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Abstract
This paper, in answering the question ”Can effi-
cient on-device spectrum sensing be achieved on
microcontrollers?”, presents a simple yet compre-
hensive approach to signal classification using Con-
volutional Neural Networks (CNNs) optimized for
deployment on resource-constrained devices. Us-
ing data generated via MATLAB’s Wireless Tool-
box, as well real world data obtained from testbeds,
we created a robust dataset of 9000 samples for
training our model. The steps we took while de-
veloping a CNN model that performs efficiently on
microcontrollers include: data augmentation (pre-
processing), model compression and quantization.
The model significantly outperformed baseline ac-
curacy metrics and maintained competitive infer-
ence times, despite the hardware limitations of mi-
crocontrollers. This reinforces the idea that Deep
Learning has great potential in signal classification.
Our research has the potential of being applied to
smart homes, IoT networks, industrial automation,
and public safety, where our optimized model facil-
itates efficient spectrum utilization and minimizes
interference.

1 Introduction
Wireless communication technologies have played an impor-
tant role in the development of our society as we know it
today. The absence of coordination of these coexisting tech-
nologies, such as WiFi, Bluetooth and Zigbee, results in inter-
ference problems, which can lead to unreliable or slow com-
munication. Spectrum sensing and signal classification are
important for ensuring good quality communication despite
this spectrum congestion, particularly in embedded systems,
where there are strict limits on computing power. While Deep
Learning (DL) has shown promise in accurate signal classifi-
cation on various frequency bands, implementing DL-based
methods on resource constrained devices is still an unsolved
problem. Existing approaches, such as the usage of In-phase
and Quadrature (I/Q) samples or Short-Time Fourier Trans-
form (STFT), struggle to strike a balance between high accu-
racy and low latency on-device signal classification.

Exploring related research, we take note of several efforts
in signal classification using both I/Q samples and STFT. One
study focused on classifying Bluetooth, WiFi, and Zigbee
signals in the 2.4 GHz band, achieving high accuracies us-
ing a dual-channel Convolutional Neural Networks (CNN)
and a novel technique called Spectrum Painting [2]. Simi-
larly, STFT-based approaches have shown promise, offering
improved accuracy compared to I/Q-based methods, at the
expense of increased computational demands and time. At-
tempts to address the latency of STFT-based classification
through techniques like cropping have been suggested, aim-
ing to find a balance between accuracy and computational
complexity [4].

In addition, other studies have highlighted the effective-
ness of CNNs in identifying and classifying various wireless

signals. For example, Schmidt et al. demonstrated the poten-
tial of CNNs in wireless interference identification [5], while
Zhang et al. focused on signal detection and classification in
shared spectrum environments using deep learning [7]. These
studies highlight the versatility and robustness of deep learn-
ing techniques when used for complex signal analysis tasks.

Our paper proposes several ways to improve the inference
time and model size of TinyML-based architectures. Empow-
ered by previous research on the matter, we focus on model
compression and data augmentation. Furthermore, we high-
light potential practical applications of spectrum sensing in
real-world scenarios.

2 Background and Motivation
The wireless technologies discussed in this paper, WiFi,
Bluetooth, and Zigbee, have all become incorporated into our
lives by facilitating seamless connectivity in homes, work-
places, and various industrial environments. These technolo-
gies often operate in the same frequency bands, particularly
the 2.4 GHz band, leading to potential interference and com-
munication issues. Effective spectrum sensing and signal
classification are a useful tool for managing this spectrum
congestion, ensuring reliable communication.

Spectrum sensing involves detecting and identifying differ-
ent signals within a given frequency band, enabling dynamic
spectrum access and efficient spectrum utilisation. Tradi-
tional methods of spectrum sensing, such as energy detection
and matched filtering, often struggle with distinguishing be-
tween different types of signals and handling varying noise
levels. As a result, there has been a growing interest in ap-
plying deep learning techniques, particularly Convolutional
Neural Networks (CNNs), to enhance the accuracy of spec-
trum sensing [6].

The primary motivation for this research is to address the
challenges posed by the coexistence of multiple wireless tech-
nologies in the same frequency band. Interference between
WiFi, Bluetooth, and Zigbee signals can lead to unreliable
communication, reduced data throughput, and degraded per-
formance of wireless networks. Efficient spectrum sensing
can help with some of these issues by enabling methods like
dynamic spectrum management and interference avoidance
[1].

Deep learning techniques, specifically CNNs, have proven
themselves to be useful for various signal processing tasks
due to their ability to automatically learn and extract features
from complex data. However, deploying these models on
resource-constrained devices, such as microcontrollers, can
be challenging.

This research aims to use CNNs for multi-label classifica-
tion of wireless signals, focusing on improving inference time
and model size to make deployment on resource-constrained
devices feasible. We aim to prove the feasibility of efficient
spectrum sensing that can be practically deployed in real-
world environments.

3 Problem description
In this section, we discuss the problem our research ad-
dresses, looking at the nature of the data, the method of clas-



sification, and the resource constraints that were considered.
A spectrogram is a visual representation of a signal, which

shows the magnitudes of frequency components over time. In
our case, we will obtain 64x64 size images, where rows rep-
resent segments of time, columns represent frequency com-
ponents and the color intensity represents the magnitude of
the frequency. We considered a time slice of roughly 11 mil-
liseconds for each spectrogram, and the frequency band from
2.4GHz to 2.48Hz.

In answering our research question ”Can efficient on-
device spectrum sensing be achieved on microcontrollers?”,
we are looking to efficiently classify signals by creating a
spectrogram out of a small slice of the signal and identify-
ing the presence of the following labels: Bluetooth, WiFi and
Zigbee. This kind of problem is known as multi-label classifi-
cation, a variant of the classification problem where multiple
non-exclusive labels may be assigned to each instance.

Fig. 1 and fig. 2 show sample spectrograms from our
dataset, with the presence of Bluetooth (B), Wifi(W) and Zig-
bee(Z) marked using one letter for each label.

When attempting to solve this problem, one should keep in
mind the resource constraints of microcontrollers, and aim to
create a model that is as small as possible, such that it fits into
memory and minimizes inference time.

4 Data generation and collection
For the purpose of evaluating our CNN model, we generated
synthetic wireless signals using MATLAB’s Wireless Tool-
box. This toolbox allowed us to simulate overlapping Blue-
tooth, WiFi and Zigbee signals with various signal-to-noise
ratios (SNR). This ensures that our dataset covers a wide
range of real world scenarios.

Furthermore, we were granted access to the wild environ-
ment data collected from the testbed described in the Spec-
trum Painting paper [2], which we incorporated into our
dataset.

Our complete dataset consists of 9000 spectrograms out
which 5000 are synthetic and 4000 from the wild testbed
data. These can be grouped together by the label or SNR.
Considering the 3 labels (B, W, Z), there are 8 possible com-
binations for the presence/absence of each label (N - no la-
bel, B, BW, BZ, BWZ, W, ...). These scenarios are spread
evenly across the 5000 spectrograms. The 5 different consid-
ered SNR values are also spread evenly across the generated
dataset, whereas the testbed data has the same SNR through-
out. The SNR values are as follows, as shown in fig. 3: 5dB,
10dB, 15dB, 20dB, 25dB, 30dB.

Before entering the CNN, each signal sample must un-
dergo the following pre-processing steps: Short-Time Fourier
Transform (STFT), downsampling to 64x64 and data aug-
mentation. STFT is the method used to generate our spec-
trogram from the wireless signals. As for the data augmen-
tation, it involves removing values below a treshold of 10%
of the max value present in the current spectrogram and re-
moving all connected components from the image if they are
below what could reasonable be a wireless communication
signal feature (in this case, any connected component smaller
than 4 pixels), as seen in fig. 1 and fig. 2.

Figure 1: Wild environment samples from the testbed

Figure 2: MATLAB Generated waveform samples



5 Model Design
Our Convolutional Neural Network (CNN) model is designed
to perform multi-label classification of spectrograms, and it
consists of three convolutional blocks, followed by a fully
connected layer, and an output layer.

Our CNN achieves multi-label classification by having a
sigmoid activation function in the output layer, which allows
the model to output independent probabilities for each pos-
sible label: Bluetooth, WiFi and Zigbee. Using a carefully
selected threshold, we classify each label as present if the
probability reaches it.

The CNN model is a TensorFlow model, compiled using
the Adam optimizer and a binary cross-entropy loss func-
tion, suitable for multi-label classification tasks. For evalu-
ating the model’s performance while training, we created a
custom metric which uses the average absolute difference be-
tween predicted and actual binary labels. The model is trained
for 150 epochs with early stopping criteria, which stops the
training if our metric doesn’t improve on the validation set
for 20 epochs in a row, and always restores the weights of
the CNN to the epoch that achieved the best metric on the
validation set. We utilised a 70-15-15 split on the dataset
for training, validation, and evaluation, respectively, to en-
sure accurate tuning while also testing the CNN’s ability to
generalize throughout the process of designing this network.

For optimization considerations, we applied post-training
partial quantization to the model. This optimization tech-
nique reduces the model size and increases inference speed
by converting the weights of the network when possible, from
32-bit floating point to 8-bit integers. The optimized model
is then converted to TensorFlow Lite format and it’s ready
to be deployed on a microcontroller. This helps minimize
inference time and model size, which we managed to com-
press down to roughly 243 trainable parameters. Similar op-
timization techniques have been successfully applied to other
hardware platforms, such as NVIDIA’s Jetson Nano, demon-
strating the feasibility of deploying deep learning models on
resource-constrained devices [3].

6 Evaluation
The metrics used to evaluate our model were accuracy and
inference time. The inference time was measured with our
model running on an Arduino BLE 33 Sense microcontroller.

The baseline evaluation metrics we chose are a part of the
results obtained in the Spectrum Painting paper [2], which
evaluated a few different implementations of spectrum sens-
ing, including something very similar to our own model, a
CNN that takes a 64x64 spectrogram as input, referred to in
the paper as 64-STFT. We use the accuracy numbers obtained
there as baseline. As for the inference time, their 64-STFT
model achieved 2.7 milliseconds on a Raspberry Pi 4B. To
account for the great difference in clock speed and other hard-
ware specifications, we will expect an inference time of 100
milliseconds as a baseline.

The accuracy of our CNN is influenced by the SNR of the
input signals, because high levels of noise make it difficult to
identify relevant features in our spectrograms. As shown in

fig. 3, our results suggest that our model and data augmen-
tation allow for reliable classification on SNRs of above 10,
with the accuracy sharply falling for values lower than that.

Furthermore when testing our model using just the testbed
data, we obtain an accuracy of 90%, which is a significant im-
provement over the 80% baseline (fig. 4). Skipping the data
augmentation step drops our accuracy right around the base-
line, which suggests our method was effective in highlighting
signal features and reducing noise. A similar effect can be ob-
served in the evaluation using generated data, where skipping
the augmentations seems to significantly drop the accuracy
on low SNRs, which further reinforces the effectiveness of
our augmentation.

We plotted a confusion matrix to show which labels are
most likely to be misclassified by our model. This shows us
each of the 3 labels’ probability of misclassification. Given
fig. 5 we can conclude that WiFi can be identified nearly per-
fectly, whereas classifying the signals that occupy fewer fre-
quency bins, namely Bluetooth and Zigbee, is roughly 90%
accurate.

When run on the Arduino BLE 33 Sense, our model
achieves an average inference time of 180 milliseconds,
which is just slightly worse than our baseline. This includes
an average of 70 milliseconds for on-device pre-processing.

Overall, our model performed significantly better than our
baseline in terms of accuracy, and performed slightly below
the baseline in terms of inference time. This apparent under-
performance in inference time is largely due to the arbitrary
nature of the baseline, and the difficulty of accounting for
significant hardware differences. Despite this difference, our
model’s performance remains within an acceptable range.

Figure 3: Accuracy evaluation using generated dataset, across dif-
ferent SNRs

7 Responsible research
One of the steps we took to ensure transparency and repro-
ducibility was to make the code used for training the model,
handling and processing the data, and generating the visual
material present in this paper publicly available.

Furthermore, we made sure to be thorough when docu-
menting the steps we took during the develompent of our



Figure 4: Accuracy evaluation using the wild environment dataset

Figure 5: Confusion matrix of wild environment evaluation

model. Providing a comprehensive description of our data
augmentation method, the structure and size of our model,
and the integration of the testbed data makes our methodol-
ogy clear and replicable. This could help future researchers
understand and continue our work.

Finally, we made an effort to acknowledge the limitations
of our evaluation in terms of inference time. We explained
that the underperformance in inference time compared to our
baseline was most likely caused by the significant hardware
differences involved.

To conclude, our transparent methodology, thorough doc-
umentation and acknowledgement of limitations shows that
commitment to responsible research was a fundamental as-
pect of our work.

8 Conclusions and Future Work
Our research addressed the challenge of designing a model
that balances high accuracy and low latency such that infer-
ence, as well as all pre-processing steps, can be ran on-device,
in real time, on heavily resource-constrained devices, specif-
ically microcontrollers.

Leveraging data augmentation, model compression and
quantization, we developed a CNN model that can perform
well on microcontrollers, demonstrating potential practical
applicability. The model outperformed baseline accuracy and
showed promising inference time.

Compressing the model more is a reliable way of fur-
ther decreasing the inference time, with techniques such as
model pruning and quantization-aware training. These op-
tions should definitely be considered for any continuation of
this research.

The practical applications of this research include a vari-
ety of crucial components of modern life, such as industrial
automation, public safety, smart homes and IoT networks.
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