
Iteratively Detecting Collaborative Scanner

Fingerprints

An Iterative Approach to Identifying Fingerprints using Stratified Sampling

Jelt Jongsma1

Supervisors: Harm Griffioen1 & Georgios Smaragdakis1
1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Jelt Jongsma
Final project course: CSE3000 Research Project
Thesis committee: Harm Griffioen, Georgios Smaragdakis, Kubilay Atasu

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract– The first step of many cyber
attacks is the reconnaissance phase. One of
many reconnaissance methods employed by
adversaries is internet-wide scanning, which
probes the entire internet to find which hosts
have open ports. These scans are practically
impossible to detect by a firewall or Intrusion
Detection System if an attacker chooses to
distribute their scan on multiple hosts. Many
of these scans embed a fingerprint in their
packets, which can easily be detected if they
are known. Previous studies have developed
an algorithm that is able to identify these
fingerprints, but they were not able to identify
fingerprints for large portion of their data.
This study proposes an iterative approach
using stratified sampling, in order to see how
this affects accuracy. An experiment showed
the algorithm is able to identify fingerprints
for sets of packets that make up less than
0.5% of all packets, and less than 0.0001% of
sources. Analysis of the fingerprinted groups
indicated that these groups are not part of a
collaborative scanner, but hold for the same
fingerprint by coincidence.

Keywords– Internet-wide scan, fingerprint,
genetic algorithm, network telescope,
stratified sampling

I. Introduction

As the internet continues to expand, more services
are becoming interconnected. Most of these services
are susceptible to discovery by a method called
internet-wide scanning. Internet scanning serves
various purposes, ranging from security research
to identifying exploitable services. As internet
scanning is often employed by adversaries to find
vulnerabilities on a network, some administrators
might want to block this traffic. Against aggressive
non-distributed scanners, an administrator could
implement firewall or Intrusion Detection System
(IDS) rules that can drop traffic if it exceeds a
certain threshold. Although this is a well-known
practice, there is no reliable solution for doing the

same with collaborative scanner traffic. And with
public scanning tools, such as ZMap [1], making it
increasingly simple for adversaries to distribute their
scans, the detection of internet scanning and our
comprehension of its implications are more important
than ever.

Packets sent by an internet-wide scanning tool can
be detected using network telescopes. A network
telescope [2], also know as “Darknet”, is composed
of IP addresses that host no services or devices,
which means any traffic that reaches the telescope
is inherently malicious. The packets that reach the
telescope are usually either backscatter from DoS
attacks, or scanners probing the internet. Therefore,
any data accumulated by a telescope can be used to
monitor malware propagation and internet scanning
activities [3].

Many studies have looked into different approaches
to identify collaborative scanners. Tanaka et
al. [4] categorized these approaches as follows:
port-based, time-series, behaviour-based and
fingerprint-based. While the other approaches have
been researched quite thoroughly as summarized
in [4], fingerprint-based approaches are relatively
unexplored, with the works of Griffioen and Doerr
[5], and Tanaka et al. [6], [4] being the only research
into header field fingerprint generation techniques.
Which are only preceded by manual inspection
of code from open-source scanners [7], [8], and
signatures based on fuzzy hashes [9].

Previous work reports that many internet scanners
embed a pattern in IP and TCP header fields
to distinguish their scan from backscatter traffic
[5]. This pattern is considered a fingerprint and
consists of specific combinations of header fields,
e.g. ZMap sets the IP identity field of their packets
to 54321 [6]. Implementing firewall or IDS rules
to check incoming packets for known fingerprints
is quite trivial; identifying unknown fingerprints is
a substantially harder task as there are practically
infinite possible patterns.

In 2020 Griffioen and Doerr [5] proposed the
first method to identify header field patterns, which
was to apply XOR’s between packets within the
same scanning group to identify common patterns.
Following this research, Tanaka et al. [6] proposed a

1

new algorithm, based on the genetic algorithm, that
is able to generate flexible header field patterns. This
algorithm manages to detect scanners that make up
less than 0.5% of the total packets they considered.
In 2023 they improved this algorithm to be able
to identify low-rate and well-coordinated scans by
calculating a fingerprints effectiveness using the
appearance rates of hosts instead of the appearance
rates of packets [4].
The aforementioned algorithm only considered a

small set of binary operations and feature extractions
due to computational constraints and does not
take different approaches, such as time-series and
behaviour-based approaches, into account. Because
of this, the algorithm was only able to discover
fingerprints for 50.6% of the scanners and 18.8% of
the packets from their data [4], despite being able to
fingerprint packets that make up less than 0.5% of
the total dataset. Which means nearly half of the
scanners still go undetected, and over three quarters
of the packets are not fingerprinted.
In this paper I aim to answer the following research

question:

How does an iterative approach to
generating fingerprints for collaborative
scanners, using stratified sampling, affect
accuracy when compared to existing
algorithms?

To answer this question I propose a new fingerprint
generation technique that iteratively samples a
fraction of all collected packets, computes fingerprints
for these samples, removes all packets with the
generated fingerprints, and then repeats these steps
until no more fingerprints are found or a maximum
number of iterations is reached.
In summary, this paper makes the following

contributions:

1. I consider the approach by Tanaka et al. [6],
and propose an adaptation to their algorithm
by iteratively applying their approach using
sampling.

2. I show an iterative approach to identifying
fingerprints is able to identify fingerprints for

sets of packets that make up less than 0.5% of
all packets, and less than 0.0001% of sources.1

The remainder of this paper is structured as
follows. Section II discusses related work and
shows a more in-depth review of previous fingerprint
generation techniques. Section III describes the
algorithm used during the experiments in this paper.
Sections IV and V discuss the experimental settings
and results, respectively. Section VI describes ethical
decisions made during the research. And finally
sections VII and VIII conclude the paper with a
discussion, a conclusion and future recommendations.

II. Related work

There are many techniques that can be used to
generate fingerprints. This section will first more
closely inspect the work by Griffioen and Doerr [5],
and will then do a deep dive into the algorithm
designed by Tanaka et al. [6], [4] to get a better
understanding of existing solutions and how they
might be improved.

Griffioen and Doerr [5] proposed a method to
identify and fingerprint distributed scanners based
on recurring patterns in header fields. They
did so by first clustering scanning groups using
SLPA [10] and assuming a fixed-form fingerprint.
The fingerprints are then identified by applying a
sequence of XOR’s to different packets within the
same scanning group. Their experiments showed a
high detection rate for various scenarios, such as
distributed scanners and limiting packets per host
[6]. As mentioned before, their algorithm is based
on fixed-form fingerprints, which means scanning
campaigns with varied fingerprints are overlooked.

Based on Griffioen and Doerr’s work [5] Tanaka
et al. [6], [4] designed a new algorithm that is
able to generate flexible fingerprints that can be
used to identify scanning groups. They considered
a genetic algorithm (GA) and proposed a new
algorithm that utilized certain aspects of a GA.

1However, it is important to note that the identified groups
in this study are not collaborative scanners, but coincidentally
share the same patterns.

2

In this algorithm fingerprints are represented as
combinations of signs. These are pairs of TCP
functions and binary numbers, (f, b), where a TCP
function is a function that takes as input a packet and
returns a binary number. If f(packet) = b then the
packet is considered to have the sign. If many of these
packets contain the sign, it is considered an effective
sign. A single effective sign can be considered a
fingerprint, but when a set of packets has multiple
effective signs they can be combined using ANDs to
form a fingerprint. In order to find these fingerprints
the algorithm first generates n TCP functions, and
then proceeds to find effective signs for each function
by computing the appearance ratio of each sign by
number of packets [6] (or hosts [4]) and to what extent
each binary influences the variance of the appearance
ratio.

The step in which the algorithm finds effective
signs runs in O(nc ∗ |P |), where n is the number of
considered functions, P is the set of all packets, and c
is the runtime for computing the appearance ratio of
each binary. This step makes the runtime of the other
functions negligible in comparison, as |P | is very large
(37.1 billion in [4]). Because of this we want to
minimize either the number of functions to consider
for effective signs, or the number of packets we run
the functions on, while maximizing the detection rate.

For this we look at the generation scheme used
in the experiment. Their generation algorithm
randomly decides to perform a binary operation on
two previously generated functions, or a feature
extraction where a previously generated function is
composed with a function that extracts part of the
binary result (e.g. return only the left two bytes of a
binary) [6].

Even though the experiment only considered a
bitwise XOR as the binary operation and a small
set of feature extractions, they had to generate
2.000 functions to be able to identify 9 effective
signs [6]. This shows 99.55% of calls to the
find-effective-signs-function yielded no result. If
we are somehow able to generate fingerprints more
effectively, then we could generate fingerprints using
a larger set of binary functions, without increasing
computational cost.

Algorithm 1: Fingerprint identifier

Input : nf : number of generated TCP
functions
ns : number of samples
ni : number of iterations
P : set of packets
F0 : initial set of TCP functions

Output: R : set of fingerprints
1 Function fingerprint identifier(nf , ns, F0):
2 F ← generate functions(nf , F0)
3 R← ∅
4 for i← 0 to ni do
5 Ps ← sample packets(ns)

6 // Compute fingerprints for sample
7 S ← ∅
8 for f ← F do
9 Sf ← find effective signs(f , Ps)

10 S.append(Sf)

11 Ri ← consolidate signs(S)

12 // Remove “fingerprinted” packets
13 P ← filter packets(P , Ri)
14 R.append(Ri)

15 return R

III. Methodology

The previous section discussed the different
fingerprinting techniques available, and where these
methods fall short. This next section will shortly
explain the bulk of the algorithm, and will then
go into deeper detail on the individual functions
implemented in this method. However, many steps
from this algorithm are similar to the steps in the
algorithm by Tanaka et al. [6], for this reason the
overlapping steps will only be shortly explained.

A. Fingerprint identifier

This method of identifying fingerprints is based
on the algorithm proposed by Tanaka et al. [6].
The algorithm is implemented in Golang and its

3

pseudocode is shown in algorithm 1. Below is also
a summarized version:

1. Generate functions. Based on the same
generation scheme as in [6], this method
generates n functions by applying binary
operations and feature extractions to an
increasing set of initial TCP functions.

2. Identify fingerprints. Iteratively sample packets
from the dataset and search for fingerprints.
Once a fingerprint is discovered, all packet
matching that print are filtered out of the
dataset, so that the algorithm will not
“rediscover” fingerprints. This way the
algorithm is, in theory, able to identify effective
signs for small scanners, without signs like
ZMap’s (which make up nearly 50% of the
dataset), influencing appearance ratios.

(a) Sample packets. The algorithm samples n
packets from the dataset using proportional
stratified random sampling, where n is
determined using the formulas proposed by
Cochran, mentioned in section III-C.

(b) Find effective signs. From the sampled
packets, identify effective signs with
hyperparameters adjusted such that the
algorithm finds at most 5 signs for a given
sample.

(c) Dynamically adjust sign threshold. Because
the dataset is continually shrinking, the
sign threshold might need to be adapted,
such that the result does not contain
> 15 signs for a single sample. So whenever
the algorithm finds too many or too little
signs twice in a row, the algorithm either
increases or decreases the sign threshold by
50.0, respectively.

(d) Consolidate effective signs. As in [6], the
discovered effective signs are merged using
ANDs (if possible). Because all signs in
a fingerprint are discovered from the same
packets, only signs that are found within
the same sample have to be merged.

B. Generate functions

As mentioned earlier, the generation scheme used
in the algorithm is based on the same technique used
in [6]; a set is initialized using a small set of basic TCP
functions, such as get-IP-id and get-source-port, and
iteratively newly generated functions are added. For
initializing the set of TCP functions Tanaka et al.
[6] identified which header fields could be modified
without changing the way a packet behaves, and
which are not usually the same for all packets. New
functions are generated by either performing a binary
operation or a feature extraction on two or one of
the functions from the existing set of functions, with
probabilities r − 1 and r, respectively. Functions
from the existing set are selected with probability
according to formula (1), where fcount denotes the
number of binary operations and feature extractions
within a function.

p(f) =
(1/fcount)

2∑
f∈F (1/fcount)

2
(1)

C. Sampling technique

Cochran [11] describes a general formula for
estimating a sample size in his book Sampling
Techniques, Third Edition. This formula allows
for specification of the allowed error margin, the
confidence level of the error margin and the expected
variance of the data. An expansion of the formula can
be used to adjust a first approximation to the actual
population size. Following are the aforementioned
formulas, where in (2) n0 is a first approximation,
Z is the Z-score based on the determined confidence
level, p is the estimated variance, and e is the margin
of error. In (3) n represents the adjusted sample size,
and N represents the entire population size.

n0 =
Z2p(p− 1)

e2
(2)

n =
n0

1 + n0

N

(3)

Although Cochran proposed this formula first in
1963, it is still commonly used and a widely accepted
standard for computing sample sizes.

4

Algorithm 2: Find effective signs

Input : f : PacketFunction
P : set of packets
t : sign threshold
max : maximum number of signs
per function

Output: S : set of effective signs
1 // Modified pseudocode from Tanaka et al. [6]
2 Function find effective signs(f , P):
3 B ← { f(p) | p ∈ P }
4 sorted B ← distinct(sort B according to

appearance ratios, ra(b) | b ∈ B)

5 max idx← -1
6 for i← 0 to max do
7 if ef (sorted B[i]) > t then
8 max idx← i

9 S ← ∅
10 if max idx ̸= −1 then
11 for i← 0 to max idx do
12 S.append((f, sorted B[i]))

13 return S

Once the sample size has been determined
using Cochran’s formula, the dataset is sampled
using proportional stratified sampling to accurately
represent the complete dataset. Here strata are
defined by hour-long intervals within the data, and
sampled in proportion to their fraction of the total
set size.

D. Find effective signs

The technique used to find effective signs is
replicated from the algorithm in [6], and computes
effective signs for a function, f , according to
algorithm (2). First f is applied to all packets, and
each distinct binary outcome is counted. Following
this, all binaries are sorted by their appearance ratio
and their effective indicators are computed. If their
effective indicator surpasses the sign threshold, then
all binaries, b, up until that index are returned as an
effective sign, (f, b).

Consider a function ra(b) = appearance ratio of
b, and the multiset R≤ra(b) = {ra(x) | ra(x) ≤
ra(b), x ∈ binaries}. The effective indicator is
computed using formula (4), where ef (b) is the
effective indicator and σ2 is the population variance.

ef (b) = σ2
R≤ra(b)

/σ2
R<ra(b)

(4)

A higher ef (b) implies (f, b) is an effective sign, as
it means b has high influence on the variance of the
multiset of all appearance ratios.

E. Validate results

Because adversaries do not disclose their scans,
there is no ground truth when detecting collaborative
scanners, which turns validating the results from the
algorithm into a difficult task. However, there are
some well-known scans that have been fingerprinted
in the past, such as ZMap (IPId = 54321) and
Massscan (IPId ⊕ fL2B(IPDst)2 ⊕ fL2B(TCPSeq)
= 0 ∧ TCPAck = 0). These fingerprints will be
considered the “ground truth”, and if they are present
in the set of discovered fingerprints, then the result
is considered valid.

IV. Experiments

Next, the algorithm is applied to network telescope
data, and its performance is evaluated. Due to
time constraints on the project, and many hours
spent working on implementation, the algorithm is
tested on only a small dataset in order to show
what potential the algorithm might have. The
implementation used in this experiment can be found
on Github3. Section IV-A explains how the data used
in the experiment is collected, section IV-B explains
how the hyperparameters for the algorithm were
obtained, and lastly, in section IV-C the identified
fingerprints are analyzed.

2Extract Left 2 Bytes from value
3https://github.com/jeltjongsma/detecting-collaborative-

scanners

5

A. Dataset

The data used in this experiment is collected by
the TU Delft network telescope, consisting of three
/16 subnets, during the 1st of February 2024. Some
IP addresses in the telescope are routed to actual
devices, but when they go offline their traffic is
routed to the telescope instead. This means some
intervals might contain more addresses than others,
but in the case of fingerprint discovery this has no
direct influence. On the 1st of February there were
∼ 145.3 thousand IP addresses contained within the
telescope.
From all collected packets only TCP SYN packets

are extracted as these are used to survey active
hosts and open ports [5]. Furthermore, preliminary
testing showed the algorithm consistently returning
fingerprints for ZMap (IPId = 54321, or similar, such
as fL1B(IPId) = 212), which make up nearly 50% of
all packets and cloud the algorithms ability to detect
other fingerprints. For this reason all packets with
IPId = 54321 are filtered out prior to running the
algorithm. Leaving a dataset containing ∼ 246.4
million packets.

B. Hyperparameters

As mentioned earlier, Tanaka et al. [6] identified
which header fields could be used for fingerprints.
This experiment uses the same initial set, excluding
the IP checksum, as it does not return in any
previously found fingerprints, and it would lead to
a large overhead when preprocessing packets.

F0 = {IPId, SrcIP, DstIP} ∪
{SrcPort, DstPort, Seq, Window}

(5)

Preliminary testing and hyperparameter
optimization showed an initial sign threshold of
650 consistently returned at most 5 signs when using
a sample size of 1610000 packets. The sample size
is determined with a 99% confidence level, an error
margin of 0.1%, and an expected variance of 50%.
Compared to other sample sizes with a confidence
level of 99.5% or higher, 1610000 consistently
returned similar signs. Whereas samples with lower

confidence levels, and/or higher error margins,
returned a significantly higher number of signs that
do not reappear when applying them to the entire
dataset.

Only the XOR function was used as a binary
operation on TCP functions. The feature extractions
used were byte extractions from the left or right side
of the binary, where they can both be 1 or 2 bytes in
size.

Finally, Go’s random package requires two separate
uint64s to seed the generator. The seeds used
during this experiment were 7992864126721545341
and 2670514226473436009.

C. Analysis of identified fingerprints

The algorithm is applied to the network telescope
data and all identified fingerprints are extracted. The
algorithm identified just three fingerprints, making
up for 1.74% of all considered packets. Gr1 contained
four signs, but two of them returned the same thing
for every input. So they were manually merged. Even
though the algorithm only found three fingerprints,
the algorithm did find two for sets of packets that
make up less than 0.5% of all packets, one of which
makes up less than 0.0001% of sources. The full
fingerprints can be seen in table I.

From this table it is clear the algorithm was
not able to detect Massscan, which indicates that
this approach does not work well as a method for
detecting collaborative scanners. The algorithm did
find 3 other prints. However, when looking at the
number of distinct destination ports targeted by Gr0
and Gr1, they both cover a large set of ports. Which
indicates that their fingerprints are coincidences, and
they are not distributed scanners.

The final identified group, Gr2, targeted just 11
ports, using 5 source addresses. When looking at all
ports targeted by Gr2 however, there appears to be
no cohesion, as some are dedicated for e-mail transfer
protocols (110, 143, 587), some are for http (80,
8080), and another 6 for different uses (21, 22, 179,
433, 5060, 6667). Looking up the source IP addresses

6

Name Packets (%) #sources (%)
#dest.
ports

Fingerprint

Gr0 883 K (0.35%) 22880 (15.75%) 2819

fL2B(Seq) ⊕ Seq ⊕ DstIP = 33716
∧ fL1B(fL2B(SrcPort ⊕ Seq))
⊕ DstIP ⊕ Seq = 131

∧ DstIp ⊕ Seq ⊕ fL2B(DstIP) = 33716

Gr1 2915 K (1.18%) 27552 (18.96%) 8731
fL2B(Seq) ⊕ Seq ⊕ DstIP = 33441
∧ DstIp ⊕ Seq ⊕ fL2B(DstIP) = 33441
∧ fL1B(Seq) ⊕ DstIP ⊕ Seq = 130

Gr2 492 K (0.20%) 5 (3.44e−5%) 11
IPID ⊕ fR1B(Seq) ⊕ Seq = 61016

∧ fL1B(IPId) ⊕ fR1B(Seq) ⊕ Seq = 238

Table I: Fingerprints identified by algorithm 1. K denotes 103

on AbuseIPDB4, there is, again, no cohesion. One
of them is from the USA (0% confidence of abuse),
another from Romania (61%), and three others from
China (14%, 100%, 100%). Interesting to note is
that the source from Romania sent ∼ 492 thousand
packets, whereas the other 4 only sent 1. The
IP addresses from Romania and China with high
percentages might be part of other groups that the
algorithm was not able to detect.

V. Responsible research

As a result of the algorithm designed in this
paper, fingerprints for internet-wide scanners may be
identified with much higher efficiency, leading to a
larger set of fingerprinted internet-wide scanners. In
the introduction was mentioned how many of these
internet scanners have malicious intentions, which
means the proposed method will contribute to a safer
internet. Inherently meaning it has positive ethical
implications on a worldwide scale.

As the algorithm relies on random sampling, I have
decided to mention the seeds used for the generators.
Also, the code behind the experiment in this paper
will be released on Github, and the methodology and
the experimental settings are thoroughly explained.
This means that another researcher could perform
this exact same experiment if they have access to the
data. They can also perform a similar experiment on

4https://www.abuseipdb.com/

a different dataset.

VI. Discussion

As mentioned in section IV-C, the algorithm was
not able to identify the Massscan fingerprint, which
it should be able to using this technique. When
compared to previous results, such as Tanaka et al.
[6], [4], the algorithm also did not manage to detect
any other fingerprints. The algorithm was however
able to generate a fingerprint for sets of packets that
make up less than 0.5% or all packets, and less than
0.0001% of sources. This means that an iterative
approach could work well to find small groups, but
it does not seem to detect actual collaboration. This
section covers why this might be the case, and what
else I have tried to improve the algorithm.

The biggest problem with this approach is that
the function generation scheme generates functions
that have no actual meaning, such as DstIP ⊕ DstIP,
or that by coincidence hold for a lot of packets,
such as Fgpt0 and Fgpt1 from the experiment. And
because at every iteration fingerprinted packets are
filtered out, this (1) removes a lot of packets from
actual groups, and (2) makes it so that the sign
threshold needs to be much higher in order to not
find over 50 signs at every iteration. In order to
combat this I implemented a check that filters out
signs if the packets they hold for target more than 20
distinct ports. This approach did seem to find more

7

meaningful fingerprints, but unfortunately I did not
have enough time to properly test this approach.

The first version of this algorithm first sampled a
set of packets from the dataset, computed effective
signs with a certain threshold, extracted the functions
from those signs, and then computed effective signs
over the entire dataset with just those functions.
Because this is no longer the case in the iterative
approach, the algorithm might lose some information
when computing effective signs. Which means it
might not find all effective signs. The algorithm could
be adapted to do this within each iteration, but I did
not have enough time to test this method.

Due to time constraints I was also not able to
run the algorithm on the complete dataset from the
network telescope, which contained data from the
entirety of February.

Another, less likely, explanation for not finding
any fingerprints is that they are no longer there.
The most recent study on fingerprint identifiers was
performed on data from September 2021, while the
data in this experiment was collected in February
2024. This means it is possible that since then
collaborative scanners have stopped implementing
header field patterns in their packets. The algorithm
was however able to detect ZMap’s fingerprint during
preliminary testing, so it is very unlikely there are no
other internet-wide scanners embedding patterns in
their packets anymore.

VII. Conclusion and future work

This study considered an approach by Tanaka et
al. [6] to identify header field patterns, also known
as “fingerprints”, from network telescope data. Their
method was adapted to be able to iteratively extract
fingerprints from a large dataset using samples. The
goal was to find out how this affects the accuracy of
the approach.

Preliminary testing showed the algorithm can
consistently identify ZMap’s fingerprint (IPId =
54321). An experiment on network telescope data
from a single day, showed the algorithm is able to
identify fingerprints for sets of packets that make
up less than 0.5% of all packets, and less than

0.0001% of sources. Analysis of groups that hold for
the resulting fingerprints showed that they were not
collaborative scanners, though. Which means they
shared a pattern by coincidence.

Future work could focus on more effective function
generation, or a post-processing step, where “junk”
functions are dropped early. They can also look
into a validation step for signs to make sure it
does not coincidentally hold for unrelated packets.
Furthermore, the experiment in this study only
considered the XOR as a binary operation and byte
extractions as feature extractions, and it was run on
data from a single day. It would be interesting to
see what happens when the sets of binary operations
and feature extractions are larger, and the algorithm
is tested on a larger dataset.

8

References

[1] Z. Durumeric, E. Wustrow, and
J. A. Halderman, “Zmap: Fast internet-wide
scanning and its security applications,” in
Proceedings of the 22th USENIX Security
Symposium, Washington, DC, USA, August
14-16, 2013, S. T. King, Ed., USENIX
Association, 2013, pp. 605–620. [Online].
Available: https : / / www . usenix . org /

conference/usenixsecurity13/technical-

sessions/paper/durumeric.

[2] D. Moore, C. Shannon, G. M. Voelker, and
S. Savage, “Network telescopes: Technical
report,” Cooperative Association for Internet
Data Analysis (CAIDA), Tech. Rep., Jul. 2004.

[3] M. Kallitsis, R. Prajapati, V. Honavar, D. Wu,
and J. Yen, “Detecting and interpreting
changes in scanning behavior in large network
telescopes,” IEEE Transactions on Information
Forensics and Security, vol. 17, pp. 3611–3625,
2022. doi: 10.1109/TIFS.2022.3211644.

[4] A. Tanaka, C. Han, and T. Takahashi,
“Detecting coordinated internet-wide scanning
by TCP/IP header fingerprint,” IEEE Access,
vol. 11, pp. 23 227–23 244, 2023. doi: 10.1109/
ACCESS . 2023 . 3249474. [Online]. Available:
https://doi.org/10.1109/ACCESS.2023.

3249474.

[5] H. Griffioen and C. Doerr, “Discovering
collaboration: Unveiling slow, distributed
scanners based on common header field
patterns,” in NOMS 2020 - 2020 IEEE/IFIP
Network Operations and Management
Symposium, Apr. 2020. doi: 10 . 1109 /

NOMS47738.2020.9110444.

[6] A. Tanaka, C. Han, T. Takahashi, and
K. Fujisawa, “Internet-wide scanner fingerprint
identifier based on TCP/IP header,” in Sixth
International Conference on Fog and Mobile
Edge Computing, FMEC 2021, Gandia, Spain,
December 6-9, 2021, IEEE, 2021, pp. 1–6. doi:
10.1109/FMEC54266.2021.9732414. [Online].

Available: https : / / doi . org / 10 . 1109 /

FMEC54266.2021.9732414.

[7] Z. Durumeric, M. D. Bailey, and
J. A. Halderman, “An internet-wide view
of internet-wide scanning,” in Proceedings
of the 23rd USENIX Security Symposium,
San Diego, CA, USA, August 20-22,
2014, K. Fu and J. Jung, Eds., USENIX
Association, 2014, pp. 65–78. [Online].
Available: https : / / www . usenix . org /

conference/usenixsecurity14/technical-

sessions/presentation/durumeric.

[8] M. Antonakakis, T. April, M. D. Bailey,
et al., “Understanding the mirai botnet,”
in 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017, E. Kirda and
T. Ristenpart, Eds., USENIX Association,
2017, pp. 1093–1110. [Online]. Available:
https : / / www . usenix . org / conference /

usenixsecurity17 / technical - sessions /

presentation/antonakakis.

[9] F. Shaikh, E. Bou-Harb, N. Neshenko,
A. P. Wright, and N. Ghani, “Internet of
malicious things: Correlating active and passive
measurements for inferring and characterizing
internet-scale unsolicited iot devices,” IEEE
Commun. Mag., vol. 56, no. 9, pp. 170–177,
2018. doi: 10 . 1109 / MCOM . 2018 . 1700685.
[Online]. Available: https :/ /doi . org/ 10 .
1109/MCOM.2018.1700685.

[10] J. Xie, B. K. Szymanski, and X. Liu,
“Slpa: Uncovering overlapping communities
in social networks via a speaker-listener
interaction dynamic process,” in 2011 IEEE
11th International Conference on Data Mining
Workshops, 2011, pp. 344–349. doi: 10.1109/
ICDMW.2011.154.

[11] W. G. Cochran, Sampling Techniques,
3rd Edition. John Wiley, 1977, isbn:
0-471-16240-X.

9

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://doi.org/10.1109/TIFS.2022.3211644
https://doi.org/10.1109/ACCESS.2023.3249474
https://doi.org/10.1109/ACCESS.2023.3249474
https://doi.org/10.1109/ACCESS.2023.3249474
https://doi.org/10.1109/ACCESS.2023.3249474
https://doi.org/10.1109/NOMS47738.2020.9110444
https://doi.org/10.1109/NOMS47738.2020.9110444
https://doi.org/10.1109/FMEC54266.2021.9732414
https://doi.org/10.1109/FMEC54266.2021.9732414
https://doi.org/10.1109/FMEC54266.2021.9732414
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumeric
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumeric
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumeric
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://doi.org/10.1109/MCOM.2018.1700685
https://doi.org/10.1109/MCOM.2018.1700685
https://doi.org/10.1109/MCOM.2018.1700685
https://doi.org/10.1109/ICDMW.2011.154
https://doi.org/10.1109/ICDMW.2011.154

	Introduction
	Related work
	Methodology
	Fingerprint identifier
	Generate functions
	Sampling technique
	Find effective signs
	Validate results

	Experiments
	Dataset
	Hyperparameters
	Analysis of identified fingerprints

	Responsible research
	Discussion
	Conclusion and future work
	References

