continue to find
better wing designs until enough termination counters
are collected and terminates the optimization process.
Finally, the sum of all rewards and penalties are used
for the model to evaluate its performance and improve
its policy networks. A flow chart is created of the setup
of the environment, see Fig. 3.

3.6 Transfer Learning techniques

In this paper three TL techniques are compared. The
first technique takes the best trained model used to op-
timize the wing of the SR22 aircraft and optimizes the
wing of a different aircraft. This technique requires no
retraining and is therefore computationally efficient. The
second technique involves copying the best trained SR22
model and directly training it for 500 000 training steps
to design a wing for a new aircraft. This technique is
referred to as continual learning (CL). The third tech-
nique is a more traditional TL technique where the best

Figure 3: Flow chart of the PPO environment.
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trained SR22 model is copied and the values of the orig-
inal layers of both ANNs are locked during training.
A new hidden layer of 64 neurons is inserted into the
policy and value network of the model. This model will
then be trained for 500 000 training steps to optimize
the wing for the new aircraft, see Fig. 4. The results of
all three techniques are evaluated to determine if the
TL techniques were able to increase the computational
efficiency of the PPO framework.

Figure 4: Diagram showing the application of transfer learning to
an ANN architecture.

4 Results

The results are divided into three sections. The first sec-
tion studies the training phase of the PPO model, selects
the best performing model and evaluates the environ-
ment set-up. The second section evaluates and com-
pares the performance of both optimization frameworks.
Lastly, the TL capabilities of the model are discussed.

4.1 Training performance

The training phase is studied in order to select the best
performing model. The environment set-up is evaluated
by analyzing the training performance of the PPO frame-
work. The generated rewards are studied to determine
if they are well calibrated to the design problem.

General training progress First, we investigate the aver-
age total rewards collected during a single optimization
of the training phase, see Fig. 5. The performance climbs
quite rapidly at the start of the training phase. This is be-
cause there is most room for improvement here. Past this
initial climb, a constant increase in performance can be
observed. Up until 1 270 000 training steps the rewards
steadily increase, until it starts to stabilize. It is esti-
mated that the performance will degrade when trained
further, as this is quite common for RL algorithms [29].
This model is selected as the best performing PPO model
and will be referred to as the final model from this point
onwards. The results in the previous and upcoming
sections are generated using this final model.

Performance at progressive training steps The model
is evaluated at various training steps to study the pro-
gression of its performance. In Fig. 6, the performance

Figure 5: The training phase performance of the PPO model showing
the mean rewards per optimization vs training steps. The selected
model is indicated by the blue line.

of 500 optimizations by the PPO model is plotted at
increasing training steps. The standard deviation is indi-
cated by the shaded parts. At a low number of training
steps, the model is able to reach respectable objective
values. However, at 10 000 training steps the consis-
tency of the model is quite poor. The time required
to train the model for 10 000 training steps is roughly
equivalent to a single PSO optimization. As the train-
ing phase progresses, both the consistency and objective
values steadily increase. It takes about 20 hours of train-
ing time for the PPO model to reach the same average
objective value as the PSO framework.

Figure 6: PPO framework performance at an increasing number of
training steps for the SR22 wing, starting objective = 28.08.

Fig. 7 shows the planforms with the highest objective
values made by the PPO framework at a progressive
number of training steps. At 10 000 training steps the
model has already learned to maximize the wing span.
Interestingly, the model first tries to create a tapered
wing planform. However, at around 250 000 training
steps the optimized wing starts to progressively become
more rectangular. This is further explored in the upcom-
ing sections.
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Figure 7: The best semi-planforms generated by the PPO framework
at progressive levels of training.

Reward evaluation of the environment The perfor-
mance of the PPO optimization is intrinsically tied to the
reward generation of the environment. Fig. 8 illustrates
the relation between the cumulative rewards collected by
the fully trained agent and the objective values reached.
In this graph, the gains and penalties collected during
a single optimization are plotted together with the fi-
nal objective value it reached. The graph shows that
a higher cumulative reward scales exponentially with
the reached objective value. The environment is well
calibrated to the design problem as reaching a higher
objective should result in higher rewards. This graph
also illustrates how the results are denser at the higher
objective values. This demonstrates the importance of a
reward system that scales with the optimization values.
The model is encouraged to reach the highest objective
value possible at every optimization.

Figure 8: Rewards obtained from the environment vs objective value
reached by the final model.

For the final model, the penalties collected do not
increase with the higher objective values reached. The
reason why the penalties do not increase is because most
of the penalties are collected when the model terminates.

This means that the model is able to consistently opti-
mize the wing while avoiding to violate the constraints.
However, this is not the case when the model is not fully
trained yet. This is further explored in the upcoming
sections.

A similar graph is created for the model trained for 10
000 training steps, see Fig. 9. We can see that at 10 000
steps the agent has not been sufficiently trained. The
agent has a hard time optimizing the wing as the re-
sults are spread out over the entire range of the reached
objective values.

Figure 9: Rewards obtained from the environment vs objective value
reached at 10 000 training steps.

At 100 000 steps the agent seems to have learned how
to consistently optimize the tapered wing planform, see
Fig. 10. This can be seen by the density of the results
around the highest reached objective values. Interest-
ingly, the PPO framework still tried to look for more
favourable wing shapes, even while trying to optimize
the tapered wing shape as much as possible.

Figure 10: Rewards obtained from the environment vs objective
value reached at 100 000 training steps.

Progression of a single optimization Fig. 11 shows
the gains and penalties collected throughout one opti-
mization. These rewards are normalized with respect
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to the total rewards collected. The collected gains expo-
nentially increase at increasing objective values. The flat
parts of the objective value and gain graphs start at the
same step and are due to the model not increasing the
objective value. The spike at the end of the gain graph is
due to the gain R2 obtained for reaching the final objec-
tive value. The agent seems to explore the environment
in a focused manner in order to reach the optimal wing
design. It does not wander into sections of the design
space that would not generate a favourable wing. The
behaviour shown in the graphs seems consistent and
suggest that the model has not learned to exploit the
environment in an understandable way.

These graphs also illustrate how the model terminates
the optimization. At some point the agent is unable to
optimize the wing further, indicated by the dashed grey
line. At this point it starts to collect termination counters
until the optimization concludes. It is unclear if the
agent is aware that it cannot optimize the wing further
and tries to terminate itself as efficiently as possible.
In the environment, the total collected gains are about
10 times larger than the penalties. In order to reach a
high objective value consistently, the positive rewards
are more important and should significantly outweigh
the penalties.

Figure 11: Normalized rewards obtained from the environment
during a single optimization by the final model, objective value
reached: 31.02.

The results from the agent trained for only 10 000
training steps show quite poor performance, see Fig.
12. We see that the cumulative penalties and gains are
almost equal. The penalties are collected throughout the
entire optimization, thus the agent has not learned how
to efficiently optimize the wing. This can also be seen by
the optimization step at which the model has found its
optimum wing. This model took 17 more steps to reach
the final wing design compared to the final model. The
final gain R2 helps the agent reach a positive cumulative
reward, encouraging it to optimize the wing despite the
struggle.

Figure 12: Normalized rewards obtained from the environment
during a single optimization at 10 000 training steps, objective value
reached: 29.52.

The results from the agent trained for 100 000 training
steps show better behavior, see Fig. 13. Here the agent
has learned how to mostly avoid the penalties at the start
of the optimization. However, it still is not very efficient,
as it struggles to find a better wing at around 30 steps.
This model finds the optimum wing at optimization
step 56. This is to be expected, as it finds the wing
in fewer optimization steps than the model with fewer
training steps but requires more steps than the final
model. At 100 000 training steps, the cumulative gains
start to outweigh the penalties more.

Figure 13: Normalized rewards obtained from the environment
during a single optimization at 100 000 training steps, objective
value reached: 30.55.

From these results we conclude that the penalties are
more important when the model first starts the training
phase. These penalties will help the agent learn how
to navigate the design space to avoid violating the con-
straints and find better wing shapes. However, once the
model is fully trained, it has learned how to avoid the
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penalties all together and only collects penalties during
termination.

Constraint progression of the optimization In Fig. 14,
the constraint values from the same optimization as the
previous section are plotted. In this graph, it is clear
that the volume constraint is guiding the optimization.
While the other two design constraints are not violated
at all, the volume constraint is what caused the optimiza-
tion to terminate. At the start of the optimization, the
volume constraint is almost violated, as this constraint is
related to the starting condition. At around optimization
step 45, the framework fails to improve the wing and
starts to accumulate penalties by violating the volume
constraint. This is also the step at which the agent has
found the optimal wing design. Thus the model has
learned to avoid the constraints until the optimal wing
is found. The performance of the PPO framework could
be further improved by lowering the termination counter
limit. This could reduce the time per optimization of the
trained model.

Figure 14: Constraint values obtained during a single optimization
by the final model, objective value reached: 31.02.

Similar graphs are created for the model trained for
10 000 and 100 000 training steps respectively, see Fig. 15
and Fig. 16. At 10 000 training steps, the model clearly
has not learned how to properly avoid the constraints as
they are violated at various optimization steps. At 100
000 training steps, the agent has learned how to properly
avoid the volume constraint much like the final model.

4.2 Optimization performance

In this section the performance of the PPO framework
is compared with the PSO algorithm. The main per-
formance parameters that will be focused on are the
reached objective values, the consistency of the results
and the time per optimization.

General optimization performance In Table 2, the re-
sults of 500 PPO and 10 PSO optimizations can be found.
Once fully trained, the PPO algorithm was able to reach

Figure 15: Constraint values obtained during a single optimization
at 10 000 training steps, objective value reached: 29.52.

Figure 16: Constraint values obtained during a single optimization
at 100 000 training steps, objective value reached: 30.55.

a higher average and maximum objective value than the
PSO algorithm. The results of the PPO framework were
less consistent, as indicated by the standard deviation
σ and the difference between the maximum and aver-
age objective values. The average time per optimization
toptim of the PPO model is 9.45 seconds, while each PSO
optimization took over 16 minutes. However, the PPO
model required a training time of 1 day and 16 hours to
achieve this. In order for RL to become a valid optimiza-
tion algorithm, its costly training time has to be justified.
Due to the variance in the PPO results, multiple opti-
mizations will have to be done to ensure a good result
is obtained, this is further explored in the upcoming
sections.

Algo fmax fave σ toptim
PPO 31.173 30.995 0.190 9.45 sec
PSO 30.900 30.840 0.031 16 min 32 sec

Table 2: Optimization performance of 500 PPO and 10 PSO opti-
mizations for the SR22 aircraft, starting objective = 28.08.
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The solutions from both frameworks are all unique.
This means that the design problem is prone to local
maxima. Because of this, the PSO framework was unable
to fully converge. Increasing the number of iterations
of the PSO algorithm was computationally costly, while
very minimal improvements to the objective value were
gained. To prevent a costly PSO optimization to be stuck
in a local optima, the decision was made to generate
multiple PSO optimizations.

In Fig. 17, the best semi-wing planforms created by
the PPO framework are plotted and compared with the
best PSO planform. For this comparison the t/c , ϵ and
ztip could not be visualized in the planforms. These
variables are studied in the upcoming sections. From
Fig. 17, it can be seen that both algorithms generate
completely different shapes. The PPO framework consis-
tently makes a rectangular wing, while the PSO frame-
work makes a wing with a tapered outboard section.
The reason why the PPO algorithm is most likely able to
outperform the PSO algorithm is because it consistently
finds a more efficient wing shape. The reason why such
a planform generates a higher objective value is most
likely due to the aerodynamic solvers and the interac-
tion between the weight estimation formula and volume
constraint. The PSO optimization should theoretically
be able to create a rectangular wing. It is presumably
unable to do so due to the nature of how it explores the
design space and alters its particles. This illustrates the
direct impact the optimization strategy can have on the
results.

Figure 17: Comparison of the optimized semi-wing planforms shapes
with the highest objective values for the SR22 wing.

Variance in results The consistency of the PPO results
differs from that of PSO. The PPO algorithm makes
predictions on how to improve the wing, while the PSO
framework directly calculates how to most effectively
alter its particles at each step. This means that a higher
variance in the results from the PPO framework is to be
expected.

As the results of the PPO algorithm can vary quite

a bit, a distribution is made of the objective values in-
cluding the average PSO objective value, see Fig. 18.
The distribution shows that the PPO framework outper-
forms the PSO framework quite consistently. Again, this
is most likely due to the fact that it is able to find a
more favourable planform shape. The figure also shows
the variety of results that the PPO algorithm produces.
Due to the stochastic nature of the PPO algorithm, it
sometimes fails to avoid the constraints and terminates
the optimization at quite an early step. This means that
in order to utilize the PPO algorithm for a framework,
multiple optimizations would have to be performed to
ensure good results. Out of the 500 PPO results, 445
were higher than the average PSO result. The PPO
framework has a 89% chance to reach a higher objective
value than the PSO. Running the PPO optimization three
times will have a 99.9 % chance to reach a higher objec-
tive value than the PSO. This means the PPO framework
can generate comparable results to the PSO framework
in just 28.35 seconds, which is almost 35 times faster. In
situations where the design space includes many local
optima, the PPO framework could prove useful, as it is
able to rapidly generate unique solutions.

Figure 18: Distribution of the PPO objective values (blue) compared
with the PSO average objective value (orange) for the SR22 wing.

A box plot is created of each individual design vari-
able, as can be seen in Fig. 19. The first figure shows
the variables from the 500 PPO optimized wings, while
the figure below shows the results from 10 PSO opti-
mized wings. The box plots are normalized with respect
to the boundary values of each respective design vari-
able. This illustrates how both frameworks changed
the design variables relative to the starting wing plan-
form, indicated with green lines in the figure. These
box plots show which design variables are more prone
to variation, and could illustrates which variables give
the frameworks the most difficulty. There is some com-
monality between the frameworks. Both frameworks
consistently maximized the wing span and removed
the ΛLE from the wing. As indicated by the planforms,
the chord lengths between frameworks differ signifi-
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cantly. Both frameworks lowered the t/c and ztip. When
looking at the box plot of the t/c optimized by PPO,
it appears that there is quite a bit of variance in this.
This is quite interesting, as the chord thickness heavily
influences the wing weight and the wing volume, which
directly appear in the constraints. The PPO framework
effectively removes the kink in the wing, thus the actual
span-wise location of the kink will have no impact on
the shape of the wing. The ykink variable has therefore
many outliers.

Figure 19: Box plot of each design variable for the PPO and PSO
optimized wings, normalized with respect to the bounds of each
variable. The starting variables are indicated in green.

4.3 Transfer Learning

In this section the ability of the model to adapt to a new
design space is measured. Additionally, the TL and CL
techniques are applied and evaluated. The aim of this
section is to explore techniques that allow the reuse of a
model to circumvent the costly training phase.

Resilience of the trained model In this section we mea-
sure the ability of the model to adapt to small changes to
the design space. To achieve this, the total weight of the

reference aircraft is incrementally changed. The model is
then used to optimize the wing without performing any
retraining. In Fig. 20, the results of 200 optimizations
at each weight increment are plotted. PSO results are
also generated as a baseline, indicated in orange. The
results show that the PPO model is able to outperform
the PSO algorithm for most of the weight increments.
The performance of the model only starts to degrade
when the weight is decreased significantly. The starting
and optimized objective value changes more when the
total weight is decreased. This indicates a more signif-
icant shift in the design space. The trained model can
be repurposed to solve new design problems, as long as
the changes to the design space are limited.

Figure 20: Resilience of the model to alterations in design space
by incrementally changing the total weight of the reference aircraft,
compared with PSO results in orange.

These results are quite promising, as this could prove
useful for the conceptual design phase. As with inter-
disciplinary problems, small changes to the design are
frequently made by each department, which means that
each department has to re-evaluate the design and pos-
sibly start a new optimization process. A pre-trained
model could be used to rapidly generate new solution
for an interdisciplinary design problem. Using a RL
model could significantly improve the efficiency of any
problem that contains multiple separate optimization
processes in its design problem.

General performance The optimization performance
is highly dependent on both the created environment
including its calibrated rewards, and the inherent design
space of the design problem. In order to further test the
adaptability of the model, the design space is altered by
using the parameters of different aircraft types.

First, the wings are optimized for these different air-
craft using the final SR22 model. For the application
of the TL and CL techniques, the final SR22 model is
retrained for 500 000 training steps. In order to evalu-
ate the results, a completely new model is trained for
1 000 000 training steps for each aircraft. Additionally,
PSO optimization is used to optimize the wings of each
aircraft for comparison.

The selection of aircraft is limited by the aircraft that
can be analyzed using AVL. This means that transonic
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aircraft and unconventional wing shapes are avoided.
First the Douglass DA50 is selected as this aircraft has
a similar size and shape to the Cirrus SR22 reference
aircraft. The Fokker F50 is selected as this aircraft is
significantly larger and faster than the reference aircraft,
thus significantly changing the design space. Lastly, the
ASK21 glider is selected. This aircraft is very light and
flies at a low speed, thus it should change the design
space in a different way than the F50. The parame-
ters used for these aircraft can be found in Table 13
in Appendix B. The environment rewards are not re-
calibrated to better fit these new design spaces. This is
done to better measure the total adaptability of the orig-
inal framework setup and would require no knowledge
of the adapted design space.

In Table 3, the results of 500 DA50 wing optimizations
using the TL models are listed. Due to the variance of the
models, the time to obtain an average or greater objective
value tave is given. This is calculated by determining
the number of results required before the probability is
greater than 0.99 that one of those results is at least as
good as its average value.

The performance of all models is quite good. The
maximum objective each model can generate is higher
than that of the PSO algorithm. The model that was not
re-trained has quite poor consistency compared to the
other models. The newly trained DA50 model showed
good results, even without re-calibration of the envi-
ronment. This shows that the environment set-up is
somewhat flexible. The results of the models retrained
with the TL and CL techniques are quite similar. Inter-
estingly, they both are consistently able to reach a similar
objective value as the newly trained model, although the
TL model takes significantly longer to reach an average
solution. The DA50 model was trained for 27 hours, the
CL model was retrained for 15 hours and 15 minutes
while the TL model was retrained for 16 hours and 45
minutes. When comparing the training times it shows
it is more efficient to perform TL when possible, rather
than training a completely new model.

TL method fmax fave σ tave [s]
SR22 model 35.22 34.39 0.40 60.6
DA50 model 35.25 35.10 0.11 29.9

DA50 CL model 35.29 35.10 0.16 48.44
DA50 TL model 35.36 35.12 0.17 81

PSO 35.11 35.03 0.037 -

Table 3: TL results of 500 DA50 wing optimizations, starting
objective: 33.20. Average PSO time per optimization: 15 min and
39 sec.

In Fig. 21, the best DA50 planforms of each model
are plotted. The planforms look quite similar to the
optimized wings of the SR22. The rectangular PPO
planforms almost completely overlap while the PSO
framework created a tapered wing again. This could
explain why the model performed so well, even without
any retraining or re-calibration.

Figure 21: Optimized DA50 wing planforms using various models
and PSO.

In Fig. 22, the average changes each framework has
made to the design variables relative to the starting wing
are plotted. The results are taken from 500 optimiza-
tions per model. As expected, the PSO results differs
the most from the other results. However, the changes
it has made to the design vector are more similar to
the PPO results than the planform plot would initially
imply. The biggest deviation between the models are the
ztip and ϵ. The DA50 model even slightly increased ztip,
while all other models decreased this. The PPO models
all seem to agree on how the chord lengths should be
changed, although there is some deviation in the tip
chord. This graph illustrates the solutions of the PPO
models are somewhat consistent, as all models inde-
pendently generate similar wing shapes, even the SR22
model.

Figure 22: Design variable changes by the different optimization
strategies for the DA50 wing.

Like with the DA50 results, the models of the F50
show good performance, see Table 4. The F50 model
was trained for 26 hours, the CL model was retrained
for 20 hours and 36 minutes while the TL model was
retrained for 14 hours. The model that did not receive
any additional training was able to optimize the wing
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significantly, although it takes quite some time to reach
an average objective value. The performance of the CL
model was rather disappointing, especially when con-
sidering the training time. The performance is actually
worse than that of the original SR22 model, meaning the
continual training actually degraded the model. How-
ever, this did not happen with the TL model. Compar-
ing its training time and with the newly trained model,
the TL technique is more time efficient than training a
completely new model as the time it takes to reach an
average objective value is comparable.

TL method fmax fave σ tave [s]
SR22 model 38.96 37.95 0.38 137.8
F50 model 39.09 38.83 0.24 34.6

F50 CL model 36.92 36.44 0.11 105.3
F50 TL model 38.98 38.84 0.10 40.2

PSO 39.07 38.90 0.09 -

Table 4: TL results of 500 F50 wing optimizations, starting objective:
34.91. Average PSO time per optimization: 15 min 39 sec.

Fig. 23 shows the generated F50 wing planforms
with the highest objective values. Here we see that
the shapes vary quite a bit. The PSO framework has
removed the kink and creates a tapered wing. The SR22
and newly trained F50 model both generated rectangular
wing shapes. The SR22 model also increased the wing
span to 36 meters, while the original upper bound for
the SR22 wing span is 15 meters. The SR22 model has
therefore learned to increase the wing span beyond its
upper bound, regardless of what the actual length of the
wing span is. Interestingly, the TL and CL models both
reintroduce the kink into the wing shape.

Figure 23: Optimized F50 wing planforms using various models
and PSO.

The ASK21 model was trained for 30 hours, the CL
model was retrained for 3 hours and 46 minutes and
the TL model was retrained for 11 hours. The ASK21
models performed quite poorly, see Table 5. This can
be explained by inspecting the design space. The PSO
algorithm was able to optimize the CL/CD to 27.41,

while the objective value starts at 26.50. This means that
the total possible increase in objective value is quite low.
These values are directly used by the environment to
generate the gains. This causes the importance of penal-
ties to outweigh the gains. The model now focuses on
minimizing its penalties, rather than collecting positive
rewards. If the poor performance was solely due to the
change in design space, the newly trained model should
have performed comparably to the PSO algorithm. In
order to improve the performance of the model, the gain
and penalty equations would have to be re-calibrated
to better suit this new design space. The ASK21 model
was able to perform better than both the CL and TL
models, illustrating that the TL methods can actually
have a detrimental effect on the training when the de-
sign space is altered too much. The time to obtain an
average value vary drastically between the TL and CL
models. This is because almost every optimization of the
TL model failed and thus it takes a long time to reach
an average objective value. The CL model only took 9.5
seconds to reach an average objective value. This means
that this model more consistently optimized the wing,
although not by much looking at the average objective
value reached.

TL method fmax fave σ tave [s]
SR22 model 26.55 26.50 0.006 15.4

ASK21 model 26.97 26.90 0.037 34.1
ASK21 CL model 26.66 26.58 0.038 9.5
ASK21 TL model 26.54 26.50 0.003 450.8

PSO 27.41 27.21 0.12 -

Table 5: TL results of 500 ASK21 wing optimizations, starting
objective: 26.50. Average PSO time per optimization: 15 min 35 sec.

Training phase In this section, the training phase of
the TL methods for the DA50 wing optimization are
studied. In Fig. 24, the average rewards collected during
the training phase are plotted. The newly trained model
shows expected behaviour, as it steadily improves with
the increasing training steps. The performance of the TL
model actually degrades at the start. This makes sense
as the model now contains a completely new untrained
layer. At around 30 000 training steps it starts to dras-
tically improve until it reaches the same performance
as the other two models. The CL and TL illustrate how
the TL methods could be computationally advantageous
as they reach a higher average reward at about half the
training steps.

The training performance of the DA50 TL model is
evaluated at an increasing number of training steps,
starting from the 1 272 000 steps of the final SR22 model.
At intervals of 100 000 steps, 100 wing optimizations
are performed and the results are listed in Table 6. At
1 300 000 steps, the model performs quite poorly as
discussed in the previous section. At 1 400 000 steps,
the performance has increased drastically. After 228 000
steps, the model shows performance similar to the fully
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Figure 24: Training performance of the TL techniques for the opti-
mization of the DA50 wing.

trained model and its results are comparable to the PSO
algorithm results.

training steps fmax fave σ ttrain
1 272 000 35.22 34.39 0.40 -
1 300 000 33.51 33.27 0.069 52m
1 400 000 34.97 34.74 0.118 3h46m
1 500 000 35.34 35.07 0.238 6h40m
1 600 000 35.34 35.03 0.187 9h54m
1 700 000 35.35 35.12 0.144 13h15m
1 800 000 35.36 35.12 0.17 16h45m

Table 6: TL progress for the DA50 aircraft, starting objective: 33.20.

In Fig. 25, the best planforms at the various training
steps are plotted. The planforms reflect what has been
discussed so far. The planform created by the model
at 1 300 000 steps barely changed relative to the start-
ing condition. At 1 400 000 steps, the wing starts to
progressively converge to the rectangular shape again.

5 Conclusions and future work

The results presented in the previous section show that
DRL frameworks could be a promising technique for
MDAO problems where automation and efficiency take
priority over the simplicity of application. Not only was
it able to consistently optimize the wing 4% further than
the traditional optimization algorithm, it was able to
do so 35 times faster. The RL algorithm was able to
find a planform shape that the PSO algorithm could not.
This demonstrates that the DRL framework could be an
useful alternative to traditional optimization algorithms
to find unique solutions, as it explores the design space
in a unique way. When small changes are made to
the design space, the model is still able to optimize
design problem without the need for any retraining. To
solve similar design problems, using the TL techniques
is more efficient than training a new model entirely.
When changes to the design spaces become too large,

Figure 25: DA50 planforms using TL with progressive training
steps.

the environment will most likely need to be re-calibrated
to see enhanced performance, as the TL methods could
have detrimental effects on the results. The consistency
of the DRL framework should be evaluated in order to
produce reliable results. The significant training time of
the PPO algorithm limits its utility. It is not an effective
replacement of traditional optimization algorithms for
design problems where only a single optimization is
required.

On the basis of these results, the following recommen-
dations are made. The framework set-up described in
this paper was severely limited by the available compu-
tational resources. With significantly increased computa-
tional resources, more complex design problems can be
solved using higher fidelity physics based solvers. This
could help uncover innovative wing shapes. A more
complex framework structure can be constructed that
takes the design spaces of multiple aircraft into account
during the initial training phase. This creates a gener-
alised optimization framework that is inherently able to
optimize the wings for a large range of aircraft. This
would allow the model to be reused between multiple
design problems without the need for any retraining.
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A Optimization Algorithm Hyperparameters

Hyper-parameter Value
Learning rate 3 e-4
N steps 2048
Minibatch size 64
Discount factor 0.99
Trade-off factor 0.95
Entropy coefficient 0.0
Value function coefficient 0.5
Clipping parameter 0.2
Optimizer Adam
Activation function ReLU
Policy MlpPolicy

Table 7: Hyper-parameters used for the PPO algorithm

Hyper-parameter Value
Swarm size 100
Cognitive rate 1.0
Social rate 1.0
Max evaluation 7500
Target fitness -31.3
Variant Vanilla
Intertia Anakatabatic
Akb model Languid

Table 8: Hyper-parameters used for the PSO algorithm

a



B Aircraft Reference Data

- b croot ckink ctip ΛLE ykink ztip ϵ t/c fuselage width
Starting condition 11.65 1.54 1.145 0.75 2 3.225 0.4 0 0.196 1.24

Upper bound 15 2.5 2 1.5 20 5 1 5 0.22 -
Lower bound 8 0.5 0.5 0.1 0 1.4 0 -5 0.11

Table 9: Aircraft geometry data used for the optimization of the SR22 wing.

- b croot ckink ctip ΛLE ykink ztip ϵ t/c fuselage width
Starting condition 13.41 1.724 1.287 0.92 2 2.024 0.564 0 0.137 1.29

Upper bound 15 2.5 2 1.5 20 5 1 5 0.22 -
Lower bound 8 0.5 0.5 0.1 0 1.4 0 -5 0.11

Table 10: Aircraft geometry data used for the optimization of the Da50 wing

- b croot ckink ctip ΛLE ykink ztip ϵ t/c fuselage width
Starting condition 29 3.3 2.36 1.43 3.75 7.92 0.433 0 0.1795 2.7

Upper bound 36 6 6 3 20 12.5 5 5 0.22 -
Lower bound 15 1 1 0.5 0 1.35 0 -5 0.08 -

Table 11: Aircraft geometry data used for the optimization of the F50 wing.

- b croot ckink ctip ΛLE ykink ztip ϵ t/c fuselage width
Starting condition 17.0 1.50 1.0 0.50 0 5.16 0.594 0 0.161 0.70

Upper bound 24 2.5 2 1.5 20 10 1 5 0.20 -
Lower bound 8 0.5 0.5 0.1 0 1.4 0 -5 0.11 -

Table 12: Aircraft geometry data used for the optimization of the ASK21 wing.

- mtot [kg] mempty [kg] mwing [kg] m f uel [kg] nz Vwing [m3] W/S [ kg
m2 ] f0 Tcruise[K] ρcruise [ kg

m3 ] vcruise [ m
s ]

SR22 1633 1076.8 156.4 220 5.7 1.90 136 28.08 253.6 0.711 92.6
DA50 1999 1450 234.5 148 5.7 1.67 137 33.20 260.41 0.797 88

F50 18990 12570 2514 4080 3.75 19.0 305 34.91 238.68 0.55 147
ASK21 600 402 198 0 6.5 2.11 35 26.50 278.24 1.056 49.90

Table 13: Data of the reference aircraft.
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1
Introduction

1.1. Background
Currently, one of the main points of focus of the aviation industry is reducing the environmental impact
of aircraft. In order to achieve this, the efficiency and performance of newly designed aircraft have to
be optimized as much as possible. The optimization of an aircraft design is a very complex process
as many fields are dependent on each other. This leads to a lot of time spent on inter-department
communication which results in many small changes during the conceptual design phase. The field that
specializes in addressing this problem is called Multi-Disciplinary Analysis and Optimization (MDAO)
[3]. The main focus of MDAO is to use techniques and tools that allow engineers to simultaneously
design and optimize all components of the aircraft. However, MDAO techniques are currently not widely
utilized professionally as the set-up and expertise required prove to be too great of a hurdle [2].

Recently, Artificial Intelligence (AI) applications are becoming increasingly popular, as it appears new
developments are being made every week with projects like StableDiffusion1 and ChatGPT2. How-
ever, AI applications for aerospace problems are limited, especially regarding automated design. As
AI employs a fundamentally different strategy from other optimization algorithms, exploring this could
uncover potential advantages. In Chapter 2, AI is explained in further detail and various applications
are explored to get an understanding of how ML is currently utilized.

1.2. Research Objective
This literature study aims to provide an overview of the current state of automated design together with
its limitations. The basics of ML algorithms are then discussed together with design-related applications.
A conclusion is then drawn on which ML techniques could be beneficial to automated aerospace design.

The aim of the thesis is to highlight the possible advantages and limitations of ML applications to au-
tomated aerospace design. During this project, a ML algorithm is selected and its performance as an
optimizer is compared to a traditional optimization algorithm. A traditional optimization algorithm refers
to an optimization algorithm that is used for automated design optimization and can commonly be found
in MDAO applications. The term optimizer refers to the entire framework surrounding the optimization
process.

ML algorithms can be used as optimizers similar to methods performed in MDAO. However, ML al-
gorithms have fundamental differences in operation, which have the potential to address some of the
weaknesses currently found in automated design. Several comparisons will be made, to evaluate the
capabilities of the ML algorithms. Furthermore, the following aspects of ML algorithms will be explored:
the ability to make predictions on categorical variables, retain knowledge from data, and perform multi-
objective optimization.

1https://stablediffusionweb.com/, accessed on 26-04-2023
2https://openai.com/blog/chatgpt, accessed on 26-04-2023
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The optimizations will be performed for aircraft design problems at the conceptual design phase level.
This is done by creating 2 design problems of different complexity. The first design problem consists of
the optimization of a wing geometry for aerodynamic cruise performance. The second design problem
concerns the selection and sizing of control surfaces for a specified wing configuration, optimized for
cruise, take-off, and landing performance.

Important to note is that the aim of the thesis project is not to ease the application of MDAO techniques
to a professional setting, as this problem is far too complex to be addressed in a master thesis. The
main aim is to evaluate the application of ML to automated design and not to solve a complex design op-
timization problem. The thesis will therefore focus on the analysis of the optimizers and their response
while the design problem to evaluate this is kept as simple as possible.

This report is outlined in the following way. In Chapter 2, background information is given on ML
and the current state of relevant fields is discussed. Concluding this chapter is a discussion about the
ML techniques that could be beneficial for automated design. Chapter 3 lists the research questions
that are set up to accomplish the objective of the thesis. Chapter 4 gives the methodology of the thesis
research. Here the actions performed during the thesis to answer the research questions are discussed.
Finally, a conclusion on the literature study is drawn in Chapter 5.



2
Literature Review

The aim of this chapter is to identify any limitations or gaps in the current knowledge surrounding
automated aerospace design. In order to find these gaps, the current state of all relevant research
areas is explored, including ML, automated design, and applicable software. Once this is established,
the state-of-the-art is explored by looking at several relevant projects. This gives the reader an overview
of the methods currently applied to both automated design and ML. A conclusion is then formed on how
ML techniques could be utilized to solve automated aerospace design problems. These techniques are
then applied to a design problem, discussed in Chapter 3, in order to accomplish the research objective.

2.1. Machine Learning
A good understanding of the machine learning fundamentals is required to fully utilize its potential
in an optimization problem. The main goal of a ML algorithm is to learn patterns from data in order
to make predictions on new data. The two most common tasks of ML algorithms are classification,
where input data is categorized, and regression, where an output value is predicted based on an input.
While ML algorithms can be used as optimizers similar to methods performed in MDAO, they do have
fundamental differences in operation. These differences could be exploited to potentially address some
of the weaknesses currently found in automated design. This literature review aims to identify the
differences and find ML techniques that could benefit automated design processes the most. The
following sections briefly describe key ML methods and techniques relevant to the research objective.
For a more extensive overview of a great number of ML algorithms together with their applications,
please refer to the journal paper by R.M. Jichao Li and colleagues [4].

2.1.1. The Basics of a ML algorithm
The main component of a ML algorithm is its model, which can drastically vary based on the algorithm.
In general, a model consists of an algebraic equation that makes predictions based on a certain input.
Most ML algorithms contain two types of variables called weights and biases. The available data is
split into training and test data. A ML algorithm improves its predictions by processing training data and
using an optimization algorithm to improve its weights and biases. The step size of this optimization
algorithm can be adjusted using a parameter called the learning rate. The processing of training data
is referred to as the training phase. This can be quite computationally expensive, depending on the
amount of training data. However, once a model is trained, it is able to rapidly make new predictions.
The test data is used for the evaluation of the trained ML model.

The results of the ML model can be altered by adjusting the hyperparameters [5]. Hyperparameters
are specific parameters selected by the engineer prior to the training phase and have a big impact on
the generated results. The hyperparameters that the engineer is able to tune can differ based on the
ML algorithm. Examples of hyperparameters include the test-train data split ratio, the selection of the
optimization algorithm, and its learning rate.

In general, the design problem determines what type of data is available. This will in turn determine
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what category of ML algorithm should be chosen. If the available data includes both the input and
output, a supervised learning algorithm should be selected. Popular examples of this are: Logistic
Regression, Support Vector Machines, and Decision trees [5]. When the outputs of the training data are
unavailable, the ML algorithm will try to find certain patterns in this data and subsequently classify new
data. Examples of this are K-means Clustering, Gaussian Mixture Model, and Principal Component
Analysis [5]. Finally, there is a third type of ML called semi-supervised learning, where data is generated
on the basis of the interaction with a certain environment. The most common algorithm that fits this
criterion is called reinforcement learning. This will be further explained in the upcoming section.

2.1.2. Neural Network
Currently, one of the most popular ML algorithms used to solve complex problems is called deep learn-
ing, where the ML model consists of an Artificial Neural Network (ANN) [6]. A neural network consists
of stacked layers that all contain a various number of neurons. Each neuron consists of a number of
inputsXn, that are multiplied by an equal number of weightsWn. A bias b is then added to the weighted
sum. The bias is used to influence the impact each neuron has on the next layer. Both the values of the
weights and bias are typically unconstrained. However, regularization techniques can be implemented
if these values become too large relative to other neurons. This prevents one neuron from dominating
the entire prediction [6]. Additionally, an activation function ϕ can be added to each neuron. This allows
the ML algorithm to make non-linear predictions. Finally, the output of the neuron h is calculated using
Equation 2.1 [5]. The complete neuron and the relations between each parameter are shown in Fig.
2.1.

h(X) = ϕ(XTW + b) (2.1)

Figure 2.1: Example of a neuron, showing the interaction between the inputs, weights, bias, and the activation function.
Adapted from [5].

An ANN is comprised of multiple layers, which can be categorized into three groups: the input, hidden,
and output layers [6]. The input layer consists of a number of neurons equal to the size of the input
vector. The purpose of the input layer is to create an interface between the input vector and the ML
model. Therefore, the neurons of the input layer do not contain any weight or bias terms. The input
layer is directly connected to the neurons of the first hidden layer. The output of each input layer neuron
hi now serves as the input for each neuron of this hidden layer. The output of the first hidden layer,
indicated with i+1, can now be calculated using Equation 2.2. The neurons of subsequent hidden
layers are connected in a similar fashion, as indicated in Fig. 2.2. Both the number of hidden layers
and the number of neurons contained within each layer can be freely chosen by the engineer. Finally,



2.1. Machine Learning 29

the output layer serves as a representation of the predictions made by the ML model. For example, if
the ML model is a classifier that has to predict whether some input data belongs to one out of three
classes, the output layer will consist of three neurons. The output of each neuron then consists of a
probability of the input data belonging to that class.

hi+1(hi) = ϕ(hT
i W i+1 + bi+1) (2.2)

Figure 2.2: Basic neural network structure showing various layer types and how they are connected1.

When the ML model is first constructed, the weights and biases have to be randomized. Using tech-
niques called ”forward pass” and ”backpropagation”, the neurons are able to update the weights and
bias values when the model is processing training data [5]. A trained model is stored as a tensor con-
taining matrices and vectors. This tensor contains weight matrices and bias vectors for each hidden
layer and the output layer. The number of columns of a weight matrix is equal to the number of neurons
in the previous layer, while the number of rows is determined by the number of neurons in the current
layer, as can be seen in Fig. 2.3. The length of the bias vector of a layer is equal to its number of
neurons.

1Obtained from: https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks,
accessed on 22-04-2023

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
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Figure 2.3: The construction of the weight matrix for a given a hidden layer2.

A neural network gives a ML model the ability to make complex predictions, as it is able to recognize
complex trends in the training data [6]. ANN are quite flexible as they are scalable by changing the
number of hidden layers and neurons. This allows the neural network to adapt its complexity based
on the problem at hand. The main drawback of neural networks is that they take a lot of computational
effort to train, as each neuron has to be updated. A neural network should therefore only be used if the
design problem requires a complex ML algorithm.

2.1.3. Reinforcement Learning
Reinforcement Learning (RL) is a semi-supervised learning model where an agent continually makes
decisions and reacts to the response of its environment on a trial and error basis [7]. The goal of the
model is to iteratively make better decisions that will improve its results. The agent is the main com-
ponent of a RL model and determines what actions should be performed based on the policy function.
The possible actions are stored in an array and describe how the agent can alter the design variables.
This action list is predefined during the setup phase. The state St is typically an array comprised of the
current state of the design vector combined with the response from the environment. In the context of
automated aerospace design, the state could be comprised of the aircraft design variables, together
with the performance parameters that the design is being optimized for. The environment consists of a
structure of simulation software and calculations that use the design variables as input and generates
an output. This output is then evaluated by generating a reward signal Rt. The reward is a scalar
variable that determines whether the response of the environment to the selected actions is favorable.
The main goal of the agent is to maximize the total reward it has received during the training phase.

The policy is created to relate the current state with the possible actions and is used to determine
which actions can lead to the best results. The policy can be constructed in a variety of ways, as it is
dependent on both the selected type of RL algorithm and the variable types of the design vector and
environment response. Typically, it can be a simple function or a generated table that is updated each
iteration, based on the generated reward signal. The policy function also allows the agent to either
focus on short or long-term results.

Upon initialization, the decisions the agent makes are all random [7]. This is referred to as ”exploration”.
Once the model has completed a sufficient number of iterations, it will try to utilize the data it has col-
lected to improve its decision. This is called ”exploitation”. A good balance has to be found between the
exploration and exploitation throughout the training phase. If a model performs too much exploitation

2Adapted from: https://python-course.eu/machine-learning/neural-networks-structure-weights-and-matrices.
php, accessed on 15-05-2023

https://python-course.eu/machine-learning/neural-networks-structure-weights-and-matrices.php
https://python-course.eu/machine-learning/neural-networks-structure-weights-and-matrices.php
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it may get stuck at a local optimum. Allowing some randomness in the selection of actions will help the
agent find new ways of improving the results. The agent will continue to make decisions until either it
has reached a set goal, enough iterations have been performed, or the state is stuck at a sub-optimal
value. The interaction between the components of a RL model is illustrated in Fig. 2.4.

Figure 2.4: Basic diagram showing all components of a RL algorithm and how the agent interacts with the environment [7].

RL is thus ideal for problemswhere data is not available at the start of a project andmust be calculated or
generated through various simulations. There are a great number of unique RL algorithms. Additionally,
ANNs can be utilized by most RL algorithms, this is known as Deep Reinforcement Learning (DRL).

Q-learning is a very popular algorithm, that utilized a Q-table[7]. The rows of the Q-table consist of
the potential states while the columns represent all the possible actions the agent is able to take. The
algorithm generates an expected reward for each combination of states and actions. This reward is
called the Q-value. The policy function then selects an action from the table based on the current state
of the agent. This Q-table is iteratively updated throughout the training phase.

A big problem with Q-learning is that the Q-table is not very scalable. When the number of actions and
possible states are very high, the table becomes computationally expensive to update at each iteration.
The Q-table can be replaced by an ANN, which is known as Deep Q-Network (DQN) [8, 9]. The input
for this ANN is the state vector while the output is a vector with estimated Q-values for each action.
The RL model can then select the action, based on the Q-value and its policy. The ANN is significantly
less expensive to evaluate and can be scaled more efficiently than a large Q-table.

Another benefit of the DQN is that it more efficiently explores new areas of the design space. As
the DQN uses an ANN, it is able to make predictions on the Q-values on new states the agent has not
experienced before [8]. However, as the ANN is simply an approximation of the Q-table, DQN generally
performs worse than Q-learning for simple problems with a low number of possible actions.

RL models can be adapted to solve multi-objective problems, where multiple variables need to be
optimized [10]. Hayes and colleagues have created an extensive guide for the use of various multi-
objective optimization techniques [11]. RL algorithms are very flexible and their utility can be increased
using various techniques, which are explored in the upcoming sections.

2.1.4. Transfer Learning
ML models are typically trained on fixed data sets and are unable to make reliable predictions on new
data that diverges too much from the original data set. A very powerful technique of ML that tries to
circumvent this problem is called transfer learning. The goal of transfer learning is to leverage the
knowledge of a trained model to solve new but similar problems [12, 13]. This also works well for ANN-
based ML models, where new layers are added after the hidden layers of the original ANN. The values
of the original hidden layers are kept constant while the additional hidden layers are used to retrain the
model to fit the new problem. Themain advantage of using transfer learning is that it greatly reduces the
training time of the ML model as only the additional hidden layers are trained, thus greatly increasing
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the computational efficiency of any optimization problem. Additionally, this can be a great technique
when little data is available. Using transfer learning, the knowledge gained during the training phase
can therefore be transferred to a new problem in order to continually expand its knowledge [13]. The
application of reusing knowledge without ML is still being explored by a field called Knowledge Based
Engineering (KBE), this is further discussed in section 2.2.2.

2.1.5. Progressive Learning
Training a ML can be error-prone, especially when they are designed to solve complex tasks. Addition-
ally, the training time increases exponentially the more complex the ML model becomes. This makes
the training of a large and complex MLmodel quite risky, as a lot of computational resources are wasted
if the performance of the ML model is subpar. Progressive learning is a form of transfer learning where
a ML model is sequentially retrained to solve increasingly complex tasks [14]. Progressive learning
allows the engineer to carefully monitor the training phase and performance of the ML model at various
stages of complexity. Progressive learning can significantly reduce the training time and subsequently
the required computational resources [14, 15].

An application of progressive learning used a simple Q-learning algorithm to solve subsequent mazes
that increased in size [16]. In this maze, the agent is represented in gray and must exit the maze without
running into the black dot, see Fig. 2.5. The agent is able to move in all directions or wait. This project
used an interesting RL scheme where the agent first acquires experience by solving a simple maze
without any prior knowledge. The agent is able to adapt to the new mazes by continually updating its
policy algorithm. The progressive learning algorithm was able to solve the mazes in about 30-40%
fewer iterations than the standard RL algorithm.

Figure 2.5: Overview of the various environments with the mazes increasing in size [16].

A related technique to progressive learning is known as continual or lifelong learning. The goal of
this technique is to create a ML model that is able to expand its knowledge, while still retaining the
knowledge it has previously gathered [14]. This allows the ML model to adapt its knowledge to solve
new tasks while simultaneously being able to solve the tasks it was originally trained for. This creates
a flexible ML model that is able to solve multiple tasks using its collective knowledge. Jaehong Yoon
and colleagues created a complex deep network architecture called Dynamically Expandable Network
(DEN) [17]. The DEN was able to dynamically expand the structure of its ANN by retraining the network
on a variety of tasks. This resulted in amodel that was able to create a ”compact overlapping knowledge-
sharing structure”. The DEN was able to generate more accurate results than other lifelong learning
methods while using a smaller ANN.
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2.1.6. Advisor Agents
The concept of advisor agents is quite new and new methodologies are still being explored. Recently,
the use of multiple agents, referred to as Multi-Agent Reinforcement Learning (MARL) has become
quite popular. Advisor agents are trained agents that are able to support the training of a new primary
agent [18, 19]. The advisor agents are trained on similar tasks as the primary agent. Advisor agents
are used to decrease required computational resources and improve the stability and efficiency of the
training phase of a new model. Advisor agent frameworks are quite flexible and can vary significantly
in architecture as the number of advisors and their interactions with the primary agent can be left up to
the engineer. Currently, advisor agent frameworks tend to struggle with high problem complexity and
slow convergence of policies [20].

A popular scheme is the Advisor Critic Architecture (ACA), where the advisor is a pre-trained model and
the primary agent is known as the critic [7]. Here, the advisor will suggest actions to the critic based on
the current state. The critic will then evaluate these suggestions based on the rewards it has previously
received. The main goal of this architecture is to help the RL model avoid less lucrative areas of the
design space.

Subramanian and colleagues have built an interesting architecture including multiple advisor agents
[21]. The framework of their architecture can be found in Fig. 2.6 and is called ADMIRAL (ADvis-
ing Multiple Intelligent Reinforcement Agents). For this project, two complex Q-learning algorithms
were constructed to complement each other. Here, one traditional advisor framework has a number
of advisor-agent pairs to improve the training phase, called ”ADMIRAL-DM”. The second model is
quite similar to the first model, however, now only a single advisor is connected to each agent, called
”ADMIRAL-AE”. The purpose of this algorithm is to evaluate the performance of each individual advi-
sor. In their experiments, they found that model could be adapted to a variety of environments and was
resistant to bad suggestions from the advisor agent.

Figure 2.6: Example architecture of a multi-agent RL algorithm, shown here are the ADMIRAL-DM (left) and ADMIRAL-AE
(right) algorithms [21].

2.1.7. Surrogate Models
Surrogate models are currently quite popular in engineering applications. A surrogate model aims to
replace high-fidelity analysis methods with either simple algebraic equations or low-fidelity simulations
[22, 23]. This means that for each iteration of an optimization process, the results of a simulation can be
generated in quicker succession. This is therefore a very useful technique for optimization strategies
where a low computational effort is prioritized over the accuracy of simulation results. A surrogate
model can also be created using a supervised ML algorithm. This ML model tries to find certain trends
in large amounts of training data. This data can either be obtained from databases or generated using
high-fidelity simulations. When the trends generated by the underlying high-fidelity simulation are too
complex, an ANN based ML algorithm can be selected. This is known as a Physics Informed Neural
Network (PINN) and some applications will be discussed in section 2.4.2.
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2.2. Automated Design
The main goal of this report is to find out what could be gained from the addition of Machine Learning to
the automated aircraft design process. The primary fields relating to automated aerospace design are
MDAO and KBE. In the upcoming sections, the techniques and methods that these fields employ are
discussed to get an overview of the current state of automated design. The strengths and weaknesses
of both fields are then evaluated, in order to find opportunities on how ML could aid automated design.
Finally, the optimization algorithms suitable for the design problems of this thesis are discussed.

2.2.1. MDAO
The process of designing aircraft is a complex task as various disciplines such as aerodynamics, struc-
tures, dynamics, and performance are all interconnected. MDAO is a methodology that aims to create
a framework to connect and oversee the interactions between each discipline during the conceptual
design phase [3]. This allows engineers to explore a large design space by rapidly generating a large
number of designs including unconventional designs.

Three limitations of current non-multidisciplinary design techniques are mentioned by van Gent [1].
When the analyses of all disciplines are uncoupled, performance improvements on existing aircraft are
difficult to realize. Secondly, the use of empirical knowledge does not allow for innovative designs as
high-fidelity coupled analysis is required. Finally, it is hard to properly explore the design space when
all disciplines are uncoupled, as design exploration methods are not very effective.

The workflow of an MDAO analysis can be divided into two different phases, the formulation phase and
the execution phase, see Fig. 2.7. The formulation phase of an MDAO framework typically requires
the most amount of work, as it takes up about 60 to 80% of the project time [1]. During this phase,
the relationships between the various disciplines are established. This includes the integration of the
various simulation tools for each discipline, like flow solvers or finite element method software. As the
disciplines exchange their inputs and outputs, keeping track of all these variables can get quite complex.
An eXtended Design Structure Matrix (XDSM) diagram is created to give a proper overview of the entire
optimization process, as shown in Fig. 2.8. The XDSM describes in great detail how the optimization
algorithm interacts with the analysis methods of the disciplines. Once the entire optimization process is
set up the execution phase can begin. During this phase, the framework starts its optimization process
and very little interaction is required from the engineers. Once completed, the design solutions can be
evaluated.

Figure 2.7: General MDAO workflow diagram showing the formulation of all subsequent steps of an optimization problem [1].
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Figure 2.8: XDSM diagram showing all interactions between the various disciplines and the optimization algorithm during the
optimization process [24].

MDAO frameworks show very promising results, as they allow engineers to generate a high number of
possible solutions once the framework is set up. An example of the timeline for an MDAO application
by Flager and Haymaker [25] can be found in Fig. 2.9 and concerns the design of a hypersonic aircraft.
Where traditional techniques could take 6 weeks to set up and 4 weeks per iteration, MDAO is able to
complete its set-up in 14 weeks but generate new solutions within 1.5 hours. This shows the power of
MDAO for the conceptual design phase as its highly advantageous to create a large number of designs.
This allows the engineer to explore the design space for unconventional designs.

Figure 2.9: Overview of a timeline for an optimization problem concerning a hypersonic aircraft [25].

Sadly, the application of MDAO techniques is not fully realized in the professional field and is mostly re-
stricted to academic research [2, 1, 3]. The reason for this is that the knowledge and expertise required
are too high to implement a complete MDAO framework for a design problem. Currently, an expert in
MDAO is required to translate a design problem into a proper MDAO framework [2, 1]. Even for MDAO
experts, it is proven difficult to integrate high-fidelity software into this framework. Additionally, the
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optimization process combined with high-fidelity analysis requires a large amount of computational
resources. Finally, as shown in the previous section, the time to set up an MDAO framework is sub-
stantially greater than the traditional approach. This results in many projects using traditional design
approaches, as the time required to generate the first design is too great. This means a lot of time
is spent on interdepartmental communication and repetitive work that could be spent on evaluating a
large number of creative design solutions [2, 1].

2.2.2. KBE
KBE is a knowledge-based subset of artificial intelligence that does not utilize a ML algorithm. Its
main purpose is to efficiently structure the knowledge contained within a project [26]. KBE techniques
are often integrated into MDAO frameworks as they complement each other very well. A popular
method of structuring knowledge is semantic web technologies [27, 2]. Thismethod allows for additional
information to be stored with data and is fully recognizable by computer programs. These methods are
subsequently used to generate ontologies. An ontology is a graph-like structure of data that includes
the classification and relationship between various data points. An example of an ontology of the airline
KLM can be found in Fig. 2.10, which shows how these relationships are constructed. Ontologies are
powerful tools that allow for efficient knowledge processing and transfer between projects.

Figure 2.10: Example ontology of the airline KLM, showing the relationship between all data points [2].

Additionally, KBE strategies advertise the use of Object-Oriented Programming (OOP) practices [27].
OOP is typically used for the construction of complex software programs that include a large number
of interactions between data. OOP organizes various components and tasks of a project as objects for
which a class is constructed. This allows each object to inherit information from other classes. This
makes the codemoremodular and reusable which allows for easymaintenance andmodification during
the development of the program.

Another useful technique that KBE utilizes is called lazy evaluation. This technique tracks parameters
in an ontology together with their relationship with the other parameters. These parameters will only
be recalculated if the values of any of its inputs are changed. This decreases the computational effort
wasted on needless recalculations.



2.2. Automated Design 37

The techniques discussed so far are not just relevant for MDAO frameworks but could also aid in the
construction of a general multi-disciplinary ML optimization problem. These techniques will therefore
be taken into account when the optimization frameworks are constructed for this thesis.

2.2.3. Traditional Optimization Algorithms
It is quite difficult to gauge the computational costs required for any given optimization problem. These
computational costs can also be greatly impacted by factors like the selected optimization algorithm.
Several algorithms are researched in case one algorithm requires too much of the available computa-
tional resources.

Simple gradient-based optimization algorithms are quite common in MDAO frameworks, as they are
accurate and reliable while being computationally inexpensive [3, 2]. However, gradient-based algo-
rithms struggle in solving optimization problems that contain categorical variables. This makes them
unable to be properly compared with ML optimization algorithms. For this reason, three optimization
algorithms are explored that are compatible with both multi-objective optimization and categorical vari-
ables, namely: Bayesian Optimization (BO), Genetic Algorithm (GA), and Particle Swarm Optimization
(PSO).

BO is an optimization algorithm typically used for computationally expensive black-box functions [28].
To use BO, an approximation of the underlying problem is first created in the form of a surrogate model,
as can be seen in Fig. 2.11. Random samples of candidate solutions are fed through the objective
function to generate data throughout the entire design space. These samples are then used to construct
the surrogate model, also known as the acquisition function. Additional data is generated with the
objective function and its results are compared with the acquisition function until it sufficiently represents
the original function. Additionally, BO has use-cases outside of being directly used as an optimization
algorithm. Wu and colleagues [28] have found success in utilizing a BO algorithm to optimize the
hyperparameters of various ML algorithms, including random forest and neural networks.

Figure 2.11: Bayesian optimization example showing the process of generating an acquisition function from an objective
function [29].

As its name implies, GA is an optimization algorithm that is based on the concept of natural selection
[30]. Like with BO, the optimization initializes by generating a collection of samples known as the popu-
lation. The ’fitness’ of each sample is scored using an objective function or underlying simulation. This
fitness is then combined with the design vector of the sample and is typically stored in an array, called
’chromosome’. The best chromosomes are then selected from this population. These are referred to
as ’elites’. From these ’elites’, a number of chromosomes, called ’parents’ are selected that will be used
to generate new chromosomes. The GA then uses methods called ’crossover’ and ’mutation’ to alter
these ’parents’ and generates a new population of chromosomes called ’children’. These children are
evaluated and new elites are selected to continue the optimization process, as seen in Fig. 2.12. This
process is then repeated until a satisfactory solution is found. GA are typically used for optimization
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problems with large design spaces.

Figure 2.12: Genetic algorithm diagram showing the various steps of a GA optimization.3

PSO takes a different approach by generating a number of results using random design variables at
various locations in the design space, called particles [30]. The design variables of these particles are
then adjusted to look for local optimum solutions within the entire design space as can be seen in the
subsequent graphs below, as seen in Fig. 2.13. PSO is known to be a robust method but can be
computationally expensive, depending on the number of particles.

Figure 2.13: Particle swarming algorithm example showing how particles move towards a local minimum [31].

2.3. Software
Much like the optimization algorithms, the selected software can greatly impact the computational re-
sources and must therefore be selected carefully. A similar approach to the previous section is taken,
where a selection of possible software is discussed. This gives a good overview and allows for flexibility
during the thesis.

2.3.1. Programming Software
During the thesis, any open-source software available will be utilized if applicable, as this greatly de-
creases the required development time. In recent years, many different ML packages have been de-
veloped that aid in the programming of various ML algorithms. Currently, Python is the preferred pro-
gramming language for data scientists working on machine learning problems, as it is a very popular
language with many packages and libraries available4. Therefore, all programming for the thesis will
be done using Python. Other languages like Rust, Ruby, C++, Julia, or Java have been known to work

3Obtained from: https://nl.mathworks.com/help/gads/what-is-the-genetic-algorithm.html, accessed on 23-04-
2023

4https://www.aiplusinfo.com/blog/7-best-programming-languages-for-machine-learning/, accessed on 12-04-
2023

https://nl.mathworks.com/help/gads/what-is-the-genetic-algorithm.html
https://www.aiplusinfo.com/blog/7-best-programming-languages-for-machine-learning/
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very well with Machine Learning and can even have a faster execution time, but currently lack the sup-
port that Python has5. Ultimately, it’s up to the user to select a language that they are comfortable with
and is appropriate for the task at hand.

The Pytorch package6 will be used to aid in the programming of the neural networks of machine learn-
ing models. It has many features and is currently being used by over 50% of scientists, as listed on
paperswithcode.com, a popular repository for scientific papers for various fields7. The key strengths of
Pytorch are its support for constructing neural networks and the ability to efficiently utilize the physical
hardware of a computer to speed up the execution time. Other great options are Tensorflow, Scikit-
learn, and Keras [5].

2.3.2. Aerodynamic Analysis
The selection of the flow solver is very important, as it directly impacts the optimization process. While
there are a great number of open-source flow solvers, the selection is severely limited by the available
computational resources. Computational Fluid Dynamic (CFD) software (Pyaero 8, Flightstream9, and
Openfoam10) is most likely computationally too expensive when running a large number of optimizations
and would be more suitable for the optimization of a singular design.

Athena Vortex Lattice (AVL) is a potential flow solver that is widely used in the aerospace field as a
relatively low-fidelity solver that produces reliable and accurate results [32]. Additional benefits of AVL
are its ease of use and integration into a Python program. As AVL is based on the Vortex Lattice
Method (VLM), it can only be used for thin lifting surfaces at small angles and is unable to simulate
viscous effects. Additionally, XFOIL11, XFLR5 12,and MSES [33] could also be great candidates to
perform 2D flow analysis. This could be relevant if a hybrid analysis of 2D and 3D flow analysis is
required.

In order to properly capture the complex response of High-Lift Devices (HLD), a high-fidelity flow solver
is typically used. This is however not feasible as it would far exceed the capabilities of the available
computational resources. A solution for this is to use empirical methods to manually calculate the
response of the HLD in conjunction with flow solvers to calculate the aerodynamic response of the
wing. A concern with using empirical methods is that data needs to be interpolated from a database.
This could generate less accurate results than high-fidelity physics-based analysis methods. Olson
[34] describes a comprehensive methodology for performing proper semi-empirical analysis of various
types of control surfaces at low speeds using AVL. The main advantage of using semi-empirical over
fully empirical methods is that this method generates more accurate results for more unconventional
aircraft. This allows the optimizer to explore greater design spaces.

The empirical data can be obtained from ESDU13. ESDU is a database that contains various methods
and data to aid in aerospace design. Included in this database are various empirical methods of deter-
mining the aerodynamic response of a great variety of HLD at low speeds [35]. ESDU data items 94028
[36], 94029 [37], and 94030 [38] include methods and data for determining the aerodynamic response
of airfoils with plain trailing-edge, split, and single slotted flaps respectively. These methods also in-
clude the aerodynamic response of leading-edge devices. ESDU data item 91014 describes a method
for determining the increments in maximum lift coefficient for HLD on an entire wing [39]. ESDU data
item 92031 describes additional effects due to the deployment of both leading-edge devices with or
without trailing-edge flaps. Finally, ESDU data items 93019 [40], 97009 [41], and 97011 [42] describe
methods for determining the lift coefficient increment of a wing at zero angle of attack for single-slotted,
split, and plain flaps respectively.

5https://careerfoundry.com/en/blog/data-analytics/best-machine-learning-languages/, accessed on 12-04-
2023

6https://pytorch.org/docs/stable/index.html, accessed on 18-03-2023
7https://paperswithcode.com/trends, accessed on 11-04-2023
8https://pyaero.readthedocs.io/en/stable/, accessed on 14-05-2023
9https://www.darcorp.com/flightstream-aerodynamic-modeling-software-aiaa-11/, accessed on 14-05-2023

10https://openfoam.org/, accessed on 14-05-2023
11https://web.mit.edu/drela/Public/web/xfoil/, accessed on 12-3-2023
12http://www.xflr5.tech/xflr5.htm, accessed on 15-3-2023
13https://esdu.com/, accessed on 22-04-2023
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2.4. State-of-the-Art
The current state of both aerospace optimization and ML application to automated design is now ex-
plored. First, aerospace design optimizations relating to control surface design are discussed to get
an overview of the methods and techniques used. After this, various ML applications relating to design
are explored to get an understanding of how ML methods are currently utilized.

2.4.1. Aerospace Design Projects
The goal of the thesis is to determine the practicality of machine learning applied to aerospace design.
As one of the design problems concerns control surfaces, it is important to get an understanding of
the design techniques and tools currently used. Two projects regarding the control surfaces design
and sizing for a Prandtl plane are discussed. The Prandtl plane has a box wing configuration and
has recently regained some attention in academia as the configuration theoretically achieves very low
induced drag, see Fig. 2.14. The Prandt plane concept is interesting to investigate as it is a unique
design that allows for control surface integration on the top and bottom wings. This could result in
innovative methods being developed to generate unconventional control configurations.

Figure 2.14: Artistic rendering of the Prandtl plane concept14.

The first project to discuss contains a methodology for the automated control surface design and sizing
for any fixed wing configuration [43]. Themethodology consists of physics-based aerodynamic analysis,
a control allocation algorithm, and the analysis of flight mechanics. The objective of the optimization is
to minimize the total control surface area while adhering to some handling quality requirements. The
initial design process concerns the selection and positioning of the control surfaces and is developed
manually. A decision tree is used to position the control surfaces based on their ability to provide pitch,
roll, and yaw control, see Fig. 2.15. This decision tree was then used to perform trade-off studies to
determine the optimal configuration. The aerodynamic analysis was performed using a first-order panel
method called VSAERO to evaluate the aerodynamic performances. An exhaustive search was then
performed over the entire design space to evaluate the resulting designs. This optimization resulted
in a configuration with outboard ailerons, inboard elevators, and a conventional rudder in the vertical
tails.

14Obtained from: https://phys.org/news/2018-05-radical-closed-wing-aircraft-greener-flight.html, accessed
on 2023-04-24

https://phys.org/news/2018-05-radical-closed-wing-aircraft-greener-flight.html
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Figure 2.15: Decision tree used for the allocation of control surfaces for a Prandtl Plane [43].

The second project concerns the investigation of the impact of three control allocation algorithms on
the sizing of the control surfaces [44]. The sizing optimization is performed with constraints based on
the handling- and flying quality criteria, while the spanwise positions of the control surfaces remain
constant, similar to the previously discussed project. The aerodynamic analysis is performed using
AVL in order to create a database of static and dynamic coefficients. The conclusion mentions that the
control surface areas could be further reduced when placed at the mid-wing positions. This shows that
including the positioning within the optimization process could be quite beneficial.

2.4.2. Machine learning applications
In this section, various ML applications relating to design problems are discussed. The first ML ap-
plication concerns the structural optimization of a frame using a RL algorithm [45]. The goal of the
optimization is to minimize the total volume of the frame by reducing the cross-sectional area of the
members. For the optimization, a DQN algorithm was used in conjunction with a PSO algorithm. The
purpose of the DQN was to look for the general optimum solution in the design space while the PSO
would perform the local optimization. The action list of the DQN consisted of increasing or decreasing
the cross-sectional area of an entire row or column. This was done to simplify the design problem
and decrease the computational requirements. Changing the cross-sectional area of each individual
member would result in a significantly larger ANN that is expensive to evaluate. The result of the DQN
optimization can be found in Fig. 2.16. After this, a PSO algorithm was used to minimize the total
volume of the frame. The results show that the combination of RL and PSO was computationally more
efficient than exclusively using PSO. Furthermore, this combination made the optimization more robust,
as the RL agent prevented the PSO optimizer from starting at bad initial conditions. The RL algorithm
is able to optimize a range of frames with varying numbers of rows and columns. Finally, the transfer
of knowledge was successfully performed as the trained RL model was able to be re-used to optimize
new frames of varying sizes.

Figure 2.16: RL optimization of a frame after 10, 100, and 1000 iteration. The numbers on the members indicate stress ratios
[45].

Within the field of aerospace, ML techniques are frequently applied to aerodynamic shape optimizations
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(ASO) or to create surrogate models. An example of such a surrogate model uses an ANN to substitute
CFD analysis to improve local aerodynamic performance [46]. This is achieved by utilizing a database
of various airfoils that contain both their geometry and aerodynamic performance. The database is
then used to train an ANN. The ANN essentially interpolates between the airfoils in the database to
generate new airfoils with better aerodynamic performance. This is a great alternative to CFD analysis
as the generation of new airfoils can be done much quicker. This could significantly decrease the
computational efforts required to obtain objective function values for each iteration of an optimization
process. However, this method is less effective for unconventional airfoils, as the ANN is only trained
on conventional airfoils.

Hui and colleagues [47] describe an alternative method for ASO by using a deep RL algorithm. The
algorithm is called Proximal Policy Optimization (PPO) and is used for multi-objective optimization prob-
lems. The main goal of this project is to optimize an airfoil by maximizing the lift-to-drag ratio in two
different states while maintaining a constant thickness. The airfoil is parameterized using Free-Form
Deformation (FFD) which is a method to describe the geometry of a 2D or 3D object. FFD works dif-
ferently than other parameterization methods, as it alters a mapping frame instead of the object. The
mapping frame consists of multiple control points that can be translated, shown in Fig. 2.17. The RL
algorithm was able to reach its optimized design within 15% of the time it took a GA.

Figure 2.17: FFD parameterization of a RAE2822 airfoil [47].

In the article written by Li et al. [4], an overview is given of various ML algorithms that have successfully
been used for ASO, together with a list of challenges that ASO currently faces. A big challenge is
the efficient parameterization for compact geometric design. In the article, a modal parameterization
method is discussed that is able to describe an airfoil with fewer parameters than conventional methods
like FFD. This is quite advantageous as the number of variables greatly impacts the computational costs
of the optimization. However, modal parameterization has a tendency to generate unrealistic airfoils
with wavy surfaces. This leads to a very inefficient optimization, as all these failed airfoils have to
be evaluated. A method has been developed to circumvent this issue. A deep learning model was
developed to validate any geometric abnormality in the generated airfoils, see Fig. 2.18. Li et al. also
highlight the need for an interactive design optimization tool. This has previously been infeasible, as
high-fidelity solvers take too long to evaluate each iteration. However, with the advent of ML-based
surrogate models, the feasibility of an interactive design tool increases. An example of this is Webfoil,
an interactive airfoil analysis tool powered by surrogate models that can be accessed via a web browser
[48].
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Figure 2.18: Geometric validity study of generated airfoils by an ANN model where infeasible surfaces are evaluated and
rejected [4].

Li and Zhang [49] describe an interesting data-based approach to make wing shape optimization more
interactive. This is achieved by substituting computationally expensive fluid dynamic solvers with fast
and accurate data-based models. To train the data, an extensive database with over 135000 data
points of various wing shapes and flight conditions was used. The error of the resulting model was
within 0.4% compared to the CFD results. The FFD method is used to construct the geometry of the
wing for CFD analysis, see Fig. 2.19. However, this method creates too much geometric freedom. The
wing design is therefore translated using a modal parameterization to construct the design variables.
The combination of a multi-objective design optimization with a surrogate found a huge decrease in
computational requirements. While the optimization took 600 CPU hours to complete with CFD, the
data-based optimization only took several minutes with a difference of one to two drag counts.

Figure 2.19: FFD representation of a wing, showing all control points [49].

2.5. Discussion
This section serves as a reflection on all information gathered so far. Now the utility of various ML
techniques for automated design processes will be discussed. In order to do this, any shortcomings
of the current automated design methods have to be established. As stated in section 2.2.1, the main
drawback of MDAO is the fact that it is hard to adapt to a professional setting. While the ease of this
adaption is far too complex to address here, it does give an indication that there is room for improvement.
Additionally, KBE shows the need for a competent knowledge base for automated design problems.

While ML algorithms are being utilized for various engineering applications, the adaption of many ML
techniques to automated aerospace design applications remains quite unexplored. ML models offer an
alternative method of storing knowledge to KBE. During the training phase, the ML model accumulates
all its knowledge. This is by far the most computationally expensive process. However, once a model
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is trained, it is able to rapidly make new predictions. This is a great advantage over MDAO optimizers,
as the MDAO framework has to run the entire optimization process for a single optimal solution.

Techniques like transfer learning, progressive learning, advisor agents, and multi-objective optimization
are able to use the knowledge acquired through training and efficiently adapt a ML model to generate
new designs. The use of these techniques could aid in the creation of an interactive design process,
where the engineer is able to generate innovative design solutions.

Currently, complex decision-making is done using trade-off tables. Trade-off tables are a powerful tool
utilized to make fair decisions on complex problems and can be found at the start of many design
projects. This process is not automated, so a new trade-off table has to be created every time the
conditions of the design problem change. As noted by Wahler [44], further research revealed that the
conclusion of the trade-off table does not lead to the optimal solution. ML algorithms are able to optimize
categorical variables quite well and are able to transfer their knowledge to adapt the ML model if the
conditions change. This allows for the possibility to integrate the decision process of the trade-off table
in the optimization loop. This could result in a more complete design space being explored, leading to
more innovative designs. However, this should be done with caution as this could significantly increase
the required computational effort.

ML techniques are quite versatile and have the potential to be applied to various different aerospace
problems, both as a substitution for older methods and completely new techniques. In order to properly
evaluate the adaption of ML techniques to traditional optimization problems, the performance of both
optimization algorithms will have to be compared. How this comparison will be performed during the
thesis is discussed in Chapter 4.



3
Research Questions

To reach the research objective, two main research questions are constructed. These questions are
then further divided into sub-questions that will be answered during the thesis project.

Research Question 1: How do the computational effort and objective function values of ML and
traditional optimization algorithms compare in automated design problems?

• Sub-question 1.1: How does the amount of design variables affect the computational effort and
objective function values of ML and traditional optimization algorithms?

• Sub-question 1.2: How are the computational effort and objective function values of ML and
traditional optimization algorithms related to the relative complexity of design problems?

Research Question 2: How are the knowledge retention capabilities of ML algorithms related to the
computational effort and objective function values in an automated design problem?

• Sub-question 2.1: How is the number of training iterations of a ML model related to the objective
function values of the generation of new designs?

• Sub-question 2.2: To what extent can a multi-objective function of a trained ML model be altered
with the goal of adjusting the resulting performance parameters of the design?

• Sub-question 2.3: How are the number of advisor agents and their RL model’s similarity to the
design objective related to the objective function value of new designs?
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4
Methodology

This chapter will describe the various actions that will be taken during the thesis to answer the research
questions. To properly evaluate the performance of both the ML algorithms and traditional optimizers,
it is vital that the design problems and analyses are designed simultaneously. This ensures that test
results can be reused and computational effort is not wasted. This allows all research questions to be
answered in an efficient manner.

4.1. Project Set-up
The set-up of the thesis has to be carefully defined at the start as it determines the scope of the project.
Both the computational and software resources available are limited and will greatly determine what
is possible to achieve within the given time frame. The main computational resource available is a
Windows PC which means the selected software should not exceed the capabilities of this computer.
In order to increase computational resources, Google Colab can be used1. This is a programming
platform developed by Google that lets users utilize computational resources from Google.

4.2. Design problems
In order to answer the aforementioned research questions, two design optimization problems are cre-
ated of different complexity. Both design problems will be solved using a traditional optimization algo-
rithm and a ML algorithm. As mentioned in section 2.3, the traditional optimization algorithm can only
be selected after the required computational effort is established. This means that the BO, GA, and
PSO algorithms will have to be tested and the best-performing algorithm will be used for the remainder
of the thesis.

As the goal of this thesis is to investigate machine learning performance for the conceptual design
phase, the design problems are created to be solved using low-fidelity flow solvers. Because of this,
the possible design problems are restricted to the analysis of rigid, subsonic, and small aircraft. In
order to manage the available computational resources, the design problems are made as simple as
possible, while just capable of answering the research questions.

4.2.1. Design problem 1
The first design problem is a simple aerodynamic optimization of a trapezoidal wing. The objective
of this optimization is to maximize the CL/CD for the cruise condition. The design vector consists
of the following parameters: wing span, root chord, taper ratio, sweep angle, dihedral, thickness root,
thickness tip, and angle of attack. The optimization of this problem is quite straightforward as the design
vector contains all parameters required to generate the wing model in AVL. Within AVL, the CL/CD can
be calculated by setting the cruise conditions. The design variables are then iteratively adjusted by the
optimization algorithms until the optimum wing design is found.

1https://colab.research.google.com/, accessed 08-05-2023
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4.2.2. Design problem 2
The second design problem concerns the selection and sizing of the control surfaces of an aircraft with
specified parameters. The goal of this design problem is to optimize three different objectives: the
take-off and landing performance and the trimmed CL/CD at cruise. The optimizer is able to add the
following HLD to the wing: plain, split, and slotted trailing-edge flap and a leading-edge slat. The empir-
ical methods from ESDU are based on data from conventional wings. This means that unconventional
configurations like the Prandtl plane could generate inaccurate results. For this reason, the initial opti-
mizations will model the Cirrus SR20 aircraft. The design vector consists of the following parameters
for each control surface: control surface type, chord %, width, and span-wise position. The take-off
and landing performances are calculated using AVL.

4.2.3. The Machine Learning Model
For both design problems, the RL method is selected as the ML algorithm. RL seems like the most suit-
able algorithm to answer the research questions as it has a lot of advantages over other ML algorithms.
A RL algorithm does not require any data to train, this is advantageous as the thesis will not be reliant
on the availability and completeness of any database. This allows the set-up of the model to be quite
flexible as all data is generated during the optimization process. Furthermore, techniques exclusive to
RL algorithms could be vital for exploring the research objective.

A diagram is created to illustrate how the RL model is adapted to design problem 2, as can be seen in
Fig. 4.1. The agent is a representation of the ML model and uses the policy to make decisions on how
to optimize the aircraft design. The action list consists of the adjustments the agent can make to the
values of the design variables. Once the agent has altered the control surfaces, various calculations
are performed. The aerodynamic response of the selected control surface type is determined using the
empirical methods from ESDU. AVL is able to directly integrate the results from the empirical methods
into its calculations. Three different aerodynamic evaluations are performed using AVL for both the
cruise and the take-off and landing conditions. The trimmed condition can be directly determined using
AVL. Finally, the take-off and landing performances are calculated. The results of these calculations
then determine the current state which is used to calculate the reward of that iteration. Based on this
reward, both the policy and the RL model variables are updated.

Figure 4.1: Diagram of the reinforcement learning model for design problem 2.

4.3. Analyses
Five analyses are executed to determine various performance metrics in order to answer each of the
research sub-questions. These are now discussed, together with their respective expected outcomes.



4.3. Analyses 49

4.3.1. Cardinality
The first metric will look at the effects of cardinality on the optimization results. This is done by increasing
the number of design variables in the design vector and setting the remaining design variables to a
constant value. This results in a number of optimizations equal to the length of the design vector.
The process of adding variables to the design vector has to be done carefully, as both the order and
the selection of design variables could significantly impact the results. In order to properly analyze
this impact, a sensitivity study is performed. The sensitivity study ranks each design variable based
on a sensitivity index [50]. The first optimization is then performed with the design variable that has
the highest sensitivity index. Each subsequent optimization will then add an additional variable to the
design vector until all optimizations are performed. A Python package called Salib is used to perform
the sensitivity study [51].

Once the optimizations are completed, a comparison is made between the computational effort and
objective function values achieved by both optimizers for different numbers of input variables. This per-
formance metric is used to help answer sub-question 1.1. The performance of the cardinality analysis
for both design problems is used to determine if the ML optimizer is able to outperform the traditional
optimizer at any cardinality. Furthermore, the trends of both optimizer types can be compared for the
entire range of design vector lengths.

During this analysis, a separate optimization will be performed using progressive learning. Here the
original model will be retrained every time a variable is added to the design vector. The results from this
can then be compared with the previous results to determine if progressive learning is a viable method
for decreasing the computational effort.

4.3.2. Complexity
The second metric is the difference in both effort and objective function value between the traditional
and ML optimizer. Here, the trends in the results of design problem 1 are compared with the results
of the more complex design problem 2. Of interest is to see if these trends significantly differ between
design problems if the complexity is increased in the form of a larger design vector. This could give
context to when it would be applicable to use an ML algorithm over a traditional algorithm based on the
complexity of an optimization problem. The results of this analysis are used to answer sub-question
1.2..

It is difficult to estimate if the ML model will outperform the traditional optimizer at this point. ML opti-
mizers typically perform better when more data is used for its training. This should be the case for both
design problem 2 and larger design vectors. It is therefore expected that the discrepancy between the
objective function value of the traditional and ML optimizer shrinks as the design vector increases in
length. Furthermore, it is expected that this discrepancy for the entire range of design vectors will be
smaller for design problem 2, compared to design problem 1.

4.3.3. Knowledge Retention
The third metric concerns the knowledge retention of trained machine learning models. The main aim
of this analysis is to determine a model’s re-usability, as this would greatly decrease computational
requirements. For this, transfer learning is applied to the models trained during the previous analyses
to generate new aircraft designs. This is done by gradually adjusting a constant parameter the original
model is trained on. For example, the second design problem has a fixed wing span as only the
control surface parameters are contained in the design vector. The wing span parameter is then slightly
increased and results are generated using a model trained on the original wing span. The goal of this
analysis is to determine how the results degrade as the constant parameters move further away from
the original values the model was trained on. Additionally, the amount of retraining iterations vs. the
accuracy of results will be of interest. In order to check the accuracy of the retrained model, a new RL
model is trained for each additional wing span value. The results of this analysis consist of the value
of the objective functions of both the retrained model (at various amounts of retraining) and the newly
trained model, for each design vector length.

This analysis is created to answer sub-question 2.1. The hypothesis for this is that the more compu-
tational effort the original ML model has spent, the better it will perform with little to no retraining. It
is therefore expected that the model trained on design problem 2 with the complete design vector will
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perform the best, as this model will have performed the most amount of calculations during its training
phase. This results in the model having trained on more data, which should make it more effective in
determining trends.

4.3.4. Design Flexibility
Thismetric will only be determined for design problem 2, as this is amulti-objective optimization problem.
The goal of this analysis is to evaluate the ability to alter a trained model if the resulting performance
characteristics are insufficient. For instance, decreasing the importance of the take-off and landing
performances to increase the CL/CD at cruise. This can be done by simply adjusting the multi-objective
function of a trained model and retraining it for a certain amount of iterations. The main advantage of
this is that it requires fewer computational resources, compared to training a completely new model.
This would make the optimizer more interactive, which could be advantageous in the conceptual design,
as the engineer is able to accurately tweak a design to meet requirements. For this analysis, it is of
interest to compare how the amount of retraining relates to the quality of the results.

The results of this analysis will be used to answer sub-question 2.2. It is expected that very little
retraining is required to generate proper results. The results can be evaluated by training a new model
on the new objective function.

4.3.5. Advisor Agents
Once the ML optimizer for design problem 2 has been successfully set up, it can be used to generate
models trained on different aircraft configurations. Once a sufficient number of models are trained, they
can be used as advisor agents to help with the training of a new model on a unique configuration. The
goal of using advisor agents is quite similar to transfer learning as they are both methods for decreasing
the required computational effort. However, the key difference is that with advisor agents a completely
new model is being generated, whereas transfer learning adds layers to a neural network. Of interest
for this analysis is the response to the number of advisor models and the similarity between the aircraft
configuration of the advisor and the new model.

This analysis will be used to answer sub-question 2.3. It is expected that the more similar advisors
are, the better they will perform. However, increasing the number of advisors should also increase the
quality of results. Therefore the comparison between similarity and the number of advisors will be of
interest.



5
Conclusion

5.1. Conclusions
In this literature review, the current state of automated design and related ML techniques are explored.
This led to the discovery of several opportunities for ML to aid automated design. Predominantly, the
ability of a ML model to adapt its knowledge to a new model could prove quite beneficial, as this could
significantly reduce the required computational effort. Techniques that can achieve this are transfer
learning, progressive learning, advisor agents, and multi-objective optimization. Transfer learning can
be used to adapt the knowledge of one ML model to solve new tasks. Progressive learning can be
used to solve increasingly complex problems by retraining a model used for a simpler problem. Advisor
agents are trained RL models that can be used to efficiently solve new problems. Finally, ML could be
used to adjust the multi-objective function to alter designs based on required performance parameters.

Additionally, the use of trade-off tables to make decisions could be eliminated as these can be prone
to error and non-autonomous. Trade-off tables typically contain categorical variables which traditional
optimization algorithms have a hard time properly optimizing. RL algorithms make decisions based on
an environment. This allows them to adopt the trade-off table within the optimization loop.

The aim of the thesis is to explore the utility of various ML techniques to automated design processes.
The results of the thesis could form the basis for the development of new automated design practices
that are aided by ML techniques. The addition of ML to automated design could result in the gener-
ation of innovative designs. Additionally, ML could aid in the discovery of more efficient methods of
optimization which could lead to a more interactive designing process.
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A
Additional Transfer Learning Results

Fig. A.1 shows the generated ASK21 wing planforms with the highest objective value. Here we see
that the original SR22 and TL models were both unable to optimize the planform. The CL model was
only able to slightly improve the design. All models shrink the wing span, even the SR22 model. This
is interesting, as the results from the F50 wing optimization would imply that the model would increase
this variable until it reaches the upper bound. In Fig. A.2, the average changes each framework has
made to the design variables of the ASK21 wing relative to the starting wing are plotted. The results
are taken from 500 optimizations per model. There is quite a bit of variance between the wing span,
kink location and wing twist. Here we see that the SR22 model tries to increase the wing span, despite
the fact that this will not result in a more efficient wing. This is consistent with the results from the F50
optimizations. The ASK21 and CL model were able to adapt and learn to decrease the wing span.
However, the TL model was not able to do so as it still increased the wing span.

Figure A.1: Optimized ASK21 wing planforms using the ASK21 models and PSO.

Similarly, the design variable changes from the F50 models are illustrated in Fig. A.3. These results
are consistent with the conclusions drawn in the paper. We see that the CL model increases the root
chord, thus introducing a kink to the planform. This is interesting as the original SR22 model actually
decreases the root chord. We do see a lot of variance between the variables again. This variance is
unexpected for the TL and F50 model as they were able to reach similar average objective values.
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Figure A.2: Average design variable changes by the ASK21 models.

Figure A.3: Average design variable changes by the F50 models.



B
Additional Environment Evaluation

In Fig. B.1, the rewards collected by an older version of the framework are plotted. The gain R1

in this version of the framework scaled on the basis of the increase of the new maximum objective
value at the current step relative to the previous maximum objective value it has reached during the
optimization. This was done to encourage the agent to improve the design as quickly as possible and
not continuously collect small rewards. However, due to the limited changes the agent can make to
design vector at each step, the model learned to exploit the environment. The agent would optimize
the wing while simultaneously violating the constraints, as can be seen by the increasing cumulative
penalties before step 20. This would delay the collection of the gain to increase its value. Just before
termination at step 20, the agent complies with all constraints. This caused the relative increase in
objective value to be rather large. The total rewards collected are now dominated by that first gain
its has collected. Interestingly, the model did try to further optimize the wing after collecting this gain.
However, the improvements it makes are rather small and it fails to optimize the wing on many of the
steps. This behaviour should be discouraged, as the agent is intentionally violating constraints and not
efficiently trying to optimize the wing.

Figure B.1: Normalized rewards obtained from the environment during a single optimization by an old version of the
framework, objective value reached: 30.80. The step at which the optimum wing was found is indicated by the grey line.

The reward collection of 500 DA50 wing optimizations are plotted using the DA50 model, see Fig. B.2.
The collected rewards scale exponentially with the reached objective values. Here we see that the
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environment calibrated to optimize the SR22 wing is well suited to optimize the DA50 wing. This is to
be expected, as both reference aircraft are quite similar.

Figure B.2: Rewards obtained from the environment vs objective value reached by the DA50 model.

Much like the DA50 model, the F50 model shows a great response to the environment, see Fig. B.3.
Once again the rewards scale exponentially with the reached objective values. The penalties do seem
to increase the higher the objective value becomes. This means that in order to reach a high objective
value, the model makes more mistakes by violating the constraints or not optimizing the wing at every
step.

Figure B.3: Rewards obtained from the environment vs objective value reached by the F50 model.

As expected, the ASK21 wing could not be optimized without re-calibration of the environment, see
Fig. B.4. While the collected gains did scale with the reached objective value, they were not enough to
guide the agent through the design space. This further illustrates the importance of scaling the gains
exponentially with the reached objective value. The agent collected quite a high number of penalties
and the results are scattered, explaining the low average objective values reached by the ASK21model.
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Figure B.4: Rewards obtained from the environment vs objective value reached by the ASK21 model.





C
Additional Insights on the Framework

Setup

C.1. Optimization Algorithm Selection
The Genetic and Bayesian optimization algorithms [30] were also used to solve the design problem.
Both algorithms had comparable results to the PSO algorithm at the start of the thesis when the design
problem had a smaller design vector and fewer constraints. However, when increasing the size of the
design vector and the number of constraints, their performance degraded rather quickly. The Baysian
optimization algorithm was able to optimize the wing about 70% of what PSO was able to but this took
over 24 hours to achieve. The GA was unable to find a higher objective value than the starting condition
in 2 hours.

C.2. Flow Solvers
XFOIL1 was also used to determine the profile drag coefficient of the designed wings [52]. However,
this resulted in unrealistic shapes like heavily tapered wings and quadrupled the computational efforts.
This illustrates that the selected solvers will heavily impact the generated wings shapes. This could
be particularly interesting for this project, as the design problem mostly generated rectangular wings.
The F50 is a much larger, heavier and faster aircraft than the SR22, so it is expected that the planform
shapes would be different between the two aircraft. The use of CFD solvers could increase the diversity
of wing shapes the DRL framework can learn to generate. The optimization of transonic aircraft could
be especially interesting. However, the CFD analysis of an entire wing can be rather costly. In order to
incorporate CFD solvers into the DRL framework, it is suggested a RL algorithm is seleted that is more
efficient in its training process than the PPO algorithm. This would decrease the number of evaluations
required to train the agent, thus decreasing the computational efforts.

C.3. Alternative RL algorithms
An alternative RL algorithm called DDPG was also tested [53]. This algorithm is quite popular and
should theoretically be a great candidate for a DRL framework. However, its performance was signifi-
cantly worse than the PPO algorithm for this particular design problem. This performance discrepancy
could be due to incompatibilities between the algorithm and the design problem or the calibration of
the environment. This illustrates the different response each particular RL algorithm can have to the
complete setup of an optimization framework, and its selection should be carefully considered.

There are alternative RLmethods that incorporate TL capabilities into their framework during the training
phase. Two examples are Multi-Task [54] and Meta Learning [55]. The Multi-Task Learning technique
trains a RL model to solve multiple problems during the initial training phase by having a dynamic
environment. The environment is adjusted during the training phase to force the agent to solve new

1https://web.mit.edu/drela/Public/web/xfoil/, accessed on 12-3-2023
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tasks. Once trained, the model should then be able to solve tasks that are similar to the range of tasks
its trained on. The Meta Learning technique trains a model to generate new results using data of a new
design space. It then re-calibrates its results for alternative design spaces.

These techniques could be used to create a single framework that is able to optimize the wings for
a large range of aircraft. These frameworks could be used for multiple different projects without the
need for a costly retraining phase. However, these techniques require the construction of a more com-
plex framework. The calibration of the environment to optimize the wings of multiple aircraft could be
challenging. These techniques are quite new, so their performance and consistency are less proven.
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